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Introduction. In recent years, fast direct methods have been devel oped for

the nunerical solution of the Poisson equation on a rectangle [1, 2]. By
taking advantage of the special block structure of the approximting dis-
crete equation on a uniform rectangular mesh, these nethods obtain the
solution with striking efficiency and accuracy. A conparison of fast
direct methods with other nethods can be found in [3], and the extension to
more general separabl e elliptic equations in [4].

In this paper, we investigate a technique for using fast direct nethods
to solve iteratively nore general formally self-adjoint strongly elliptic
equations gu = f , which are not necessarily separable. W consider
mai nl'y Ddirichlet conditions on the boundary of the rectangle, ajthough
the technique applies with slight nmodification to other boundary conditions
for which fast nethods are suitable. Qur approach is to utilize a modified
form of the iterative procedure

(1) -Au - (g 1) A= 37 o5 + 33"

n+t = - AUp
proposed for nunerical conmputation in conjunction with alternating-direction
met hods by D'Yakonov[5] and di scussed recently by Wdlund [6]. This procedure,
in addition to being of a formsuitable for fast direct nethods, has the desir-
able feature that for well-behaved problems its convergence rate is essentially
i ndependent of nesh size.

The iteration (1) as it stands, however, may be too slowy convergent to
be of practical inportance, even when optinal values of the paraneter + are
used. The purpose of our paper is to discuss neans for inproving the iterative

procedure so that it becomes a potent one for attacking a class of problens
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arising frequently in applications. The means we enploy are: (i) scaling
the original problemgu = f and iterating instead with the scal ed problem

e = q ; (ii) using, instead of (1), the shifted iteration

(@) (-a+)w = (-8#K)w - 70w -q) »

where K is a suitably chosen constant; (iii) applying Chebyshev accel era-

tion.

These nmeans in themselves are not necessarily new, it is the effectiveness
of their conbination for solving this problemthat we wsh to investigate, W
remark that algorithnms for the fast direct solution of the discrete Poisson equation
in a rectangle can handle iteration (2), which requires the repeated solution
of a Helmholtz equation, with the same rapidity as they can (1).

In§ 1 our "basic iteration procedure for smooth coefficients is
described and in § 2 its convergence studied. |n §3 the generalization to
non-smooth coefficients is discussed. |n § 4 the results of nunerical experi-
ments are given to illustrate the behavior of the procedure. |n the renining
sections, the question of scaling is covered, and generalizations to other
equations and nonuniform mesh spacing are discussed.

Rel ated iterative techniques for elliptic equations are studied in [7]
in connection with alternating-direction methods and in [8, 9] in connection
with Stone's sparse factorization method. This latter method is formally
simlar to ours; however, our technique has the desirable property of being
based on a nore natural splitting of the operator. |p [10] a related

approach to nonlinear ordinary differential equations is investigated.
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1. The iterative procedure. In its sinplest form the iterative procedure

considered in this paper solves nunerically on a uniformrectangul ar mesh

the problem

(3) fu = -v- [a(x,y)vu] = f(x,y) on R
(4) u(x,y) = g(x,y) on R ,

where R is the rectangle 0 < x <c, 0<y <danda(x,y) is strictly
positive on R and its boundary op . W assune a(x,y) and g(x,y) to
be sufficiently snooth so that the solution u(x,y) is well behaved. The
positivity of a(x,y) inplies that £ is positive definite.

If a(x,y) has bounded second derivatives on gUoR , which is the case
of principal interest for the use of our procedure, the change of variable

is performed
(5) w(x,y) = [a(x,y)]%u(x,y) :

1
Then, after division by a® ,(3) becones

>
o
éOIP
o

i

i

= -Av+ p(x,y)w = q(x,y) on R,

VIS

1 -1 _

wher e p(x,y) = a %4 (a®) and - q(x,y) =a2f . The effect of this
scaling is to transform the-operator £ into one whose differential part
is -A. Note that the change of variable (5) does not alter the positive

definiteness of £, so that 7, is positive definite as well.



Substitution of (6) into (2) then yields as our iteration

(7) (-a+)w = (-a#K)w, - 7(-a+p)w_+ 74 On & .

The boundary condition is

(8) LA H{x,y) on oR ,

1
where H(x,y) = a®g (l)

In an attenpt to nake the operator -a+k on the left of (7) agrec
closely with m, we choosethe constant K to approximate p(x,y), The

choice of central interest in our study is the minimax val ue,

(9) K = £(B+B) ,

where g is the mninmumand B the naxi num val ue of p(x,y) on the
cl osed rectangle. As will be shown in the next section, this choice |eads
to an estinmate that the optimal value of the single paraneter « to give

nmost rapid convergence in (7) is

(10) T =1

For this value of =, (7) becones sinply

(11) (-A+K)wn+1 = (K_p)wn v q on R
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& have presented the iterative procedure in its underlying continuous
formto bring enphasis to the point that the convergence properties shoul d
not be expected to depend significantly on the mesh size, at |east ror the
case of twice differentiable a(x,y) . The discretized version of the iterative
procedure (8, 9, 11) is discussed in subsequent sections. To obtain it,
we place a uniformrectangular mesh on g with spacing h in the x-direction
and k in the y-direction and |et V\I/J.- correspond to w(x,y) at the nesh
points x=ih, y=jk . Corresponding to the operator -A with Dirichlet

boundary conditions we take the standard five-point approximation,

(12) ’AhVVJ = h—g(-wi N ,j+2w' -w ) + k

Hp i+,

-2
(-W. . +2W. -W. .
i,J-1 1] 1 4+

),
. C .
1=1,2, 000, -1 5 3=1,2,0 oup -1 .

