STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-184

STAN-CS-73-330

AXIOMS AND THEOREMS
FOR INTEGERS, LISTS AND FINITE SETS
IN LCF

4

BY

MALCOLM NEWEY

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

JANUARY 1973
COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS ITY

3 STANFORD ARTIFICIAL INTELLIGENCE LABGRATORY JANUARY 1872
' MENMO AIM-16&64
~
COMPUTER SCIENCE DEPARTMENT
REPORT CS-338
.
Axioms and Theorems
for Integers, Lists and Finite Sets
in LCF.
N by
Malcolm Newey
- ABSTRACT:
LCF (Logic for Computable Functions) is being promoted as a
- formal | anguage suitable for the discussion of various problems in
the Mathematical Theory of Computation (MTC). To this end, several
examples of MTC problems have been formal i sed and proofs have been
~ exhibited using the LCF proof-checker.Houever, in these examp | es,
- there has been a certain amount of ad-hoc-ery in the proofs: namely,
many mat hematical theorems have been assumed without proof and no
axioniatisation of the mathematical domains involved uas given. This
— paper describes a suitable mathematical environment for future LCF
experiments and its axiomatic basis, The env i ronment deve | oped,
~ deemed appropriate for such experiments, consists of a large body of
_ theorems from the areas of integer arithmetic, list manipulation and
finite set theory.

This research was supported in part by the Advanced Research Projects

Agency of the Off ice of the Secretary of Defence under Contract SD-183 and in

~ part by the National Aeronautics and Space Administration under Contract
NSR 85-828-583.

— The vieus and conclusions contained in this document are those of the
author and should not be interpretedasnecessarily representing the official
pol icies, ei ther expressed or implied, of the Advanced Research Projects Agency,
the National Aeronautics and Space Adwinistration, or the U.S. Government.

Reproduced in the USA. Available from the National Technical
- Information Service, Springfield, Virginia 22151. Price: full Size conu
$3.00; microfiche copy XO0.95.

Axiom and Theorems
for Integers, Lists and Finite Sets
in LCF.
by

Malcolm Neuwey

CONTENTS

1. Introduction

2. Theorems from NO Axioms and a
Propositional Logic

3. Individual Equality and Befinedness
4. Natural Numbers

5. Integers and Arithmetic

6. Lists and S-Expressions

7. Finite Sets

8. Conclusions,

9. References

18. Append i ces.

PAGE

12
16
18

24

-

r—

1. INTRODUCTION

By LCF, I mean the Milner version of a logic proposed by Dana Scott in
19639, mechanized by Milner in 1971, anddescribed by Milner in{1,2], [1] is
actually the user’s manual for the LCF proof-checker uhich has been the vehicle
for generating formal proofs in the logic.

Since the development of the proof-checker, LCF has been successful Iy
applied to various traditional problem areas of the Mathematical Theory of
Computation, The principal experiments have involved program semantics,
correctness of programs, termination of programs and compi jer correctness
[2,3,4].

In each of the examples reported a machine checked proof uwas generated
uhich increased the reliabi | ity of the solution enormously. However, each proof
al <o made a | arge number of assumptions in the forms of unproved theorems and
redundant axioms. Although it can be demonstrated that the particular
assumptions involved do not invalidate those experiments, it is clear that ths
proofs would be considerably more reliable if a solid axiomatic theory was
already avai iable to give all the required background results.

The three part i cu | ar areas of nathematicalknow | edge wh i charedeve l oped
in this paper, namely integer arithrmatic, list manipulation and a theory of
finite sets, are very important in computation, Moreover, in proving
assertions about programs, these thecries provide most of the mathemat ica |
material whichwuould be classified as background results.

The current project has been to develop a very large theorem bank wh i ch
uil |l act as an appropriate mathematicalenvironment for future applications of
LCF. So far over 388 theorems have bheen proved (with the aid of the LCF
proof-checker, of course) from the axioms given in this paper,

Although there is no distinction possible (in the LCF system) be tueen
axioms and definitions (both are declared as AXI(CMs), effort was made in the
axiomatisation to introduce new functions as terms of the logic, This strategy
makes it easier to demonstrate consistency for the sets of axioms presented.
Simi lar lu, in the presentation of AXIOMs a contrast is effected by label | ing
them either axioms {AX) or definitions (OEF}.

The large body of theorems, alluded to above, is organissd as a seguence
of appendices. Al | the theorems of any agpendix depend on the same group of
axioms or definitions and appear in an order which is appropriate for efficient
proof of the whole group (by making use of the theorem-usingfacili ty of LCF).
Note that the indentation of theorems is oniy to make the page layout a | i ttie
prettier.

2. THEOREI1S FROM NO AXIOMS AND A PROPOSITIONAL LOGIC

== —z=s=z==z ==== == s===z= T & ee~memememsesaa- a__—-:-

Appendix 1 gives a number of theorems that require no axioms (strictly -
no nonlogical axioms) for their proof in LCF. Al | can be proved in a few | ines
but it shortens and so helps to clarify later proofs if they are available.

The theorems
Yp.p-TT,FF=p
vp . p-Ud, Ud=UU
[Ax. LU =UU

are important as pernianen t members of the simpliiication set of the LCF proof
checker. It is also worth mentioning that the block of results exempt if ied by

p-TT,UUsFF | TT=FF

are designed to make use of the proof by contradiction facility in LCF yhich
‘knows’ that TTsFF (and a few similar wffs) is a contradiction.

A function from and to the domain of truth values which represents the
logical NOT operation is readily defined in LCF as

wxDEF 2.1 - = [Ax.x-FF, TT]

Appendix 2shows that i t behaves according to the truth table

X ‘ —=X
_____ o ——
|
TT | FF
\

FE | TT
uu | uu

Unfortunately there is no such definition possible to give a suitab |e
mean ing to the logical AND or the logical OR operators, The truth table we ould
| ike for OR, say, is given as-

ro

We therefore axiomatize the relation as below and note that each axiom
is trivially faithful to the above truth table. Moreover the theorems of
Appendix 2 show the whole truth table is derivable,

KkAX 2.2 VP, PyTT=TT
KkAX 2.3 VYP. PuiF=P
*IxAX 2.4 VP. PvUU= (P-TT, UU)

An appropr i ate definition for logical AND is nou possible {seebelow)
in terms of the OR operation. We also give an explicit definition of
eyuivalence. The results of appendix 2 give the truth tables for these
operators shown belou.

%3 DEF 2.5 s Dx y.={(=x)vi=y))]
%xDEF 2. 6 = 2 [Mx y,xay, (yFF, 1T})
Y y
xny | TT FF WU x=y | TT FF W
______ e —————— e e ————
| I
T | 1T FF W T | 17 FF WU
| |
x FF | FF FF FF x FF | FF 7T WU
| |
uu | uu FF uu uu | uu uu uu

3. INDIVIDUALECUAL ITY AN5 DEF I NECNESS

== TSTESEEZESRESS SSEZSESSE OEFEEFR O SEEmZEsESZ==E==

In the domain of individuals of the logic, meuwant (very often in
practice) to utter sentences which contain terms such as *x is the same as y’.
For example we could require a function

f = [\ (is-the-same-as(x,a)-b,g(x}}]
or wemightuant a sentence such as

~{is-the-same-as{x,yl):: g¢lx,yl=hix,y)

The Y connective of LCF is the most obvious candidate but it cannot be
represented by an LCF term since it is not monotonic. What we want is a two

“

p | ace predicate *=” which

i) is undefined exactly when one (or both)
of i ts arguments is undefined,
and otherui se
ii) has the value TT ifandon |y if the two
arguments are the same element (not UU}.

Such a predicate, obviously monotonic, is possible with appropriate domains of
individuals (s e e below hut aswiththse logical operators AND and OR, this
‘caomputable equal i ty cannot be defined butnust be axiomatised. The fol lowing
capture the desired predicate:

ateAX 3.1 V X. ((x=><)—»><,UU)E><

*xkxAX 3.2 vV X . (x=g):: XEY

soeAX 3.3 VX y. (x=x)=({y=y)»TT, 00}, UU= (x=y) »TT,TT
sxAX 3.4 {(UU=UU) =LU

First note that this equality predicate for the dorain of individuals
and the logical equivalence predicate defined in the last section are of
different types (in the technical sense) and are only given the same name
because of shortage of symbols, Asuith the symbol UU (which denotes an
individual, a truth value and an infinite number O f functions of different
types) the particular predicate intended by = can be determined by context.

The role that the first three axions play is quite straightforuard: -
3.1 says that the *="relztionis reflexive on al | individuals
except Ul tsaysnotningabout UU=UU;
says that the relation is cniy true in the reflexive case;
interpreted in the | ight of S.4. this axiom Gives us that
if neither x,y are LU then x=y is either TT or FF;, It
also gives that if x=yi s TT or FF then neither x or y is
the undefined element.

3.2
3.3

The axiom 3.4 is not really necessary in that if there is any clement
in the domain of individuals {distinguishable from UU) then 3.4 fo llous from
3.1-3.3 . For, supposing X to be distinguishable fronUU , X=UU is a
contradict ion andsowe argue by cases on UU=UU: 1f UU=UU=sTT then X=UU=TT by
monotonicity and XsUU by axiom 3.2 ;1fUU=UU=FF then X=X=FF by monotonici ty
and Xs=UU by axiom 3.1 ; Since the TT and FF cases lead to contradictions we
have UU=UU=UU,

Although we are indeed only interested in nontrivial domains we want to
be able to prove a body of useful theorems about equality without mentioning
any particular elements, 3.4 is needed to prove several of the theorems of
appendix 3 and this forces us to add it. For example, the theorem

vx. X=UU= uu
can not fol low from the first three axicas since in the trivial domain of just

UU, ue can have UU=UU=TT and the ax i omz are sat i sf i ed.

X=Y can always be deduced frcmA=Y=TT as prescribed by the axioms, but
we a | so eas i | y get theorems for go i ng theotiieruay

X=Y, X=X=TT b K=¥=TT
X=Y, Y=Y=TT | X=v¥=TT
and 2 versions of the commutativeiau for ="
YX Y. X=Y = Y=X
X=Y=TV |} Y=X=TV

The fact that every element except UU is equal (=) to itself, gives us
the definedness predicate for individuals by definition,

ax0EF 3. 5 a = [Ax. x=x]
uheredwil Il he TT on allindivicdual sexcept UU and JUU wil | be UU.
Appendix 3alsogives useful thzorens about t h e dpredicate. Note

especially the fo I louingtheoreme wuhichare extreme | yimportant whenarguing
by cases on the definedness of someindividual:-

d(X)=FF } TT=FF d{K) =UU } X=UU ,

It was inferred above, that the axicms for *=* dictate some structure
for the domain of individuals. This structure is sinply flatness or
discreteness {(uhich means that for anyeiement X, if YeX then Y is either UU or
X itself). The fol louwingtheorers show that this is so and it is asserted that
flatness isn’'t a high price to payfor thenot ions of equal i ty and definedness.
in fact, Scott, in his original proposal suggested that this was a reasonab | e
assunipt ion.

X=Y=FF, X<V b TT=FF
3(X) =TT, Xe¥ b X=Y

5

4. NATURAL NUMBERS

The natural numbers can be axiomatized by the follouwing four axiems and
four def ini t ions:

*xx0EF 4.1 Z = [Dix. x=8]

Wk AX 6.2 218 =77

wxk0EF 4.3 isnat = [oF.[Dx. Zix) =TT, F{predix))]i
wAX G, 4 VX.isnat(X)::Z{X)-0, succipred(X)) =X
Tk AX 4.5 ¥X.isnat(X)::Z(succX))= FF

wAX 4.6 VX. isnat(X)::predl{succi{X))= X

skDEF 4.7 1 = succ(B)

vxDEF 4.8 2 = succll)

N 4

where the axiomatised quantities are the individual 8", the function suCC
and the f unc t i on ‘pred’ .

A glance at appendix 4 shous that many ususal properties of the natura |
numbers are provable. In particular, the following ones:-

i snat (8)= TT

isnat(X)=TT } Z(succix})=FF

i snat (X)=TT F isnat(succix))=TT

isnat(X) =TT, isnat{Y)}=TT, succ(X)=succlY) F X=Y

g(@)=TT, Vx, isnat(x)::ig(x):iiglsucc(x))=TT F Vx. isnat(x)::g(x)=TT

which approximate PEANO Axioms for natural numbers, | use the word
‘approximate’ since the free variable *g” in the induction theorem can only be
instantiated to a continuous function. However , because domain of individuals
we use is discrete, if F is any function on just the natural numbers, it can be
extended to a continuous function by definingF{UJ) to be UU. Hence theorems
which fol lou from the Peano postulates in usual logicsuil | be valid (perhaps
withrelativisation) in this LCF environment,

See al so appendix 5 where a proof of the induct ion theorem i s given as
an exanip | e of a technique of using Scott induction to prove relativised

assert ions. It should also be noted that this induction thesorem can be applied
to prove assertions of the form

Vx. i snat {x}:: h{x)=k(x)
by instantiating g with the term {Ax.h{x}=k{x)] and proving
h(B) =k (B) =TT, Vx. isnati{x):: hix)=k{x):: h{succ{x))=k{succ(x})=TT
Note that this doesn’t mean that the following sentence is a theorem:
h(B)=k(8), Vx.isnat{x)::h{x)=k{x)::h{succ(x))=k(succ(x))
F o ¥x. isnat{x)::h{x)=k{x)

for consider the functions h = {Ax,UU] and k = [D\x.Z{x)-UU,8],
B

— 7

r— -

%

Similarly, the instantiation ge[>x. h{x)=FF,TT] means that the theorem can be
applied to attack goals of the form

V¥x, ienatix):: hix}sFF

We would now like to argue (informally) that there are no non-standard
models satisfying the ax ioms. lle already have that succ”{B) behaves as the
integer n so we need only prove that the set {succ"(B)} exhausts the set of
things for which “isnat” is true.

