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Abstract

We study an iterative technique for the numerical solution of

strongly elliptic equations of divergence form in two dimensions with

Dirichlet boundary conditions on a rectangle. The technique is based on

the repeated solution by a fast direct method of a discrete Helmholtz equation

on a uniform rectangular mesh. The problem is suitably scaled before iteration,

and Chebyshev acceleration is applied to improve convergence. We show that

convergence can be exceedingly rapid and independent of mesh size for smooth

coefficients. Extensions to other boundary conditions, other equations, and

irregular mesh spacings are discussed, and the performance of the technique

is illustrated with numerical examples.
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Introduction. In recent years, fast direct methods have been developed for

the numerical solution of the Poisson equation on a rectangle [l, 21. By

taking advantage of the special block structure of the approximating dis-

crete equation on a uniform rectangular mesh, these methods obtain the

solution with striking efficiency and accuracy. A comparison of fast

direct methods with other methods can be found in [3], and the extension to

more general separable eUiptic equations in [4].

In this paper, we investigate a technique for using fast direct methods

to solve iteratively more general formally self-adjoint strongly elliptic

equations $u = f , which are not necessarily separable. We consider

mainly Dirichlet conditions on the boundary of the rectangle, aJthough

the technique applies with slight modification to other boundary conditions

for which fast methods are suitable. Our approach is to utilize a modified

form of the iterative procedure

(1) -Aun+, = -Aun - T(sun-f) , A 3 a2/ax2 + a2/ay2

proposed for numerical computation in conjunction with alternating-direction

* methods by D'Yakonov  [5] and discussed recently by Widlund [6]. This procedure,

L .i.n addition to being of a form suitable for fast direct methods, has the dcsir-

able feature that for well-behaved problems its convergence rate is essentially

independent of mesh size.

The iteration (1) as it stands, however, may be too slowly convergent to

be of practical importance, even when optimal values of the parameter 7 are

used. The purpose of our paper is to discuss means for improving the iterative

procedure so that it becomes a potent one for attacking a class of problems
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arising frequently in applications. The means we employ are: (i) scaling

the original problem Xu = f and iterating instead with the scaled problem

??p = q ; (ii) using, instead of (l), the shifted iteration

(-A+K)w
n+l

= (-AM)W
n - d??@ys) ?

where K is a suitably chosen constant; (iii) applying Chebyshev accelera-

tion.

These means in themselves are not necessarily new; it is the effectiveness

of their combination for solving this problem that we wish to investigate, We

remark that algorithms for the fast direct solution of the discrete Poisson equation

in a rectangle can handle iteration (2), which requires the repeated solution

of a Helmholtz equation, with the same rapidity as they can (1).

In $ 1 our 'basic iteration procedure for smooth coefficients is

described and in $ 2 its convergence studied. In $ 3 the generalization to

non-smooth coefficients is discussed. In 0 4 the results of numerical experi-

men+3 are given to illustrate the behavior of the procedure. In the remaining

sections, the question of scaling is covered, and generalizations to other

equations and nonuniform mesh spacing are discussed.

Related iterative techniques for elliptic equations are studied in [7]

in connection with alternating-direction methods and in [8, g] in connection

with Stone's sparse factorization method. This latter method is formally

similar to ours; however, our technique has the desirable property of being

based on a more natural splitting of the operator. In [lo] a related

i
approach to nonlinear ordinary differential equations is investigated.
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1. The iterative procedure. In its simplest form, the iterative procedure

considered in this paper solves numerically on a uniform rectangular mesh

the problem

(3) nil f -x7* b(x,yhl = f(x,y) on R

(4) U(X,Y) = dX,Y> On & 9

where R is the rectangle 0 < x < c , 0 < y < d and a(x,y) is strictly

positive on R and its boundary &, . We assume a(x,y) and g(x,y) to

be sufficiently smooth so that the solution u(x,y) is well behaved. The

positivity of a(x,y) implies that S is positive definite.

If a(x,y) has bounded second derivatives on @J&, , which is the case

of principal interest for the use of our procedure, the change of variable

is performed

(5) w(X,Y) = [ahYAx,Y) l

Then, after division by a' , (3) becomes

L

L-

61
a+su = “nFJ E -Aw + p(x,y)w = q(x,y) on n t

where P(X,Y) = a
-$A (j&) and - q(x,y) = a-$f . The effect of this

scaling is to transform thetoperator X into one whose differential part

is -A . Note that the change of variable (5) does not alter the positive

definiteness of g , so that m is positive definite as well.
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Substitution of (6) into (2) then yields as our iteration

(7) (d+K)wn+, = (-A+K)w n - T(-A+p)w, + 7q on 65 .

The boundary condition is

(8) W
n+l

= H(x,y) on & ,

where H(x,y) = a*g .(l)

. In an attempt to make the operator -A+K on the left of (7) agree

closely with m , we choosethe constant K to approximate p(x,y) , The

choice of central interest in our study is the minimax value,

where B is the minimum and B the maximum value of p(x,y) on the

closed rectangle. As will be shown in the next section, this choice leads

to an estimate that the optimal value of the single parameter T to :;ive

most rapid convergence in (7) is

For this value of T , (7) becomes simply

(11) (-A+K)Wn+l  = (K-p)wn + q on n .

