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Asymptotic Bounds for the Number

of Convex n-Ominoes

by David A. Klarner and Ronald L. Rivest

Abstract

Unit squares having their vertices at integer points in the
Cartesian plane are called cells. A point set equal to & union of n
distinct cells which is connected and has no finite cut set is called
an n-omino. Two n-ominoes are considered the same if one is mapped
onto the other by some translation of the plane. An n-omino is convex
if all cells in a row or column form a connected strip. Letting c(1n)
denote the number of different convex n-ominoes, we show that the
sequence ((c(n))]'/n: n=122,...) tends to a limit 7 , and
y - 2.3091%8...
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Asymptotic Bounds for the Number

of Convex n-Ominoces

by David A. Klarner and Ronald L. Rivest
Computer Science Department, Stanford University

Introduction
Unit squares having their vertices at integer points in the Cartesian

plane are called cells. A point set equal to a union of n distinct

cells which is connected and has no finite cut set is called an
n-omino. Two n-ominoces are considered the same if cne is mapped onto
the other by some translation of the plane. (Such n-ominoes were
called fixed animals with n cells by R. C. Read [8]).) For example,

there are six different 3-ominoes as shown in Figure 1.

Figure 1. The 3-ominoes.



Let t(n) denote the number of distinct n-ominoes. It is known,
(2] that the sequence ((t(n))YP: n = 1,2,...) tends to a limit o .
The investigation of © began with Eden's {1 ) work; he managed to
prove that 3.14 <@ < 6.75 . There has been considerable effort
expended tc improve these bounds. Currently, the best lower bound
(given in [2 ]) is 3.72 <9 , while the best upper bound (given
in{s5]) is © <k.65 .

An n-omino is row-convex when each row of the n-omino is a connected
sirip of cells. Column-convex n-ominoes are defined analogously. All
8ix of the 3-ominces (shown in Figure 1) are both row-convex and
column-convex; in general, such n-ominoes are said to be row-cclumn-convex,
or jJust convex for short. It wa- shown in [ 3] (and in [2 ] by a second

method) that

3 ®
(l) x(l-x% 3 - E b(n)xn
1-bx+7x" -5x =1

where b(n) denctes the number of distinct row-convex n-ominoes. (This
result was also obtained by Polya [ 6].) Thus, it follows that the

Yn, o -1,2,...) tends to a limit @ which is equal

sequence ((b(n))
to the largest real root of ?-hy2+7y-5 =0 ; that is, p = 3.20 ...
Recently, Donald Knuth wrote us from his. sabbatical hide-out in ({CENSORED

{where he is secretly writing Volume L of his septuple, The Art of

Computer Programming), and aske’ us if the number c(n) of convex
n-ominoes had been investigated. This paper is enti.rely motivated
by Knuth's question. We shall be concerned with the problem of
effectively calculating the limit 7 of the sequence

((c(n))l/n: n=12...) . One of the first things we prove is that
this limit exists. lLater on we snow how to calculate upper and lower

bounds for 7 and give the best results cbtained by these methods.
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Existence of lim(n —w)(c(n))l/n

Following Ceasar's admonition, we divide, then conquer. A
convex n-omino may be split into three parts by making two cuts between
certain rows so that the upper and lower parts are roughly trapezoids,
and the middle part is roughly a parallelogram. A typical sectioning
of this sort is shown in Figure 2. More precisely, the trisection of a
convex n-omino A is accomplished by cutting along the lowest
level of A where the left boundary of A goes to the right and by
cutting along the lowest level of A where the right boundary of A

goes to the left.

Figure 2. Trisection of a convex 28-omino.



A convex n-omino whose left boundary climbs to the
right and whose right boundary climbs to the left correeponds to a
partition of n called a stack by E. M. Wright [ 9]. We let s(n)
denote the number of distinct n-ominoes corresponding to stacks; for
example, there are four 3-ominoes shown in Figure 1 which correspond
to stacks, so s(3) = 4 . A convex n-ominc whose left and right
boundaries both climb to the right is called a parallelogram, and p(n)
will denote the number of distinct n-ominoes which are parallelograms.
Clearly, p(n) <c(n) for all n ; also, &(n) <p(n) for all n
(the diagram in Figure > suggests a proof of this fact). Finally, an
obvious construction establishes that p(m)p(n) < p(mtn) for ail m,n .
Now we use the fact that if {u } 1is a sequence of natural numbers such
that ((un)lln: n=12...) is bounded and uu <u o for all =,n ,
then lim(n ~wo) (un)l/ N exists. (For similar results, see PSlye and
Szego [ 7, p- 171].) We have p(n) < b(n) < (3.20)" for all large n ,
and p(m)p(n) < p(mtn) , so
(2) lin (p(e)Y® = o

n-—wo

exists. Using the fact that every convex n-omino splits into

two stacks and one parallelogram, we can recons!ruct these n-aminoes by
pasting together two stacks and one parallelogram in various ways.
Agein, using an obvious construction, and using the fact that

P(1)p(J)p(k) < p(itj+k) for all 4,j,k , it is easy to show that



(3) cm) < an® T s(1)p(3)s(k)

1,3,k

< o T p(1)p(3)p(k)

Lk

< (m2)"p(n)

< 2 ("P)p(n)

where the index of summation in the sums extends over all compositions
(1,3,kX) of n into non-negative parts. There are (";2) such

compositions.