Reasoning outside LCF we can say

pred {x)=y, i snat {y) =TT, isnat (x)=TT} x=succly) is provable:
Hence, for any integer n,

pred"(X)=8, isnat{X)}=TT | Xszsucch (8) is provable;

But we know from the recursive definition of isnat
if isnat{X)=TT then pred"(X}=8 for some n;
o) i snat (X} impl ies X=succ™ {8} for some n.

It is clear from the various preceding comments that the set of axioms
given is consistent and a faithful representation of the natural numbers, We
now cons i der redundancy i n the ax i oms and note

4.2 is terse and basic: Without it is is not possible to derive,
isnat(@)=TT or even that there exist any natural numbers;
4.4 may not be condensed to Yx. Z(x)-8,succ(predix}}=x a s

there may be elements in the domain of individuals on which
*pred is undefined and so (noting that suce (UU)=UU will be
derivable) we get a condradiction.
4.4 cannot be weakened to either of the sentences
Vx, succ{pred(x})ex 1 Vx. i snat (x)::succ(predix))ax
ii thout making a commitment to the existence of an element
given by pred(8). If the axioms are to be used as a base for
the integers this is OK but if the only numbers are to be the
na tura | numbers then we wou | dwant pred (8)=UJ to be true,
4,5 is needed to get the distinctness of suce™(3) and succh(8);
Without the axiom at all, it is not possible to show that 8
and 1 are not the same element. MWith only Z(1}sFF in its
place, it cannot even be reasoned that 0 and succ{succ{(B))
are distinct;
4.8 is a basic property which cannot be derived from the other
axioms.

It should be noted that the functions ‘“succ” and ‘pred’ are only
partially specified in the natural number axioms since we want them to be
defined appropriately when we axiomatize the set of integers (both positive and
negative).

Care has been taken in assembling the appendix of theorems to exh i bi t

the role that equality plays in the axiomatisation, The first group of
theorems depends only on axioms 4.2 to 4.8 which do not mention equality or
def i nedness. The later theorems require the equality axioms and 4.1 as well

for their demonstration.

5. INTEGERS AND ARITHMETIC

JekdkAX 5. 1 V¥x. isnati{x)s:: posix)=Z{x)-FF,TT
sAX 5.2 VX, posix)itisnatuags |l
JxAX 5.3 ¥x. posimns{x)) = pos{x)-FF,Z{x)-FF,TT
wkAX 5,4 V X, pos{x})=TT,TT =igint (x)=TT, LU
swAX 5.5 Vx. isint (x)-nns{mns{x)},nns{x)=isint (x)-x,UU
wnAX 5.6 VX. suce{x)zmns (predinns (x))
FkAX 5.7 VX. pred (x)=mns(stucc(mns(x})}”
KnAX 5.8 [DAx. isint{x)=TT,TT] = d
The interpretation intended here is that a positive integer *n” , say,
is represented b ysucc" (@) and that a negative integer “-n’, say, is

represented by pred™(8).0bvi ous i y‘wns” is the unary minus operator and ‘pos”
i s the greater-than-zero predicate. Appendix six gives a large cot lection of
basic, but useful, theorems provable from the axioms of sections 3,4,5. Note
that the functions “isnat”, *pos”, *nns”, *succ” and ‘pred’ are all undefined
where ‘i sint’ i sn’t true.

Just about al I that wi | | be claimed about the above axioms for integers
in LCF is that they are consistent {since each is true in the standard
intepretation of the integers) and the usual theorems can be proved using then;,
Because they are just a bunch of suitable properties which together do the job,
no individual deserves comment.

It isreadily demonstrated that {succ"(@)}U{pred™(@) ¥} is the
same set as{x|isint{x}=TT}as fo | lous:
Suppose isint (X)=TT;
From AX5.4 we get that pos(X) must be TT or FF:
If pos (X)=TT then isnat(X)=TT and so X=zsucc"(B) for some n>B8:
I f pos (X)=FF then isnatimns (Xi}=TT and so nins (X}=ssucc"(B) for
some n2@ giving Xsmns(succ™(B)}:
But (Ax.mns(succ(x)) =[x, pred (rins(x))] so ueget Xspred"(8);
Hence isint {(X)=TTimplies X=zsucc™ () v Xzpred® (B) for some n>08.

Also we see that isint (succ™(8))=TT +for al im28 from the theorem
isint{X)=TT F isintisucciX))=TT
and isint (pred™(8))=TT for al | w23 {fromthe correspond i ng theorem

isint(X)=TT F isintipred(X)i=sTT

Al though none of the theorems of appendix 6 are deep, one can see hou
many important simple relations there are between the objects axiomatised in
this section.

The main induction theoren for integers is simply stated thus:-
g(B) =TT, ¥x. isint{x)siglsuccix)i=gix) F VYx.isint{x):ig(x)=TT

To prevent confusion arising frontanz sinilaritybetueen this theorem and
the induction principle for natural numiere, note the fol louwing NON-theorem: -

g(B)=TT, Vx. isintOdigixdesgisucc(x)) =TT b ¥xoisint{x)ig(x)=TT

8

—

—

———

The discussion of the correspending induction principle for natural
numbers introduced a technique which is appropriate, in this section alsq, ,for
attacking goals of the form V¥x.hix)=k{x) using such a rule. That uastc
instantiate the “g” of the theorem with the term [Dx.h{x)=k(x)]. Practice
shows, however, that it is economical to restate the theorem so as to
incorporate the idea :-

h(B)=k (8},
Vx.isint{x)::3{h{x}}=TT,
VX. isint{x)::dk{x])=TT, -~

Vx.oisint(x)e: (hix)=ki{x))::h{succ (x)) =k (succ(x)),
Vx. isint(x)ss (hix)=k{x)}::h{predix))=k{predix)},
Foowx isint(x):: hix)sk(x);

Although this is considerably more cunbersome, each notion expressed by the
antecedents must be proved any either case and so the economy lies in not
having to prove by nested cases arguments

Vx. isint{x)s: (hix)=k (x})=(h{succ{x))=k{succix)})

With the integers axiomatised satisfactorily, we proceed to definition
of the basic arithmetic functions and predicates: -

Functions:

laG. [Ax y. Z{y)~isint (x}-x,UU,
pos {y)-G (succ (xJ, pred (y)), G (pred(x),succly))]
[Ax y.x+mns {y)]

w%xDEF 5.9 +

wxDEF 5.18 -

mwowm

*+DEF 6.11 % = [ab. Doy, Z{y)sisint (x)=8,UU,
pos{y) a6 (x,prediy)l+x, G{x,succiyl))-x]]

wxDEF 5,12 /= [aG. [Xx y. Z{y)sUU, Z(x)s(isint (y)-8,UU),

pos (x)-pos{yl~ pos(y-x)-3,succ (G (xy, y)),

mns (G lx,mns{y))), mns(Gimns(x), y)il]

%xDEF 5,13 @ = [Dxy.ox=-({x/ylwy) 3
wwDEF 6,14 Fac = [aG. [Dx. z (x) =1, pos (x) +xxG (x=1),UU1)
wxDEF 5.15 Look = [aG. [Ax f ju. p) =x,Gif(x), f,p)]]

Predicates:

#:DEF 5,186 > = [Ax y. posix-y) 3

wxlcF 5,17 2 = [Axy, Z (x-y)=TT, pos Ix-y) |

%%DEF 5,18 < = [Dx yo y>x]

swxDEF 5.19 < = [Ax y. yzx]

#%0EF 5.28 even = [Xx, z {xe2} |

wxDEF 5,21 odd =[x, z(xe2)-FF,TT]

s DEF 6,22 bug = [uG. Dix y p. oyl =TT, p(x) =G (x+1,y,p) ,FFI]
»%0EF 5,23 beq = [aG. [Ax y P (x>0) 5FF 5 (x)»TT,Gix+1, 4, p) 1)

#x0EF 5.24 Pr= [Ax. [Ay.{y>1)-bugiZ, y-1, Dz (yez) =8-FF, TT]),
FFl {x28 -x,mns ix) }]

3

Most of these definitions are self explanatory and the others become
obvious with a few points of explanation:-

i) Y/’ i s integer division, of course, and ‘¢’ is the “mod”
operator which gives remainder on division, These are
defined in the norma | manner for posit ive integers and
are extended (to operations involving negative integers)

« in such a way that thesign of x/y is a | ways appropriate
algebraically and the signof xay is the same as the
sign of x. This choice enables the reconstruction of a
number from it squo tientand remai nder iwi th respect to
a given divisor }.

L ii) YFac” is the factorial function and is only defined for
non-negative integer arguments.

iii) Look(x, f,p) yields the first integer y (if any) in the

sequence {x, fx, ffx, fffx,} which satisfies the
predicate p (provided no previous member of the sequence
. caused p to yield UU}.

iv) ‘bug’ stands for Bounded Universal Quantifer and ‘“beg”

denotes Bounded Existential Quanti f ier and are meant to

~ take the place of regular quantifiers in numeric proofs.
The importance of bug comes from the pair of theorems:

ip(2)=TT

pug (X, Y,p)sTT } Vz.zzXisY2ziip(z)=
X, Y, p)eTT

22
Vz.z2XesY2zeip(2) =TT b bugl
A similar result for “beq” is expressable as the meta-
theorem that (Provided p is total on the range <X,Y>)
< beq(X,Y,p)=TT IFF 3 integer in <X,Y> that satisfies p.

- The totality proviso in thisresultisessential, forif
p (n)=UU and p {(n+1)=TT then beq(n, ntl, p)=UU even though
there does exist an integer in the range which satisfies
the given predicate.

Although the predicate which gives TT exactly uhen there

is an appropriate element in the range is definable as
[eG. [Ax y puxoy=TT, b (x)VG (x+1,y,p) 1],

DEF 5.23 is preferred because of the useful relationship

between that version of beq and the Look function.

Prix) is TT if either x ormns{x)i s a naturalnumber
which is prime in the usua! sense (not 1). Pr is a total
predicate over the integers.

vi) Note that all the functions and predicates take at least
one argument which is of tupe i ndi vi dua I, Al | these
functions (except Lookltecomne undefined uhen appl ied to
individuals which are not integers.

13

-

r'—"—'ﬂ

Appendix 7 contains a rather large collection of results that follow
from the results on integers and thedetinitionslisted above. There are basic

theorems about &ll of the functionsang predicates except <ands, If &
problem contains these predicates thentre definitions 5.18 and 5.19 shauld be
app | i ed to transf orm the goals to ones containing>and2,

We have already introduced 2 mathematical induction theorems which
require, for their applicat ion, steps of the forms: -

gix} F glsuceix)) gix) F glpred{x})
Such statements are often as inconvenient to prepare as the resul t we wish to
establish. A ctu a lly, we want io mode!, in LCF, that form of mathematical
induction given {in predicate calculus) by:-
¥x. vy, lysx A Y23l 2 ply)) o plx) } > [¥x. x28 > p(X)]

The obvious problem about what to do wiith this in LCF, is what to do uith the
nested quantifiers. Fortunately, the nested quantifier is bounded and so we get
the LCF version of the theorem as:-

vX. x20:0 buq(8,x-1,P)::P(x)=TT | V x . x2B:: P(x}=TT

Actual ly a more primitive form of the theorem was needed to prove certain
resul ts about division uhichpreceded the work on re | at i ons and “bug”,

Two more functions whichuil lbesinilar ly treated are the sum and
product of a finite sequence - the bigSIGHHA and big Pl notation of analysis.

#xDEF 5,2 Sum = [oG. [Ax y f. y<x = B, f{x)+6(x+1,y,)11
%«%x0DEF 5.286 Prod = [aG. [dx y foy<x =2 1, f (x)xG(x+l,y, £)1]

il

6. LISTSand S-EXPRESS IONS

mEE S=ES SESTRSESS=ZES

Sincelists are a specia | case ofS-expressions, We proceed with an
axiomatisation of the more general object.

Yeses AX i ssexp{UUl= UU

wnAX B, issexp(NILY= TT

«~DEF B. nul | =[x, x=NIL]

wxDEF B, atom =[Ax. issexp(x}=nullix}, TTI
sk AX B, ¥X. atom (X} : : head (X} =UU

Yot AX V X. atom(X):: tai | {(X)=UU

¥YX Y. head{cons(X,Y)}}=3(Y)=X,UU
VX Y. tai | {cons{X,Y))=c{)-Y,UU
¥X. cons (head (). tail (X)i=atom(X)-UU, X

-

[e2RepNep Rep e Nop Mo Nod WepNopl
=000 0 U BT

.18 d = [ubG. [Ax. atomix)-TT,G(head{x))-G(ta |{x)),UUI]

Note first that AX 5.1 is valid for a!ldomains wh i ch trave def i ned
individuals other than S-express ions - the most common circumstance. In
si tuat ions where all individuais are S-expressions it uould be consistent to
say that issexp (UU)=TT but it would he unlikely to give any advantage over
postulating issexp (UU)=UU. Hence, fcr the sake of proving some handy theorems

about S-express i ons {wh i ch must be true whenever NIL is not the only atom) e
assert 6.1 instead of leaving issexp{Ul) unspecified.

The purpose of axiom £.18 is to eliminate { from models) any
structures which are infinite. This aisomeans that circularity (uhich is
possible in LISP, for example) is ruled out, As an i llustration of the
implications of this axiom, a theoremis proved in appendix 8 which g i ves that
if head(X)=X then XsUU, A norecomnslete result about circularity is discussed
below using the notion of subexpression.

There is one other debztab | e point about these ax i oms. | ti s that we
have, as you may have anticipated frcm the earlier discussion o f equality
between individuals, adopted. the doctrine of discreteness for the domain of
S-exyressi ons. The opposing point of vieu is that a term such as cons{UU,X)
(uhich clearly must be ‘under hoth the terms cons(A,X) and cors(B,X) for arty
individual s A&B)i s not the same as UUand, moreover, tai | (cons (U, X})=X. Ae
far as the relative pouers of the cnpesing systems are concerned, it seems that
most theorems are identical, but there are a some notions expressab |l e n0re
simpty in one system than the otner. Thebig argument in favor of the above
set of axioms is that with discreteress c3nes the notion of equal ityas
expounded earlier. The only tricky partabout amend i ng the above ax i oms to
al low for the case where cons{UU,X)=UU is the problem of excluding the infinite
S-express i ons.