-4-



We have presented the iterative procedure in its underlying continuous

form to bring emphasis to the point that the convergence properties should

not be expected to depend significantly on the mesh size, at least Yor tilt:

case of twice differentiable a(x,y) . The discretized version of the iterative

procedure (8, 9, 11) is discussed in subsequent sections. To obtain it,

we place a uniform rectangular mesh on R with spacing h in the x-direction

and k in the y-direction and let W ^
ij

correspond to w(x,Y> at the mesh

points x=ih, y=jk . Corresponding to the operator -A with Dirichlet

boundary conditions we take the standard five-point approximation,

(12)
L

L
i

1.3 > (-Ah+KI)W("+') = (KGP)W(") + Q ,

L

-A W -h ij
= h-2(+$ +2w -w

i-l,j ij i+l
Y
j> + k-2(-wi j

? -
I+ 2w. .'wi j+l) ,

13 Y

i=l 2Y ,*-qy' -1 ; j=1,2,. ..,s -1 .

Then the discrete form of iteration (8, 11) is given by

where P is a diagonal matrix with elements P - p(ih,jk) , Q is a vectorij -

1 wit.h elements Q.. = q(ih,jk) , and
13

I is the identity matrix. The solution
L

!

of' (13) is carried out in each iteration by using a fast direct method.

Finally, under the assumption that the eigenvalues of (-Ah+KI)-'(KI-P)

. lie in the interval [-p,p] , Chebyshev acceleration is applied [lb]:

;;(n+l  > =(I)
n+l

(~(~+l)- ,(n-1)) + y&n-l)
Y

where w =
0 ' , 0,=2/(2-P2) , uJn+,=(1-p2q4)-’ for n=l,2,... ,

and Gb+l > is the improved value of W (n+l) , where now Wb+I> satisfies

/
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(13) with W n( > replaced by w" n( 1 on the righthand side. This is equivalent

to the use in (7) of a sequence (To} , rather than a single value of 7 , in

a manner that is numerically stable and does not require the total number of

parameters in the sequence to be specified in advance. If in some cases

memory limitations preclude the use of (14), then a fixed sequence (T,)

could be used instead, ordered in the manner recommended in [ll] for numer-

ical stability.
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2. Convergence properties. We return to iteration ('7, 8),'in which the

values of K and T are not yet specified. Its convergence properties

can be examined by standard methods in terms of the eigenvalues of the 1Jrtplacc

operator, which are known explicitly for the rectangle. We carry out here

the analysis for the discrete form of the iteration; the continuous analysis

proceeds in essentially the same manner (for example, as in [12]).

.*

2.1 We give first, for comparison purposes, the behavior of the discrete

form of iteration (1, 4) for the original problem (3, 4) without scaling or

shifting. We place a uniform rectangular grid on the rectangle, as in the

previous section, and obtain as the discrete form of (3, 4)

( 5)1 UT..
iJ

E hB2(-a u
Tj i-l,j +[a,.+a-,

1J I-+l,j"ij - +i+~,j"i+l,j  ) +

+ B‘2(-a+Ji,js~  + [aiT +ai T+llUij - ai 3+1Ui,j+l) = Fij ,
Y Y

i=1,2,..., c-h'
j j=l,2 ,..., z-1 ,

where a,. denotes $(a?; + a
iJ

i !+,) and ai denotes &(a33 + aI+, -$ ,
Y Y

ai being the value of a(x,y) at x = (i-$)h , y = (j-%)k . The vector

element U.. corresponds to
iJ

u(ih,jk) and Fij is equal to f(ih,jk) .

Then the discrete form of (1, 4) is

06) -A
h
Ub+’ > ( > ( >= -AhU n - 7(LU n -F) or, after premultiplying by (-Ah)-' ,

&+‘) = (I-+%]-‘L)Ucn)  + T(-Ah)-‘F ,

where, as is the case for S, , the positivity of 4XYY) implies the positive

-7-



definiteness of L l

The spectral radius p of the iteration matrix (I-7[-A,]-'L)  is

expressed in terms of 1m
and ~1~ , the minimum and maximum eigenvalues

of the generalized eigenvalue problem

as

( 81

07) J2= d-Ah>@  ,

> P (1-f [-A,]-‘L) = h&X

Since L and -Ah are positive definite,
Pm>0 l There follows the well-

known result [22]

t

L
L

L

Lemma: Iteration (16) converges for any initial approximation u(0) if

and only if 0 < 7 < ycl, Y and for a single parameter 7 the optimal choice

(19) T&T
0 = 2/ (cLm+pM)

yields the smallest spectral radius

(20) P =
PO = (P&pm)/ (P,fP,)  l

It is straightforward. to show that the uniform estimate independent of

h and k

t-

i

i

,

L.

holds for any vector @ , where cy = min a(x,y) and A = Max a(x y) on the
Y

closed rectangle. There follows the corresponding estimate

1 -
-8-



based on which we obtain, from (19) and (20), that for

7 = 2/ (a + A)

there holds

(23) P s (A - a>/@ + a> l

c The estimate (22), and hence (23), are, in fact, the sharpest possible

uniform ones, as can be seen by taking- for @ in the Rayleigh quotient

(21) a vector that is zero except at the position corresponding to the maximum

L

i

diagonal element of L , or, alternatively, is zero everywkre except at the

minimum.

2.2 The discrete form of the shifted iteration (7, 8) for the scaled problem

t

(6, 8) is

( 4)2 (-Ah+K1)W(n+l ) = (-Ah+KI)wcn) _ 7[ (-A h
+p)w(n) _ Q] .