Then the discrete formof iteration (8, 11) is given by

(13) (-Ah+KI)w(“+1) = (KI-P)W(n) + Q,

where P is a diagonal matrix with elenents pij = p(ih,jk) , Qis a vector

with clements Q .1J= q(ih,jk) , and | js the identity matrix. The solution

of' (13) is carried out in each iteration by using a fast direct nethod.
Finally, under the assunption that the eigenval ues of (-Ah+KI)-1(KI-P)

lie in the interval [-p,p] | Chebyshev acceleration is applied [14]:

(14) VNJ(HH) =0 (w(n+1)_ W(n—ﬂ) N ﬁ(nq) ,

_ > o -
where o1, a)1=2/(2-p ), mn+1=(1—p w /b) ' for n=1,2,... ,

(n+1 )

and W is the inproved value of wr+t) where now WP gatisfies




(13) with V¢n) repl aced by ﬁ(n) on the righthand side. This is equivalent
to the use in (7) of a sequence {r,} . rather than a single value of ¢, in
a manner that is numerically stable and does not require the total number of
parameters in the sequence to be specified in advance. |f in sone cases
menory limtations preclude the use of (14), then a fixed sequence {Tn}

could be used instead, ordered in the manner recommended in [11] for nuner-

ical stability.



2. Convergence properties. W return to iteration ('7, 8), in which the

values of K and r are not yet specified. [Its convergence properties

can be exam ned by standard methods in terns of the eigenval ues of the Iaplace
operator, which are known explicitly for the rectangle. Ve carry out here

the analysis for the discrete formof the iteration, the continuous analysis

proceeds in essentially the same manner (for exanple, as in [12]).

2.1 W give first, for conparison purposes, the behavior of the discrete
formof iteration (1, 4) for the original problem (3, 4) without scaling or
shifting. W place a uniformrectangular grid on the rectangle, as in the

previous section, and obtain as the discrete formof (3,k)

-2
l I_U. . = h "a.T.U + a-‘—.+a-1~ -]U. s -
(15) ij ( 1371-1,3 [ 1j 11,3713 8T+1,jUi+1,j) +
-2
- P + (a.,+ +a., - R < . . =
+ ko aijU1,3-1 [ ij &4 ,J+1]U1J i 5;+‘|U1,3+1) Fij ’

. C : d
l=1,2,oa-, H"1 ; J=1,2 9ecey "1;-1 ’

L(az= + ar = .7 t(az= + ar =
wher e a,l.J denot es <(aij a1,3+1) and 253 denot es g(aiJ 1+1ﬂ) ,

ass being the value of a(x,y) at x = (i-3)h , y = (j-3)k . The vector
el ement liiJ corresponds to wu(ih,jk) and FEJ is equal to f(ih,jk)

Then the discrete formof (1, 4) is

(16) -AhU(n+1) = —AhU(n)- (LU 1)

F) or, after premultiplying by (-Ah)'1,

) (I-TFAhJ—1L)U(n) + T(-Ah)'1F ,

where, as is the case for £, the positivity of a(x,y) inplies the positive



definiteness of L .
The spectral radius o of the iteration matrix (r.r[.a 171 s
h
expressed in terns of b, and p, . the minimumand naxi num ei genval ues

of the generalized eigenval ue problem

7)1 o= u(a)e,
as
(18) o (r-r-a,)70) = | 1omug | [1my))

Since L and -4, are positive definite, b, >0 . There follows the well-

known result [22]

Lemma:  |teration (16) converges for any initial approximtion (0)

——

and only if 0<r< %uy » and for a single parameter « the optimal choice

(19) T=T = 2/ (“m+“M)

yields the smallest spectral radius

(20) po=pg = (yen )/ Guypn )

It is straightforward. to show that the uniform estimte independent of

h and k

3 13
(1) O<a<

T
S 8 (s <

holds for any vector & , where o« = nmin a(x,y) and A = Max a(x,y) on the

closed rectangle. There follows the corresponding estimate



22 0
( ) <°{S“‘mSU’MSA:

based on which we obtain, from(19) and (20), that for

=2/(a + A)
there hol ds

(23) p<(A-a)@+a).

The estimate (22), and hence (23), are, in fact, the sharpest possible

uniform ones, as can be seen by taking- for ¢ in the Rayleigh quotient

(21) a vector that is zero except at the position corresponding to the maxi mum

diagonal elenment of L , or, alternatively is zero everywiere e€xcept at the

m ni mum

2.2 The discrete formof the shifted iteration (7, 8) for the scaled problem

(6, 8) is

(2) R G ALY BRI SULC I

W do not yet specify K to be the value (9), but require for now only that
K> - , where r ~is the smallest eigenvalue of -4, ; hence  ( -b, #KI)
is positive definite. W assume also that o is sufficiently positive
definite so that the discretization to M= -Ah+P does not destroy the
positive definiteness. Then, corresponding to (17) and (18), we have that

if v and are the mnimum and maxi mum ei genval ues of

m M
Mp = v (—Ah+KI)§ ,

the spectral radius for iteration (24) is

-0-
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-1
(25) p (I-7[-4,+I]" 'M) = Max(t-rv | 5 [1-mv,])