Figure 3. An injection showing s&(n) < p(n) .

Using (2) and (3) together with the fact that p(n) < c(n) for
all n , we have

() y = lm (p@)Y® < 1im inf(e(n)¥?

N o n-—om

< Uum sup(c(m)¥® < 1 (w2)'p@)Y" - 4

n-so n-e



1/n

Hence, 1lim(n —~w)(c(n)) exists, and

(5) 1n (@)™ « 1m(@HY" = ¥ .

n-e n-—oe

An Integral Eguation

We shall ure a theory developed in [ 4 ] concerning a double
sequence (b(n,a): n,a = 1,2,...) defined in terms of given sequences

(f(myn): myn = 1,2,...) and (g(n): n =1,2,...) as follows:
(6) b(n,a‘) = Z f(al)ae)f(ae)aa) s f(ak-l’ak)g(ak)

vwhere the index of summation extends over all k-tuples (a.l, . ..,a.k)
of natural numbers for k =1,...,n with a, = a and al+ +a.k =n.

It was shown that if

) 3(x) = filg(n)x" ,

and

(8) Fny) = T fan)dt
m,n=1

converge for |x| and |y| sufficiently small, then

(9) B(x,y) = i %b(n,a)y‘xn
n=l a=1

converges for |x| and |y| sufficiently small, and

(100 Boy) = 6(w) + 5 d[r(w,%)n(x,a)‘%



where C is a contour in the s-plane which includes s = O and the
singularities of F()qr,%) but excludes the singularities of B{x,s) .
The theory of (10) runs parallel to that of the Fredholm integral

equation. In particular, if F(x,y) has the special form
1) Fxy) = RS )+ ... +R(DE,G)

we say F is separahble, and it turns out that (10) can be converted
into a system of t equations linear in t unknown functions. The
syctem can be solved and the solution yields a formula for B(x,y) .
We shall give an example of this later on.

If F 1is not separable we can still get information about B by

approximating F with something that is separable. Suppose
(12) K(x,y) = Zk(mn)<y"

and k(m,n) < f(m,n) for all m,n , then we say K 1is a lower bound

on F ; an upper bound on F 1is defined analogously. If K is

separable, we may substitute K for F in (10) and calculate a lower

bound for B . Upper bounds for B may be obtained in a similar

fashion. We shall adopt this strategy too, 8o an example is forthcoming.
The relevance of the foregoing discussion to the enumeration of

n-celled parallelograms is as follows: the number of (artn)-celled

parallelograms having m cells in one row and n cells in a second

row is

(13) f(m,n) = min{m,n} .

It is fairly easy to show that the number of n-celled parallelograms

with exactly k rows of cells having exactly a, cells in the i-th

i
row for 131’-n-,k is



(lh) f(al’aQ) f(ae,a.a) ceo f(a'k-l’ ak)

Thus, if we take f as defined in (13) and put g(j) =1 forall J,

we can sum (6) over & =1,...,n and obfain p(n) . In this case, we
have
= Xy
@) Fe¥) - RIS
and
x
(16) @ = £

Substituting these functions in (10) gives

1 B a
() B(xy) = i%+ 2xi Cf ll-wi(sx'.'ﬂs%s—)':q
= S+ A B(x,1) - —X__ p(x,xy)
Y (1) (1-xy)®

We can iterate (17) to eliminate B(x,m),B(x,xay), ... successively
to find
k-olxk(ml)/e k

® k
(18) Bxyy) = Ll —x ¥ (1 -x'y+B(x,1))
=l ()22 ... (1)

Setting y =1 in (18), we solve for B(x,1) , the generating functicn

of (p(n): n =1,2,...) , which turns out to be

b 6

X . x . x -
1% 7 i) (1-02(1-x9)2(1-x)

(199 B(x1) s

X .+ X X + e

Tm? 12a0)? 102a-A%(10)?

= p(a)x"

n=1



We have been unable to make use of (19) in estimating p(n) . Instead
we use upper and lower bounds for F as defined in (15), and then use

(20) to calculate upper and lower bounds for B .