Append i x 8 con tainstheorensaboutthe functions issexp, head, tai l,
cons, atom and null. We mwmention here only an induction theorem for
S-express i ons: -

V Xy, g(x):: g(y):: glconsix,u))=TT,
Voxyoatom(x)::ghdaTTh Ve, 3(x):: glx)aTT

Fol lowing LISP, a list is a special case of an S-expression, namely one
which transforms to NIL after some number of applications of the tai | operator.
As such, lists are easily defined.

w&DEF 6.11 islist = [&G.[x. nul | (x}-T7,atom{x)-FF,G{tail{x}}1]

As usual, a number of theorems form an append i x {3} but we give an
induction theorem locally.

Yxy.dx)irislistlylis g (y):: alconsix,y))=TT,
g(NIL) =TT F vx. islist(x)es g(x)eTT

A number of usual crerations on!ists and S-expressions are given with
some others that foreshadcuw the treatment of sets in the next section of this
report.

%xDEF 6,12 rev = [AX.revz(X,NIL)I

#xDEF 6.13 rev2 = [«G. Axy. nul | {x)-y,G{tail{x),cons(head(x),y))]]
%%0EF B.14 & = [&G.[Axy. nul | (x}~y,cons{head(x),G(tail{x),y))]]
wxDEF 6,15 ANDmap= [xG. [Ax p. i sli st (x)=

(nul 1 {x)=TT,plread(x})-G(tail (x),p) ,FF},UU1]
[, Ax po i s istix}=
(nul 1 (x)-FF,p(head(x))-TT,G(tail{x),p}),UU1]
swx0EF 6. 17 FNmap s [ofG. [Ax f.
{nul 1 (x)=NIL,cons(f(head(x)).G{tail{x),f)})]]
.18 FRUNE = [oG. D ponul | {x)=NIL, plhead{x))-G{tail (x),p),
consihead(x),G{tail{x),p))]]

wxDEF 6. 16 ORmap

%%DEF

6
wxDEF 6.13 mem = [Ax y. 3(x)-0Rmap(y, Dz.x=21), UU]
v%0EF B8.28 wmemL = [y, islistiy)-ANDnapix,Az.mem{z,yl)l), U]
sxDEF 6.21 memEQ = [Ax y. menmb (x,y)=meul {y,x}, FFI
99 DEF 8.22 memS = [Axy. PRUNE ix, [hz.y=z1]}]
wxDEF 6.23 memSL = [Axy.PRUNE ix, [Az,memi{z,yl)) |
6

.24 subexps (oG, D y. (x=y)~TT, atom(y)-FF,G(x, head (y})-TT,
) Gix, tai 1 (y})]]
w&DEF 6.25 assoc s{«b. Dxy.dix)>islist{yl> nul 1 {y}-NIL,

x=head (head(y))-hezd(y),G Ix, tai I{y}), Uy, UUI1
wxDEF 6. 26 forl = [aG. [NL f FNIL. nul 1 (L)=fNIL,

f (head (L),G{tait (L), £, fNIL} 1]

%xDEF 6.27 nodes = [¢G. [MX.atom (X} =B, succ(Glhead (X)}+G{tail (X))})]]
#xDEF 8.28 lengthr [aG. (AX.nul 1 (X)-8,succ{G(tail(X)))]]

s DEF

13

r

-

r r— r

The function ‘rev’ is the function which produces a | ist which is the
reverse of the argument list and is defined in the traditional way {using an
auxi | iary function “rev2’).%’, the appendfunctionis de fined asthe fixpoint
of the appropriate computation. It is proved (see appendix 18) that &’ could
have been defined by :

& = Dixy. rev2 (rev (x),yll.

Various basic properties of these tuoimportant funciions are to be found jp
appendix 18. Note that the second argument of &’ need not be a | ist for the
function to be defined. However, the following result is readily proved (and
a simi lar remark applies to ‘rev2’) :

VX.islist(X):: islist{X&Y)=islist (Y}

The predicate ANDmap i s used to describe situations in which al | the
elements of a list satisfy some predicate. The computat ion i s per formed by
applying the predicate to each listelement in turn unti | the end of the | ist
icsreached (and the resul tis TT) or unt i | an element is encountered which coes
not sat’'isfy the predicate. This method of computation means that, for example,
ANDmap (X, p) may be undefinedbecause ply)=Ul for some Object y. Because O f
this fact, many of the basic theorems about ANDmnap are based on the assumpti on
that the predicate is total. The predicate ORmap is the disjunctive analogue of
ANDmap. The motivation for developing these predicates was to aid in the
development of scme of the later |ist operations. There are many t heorens
proved (see appendix 18) which describe the the interaction between these two
maps and ‘rev’ (or &),

FNmap is simply a function on lists uwhich applies a function to each
member of the argument | istt PRUNEisafunction, also just defined for lists,
which removes from the arutent list those eleiients which satisfy some
predicate. As examples, FNmap(X,{hy.y%x2l) would double every element of a
{numeric)list X and PRUNE (Y,[Ax.x<8]) woul d remove every negative el ement
from a (numeric) list Y.

The group of operations 6.15 tc&.23 are concerned ui th nembershipin
lists and are crucial to the theory of sets given in the next sectian.
mem(x,L)wil | be true whenever x- is one of the elements of | i st L,] t is shown
in the theorems that the following is an alternate definition of “mem”:-

mem = [&xG. [Ax y. islist{yls null {y)- 3{x)-FF,UU
{x=head (Y))1-TT,G(x, taiitly)), UUll.

memL (X,Y) il | be TT whenever ALL the eiements of | ist X are members of | ist Y
also, The fol lowing is an alternate definition for “meml”:-

memL = [xG. [Ax y, islist{u)- islist(x)-
nul 1| {x)>TT,mem(head (x),yl=-G{tai | {x},y},FF, U, LUIT.

menEQ(X,Y) simply indicates uhether tuo! ists, X and Y, have the same e 1 ements
(independent of the order or muftiplicity of those elements). memS{L,X) deletes
al | elements of | ist L which are occurrences of the object X whi [ememSL (L,M)

14

cdeletes al | elements of list L which &re also elements of list tl.

The function ‘subexp” is principally used to indicate the imbedding of
one S-express i on i n another . subexp(Z.Y) is TT exact | yuhensone sequence
(possibly nul 1) of head and tai loperations take object Y into object X. Thus
i fY is an S-expression then subexp(X,Y) indicates that X is imbedded in Y
(at least once) but if Y is an atom then subexp(X,Y) indicates that X is the
same atom. We are now able, usingthisnswnotion, to prove in LCF the non-
existence of certain infinite S-expressions. ~

subexp (X,Y):: subexp{Y,X):: XsY

The infinite lists forbidden by this thecrem are the ones which in LISP could
be represented using circularity.

The function ‘assoc’ is purelyl!SP-inspired and could be useful uhere
some association technique is appropriateto a proof. An al ternateway of
defining ‘assoc’ would be as:-

assoc = [Axy. lookl {y,{A\z. head (z)=x])]
Hhere
lookL = [abG. [XL p.isl ist{L)=nul I {L}-NIL,
p (head{L))-head(L},G(tai | (L),p), UUI]
is, ingeneral, a more useful function. However, such a function which looked

for the first element of a list 1o satisfy a given predicate could be more
suitably defined since with this definition lookL{X,p)=NIL could mean EITHER
p(NILY=TT and NIL is a member of X OR that no element of X satisfied P.

The function “orl’ is a devicefor simplifying definitions of other
functions which take alist as their onlyargumen t and uhi ch compute from the
tai | of the list to the head. As an examplie, the sum of the elements of =z
numeric | ist X is given by forlL(X.+,8)uhi le the product is given by
forL (X,%,1). One could also give slightly more compact ciefini tions of ‘PRUNE’
and “FNmap” (and predicates whichare similar to “ANDmap” and “0Rmap”) using
Morl”.

The funct ion ‘nodes’ counts the subexpressions of an S-exprn. wh i ch are
not atomic or the number of nodes in a tree representation of the S-exprn.
‘length’ is simply the number of elements inaiist and cou | d have been deaf i ned
(to further i | lustrate *forL’):-

length = [Ax. forl{x, My z.2+11,8}1.
These last two functions (which are the only ones to refer to the notions
developed for arithmetic |} are nct expounded in the appendix but the usual

properties clearly fol low from the definitions and the arithmetic environment
already constructed and described.

15

7. FINITE SETS

Sets turn out to be quite hard to categorise in LCF, even finite ones.
The difficulty arises from the lack of existential quantifiers or the lack of
nested quantification, depending how you fook at it, The problem occurs even &s
soon as you try to define the empty set and give its properties. We can easi Iy
express that nothing is in this set {callii NS} by the wff Vx.d{x):: xcNS=FF
but when we come to say that the nul | set is the ONLY set in crhich there is
nothing, we find no simple way to express the sentence

¥x.x¢AsFF F A=NS as a well-formed formula of LCF.
Recal | that the form of an axiom in LCF is a WFF - not a sentence.

The solutions we discovered to the above problem al | involved
axiomatising a choice function for sets which would pick some element from any
set it was applied to. However, using this notion, several developmentsof the
theory are possible. Because of the enormous economy involved, ue have based
our set theory on transformations between sets and lists. The choice function
involved is the taking of the head of the list that a given set maps into (see
the function ‘select’ defined below).

The transformation functions are “listof’ and ‘setof’ and are
axiomatised as fol lows; note that finiteness is automatic since | sts were
axiomatised to be finite.

SaekkAX T L1 [Ax. i sset (x)=TT, TTI =3
Sk AX 7 .2 VX, isset{setof(x))={islist(x)-TT,UU)
KhekAX 7 . 3 Vx,islist(listof{x))=(isset{x)-TT,UU)
SekAX 7. 4 Vx,setof{listof(x))=(isset(x}ax,UU)
JxkAX 7. 5 V x y. menEQix, y) =setof(x) =setof (y)

Note that these axioms do not imply that sets are disjoint from | ists,
S-express i ons or any other data type that may be part of individuais. In fact
it is not inconceivable to identify sets uith the lists to uhich they map by
Mistof'. However, all that is needed to ensure disjointness is an axiom like

vx. isset(x)t: issexpi{x)=zFF

With these notions, we easily DEFIME all the usual operations on sets
in terms of the list membership functions and predicates defined in the last
sect ion. We start with some basic ones: -

%%0DEF 7.6 NS =setof (NIL)

%xDEF 7. 7 ¢ =[xy memix, | istof (y))]

%x0EF 7. 8 subset s{Axy. mem. (i stof (x}, | i stof (y))]
2»xDEF 7. 3 U = [Ax y.setofllistof(x)&listof(u))]

»*xDEF 7. 108 \' 3 D y.setof{memSL(listofi{x),listof(y)))]
*xDEF 7. 11 N2 [Dixy. setofimenSLUL stof (x),! i stof (x\y)) 1
»x0EF 7.12 select = [Ax, head(listof(x})]

%%xDEF 7.13 singtn = {Ax. setof{cons(x,NIL})]

-

ib

With regard to these definitions, it will suffice to note ¢~

i) NS is to be taken to be the nul I {or empty) set;

ii) ¢’ is the set membership predicate;

iii) XUY denotes the union of the sets X and Y;

iv}XnY denotes the intersect ion of the sets X and Y;

v) *\’ is the set subtraction operation;

vi) ‘“salect” is the choice function for picking elements

from non-empty sets;
vi i)singtn{X) denotes the set with% “as it’s only element.

The definitions just given aethe basit set operations for which
theorems have been proved in LCF (for this project). Appendix twelve contains
theorems relevent to these operations.

There are many theorems di splayed in appendix 12 but consider how
similar the fol lowing short collection of provable results is to the usual
predicate calculus axioms for set theory. In fact, it is possible to prove all
the other results of appendix 12{ except those that mention the functions
‘| istof’ or ‘setof”) just from these theorems. Can, therefore, these sentences
be taken as an alternate basis for a set theory in LCF? No! Two of these

theorems have universal quantifiers in the assumptions and as noted earlier,
only sentences wi th no assumptions are admi ssable as axioms, Note another
disadvantage: none of the set operations are introduced by explicit

definition.

[Xx. isset(x)-TT,TT1=3

VX Y. XeY>TT,TT= 3(X)={isset{Y)-TT,UU) ,UU

isset (=TT, VW . UcX=WcYE X =Y

alX) = TT F XcNS= FF

VX Y. subset{X,Y)-TT,TT=.isset(X)={isset(Y)-TT,UU),UU

i sset (X) =TT, isset (Y)=TT, VW. WeX: : WeY=TT F subset(X,Y)=TT
subset {(X,Y)=TT } VW. WeX:: WeY=TT

VW x Y.We(XuY)= (UeX)» isset (Y)-TT,UU, (UeY)TT,FF

VW x Y. He (X\Y)= (WeX)- (WeY)sFF,TT, isset(Y)-FF,UU

VW x Y.He{XnY) = (WeX)= (WeY)»TT,FF, isset (Y)-FF,UU

VW X. Wesingtn(X)= dll)-(isset{X}-(H=X),UU),UU

There are some other very important set operations which have been
defined appropriately (see below b u t (mainly because of lack of time) no
rigorous deve | opment of their proper t i es has been done.

wxDEF 7.14 forS= [aG. [AS f NS, (x=NS}-fNS, f (se | ect (x),
Gix\singtniselect(x)), f, fNS)) 1]

%xDEF 7,15 Un =Dl forSix, Dy z.4Uz] ,NS)]

%x0EF 7.16 In = D, forSix, Dy z.ynzl ,x)]

xxDEF 7,17 reducez [Ax p. forS(x, Ay z. ply)=singtn{yluz,z] ,NS)]
»xDEF 7,18 seq =[{xxp. (reduce {(x,p)=NS)-FF,TT]

%xDEF 7,19 sug ={Ax p. reduce (x,p)=x]

»xDEF 7.208 PS = [«G. [Ax. forS(x,[A\y z.G(x\yluzl,singtnix}}]1]
sxDEF 7.21 Cards [Mx. forSix, [Ny z.2+11,8)]

where, in words,
i) forS is just an important auxi {iary function;
i i) Un(X}) is the n-way union of all the sets that are in X;
iii)InX}is the n-way intersection of the elements of X;

iv) reduce (X,p) is used to denote the set which in normal
notation is written {z]zeX A plz)dg

v) *seqg” denotes Set Existential Quantifier &seqg{X,p)=TT
when there is a member of X which satifies predicate “p”
and “p” is defined on the rest of the set;

vi) ‘sugq” denotes Set Universal Quantifier and seq(X,p)=TT
iff predicate *p” is TT on ai | elements of set X;

vii) PS is the power set function;

i ix) Card is the cardinal ity function for sets.

