AN ALGOR ITHM FOR FLOATING-POINT ACCUMULATION
OF SUMS WITH SMALL RELATIVE ERROR

BY
MICHAEL MALCOLM

STAN-CS-70-163
JUNE 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

AN ALGORI THM FCR FLOATI NG PO NT ACCUMULATI ON OF SUMB
WTH SMALL RELATIVE ERRCR

by
M chael Ml col m

Reproduction in whole or in part is permtted
for any purpose of the United States Governnent.

The preparation of this report was sponsored by the
O fice of Naval Research under grant nunber N00O13-6T-A-
0112-0029, the National Science Foundation under grant
number NSF GJ 408 and the Atom c Energy Conmi ssion under
grant nunber AT (ok-3) 326, PA 30.

I ntroduction

Many al gorithns require the cal culation of a sum
n
S:le, n>3 ,
i=1

wher e X 5Xpy .. o9, Are nunbers-rebresented in floating point. In
practice, an approxinmte sum$& is conmputed with rounding errors.

W1 kinson [1] shows that if the sumis accumulated in a single-precision
accunul ator (using floating binary arithnetic with t bits of precision

and proper rounding), then

wher e

- + 7 - - -
(1-2t)nlr51+nr5(1+2t)n+lr (r = 1,...,0) .

Thus the error bound is dependent on the order of summation. This
result has led to the well-known rule of thunb that it is usually best
to add a list of nunbers in order of increasing magnitude. |If one has
a priori know edge of the X4 (e.g., E: |xi| < 1) or if the accunulation
is performed with nore precision (say double precision), then nuch smaller
error bounds can be found. However, as WIkinson points out, "It should
be enphasized that we still cannot guarantee that an accunulated sum .
has a low relative error.”
Large relative error in an accunulated sumis often the result of

a phenomenon which Professor D. H Lehmer calls catastrophic cancellation.

This occurs when an internediate partial sumis nuch larger in nagnitude

than the final sum Then one or nore additions result in a |loss of

significant digits. The post-normalization step of a subsequent

addition thus introduces zeros in place of significant digits.

However, as Professor WIIliam Kahan has observed, this [arge cancellation

is not the cause of the error -- it nerely reveals the error. That is

the real villain here is not the cancellation, but rather the large

internediate sums within a floating-point system of given precision.

Perhaps "catastrophic loss of precision" would be a more appropriate

nane. Catastophic cancellation is fairly common wth poorly designed

al gorithns; nost good al gorithns have built-in precautions which avoid

(or usually avoid) this phenonenon.

Large relative errors can occur without catastrophic cancellation.

This happens in large sunmations (n >> 3)where the internediate suns
become much larger in magnitude than the individual addends, but not

larger than the final sum This sort of error can occur in nunerica

integration using a large number of intervals. Wlfe [2] proposed a

technique for avoiding this type of error. It is described in the

foll owi ng section.

In the remainder of this report, a nodification of Wlfe' s algorithm
is presented, followed by a detailed error analysis. This algorithm has
the advantage that the final sumis guaranteed to have a very snal

relative error

[I. Extended Summation Wth Cascading Accunul ators

Wl fe [2] suggests a technique which is easily programed and requires
only a small nunber of additional storage |ocations. These extra |ocations,

cal | ed cascading accunul ators, are denoted by sl, s2,. . . . The separate

accumul ators hold sums that are in various intervals; for exanple,

1.000 < c(sl)

IN

9-999
10.00 < c¢(s2)

IA

99.99
100.0 < ¢(s3) < 999.9

where c(si) denotes the contents of si . The sunmng is done at
the lowest |evel accumulator (sl) until it is about to overflow
At that point it is added to the next accunulator (s2) and reset to
zero. Simlarly, if s2is about to overflow, it is added to s3 and
reset to zero, and so on.
By this technique the intermediate sums never becone much |arger
than the addends. However, catastrophic cancellation can occur just
as before. Wl fe does not discuss how to go about summing the accunulators
at the end: in an exanple he uses the order of increasing nmagnitude.
For certain problems, this is a useful-technique; however, there is no

guarantee that the final result has a small relative error.