We do not, yet specify K to be the value (g), but require for now only that

K > - hm , where h
m is the smallest eigenvalue of -Ah ; hence ( -Ah+KI)

is positive definite. We assume also that 331 is sufficiently positive

definite so that the discretization to M I -A,+P does not destroy the

positive definiteness. Then, corresponding to (17) and (18), we have that

if v - and
m

v
M

are the minimum and maximum eigenvalues of

M@ = W (-A,+KI>i@ ,

the spectral radius for iteration (24) is

-9-



and the Lemma holds for iteration (24) with km and ~1M
replaced by

Vm and v
MO

To estimate v
m and v

M' we use the Rayleigh quotient for v ,

GTM+
(26) t8T (-Ah+~l)@ =

, + 4; (MI)@

cfj (-Ah+KI)$,  '

Thus

(27 >

t

L

i

i

I
IL

:

t

L
Ii

5 vm 5 VM 5 1 + Max

where
xM

is the largest eigenvalue of -A
h'

The estimate for p obtained from (25) and (27) is least when a choice

for K is made such that

(28) /3-KFOLB-K,

assuming p >-A, holds. There results that for the corresponding optimal

choice

(29)

there holds

2hm+K)
T =

2Xrn+B+~

(30) P 5 P, s B -
Q,+B+B l

To obtain a uniform upper bound on the spectral radius p , we note that the
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smallest eigenvalue h of -Ahm
is given by

and that it satisfies

(31)

for mesh spacings 0 < h 5 ho , O<k<ko. Substituting (31) into (30)

yields the desired bound in terms of the upper bounds ho , k on the mesh
0

spacing.

We note also that Am is bounded above by

hrn < 5;
m

= n2/c2 + n2/d2

for all h , k > 0 ; the quantity Frn is equal to the smallest eigenvalue of

I - -A for Dirichlet boundary conditions on the rectangle. For most computational

L purposes it is not necessary to take into account the O(hE + ICY) difference

bel,ween Xrn and Km , but instead to regard Am as being essentially equal

to the simpler hrn .
-.

cr The presence of the 2Am term in the denominator of (30) can have the

- effect of there resulting a considerably smaller bound on F> for the scaled

and shifted problem than results from (23) for the original problem. Since (23) is

essentially sharp such a smaller bound would imply a faster convergence

-
rate. Thus we conclude that scaling and shifting are most effective when

A/a is not especially close to one and p does not vary with excessive

rapidity over the rectangle, in which case the resulting improvement in

convergence rate could be substantial.
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2.3 To illustrate the improvement in convergence rate for an ideal case,

we consider the solution of v*(elObY)vu)=f. For this case, cy = 1

and A = e", so that for the unscaled, unshifted iteration (16) , the

estimate for the optimal spectral radius,from (23),is p ?I- 2e -20
w 1-o.4xlo-8  .

Thus it takes the order of 10
8

iterations to reduce the initial error by a

factor l/e .

For the iteration (24), however, we have p(x,y) = A(e 5(x+y)
J
,5(x+y)  = 50

9

so that p = B = 50 ; hence, if (9) holds (that is K = 50), the optimal spectral

radius,from  (30), is g = 0 . Thus the problem is solved completely (to round-

off accuracy) in only one iteration! -

This example emphasizes the point that we solve directly a discrete

Helmholtz equation (24) at each iteration.

2.4 We require in 5 2.2 that B , the minimum of p(x,y) on the rectangle,

satisfy fi > -hm . In the case for which @ L -A, (the positive definiteness

of M does not preclude P dipping below -hm over a portion of the rectangle)

the estimate (27) no longer yields an upper bound on p that is less than

one, hence it does not guarantee convergence. For the numerical examples of

such cases given in $ 4, the iteration (24) converges, but at a comparatively

slower rate. We consider, then, as best candidates for our iterative procedure

those cases for which /3 > -A, (or uniformly I--&&

The choice of the particular value (9) for K out of the possible

ones (28) yielding the best convergence rate estimate (30), corresponding to

(29) , is made for two reasons. One is that for the corresponding value

7. 1,= which is obtained from (29) for the shift (p), the resulting discrete

Picard iteration (13) requires fewer computer operations than does the one

-12-
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c.

for general 7 (24).(2) The other is that for this shift the actual convergence

rate observed in our numerical experiments was somewhat more rapid than it

was for shifts near the end points of the interval [B,B]. Centering the

spectrum of P - KI at zero and taking T = 1 seemed to be a good strategy

-1for reducing the spectral radius of [I - T(-Ah+KI) (-Ah+P)] , at least for

those problems for which p(x,y) varied smoothly without rapid changes. If

p varied more violently, the shift (9) was still effective, but in some

cases an improvement could be realized

another value for K in the interval

see 0 4. (For the discrete scaling of

directly.)

by fixing 7 at one and selecting

[e,B] that better approximated P ;

0 3, one obtains the estimate (9)

Note that the primary effect of the shift K is the reduction of the

norm of P - KI ; the effect on (-Ah
+ KI) is usually slight and of little

importance.
L

In some cases it may be more convenient and advantageous to use in (9)

the sharper discrete bounds Bh =nrin P.. and 4-l
AIEKp

LJ ij 3
instead of @

and B . Specific shifts other than the min-max one (p), such as

K = (cd)-'Jp(x,y)dxdy or its discrete equivalent, and shifts that change

from one it%ration to the next, are not considered here, but may be of

c’ practical interest.

