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THE BOSE-NELSON SORTING PROBLEM 

by Robert W. Floyd and Donald E. Knuth 

Dedica~ed to R. C. Bose an his Seventieth birthday 

A typical "sorting network" for four numbers is illustrated in Figure 1; 

the network involves five "comparators", shown as directed wires connecting 

two lines. Four numbers are input at the lef't, and ~; 1;;hey move towards the 

right each comparator causes ~ interchange of two numbers if necessary so 

thet the larger number appears at the point c,f the arrow. At the right of 

the network the numbers have been sorted into nondecreasing order from top 

to bottom; it is easy to verity that this will be the case no matter what 

numbers are input, since the first four comparators select the smalles~ 

and the largest elements and the final comparator ranks the middle tl/0. 

Sorting networks were origillally constructed prior to 1957 by H. J. Nelson, 

who developed special networks for eight or less elements. Nelson also 

showed that n more canparators always suffices to go frem n elements 

to n+l (see O'Connor and Nelson [1962]). 

Figure 1. A Sorting lietwork. 

1-

2--

3-

4-

The preparation of this report bas been supported in part by the National 
Science Foundation, and in part by the Office of Naval Research. Reproduction 
in whole or in part is pennitted for any p'U"pOse of the United States 
Government. 



In 1960-1961 he and R. C. Bose constructed n-element sorting networks 

which were considerably more economical as n ~~ (see Bose and Nelson [1962]). 

The Bose-Nelson sorting problem is the problem of determining Sen) J the 

minimum number of comparators needed in an n-element sorting network. 

Bose and Nelson gave an upper bound for Sen) , and conjectured tha.t 

their method actually ga.ve Sen) exactly; but subsequent constructions have 

shown ~hat their upper bound can be L~roved for all n > 8 (see Floyd and 

Knuth [1967], Batcher [1968]). In this paper we develo~ a few as~ects of 

the theory, and ~rove that Bose and Nelson's conjecture was correct for 

n < 8 . 

Table 1 outlines some of the early work on the Bose-Nelfl()n sorting 

problem, and summarizes its current status; see Knuth [1971] for fUrther 

details of recent constructions, due to M. W. Green, A. Waksman, and 

G. Shapiro. The uPI'er bounds listed for n S 12 are probably exact. 

In order to study the problem in detail, it is conv~nier.t to introduce 

a few notational conventions. Let x = (xl,···,Xn) and Y = (Yl, ••• ,Yn) 

be sequences of n real numbers; x is said to be sorted if 

We define two operators on such sequences, the 

exchange operation (ij) and the comparator operation [ij], for 

1 S i,j S n, i f j , as follows: 

x{ij) = Y iff 

x[ij) = x if 

for 

x. <x., x[ij) = x(ij) if Xi >XJO 
~ - J 

for i! k ! j 

(see Figure 2) 

It is clear that, when i,j,k,l are distinct, we l~ve 
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(ij)[ ij] { ij) , [ij]( ij) .. [j i] ; (3) 

(ij)(jk] = (ik](ij) , (ij)(kj] (ki](ij) , (ij)[kl] '" [k! ](ij), (4) 

A comparator network a: is a sequence of zero or more exctange and/or comparator 

operations; a sorting nE::twork a: is a comparator network such tl1at xa: is 

sorted. for all x. We write a;3 for the network consisting of ex followed 

by ~; and we say that 

ex S ~ iff ua SU~ , a ~ ~ if ua .. U~ , 

where U is the set of all sequences (xl, .•. ,xn) Figure 1 illustrates 

the sorting network [12)[34][13][24)[23). Clearly a,= f3 implies that 

~ '= ~1 • Furthermore, if ~ is a sorting netw~rk and a '= f3 we must 

have ex = ~ ; in fact, xa: '" xe for all x in this case, since xa: must 

be sorted. 

: ======~X ___ I __ _ --+l---X--
Figure 2 

i 

j 

k 

Sorting networks can also be interpreted in a more gen~ral way, if we 

allow :n numbers to be contained in each line for some fixed m ~ I. If 

( 5) 

Xl' ""xn are multisets (i.e., sets with the possibility of r~eated elements), 

co:-:.ta. '.,. i1".e; III elements eaCh, we can redefine the comparator [ij J to be the 

operation of replacing Xi and Xj by the smallest and largest m elements, 
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respec~ively, of the original 2m elements in xi L,d Xj See Figure 3, 

w~ich illustrates the case m 2 Our first result gives a basic property 

of this general interpretation. 

