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Asymptotic Bounds for the Number 

of Convex n-Ominoes 

by David A. Klamer and Ronald L. Rivest 

Abstract 

Unit squares having their vertices at integer points in the 

Cart.esian plane are called cells. A point set equal to a union of n 

distinct cells which is connected and has no finite cut set is called 

an n-omino. Two n-ominoes are considered the same if one is mapped 

onto the other by some translation of the pl.a.ne. An n-omino is convex 

if all cell8 in a row or column form a connected strip. Letting c(r,) 

denote the number ot different convex n-ominoes, we show that the 

sequence «c(n»l/n: n = 1,2, ... ) tends to a limit 'Y, and 
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contract n\Bber N-OOOl4-61-A-Qll2-0057 lfR 044.402. Reproduction in 
whole or in J)I.rt is permitted for any purpose of the United States 
Government. 



Asymptotic Bounds for the Number 

of Convex n-Qninoes 

by David A. Klarner and Ronald L. Rivest 

Computer Science Department, Stanford University 

Introduction 

Unit squares having their vertices at integer pOints in the Cartesian 

plane are called cells. A point set equal to a union of n distinct 

cells which is connected and. has no finite cut set is called an 

n-~. Two n-ominoes are considered the same if one is mapped onto 

the other by some translation of the plane. (Such n-ominoes were 

called ~ animals with n cells by R. C. Read [8].) For example, 

there are six different ~-ominoes as shown in Figure 1. 

Figure 1. The 3-ominoes. 
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Let ten) denote the number of distinct n-ominoes. It is known. 

[2] that the sequence «t(n»l/n: n = 1,2, •.. ) tends to a limit Q 

The investigation of 9 began with Eden's [l ] work; he managed to 

prove that ~.14 < 9 :S 6.75. There bal been considerable effort 

expended tc improve these bounds. Currently, the best lower bound 

( given in [2 ]) is 3.72 < e , while the best upper bound (given 

in [ 5 ]) is 9 < 4.65 . 

An n-cmlllo il !2!-convex when e.ach row of the n-anino is a cormected 

strip of cells. Column-convex n-aninoes are defined analogously. All 

six of the '-aninoes (shown in Figure 1) are both row-convex and 

column-convex; in general, such n-aninoes are said to be ~-column-convex, 

or just convex for short. It war" shown in [3] (and in [ 2 ] by a second 

method) that 

(1) 
2 3 1- 4x+ 7x - 5x 

• 
~b(n)xn 

n=l 

where O(n) denotes the number of distinct row-convex n-aninoes. (Th:'s 

result was also obtained ~ Polya [6].) Thus, it follOW's that the 

sequen~e «b(n»l/n: n = 1,2, .•• ) tP.nds to a limit ~ which is equal 

to the largest real root of .; - 4l + 7y - 5 = 0 ; that is, ~ = 3.20 

Recently, D~ Knuth wrote us fran his. sabbatical hide-out in ICENSORE] 

(where he is secretly writing Volume 4 of his septuple, The Art of 

C C!!!PI1ter PrOl1'!a1ng), and ask4!!-' us if' the number c (n) of convex 

n-aninoes h&d been investigated. This paper is entirely motivated . 
by Knuth's question. We shall be cuncemed with the problem of 

effectively calculating the limit 7 of the sequence 

«0(n»1/n: n = 1,2, ... ) • One of the first things we prove is that 

this limit exists. Later on we SI\:N haw to cal.culate upper and lower 

bounds for 1 and give the best results obtained by these methods. 
I 
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Existence of li.rn(n ... "') (c(n»l/n 

Following Ceasar' 8 admonition, we divide, then conquer. A 

convex n-auino may be split into three pa.r1:s by making two cuts between 

certa.in rows so that the upper and lower parts are roughly tra.pezoids, 

and the middle part i8 roughly a parallelogram. A typical sectioning 

of this sort is shown in Figure 2. More preCisely, the trisection of a 

convex n-amino A is accomplished by cutting along the lowest 

level of A where the left boundary of A goes to the right and by 

cutting along the lowest level of A where the right boundary of A 

goes to the left. 