IIT. A Mdification of Wlfe's Algorithm

The following algorithmrequires little if any nore execution
time than the algorithm of the last section, and nearly full-
precision accuracy is achieved, provided exponent underflow or overflow
do not occur. Such exceptional conditions are normally brought to the
attention of the user by the system software and, if so, inaccurate
results cannot go unnoticed. As in Wlfe's algorithm additional

internediate accunulators are used -- typically fewer than 50.

The fol I owi ng di scussion assumes the algorithmis inplemented
on a machine using a floating-point nunber systemF of base B
(usually pis 2, 810 or 16)with a t-digit mantissa. The

exponent e is assumed to lie in the range
- nke<M
Thus each nonzero xeF has the normalized representation

_ e
X =+ .d1d2. "dt B, (1)

where ¢ Ay are integers satisfying

1<4d <B1,

OSdiSB'l (i = 2,.00,t) .

The nunmber 0 belongs to F, and has the structure

Al'l floating-point addition is assuned to be nornalized. The machi ne
- may do either proper rounding or truncation (chopping).

To facilitate discussion, the function Rev (simlar to that used
by Mpller([5]) is defined as follows: |f =xeF then fev(x) = e+m .
fev is the biased exponent having the menonic "level". Note that Zfev
is a function of the representation of a nunber and not the nunber
itself. For exanple, suppose x is to be added to y , where |y| > |x|,
and that x must be uwnnormalized during operand alignnment. Suppose also

that no nonzero digits are lost fromthe mantissa of x while it is being

unnormalized. If we denote the unnormalized representation of x by
then x and x both represent the same real nunber exactly, but
Ltev(k) > fev(x) .
The al gorithm for conputing .Zn_«xi can now be described as
follows. Therearetwo positive palrzineters, 2 and q :
Assunme there are n+1 accunulators, the contents of which are
denoted by ozo,ocl,...,ozn ,
L Set each of the accumulators to zero.
2. For each X, forma, ,a;5s ..'.,aiq (q >1), where
a;, ta; 5 . ..+a.lq = Xy and each a.l.J has the property
that the last ¢ digits are 0 (i.e., Ay gpp = & , = -
d, =0).
3. Each a.l.J is added to the k-th accumulator, where k is
determned by
vk < lev(aij) < vk+y -1,
(2)
v=[(M+m+1)/(n+1)]
where [&7] denotes the smallest integer not |less than ¢t .
(Thus
k = !ev(aij) + Vo, (3)

in the sense of Algol60.)

4. The accunulators are summed in decreasing order (i.e.,

T 0-1, .. .»0) .

A

X

The second step appears, at first sight, to be quite conplicated.
However, in practice it is easily done, especially on a nmachine with
doubl e-precision arithmetic. An illustration of this in Fortran for
the | BM System/360 i s contained in Section vI.

The paraneters £ and 7 are chosen so that the addition in step 3
retains all the significant digits involved. That is, until step 4, there
are no rounding errors. Mre insight into choosing £ and 1 will be
given in the following section. Also, an inportant restriction on the
magni tude of the product gn will be reveal ed.

Step nunber 4 is certainly the nost interesting step of the algorithm
If, instead, the accunulators are summed in increasing order (as one is
tenpted to do after reading WIkinson [1]), catastrophic cancellation can
occur. Wen this algorithmis incorporated in an innerproduct routine, it

of ten happens that

Otn =0

ak""l 0
@ =-B
%.1 =B
g =0
%3 = 0
ey = 5
%5 = €2

where fev(B) -Zev(ei) >t . Sunmming in increasing order will yield O .
However, as D. Jordan pointed out in [4], summing the accumulators in
decreasing order (m,...,0) precludes the chance of this type of error.
The remaining question is: Does sunmi ng the accunul ators in decreasing
order lead to sone other case where a |large relative roundoff error can
occur? The answer to this question is no. Proof of this assertion and

a sharp bound on the roundoff error are given in the next section.

