
AN ALGORITHM FOR FLOATING-POINT ACCUMULATION
OF SUMS WITH SMALL RELATIVE ERROR

BY

MICHAEL MALCOLM
l

STAN-CS-70463
JUNE 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

-
I1

I

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS

WITH SMALL RELATIVE ERROR

bY

Michael Malcolm

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The preparation of this report was sponsored by the
Office of Naval Research under grant number N0013-67-A-
C112-0029, the National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under
grant number AT (04-3) 326,PA 30.

I. Introduction

Many algorithms require the calculation of a sum

n
s = c x. I1 n>3 J

i=l
. .

where
y&-p l l �>Xn are numbers-represented in floating point. In

practice, an approximate sum ^s is computed with rounding errors.

Wilkinson [l] shows that if the sum is accumulated in a single-precision

accumulator (using floating binary arithmetic with t bits of precision

and proper rounding), then

n
^s - s = c

i=l
xiqi t

--.
where

Cl- 2-t)n+1-r -<l+rl, 5 (l+2-t)n+1-r (r = l,...,n) .

Thus the error bound is dependent on the order of summation. This

result has led to the well-known rule of thumb that it is usually best

to add a list of numbers in order of increasing magnitude. If one has

a priori knowledge of the xi Ce*g*> 1 lxil < 1) or if the accumulation

e is performed with more precision (say double precision), then much smaller

error bounds can be found.

be emphasized that we still

However, as Wilkinson points out, "It should

cannot guarantee that an accumulated sum . . .

has a low relative error."

Large relative error in an accumulated sum is often the result of

a phenomenon which Professor D. H. Lehmer calls catastrophic cancellation.

This occurs when an intermediate partial sum is much larger in magnitude

than the final sum. Then one or more additions result in a loss of

significant digits. The

addition thus introduces

post-normalization step of a subsequent

zeros in place of significant digits.

However, as Professor William Kahan has observed, this large cancellation

is not the cause of the error -- it merely reveals the error. That is,

the real villain here is not the cancellation, but rather the large

intermediate sums within a floating-point system of given precision.

Perhaps "catastrophic loss of precision" would be a more appropriate

name. Catastophic cancellation is fairly common with poorly designed

algorithms; most good algorithms have built-in precautions which avoid

(or usually avoid) this phenomenon.

Large relative errors can occur without catastrophic cancellation.

This happens in large summations (n >> 3) where the intermediate sums

become much larger in magnitude than the individual addends, but not

larger than the final sum. This sort of error can occur in numerical

integration using a large number of intervals. Wolfe [2] proposed a

technique for avoiding this type of error. It is described in the

following section.

In the remainder of this report, a modification of Wolfe's algorithm
e

is presented, followed by a detailed error analysis. This algorithm has

the advantage that the final sum is guaranteed to have a very small

relative error.

II. Extended Summation With Cascading Accumulators

Wolfe [2] suggests a technique which is easily programmed and requires

only a small number of additional storage locations. These extra locations,

called cascading accumulators, are denoted by sl, s2, The separate

accumulators hold sums that are in various intervals; for example,

2

1.000 5 c(s1) ,< 9.999

10.00 5 c(s2) 5 99.99

~00.0 5 c(s3) 5 999.9

.

.
.
.
.

.

.

where c(si) denotes the contents of si . The summing is done at

the lowest level accumulator (sl) until it is about to overflow.

At that point it is added to the next accumulator (~2) and reset to

zero. Similarly, if s2 is about to overflow, it is added to s3 and

reset to zero, and so on.

By this technique the intermediate sums never become much larger

than the addends. However, catastrophic cancellation can occur just

as before. Wolfe does not discuss how to go about summing

at the end; in an example he uses the order of increasing

For certain problems, this is a useful-technique; however,

the accumulators

magnitude.

there is no

guarantee that the final result has a small relative error.