18

8. CONCLUSIO

AXTOMATISATION TECHNIQUES.

In this work certain techniques were used in axiomatising various
mathematical not ions, To illustrate these we take an abstract examp | e:
"Axiomatise boops using the previously axiomatised notion of beeps !"

We start working with the assumption that there will be things in the
domain of individuals that are not boops , not beeps (which may overlap with
the set of boops}) and are not anything that is mentioned in the axioms that
the “boop axioms” wil |l depend on. Thisassump t i on means that many theorems
about boops will have to be relativised but it also guarantees that we will
be able combine such groups of axioms without fear of inconsistency.
Relativisation is only possible if there is a predicate ‘isboop’ which will
be true only on boops, We wi | | probably want

a = [, isboop (x)=-TT,7T]

to be true and if this is not provable from the other ‘boop axioms’ then
thought should be given to making it an axiom. In the preceding sections this
result was provable for issexp, isiist, introduced as an axiom for isint,isset
but not even true for isnat.

Then the various functions and predicates which are peculiar to boops
are axiomatised paying special cat-e to do so by means of explicit definitioris
wherever possible.

DISIOINTNESS OF DOMAINS

In the development of the environment so far, nothing has been said
about disjointness of lists and integers, say. Before the theories here
developed as modules can be used usefully as a unified whole, another axiom
must be supplied to insure that any appropriate disjointness is provable.

As an example of what is required in general, we give now an axiom
that guarantees the disjointness of integers, S-expressions, sets and beeps:-

- VX, isint{x)= i ssexp (x)-UU, isset(x}-UU, isbeepix)-UU,x
i ssexp (x)= i sset{x)-UU, isbeep(x)-UU,x
isset{x)» isbeep(x)-UU,x

i sheep (x)-x,UU X.

18

PROJECT STATISTICS.

The tota | | ine count for the proots of the 1888 (approx.) t hoorens
given in the append i cesstandsatabout 23,838 usingon |y those fea tures of
‘version 1° LCF {that is the proof checker that is decribed in the 1372
manua l[1l]. The to ta | cpu t i me used wzs about 53 hours and the human effort

involved uas about 8 man-nonths (@ 1 of which was spent at a
time-sharing-system console). The figures for man and computer effort should
be interpreted in | ight of the fact that much of the proving had to be

re-done because of a revision of the axions (After about 15,828 lines of
pr00f some improvements in the axioms were deemed essent i a | and so about &
man ueeks of effort vias expencled to al ter the proofs).

These statistics provide, | believe, a valuable benchmark against
ih i ch to measure the ef fect i veness of logics and aids for proof generation.
It is proposed in the near future to use at least some of these proofs to
gauge some proposed amendmen ts to the input language of the proof checker.

INCOMPLETENESS.

Inspection of the theorems concerning the concept of integer
Primeness immediately reveals that the the on&s given are only the trivial
proper t i es of *Pr’. It uas also noted in sections & and 7 that no properties
. are given for some of the qui teimportant operations that are defined on
| ists and sets. There are also, undoubiably, many poverful and useful
theorems for the other areas whichremain unstated. A | though this
incompleteness dictates that a user may in certain circumstances be obliged
to prove further results, ® Ljork on expanding the theorem base (for its owun
sake) has been stopped because the point of diminishing returns has been
reached, The future development of this mathematical environment uill be
accomplished by individuals enunciating theorems as required and supplying
the proofs.

Another important reason for on !y adding (proved) theorems as they
are needed is that a, new version of the LCF checker will appear { sooner or
later) and wi | | incorporate featuresuhichui | | make the task of generating a
proof more automatic and so much shorter. There is also the possinil i ty that
the typed logic will be replaced by ttie type free theory proposed by Scott
and so the uwhole treatment would have to be redone (aside: this would take
much less than the 8 man- months quoted here because the proof out | ines are
alldone and the proof checker would be better -3 months is an upper limit).

TO USE THE ENV] EONMENT.

Inevitably some readars uwilluant to make use of theorems from the
append i ces of t h i s report i r the Stanford Al project PDP18 system. The axioms
are located in a file cal led AX1A en [TH,MAL] and the theorems appear in a
form which LCF can read in the f i | e TERISon[TH,MAL. . Note that a large
proportion of theorems wi thoutassumpt ions are sui table for immediate
inclusioninthe SI UPSET (for examp | e VA.X+UU= UU } a | though some (such
as the various commutative rules)ti | | cause non-termination of the
simplification process. There are actually more theorems in this file than
will fit, withLCF, in the 98K of core currently available to jobs in the
PDP1B system at Stanford, so the user may have to prune a copy of THRMS to
meet hi s needs. There wil |l shortly beavailable a core image wi th a large
selection of the most important theoreins a | ready read in (and moved to binary
program space to reduce garbage col lectiontime).

THEOREM NAMES.

LCF requires a name for every theorem (arbitrary alphanumeric
identifier) but provides only one handie for access to a result - its name,
Experience immediately suggests to the user that mnemonics wi | | be an
important ingredient in the organization of the environment and this is so as
examples indicate: -

PUSE - pos{Bi=FF

PLUSUX - VX. UU+X=UU

TIMESBX - i sint (X)=TT | BuX=0
ELTXNS - 3 (X)@TT } XcNS=FF

However, for the many objects we have, mnemonic tags help only for a small
fraction of the cases. Most theorems are not results which have words already
associated with them (like associativityl and most have a good number of
tokens in the assumptions and conclusion (combined). The author relied on a
fairly complex system of mnemonic notions but names tended to be long and
absolutely unintel | igible to anyone else. What can one do about theorems such
as :-

isint(=TT F (W+X)2(H+Y) = Xz2Y
XeY=8, isint (=TT F (Xxld)eV=0
istist{X8Y)=TT F islist(Y)=TT
isset (X)=TT, V W . WeXsleY b XzY

to provide mnemonic significance without being so long that typing errors are
encouraged unduly? It is apparent that proof generation should be written
with more faci li ties to address theorems by their content and to have
appropriate goal-directed procedures to search for the right theorem to

apply.

21

’

-

ALGEBRAIC MANIPULATION.

Another situat ion where proof generat ion seemed unreasonablytedi ous
uas where an expression involvingoperatorsuhichhad special properties -
commutativity and associat ivi ty in particular. A good example of this sort
of painful proof ocurred in trying to girove the theorem

(X+Y}w (X=Y) {XeX) = (YY),

I gnore the prob | em of wha t happzns uhen Xor Y are e i t her undef i ned or simply
not integers and suppose isint{X)=TT,isint{Yj=7T, The steps in the proof
are: -

1) isint (XeX)=TT

2) {(X5X) +B=XxX

3} isint{YaX)=TT

4} (YeX) - {Y%X) 8)

5) VX Y Z.{X+Y)-ZeX+(Y-2)

8) V X Y‘_.(X+Y)'_’_ {4)tiY:Z)

7) VX Y Z,X- (‘r’+LJ..(/(Y)+

8) vX Y Z. X+ (Y42} = (X4Y) +Z

3) (XY) X) = COR4Y) Y) = TRaeX) = (YY) (BY 2.4,5:8)
18) VXY Z XxY-2)= (\(,'.Y) 'zf)

11) (X4Y) 2% (X=Y) = (XeeX) = (YN (BY 39,10)

FUTURE WORK

This research has given birth to a lot of suggestions about possible
improvements to LCF. Before this mathematical environment is expanded,
therefore, a new, more-automatic proof generator should be developed. When a
new one i s produced, the body of theorems should be reviewed and expanded.

The same sor t of experimentisplannedtog i ve the same sort of a

rigorous theory for a progranming language, A suitable language (such as
LISP, ALGOL) or a subset of a languagewi | | be taken and the semantics
axiomatisedusing LCF. Then.important theorems wil | be formulated and proved

as time and imagination permit.

ACKNOWLEDGEMENTS

This work was born out of Richard Weyhrauch”s experiments on program
correctness and credit is due Robin Mi Iner for getting the LCF project going.
| am extremely grateful for the conversations that | had with both of these
people throughout the work.

22

(’!

3. REFERENCES

1 - MILNER, R., "Logic for Computable Functions -Description of a
Machine Implementation", Arti ficial Intel | igence Memo #163,
Computer Science Dept., Stanford University, May 1972.

N
]

MILNER, R., “Implementation and Applications of Scott’'s Logic
for Computable Functions”, Proc. ACM Conference on Proving
Assert ions about Programs, New Mexico State University, Las
Cruces, New Mexico, Jan 6-7, 1972.

w
i

MILNER, R.& WEYHRAUCH, R., ‘Proving Compiler Correctness in a
Mechanised Logic", Machine Intel | igence 7, ed. D. Michie,
Edinburgh University Fress, 1372.

S
1

WEYHRAUCH, R., & MILNER, R., "ProgramSemant i cs and Correctness
in a Mechanised Logic”, Proc. USA-Japan Computer Conference
Tokyo, Oct 1972.

APPENDI X 1 - Theorems depending on NO axioms.

WEx====I== =B = ETSZTZS= ORBSESSSSSS OED OS2 EEaSRE=S

k [AX . UUl= uu

F VP. (P-TT.FF} = P
FOVYP L (P-UULLUY = LU
AcX, BeX F YP . (P-A,B) < X
PaTT, UU=TT F P =TT
P-TT, FF=TT 1t P=TT
P-FF, WsFF t P=TT
P-FF, TT=FF |- P =TT
P-UU, TT=FF t P =FF
P-FF, TT=TT } P =FF
P-UU, FFsFF t P =FF
P-TT,FF=FF } P =FF
P-TT, 77=UU F P = UU
P-FF, FF=UU F P = uu
P-TT.FF=UU F P =WU
PoFF, TT=UU F P = WU
P-FF,FF=TT } 17 = FF
PoFF, UU=TT } 1T = FF
P-UU, FF=TT F TT = FF
PaTT, TT=FF | T7 = FF
P-TT, UW=FF F TT7 = FF
P-UU, TT=FF |} TT = FF

PUY =TT F P =D . TT]
P =FF F P = D .FF]

=TT =

-UU =

-FF =
TIVIT = 77
TTlil = 77
TTVFF s 7T
UUvIT = 17
LUvUU = LU
UUVFF = WU
FEVTIT = 17
FFWUU = LU
FFVFF = FF
YP, TTWP =
VP, FFWP =
VP, PVIT =
YP. PvFF =
YP. UWP <
YP., PVUU ¢
TTAT 1T
TTAUU = UU
TTAFF = FF
UUATT = LY
Uualll = UU
UUAFF = FF
FFATT = FF
FFAUU = FF
FFAFF = FF
VP, TTAP =
YP., FFAP =
YP. PATT =
VP. PAFF =

YP, UUAP < FF

VP, PAUU ¢ FF
TT=TT = 17
T7=UU = WU
TT=FF = FF
UU=TT = WU
Uu=UU = Wy
UU=FF = WU
FF=TT = FF
FF=UU = UU
FFeFF = TT

APPEND I X2 - Theorems that fol loufrom the proposi tional axionms.

T SEE SS=ZSSIIRBEX/SS ESSoooSmn

ERTTSTREEE ESIS RESSISS

YP, UUsP » Ul
VP, P=UU u W

T T

P<0 = TTFP =

VP, =(=P) = P

PV = QWP

¥YP Q R. (PVQ)VR = Pv(QWR)
PAQ 2 QaP

YP Q0 R. (PAQ}AR s PA(QAR)
P=0 = Q=P

YP Q R. (P=Q)=R = P=(Q=R)

YT T T

PAQsFF } P-X, (Q-Y,2) a Q-Y, (P2X,2Z)
Pva=FF F
PvQ=FF F
PAQsTT
PAQeTT }

O UvoO U o
womomom

— a4 Tm
4T m

APPEND | X3 - Theorems that fol ioufrom the equality axioms aione.

SEmEZ=SIE O® =

Fauu) s

uu

F VX. UU=sX= UU
F VX, X=UU = UU

daX)sUU F X = UU

d(X)eFF F TT = FF
F owx , d(X)aX,X=a x
{(X=Y) =TT PolXy= TT
(X=Y)=FF FatXye 71T
3(X)eTT b X=X = TT
Fowx x=x = 3{X)
(X=Y)=TT F X=Y
3X)=TT, X s Y}F XYETT
X=Y=TT, Y=Z=TT } X=Z=TT
3X)=TT, X=¥Y=sUWU F Y = uu
{(X=Y}sTV F Y-X=TV
P XsY = Y=X
(X=Y)=FF, X<Y |} TT=FF
3 (X)sTT, XY F X =Y

27

APPENDIX 4 =~ Theorems about Natural Numbers(see sect ion 4},

=E==== = = ESSSrXrS=SE BEBSS SES=ESSSzD =E=SS===Erm

a) Theorems which follow from axioms 4.2 to 4.8 alone:

b)

FZ@ a TT
Fisnat{Bs TT
b succ(® = 1

F pred(l) = @

} succll) = 2
FZ{1)s FF
Fisnat(1)s TT
b pred(2) = 1
FZ2{2)s FF
Fisnat(2)= TT
FZWUUl=e uwu

P isnat{UUl=s UU

Z{(X)=TT F X=8

isnat(X) =TT p Z{succX)) = F F
isnat (X)=TT F ismat(succ(X}) =T T
isnat(X)=FFF TT = FF

isnat{X) =TT, Z(X)sFF | isnat{predX}) s T T
isnat{X) =TT F pred{succ(X))& X
isnat (X)=TT, Z(X)aFF p succ(pred(X)) 8 X
isnat (X) =TT, isnat(Y)aTT, succ(X)=succ(Y) b X = Y
g(@)=TT, VvV X .isnat(X):: g(X):: glsucc(X))aTT }
YX. isnat(X)::g(X)sTT

Theorem that use 4.1 to 4.8 and the equal ity axioms,

isnat{(X)sTT F J{X) e TT

Z(X)sFF FalX)s TT
Z(X)=UU b X a WU
F 8@ =717
Fallls TT
Fo2)s TT
F succ{UU)=u u
Fpred(UU)= U U
b (1=8) = FF
F(2=BJEF F

F (2=1) = FF

28

APPENDIX § - Proof of an Induction Theorem for Natural Numbers.

mREEETIZ=== = = EE=== T =E BRXSSSSTST O ESTCSSE BIDIE EEERIRRE EXTSEESS

[The proof is as supplied TOthe proof checker.]
[material in square brackets iscommentary.]