and the Lemma holds for iteration (24) with y and

ny repl aced by

Vi and Vy -

To estimate vy and vy » Weuse the Rayleigh quotient for v

T

T

(26) - , $ (P-KI)3

T =

8 (-0, +KI)s 3 ' (-a,%I)s
Thus
) 1 (j-K _B-K ( B-K B-K

+ min < < < +
A K SV Sy S 1+ Max A K foK] ,

wher e Ay is the largest eigenvalue of -4y,

The estimate for p obtained from(25) and (27) is | east when a choice

for Kis made such that

(28) B-K < 0 < BX ,

assunmng g > hol ds.  There results that for the corresponding optim

choi ce

Y.
2xm+B+B

there hol ds

(50) P<op, = gkm”fB*B_

To obtain a uniform upper bound on the spectral radius p, we note that the

-10-



smal | est ei genval ug A of -4, s given by

N, = bh~Csin” (’%) + bk 2gin” ”—1;
and that it satisfies
(31) xm>2\_m=:—2- (1_2_??)2j§1_§§§2
for mesh spacings 0 < h < hy 0<k<Kky. Substituting (31) into (30)
yields the desired bound in terms of the upper bounds hy k0 on the nmesh

spaci ng.
W note al so that Ay I s bounded above by
2, 2 2,.2
=1 /C + ke /d

P
M S M

for all h, k >0 ; the quantity Xm is equal to the smallest eigenvalue of

-p for Dirichlet boundary conditions on the rectangle. For nost conputational

2
0

between A and Tm , but instead to regard A, as bei ng essentially equal

purposes it is not necessary to take into account the O(h; + kg) di fference
to the sinpler ) .
The presence of the 2xm termin the denoninator of (30) can have the
effect of there resulting a considerably smaller bound on p for the scaled
and shifted problemthan results from(23) for the original problem Since (23)is
essentially sharp such a smaller bound would inply a faster convergence
rate. Thus we conclude that scaling and shifting are nost effective when
A/a is not especially close to one and p does not vary wth excessive
rapidity over the rectangle, in which case the resulting inprovement in

convergence rate could be substantial.



2.3 To illustrate the inprovenent in convergence rate for an ideal case,

(00 4y =1 |

we consider the solution of . For this case, o =1

20, so that for the unscaled, unshifted iteration (16) , the

20

and A = e

estimate for the optinmal spectral radius,from (23), is p 3 1- 2e 7 o 1-o.u><10'8 .

8 iterations to reduce the initial error by a

Thus it takes the order of 10
factor lle.

For the iteration (24), however, we have p(x,y) = A(e5(x+y))/e5(x+3’) = 50 ,
so that g = B =50 ; hence, if (9) holds (that is K =50), the optinal spectral
radius, from(30), is p = O . Thus the problemis solved conpletely (to round-
off accuracy) in only one iteration!

Thi s exanpl e enphasi zes the point that we solve directly a discrete

Helmholtz equation (24) at each iteration.

2.4 e require in § 2.2 that 8, the nininumof p(x,y) on the rectangle,
satisfy g > Ay - In the case for which g < Ay (the positive definiteness

of Mdoes not preclude P dipping bel ow -\, over a portion of the rectangle)
the estimate (27) no longer yields an upper bound on p that is less than

one, hence it does not guarantee convergence. For the numerical exanples of
such cases given in § 4, the iteration (24) converges, but at a conparatively
slower rate. W consider, then, as best candidates for our iterative procedure
those cases for which g > Ay (or uniformy g > _l‘-m)'

The choice of the particular value (9) for K out of the possible
ones (28) yielding the best convergence rate estimte (30), corresponding to
(29), is made for two reasons. (ne is that for the corresponding val ue
T =1, which is obtained from(29) for the shift (9), the resulting discrete

Picard iteration (13) requires fewer conputer operations than does the one

-12-



for general 1(24).(2) The other is that for this shift the actual convergence
rate observed in our numerical experiments was somewhat nore rapid than it
was for shifts near the end points of the interval [p,B]. Centering the
spectrum of P - KI at zero and taking t =1 seenmed to be a good strategy
for reducing the spectral radius of [I - -r(-Ah+KI)1(—Ah+P)] , at least for
those problenms for which p(x,y) varied smoothly w thout rapid changes. |f
p varied nore violently, the shift (9) was still effective, but in sone
cases an inprovenent could be realized py fixing + at one and selecting
another value for K in the interval [g,B] that better approximted P ;
see § 4. (For the discrete scaling of §3, one obtains the estinmate (9)
directly.)

Note that the primary effect of the shift Kis the reduction of the
normof P - Kl ; the effect on (-Ah + KI') is usually slight and of little
| nport ance.

In sone cases it nmay be nore conveni ent and advantageous to use in (9)
the sharper discrete bounds g, =nmin P.l.J and B =Msx Pij , instead of 8
and B . Specific shifts other than the mn-max one (9), such as
K = (cd)'1Hp(x,y)dxdy or its discrete equivalent, and shifts that change

R .
from one iteration to the next, are not considered here, but may be of

practical interest.

-13-



For the choice (9) and for A, <BS B<«, we may sunmarize the

behavior of the iteration procedure as follows:

Theorem For nesh sizes 0 < h < hy 0 <k< Ky the iteration (9, 13)

converges with spectral radius p < O}ﬁ)/(QLm+ B+ B).

2.5 In applying Chebyshev acceleration (14) to iteration (13), one can either
use the estimate (30) for the spectral radius or else obtain an estimte
by observing the convergence rate when solving the problemfirst on a coarse
grid. This latter procedure is often worth the small extra expenditure of
conputing effort, because the estimate (30) may be pessinistic and, since
the iteration is essentially independent of nesh size, the observed val ue
usually is nore accurate. At any rate, the convergence of (14) is assured
when p < 1 .