-13-



For the choice (9) and for -Am < f3 5 B < 03 , we may summarize the

c

behavior of the iteration procedure as follows:

Theorem: For mesh sizes 0 < h 5 ho , 0 < k 5 k. the iteration

converges with spectral radius p 5 (B-S)/(2&+ B +f- p) .

c

i

i

(9, 13)

2.5 In applying Chebyshev acceleration (14) to iteration (13), one can either

use the estimate (30) for the spectral radius or else obtain an estimate

by observing the convergence rate when solving the problem first on a coarse

grid. This latter procedure is often worth the small extra expenditure of

computing effort, because the estimate (30) may be pessimistic and, since

the iteration is essentially independent of mesh size, the observed value

usually is more accurate. At any rate, the convergence of (14) is assured

when p < 1 .

If one uses a fixed sequence (~~3 rather than (lb), then it may be

possible to speed convergence by utilizing the property that the largest

eigenvalue of -A -1 is relatively isolated from its remaining eigenvalues,

which cluster toward zero. For example, on the unit square with Dirichlet

conditions the largest eigenvalue is (2n2 -1) , whereas all the others lie

2 -1between zero and (5~ ) . The eigenvalues of (-Ah + KI)-'(KI - P) exhibit

a similar grouping for some problems, hence the special parameter selection

method given in [13] for such cases could be employed.

A recent discussion of practical means for estimating Chebyshev accelera-

tion parameters as an iteration proceeds is contained in [15].

We remark that obtaining the optimal Chebyshev acceleration parameters

is not of central importance in our scheme. In many cases the scaling and

shifting alone can yield a convergence rate that is so rapid that only

a few iterations are required for convergence, thus leaving little room for any
-

-14-



substantial improvement to be made by further refinement of the Chebyshev

parameters.
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3. Non-smooth a(x,y).

3.1. For the case in which a(x,y) is only piecewise smooth, the situation

generally is less favorable. The change of variable (5) cannot be carried
1

out as described in $ 1, since L\(a") does not exist everywhere on n (except

in a generalized sense). It may still be possible, however, to improve on

the convergence rate of (16) by performing the equivalent change of variable

in discrete form.

A discrete scaling corresponding to (5) is the one transforming the

diagonal elements of L into those of -Ah ,

(32) 9-l
= D-&D-+ , W = l&J ,

where D is the diagonal matrix with elements

(33)
I a:.+a: a . :+a

d C
ij 2(h-2+k-2)

1J l+l,j + 1J i,z+l

h* k2
.

The resulting scaled matrix operator Mh is then Mh = -Ah + R , and the

original discrete equation LU = F becomes

( 4)3 Yl 8W=D-F=Qh.

The (symmetric) matrix .R has zeros on its main diagonal and, in general,

four non-zero diagonal bands. We have

(35) RW.. = h
-2 1

13

2a-i+l .(h-2+k-2)
YJ1 I

dZ dZ
ij i+l,j

-16-



-2 2a.:(hW2+kB2)
+ k 1 -ah w

dZ dZ 3 i, j-l
ij i,j-I

+ [, - ?5L&s] wi,j+J .

“r  c

c

-1
For the case in which p(x,y) = a ZA(a )h exists at the point (id ,

RW..
13

is a multipoint difference approximation of P(X,Y)W(X,Y)

there. That is, the matrix R is an alternative representation of p(x,y) ,

which is represented in 0 1, 2 by the diagonal matrix P . Note that R

requires approximately twice as much computer storage as does P .

For the case in which either a or va has a simple discontinuity,

the elements of R are not uniformly bounded for all mesh spacings in the way

that the elements of P are bounded by p and B . For a given mesh

spacing, however, R may be such that the convergence rate of the iteration

corresponding to (24) ,

L

L

(36) (-A, + KI)W (n+l) ( 1 ( 1I (-Ah + KI)W n wT[(-Ah + R)W n - 81 ,

is satisfactorily rapid for suitable K and 7 .

The best values for K and 7 can be estimated in a manner similar

to that of 0 2.2 . The' Rayleigh quotient analogous to (26) is

i9’ (R-KI)~P
(37)

2 ( -A,+KI)~P
= I+

QT (-h,+KI>@  l

Here, however, we do not as in $ 2.2 choose K so that the spectrum of

(R - KI) is centered near zero (the spectrum of R is already centered at

zero, since R has Property A and zero main diagonal ), but we obtain the

-17-
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1
h
I

L

proper estimate after first rewriting (37) as

PTM$

gT (-A~+KI)G
= 1 - K

1
1

2h-2+2k -2

eT (-A,)+
T 1@(,-R- '

2h-2+2k
-2 Ah-I.)@1

.F I

d (-bh+~1)4 eT (-A~+KI)~ J

Neglecting the first term in the brackets on the right, which is o(h2 + k2) ,

and using the Gerschgorin estimate for the spectral radius of the matrix in

the numerator of the second term we obtain the choice (9, lo), providing

B > -km , where now p = 8, 3 4rR),,, and B = BR = 4(R] ; {R)min
max -

denotes

the smallest element of R and {Rjmax the largest. These values for @

and B are analogous to the corresponding ones for P(X,Y) in that they are

minimum and maximum values of difference quotients approximating a-'A(a$) .

Generally speaking, one expects these difference quotients to behave like

01
-1

-I- 8) where Va has a simple discontinuity and like (h
-2 -2

+ k )

where a itself is discontinuous.