Figure 2. Trisection of a convex 28-anino. 



A convex n-omino whose left bO\Uldary climbs to the 

right and whose right boundary climbs to the lef't corresponds to a 

partition of n called a stack by E. M. Wright [ 9 ]. We let s(n) 

denote the number of distinct n-ominoes corresponding to stacks; for 

example, there are four 3-ominoes shown in Figure 1 which correspond 

to stacks, so s(3) = 4. A convex n-omino whose left and right 

boundaries both climb to the right is called a parallelOgram, and pen) 

will denot~ the number of distinct n-ominoes which are parallelograms. 

Clearly, p(n) ~ C(ll) for all n; also, s(rt) ~ pen) for all n 

(the diagram in Figure 3 suggests a proof of this fact). Finally, an 

obvious construction establishes that p(m)p(n) S p(m+n) for ail m,n • 

Now we use the fact that if {u} 1s a sequence of natural numbers such n 
lin that ( (u) : n = 1,2, .•• ) is bounded and u u < um+ for all :n, n , n m n - n 

then limen _CD)(U
n

) lin exists. (For similar results, see P6lya and 

Szego [ 7, p. 171].) We have pen) S ben) < (3.20)n for all large n, 

and p(m)p(n) sp(m+n) , so 

(2) lim (p(n»l/n ~ 7 
n __ CD 

exists. Using the fact that every convex n-anino splits into 

two stacks and one parallelogram, we can reconBt 1"UCt these n-cminoes by 

pasting together tvo stacks and one parallelogram in various ways. 

Again, using an obvious constructioo, and using the tact that 

p(i)p(j)p(k) S p(i+j+k) for all i,j,k, it is easy to show that 



(3) c(n) < 2112 l: s(i)p(j) S(k) 
(i,j,k) 

< 2n2 l: p(i)p(j)p(k) 
(!.,j,k) 

< 2n
2<n;2)p(n) < 4 

(n+2) pen) 

where the index of S1.lJIIID8.tion in the St.lllS extends over all canpositions 

(i,j,k) of n into non-negative parts. There are (~2) such 

canpos it ions • 

I 
I 

I I 
I I 
I I 

I I 
I 
I 

Figure 3. An iDjection Ihoving sen) ~ pen) • 

Using (2) and (.~) together With the fact that pen) ~ c(n) tor 

all n, we have 

(4) 7 .. lim (p(n»l/n < 11m 1nt(c(n»l/n 
n ... CII 

• 7 . n .... n .... 
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Hence, limen _ ... )(c(n»l/n exists, and. 

( 5) lim (c(n»l/n '" lim (p(n»l/n '1 • n-- n-_ 

An Integral Equation 

We shall ure a theor'J developed in [ .. ] concerning a double 

sequence (b(n,a): n,a = 1,2, •.• ) defined in terms of given sequences 

(f(m,n): m,n = 1,2, ••• ) and (g(n): n = 1,2, ••• ) as follows: 

where the index of sUlllll&t1on extends over all k-tup1es (al , ..• , ~) 

of natural numbers tor k = 1, ..• , n with a
1 

= a and a
1 

+ ••• +~ = n 

It was shown that it 

CD 

(7) :lex) = ~ g(n)xn 

D=1 

and 

... 
(8) F(x,y) = ~ t(m,n)~yn I 

m,n .. 1 

converge for \x\ and \yl sufticlent~ small, then 

_ n 

(9) B(x,y) = 1:: ~ b(n,a)y&xD 

n .. 1 a-I 

converges for Ixl and Iy\ 8Utf1c1ent~ small, and 

(10) B(x,y) = G(xy) + 2~ J F(~, ~) B(x,.) d: 
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where C is a contour in the a-plane which includes s = 0 and the 

singularities of F(xy, ~) but excludes the singIllarities of B(x, s) . 