{ theorem THl i s 2(x)aTT | XuB
theorem TH2 is b Z2(B)sTT
theorenl TH3 is isnat(x)aTT,Z(x)eFF } isnat(pred(x))eTT
theorem TH4 is isnat(x)aTT,Z(x)aFF | succ(pred(x))sx 1
LABEL L1

ASSUME g(B)=TT;

ASSUME VX, isnat(X):: g(X):: glsucc(X))=TT;
GOAL VX. isnat{X):sisnat(X)::g(X)=TT;
TRY INDUCT {step no. of DEF 4.3) OCC 1,3;

TRY 1 SIMPL:

LABEL L2;)

TRY 2 ABSTR: [Step .L2 is VX, F(X)Y:: isnat{X):: g{X)=TT
TRY 1 CASES Z(X);
TRY 1 SIMPL; [ZX)=TT

USE THL, - USE THZs
TRY SIMPL BY -,--,.L1;

TRY 2 SIMPL; [ZX)=WU
LABEL L3;

TRY 3 CASES F (pred(X)); [Z(X)sFF
TRY 2 SIMPLy [Fpred(X)) sUU
TRY 3 SIMPL; [Fpred(X))aFF
TRY 1 CASESisnat(X); [Flpred(X})eTT

TRY 1 SIMPL; (isnat (X) =TT
USE TH3, -, .L3; [isnat(pred(X))=TT
APPL.L2,pred(X}); SIMPL - BY --; [glpred(X))=TT
USE TH&4, -=---,.L3;
APPL.L1+1,pred(X); SIMPL - BY --, ===, ===-- H { g{X) =TT
TRY SIMPL BY -;
TRY 2 SIMPL: { isnat (X} =UU
TRY 3 SIMPL; [isnat(X)=FF
GOAL VX. isnat(X)::g(X)=TT;
TRY ABSTR;
TRY 1 CASES isnat(X);
TRY 1 SIMPL; { isnat(X)=TT

APPL --,X; SIMPL -3
TRY 1 SIMPL BY -;

TRY 2 SIMPL; [isnat (X)=UU
TRY 3 SIMPL; { isnat{X)sFF
THEoREM MATHIND: -3

[The theorenl MATHIND is
g(B)=TT, V x , isnati{x):: g{x):: glsucc(x))=TT
F ¥x. isnatix):: gi(x)=TT |

23

]
1

e v L e s s

APPENDIX 6 - Theorems that follow from axioms 5.1 to 5.8

sEEsS==Rs = = ESTTETTZ=E SSSS SIS TT OEE ESJITVZSSE OE OS2 SRS

(together with axioms of sections 3 and 4},

k pos(B)z FF
Fpos{ll= TT
Fpos(2)= TT
FpostUleu u

F isintUh) = WU
isint(X)=UU F X e UU
isint(X)sTT FaX) TT
pos (X)=TT k lsmt(s TT

- pos (X)=FF FisintX)=T T
i snat {(X}=TT FisintX)eT T
isint(mns{X))=TT F isint(X) =T T

isint{X)=TT Fooisint (mns(X))=. TT

Fisint@ =T T

Foisint{li=TT

. P oisint(2)=sTT

Fmns{B)= O
isint{X)=TT F mnsimns(X)) = X

Fmns(UU)= U U
isint(X)sFF F mns(X) s U U

isint (X)=FF FZ(X)= FF
pos{X) sFF, pos(mns(X) JaFF } X = 0
pos (X)=TT FZ(X)s FF
pos {mna (X)) =TT FZ2(X)a FF
isnat (X) =TT, pos(X)=FF F X=28

C Fvs. Zimns (X))&isint (X)-Z(X),UU

. isnat{X}eTT, Z(X)aFF kpos(Xi= TT

i snat (mns(X))=TT F pos(X) = FF
pos (mns (X)) =TT F pos(X) = FF
pos{mns(X))eFF, Z{X)eFF Fpos(X) = T T

L pos (Xi =TT I pos mnctX))= F F
pos (X)=FF, Z(X)aFF FpostineXi)=s T T
isint (X)=FF Fpos(X) = uu
Zimns{X)) =TT}k X = O
pos (X} =TT Fisnat(X}e TT

“ pos (X)=sFF Fisnat(mns(X))s T T

C

30

APPENDIX 6 (continued).

isint (X)sFF Fsuce(X)=u u

isint {X)=FF F pred{X)= U U
isint(X)=TT F predlsucc(X)) = X
isint (X)=TT F succlprediX) } s X
pos (X)=TT F posisucc(X))=T J
pos (X) =FF F pos{pred{X)} = F F
isint(X)=TT Fisint(succX))e T T
isint(X)=TT FisintinrediX)ia TT

isint{succ(X))=TT F isint(X) = TT

isint{pred(X))=TT P isint(X) & JT
F YX . succluns(X))s mns (pred(X))
P YX . predimns (X)) = mns {suce (X))

postX)eUU, isint(X)sTT } TT= FF
mns (X)=UU, isint(X)eTT b JJ = FF
pred(X)sUU, isint(X)=TT F 7T = FF
succ(X)=UU, isint{X)aTT F TT = FF

g(@)=TT, ¥x. isint(x):igix)zgloucc(x)) F V X . isint(X):: 9 (X) 17

g(B)eh(8), VX.isint(X)::3(giX))=TT, VX isint(X)::3(h(X))=TT,
YX. isint(X):: (g(X)=h(X)):: gleucc(X)) ® hlsucc(X)V,
VX. isint(X):: ({gX)=h(X)):: glpred(X)) = hipred(X))

V X .isint{X}::g(X) = hi(X)

31

APPENDIX 7 =~ Theorems about the operations of arithmetic,

BT TTRIR OB L 3 EEETST=E TSR ZST SIS TRUIBI D BEIRSSESIS S

{ uses the axioms of sections 3, 4 and 5 }.

a) Consider first the arithmetic of + and -.

F VX. xiuu = uu
F wvx. UU+X = UU
P YX. x-uu & uu
F vx. uu-x s uu

isint(X)=FF F VY. X+Y = UU
isint(Y)eFF F VX, X+¢Y=zu u
isint(X)sFF F VY. X-Y =UU
isint{Y)sFF F VX, X-Y = uu
isintX)eTT F x+0 =X
isinttX)=TT ¢ x0 =X

Fowx. X+l = succ(X)

F VX, X = pred(X)
isint(X)=TT F X+mns{X)= 0
isint(X)=TT |} nins (XJ+X=0

)
isint(X)sTTfF X - X = O

FV X Y . succ(X)+pred(Y) = X+¥
V X Y. pred(X)+succ(Y) & K+Y
¥X Y. suce(X)+Y E X+succlyY)
V. X Y. pred(X}+Y & X+prediY)
VX Y. succ (X+Y) 3 A+succiy)
v x Y . succ{X+Y} = succ (X) +Y
X Y . pred(X+Y) = X+predalY)
X Y . predX+Y) = pred{X)+Y

TTTrrevTTrr T

\%
\%

isint{(X)eTT, isint(Y)=TT } isintX+Y)=TT
isint (X+Y}=TT FooisintX)a TT
isint{(X+Y)sTT FoisintiY)s TT

Fow Y Z. (X+Y)+Z = X+(Y+Z)

isint(X+W) =TT, X+ld=Y+d F X =1
isint(X)eTT F B+X= X
F YX. 0-X mns (X)
Foow. 14X = succ(X)
FVA. 1 - X=nnsi{pred(X))
F X+4Y & Y4X

m

"

FV X Y . mns(X+Y) 2 mns(X)+nns(Y)

(93]
r

APPENDIX 7 {(continued).

X

Y . succ{X)-Y s X-pred(Y]
X Y. pred(X)-Y a X-succ(Y)
x Y, succ{X)-succlY)s X - Y
X Y. pred{X) -prediY) s X - Y
Y.mns(X-Y}s Y-X
Y z. X-(Y-Z) = (X-Y)+Z
Y Z. X-(Y4Z) s (X-Y)-Z
Y Z. X+(Y-Z) 8 {(X+Y)-Z
X Y, succ{X-Y) & X-pred(Y)
‘ vx Y.suce (X-Y) =suce (X) -
~ FV XY, predX-Y) = X-succ(Y)

FV X Y . pred(X-Y)z pred(X)-Y

<< < <LK
SRER

TrTrTTvTvTrrrrT vT
<

isint(X)aTT, isint(Y)&TT F i sint(X-Y) & TT
isint(X-Y)=sTT Fooisint(X)e TT
isint(X-Y)eTT FooisintiV)aTT

X-YEO F x = Y
b} Now theorems from the defn. of multiplication.

'.

F
tsint(X)=FF |
isint(Y)sFF F V¥X.XaY =

F
I.

. isint(X)=TT
isint (X)aTT

isint(X)aTT, isint(Y)aTT } isint(XxY) & TT
isint{XwY)uTT Foisint(X) a 17
isint (X«Y)uTT FoisintMsTT

|" VX Y. XY= (X*pred {Y))4+X
B v x Y. Xxsucc(Y) = (XxY)+X
Y X Y. Xxpred(Y) = (X&Y)-X
isintX)=TT } BxX= 0
FVv X Y. XxY = (pred(X)xY)+Y
Fovx Y. suce (X)xY = (XaY)+Y
FV XY.predX)xY = (XxY)-Y
!.

X&Y = YaX
isint{X)= TT FoolaX = x
FV X . mns (X} %Y = mns (XxY)
Fv X Y. Yamns (Y) = mns (XxY)
FV X Y. nns{X)amns{Y) & XY

33

APPENDIX 7 (continued),

FooowvxX Y Zo Xx(Y+Z) & (XxY) + (Xa2)

FoovX Y Z, Xx(Y-2) & (XxY)- (XsZ)

FV X Y Zo XY}l & (Xeed) +(0Z)

Foovx Y Zo(X=Y}%Z & (X«Z) - (Y]

Foovx Y 2o (XxY)%Z = Xoe (YZ)

Fv x Y . OGY)edX=Y) & (XaX) - (YY)
isnat(X)=TT, isnatiY)=TT FooisnatX+Y)=TT
pos(X)=TT, pos(Y)=TT F opos(X+Y) = TT
pos (X} sFF, pos(Y)=FF F pos+Y) = FF
pos (X) =TT, pos(Y)sFF F pos(X-Y} = TT
pos (X}=FF, pos(Y)=TT F pos(X-Y) = FF
isnat (X)=TT, isnat(Y)=TT t isnatXxY)=TT
pos (X} =TT, pos(Y)=TT b posiXsY) = T7
pos (X) =TT, pos(Y)=FF F posiXxY) = FF
pos (mns (X)) =TT, posimns(Y))aTT | pos(X«kY) a TT
pos (1-X) =TT, isnat(X)=TT F x30

c) Now add the division operator.

F ovx. X/UU = uwu

F vx . X/8 = uu

F ovx. W/X = uu
isint(X)=FF F VY. X/Y =

isint(Y)=sFF F wvx. X/Y,UU

isint(X}=TT, Z{X)=FF F8X= 0
isint (X)=TT, Z(X)=FF Foxx = 1
pos(Y-X)=TT, isnat(X)=TT b X/¥ =8

Yy. isnat(y):s lah, D Z) =TT, glpred (b)) sh(pred(u)),UUl] (y):: gly)sTT
b Vz. isnat(z)“g(zl TT

pos (X) =TT, lah. D Z (W) =TT, f(pred (k))sh(pred (W), UUY (X) =TT

F vy, isnat(Y)::pos(X-Y)s:f(Y)e T T

ienat (X) =TT, pos(Y)=TT. t isnat(X/Y) & TT
isint{X)=TT, isint{Y)=TT, Z{Y)=FF } isint{X/Y} & TT

FVX Y.nns(X)/Y a nns(X/Y)
FV XY, X/nnglY) = mns(X/Y)
FVX Y. mne(X)/mns(Y)= X /Y

jeint (X/V)&TT b isintX)=e TT

isint(X/Y)eTT |} Z({Y) = FF

isint(X/Y)sTT F isint(Y) = T7

isnat{X)=TT, pos(Y)=TT, isnat (W)=TT } {AxY)Y+) /Y =2 x+ (W/Y)
isint(X}sTT, isint(Y)=TT, Z(Y)sFF B XxY)/Y = x

34

APPENDIX 7 {continued).

d) The mod operator (¢) is remainder on division,

FYX. xouu & wuu
B OYX., XeB = UU

FVYX. UUeX = WU
isint(X)sFF § VYY. XeY=u u
isint(Y)sFF } VX.XeY =z u u

[
o

isint(X) =TT, Z{X)=FF F 8oX
isint{(X)=TT, Z{X)=sFF F xsx = 0
isnat (X) =TT, pos(Y-X)sTT | XoY & X

FV XY.nns(X)eY s nns(XsY)
F VX Y. Xemns(Y) & XeY
F v X Y.mns (X)emns (Y) & mns (XeY)

isint(X)aTT, isint(Y)aTT, Z(V)eFF } isintXeY)s T T

isint (XeY)sTT t isintiX)sTT
isint (XeY)aTT t Z()s FF
isint(XeY)uTT t isint(Y) = TT

isint(X)=TT, isint(Y)=TT, Z(Y)=FF F (XxYleY = O
isnat(X)=TT, pos(Y)=TT, isnat()=TT } ({Xx¥Y) +l) oY = UeY

FV X Y., XeY = Z{Y)alU, Z(X)=(isint(Y)8,UU}, (posi{X)> (pos(Y)-
{(pos(Y-X)sX, (X-YleY), Xenns(Y)), wns{mns{X)eY))

Fowx Y. (XeY)eY = XeY

Fvx Y . (XYY = X-(XaY)

isnat(X) =TT, isint(Y)=TT, Z(Y)=FF F isnatXeYle T T

isint(X)=TT, isint(Y)sTT, Z{Y)=FF } {((X/7Y) %Y} +(XeY) =2 X
isnat(X)=TT, isnat(Y)sTT FoVU, (X+Y)el m {((XeW)+(Yol)) ol
'.