V. Error Analysis

Anot her convenient function is defined as follows: Let xeF be an
appr oxi matio\h of some real nunber x . If x=x* and x £0 , then
pad(x,x*) is defined to be the nunber of digits by which the mantissa
of x can be shifted to the right before a significant digit is |ost
(i.e., before a non-zero digit is shifted out of the |oworder position).
If x # x , then pad(x,x*) is negative, and defined as follows:

suppose x has the representation (1); if there exists a { such that

¢ can be represented as
with dT;éO, dl;éo

and x+¢§ —x and Tis finite, then pad(x,x*) is defined to be -T .
Ot her wi se, pad(x,x*) is defined as -« . For conpl eteness,

pad(0,0) = » . For exanple, if p=2andt =6, pad(—.lOlOOO.25,_-510) =3,
If x =+.111111 -2° and y = +.111111 - 2F . and ® represents floating-

point addition, and pad(x®y,x+y) = -2 since two digits are lost during

the floating-point addition. Wien pad(x,x*) is positive, the mantissa

of x has a "padding" of zero digits at the end.

[t follows that

* *
pad(x,x) >0 & x=x ,

pad(x,x*) < 0 & x £ X

* * *x
Pa‘d‘(x’x) 2 t = Pad(x,x) = [—3 X =X =

In step 2 of the algorithm it is required that pad(a.l.a,a.la) >1>0,

for all

i,J .

It is al so expedient to define

o(x,x°) = fev(x) + pad(x, x*) . (%)

p(x,x) is invariant with respect to operand alignnent (un-nornalization)

and post-nornmalization of x , provided no exponent underflow or overflow

occurs.

Lemma 1:;

If x and y are two floating-point nunbers and @ represents

floating-point addition, then

* % * *
p(x®@y,x + y) > min{p(x,x),p(y,y) 1 o

provi ded no exponent underflow or overflow occurs.

Pr oof :

Assume fev(x) > tev(y) . Let z denote an accunul ator,

a floating-point nunber with a t+2 digit mantissa and an

overflow digit. Set z <y and, if necessary, unnormalize z

so that fev(z) = Rev(x) . The accumulator z can be treated

as a floating-point nunber if one ignores the overflow digit and

considers only the first + digits of the mantissa. In this
way, pad is defined for z . Let w denote anot her
accumul ator with the sanme structure as z . Set w « z+x .

Prior to the post-normalization step in formng w,
tev(w) = fev(z) = fev(x) and
* *, .
pad(w,x +y) > min(pad(z,y*),pad(x, x*)) ,

and equal ity occurs whenever the loworder digits of x and vy
don't cancel. From Equation (4) and the fact that

* % _ . . .
p(w,x +y) remains unchanged during the post-nornalization

step, it follows that
* * * * * *
p(x®y,x +y) = p(w,x +y) >min{p(z,y),p(x,x)}
* *
Since p(z,y) = po(¥v,y) >

* * * *
P(X®Y:X +y) > min{p(x,x):Q(Y:y)

Lemma 2: In the notation of Section III,

p(04,00) > Vi + £ .

Proof : Any term (y) that is added to the k-th accumul ator satisfies

tev(y) > vk and pad(y,y) > ¢
By Lemma 1, Equation (4) and the fact that p(0,0) = » , the | emma

follows by induction.

Lemma 3: If o #0, and Nis the nunber of a.. added to the
accumul ators, then
vk gzev(ock)_gv(kﬂ) -1 s, if N=1

vE-t+ 2 +1 < fev(oy) < w(ktl)+ LlogB(N-l)_l o if N>1

(k =0,1,...,1)
where | & | denotes the largest integer not greater-than ¢t .

Proof : The inequalities for N=1 are obviously the sane as those satisfied
by a single termadded to the k-th accumul ator. The upper bound
for N>1is found by considering the |argest number (¢) which
can be added to the k-th accunulator, i.e.,

¢ . ,”J,,,m,,,n.BV(k+|)-|_m , .

10

and observing the tev(ak) during repeated additions of ¢ to o
If the |ower bound for N>1 were not true, i.e., if
lev(ak)<vk-t+2+l s
then, by Lemma 2,
*
pad(ak:ak) >t = A = 0,
which is a contradiction.
Lemma 4: |If 1\15[3’2'\’Jrl , then each of the o (k = 0,1,...,M is

exact .