-2,3 

--1,8 

-1,7 

-5,9 

• 
1 

Figure .3. Another interpretation of the 

netw~rk in Figure 1. 

TheoremA~~ ~~ Q; .be! cornparator netw.)rk for n elements, and let i 

~ j be indices ~ ~ (xa) i f (xa) j for!E!!! x and for ~ m > 1 

in other words', the m elements 2! the multiset (XCI:). are not all less 
~ -----

than or equal to the m elements of (XCI:) j . Then there is ! sequence 

of zeroes and ones such that - --- -- -- -- --

Proof: Let a '" fl •.• f t where each fs is an exchange or a comparator. 

Let u be the smallest element of (xa)j ; we shall use the name A to 

stand for any number ~u,and B for any number :> u • By hypothesis, 

at least one element of (XCI:) 1 is a B • We shall define a sequence y 
(s) 

of zeroes and ones, for o ::: s ::: t , such that 

o implies that 

5 

(xfl ... f) contains an A, 
B P 

(6) 

en 



for 1:S p :s n , First for s ~ t we define y~t) ~ 1 , 
~ 

yet) = 0 , and 
j 

other elements (t) 
Yk are defined in any manner consistent with the above 

conventions (6), (7), 

Assuming that y( s) has been defined for s ~ 1 , we define y( s-l) 

as follows: 

Case 1, f 
s 

(pq) Then y(s-l) = yes) (pq) 

Case 2, f = [pq] and /s) = /s) , Then y(S-l) = yes) , This 
s P q 

fulfills the above conditio~s, since yes) = ° implies that (xfl",f) 
q s q 

contains at least one A, henCe (Xfl",f) contains all A's, hence s p 

there are more than m A's in all; s~ne A's must be present in both 

(xfl .. ,1"S_1)P and (Xfr"fs_l)q Similarly y~s) = 1 implies that 

(xf1,··f 1) and (xfl···f 1) both contain at least one B, s- P s- q 

Case 3, are 

defined to be either (0,1) or (1,0), in any manner consistent with the 

above conventions; and y~S-l) ~ Y ~s) for P f r f q, This definition of 

y(S-l) is justified because (xfl",f 1) and (xtl",f 1) are not s- p s- q 

both all A's or both all B's, Note that yes) = 0 is impossible, since 
q 

it implies as in Case 2 that (Xf1 , •• f) is all A's, contradicting our s p 

convention; thus y~s) = 0, y~s) = 1 • 

According to this definition, y(S-l)f
s 

= yes) , hence y(O)a = yet) 

therefore y = yeo) satisfies the conditions of the theorem. 

When m = 1 , Theorem 1 implies that a network will necessarily sort 

all possible inputs if we can prove that it sorts the 2n sequences of 

zeroes and ones: 
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9oro~:;t.l.. A comparator network is a sorting network if and only if 

it sorts all sequences of zeroes and ones. 

C.c::~c::lla!L~' Let M(m) be the minimum number of compara.tors needed to 

merge two sets of m elements, i.e., to sort all sequences (Xl ""'X2m ) 

such that xl S ... S xm and xm+-l S ... S x2m • Then 

S(ron) S nSCm) + M(m)S(n) (8) 

M(mn) $ M{m)M(n) (9) 

Proof: Replace each line in an n-element sorting network by m parallel 

lines, and replace each comparator by M(m) canparators which merge the 2m 

lines corresponding to the original 2 lines. Append n m-element sorting 

networks at the left, in order to sort each of the groups; this yields a 

sorting network for mn elements having M(m)S(n) + nS(m) comparators. If 

we start with a sorting network that was constructed in this way for n = 2 , 

the rightha.nd part of the network has M(m) cOOlparators; expanding each 

line to m' lines makes the M(m)M(m') comparators of the righthand part 

capable of' merging two ordered g:t·oups of nun' elements. 

An example of' the construction in Corol.l.a.ry 2 appears in Figure 4. 