(X/WY - (Y/W) =B, (Xel)-(YeW} =8 XeV

isint (W) =TT, isint(Y)sTT, Z(Y)=FF, WoYas(lW+X)eY } XeYs O
XeYz@, isint(W)sTT }. (XulleY = 0
XeYeB, isint()=TT | (UxX)eY= O

e) Relational operators (>, 2).

F VX . X:0U0= UU
F VX .UUX= UU
F VX . XsUU= UU
F VX . UUsX = UU

35

T T T

APPEND | K7 (continued).

isint{X)sFF F VY, Xz2Y= uu
isint(Y)sFF F wx . X2Ye UU
isint(X)aFF F VY . XsY=z uu
isint{Y}aFF F wx , X>Y= uu
. X2Y e TT FooisintX)=eTT
X2Ye TT FooisintY)sTT
X>Y = FF F isint(Xi=TT
X>Y= FF F isintY)=TT
X>Y= TT } X2Ye TT
X2Y e FF b X>Y =FF
XsX & TT F TT=FF
X2X= FF } 1T sFF

X>YeTT, Y>X=TT |} TT = FF
X2Y=FF, Y2XsFF F TT =FF

isint()aT T ,isint(Y)=T T, XYaUU} TT
isint{X}a TT, isint{Y}s TT, XKzY=e U U } T
X2Y=TT, Y2X=TT b x =Y

Y>X= FF B X2¥ = TT

Y2X a FF FXsY a TT

Y>X ETT FX2Y= FF

Y2Xe TT F X>Y = FF

W>XeTT, Xs>YsTT F W>Y = TT

WX=TT, Xo¥=TT b WY = T T

WsX=TT, X2Y=TT F WsY=TT

WaX=TT, X2Y=TT p W2Y =T T

isintiX)=TT pX2XX= TT

isint(X)= TT FXsX= FF

" Fovx . pos(X) = X>8

pos(X)=TT FXs8= TT

X>8=TT FpostX) =TT
Foowx Y, (X-Y) 28 = X2Y

isnat (X-Y) =TT}k Xp¥YeTT

isnat(X)e TT F X28 = 77

isnat{nns (X)) =TTk X>B= FF

X2Y=TT t Jenat{X-¥)=TT

XK2BeTT t isnat{X)=TT
VX . pos (X)=B>mns (X)

B2X=TT F pos(X) = FF

VX Y . succ{X)>Y = X2Y

F VX . X8 =B>nns (X)

F VX . X28 3 B2nns (X)

FoVX Y . nns (X) >mns (Y) = Y>X

FoYX Y . mns(X)2mns (Y) = Y2X
- Fowx Y, Xsucc(Y) = A>Y

P VX Y . Xspred{Y) = X2Y

FovxX Y . pred(X)2Y = X>Y

i.

m

FF
FF

APPENDIX 7 (continued).

f} The relational operators and arithmetic,

isint(X) 8 TT } VY . (X+Y)2X = Y20
isint(Y)e TT F VX . (X+Y)2Ye X20
e isint(X) & TT F YY ., (X+Y)>X = Y>B

isint (Y) & TT F VX . (X+Y)>Y = X>B
isint(X) = TT F VY . (X-Y)2X = Q2Y
isint(X) = TT b YY . (X=-Y)>X = B>Y
X>8 = 17 oYY o (XxYi2X = Y21
- Y>@ = TT FooOVX L OXaY) 2y = X2l
~ X>8 = TT F oYY . OYIsK = Ysl
Y>8 = TT FoovX . (XxY) >y = X5l
X>B=TT, Y21=TT b X2 (X/V)e TT
X>B=TT, Y>1=TT b X>(X/Y) = TT .

Y2B=TT, X>B=TT b X>(YeX) = T T

- isint) = TT VX Y . X+W)> (Y4ld) = X>Y
isint(W) a TT F WX Y . (UeX)>(HeY) & X5V
isintls T TF w Y. X&)z (Y4ld) = X2Y
isint(W) = TT b WYX VY . (UeX)2 (W+Y) = X2Y
isintt) s T Tk w Y. (X-WN)>(Y-W) & X>Y
isint) = TT F ¥X Y . (U=-X)>(U-Y} 5 Y>X

- isint() & TT F ¥X Y . (X-W) 2(Y-W) = Xzv

T isint) = TT F ¥X Y . (U-X)2(U-Y) = Y¥2X
W>8 = 17 Foovx Yy o (X)) > (Yeld) & X5V
WsB = TT FoOovX Y o (eX)>{dwY) s XY
W>B = TT Foovxy o (Xsl) 2 (Yuld) = X2Y
WsB = TT FoovxX Yy o (WaX) 2 (WeY) a X2Y

- X2Y=TT, WsB=TT F (X/W2(Y/W=TT

{(X7W)>(Y/W) ETT, W>B= TT FXsYs TT

WsBs TT, X>8e. TT,Y2Xa T T FWXI2W/YYe T T
(W/X)>(W/Y) =TT, W2B£TT, Y28=TT f Y>X & TT

X28=TT, Y28=TT }F (X+Y} 28 =TT
-~ X>B=TT, Y>B=TT } (X+Y}>3 = 77T
X>B=TT, Y28=TT } (X+Y)>B =TT
- X28=TT, Y>B=TT } (X+Yi>8= TT
X20sTT, Y28=TT F (X«Y)28=TT
X>B=FF, Y>B=FF } (X«Y)28=TT
Ys8s TT FOYX . (XxY)28= x20
-~ Y>B=TT Foowx , (XxY)>8 E %58
BsX=TT, B>YsTT b (Xa¥)>Bs TT
X20sTT, Y>8=TT F (X/Y)28=TT
— YsB= TT F VX . (X/Y}>B = XaY
X28sTT, isint(Y)sTT, Z(Y)sFF F (XeY)28 = TT
(XeY}>Ba TT PX>BET T
.

37

APPENDIX 7 (continued).

g) The factorial operator.

b Fac (UU) = WU
isint (X)=FF F Fac(X) s UL

x20 s FF PFac(X)a UU

F Fac(@] s 1

b Fac(l) 1

F Fac(a) = 2
x20 = TT FFac(X)>B= TT
a(Fac(X) sTT b X208 = T
X208 = b Fac (X+1) = (X+1) «Fac (X)
X>B = F Fac(XleX = O
Y>B= TT, XzYsTT F FacX)laY = 2
Y>8=TT, X2Y=TT } Fac(X)sFac(Yi= O
Y>B8aTT, X>YsTT b Fac(X)>Fac(Y)s TT

h} The oddness and evenness predicates.

F even (LU=
F odd {UU)sUU
isint(X)# F F} even(X)s UU
isint(X)2 F F} odd(X) =
F even _[\x . (odd (x)~FF,TT) 1
F odds= . (even (x)=FF,TT)]
even(X) = TT F |smt()<) = 17
even{X}) s FF F isint{X}) = IT
odd(X) 2 TT | isintiX)=TT
odd {X)= FF o oisint{X)=
i

even {X) = UU, isintiX)s TT } TT =FF
odd(X) = UU , isint(X)=TTF TT = FF
isint(X)= TF even(¥x2)=TT

isint(X)a F even{2xX) =TT

F oYX . even(ins(X))= even (X)
F YX . odd {mnsiX))= odd (X)
even{X) = TT } even (X+l)s=

even (8= TT
odd (B) =
even(l)= FF
odd (1) =
even(2)ls TT
odd(2)s FF

T rrT

PX)=TT b VF
YX. P (X) cFF

XsYs FF

isint(X)s FF
isint(Y)e FF
XsY=TT

isintiX)sTT
bug(X,Y,P}=TT
bug(X,Y,P)=TT
bug(X,Y,P)=sFF
‘ bug(X,Y,P)=FF

P(X)sFF, F(X)sX }

j} The bounded quantifiers

FOVY P . buglUU,Y,P)
F VX P . bug(X,UU,P)

APPENDIX 7 {continued).

i} The ‘Look’ operat ion,

PUW=UUF Vv F . Look{UU, F Pls U
P {X)=FF } Look(X Uu,P) = U
g F VX F . Look(x,F Wi UU

Look (X,F,P) = X
F VX F . Look(X,F,P)=
Look {X,F,P}a UU

’

and “beq”.

“bug”

U

uu

F bug(X,Y,UU) = UU
F VP . buglX,Y,P} = UU
I-VP bug(X,Y,P) = uu
F VP . bug(X,Y,P)= TT
F VP . bug(X,X,P) = P(X)
FoisintXi=TT
F
F

isintiY)=TT
isint(X)s TT
FooisintX)s TT

VY P . beq(UU,Y,P)= UU
VX P . beq(X,UU,P)= uu

X>Y= FF

isint{X} s F
isint(Y)a F
X>Ys=sTT

isint
beq{X,Y,P)=TT
heg{X,Y,P)=TT
beq (X,Y,P)=FF
beqg(X,Y,P)=FF

X)a TT } VP

F beqX,Y,UUl= U U

FF VP . beylX,Y,P)= UU
FE VP beq(X,Y,P)s uu
F vP . beq(‘A.Y.P)E FF
beg(X.X,P}a P(X)
F isint(X)=TT
FooisintM=TT
FoisintX)=TT
FooisintX)=TT

k} The primeness predicate for integers.

isint(X) =

r (X} TT

Pr(X) = FF

F FF

FPr Ul =
Pr (X}

F Pr(@) =

P oPril) =

FPr(2= TT

b |smt(‘<)_TT

F mmt()()

PV .Pr(mns()()) = Pr(X)

33

uu

APPEND | X8 - Basic Theorems about S-expressions.

{ depends on the equality axioms plus 6.1 - 8.18).

b issexp(UU)e UU
F a tom () eUU
Foonul 1 (U Ul
[head (LWU)e UU
F tail{ul) = W

atomX)e TT F head(X) = UU
atomX})e TT Fotai 1(X})=s UU
issexp(X})=U U} x= uu
atom {X)=UU F X =
null{X)3 UU FoX= W

k issexp(NILY=TT
FoiNILY =TT
FonuliNIL) =TT
o oatom{NILIe TT
F head(NIL) = U U
b tai I INIL)= UU

issexp(X)e T TP dN) =TT
i ssexp{X)z FF F (X)) TT
atom(X) s TT FalXys TT
atom(X) = FF FaiXle TT

nul | (XY= TT F X = NIL

issexp(X)=F FF null(X)s FF

atom (X)= TT , i ssexp (X} TTF nullX)=TT
atom(X) s FF b null(X)= FF

i ssexp(X}=F F}F atomX)=TT

issexp (X} = TT, null(X) = FF F atom{X)s FF
atom{X) = FF } issexp(X)=TT

atom{X) = TT ,null (X)=FF} issexpXi=sFF

d(head (X)) =TT } . atom(X) = FF
d{tail(XY)= T T} atom (X} = FF

F ¥X . Ccons Wi=uu
F VX. cons{UU,X)= UU

d¥}s TT F vX . headl(cons(X,Y}}= X
alX) =TT F VY . tai I {cons(X,Y))=Y

atom(X)s FF FdlheadX¥) e TT
atom(X}a F F Fottail(X})aT T

48

APPENDIX 8 {continued).

head(X) = UU b atom(X) ¢ TT
tail(X) = W } atomiX) ¢ TT

aiX) = 17, 8{Y) =
alX) =TT, 8(Y) =
a(X) = TT , a(Y) =

d (cons (X,Y))a TT
dlcons(X,Y))e TT

F VX, dlhead(X)) =

head(X)s X } X = U
tail(X) = X b x= uu

null{cons(X,Y)) = TT }

TT F issexplcons(X,Y))=sTT
TT F nullflcons(X,Y))=FF
T T} atom{cons(X,Y))e F F

FoX)= 7T
a3y = TT
dltail (X))

TT = FF

41

APPENDIX 3 - Basic Theorems for Lists.

IZ=T=I==X = = ETWE=BR CEZESEEEZ ESS RLSISER

(axioms used were the equality asioms with B - GOl).

FooislistWiL) e TI7
F ietist(J) = UU

islist(X)= F FF nui 1{X)= FF

i ssexpiX)= FF } islistXlz FF

islist(X)eT TF (X)) =TT

islist{X) = FF F oX} = T7

islist(X)eT TF issexpil=TT

islistX)= TT , null(X) = FF } atonlX)= FF

alX) =TT Fovy . ististlcons({X,Y}) = islistiY)
islist(X)= UU F X 3 UU ;

islist(tai (X)) T TF ististX)s TT

islistX)g TT , nul | (X)s FF } islist(tai!X})aTT

= TT ,
VX Y ,oX):ististiyl o glY) i gleons(X,Y))a TT
t VAL islist(X) z: g(X) = TT

VX . atom{X}) ::qgXle TT ,
YX Y, gX) = oglY) oogloons (X, YD) « TT
FVX L aiX) o giX)a 1T

APPENDIX18 - Theorems about the list operations of section B.