Proof : By-Lemma 3,
lev(ak) <vk+e+1
Conmbining this with Equation (4) and Lemma 2 gives

*
pad(q,o) >0

whi ch, by the definition of pad , inplies o 1is exact.

k
Loss of precision in an extended summation can result from either
1. repeated truncations (roundings) of the sum or

2. post-normalization left shift of the approximte sum

~ The post-normalization error can be formalized as follows: Let the

accunul ation of the floating-point sum

n
¥oo= Z X ’
n & 1

where the X., (i =1,2,...,n) are exact, be defined as

K -

®x ’ (i = 1,2,..010) ,

The function A of two floating-point variables is defined as
Alx, y) = max{lev(x),fev(y)} - fev(x®y).

Thus, during post-normalization of the floating-point sumzx®y ,
the mantissa undergoes a left shift of A(x,y) digits. Cearly, if
a carry occurs, A(x,y) = -1 . Aso, A(x,y) > 1 only if
l!ev(x) - tev(y)| <1.

During the formation of ¥, T ¥y, 0x,, any truncation error

already present in the low order digits of Vi1 is multiplied by

A(W i_l) Xi)
B

The accunulators are summed in decreasing order. Thus, the sum

8o can be defined by

S'ﬂ+l =0
S, =8,,99 (k = HM1...,0) . (5)
Lemma 5: If 8., is exact and zev(sk+l) < /lev(ock) and if 8.,
is un-nornalized so that lev(Sk+l) = lev(ozk) , then

pad(sml,s;i >0, provided N < az'\’ﬂ' .

Proof : Lenmal and Equation (5) yield

12

which, with Letma 2 and the definition of p, gives

tev(s pad (s) > v(ktl) £

k+1) k+1’ Sk+1

Substituting lev(ak) for zev(and using Lenma 3, we

Siee1)

obtain the desired result:

%
pad(Sk+l,Sk+l) >4 - LZogB(N—l)_I' .

Suppose that, in the process of summing the accumulators as
described by Equation (5), k =j is the firs-t k such that
pad(Sk,S;) < 0. As aresult of Lenma'5, the truncation (rounding)

error in adding S, , and o, nust be caused in one of three ways:
J - oJ

i) Wen the operands are aligned, pad(aj,ocj;) = 0 and a carry

occurs.

ii) Wen the operands are aligned, Pad(sj+l’sj+l) =0 and a

carry occurs.
Pii Lev(S. > fev(a,) and, when «. is aligned so that

tev(a.) = Lev(s A(a.,ar) < - A(S
ev Ocj = eV(j+l) , pa <aj’ j) - (j+l’a'J) SO-

Lemma 6:

Eev(Sj) > vVj+ 1+1 .

- Proof: Case i) In the aligned position, using Lenma 2, we find that
*

tev(Q,) = LQOL) S>vitd

ev(J) p(on, J) >vj

Thus lev(SJ.) = Eev(aj) + 1>vj+te+1.
Case i | S.. 80 in * *
>vjtvti

13

Therefore zev(sj) Sujty+i>yj+e+1l .

. : : * .
Case iii) Wien o, is aligned, H!ev(Sj+l) = tev(ozj) > p(OtJ.,O!j) >Vvj o+ 1.

J
Now,
lev(SJ.) =Eev(Sj+l) + A(Sj+l,o:j)
> zev(sj+l) > !ev(Otj) = vi+ 1.
Thus,

lzev(SJ.) >vi+ e+l
Si nce lev(ajﬁl) <vi+ | logB(N-l) 1,

llev(Sj) - /lev(aj_l) >4 +1- Llogﬁ(N-l) i

The assunption in Lemma & (i.e., N < Bl'w’l)

is sufficient to guarantee
t hat .tev(SJ.) -zev(aj_l) > 1, fromwhich it follows that A(Sj,ocj_l) <1,
Simlarly, each of the subsequent additions can undergo a post-
normal i zation |eft shift of at nost one digit. In fact, at nost one of

the additions
8, =8, ® (k = j=1,3-2,...,0)
will undergo a post-normalization left shift of one digit.