If one uses a fixed sequence {wn} rather than (14), then it nmay be
possi bl e to speed convergence by utilizing the property that the |argest
ei genval ue of -A'l is relatively isolated fromits remaining eigenvalues,
which cluster toward zero. For exanple, on the unit square with Dirichlet
conditions the largest eigenvalue is (2712)'1 , Whereas all the others lie
bet ween zero and (5;)'1 . The eigenval ues of (-4, + KIY*(KI - P) exhibit
a sinmlar grouping for sone problens, hence the special parameter selection
met hod given in [13] for such cases coul d be enpl oyed.

A recent discussion of practical means for estimating Chebyshev accel era-
tion parameters as an iteration proceeds is contained in [15].

W remark that obtaining the optimal Chebyshev accel eration paraneters
is not of central inportance in our scheme. In many cases the scaling and

shifting alone can yield a convergence rate that is SO rapid that only

a few iterations are required for convergence, thus leaving little roomfor any

-1h-



substantial inprovement to be made by further refinement of the Chebyshev

par anet ers.

-15-



3. Non-smooth a(x,y).

3.1. For the case in which a(x,y) is only piecew se snmooth, the situation
generally is less favorable. The change of variable (5) cannot be carried
out as described in § 1, since A(a%) does not exist everywhere on { (except
in a generalized sense). It may still be possible, however, to inprove on
the convergence rate of (16) by performng the equival ent change of variable
in discrete form

A discrete scaling corresponding to (5) is the one transforming the

di agonal elenents of L into those of -4,
1
2)  m =0PmE,  w=rRU,

where D is the diagonal matrix with elenents

1 ar . ta- . a, -ta, =
(33) d,, = 5 ZJ §+1’3 ¢ 2 1,
1 2(h'2+k' ) h K>

The resulting scaled natrix operator M is then M o=-4 +R, and the

original discrete equation WU = F becones

(34) MW=DFF=q .

The (symetric) matrix ‘R has zeros on its main diagonal and, in general,

four non-zero diagonal bands. W have

. Eaii(h-2+k_2)
Go) R =N TR 2 1,3
1351,
2a- .(h—2+k-2)
+ [ - A W
& & i+,3)
13 i+1,J

=16~



) E’ai—.(h_2+k-2)
+ k 1 - i 1 ] W, . .|
a& .42 L)
1,3~

2&_ - (h-c'l-k-“)
- W
d% d% i,J+

1371, 5+

For the case in which p(x,y) = a-%A(a%) exists at the point (i,3),
Rw.lj is a multipoint difference approxination of p(x,¥)w (%,y)
there. That is, the matrix R is an alternative representation of p(x,y) ,
which is represented in § 1, 2 by the diagonal matrix p . Note that R
requires approximately tw ce as nuch conputer storage as does P .

For the case in which either a Or va has a sinple discontinuity,
the elenents of R are not uniformy bounded for all nesh spacings in the way
that the elements of P are bounded by g and B . For a given nesh
spaci ng, however, R may be such that the convergence rate of the iteration

corresponding to (24) ,

56) (oo, + kD™ b ™) gy ¢ R - 0]

is satisfactorily rapid for suitable K and 7 .
The best values for K and 7 can be estimated in a manner simlar
to that of § 2.2 . The' Rayleigh quotient analogous to (26) is
T T
) Mhé 8 (R-KI)%

G71) +—— = 1+ 3
¢ ( -b,*KI)e & (-4,KI)e

Here, however, we do not as in§ 2.2 choose K so that the spectrum of

(R-KI) is centered near zero (the spectrumof R is already centered at

zero, since R has Property A and zero nain diagonal ), but we obtain the

-17-



proper estimate after first rewiting (37) as
T T(1 1 3

T (=R - - -I

2 Mo K 1 ¢ (-ap)e K on@ok@ 4™t
N~ —————————————————— F~3 1 -

-2 -2 1
5 (-a,+KI)a 20742k @ (-8, 4KI)3 8" (-4, +KI)3

~ Negl ecting the first termin the brackets on the right, which is o(h2-+k2),

and using the Gerschgorin estimate for the spectral radius of the matrix in

the nunerator of the second termwe obtain the choice (9, 10), providing

C = -
B > -xm , where now B = BR = M{R}min and B = BR = A{R}nax ; {R}min denot es
the snall est elenment of R and {R}max the | argest. These values for g
and B are anal ogous to the corresponding ones for p(x,y) in that they are
L. m ni mum and maxi mum val ues of difference quotients approximating a-%A(a%).

General Iy speaking, one expects these difference quotients to behave like
(h'1 + k'1) where va has a sinple discontinuity and like (h'2+-k'2)
where a itself is discontinuous.

Rel evant nunerical experinents are discussed in § 4.4. As mght be

—

expected, the behavior in this case is not totally as satisfactory as it

is for the case of snooth a(x,y) and the diagonal matrix P . The paraneter

estimates based on Br and B, are not as sharp, perhaps because the elenents

R
of R often vary sizably and are not always accurate approximations of

% a 3 (a

—

1
2) .  An attenpt to inprove the value of ¢, and even K, may be

~ useful for such problems as information on the spectrum of (.Ah + KI)‘1Mh

Is gained during the iteration
-\ remark that the nmethod of this section could be used as well for
' smooth a(x,y) , as an alternative to the analytic cal culation of

-1 1 . . .
p(x,y) = a =A(a®) and the subsequent numerical evaluation to obtain the

-18-



elements of Pin (13). W do not reconmend this alternative, however.
If one wishes to avoid these calculations he should instead difference

1 . . .
a®(x,y) directly, to obtain the approximate el enents p?j of P,

1 . N
no_a a%_/a%_ where a%. = [a(ih,jk)]% . The discretization error
Py = Sn%ig/ %50 X i
introduced by using p,, , instead of p(ih,jk) , is of the same order as

that already introduced by (12). The iteration (24) is generally preferable
to (36) because it requires less storage and fewer conputer operations per
iteration and because, in our experience, the parameter estimtes based on
P are sharper than those based on R .