BEEoaNEE W o SEBSEEER 0 MMM Mumr wemd SEWMNNFEFER A M 6 MMMWW- me

(rely on the axioms of section 3 (equality) also).

a) Concerning ‘rev’ and the auxiliary function “rev2”.

FVX . rev2(UU,X)= UU

t revilll= Uu

FoYX . rev2 (X,UU)=

F o ¥YX . rev2(NIL, X)- X

F vx. rev2{X,NIL}=rev (X)
reviNIL)= NIL
islistiX)= FF FoovY . rev2(X,Y)= UU
islist(X) e FF }F rev(X) = .

islistX)s TT , 8(¥}s TT } d(rev2(X,Y))=TT
|=:l|st(X)=TT FolrevX)) e TT

dlrev2(X, YN s TTF islist(X) = TT
3(rev2(X,Y)) & TT F3yla TT

dlrevX)) s TT | islist(M=TT

~—t

ielist(X) e T T | islist(Y) e 1T} revirev2(X,Y)) = rev2(Y,X)
islist(X)wm TT |} revireviX))s x

islist(X) ¢ TT F YWY . islist(rev2(X,Y)) a lslist(Y)
islist(X) e TT | islistirev(X})a TT

F vx. revicons(X,NIL)) & cons(X,NIL)
F oYX Y . revicons{X,cons(Y,NIL)}) = cons(Y,cons(X,NIL))
islist(X) = TT F nul I {rev(X)} a nul | (X)

b) Concerning the ‘& (append) f unction,

F VX, UUgX= UU

F VX . XsUU= UU
islist{X)=FFF VY.X&YEUU

. NIL&X = X

'.
islist(X)sTT F X&NIL X
PoVX Y . X&Y = rev2 (rev (X},VY)
islistX)alT, da(Y)=TT F J(X&Y)=a TT
isl ist{X)&TT F VY-.islist(XaY)aislist(Y)
oYX Y . cons(X,NIL)&Y a cons(X,Y)
FoVX Y . reviXdY) & rev(Y)drev(X)
FoYX Y . rev(X&cons(Y.NIL))} =cons(Y, rev (X))
islist(X)=TT, 3(Y)=TT |k head(X8Y)s nul | (X)~head(Y) , head (X)
islistX)=TT } tai 1{X&Y) =nuli{X)atail (Y), (tail (X)I8Y)
d(X&yy= TT F islistX)=e TT
aiX&y) = TT F 8Y) =77
islist(X)=TT, nul I (X}sFF, 3(Y)=TTF null (X&Y)=FF

islist(X)=TT, nul I (Y)=FF t nul 1 (X&) = FF
X&Y = NIL F X = NIL
X&Y = NIL FY= NIL

FoVX Y 2. (X&Y)&Z = X&(Y&Z)

43

APPENDIX 10 icontinued).

c)Properti es of “ANOwap’” & MRuap” |

t Vp . AND'I\:’AP (l HJ. ‘)) L] UU
islist(X)aFFF Vp , ANDOmap (%, ple U U

t Vp . ORwap(U.pleu
islistiX}=FF} V¥p . ORmap{¥X,pls UU
pX)=e uu F VY . ANDmap (cons (X,Y), p)l= UU
p{X) uu b VY . ORmap(cons{X,Y),pl= UU

t vp* ANDmap(NIL,p)= T T

F Vp , ORmapiNIL.p)= FF
3(X} =TT FV p . ANDmap (cons (X,NIL),p) = p(X)
alX) =TT t vp* ORnap{cons{¥, NIL), p)=p(X)

ANDmap (X, p)»TT,TT TT F islist™=TT

ORmap (X, p) =TT, TT = TT F is1iet(X}= TT

ANDmap (X,pl= FF t null{X)s FF

ORmep (X, pl= TT F nullX)e FF

ANDmap (X,p)= TT, p(X)e TT, d(X)a TT F ANDmap(cons(X,Y),p)=TT
pX) = FF, islist{cons(X,Y))=s TT ANDmap (cons (X, Y), p)=FF
AlDmap (Y,p) s FF, p(X)=d(X),d(X)a T T ANDmap (cons (X, Y), p) =FF
ORmap(Y,ple FF, p(X)a FF, d}=T T ORmap (cons (X, Y) ,p) =FF

pX)& TT, islistlcons(X."))=TT ORmap {cons (X, Y}, p) =TT

ORmap(Y,p) =TT, p(X}-3(X),dX)=eTT ORmap (cons (X,Y) ,p) =TT

ANDmap (Y, p) =TT, TT=TT
ORmap (Y, p)-TT,TT=TT

WX, (X tap(X)-TT, TT=TT, islist(Y)=TT
VX.d(X) tpX)-TT, TT=TT, islistiY)=TT
ANDmap (Y, p)=TT,TT= TT, p{X)-3(X),d{X) =
k ANDmap(cons(X YI,pl=-TT,T7=TT
ORmap (Y, p)-»TT,. 7T = TT, p(X)=3(X), I =TT
F ORmap{cons(X,Y),pl=TT,TT=T T

"l""l" Tt r YT

ANCnap (X,p)= T T, null (X)=FF F plhead(X}) = TT
ANDmap (X, pY= TT, null (X} =FF F ANDmap(tail ()\) p) =
ORmap (X, p} = FF, null {X)=FF L oplhead(X)) =

ORmap (X,p) = FF, null (X)=FF F ORmap(tail ()\’) p)- FF

ANDmap (X, p) =TT, TT=TT,nult (X3 =FF } plheadX))-TT,TT =T T
ORmap O, p) =TT, TT=TT, nul | (X)=FF b »n(head(X))-TT,. TT=TT

ANDnap (X, p) =TT, ANDmap (Y, p) =TT} ANOmap (rev2{X,Y) p)
ORmap (X, p) =FF, ORmap(Y,p)=FF k DRmap (rev2(X,Y),p) = F
ANDmap (X, p) =TT, ANDmap (Y, p) =TT} ANDmap (X&Y,pl= T T
ORmap (X,p)=FF, ORmep(Y,p)=FF F ORmap(X&Y,pl= F F
ANDmap (X,p)= T Tk ANDmapl(rev(X),pls TT

ORmap(X.p)= FF } ORmap (rev (X) p) FF

ANDmap (X&Y,p) =TT } ANDman (X, pi =

ANDmap (X8Y,p) =TT } ANDmap (¥, pl= T T

ORmap (X&Y,p)=FF } ORmap(X.pi = F F

ORmap (X&Y,p)=FF |} ORmap{Y,p} = F F

W

APPENDIX” 18{continued).

ANDmap (rev X ,p) =2 TT b Albuap (X, p) = T7
ORmap (rev(X),p) = FF } ORwap(X,p) = FF

ANDmap (X, py=FF, islist{(Y)=TT. VX, 300 s pX)-TT,TTa T T
' ANDmap (X&Y,p)l= FF

ANDmap (Y,p)=FF, islist (=TT, ¥X. a0 p(X)-TT,TT=T T
F ANDiap (X8Y,p) = F F

ORmap (X,p) =TT, islist{Y)=TT, VX, d(X) s pl)-TT,TT=T T
F ORmap(X&Y,pl= TT

ORmap (Y,p) =TT, islist(X) =TT, ¥X. d(X) s p(X)-TT,TT= T T
FoCRnap (X8Y.pl=e TT

ANDmap (X, p) =FF, VX. 8(X)::p)=-TT, TT =TT
F ANDmaplrev(X),pl= F F

ORmap (X, p) =TT, VX, 8(X): - p(X}-TT, 7T T T
b ORmapireviX),ple TT

d) Theorems concerning the ‘FNmap” func t i on.

F vi. FNmap(UU, f} = UU
islist(X)sFF VvV f , FNmap(¥,fl=U U
F VYf . FNmap(NIL,f)= NIL
alX) =TT F FNmap{cons{X,NIL), f) = cons(f (X} ,NIL)
d (FNmap(X,f))=TT PooislistX)=TT
nu | I{FNmap (X, f))=FFF nul 1(X)= FF
nut 1{FNmap (X, f))}=TTk nuliX)=TT
V X .33 3(F (X)) =TT, islist(X)=TT P I (FNmap(X,f))= T T

PV X f.islist(FNmap(X, f))=d{FNmap(X, f))
FV X Y f . FNmap(X&Y, f) = FNnap (X, f) 8FNmap (Y, ¢)
P VX f . FNmap(rev(X),f) = rev (FNmap{X,f))

e) Properties of the ‘PRUNE’ function,

F Vp . PRUNE(UU,ple UU
islist(X)aFF p Vp ,PRUNECK,pls U U
F vp . PRUNE(MIL,p)e NIL
p(X)=TT, a(X)=TT p PRUNE (cons (X NIL),p)s NIL
p(X)=FF, 3(X)=TT F PRUNE (cons(X,NIL),p) = cons(X,NIL)
A(PRUNE (X,p) V=TT b islistX)=TT
nut I{PRUNE(X,p})= FFF nut I(X)= FF
VX. d(X)a:p(X)-TT,TT=2 TT, isl ist{A)=TT } S(PRUNE(X,p)) =TT

oYX p . islist(PRUNE(X,p}) = A(PRUNE(X,p))

F VX Y p , PRUNE(X&Y,p) = PRUNE (X, p) &PRUNE (Y, p)
F ¥X p . PRUNE (rev(X},p) =rev(PRUNE(X,p})

45

APPENDIX 10 {continued}.

f) The *memn’” predicate.

b vx. mem (UU,X)z UU

VX o mem(X,UU)= UU
islist{(Y)sFF P V X . mem(X,YJz=U U
islist(Y)=TT, mem{(X,Y)ebU F X =8 U
mem(X,Y)=TT |} aX)=) TT
mem(X,Y)=FF FatXi=y TT

mem(X,Y =TT F islist(Y) = TT
mem(X,Y)=FF } islict(M)=TT
mem (X,Y)=TT F null(Y) = FF

a{X) =TT F o omem(X,NIL)= FF

X =TT, i s Iist(Y)=TT b mem(X,consX,Y))=TT

mem (X,cons(Y,NIL} JsTT b X =Y

{(X=head(Y))= F F t men (X, tai | (Y)) 3 mem(X,Y)

vx. d(X):: mem (X,Y)=FF} Y =HIL

mem(X,Y)=TT, 3W)=TT |} mem{X,cons(d,¥))=TT

islist(tail(X))=TT } nemihead(X),X) 7T

mem (X,Y)=FF, nut 1 (Y)sFF } (X=head(Y))= FF

mem{X,Y)=FF,nul | (Y)sFF} mem(X, tai | (Y))= FF
FoVX Y . mem(X,revi{Y)} = mem(X,Y)

mem (X, YD) =TT, i s 1ist{Y2)=TT b mem(X,(Y18Y2) =TT

mem(X,Y2)&TT, isl ist(YL}=TT F mem (X,(Y1&Y2))= TT

mem (X, (Y1&Y2))= F F t memi{X,Ylls FF

mem (X, (Y1&Y2))s F F t mem{X,Y2le FF

mem(X,Y1)eFF, mem(X,Y2)=FF | mem(X,(Y1&Y2))a F F

F omems{aG. [axy . (islist(y)-
{(nul 1 (y)=(a(x)sFF, U0, ((x=head{y))-TT,G{x, taill{y)))),UU)]]

g) The “menml” predicate.

F oYX . meml(UU,Xlz UU

vx. memL (X,UU)= UU
islist{X}= FF } VY . menl{X,Y}= UU
isl ist(Y)s FF F VX . menL{4,Y)=2 UU

menl (X,Y)=T TF islistX)=TT

menL (X,Y)= F FF islistX)=TT

menl (X,Y)= TT F ielist(Yi=TT

menL (X, Y)=F FF islist(V=TT

islistX)eT TF memL(NIL,X)= TT

islistX)e TT ,islist(¥)=TT , menL(X,Y)sU U} TT =FF

FovX Y . meml{cons{X,NIL},Y} = mem(X,Y)

46

APPENDIX 18 (continued).

memL (tai 1 (X}, Y)w T T t meil(X,Y) a mem(head(X),Y)
membL (X, Y)&TT, nul | (X)eFF } mem(head (X)) ,Y)e TT
meml (X, Y)&TT, nul | (X)aFF F memL{tail(X),Y) ¢« TT
meml (tail(X),Y)a FF F omenl(X,Y)= FF

memL IX, Y)=TT, mem (A, X)&aTTF meni{A, Y= TT

Fomeml = [aG. Dy . {islist{yl-(islist(x)=

(nul 1 {x)->TT, (mem{head(x),y)=G(tail (x),y) ,FF}),UU),UU}1]

memL (X, tai ({Y))a TT FoomenlX,Y)s TT
nul | {Y) =FF, memL(X,Y)aFF b menL (X, tai I{Y))s FF
islistiX)s TT Foomenl (X, X)= TT

islist(X)aTT, isl ist (Y)=TT, VA . mem{A,X)ssmem{A,Y)= T T
Foomemb(X,Y)=TT
VX. islist(X)e: memL(X,Y)=nu!ll{X) |} Y= NIL
memL (X, NIL) = TT Fonul X} TT
memL (W, X) =TT, memL (X, Y)eTTF meal (W,Y)s TT

FovX Y . menl (rev (X),Y) =menl (X, V)
F oYX Y . memL (X, rev (Y)) = menl (X, Y)

memL (X,L1) =TT, is1ist(lL2)=TT }
memL (X,L2) =TT, islist{lL1)=TT |
membL (X1,Y)=TT, memL{(X2,Y)&TT}

memb (X, L18L2) = TT
meml (X, L1&L2)=e TT
meml (X18X2,Y)= TT

h)

memL (X18X2,Y)=s TT Fooneml(X1,Y)=s TT
menl (X18X2,Y)= TT Foonenl(X2,Y)= TT
memL (X, Y1&Y2)= FF Fomenl(X,Yl)= FF
memL (X, Y18Y2)s FF P omenl{X,Y2)s FF
memL (X1,Y)eFF, isl iet{X2)=TT }b wemL(X18X2,Y)& FF
meml (X2, Y)=sF , isiist (X1)aTT} memL (X18XZ,Y)= FF

*memEQ” - Equality with respect to (list) membership,

F o vX . memEQUU,X)= UU
F VX . memEQ(X,UU)s UU
islist(X)s FF F VY , memEG(X,Y)= UU
isl ist (Y)= FF }F VX . menEQ{X,Y)= UU

memEQ(X, Y= TTF islist{X)=TT
memEQ(X,Y)= F F} islistX)=TT
memEQX, V)= TTF islistiY)=sTT
memEQX,Y)=s F FF islist(Y)=sTT
islist(X)=TT, islist(Y)=TT, menEQ{X,Y)=UWU } TT =FF
memEQ(X,Y)s T TF meml(X,Y)s TT
memEQX,Y)=TTF memb Y, X)=TT

memL (X.Y)=F FF memEQ(X,Y)= FF
memL (Y,X)= F FF memEQ(X,Y)= FF
ististX)=sT TPk menEQ(X,X)=TT
islistX}=T TF men&Q (X,rev(X))=TT

47

APPENDIX 18 (continued}.