1114 A Modification of Wolfe's Algorithm

The following algorithm requires little if any more execution

time than the algorithm of the last section, and nearly full-

: precision accuracy is achieved, provided exponent underflow or overflow

do not occur. Such exceptional conditions are normally brought to the

attention of the user by the system software and, if so, inaccurate

results cannot go unnoticed. As in Wolfe's algorithm, additional

intermediate accumulators are used -- typically fewer than 50.

-l

The following discussion assumes the algorithm is implemented

on a machine using a floating-point number system F of base B

(usually p is 2, 8, 10 or 16) with a t-digit mantissa. The
. .

exponent e is assumed to lie in the range

-m<e<M .- -

Thus each nonzero XCF has the normalized representation

x = + .d d . ..d
e

l

1 2 t B ., (1)

where dp l -*,dt --,are integers satisfying

1 ,< dl ,< B-1 2

0 ,< di ,< S-1 (i = 2,...,t) .

The number 0 belongs to F , and has the structure

0 = .oo...oq3-m .

All floating-point addition is assumed to be normalized. The machine

e may do either proper rounding or truncation (chopping).

To facilitate discussion, the function Rev (similar to that used

by .@.J.er 15 I) is defined as follows: If xeF then 1ev(x) = e+m .

aev is the biased exponent having the mnemonic "level". Note that !ev

is a function of the representation of a number and not the number

itself. For example, suppose x is to be added to y , where IyI > 1x1,

andthat x must be unnormalized during operand alignment. Suppose also

that no nonzero digits are lost from the mantissa of x while it is being

4

unnormalized. If we denote the unnormalized representation of x by ft ,

then x and 2 both represent the same real number exactly, but

lev(2) > lev(x) .
n

The algorithm for computing c--xi can now be described as
i=l

follows. There are two positive parameters, 1 and 7 :

Assume there are q+l accumulators, the contents of which are

denoted by ag+,...,a .
'I

1. Set each of the accumulators to zero.

2. For each xi form ailjai2' .;.,aiq (q >l) , where-

a +a + . ..+a.il i2 = x. and each a..
WI 1 iJ

has the property

that/the last I digits are 0 (i.e., dt 1+1 = dt I = . . . =

dt = 0).

3. Each a.. is added to the k-th accumulator, where k is
iJ

determined by

vk 5 lev(aij) < vk+ v -1 ,

V = r (M-tm+wh+l) 1

where hi denotes the smallest integer not less than E .

(Thus

k = lev(aij) f v t (3)

in the sense of Algol 60.)

4. The accumulators are summed in decreasing order (i.e.,

The second step appears, at first sight, to be quite complicated.

However, in practice it is easily done, especially on a machine with

double-precision arithmetic. An illustration of this in Fortran for

the IBM System/360 is contained in Section VI.

The parameters L and 9 are chosen so that the addition in step 3

retains all the significant digits involved. That is, until step 4, there

are no rounding errors. More insight into choosing L and q will be

given in the following section. Also, an important restriction on the

magnitude of the

Step number

If, instead, the

product qn will be revealed.

4 is certainly the most interesting step of the algorithm.
--.

accumulators are swruned in increasing order (as one is

tempted to do after reading Wilkinson [1]), catastrophic cancellation can

occur. When this algorithm is incorporated in an innerproduct routine, it

often happens that

.

.

alitt1 = 0

ak
= -B

%-1 = B

%-2 = o

9+3 = O

%-4 = s1

%-5 = s2

.

..

6

where aev(B) 4ev(si) >t . Summing in increasing order will yield 0 .

However, as D. Jordan pointed out in [&I, summing the accumulators in

decreasing order (Q... ,O) precludes the chance of this type of error.

The remaining question is: Does summing the accumulators in decreasing

order lead to some other case where a large relative roundoff error can

occur? The answer to this question is no. Proof of this assertion and

a sharp bound on the roundoff error are given in the next section.

IV. Error Analysis

Another convenient function is defined as follows: Let xeF be an
-h.

*

approximation of some real number x . If x=x* and x8 f: 0 , then

pad(x,x*) is defined to be the number of digits by which the mantissa

of x can be shifted to the right before a significant digit is lost

(i.e., before a non-zero digit is shifted out of the low-order position).