W renmark also that discrete scalings other than (32, 33) might be
used. For exanple, a closely related one is (32) with the choice, instead
of (33), a5 = a(ih,jk) . Alternatively, one could investigate the use
of (24) with the elenents of P equal to ph, in the case for which a(%,y)
is only piecewise smooth. This would be equivalent, for fixed nesh, to
considering a(x,y) to be a snooth, but locally rapidly changing, function
W hope to return to these matters in a future study. The question of

scaling is discussed further in § 5.

3.2 Wen a(x,y) is piecewise smooth with sizable discontinuities across
sub-domai n boundaries within the rectangle, it can be faster to solve the
problem iteratively as a sequence of problens on each sub-domain than as
a single problem over the entire rectangle. For exanple, consider the
problem (3, 4) for which a(x,y) is piecew se constant

a 0 <x <¢/2

0,

a1,c/2<x<1

a(x,y) =

with the matching condition that adu/ox s continuous at x =c/2 .

-19-



V% consider solving the problem nunerically by the follow ng scheme:

(i) In the sub-domain where a = a, solve by a fast direct
met hod
£u(gn)=f ,

subject to (4) and uén) =u(n) on x = c/2 .

i}

(ii) I'n the sub-donmain where a = a solve simlarly

Su

2

(n+1 ) .

a au(n” )/ax = a auo(”)/ax on x =c/2 .

subject to (4) and ' o

Then one obtains that the error e(n“)(y) in the value of uon x =c¢/2

a
at the nth iteration satisfies e(n) = -;Qe(n'” . Thus if eo/a1 is
1

small, this scheme can be nore rapidly convergent than the one given in § 3.1
for solving the problemon the entire rectangle at once. The schene is equiv-
alent to using on the original problem instead of D'fl, a diagonal scaling
that renders the discretized operator only weakly coupl ed between the sub-
problens (i) and (ii)

For the case in which a varies with x and y in each sub-domain,
the iteration (i, ii) could be conbined in some cases with that of § 1, 2 ;
we hope to take up this matter in another paper. V& give the results of a

nunerical experiment for piecewise constant a(x,y) in § Lk,
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4. Nunerical Exanples. In this section we collect the results of

nunerical experinents for several cases of (3,4) to illustrate the contents

of the previous sections.

4.1 The ideal case for the basic technique (13, 9) i s one in which

i
= a- %A(az) I's constant on the rectangle (e.g., a = cosg(x+y) :

pe]
1

a3}
1

JOQ([XEWE]%) , etc.) . Then, as is pointed out for one such exanple
in§ 2.3, only one iteration is required to solve the problem

Since a nunerical illustration of this property would have been
trivial, we instead checked the correspondence of iterations (24) and (36)
by solving several such cases using, instead of (24), the iteration (36),
which is based on the discrete scaling (32). Using the value (9) for x
(that is, K = a'%A(a'é’) = const.) and = = 1 , we found, as expected,
that the spectral radius of the iteration matrix, as indicated by the
observed convergence rate, was the order of magnitude of the discretiza-
tion error and decreased with nesh spacing for a given a . Wen using,
instead, the value K = %(5R+BR) of § 3.1, we observed slightly slower
rates of convergence, even though this value is derived from(36). The
estimate (9) based on P was especially preferable in the cases for which
the elenments of R did not accurately approxinate LlI a-%A(di) ever ywher e

on the rectangle.

4.2 Oher highly suitable cases for the basic technique are those not
departing strongly fromthe ideal one. W include here the results for
two such cases, one for non-negative and one for non-positive p(x,y) .

VW solved both nunerically using (2%) on the unit square 0 < x <1,
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O<y<1 Wth uniformmsh spacing h = k = 24

, for the values

L

n

4, 5,and 6 . (The nunber of rows of interior mesh points should be
2 £ 1, £ an integer, in at least one direction for fast direct methods to apply

efficiently.) The righthand side q(x,y) of (6), and simlarly Q of (24),

2
were taken to correspond to w(x,y) =2[k-§)" + (y—%)z], for which the solution of

.
the discrete problemwith boundary data H(x,y) = 2[(:»1-%)2 + (y—%)e] agrees exactly
with w(x,y) at the mesh points. The elenments of the initial approxi ma-

C tion V\:(O) were taken to be either all zero or el se pseudo-random nunbers

in (0, 1), to permt the presence of different eigenvector blends in the
initial error.