The theory of (10) runs parallel to that of the Fredholm integral 

equation. In particular, if F(x,y} has the special form 

we say F is !.2r~, and it turns out that {1O} can be converted. 

into a system of t equatia"ls linear in t unknown tunctlons. The 

system can be solved and the solution yields a formula for B(x,y} . 

We shall give an example of this later on. 

If F is not separable we can still get information about B by 

approximating F with scmething that is separable. Suppose 

and k{m,n} ~ f(m,n) for all m,n, then we say K is a lower bound 

on F; an upper bound on F is defined. analogousl¥. If K is 

separable, we mq substItute K for F in (10) and cal.culate a lower 

bound for B. Upper bounds tor B may be obtained in a s1milar 

tashion. We shall adopt this strategy too, so an example is forthcaning. 

The relevance of the foregoing discussion to the enumeration of 

n-celled. parallelograms is as follova: the numbe~ of ( ... n) -celled 

paralie10graIU having m ce11s in one raw and n ce11s in a second 

row is 

(13) f(m,n} = min(m,nJ 

It is fairly easy to show that the number ,of n-celled parallelograms 

with exactly k rows of ce11s baYing exaet~ a
1 

cells in the I-th 

row for i a 1, ••• ,k is 
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Thus, if we take f as defined in (13) and put g( j) = 1 for all j , 

we can sum (6) over 8 = l, •.. ,n and obtain pen) • In this case, we 

have 

(15) F(x,y) '" (l-x) (~) (l-xy) , 

and 

(16) G(X) = 

Substituting these functions in (10) gives 

() () -"5L + -L S Xl B(X1S~dS 
17 B x,y = l-xy 2~ (l-xy}(s-I) s-xy) 

c 

.!!L. + 
1-xy Xl 2 B(x,1) - x;y 2 B(x,xy) 

(l-xy) (l-xy) 

2 We can iterate (17) to eliminate B(x,xy),B{x,x y), •.• successively 

to find 

(18) B{X,y) = 

Setting y = 1 in (18), ve solve for B(x,l) , the generating function 

of (p(n): n = 1,2, ••• ) , which turns out to be 

(19) B{x,l) = 

x x3 x6 
1-i - 2 2 + -~2=--~2~2-""3;-

(l-x) (l-x) (1-x) (l-x ) (l-x ) 

CD () n 
~pnx 

n=l 
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We have been unable to make uae of (19) in estimating p(n) . Instead 

we use u}'Per and lower bounds for F aa defined in (15), and then use 

(lO) t.o calculate upper and lower bounds for B • 

Lower Bounds 

Let 

k 
(20) = 1: f(m,n)xIDyn 

m,n=l 

where f(m,n) = min{m,n} just as in (lJ), and l.et Bk(X,y) denote the 

aolution of (10) having Fk substituted for F. Since Fk 1s a lower 

bound for F, it follows that ~ is a lover bound for B. It was 

shown in [4 ] that when the kernel. of (10) 1s approximated by a po~Cftlal 

as in this case, then Bk(x,l) 1s a rational. tunction, say ~ '"' Pr!Qk 

With Pk and Qk po~OIIlial.a, and the ciencm1nator of ~ may be 

expressed as a determinant. In the present situation this turns out to be 

l-x 1 

(21) 

1 2 

1 1 

2 

k k-x 

If we put ~(x) • 1 and Ql (x) '"' 1-x we can use (21) to verity that 

(22) n (x) {1 xk- l xk)n (v) x21:-2... (x) ""k - - - ""k-1.... - ~k-2 

for k ~ 2,~, •.•• For example, 
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2 3 
~(x) = 1 - 2x - x + X , 

Q,(x) .a1_2x_2x2 +2x'+2x4 +x5 _x6 , 

Q4(x) _1_2x_2x2+x'+3x4+5x5_2x6_2x7 _2x8 .x9 +xlO • 

Letting 1k denote the largest real. root of Qk(l/x) = 0 , ve have 

"1 ~ "2 ~ •.. ~" , where " is defined in (2). We have used a computer 

to calculate lover bounds for 71 '"2''' ""10 given in the table. Our 

results indicate that the sequence {1i J converges ver.y quickly to 

the value 2.3091,859 ..• , our best lower bound for '}' • 

1JlJ;Per Bounds 

For k,. 1,2,... ve define upper bounds r1t(m,n) for 

f(m,n) :: min{m,n} &8 tollOW's: 

(23) 

Hence, 

(24) 

rk(m,n) a {m I 

t(m,n) , 

it k < n < II '} 

otherwise. 