Lemma 7: |f N < si'\’*l , the mantissa of each of the accunulators

aj_K,aj_x_l,._.,ao is shifted at least t digits during operand

alignment, where

M= (/v (6)

14

Proof: By Lemma 6,

Zev(Sj_i) > vi t L, (i = 051y eeesd) -

By Lemma 3,
llev(Oéj_i) < v(i-i) + £+ 1, (i = 0,1,.4453)
and Zev(Sj_i+l) - !lev(ocj_i) >vi-1>t, (1= NNty eeesd).

Thus the mantissa of each of the accumulators @y 0 5 5, 0 46657

is shifted at least t digits during operand alignnent.

Theorem1: If N < 5E'v+l , if the accumulator used in accumulating 8,

has at |east +t+1 digits, and if no underflow or overflow occurs,

then the absolute error in 8, is bounded by

0
lev(SO) -m-t+1
|s -8, <»dp p
wher e

1 for chopped arithnetic
S =

1

2

for rounded arithnetic

and M is given by Equation (6).

Proof : Since a post-normalization left shift of at nost one digit can
occur only once while the accunulators are sunmed, the worst case
occurs when it is caused by the addition of &5 5 (see Lemma 7).
Subsequent additions of Oty , 15%s \ o5 cannot affect the conputed

value of §, (see Knuth's [6] di scussion of problem 5, page 498).

Prior to the addition of o , @ maxi mum of A truncations (roundings)

: . J Zev(So) -m-t
can occur, each resgltlng in an error of B or less.

Q.E.D.

15

For machines which use t-digit accunulators and chopped arithnetic,

the error bound is (k-l)szev(so)-m_tﬂ

(a stronger result!). Note
that, although the above theorem gives a bound on the absolute error, it
al so provides a bound on the relative error. Specifically, if the true

value of the sums is zero, then SO =0 .

1

Theorem 2: [f N < Bl'\’+ and no underflow or overflow occurs, then

s = 8,(1+€)

wher e

le] <reg®™

Proof : i) If o = O , then, since total cancellation of significant
digits cannot occur in sunmng the accunulators, s =0 .

ii) If So;éo, then assume s -§, = S;e . By Theorem 1,

Lev(S,) -m-t+1
IS "Sol = |So| |€| <NBB 0 .

iev(So)—m-l
Since |s,|>p)

le] < XBBE-JG .

These theoretical results are substantiated by an experinent

reported by D. Jordan [4]. Jordan used this technique for accumulating
i nnerproducts on an IBM 360 (B = 16, t = 14). He chose =32, 2 =6

and ¢ = 2 , and states:

16

"Enpirical-tests were run to determne the small amunt of roundoff
that mght be expected fromthe procedure. The tests used 1000
dot products of 15-component vectorswhere the conponents were

randony generated in the range (-1030, 1050) . The results of

this routine were checked against results obtained using 256
hex-digit arithnetic through the nultiple precision arithmetic
package witten by J. R. Ehrman of SLAC. O the thousand cases,
467 were in exact agreement, 537 had an erroneous last bit and 3
had an erroneous penultimate bit." [4, p. 3].

If the last sentence in Jordan's statenent were changed to read
"... b67 were in exact agreement, 537 had an erroneous |ast (hexadecinal)
digit and 3 had an erroneous penultimate digit.", then Jordan's results
are consistent with those of Mchael Saunders at Stanford University.
Saunders perforned several experinents on an |BM 360 using g = 16,
t =14, M =43, £ =6 and q =2 . He found exanples where the 13-th
hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. FErrors of this size are consistent with Theorem 2.

V. Additional Mdifications to the A gorithm

If one desires the final floating-point result to be correct in
all digits, the follow ng procedure can be used immediately after

cal cul ating S0

l+a2+”'+aq = SO

and each a, has the property that the last ¢ digits of

1. Form al’ae"“’acngl)’ where a

its mantissa are 0 .
2. Add maqs=8ps te e~y to the accumul ators.
3. Sumthe accumulators in decreasing order. Call the result A .

k. SO+A is the full precision result.