If x+x*, then pad(x,x*) is negative, and defined as follows:

suppose x has the representation (1); if there exists a 5 such that

I: can be represented as

a n d x+f=x* and T is finite, then pad(x,x*) is defined to be -T .
f
Otherwise, pad(x,x*) is defined as -03 . For completeness,

pad(O,O) = 03 . For example, if p = 2 and t = 6 , pad(-.lOlOOO l 23,-510) = 3 .

If x =+.111111~2° and y = +.111111*2 1 , and @ represents floating-

point addition, and pad(x@y,x+y) = -2 since two digits are lost during

the floating-point addition. When pad(x,x*) is positive, the mantissa

of x has a "padding" of zero digits at the end.I

It follows that

. .

pad(x,x*) >o e x=x*,

pad(x,x*) < 0 e x f x* ,

pad(x,x*) Lt j pad(x,x*)
*

=co 43 x=x = 0 l

In step 2 of the algorithm, it is required that pad(a..,a..) 11 > 0 ,
iJ iJ

foF all i,j .

It is also eqedient to define
--.

P(x,x”) = !ev(x) + pad(x,x*) .

p(x,x*) is invariant with respect to operand alignment (un-normalization)

and post-normalization of x , provided no exponent underflow or overflow

occurs.

Lemmal; If x and y are two floating-point numbers and @ represents

floating-point addition, then

dx@Y,x*+ Y”, ,> minCp(x,x*),p(y,y*)] :,
provided no exponent underflow or overflow occurs.

Proof: Assume aev(x) ,> aev(y) . Let z denote an accumulator,

a floating-point number with a t+2 digit mantissa and an

overflow digit. Set z+- y and, if necessary, unnormalize z

so that aev(z) = Rev(x) . The accumulator z can be treated

as a floating-point number if one ignores the overflow digit and

8

considers only the first t digits of the mantissa. In this

way, pad is defined for z . Let w denote another

accumulator with the same structure as z . Set w+z+x.

Prior to the post-normalization step in forming w ,

lev(w) = fev(z) = 1ev(x) and

pad(w,x*+y*) ,> min(pad(z,y*),pad(x,x*)) ,

and equality occurs whenever the low-order digits of x and y

don't cancel. From Equation (4) and the fact that
-=.

p(w,x*+y*) remains unchanged during the post-normalization

step, it follows that

PwY,x*+ Y”, = P(w,x*+ Y*> 2 minCp(z,y*) ,p(x,x*)) .

since P(z,Y*l = P(Y,Y*) >

P(⌧aY,⌧*+Y*) > mjdp(⌧,⌧*LP(Y,Y*) 3 l
-

9

Lennna2: In the notation of Section III,
. .

&~,~,a;) 1 Vk + 1 .

Proof: Any term (y) that is added to the k-th accumulator satisfies

kv(y) 1 vk and pad(yAJ) 11 '

By Lemma 1, Equation (4) and the fact that p(O,O) = CD , the lemma

follows by induction.

Lemma3: If akfo, and N is the number of a.. added to the
1J

accumulators, then

vk 5 !ev(a,> 5 v(k+l) -1 9 if N=l

vk-t+ I +l < !ev(ak> < v(k+l)+ Llog&N-l)] , if N>l-

(k = O,l,...,T))

where Ld denotes the largest integer not greater-than E .

Proof: The inequalities for N=l are obviously the same as those satisfied
.
by a single term added to the k-th accumulator. The upper bound

for N >l is found by considering the largest number (0 which

can be added to the k-th accumulator, i.e.,

5 = + . z z . . . z o o . . . o l p

v(k+l)-l-m
Y (Z = S-1)

10

and observing the 1ev(ai,) during repeated additions of c to ak .

If the lower bound for N >l were not true, i.e., if

!ev(ak) < vk - t + J! + 1 j

then, by Lemma 2,

pad@k,{) ,> t * ak = 0 P

which is a contradiction.

Lemma 4: If NLp
a-v+1

9 then each of the CXk (k = O,l,...,l) is

exact.