Relevant numerical experiments are discussed in $ 4.4. As might be

expected, the behavior in this case is not totally as satisfactory as it

is for the case of smooth a(x,y) and the diagonal matrix P . The parameter

estimates based on p, and BR are not as sharp, perhaps because the elements

of R often vary sizably and are not always accurate approximations of

- ~&(a+) .1
4 An attempt to improve the value of 7 , and even K , may be

useful for such problems as information on the spectrum of (-A
h + KI)-'Mh

is gained during the iteration.

- We remark that the method of this section could be used as well for

smooth 4X,Y) Y as an alternative to the analytic calculation of

P(X,Y) = a-*A(,*) and the subsequent numerical evaluation to obtain the

-18-



elements of P in (13). We do not recommend this alternative, however.

c

L

If one wishes to avoid these calculations he should instead difference

a*(x,y) directly, to obtain the approximate elements pFj of P,

pTTj  = Ahdj/atj , where ai!? - [a(ih,jk)]* .ij -
The discretization error

h
introduced by using p.. , instead of p(ih,jk) , is of the same order as

13

that already introduced by (12). The iteration (24) is generally preferable

to (36) because it requires less storage and fewer computer operations per

iteration and because, in our experience, the parameter estimates based on

P are sharper than those based on R .

We remark also that discrete scalings other than (32, 33) might be

used. For example, a closely related one is (32) with the choice, instead

L’

i

of (33), dij = a(ih,jk) . Alternatively, one could investigate the use
c

of (24) with the elements of P equal to ph.
1J

in the case for which a(x,Y)

is only piecewise smooth. This would be equivalent, for fixed mesh, to

considering ab,d to be a smooth, but locally rapidly changing, function.

We hope to return to these matters in a future study. The question of

scaling is discussed further in 6 5.

3.2 When a(x,y) is piecewise smooth with sizable discontinuities across

sub-domain boundaries within the rectangle, it can be faster to solve the

problem iteratively as a sequence of problems on each sub-domain than as

a single problem over the entire rectangle. For example, consider the

-

problem (3, 4)'for which a(x,y) is piecewise constant

{

ao , 0 < x 5 c/2
a(X,Y) =

&1 '
cp<x<1

with the matching condition that a&/ax is continuous at x = c/2 .

-1p-



c

We consider solving the problem numerically by the following scheme:

--

c

c‘

L-

i

L.

L

c‘

(i) In the sub-domain where a = a
0 solve by a fast direct

method

( >&Jon = f ,

T >subject to (4) and uon ( >n= u on x= c/2 .

(ii) In the sub-domain where a = a
1

solve similarly

&(“+I > f= Y

subject to (4) and aI& h+f )/aXx ao?Yuo ( )n /ax on x = c/2 .

Then one obtains that the error E n (y)( -1 in the value of u on x = c/2

at the n
th

iteration satisfies e ( 1n aO &n-l)=-w . Thus if a a is
al d I

small, this scheme can be more rapidly convergent than the one given in 9 3.1

for solving the problem on the entire rectangle at once. The scheme is equiv-
1

alent to using on the original problem, instead of D-z , a diagonal scaling

that renders the discretized operator only weakly coupled between the sub-

problems (i) and (ii) .

For the case in which a varies with x and y in each sub-domain,

the iteration (i, ii) could be combined in some cases with that of 0 1, 2 ;

we hope to take up this matter in another paper. We give the results of a

numerical experiment for piecewise constant a(x,y) in 0 4.4.

c --
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4. Numerical Examples. In this section we collect the results of

numerical experiments for several cases of (3,4) to illustrate the contents

of the previous sections.

4.1 The ideal case for the basic technique (13, 9) is one in which

p = a-*&as) is constant on the rectangle (e.g., a = cos2(x+y) ,

a = Jo2([x2+y2]*) , etc.) . Then, as is pointed out for one such example

in 6 2.3, only one iteration is required to solve the problem.

Since a numerical illustration of this property would have been

trivial, we instead checked the correspondence of iterations (24) and (36)

by solving several such cases using, instead of (24), the iteration (36),

which is based on the discrete scaling (32). Using the value (9) for K

(that is, K = a-*A(,*) = const.) and T = 1 , we found, as expected,

that the spectral radius of the iteration matrix, as indicated by the

observed convergence rate, was the order of magnitude of the discretiza-

tion error and decreased with mesh spacing for a given a . When using,

instead, the value K = +($,+s) of $ 3.1, we obsgrved slightly slower

rates of convergence, even though this value is derived from (36). The

estimate (9) based on P was especially preferable in the cases for which

1the elements of R did not accurately approximate r a*A(a )9 everywhere

on the rectangle.

4.2 Other highly suitable cases for the basic technique are those not

departing strongly from the ideal one. We include here the results for

two such cases, one for non-negative and one for non-positive p(x,y) .

We solved both numerically using (24) on the unit square 0 < x < I ,
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O<y<l with uniform mesh spacing h = k = 2 -I
, for the values

I= 4, 5, and 6 . (The number of rows of interior mesh points should be

2l -1, L an integer, in at least one direction for fast direct methods to apply

efficiently.) The righthand side q(x,y) of (6), and similarly Q of (24),

were taken to correspond to w(x,y) = Z[(X_&)~ + (y-*)
2
1, for which the solution of

the discrete problem with boundary data K(x,y) = 2[(~-9)~ + (~4~~1 agrees exactly

with w(x,y) at the mesh points. The elements of the initial approxima-

tion W(0) were taken to be either all zero or else pseudo-random numbers

in (0, l), to permit the presence of different eigenvector blends in the

initial error.

