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1. INTROOUCTION
EZ =5==========

19m,
By LCF, I mean the Flilner version of a logic proposed by Dana Scott  in

mechani  z e d  b y  fli Iner i n  1971, and clescribeil  b y  fli I n e r  i n  Cl,ZJ, [ll is
actual ly  the user ’s manual  for  the LCF proof-checker Llhich has been the vehicle
for  generat ing formal proofs in the logic.

\

Since the development of  the proof-checker,  LCF  has been successful  ly
appl  ied to  var ious  t rad i t iona l  p rob lem a r e a s  o f the Mathematical
Compu ta t i on, The pr i nc i p2 I

T h e o r y  o f
exper i men t s have i two I ved program seman  t i cs,

co r rec tness  o f  p rog rams, t e r m i n a t i o n  0’: p r o g r a m s  a n d  c o m p i  ler  c o r r e c t n e s s

c 12,3,41.

L

/

i

In each of the examples reported a machine checked proof L/as generated
Llhich increased the reliabi I ity of the solution enormously. However, each
al :*o

j2roo f
made a I arge number of assump t i ens i t7 the forms of unproved theorems and

reciundan t ax i ems, A l t h o u g h  i t can  be  demons t ra ted  tha t the p a r t i c u l a r
assump  t i ons invo lved do not  inva l ida te  those exper iments ,  i t  i s  c lear  tha t  ths
p r o o f s  w o u l d  b e  c o n s i d e r a b l y  m o r e  r e l i a b l e  i f  a  s o l i d  a x i o m a t i c  t h e o r y was
already avai iable  to give al l  the required background resul ts.

,

1.

!

The three part i cu I ar areas
in. t h i s  p a p e r ,

of ma  them  t i ca I khoL.1  I edge wh i oh at-e deve I aped
namely integer arithfcatio, I ist i!lanipulation and

f i n i t e
a theory of

sets , are very important i 17 computation, Moreover, i n  p r o v i n g
asser t ions  about  p rograms,  these  thecries  prov ide m o s t  o f  t h e  mathemat ica  I
ma te r ia l  l.lhich l-louId be classi f ied as background resul ts.

.

L

.

The current project has been to develop a very large theorem bank i.!h i ch
wi I I  a c t  a s  a n  a p p r o p r i a t e  mathemstical  environment f o r  f u t u r e
LCF.

a p p l i c a t i o n s  o f
S o  f a r  o v e r  998 t h e o r e m s  h a v e  been  p r o v e d  ( w i t h  t h e  a i d  o f  t h e  LCF

proof-checker, of course) from the axioms given in this paper,

Al though there is no disti&tion poss ib le  ( in  the  LCF sys tem) be tG4een
ax i ems and def ini t ions (bo th  a re  dec la red  as  AXICRsI,  effort Leas made  in  the
ax iomat isa t ion  to  in t roduce neL1 funct ions as terms of  the logic,
m a k e s i t eas i er

T h i s  s t r a t e g y

Simi lar ly,
to demonstrate consistency for the sets of  axioms presented.

in the presentat ion of AXICils a contrast i s  e f f e c t e d  b y
t h e m  e i t h e r  a x i o m s  (AX) o r  de f in i t ions  (DEF).

label I ing

The large body of  theore;l:s, al luded to above, is organissd as a sequerTc,s
of  appendices.
axioms

Al I  the theorems of any ai:l;>endlx  depend  on  the  same g roup  o f
o r  d e f i n i t i o n s  a n d  appear in ar-l  o r d e r  1Jhich  i s  a p p r o p r i a t e  f o r  e f f i c i e n t

p r o o f  o f  t h e  clhole g r o u p  ( b y  making  use o f  t h e  theorenl-using faci  1 i  ty of LCF 1.
Note t h a t the indentat ion of theorems is onl,y
p r e t t i e r .

to make the page layout a I i ttle
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2. THEOREG  FROI’1  NO AXIOMS AND A PROPOSITIONAL LOGIC
B--B== =,-se,--, z=== == ====,-=  - - -  = --w-w--------  a - - - -- ^ - - - - - - - - - - - - - -  ---mm

Appendix 1 gives a number of theorems that require no axioms (str ict ly -
no nonlogical ax ioms)  fo r  the i r  p roo f  in  LCF, Al I can be proved in a fei4
bu t  i t  shor tens  and  so  he lps  to  c la r i f y  la te r  p roo fs i f  they  are  ava i lab le .