Proof: By-Lemma 3,

tev(a,) <vk+a+l .

Combining this with Equation (4) and Lemma 2 gives

which, by the definition of pad , implies ak is exact.

Loss of precision in an extended summation can result from either

1. repeated truncations (roundings) of the sum, or

2. post-normalization left shift of the approximate sum.

; The post-normalization error can be formalized as follows: Let the

accumulation of the floating-point sum

lfn =
n

c x* Y
i=l

1

where the x.
1

(i = 1,2,...,n) are exact, be defined as

$0 = 0

5. =kl@x. '1
(i = 1,2,...,n) ,

. .

The function A of two floating-point variables is defined as

A(% Y> = max{Rev(x),aev(y)] - aev(xOy) l

Thus, during post-normalization of the floating-point sum x@y ,

the mantissa undergoes a left shift of A(x,y) digits. Clearly, if

a carry occurs, A(x,y) = -1 . Also, A(x,y) > 1 only if

l!ev(x) -lev(y)I 11 .
-=.

During the formation of IQ = +i-l@xi , any truncation error

already present in the low order digits of qiol is multiplied by

Ah! i-1' xi)
P .

The accumulators

So can be defined by

svl=

e Sk =

Lesnma5: If %+l

is un-normalized

pad(Sk+l'%+l*) >

Proof: Lemmaland Equation (5) yield

are summed in decreasing order. Thus, the sum

0

(5)

is exact and lev(Sk+l) 5 !ev@) and if Sk+l

so that Pev(Slrtl) = Iev(a;I) , then

0 , provided N ,< p
a-v-+1

.

PCSk+l'%l > 2 minip(~~l'OIk+l)'P(~k+2'CIlrc2), ""da.p$) 7

12

which, with Lemma 2 and the definition of p , gives

Pev(Sk+l) + Pad@k+l�Sk+~) 2 dk+�) + � l

Substituting 1 ev(yJ for Pev(&) and using Lemma 3, we
. .

obtain the desired result:

Suppose that, in the process of summing the accumulators as

described by Equation (5)' k = j is the firs-t k such that

pad(Sk,SE) < 0 . As a result of Lemma‘5, the truncation (rounding)

error in adding Si,, and ai must be caused in one of three ways:

i>

ii)

iii)

J ‘L J
-=.

When the operands are aligned, pad(cx,,ay) = 0 and a carry

occurs.

When the operands are aligned, pad(S j+lySy+l) = 0 and a

carry occurs.

lev(Sj+,) > lev(aj) and, when aj is aligned so that

iev(CXj) = tev(S j+l) , pad(aj,$ < - n(S a.) 5 0 .j+l' J

iev(Sj) > vj+ L+l .

: Proof: Case i) In the aligned position, using Lemma 2, we find that

dev(aj) = p(ajy$ zvj+l l

Thus mev(Sj) = Pev(CXj) + l>vj+R+l l

Case ii) 'ev(sj+l) = PCs j+lYs~+ll 2 mintPCaj+l'a~+l), " •'P(a,'a~l I

_>vj+v+l .

13

Therefore lev(Sj) >vj+v+1 >vj+a+l .

Case iii) When a.
J

is aligned,
-.lev(Sj+l) = lev(aj) > p(~jy2) ,> vj + 1 .

Now,

iev(Sj) = aeV(Sj+l) + A(sj+lY~j)

Thus,

2 iev(Sj+l) > lev(aj) = vj+ I .

lev(Sj) >vj+l+l .

Since 1ev(aj--l> 5 vj + L ~ogp(N-l) -1 J

Pev(Sj) - lev(ajwl) 1 I +l- LLog&N-1) A .

The assumption in Lemma 4 (i.e., N ,< B
14-l

> is sufficient to guarantee

that lev(Sj) -Lev(cxj-l) > 1 , from which it follows that A(S
j�
a

j-1) 5 � l

Similarly, each of the subsequent additions can undergo a post-

normalization left shift of at most one digit. In fact, at most one of

the additions

e

‘k = ‘k+l ’ %

(k = j-l,j-2,...,0)

will undergo a post-normalization left shift of one digit.