The first exanple is the one for which a(x,y) =[1+ %—(xhﬁyu)}g ,

—
r

hence p(x,y)= 6(X2+y2)/a:§(x,y) and g = 0, B=6 . Thus the estimte

(30) for the optinal spectral radius is p <pu= -2-{%5 ~ 0 132 (using
m

on® for A, ), and the shift (9) is K=3 . The results are summarized

..

for five exanples of paraneter choices in Table |-a.
{ The entries in Table 1 are the rounded values for a mesh with

6lx6s interior points and for the initial approxination v\,(o) =0in the
N interior of R . For the 16x16 and 32x32 meshes the values differed only
slightly, if at all, fromthose in the table, and for the randominitial
approxi mations the iterations behaved simlarly. A value of K equal to
0 or to 4(p + B) was used, along with the corresponding value (29) for
v . Wen Chebyshev acceleration was included, either the estinate o, from
(30) or the experinentally observed estimate p_ was used to approximate

the spectral radius p in (14) of (I - T[-Ah+KI] -

[-Ah+P]) )
The entries for the value of p, in the table are the observed

approximate liniting values of the ratio ||w(n) - w(n"')HA/“w(n-U ) W(n-E)M ,
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Table 1

Results after 5 iterations

a)

" (x,y) B Chebyshe i
& T  Accelerat i gn VB! mum
| 7 pe Errar
0.8
0 68 none 0.13 3.7(-5)
b on ) 3 0.868 usi ng —_—
[+ (x+y )] 1 pu R
5 : none 0.039 3.9(-8)
I L using p —_—
3 i | u 1.1(-6)
using o, — h.5(-9)
0 16/15 - “fone
: i 0.066 1.2(-6) |
16/15 using
| Py — (8 il
b) [1+31n%'”(x+3’)]2 -11__2/8 1 none ) e
| _n/s h 0. 061 2.3(-17)
-m9/8 1 using by — 3.2(-8)
. using p = — 2.3(-8)_ |
0 0.829 none 0.31 3 (k)
0.829 i
vo7 ¢ none 0.26 g:g¥:f;
ho7 g using o, — 1.5(-3)
| using p = — 3.4(-5)
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Table 2

Iteration details for Table |-a with x = 3 and 1 = 1

Iteration Wt hout Chebyshev Accel eration Chebyshev Accel eration Usingp,
n
(1’1) - n - n - -
Hw -W(n 1 )”A “W( )-W(n 1 )“A Mo IW( )-W(n 1 )HA Hw(n)_w(n 1 )“A -
< l “W(n-1)_w(n—2)“A “W(H)HA Error ”w(n-1 )_W(n-Q)H “W(n) “A Error
_ — A
LE 1 — 1 1.6(-2) —_— 1 1.6(-2)
(T 2 0. 0057 5.7(-3) 6.k (-L) 0.0057 5.7(-3) 7.1(-4)
L[ 3 0.033 1.9(-%) 2.4(-5) 0.13 7.5(-k) 1.1(-5)
, I 0.038 7.3(=6) 1.0(-6) 0. 0047 3.5(-6) 2.7(-7)
‘T 5 0.039 2.8(-7) 3.9(-8)|  0.080 2.8(-7) b3 (-9)
0. 039 1.1(-8) 1.7(-9) 0.0063 W- 9) 1.2(-10)
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where  |[w], . [W‘(-AthI)W]% . The maximumerror, which is listed in the
last colum, is the maximum of the difference at the mesh points between
WS) and the sol ution w(x,y) . Note that the initial maxinmumerror has
the value of approximtely one

In Table 2 the iteration-by-iteration details are given for the third
entry in Table |a.

The second exanple is the one for-which a(x,y) = [14-sin§n(x+y)]2
for which g = -n2/h , B=0,and p, =~ 1/15 . The results anal ogous
to Table la are given in Table Ib. In this case, the inprovenent obtained
by using the shift K= #(B + B), instead of K= 0, is not so great as
it is for the first test problem

The effect of scaling and shifting can be found by conparing the
results for the two test problens with the estimate (23) for iteration
(16). For both problenms there holds @« =1 and A=4 , so that the

spectral radius estimate w thout scaling and shifting in each case is 0.6.

4.3 Cases that are less strikingly suitable for the basic technique are

discussed in this sub-section. The exanple summarized in Table 1lcis
for the case a(x,y) =[2 + tanh W(x#y-1)]° . The test problemis the

sane as the one for the exanples of § 4.2, and the entries are anal ogous

to the others in the table, except that in this case the task of calculating
the actual extremal values of p(x,y) on & was not carried out; instead,
the discrete equivalents g = By =mn ij’ B = B, = max Pij wer e used.

For the 64x64 mesh, By, =~ -9.62 and B w~ 17.77 , for which p =~ 0.575.
Note that in this exanple, K= 0 does not correspond to an end point of

the interval [B,B] . As before, the results were insensitive to mesh size
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and to which of the initial approximtions was used.

An investigation of the non-sharmess of estimte (27) and non-optinality
of (9) and (10), which are nore inportant here than in a nearly ideal case,
was carried out by fixing r at the value one and observing the change in
p, as Kwas varied. A local minimumwas found at approximately K= 3.0,
for which p_ is approximately 0.23.

For the case a(x,y) = [2 + tanh lO(X‘_lfy-‘I)]e . By and Bh becone
approximately -60 and 111, respectively. In this case g < - M ,hence
the estimte (30) yields nerely that p < Py > 1 The iteration did
converge, however, with the observed spectral radius Pe 0.63 and a
maxi mum error of 2.5x:LO'2 after five iterations for the usual test
problem with K = &(g, +B ) and + = 1 . Wth the inclusion of Chebyshev
accel eration based on this value of P, the maximum error after five itera-

tions was reduced to 6.3x10'3. The val ue of P can be decreased in this

- case, with v fixed at 1, to a locally m ninum val ue of approximately

0.54 at approximtely K = 1k,

The case a(x,y) = {1.5 + sin[lO(x+y)/\/§]}2 , for which B = -40 < -;\m and
B = 200 , was observed to converge also, but at a slower rmate. Here, for the
shift K=80 and for r =1, the vaiﬁe observ?dAfor__ p, Was 0.91, Even though
this value is large, it is interesting to note that it is smaller, nevertheless,
than the spectral radius estimate (A - @)/(A + @) » 0.95 for the iteration

wi thout scaling and shifting.