The first example is the one for which a(x,y) = [I + *(x4+y4)12  ,

hence p(x,y)= 6(x2+y2)/ai(x,y)  and 8 = 0 , B = 6 . Thus the estimate

(30) for the optimal spectral radius is p 5 pu = sag N 0 132. (using

3-r 2 for hrn ), and the shift (9) is K = 3
m

. The results are summarized

for five examples of parameter choices in Table l-a.

The entries in Table 1 are the rounded values for a mesh with

64~64 interior points and for the initial approximation W(0) 3 0 in the

interior of R . For the 16X16 and 32~32 meshes the values differed only

slightly, if at all, from those in the table, and for the random initial

approximations the iterations behaved similarly. A value of K equal to

0 orto$(@ + B) was used, along with the corresponding value (29) for

7 l When Chebyshev acceleration was included, either the estimate p, from

(30) or the experimentally observed estimate p, was used to approximate

the spectral radius p in (14) of (I - T[dh+KI] -I [-A,+P]) .

The entries for the value of p, in the table are the observed

approximate limiting values of the ratio IIW n( >
IA >
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Table 1

r Results after 5 iterations

a (X,Y> Chebyshev
lerat ion Maximump0

e Error
0.868 none 0.130

3*7(-5)
4 4 0.868 /

rl+$(x +Y >I
2 using p

u -
3

1
2.4(-6)

none 0.039
z

-
m(-8)

U

3 1
LL(-6)

using p -
0

e
MJlI; ---

4.3 C-9)

I
--/ -1 none 0.066 -

I
I
I

I 1.2(-6)
15 using p,, - 3 Q/ nxI Ib, Cl+sin&(x+y)-j2

4

I

i-<

I-

P+tanh4 (x+y- 1) ] 2

I l =\-0)
none 0.061 3 z/ -1I 2-n/8 1 --'/\'I /

2 using-IT /8 pu -1 3.2(-8)
_ .
us-g p, -L 3 21 o\0

0.829
b*2\-O)

none 0.310
0.829

3.4(-4)
using p

-
4.07

u
1 5.N-3) II -L none 0.264.07 1 2.6(-4)

using pu -4.07 1' 1*5(-3)

using 'e - 3*4(-5)
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I Iteration

I n

Table 2

Iteration details for Table l-a with K = 3 and T c 1

Without Chebyshev Acceleration
t

Chebyshev Acceleration usingpe

iiwww(n-' )/IA ll,(n)-,(n-1  )il, Max Ilw(n)_W(n-~  )i,
I

A
pb~-wb-l )II

A M&X

IIA Ilw(")ii,
Error /Iwbl )_W(n-2)

IIA llwcn) IlA
Error

1 1.6(-2) -
I

1 1.6(-2)
I

0.0057 5.7(-3) 6.4(-4)
I

0.0057 5J(-3) 7.1(-4)
I

0.033 1.9~~4) 2.4(-5)
I

0.13 7.5(-4) l*l(-5)
I

0.038 7.3(-6) 1.0(-6)
I

0.0047 3.5(-6) 2*7(-7)
I

I
1

1
I
i
i
2

0.039 2*8(-7) 3.9(-8)
I

0.080 2.w7) 4**3 (-9) i

0.039 1.1(-8) 1*7(-g) 0.0063 W - 9 ) 1.2(-10) i
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where llWllA  = ☯i (-Ah+=)d  l The maximum error, which is listed in the

t
i

last column, is the maximum of the difference at the mesh points between

W (5) and the solution w(x,y) . Note that the initial maximum error has

the value of approximately one.

L-

4b
In Table 2 the iteration-by-iteration details are given for the third

entry in Table la.
L

The second example is the one for-which a(x,y) 5 [I + sin&(x+y)]
2 ,

*

for which /3 = -n2/4 , B = 0 I and puk;y A/'15 . The results analogous

c
to Table la are given in Table lb. In this case, the improvement obtained

L

c-

by using the shift K = h(e + B), instead of K = 0, is not so great as

it is for the first test problem,

The effect of scaling and shifting can be found by comparing the

results for the two test problems with the estimate (23) for iteration

L
L--

(16). For both problems there holds QI E 1 and A = 4 , so that the

spectral radius estimate without scaling and shifting in each case is 0.6.

L-

c
4.3 Cases that are less strikingly suitable for the basic technique are

discussed in this sub-section. The example summarized in Table lc is

L-
c

L

f’or the case a(x,y) = [2 + tanh 4(3y-l)]' . The test problem is the

same as the one for the examples of 9 4.2, and the entries are analogous

to the others in the table, except that in this case the task of calculating

the actual extremal values of p(x,y) on R was not carried out; instead,

the discrete equivalents B = B, = min PijJ B = Bh = max Pij were used.

For the 64~64 mesh, ph M -9.62 and Bh N 17.77 , for which p, w 0.575 .

Note that in this example, K = 0 does not correspond to an end point of

the interval [&B] . As before, the results were insensitive to mesh size

-25.



and to which of the initial approximations was used.

An investigation of the non-sharpless of estimate (27) and non-optimality

of (9) and (lo), which are more important here than in a nearly ideal case,

was carried out by fixing 7 at the value one and observing the change in

pe as K was varied. A local minimum was found at approximately K = 3.0 ,

for which p, is approximately 0.23.