Bose and Nelson proved Corollary 2 in the special case of binary merging, 

n ., 2 ; this shows that M(2n) S 3n , and 6(2n) S 3n_2n • When 

SCn) ,.,. n~ -n and M(n} ~ n~ I the inequalities in Corollary 2 do not a.llow 

us to lower the exponent t'; and in fact these inequalities do not lead 

to an especially efficient way to construct sorting networks, compared to 

otner known methods. Yet the special case m = 7, n = 3 shows that 21 

elements ca.n be sorted with one less comparator than predicted by the 
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Bose-Nelson conjecture, and this is what first showed us that the 

conjedure was false in general (see Floyd [1964]). We went on to find 

that the conjecture is false for all n > 8. (This is, perhaps, poetic 

justice, sincp. Bose made the conjecture shortly after he had helped to 

disprove Euler's famous Latin-squares conjecture, for all n > 6 , after 

having first disproved it for n = 50 And our own sorting networks 

have by now been shown to be nonoptimal for all n > 9 .) 

-'" ... 

~ 

01. 

-"-

Figure 4. 

I 
, 

1 

An 8-element sorting network, constructed 

from Figure 1 and Corollary 2 (m = 2) • 

1 

Let us now examine the properties of comparator networks a little more 

closely. In the first place, we can use identities (3), (4) to transform 

any comparator net~ork so that all comparators precede all exchanges, and so 

that all cOOlparators [::j 1 have i < j. (Working from left to right, we 

replace [ji] by [ij](ij) when i < j , and we permu~e eXChanges with 

comparators. This process clearly converges in a finite numQcr of steps.) 

In this way a network 0: is transformed into a: 'a" where 0:' has only 

"a.~wara.n co~paJ:Qt.;;n; Cloud Ci." has only exchanges. If' 0: is a sorting 
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network, we can see by considering the effect of a on (1,2, .•. ,n) 

that cr' must be the identity transformation, so Cl! = a' . 

Let us say that a sorting network is in standard form if it consists 

entirely of comparators [ij J with i < j , ani no exchanges. We have 

pruved 

Lemma 1. Every !£rting netw rk is equivalent to ~ network in standard 

~, having the ~ ~ 2! com,parators. • 

When the network is in standard form and when xn exceeds xl' ""xn_l ' 

all cCI'1parators [in 1 are essentia1ly inoperative; hence we can construct 

a sorting network for n-l elements by simply removing all such 

comparators (in 1 fran an n-element sorting network in standard form. 

T. hibbard [1963] observed that sorting networkS having the same number of 

comparators as those originally constructed by Bose and Nelson can be 

obtained in this way by starting with & Bose-Nelson petwork for 2k > n 

elements and deleting all comparators involving xn+l""'x k 
2 

We can now obtain a lower bound for the merging problem: 

'l:heo~en 1: M(2n)? 2M(n) + n . 

Proof: Consider a. network with M(2n) ccmparators in standard form, 

which sorts (xl'" .,x4n> whenever xl:s x3 :s ••. 5 x4n_1 and 

x2 S x4 :s •.• S x4n , We separate the comparators [ij] into three types, 

A: i < 2n , j < 2n 

B: i < 2n .j > 2n 

c: i>2n.j>2n 

Since x2n+l ••.. 'x4n may be very large, there must be at least M(n) 

9 



comparators of tj'l)e A; similarly there must be at least M(n) of t~e C. 

And since we might have xi = 1 when i is odd, a when i is even, 

there must be at least n comparators of type B in order to let nO's 

rlse to the top balf of the diagram. 

A similar proof shows that M(2n+l)? M(n) + H(n+l) + n ; and the same 

relations also hold with S in place of M. It follows that 

• 
M(n) ~ ~ n 10g2 n + n for all n; this is why sorting networks based recur­

sively on binary merging involve the order of n(log n)2 camparato~s, at least. 

The best sorting networks known for r. > 8 do not use binary 

merging, so Theorem 2 does not give us usetu! information about lower 

bounds for S(n) • When n is comparatively small, ~ct lower oounds can 

be found, as we shall now see. First we shall examine a general 

commutativity condition: 

Lemma. 2. 
'""'-.. 