L&a 7: If N 5 pa-*' , the mantissa of each of the accumulators

~j-h'~j-h-1' � l �a0 is shifted at least t digits during operand

alignment, where

h = r (t+lyVl . (6)

14

F

P r o o f : By Lemma 6,

Rev(S j-i) 2 vj + I , (i = O,L-~yj) .

By Lemma 3,
. .

fev(aj-i) 5 v(j-i) + 1 + 1 , (i = Wy...yj) J

and Rev(S j-i+l) - Pev(ajmi) ,>vi - 12-t y (i = W+ly~~~yj) l

Thus the mantissa of each of the accumulators a
j-hyaj-h-l� l l .�a0

is shifted at least t digits during operand alignment.

Theorem 1: If N 5 S'-'+' , if the accumulator used in accumulating So
--.

has at least t+l digits, and if no underflow or overflow occurs,

then the absolute error in So is bounded by

I s-sol _<h,6@
Lev(So)-m-t+1

’

where

i for chopped arithmetic
6 T

1
2

for rounded arithmetic

and h is given by Equation (6).

Proof: Since a post-normalization left shift of at most one digit can .

.
occur only once while the accumulators are summed, the worst case

occurs when it is caused by the addition of aj-h (see Lemma 7).

Subsequent additions of aj -A-lyaj -h-2’ l l l

cannot affect the computed

value of So (see Knuth's 1.61 discussion of problem 5, page 498).

Prior to the addition of aj-h ' a maximum of h truncations (roundings)

can occur, each resulting in an error of p
wso) -m-t or less

I Q:E.D.

15

For machines which use t-digit accumulators and chopped arithmetic,

the error bound is (h-l)p
aev(SO)-m-t+1

(a stronger result!). Note

that, although the above theorem gives a--bound on the absolute error, it

also provides a bound on the relative error. Specifically, if the true

value of the sum s is zero, then S
0

= 0 .

Theorem 2: If N ,< &V+1 and no underflow or overflow OCCUTS, then

S = so(l+s) '

where -=.

ICI _<h6f32-t .

Proof: i) If So = 0 , then, since total cancellation of significant

digits cannot occur in summing the accumulators, s = 0 .

ii) If So # 0 , then assume s -So = SO& . By Theorem 1,

I s -soI = Is,l I&I _<X6piev(so)-m-t+1 .

Since ls()I L p
lev(So)-m-l

’

l&l 5 h6f32-t l

These theoretical results are substantiated by an experiment

reported by D. Jordan [4]. Jordan used this technique for accumulating

innerproducts on an IBM 360 (f3 = 16, t = 14). He chose r\ = 32 , I = 6

and q = 2 , and states:

16

"Empirical-tests were run to determine the small amount of roundoff

that might be expected from the procedure. The tests used 1000

dot products of 15.component vectors where the components were

randomly generated in the range (-103', 103') . The results of

this routine were checked against results obtained using 256
hex-digit arithmetic through the multiple precision arithmetic

package written by J. R. Ehrman of SLA!!. Of the thousand cases,

467 were in exact agreement, 537 had an erroneous last bit and 3

had an erroneous penultimate bit." v-b p* 31.

If the last sentence in Jordan's statement were changed to read

t1
. . . 467 were in exact agreement, 537 had an erroneous last (hexadecimal)

digit and 3 had an erroneous penultimate digit.", then Jordan's results

-=,
are consistent with those of Michael Saunders at Stanford University.

Saunders performed several experiments on an IBM 360 using p = 16,

t=14, 7 =43, I =6 and q =2. He found examples where the 13-th

hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. Errors of this size are consistent with Theorem 2.

v. Additional Modifications to the Algorithm

If one desires the final floating-point result to be correct

all digits, the following procedure can be used immediately after

calculating S
0

:

in

1. F o r m al,a2,...,aq _(q >l), where a1+a2+...+a
q

= So

and each ai has the property that the last 1 digits of

its mantissa are 0 .