17

In problems where N may get arbitrarily large (e.g., nunerical

integration), all is not lost. One nerely increnents an integer every

tine atermis added to the accunul ators and when the integer is equal

L-v+l
B

to -m(M+1) , the following procedure is executed:

1. reset the integer to zero.

2. for i :=0 step 1 until 7 do
begi n
a:=a.;0a. :=0;
i
addtoaccumulators(a)
end

where the procedure addtoaccumul ators forms the TR ,aiq
variables, adds q to the integer and adds the a.l.a
(3 = 1,...,q9) to the accumulators.

3. Resunme the original algorithm

18

VI, Conclusion

The generality of the preceding discussion tends to obscure the
sinplicity of the algorithm For this reason, a sinple illustrative
exampl e of this technique programred in Fortran for the IBM 360 is included:

REAL FUNCTI ON SuM(X,N)

EQUI VALENCE (IEQ,W)

DI MENSI ON X(1)

REAI*8 R(U43),S8,DBLE

DO 10 I=1,43
10 R(1)=0 0DO

DO 20 1=1,N

W=ABS (X (1))

IEXP=IEQ/50331648 + 1
C 50331648 | S 3*(2%x24) WHI CH SHI FTS RIGHT 24 BI TS AND
C DIVIDES BY 3. ABS GETS RID OF THE SIGN BIT.
20 R(IEXP)=R(IEXP) + DBLE(X(I))

$8=0 . ODO

DO 30 I=1,43
30 98=88 + R(4L-I)

SUM=SNGL(88)

RETURN

END

This subroutine finds the sumof a vector of short-precision (t = 6)

: numbers. Since the 360 used has |ong-precision (t = 14) floating-poi nt
hardware, it is convenient to use 14 digit accunulators and append 8 zero
digits at the end of each X, Thus, g =1 and ¢ = 8 . The val ue
M =4 was chosen to give v =3. Thus, since p = 16 , the short-
precision result is guaranteed to have full-precision (chopped)

accuracy provided N < :L66 = 16,777,216 .

19

This exanple is typical inthat g is usually small (1 or 2),
£ is usually chosen for convenience, and 1 is usually chosen so the
accunul ators can be quickly indexed andso vy is sufficiently small.

The algorithmis currently used in several innerproduct routines
(see Malcolm[3] for descriptions of these routines, including running
times) . Since efficiency is satisfactory, it may well be feasible to
implement this technique through a mcroprogram so that the progranmer
can specify by a certain operation code that a summation isto be
performed With a set of these accumulators rather than with a single

accunul at or. ~

vIT. Acknow edgnment

The author is indebted to Professor George E. Forsythe for his
helpful coments and criticisms of the manuscript, The author would
also like to thank Mchael Saunders for several enlightening discussions
during the evolution of this algorithmand for his wealth of nunerica

count er exanpl es.

20

Bl BLI OGRAPHY

(1] Wikinson, J. H, Rounding Errors in Al gebraic Processes,
Englewood Ciffs, N J.: Prentice-Hall, Inc., 1963.

[2] Wwife, J. M, "Reducing Truncation Errors by Programming," CACM
Vol . 7, No. 6, June 1964, 355-356.

(3] Malcolm M A, "A Description and Conparison of Subroutines
for Conputing Euclidean Inner Products of Vectors," Technical
Report (to appear), Conputer Science Department, Stanford University,

1970.

(%] Jordan, D. F., "ANL F1548 - DOTP, Extra-Precision Accumulating
I nner Product,'? Argonne National Laboratory, Applied Mathenmatics
Di vision, System/360 Library Subroutine, Argonne, Illinois,
Novenber, 1967.

[5] Mpller, Ole, "Quasi Double-precision in Floating Point Addition,"
BIT, 5 (1965), 37-50.

[6] Knuth, D. E., "Seninunerical Algorithms," The Art of Conputer
Programming, Vol . 2, Reading, Mass.: Addison-Wsley Publishing
Q" 1969,

21