Lower Bounds

Let

k

(20) F(xy) = I f(mu)xy”

m,n=1
where f(m,n) = min{m,n} Jjust as in (13), and let Bk(x,y) denote the
solution of (10) having F, substituted for F . Since F, 1is a lower
bound for F , it follows that Bk is a lower bound for B . It was
shown in [ 1 ] that when the kernel of (10) is approximated by a polynomial
as in this case, then Bk(x, 1) is a rational function, say B, = Pk/czk
with Pk and Q,k polynomials, and the denominator of Blll may be

expressed as a determinant. In the present situation this turns out to be

l‘x 1 1 ) 1
l 2-12 2 *saas 2
(21) Q@ =141 2 3 ... 3

1 2 3 ... k-xt

If we put Qo(x) =1 and ql(x) = l-x we can use (21) to verify that
(22) Q0 = (1 TaxNg (x) -2y L (x)

for k =2,3,... . For example,



Q) =l-2x-x2+x

6

2 5+2xh4>xs-x ’

l-2x-2x" +2x

3+3xh+ 5x5-216-2x7-2x8 -x9+xlo .

QB(X)

Qh(x) l-2x-2x2+x

Letting 7, denote the largest real root of Qk(l/x) =0, we have
7y S75 £ ++- <7, vhere 7 is defined in (2). We have used a computer
to calculate lower bounds for 712700 <0710 glven in the table. Our
results indicate that the sequence {y i} converges very quickly to

the value 2.30913859... , our best lower bound for ¥ .

Upper Bounds

For k =1,2,... we define upper bounds fk(m,n) for
f(m,n) = min{m,n} as follows:
m, if k<n<nm,

(23) (m,n) =

f(m,n) , otherwise.

Hence,

(%)  Pan) = T Kmn)fy°

myn=l
. Jxy R
(1-x)°(1y) (1-x)° (1-x)2

is an upper bound for F ; furthermore, note that Fk is separable.

Let l!k denote the solution of (10) with Fk substituted for F .
Then,

k
(25) B(x,y) = S+ DB (01) —'-77 2 xTyT B (x)

' a-)? (wy)

10



where

T
1l 3 k
7w —F B (x,8) .

BE(x)
o8 g=0

Now we use (25) to get a syster equations involving B’{,. ..,Bl]: .
Take the r-th partial derivati ¢ th respect to y at y =0 and
divide by r! in (25) to get

k r, _rk -1 r k
(26) Br(x) = X +rx B (x,1) - JZ.Jl (r-3)x Bd(x) ’

from which it follows that

(21) BN = (exex" i) -2 ()

Setting B:(x) = Pr(x) +Qr(x)Bk(x,l) for r=1,...,k , it follows
that P and Q  also satisfy the difference equation (27). Also,
we can substitute Pr+Qer . For Br in (25) with y = 1 and solve

k
for B (x,1) in terms of P1sQys e s BaQy to obtain

k \
x-x2- 2 x‘j*lPJ(x)
®) B - =t
l1-3x+x°+ T x‘”lqd(x)
3=l

Thus, Bk is a rational function whose numerator Nk and

denominator Dk we know how to campute because they are defined in
terms of Pl" ..,Pk and Ql""’qk which we dmow how to compute.

Let B, denote the largest real root of D,(1/x) , then we kmow

n i/n
(29) nm( )2 b“(n,z)) =B <7

n—es a-l



and pl > 32 > ... >7 . Thus, we can calculate upper bounds for
al,aa, ... to obtain successively better upper bounds for 7 .

Using the definitions

2, .2 et
(30) D, = 1-3X+X +#XQ+...+X le ’
r+l 2
(31) Qr..,l = (ax-x )Qr -X Qr_l (r > 1) 2
2.
and Ql =X, Q2 = 2x"-x° , the polynomials D1’°2"" are calculated

with relative ease. For example, we found
2, .3

Dl = l-3x4+4x +x ’
D2 = 1-3x+x2+x3+2xs-x6
D5 = 1-3x+12+19+2x5-x6+517-2::8-2x9+x1° .

Using a computer, the polynamials Dl’ . "’Dlo were calculated
via (30), and upper bounds for B, , the largest real root of
Dk(l/x) = 0 , were computed for 1 < k <10 using the Newton-Raphson
method. These upper bounds for ak are given in the table.

Cazhining our upper and lower bounds we can conclude that

1/n

(32) y = 1lim (e(n)) = 2.300138... .

n-o



O o~ oo W ok

[
o

Ty

1.00000000
2.2L6g7960
2.30855218
2.30913772
2.30913859
2.30913859
2.30913859
2.30913859
2.30913859
2.30913859

Table

By

2.41421356
2.33578290
2.31475605
2.3102350h
2.30934711
2.30917790
2.30914598
2.30913998
2.30913885
2.30913864
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