= ¢ , and if f3 is ~ rearrangement of the comparators of a, then 

Proof: We shall show that ua is the set Sea) of all vectors (Xl' .•• ,Xn) 

such that x. :s x. for 1 < s < t 
~s J s 

All xES(a) satisfy xa = x , 

hence Sea) s ua . 

Conversely, suppose that xa I sea) , 

some s. Clearly s must be less than 

By induction on t , we have 

increased the is component or decreased the js component of xa r This 

means that is = jt or js = it ' contradicting the hj'l)othesis. 

10 
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Lemma 3. TJet a be! sorting network for ~ ~ ~ e~ements. I!!!!! 

~ 1s ! sorting network, with !!£ more ccnparators than a, in which 

the first three operations !!:! either 

Case A, [12][1,3][23] 

or Case D, L12Jl13Jl45J 

or Case C, [12][34J[~31 

or Case D, [12][34][14] 

~: Clearly a includes at least three <"omparators, or it oouldntt 

sort. Since (ij)a = a , we may use (3) and (4) to transform a into a 

sorting network a' in which the first operation is [12]. For example, 

if a = [47]~ , we may take a' = (14) (27)a = [12](l4)(27)~ ; and if 

a = [21.]~ we may take at = a = i12](12)I3. S1mi~ly we may assume that 

the second operation is either [12] or [13] or [23] or [34] ; and since 

[12][12] = [12] , we may rule out the case [12)[12]. If the second 

operation is [24], we may observe that whenever a = [il
j 1] ••• [it

j t] is 

a sorting network, so is the "duaJ." network at '" [j1 i 1 ] ••• [jtit]T where 

T is the sequence of exchanges which transforms (x1,x2, •.• ,xn) into 

(xn, ..• ,x2,xl ) . Hence when a = [12][23]~ we may consider the sorting 

~etwork a' = [2l][321~'T = [12][13](l3)(12)~'T • Therefore we may assume 

that the first two operations are [12 ] [13 ] or [ 12 ] [34] • 

Procel~ing in this way we can analyze the possibilities for the 

third c~'ator, as followv. 

II 



[ 12 ][ 13 )[ 12] '-" [ 12 ][ 13 ) 

[ 12 ][ 1; ][ 23} = A • 

[12 ][ 13 ][ 14 J =: [12 J[ ;4 ][ 13 ) 

(12){13){24] .... (15J[12][34J(23) =:; [12][13][34](23) 

[12 J[ 13 J [34] -f [12][ 14 ][ 34) ~ r ~2 Jt 34 J[1.4 J 

[12](13][45) = B 

[12J[34][13J = c 

[12 )[ 34 J[ 14] = D • 

[12 J[ 34][ 23] - [34 ][12 J[ 41 )(1.5 )(24) = [12)[ 34][ 14 ](14 )(13 )(24) • 

(12)[34][24) ~ [21][43](42) '" [12][34J[13](13){34)(12) • 

[12]{34][15] ~ (12)[15](34) - (12](13][45](45) • 

[12)[34}[251 = (12](25){34) ~ (21)[52)[43] .... [21](32)[45](35) 

= [12 ][13]( 45 )(13)(:>2) (35) 

[121[34][35] = [34][35J[12) .... [12}[13J[ 45J( 45) (35)(24)(13) • 

[12]£34][45] -- [34][12][25](24)(13) = [12)[34][25](24)(13) 

Here "_" denotes an appropriate left-multiplication by one or more 

exchanges, " :;" denotes an application of Lemma. 2, and II ~" denotes 

duaJ.ization a.s above. 

Finally, if the first three operations are [12](34)[56], we may 

consider the first comparator Which has an index in common with a previous 

one; this will reduce to a ca.se already conSidered. 

The exhaustive method. in this proof can be extended to show that there 

• 
are essentially eleven ways to choose the first four comparators, when n ~ 4 , 

namely 
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Al. [12]t13 ][23][ 24) C1. (12) r 34) [13) [24 ) 

A2. [12 ][13 ][231[451 C2. [12](34 ][13 ][351 

C3. [12 ][34 ][13][ 451 
Bl. [ 12 J [1; ] { 45] { 1.4 ] 

c4. [12] [34] [13 ] ( 50S 1 
112. [ l2] [ 13 ] { 45 ] [ 46 ] 

"O~ [lr:)[13}[4jJ[;iGj Dl. (.12)[-,41114 Jl351 '"''''' 

D2. [12][34][14][56] 

Details are omitted here, since we shall not need this fact. 