For the case a(x,y) = [2 + tanh lO(~fy-l)]~  , B, and s become

approximately -60 and ill, respectively. 331 this case 8 < - h l hence
m'

the estimate (30) yields merely that p s p, > 7 . The iteration did

converge, however, with the observed spectral radius p, M 0.63 and a

maximum error 0f 2.5~10 -2
after five iterations for the usual test

problem, with K = +(f$+B,> a+nd 7 = ' . With the inclusion of Chebyshev

acceleration based on this value of p, , the maximum error after five itera-

tions was reduced to 6.3~10 -3 . The value of p
e can be decreased in this

- c a se , with 7 fixed at 1 , to a 1ocaUy minimum value of approximqtely

0.54 at approximately K = 14.

The case a(x,y) I cl.5 + sin[lO(~+y)fl]]~ , for which B = -40 < -A and
.- m

B = 200 , was observed to converge also, but at a slower rate. Here, for the

shift K = 80 and for 7 = 1 , the value observed for pe was 0.91. Even though-. - --

this value is large, it is interesting to note that it is smaller, nevertheless,

than the spectral radius es&ate (A - a)/(A + a) a 0.93 for the iteration

without scaling and shifting.

4.4 The cases included for non-smooth a(x,y) are a(x,y) = (1 + 41x - +I)2 ,

for which there is a slope discontinuity at x = 4 , and a(x,y) =

for which there is a jump discontinuity at x = * . For both these cases,
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the iteration without scaling and shif'ting  (16) has the spectral radius

estimate (A - cu)/(A + cu) = 0.8 (independent of h ). The convergence

properties of the scaled and shifted iteration are not essentially inde-

pendent of h , however, as is the case for the examples of 6 4.1 - 4.3.

The problems were solved numerically using the iteratiara procedure of

$ 3.1. The dependence on h for the first case is illustrated in Table 3.

The relationship (29) between K and 7 and the value (30) of p, were

computed using for @ and B the observed quantities B, and
BR 9

the rounded values of which are listed in the table. The value of p wasu

essentially equal to the observed value p, for K = 0 . Note that the

maximum error after ten, not five, iterations is gtven in the table.

Although a, - BR is large, the elements of R are essentially

zero everywhere except at the mesh points on and adjacent to the line x =: & ,

where they become large. This suggests that a value of K closer to zero

than the minimax value *(bR+BR) might result in more rapid convergence.

Indeed, it was found that for h = l/l6 and T = 1 a local minimum for p
e

occurred at approximately K = 13 (see the last row of Table 3).

The second case is, in a sense, an extreme version of the second one

of 0 4.3, for which a(x,y) changes rapidly from approximately I on one

half of.the region to approximately 9 on the other. Here B, < -A, , so

that again convergence cannot

slow.convergence was observed

spacings. For the 64~64 mesh

a\ Al.2

be guaranteed from the estimate (30). Very

for this case, especially for the smaller mesh

the observed values for 8, and B were
R

approximately -5597 and 9057 9 respectively, for which 7 W 0.0113 from

(29) for K = 0 . There resulted p, w 0.988 for these parameters. For

the shift K = +@R+ s> and the corresponding value T = 1 t p was note
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Table 3

Results after 10 iterations for a = (1+41~+1)~
r r c

h K 7
t ,- I

l/16
BRA pe

0.2-70 0,107 0.73

l/32 0 0.145 0,234 0.86

l/64 om5 v-89 0.93

1/16 53.5 0.60

A/32 n-7 1 as above 0.78

l/64 244 0.88
(,

- 1/16 13 I as above 0.24
P

&LX
f

Error

3.3(-2)

Qx-1)

4*3(-l)

2*2(-3)

2.7 (-2)

8.6(-2)

14-7)
f
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a great deal less.

When this same problem was solved numerically by the iterative scheme

of $ 3.2, a much more satisfactory situation resulted. The spectral radius

was observed to be essentially l/g , independent of h , in agreement with

the discussion there.

4.5 All the above experiments were carried out using a subroutine, written

by Buzbee, which is based on Buneman's  algorithm for odd-even reduction [4].

This subroutine solves the Helmholtz  equation on a rectangle, and it

includes the boundary-condition options required for our examples, The

numerical solution of a problem on a 64x64 mesh requires approximately 0.06

seconds on the CDC 7600 computer.

Qualitative comparison of the computational requirements of our technique

with those of other methods can be made using the operation-count table

- given in [3]. For example, odd-even reduction requires(9/2$ log2N operations

to carry out the direct solution of a problem on an M mesh. Setting

up the righthand side of (13) requires another 2N2 operations per iteration,

and, if Chebyshev acceleration (14) is used, another 38 operations are

needed. Thus, according to the table, the operations required for one iteration

of (13) are equivalent to those required for about 4 or # SOR iterations

or IQ AD1 iterations if N = 64 . The reduction of the initial error

by a factor N
-2

m 2.5~10
-4

in the numerical solution of the Poisson

equation is listed as requiring about 85 SOR or 7 ADI iterations for

this - N , when optimal parameters are used; the solution of (3) or (6) will

generally require more. Further such comparisons can be made using the table.

The memory requirements of (13, 14) exceed those of SOR by about 3N2

-2g-



locations if both P-K1 and W-(n-l) are stored. This value can be reduced

to N2 , however, in exchange for recomputing P-K1 at each iteration and

using a form of Chebyshev acceleration that requires, -(n-l)instead of W 9

a sequence of parameters [Q .

We conclude from our numerical experiments that for well-suited cases,

such as those in 5 4.2, our basic technique is an extremely efficient one

and compares very favorably with standard iterative and elimination methods.

L
Its advantages are especially striking for problems with a large number of

mesh points, since the number of iterations required is independent of h .