• 
ttCII,n). 1: fKCa.,n)xllyn 

m,n-l 

- ? (l-x) (l-y) 

k is an upper bound tor F ; furthermore, note that F is separable. 

Then, 

(25) 

Let Bk denote the solution ot (10) with ~ substituted tor F. 

k ..2SL.. + X;YB (x, I) 
l-XY (l_xy)2 
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where 

k 1 ~r 
B (x) = 
r kl asl' 

Now ve use (25) to get a systeo- k k 
equations involving Bl ,·· .'Bk 

Take the r-th partial derivati ~ th re.pect to y at y = 0 and 

divide by r! in (25) to get 

(26) , 

frau which it follows that 

Setting B=(X) ;: Pr(X) + ~(X)Bk(x,1) tor r = 1, .•• ,k , it follows 

that Pr and Q.r also satisty the dirterenee equation (27). Also, 

ve ean substitute P +Q Bk. For B in (25) vith y .. 1 and solve 
r r r 

for B
k

(x,1) in term. ot Pl,Q.l, ••• ,Pk'~ to obtain 

(28) k B (x,1) c 

2 k j+L' 
x - x - ~ x -p (x) 

j-1 j 

2 k1+L 
1- }x+ x + ~ r- 1i.1(X) 

.1=1 

Tbus, Bk ia & rational function whoae auaerator "k and 

dencaiDator Dk ve mow how to ccaprte because they are defined in 

tem. of Pl ,.· .,Pk and Ql' •.• ,Qk vblah ve know how to ccapute. 

Let '\. denote the larg •• t r_1 root otDk(l/x) I then ve know 

(29) lim ( E bk(D,Z),l/n .. '\ ~ "/ 
n ...... 1 ) 

11 



and ~l ~ ~2 ~ ... ~ '1 . Thus, ve can calculate upper bounds for 

~1'~2"" to obtain successively better upper bounds for '1 • 

Using the definitions 

2 2 ktL 
(30) Dk = 1 - 3x + x + x Q.1 + ••• + x I.&k 

(,I) (r > 1) , 

and Q1 = x, ~ = 2%,2 -~ , the polynomial.B D
1

,D2,... are ca.lculated 

vith relative ease. For example, ve found 

D1 = 1 - 3x + x2 
+ x' 

D2 = 1 - 3x + x2 
+ x3 + 2x5 _ x6 , 

D3 = 1 - 3x + x2 + ~ + 2x5 _ x6 + 3x 7 _ 2%,8 _ 2%,9 + xlO 

Using a cOIIIplter, the polynOlllials DI , ••• ,D
10 

vere calculated 

via (30) J and upper bounds for ~k' the largeat real root of 

Dk (l/x) = 0 , vere CompIlted for 1 $ k $ 10 using the Newton-Raphson 

method. These upper bounds for ~ are given in the table. 

Ce&Mning our upper and lover bounds ve can cooc1ude that 

(32) '1 .. lim (c(n»l/n a 2.~138 ... 
n~. 

12 



k 1k ~ 

1 1.00000000 2.41421356 
2 2.24697960 2.33578290 
3 2.30855218 2.31475605 
4 2.30913772 2.31023504 

5 2.30913859 2.30934711 
6 2.3091;859 2.;0917190 
7 2.;0913859 2.30914598 
8 2.3091;859 2.30913998 

9 2.30913859 2.30913885 
10 2.30913859 2.30913864 

Table 
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