Proof: There is a sortinlS network with n comparators, in standard form, 

having one of the four forms stated in Lemma 3. If we suppress all 

comparators [ij] with i = 1 we have a sorting network for x2"."xn , 

so we must show that at least three comparators have i = 1. This is obvious, 

since in each case we already know two of the comparators, and at least one 

more is required to bring the smallest element to the required position. • 

Theorem ~ probably possesses the unique property that it has exactly 

two applications, no more a.nd no least Once S(5) has been shown to 

equal 9, we can use Theorem 3 to show that s(6) = 12 ; and 5(7) = 16 

will imp~ that S(8) = 19. Besides these results, the theorem appea.rs to 

be quite useless. 

We always have S(n)? lo~ nt by an elementary information-theoretic 

argument, hence the values of S(1),5(2),S(3),S(4) are immediately established. 

But information theory tells us only that 5(5) ~ 7 I and T:teorem 3 shows 

that S (5) :! 8 ; the following theorem shows how to strengtl'.en Theorem 3 

when n = 5 • 

13 



Theorem 4. S(5) = 9 • ... .. 

Proof: We need only show that 3(5)? 9 , in view of Bose and Nelson's 

construction. Proceeding af> in Theorem 3, if the sorting network begins 

as in Case D we may permute the lines so that the first three comparators 

are [14)[ 25 J[ 15] Then we must have at least 3(3) more comparators 

[ij J with i < .i < ) : Rnn !;rt ~("X.\ .... \ .... , more with :5 ~ i < j , to complete 

the sort. This makes 9 comparators. 

For Cases A, B, and C we may permute the lines to obtain a sorting 

network in standard form in which the first three comparators are 

respecti vely 

[l2][ 15][ 25 J in Case A, 

[13][14)(25J in Case B, 

(14)[25)[12) in Case C. 

Applying these to all 32 combinations (x1,x2,x3,x4'x5) of zeroes and ones 

(cf. Corollary 1), then replaCing all zeroes at the left and all ones at the 

right by asterisks, discarding all duplicates and all sequences which are 

nothing but asterisks, we obt&in the 5-tuples 

***10 

* * 100 

* * 110 

* .. 10* 

* 100 * 
*110* 

*1.0** 

plus the "special" 5-tuples 

1100* J 110** 

10110 1 0 * * * 

110** , *1010 

14 

1 1 1 0 * in Case A, 

in Cas£' B, 

.. 1 1 lOin Case C. 

(10) 

(11) 



In order to sort (10), we need at least S(3) comparators with 

2 ~ i < j ~ 4 and 8(3) with 3 ~ i < j $ 5 ; and there must also be 

another with i = 1. The onl¥ way to do this with five more comparators 

is to use the sequenc" [34][23][45](34) or [34)[45][23)[34], with an 

additional [lj] il'lSerted somewhere. nat then it js not difficult. Lo verlfy 

that the special 5-tup1es in (11) cannot all be sorted. 

S(7) ~ 16 • 

• 
Proof: This theorem was :proved by exhaustive enumeration on a CDC G-21 

computer at Carnegie Institute of Technology in 1966. The program was written 

by Mr. Richard. Grove, and its running time was approximately 2C hours. The 

algorithm consisted of constructing a set St of sequences such that, for 

all a of the form [i1 j 1] ••. [it j t) 1 there exist permutations _ and p 

with ~ ~ ~ for some ~ESt . The sets St were generated successively 

for t = 1,2, ••• ,16, taking care to keep each set rather small; for this 

purpose a 128-bit vector was maintained for each element of St' characterizing 

those 7-tuples of zeroes and ones which are output by the network. Most of 

the computation (about 13 hours) was spent in the cases t ~ 8 and 9 J 

since S9 had. 729 elements. None of the six elements in S15 was a 

sorting network. 

The methods of proof used to establish these !ower bounds on Sen) 

are of course quite unsatisfactory for larger values of n. We have no 

idea hOW' to prove that Sen) grows as c n(log n)2 , although the best 

upper bounds known to date have this asymptotic behavior. 
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