For less well-suited and poorly suited problems, such as those in 0 4.3 - 4.49

L-
the scheme may be very satisfactory in some cases, but further study would

be usef'ul to clarify the best means for estimating the parameters and for

utilizing the technique of 0 3.2 in discontinuous cases.

L
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5. Scaling. We presented the scaling (5, 6), or equivalently (32, 33),

tacitly implying its suitability because the resulting operator resembles

the one on which the iteration is based. We now make some remarks on

the question of whether or not this scaling is in some sense the best one

possible.

Since the optimal spectral radius for iteration (24) increases with

the condition number v
d

vm , the best sclaing is one that yields the

minimum condition number for a given problem. In the discrete case, the

choice (33), among all positive diagonal scalings (32), minimizes the

condition number of %
, which has Property A , but notnecessarily

that of (-Ah + KI)-'Mh . The optimal diagonal scaling for these more

general matrices is not known; a related discussion pertaining to scaling

of alternating direction methods can be found in [16].

We have carried out calculations on some one-dimensional problems

corresponding to (3, 4) to determine numerically the scaling necessary

to minimize the condition number. We considered the standard three-point

discretization on a uniform mesh IX = F equivalent to (15) for the problem

xu = -dxd [a(x)$] = f(x) ., u(o) = u(l) = 0 .

The diagonal matrix D was calculated that minimized the condition number

'-' -bof the matrix (-Ah + KI) D LD-* ; where -Ah
is the one-dimensional

equivalent of (12). The minimization was carried out for several values

of h using an algorithm of Osborne [17] and the minimization program

of Fletcher [18]. The actual value of K that was used was, in general,

not important, since the diagonal elements 2h

comparison, usually much larger. For the cases in was

-310



constant, we found that the best D was essentially the same as the one

we have used here, that is, proportional to the main diagonal of L . For

the one-dimensional equivalents of the examples of 0 4.2, in which 2d2 ( &a I/ ai!!
dx

varied only moderately over the interval, we found that the best D departed

from this value by only a comparatively slight amount. If a(x,y) had a

sizable discontinuity, however, then the best D was not as close to being

proportional to the main diagonal of L ;, . rather, it tended to smooth out

the discontinuity (see also 0 3.2). We concluded that for the problems with
c

relatively smooth a , the ones for which our iterative technique has greatest

potential, the scaling (5, 6) is adequate.

L-

F

t

We remark that Gunn also observed notably improved convergence rates

in certain cases when a variant of the scaling (5, 6) was used to solve (3, 4)

by an iterative technique [lg].

i
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6. Extension to other problems. Our iteration procedure may be applied,

as well, to problems other than (3, 4). One immediate extension is to the

case in which the term b(x,y)u is added to the left of (3), where b(x,y)

is such that 1: + b(x,y) remains positive definite. The transformation

(5) still results in an equation of the form (6), to which the iterative

procedure (7) applies directly.

Another extension is to the case *in which on some of the edges of the

rectangle there are specified periodic boundary conditions or boundary con-

ditions of the form au/an t au = b for which fast direct methods can

be used. Then the value of h changes, but otherwise the basic procedure

is not altered so long as the boundary conditions remain suitable for these

methods after the scaling (5, 6) is performed.

We remark that the numerical solution of separable equations of the

form

(38)

with suitable boundary conditions, can be carried out by fast methods with

only the additional work of solving a tridiagonal eigenproblem, the dimen-

sion of which is the number of mesh points in a row. Thus it is not neces-

sary to attempt to solve such problems iteratively, using the scaling and

shifting procedures described here. Included in (38) is the radially symmetric

Poisson equation on an annular region 0 < r. 5 r 5 r
I

I

2
-$&g)-~ =f,

&

which, after being multiplied by r , is also of the form (3).
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Also included in (38) is the case in which the iteration (11) is

discretized on a rectangular mesh with nonuniform spacing. Let

hi i-x.= x
1-l

and kt=y.-y
3 3 j-1

be the mesh spacings; then the

resulting five-point discretization of -A + K at an interior point

is

k, + k?
(-iih+K)w. . = J J+l

iJ 2
r- kw-

i
i-l,j+ (2 + & )'ij - h-l Wi+l j ]

i i+j 9

+
hi + hi+,

c '
1

2
1

-i;---W*  l + (F+r)wij  -k-j- '$J-1
' w

3 j+l iA+
1

j+I

+ f (hl+ hE+l)(ki+ kj+l)Wij l

After multiplying each equation through by 4(hz + h;+,

or by performing the transformation that preserves symmetry [20] ,

one obtains separable equations that can be treated by the direct methods

suitable for (38). 1.i; also would be possible, of course, to apply the

techniques of 0 3 to the original problem (3) discretized on the nonuniform

mesh.

Finally, we remark that if the domain on which the equation is to be

solved is not itself a rectangle, but is, instead, a union of rectangles,

then our iterative technique might be combined efficiently with the fast

methods suitable for such domains [21]. These might then, in turn
1 also

be combined with iteration (i, ii) of 6 3.2 for the case in which a(x,y)

is piecewise smooth over such subdomains.
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We plan to study these extensions in the fbture and to cbnsider, as

well, application of the iterative technique to nonlinear equations.
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Footnotes

(1) The boundary data for the operator (-A+K) need not necessarily be the
same as for n . Other boundary data, such as 0 , may be computationally
more convenient for some problems.

(2) We note also, without comment on possible relevancy, that the underlying
iteration operator (2) becomes completely continuous when 7 = 1 .

I;-

L
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