4.4 The cases included for non-snmooth a(x,y) are a(x,y) = (1+ 4x - 3 )2 ,

for which there is a slope discontinuity at x =%, and a(x,y) = 19 ’ ;‘;i s
2

for which there is a junp discontinuity at x =4 . For both these cases,
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the iteration without scaling and shifting (16) has the spectral radius
estimate (A - @)/(A + @) = 0.8 (independent of h ), The convergence

properties of the scaled and shifted iteration are not essentially inde-
pendent of h , however, as is the case for the exanples of § 4.1 - 4.3.

The problems were solved nunmerically using the iterative procedure of
§ 3.1. The dependence on h for the first case is illustrated in Table 3.
The relationship (29) between K and T and the val ue (30) of p, \ere
conputed using for g and B the observed quantities aR and By
the rounded val ues of which are listed in the table. The value of P, WAs
essentially equal to the observed val ue Pe for K=0. Note that the
maxi mumerror after ten, not five, iterations is given in the table.

Al t hough B - BR is large, the elements of R are essentially
zero everywhere except at the mesh points on and adjacent to the line x = §,
where they becone large. This suggests that a value of K closer to zero
than the minimax val ue %(5R+BR) mght result in nore rapid convergence.
Indeed, it was found that for h = 1/16 and ¢+ =1 a local m ninum for Py
occurred at approximately K = 13 (see the last row of Table 3).

The second case is, in a sense, an extrenme version of the second one
of § 4.3, for which a(x,y) changes rapidly from approxi mtely 1 on one
hal f of.the region to approximtely 9 on the other. Here Bfi‘< ')‘mm’ SO
that again convergence cannot be guaranteed fromthe estimate (30). Very
slow. .convergence Was observed for this case, especially for the smaller nesh
spacings. For the éix6k mesh the observed val ues for Bg and BR wer e
approxi mately -5597 and 9057 , respectively, for which 7 ~ 0.0113 from
(29) for K=0 . There resulted P ™ 0.988 for these paraneters. For

the shift K = %(BR+ BR) and the corresponding value =1, P Was not



Table 3

Results after 10 iterations for a = (1+h]x-g|)2

h Ma.x
: K T Bgs By Pe Error
1/16 0.270 0,107 0.73 3.3(-2)
[\
1/32 0 0.145 0,234 0. 86 1.8(-1)
1/ 64 0.075 0,489 0.93 k.3(-1)
C 1/16 53.5 0. 60 2.2(-3)
1/32 117 ! as above 0.78 2.7 (-2)
~ 1/ 64 244 0. 88 8.6(-2)
L 1/16 13 1 as above 0.24 1.2(-7)
L

-28-




a great deal |ess.

Wien this same probl emwas solved nunmerically by the iterative schene
of § 3.2, a nuch nore satisfactory situation resulted. The spectral radius
was observed to be essentially 1/9 , independent of h , in agreement wth

the discussion there.

4.5 Al the above experinents were carried out using a subroutine, witten
by Buzbee, which is based on Buneman's al gorithm for odd-even reduction [4].
This subroutine solves the Helmholtz equation on a rectangle, and it
i ncludes the boundary-condition options required for our exanples, The
nunerical solution of a problemon a 64x6k nesh requires approxinately 0.06
seconds on the CDC 7600 conputer.
Qualitative conparison of the conputational requirements of our technique
wi th those of other methods can be made using the operation-count table
“given in [3]. For exanple, odd-even reduction requires (9/2)1\12 log, N operations
L to carry out the direct solution of a problemon an Nxv nesh.  Settjng
up the righthand side of (13) requires another on° operations per iteration,
and, if Chebyshev acceleration (14) is used, another I operations are
needed. Thus, according to the table, the operations required for one iteration
~ of (13) are equivalent to those required for about 4 or 4% SOR iterations
or 13 ADL iterations if N =64 . The reduction of the initial error
by a factor N'2 ~ 2.5x10'4 in the numerical solution of the Poisson
equation is listed as requiring about 85 SOR or 7 ADT iterations for
this N, when optinal parameters are used; the solution of (3) or (6) will
general ly require nore. Further such conparisons can be made using the table.

The nemory requirements of (13, 14) exceed those of SOR by about 3N
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locations if both pT and W) are stored. This val ue can be reduced
2 . . . .
to N , however, in exchange for reconputing P-KI at each iteration and
using a form of Chebyshev acceleration that requires, jnstead of w1 ,
a sequence of paraneters {Tn}.
Ve conclude from our nunerical experinments that for well-suited cases

such as those in § k.2, our basic technique is an extremely efficient one
and conpares very favorably with standard iterative and elimnation nethods.
Its advantages are especially striking for problens with a | arge nunber of
mesh points, since the number of iterations required is independent of h .
For less well-suited and poorly suited problens, such as those in § 4.3 - 4.4
the scheme may be very satisfactory in sone cases, but further study woul d

be useful to clarify the best means for estimating the parameters and for

utilizing the technique of § 3.2 in discontinuous cases.
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5. Scaling. W presented the scaling (5, 6), or equivalently (32, 33),

tacitly inplying its suitability because the resulting operator resenbles

- the one on which the iteration is based. W now make sonme renarks on
the question of whether or not this scaling is in some sense the best one
possi bl e.