FV X Y |, memEQ(X,Y) & nemEQ(Y,X)
3 memEQ (W, X) &TT, memEQ(X,Y)&TT b nemEQWU,Y)eT T
memEQ (W, X) =TT, memEQ(X,Y)eFF } menEQM,Y)a FF

memEQ(X,Y)= TT FoomemEQX&Y, X} =TT
menEQX,Y)=TT F omemEQ(X&Y,Y)=TT
memEQ (X, Y)= TT F ¥z, men(z,X) =meml(z,Y)

ististX)=TT, V z . mem(z,X)zmemiz,Y) b memEQ(X,Y)}=TT

~ i) The *memS’ operation (de | e t i ng an e | ement from a | i st} .

Fo¥X . menS{UU,X)= UU

¥X . memS(X,UU)l= UU

islist(X)a FF P VY . men6 (X,Y)aUU
3imemS(X,Y))sTT b islist(X)=TT

N AlmemS{X, YN =TT } dY) eTT
istist(X)eTT, 3{Y)&TT F islist (nenS{X,Y})}=e T T
dX)e TT t memS(NIL,X}= NIL

YX Y . memS(cons(Y,X),Y) & nemS(X,Y)
istist(X)eTT, 3(Y)sTT | mem(Y,memS(X,Y)) & F F
istist(X)eTT, d(Y)&TT b menl (memS(X,¥},X) = T T
- mem(Y,X) = FF P memS(X,Y) = X
” FoowvX Y o (menS (X, Y} =X)= (mem(Y,X)-FF,T7)
FoYX Y . menl(X,memS(X,Y)) =& (mem(Y,X)=FF,TT)
FVv XY . memEQ(menS(X,Y),X) = (mem(Y,X)-FF,TT)

. j} The “*memSL” operation.

- o ¥X . memSLIUU,X)= UU
FOYX . memSLX.UU)e UU

islist(X)e FF VY . menSL(X,Y) aUU
islist(YJe FF F ¥X . menSL(X,Y)a UU

~ 3(memSL(X,Y))&sTTp islistX)s TT
d (memSL (X, Y)) =TT | islist{Y)=TT
islist(X)=TT, islist{Y)=TT F islist(memSL(X,Y))= T T
islist(X)= TT P memSLNIL,X}= NIL

ististX)s TT F memSL (X,NIL)= X

islistX)=eTT FV WY.nen(d nemSLX,Y))={men (W, Y)=FF, mem (W, X))
mem (W, Y) =TT, istist(X)=TT F mem(d,memSL(X,Y)} = FF

mem (W, X)=FF, is! ist{Y)=TT |} mem{l,menSL{X,Y)) = FF

mem (W, X) =TT, mem(W,Y)=FF F mem (W, memSL(X,¥))=e TT

mem (W, memSL{X,Y))eTT t meald,X)eTT

mem (W, memSL{X,Y))}= TT Foomenld,Y)=FF
islist(X)=TT o omenSL{X,X)= Ni L

48

APPENDIX 10 (continued).

k) Properties of 'subexp’,

VX. subexp (X,UU}= uu
¥X . subexp (UU,X)}= UU

YX . subexp (X, Y)a(X=Y)

3(X) = TT VY . subexp(X, cons()(Y}) & d(Y)
alX) sTT YY . subexp(Y,cons(X,Y)) = a(Y)
subexp (X,head (Y)) =TT b subexp(X,Y)=TT

subexp (X, tai | (Y))sTTF subexp(X,Y)= TT
subexp (W, X1 &TT, subexp(X,Y}eTT |} subexp(d,Y)e TT
subexp (head (X),Y)eFF|F subexp(X,Y)s FF

subexp (tai | (X),Y)=FF F subexp (X,Y)= FF

atom(Y) =

F

}.
subexp (X,Y)= TT FaiX)= TT
subexp(X,Yl=e T T t dy) =17
subexp (X,Y)= FF FoX)= TT
subexp(X,Y)=s FF FolY)e TT
(X} =TT, S(Y)=TT, subexp(X,Y)=UU }b TT=FF
alX) =TT t subexp (X,X})=TT
atom(X) = FF t subexp (head (X),X)=
atom(X) = FF t subexp(tail (X}, X)_ TT

l.

F

'.

subexp (X,Y)sFF, atom(Y)=FF t subexp {X, head {Y))= FF
subexp (X,Y)sFF, atom(Y)=sFF t subexpiX, tai 1 (Y))= FF
subexp (X,Y)aTT, subexp (Y,X)aTT F XsY

atom(X)s FF t subexp (X, head (X))=s FF

atom(X) = FF t subexp (X,tai | (X))= FF

|} Properties of ‘assoc’.

VX, assoc{X,UUl= UU
vx. assoc(UU,X)s uu

islist(Y)a FF } ¥YX . assoc(X,Y}=zuu
atom(X) = TT F YWY . associld,cons(X,Y})= UU
dlassoc(X,YN=TT b dX)e TT
dlassoc(X,Y)sTT F 3(MV)ia TT
alX) =TT t assoc(X,NlLl= NIL
islist(Y)m TT F Vv W X.assoc(l, cons(cone(l,X),Y)}econs (W, X)

m) The orl? function.

F Vi fNIL . forL{UU,f,fNIL)= UU
VX . fX,U0)sUU, ististX)=FF F VNIL . forL (X, f, fNIL)= U U
Ilforl (X, f, fNILD =TT 8(X) =TT
F v f$NIL. forlL(NIL, f, fNIL)} = fNIL
alX) =TT F v 1 fNIL. forL (cons(X,NIL), f, fNIL)Y=f (X, fNIL)
J(X)eTT, a(Y)=TT
F v NIL. forL(cons(X,cons(Y,NIL}), f, fNIL)=f (X, f (Y, fNIL))

49

APPENDIX 11 -Basic Theorems for Finite Sets

ssnes swapzgzazs |WV: WW==zxs swax:

{(uses the axioms of sections 3,6 and 7.1 to 7.5)

e isset (UU)a UU
i sset (X)sUUF X=UU
i sset (X)sTTF 3(X) =TT
isset(X)sFF F 30X) =TT

F

« F

isl ist(X)=FF }

i sset (X}=FF f

- ist ist{X)=TT }

i sset (X)=TT F

isset(X)=TT F

k d(setof (X))=TT }

dllistof (XN =TT

memEQ(X,Y)=TT F

- .

|.

« isl ist(X)sTT }

- F
C
<
.
C

setof(U)= UU

| istof (UUi= U U

setof (X) = LU

| istof (X) 3 UU
isset({setof{X))=s TT
islist{listof (X))= T T
setof{listof{X})z X
ielist{X)e TT
isset{X)=TT

setof (X) = setof(Y)

YX . setof(listof(setof(X))) = setof(X)
vx. listofisetof(listof(X))) = listof(X)
memEQ (X, listof(setof(X)))=TT

YX L . mem(X, | istof (setof(L)})=mem(X,L)

e T

APPENDIX 12 - Theorems About the Basic Set Operations,

(relies on the axioms of sections 3,86,7}.

a) Theorems involving the null set,

t issetNS)=TT o
F3(NS)= TT

Flistof(NS) =N I L

setof{X)s NS F X = NIL
listof (X})s NIL F X =NS

isset(X)&TT, (X=NS)&FF F null(listof(X)) = F

b) Properties of the membership relation.

F VX . XCuU=Uu
F VX . UWX= UU

isset(Y}sFF F wx . XY= uu
isset(Y)aTT,XeYsUUF x= wu
XeY=TT FotXye TT
XevY=FF FaiX)= TT
XeY=TT I issetMI=TT
XecY=FF t isset(Y)a TT
AaX)sTT F XeNS = FF

YX. 8(X):: XeYaFF F Y = NS
isset(Y)=TT, WYX. XeY2sXeY b Y2 =Y

c) Introducing the 'subset' relation,

F VX, subset (X,UU)a uUuU

F VX . subset(UU,X)s UU
isset(X)= F FF VY. subset (X,Y)= UU
isset{Y)s F F} vx.subset ix, Y= uu
subset(X,Y)=TT | isset(X)s= TT
subset (X,Y)=TT | issetly)
subset(X,Y)=FF isset(X)
subset (X,Y)sFF b isset(Y)
isset(X)eTT, isset(Y)eTT, subse
isset (X}alT b subset(NS,X)
subset (X,NS}=TTp x s NS
subset (X,Y) =TT, WcXeTT b WeYe TT
subset (X,Y) =TT, WeY=FF |} WX =FF
isset(X)e T T}F subsetX,X)=TT

w N
— — —
e i B |

(X,Y
T

>

bt
LU

—

)eUU

isset (X) =TT, isset (Y)&TT, VW . WeX::leY=TT |

subset (X,Y) =TT F VW. WeX = UleY= TT
subset (X,NS}=TTF X = NS
subset (W,X) =TT, subset(X,Y)=TT

51

t

TT =& FF

subset (X, Y)=TT

subset(ld,Y)= T T

APPENDIX 12 (continued).

d) The usual union operation - Y ,

isset(Y)m F
{XuY) s TT
diXuy) = TT }

F
k
isset(X)s F F |
l.
F

vX . Xxuuu = UU

vxX . UUUX = W

YY . XUY= uu
vx . XUY& uu
isset{(X)= TT

ieset{Y)=TT

isset(X)es T T ,isset(Y)eT T} isset(Xuy)s TT

isset{X)& TT, isset{Y)= TT , AUY
WeXs TT, isset(Y)s
WeY= TT, issetX)s

WeX = FF, WeYs FF

W b TT s FF
TT b Wc (XuY) TT
TT F e (Xuy) TT

FUCXuY) = FF

m wm wm

WeXuY)= FF | WeX = FF
Wc(XuY) a FF kWeYs SF

isset(X})s T T, is

jeset(X) s T T}
isset(X)=e T T}
issetX)=T T}
subset (X,Y)=TT F
F
F

8) The set subtraction

F

l.
isset(X)s F F
isset(Y)s F F f
d{iX\Y)s TT }
aX\Y) = TT }

isset{X)e TT, isset(Y)s=s t
|SSet(X)sTT isset(Y)sTT, X\Y WET T=F
WeX = ,isset(Y)s T T

set(Y)=
isset{X) s T T, isset{Y)s=

T Tk subset(X,XuY)e TT
T TF subset(Y,XuY)e TT

NSuX = X
Xux = X
XUY = Y
XUY = YUX
Y Z . (XuY)uZ s Xu(Yuz)

(\) operation.

vx , XN\UU= uu
vx UUNX 3 uu
Yy X\Y= uwu
vx . X\Y= uwu
isset{X}=TT
isset(Y)z— TT
1eset()(\Y)E TT

P UelX\Y) 8 FF

WeY = ,leset()e TT P WelX\Y)s FF

WeX s TT, NeY = FF

FUWeX\Y} s TT

We(X\Y) = TT FUNeX= TT
We (X\Y) = TT F WeY = FF
isset{X})= TT, isset(Y)=TT t subset(X\Y,X)aTT

“jeset(X)= T T f
isset{X)=T T}
isset(X) = TT F

X\X= NS
X\NS = X
NS\X = NS

52

APPENDIX 12 {continued).

f) Properties of usual intersection operation - ™" .

F WX

, XnUU = uu

F VX, WnX= UU
isset(X)a FF b VWY . XnYa WU
isset(Y)s FF p WX , XnY =UU

diXnY) = TT P i
isset(Yls TT

a(XnY) = TT }

isset{X)eT T

isset(X) a TT,isset(Y)s T T F
isset{X)aTT, isset(Y)sTT, XnY=UU }

WeXe FF |, isset(Y)sT T

WeY s FF , i sset (X)
WeX s TT , WeY s TT
We(XnY) & TT F Ue
We (XnY) =

isset (X)s TT }
isset (X) & TT }
jssetX) s T T}

TT b HeY
isset(X) sTT,isseti{Y)=T
isset (X)aT T ,isset(Y)s=
XNNS= N
NSnX= N S
XnX = X

isset(XnY)&a T T
T & FF

F We(XnY) = FF

eTT F wc(XnY} & FF
F WelXnY) =TT

X TT

TT

n W

Tt
17 k
S

B XnY = YnX

F ¥X

Y Z . (XnY)nZ =

g) The ‘select’ function.

k

isset (X)e FF }
3 (se | ect (X)}=TTp
dselect (X)) aTT}

select (UU)=U U
selectiNS)=U U
select(X)=U U
isset(X)sT T
(X=NS)= F F

isset (X)a TT, (¥=NS}e FF F d(sel

subset (XnY,X) = T7
subset(XnY,Y)eT T

Xn(ynZ)

ect (X)) & TT

isset (X) & TT, (XeNS)= FF

h) The ‘singtn’ function.

F

select{X)eX=T T

a{X) =TT

F singtnlUW=U U
b isset(singtnX})=aT T

dlsingtn(X)) =TT alX) = 1T

alX) =TT

F Xesingtn(XJ =T T

Xesingtn(Y)=TT b X 2 Y

alx) = 1T
daX)eT T

F (singtn{(Xi=NS} = F F

F select(singtn{X))=s X