2. Add -al,-a2,...,-a
9

to the accumulators.

3. Sum the accumulators in decreasing order. Call the result A .

4. So+A is the full precision result.

17

In problems where N may get arbitrarily large (e.g., numerical

integration), all is not lost. One merely increments an integer every

time a term is added to the accumulators and when the integer is equal

to BI-+m(~l) , the following procedure is executed:

1. reset the integer to zero.

2. for i := 0 step 1until T do- -
begin

a := CL; ai := 0;

addtoaccumulators(a)
-=.

end

where the procedure addtoaccumulators forms the a
il' l Y ‘iq

variables, adds q to the integer and adds the a..
iJ

(3 = l,...,q) to the accumulators.

3. Resume the original algorithm.

18

VI. Conclusion

The generality of the preceding discussion tends to obscure the

simplicity of the algorithm. For this reason, a simple illustrative

example of this technique programmed in Fortran for the IBM 360 is included:

REAL FUNCTION SUM(X,N)

EQUIVALENCE (IEQ,W)

DIMENSION X(1)

REAL*8 R(43),S8,DBLE

DO 10 I=l,43

10 R(I)=O.ODO

DO 20 I=l,N

w=ABs (x (z])

ni.m=IE&/50331648 + 1

C 50331648 IS 3*(2H24) WHICH SHIFTS RIGHT 24 BITS AND
C DIVIDES BY 3. ABS GETS RID OF THE SIGN BIT.

20 R(IEXP)=R(IEXP) + DBLE(X(1))

s8=0 .ODO
DO 30 1=1,43

30 s8=s8 + ~(44-1)
SUM=SNGL(S8)

RETURN

This subroutine finds the sum of a vector of short-precision (t = 6)

_ numbers.. Since the 363 used has long-precision (t = 14) floating-point

hardware, it is convenient to use 14 digit accumulators and append 8 zero

digits at the end of each xi . Thus, q = 1 and 1 = 8 . The value

v = 43 was chosen to give v = 3 . Thus, since /3 = 16 , the short-

precision result is guaranteed to have full-precision (chopped)

accuracy provided N < 16 6- = 16,777,216 .

19

This example is typical in that q is usually small (1 or 2) ,

L is usually chosen for convenience, and 1 is usually chosen so the

accumulators can be quickly indexed and-so v is sufficiently small.

The algorithm is currently used in several innerproduct routines

(see Malcolm [3] for descriptions of these routines, including running

times) e Since efficiency is satisfactory, it may well be feasible to

i~p1emen-t this technique through a microprogram so that the programmer

r_:an specify by a certain operation code that a summation isto be

perf,>;:med with a set of these accumulators rather than with a single

accumulator. --.

VII 0 Acknowledgment

The author is indebted to Professor George E. Forsythe for his

he?_pfil comments and criticisms of the manuscript, The author would

also like to thank Michael Saunders for several enlightening discussions

during the evolution of this algorithm and for his wealth of numerical

counterexamples.

a

20

BIBLIOGRAPHY

[l] Wilkinson, J. H., Rounding Errors in Algebraic Processes,

Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1963.

[2] Wolfe, J. M., "Reducing Truncation Errors by Programming," CACM,

Vol. 7, No. 6, June 1964, 355-356.

[3] Malcolm, M. A., "A Description and Comparison of Subroutines

for Computing Euclidean Inner Products of Vectors," Technical

Report (to appear), Computer Science Department, Stanford University,

1970.

[4] Jordan, D:'F., "ANL F15kS - DCTP, Extra-Precision Accumulating

Inner Product,'? Argonne National Laboratory, Applied Mathematics

Division, System/360 Library Subroutine, Argonne, Illinois,

November, 1967.

[5] M#Uer, Ok, "Quasi Double-precision in Floating Point Addition,"

BIT, 5 (1965)’ 37-50 l

[6] Knuth, D. E., "Seminumerical Algorithms," The Art of Computer

Programmin& Vol. 2, Reading, Mass.: Addison-Wesley Publishing

CO.'
1969 l

21