C

Since the optiml spectral radius for iteration (24) increases wth
---- the condition nunber \’M/"m' the best sclaing is one that yields the
‘ m ni mum condition nunber for a given problem In the discrete case, the
- choice (33), anong all positive diagonal scalings (32), mnimzes the
o condi tion number of M , whi ch has Property A, but not.necessarily
that of (-Ah + KI)'1M.n . The optimal diagonal scaling for these nore
" general natrices is not known; a related discussion pertaining to scaling
_ of alternating direction nethods can be found in [16].

‘ W have carried out cal culations on some one-di mensi onal probl ens

‘.— corresponding to (3, 4) to deternine nunerically the scaling necessary
to mnimze the condition nunber. W considered the standard three-point

;' discretization on a uniform mesh W = F equivalent to (15) for the problem

§ po= - = 1(x) , w©) =u(l) =0,

‘> The diagonal matrix D was calculated that mnimzed the condition number
of the matrix (-, + K'l')1 E)%LD—% , Where -4, s the one-dinensional
equi valent of (12). The mnimzation was carried out for several values

L of h using an al gorithm of Gsborne [17] and the m nim zation program
of Fletcher [18]. The actual value of K that was used was, in general,

N not inportant, since the diagonal elenents 2h'2 of -Ay vzrere, by
. conparison, usually much larger. For the cases in which ile— (a%)/a% was
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constant, we found that the best D was essentially the sane as the one
we have used here, that is, proportional to the main diagonal of L. For
the one-dimensional equivalents of the exanples of § 4.2, in which -d-ee- (a%)/a%
varied only noderately over the interval, we found that the best gxdeparted
fromthis value by only a conparatively slight amunt. |f a(x,y) had a
si zable discontinuity, however, then the best D was not as close to being
proportional to the main diagonal of L , rather, it tended to smooth out
the discontinuity (see also § 3.2). W concluded that for the problens with
relatively smooth a , the ones for which aur iterative technique has greatest
potential, the scaling (5, 6) is adequate.

W remark that Gunn al so observed notably inproved convergence rates

in certain cases when a variant of the scaling (5, 6) was used to solve (3, 4)

by an iterative technique [19].
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6. Extension to other problems. Qur iteration procedure may be appli ed,

as well, to problems other than (3, 4). One immediate extension is to the
case in which the termb(x,y)u is added to the left of (3), where b(x,y)
Is such that £ + b(x,y) remains positive definite. The transformation
(5) still results in an equation of the form (6), to which the iterative
procedure (7) applies directly.

Anot her extension is to the case in which on some of the edges of the
rectangl e there are specified periodic boundary conditions or boundary con-
ditions of the formou/dn + au = b for which fast direct nethods can
be used. Then the val ue of Ny changes, but otherwi se the basic procedure
Is not altered so long as the boundary conditions remain suitable for these
nmet hods after the scaling (5,6) i s perforned.

Ve remark that the numerical solution of separable equations of the

form

68) ()93 + anREM) + 1 = £ixy)

with suitable boundary conditions, can be carried out by fast nethods with

only the additional work of solving a tridiagonal eigenproblem the dinen-
sion of which is the number of nmesh points in a row Thus it is not neces-

sary to attenpt to solve such problens iteratively, using the scaling and

shifting procedures described here. Included in (38) is the radially symmetric
Poi sson equation on an annular region 0 <r <r< r,
2
2
1 8 o u
T PB_ 522 =T,

which, after being multiplied by r, is also of the form (3).
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Al'so included in (38) is the case in which the iteration (11) is

discretized on a rectangular mesh with nonuniform spacing. |

he =X, - x, and k5 =Vy -, be the mesh spacings; then the

+ 1-1 J-1

resulting five-point discretization of -A + K at an interior point

is

- ks + k=
(-4, +K)W o J+1 [ 1 + ( 1 + 1 - 1
h .i - - - "'-W"’—. )W - — w
) hf i-1,3 hl. hi+1 ij {_!_1 i+15 3
h: + hs
i i+ 1 1
+ [- + (= + — )y W,
2 - ~ L. A
k 1,3~1 kJ k3+1 ij kj+1 i,J+1
(h + ni+1 ) (k5+ k5+1 >Wij .

After multiplying each equation through by h(ns + hi+1)~1(k5 + k5+1)'1

or by performng the transformation that preserves symetry [20] ,

D-%(“Kh + K)D-é ) dlag{( 1B 1)(k * k-u.q)}

one obtains separabl e equations that can be treated by the direct nethods

suitable for (38). It also would be possible, of course, to apply the
techniques of §3 to the original problem (3) discretized on the nonuniform
nesh

Finally, we remark that if the domain on which the equation is to be
solved is not itself a rectangle, put is, instead, a union of rectangles,
then our iterative technique mght be conmbined efficiently with the fast
met hods suitable for such domains [21]., These might then, in turn, al so
be combined with iteration (i, jj) of § 3.2 for the case in which a(x,y)

s piecew se snmooth over such subdonains
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W plan to study these extensions in the future and to consider, as

wel |, application of the iterative technique to nonlinear equations
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Foot not es

(1) The boundary data for the operator (-po+k) need not necessarily be the

same as for 7 . Oher boundary data, such as 0 , may be conputationally
nmore convenient for sone problers.

(2) W note also, without comrent on possible relevancy, that the underlying
iteration operator (2) becomes conpletely continuous when ¢ = 1 .
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