I ines

The theorems
Vp, p+TT,  FFsp
vp . puu, uiJruu
[4x UUI rLJuI .

are i mppr  tan t as pernianen t members of the simpl  i I:ication set of the LCF
c h e c k e r .  I t is also worth mentioning that the block of results exempt i f i

p+TT,U&FF  j- TTrFF
a r e  d e s i g n e d t0 make use o f  the  p roo f  by  con t rad ic t ion  fac i l i t y  in  LCF
‘ k n o w s ’  t h a t  TTEFF ( a n d  a  f e w  s i m i l a r  i.rffs) i s  a  c o n t r a d i c t i o n .

p roo f
ed by

rJh i ch

A  f u n c t i o n from and to the domain of t ruth values which represents the
logical NOT operation is readily defined in LCF as

:wDEF  2 . 1 7 5 [xx.x+FF,TTl

Appendix  2 showz  that i t behaves accord

X

i ng  to  the  t ru th  tab le

I -X
-----t-----

I
TT 1 FF

I
FF / TT

I
uu 1 uu

mean
I ike

U n f o r t u n a t e l y  t h e r e  i s  n o such def in i t ion  poss ib le  to  g ive  a  su i tab
ing to the logical AND or the logical OR operators, The truth table we L-IOU
fo r  OR,  say,  is  g iven as.

Y
xvy 1 TT FF UU

----we t---------------

I
TT 1 TT TT TT

I
X FF j TT FF UU

I
UU 1 TT uu uu

- 3i
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We therefore axiomatize the relation a s below and note that each axiom
i s  t r i v i a l  Iy f a i t h f u l  t o  t h e  a b o v e truth table. Moreover the theorems of
Appendix 2 show the whole truth table is derivable, *

VP, PvTTzTT
VF, P\cFFaP
VP. PvUUn (PdTT,  UU)

__

c

An appropr i ate d e f i n i t i o n  f o r  l o g i c a l  A N D  i s  nobI p o s s i b l e  (see beloL1)
in terms of the  OR opera t ion . we a l s o  g i v e a n  e x p l i c i t d e f i n i t i o n  o f
eyu i va I ence. T h e  r e s u l t s  o f  a p p e n d i x  2 g i v e  t h e  t r u t h  t a b l e s  f o r  t h e s e
operators shown beloL(.

w:DEF 2.5 A 5 [xx y.-((~xhA-ym -
:wDEF 2. 6 = 5 [Xx y. x+y, (y+FF, TTj I

Y Y

x~y 1 TT FF UU x=y 1 TT FF UU

I
TT 1 TT FF UU

I
X FF f FF FF FF

I
uu 1 uu FF UU

3

-w----t ----------------

TT 1 TT FF UU
I

X FF 1 FF TT UU
I

uu 1 uu uu uu



3
3s : ND I V I DUAL  ECIJAL  I iv AN5 ZEF I :trECKESS
== =========I  =====s==  r== ==r========

I n  t h e  d o m a i n  o f  indiviclbals o f  t h e  l o g i c ,  LJ~ mnt ( v e r y  o f t e n  i n
p r a c t i c e ) to  u t te r  sen tences  tihich con ta in  terms such as ‘x is the same as y’ .
For example we could require a function

f r [xx, (is-the-sanie-asix.a)~b,g(x))l

or  1Je  might IJant a  sen tence  such  as

-(is-the-same-as(x,y))::  g(x,ykhix,y) .

T h e  ‘P’ connect i ve o f  LCF is  the  most  obv ious  cand ida te  bu t  i t  cannot  be
represented  by an LCF term since it is not monotonic. What we want is a two
p I ace predicate ‘=’ wh ich

i) is undefined exact ly iJhen  o n e ior both)
of i ts arguments is undefined,

and otherldi  se
i i)  has the value TT i f and on I y i f the two

arguments are tkle same eleiilent (not UU).

Such a  p red ica te , obviously monotonic, is possible Lilth appropr ia te  domains  o f
i nd i vi dua I s ( s e e  belold) kut 25 IJith tha log ica l  opera to rs  AND and  OR,  th is

fol lowing‘co nipu t al3 I e’ equal i ty cannot be defined but must  be dxiomatised. The
capture the desired predicate:

v x .  ((x=x)+x,UUkx
v x  y, (x=y):: xry
V x  y .  ix=xM(y=y)+TT,UU),UUz(x=y)+TT,TT
(UU=UU) IUU

F i r s t  n o t e  t h a t  t h i s  e q u a l i t y  p r e d i c a t e  f o r  t h e  d o m a i n  o f  individclals
a n d  t h e  l o g i c a l equ iva lence  preclicate def in4 i n  t h e  l a s t  s e c t i o n  a r e  o f
d i f f e r e n t  t y p e s  iin t h e  t e c h n i c a l  s e n s e )  a n d  a r e  o n l y  g i v e n  t h e  s a m e  na;ile
b e c a u s e  o f  s h o r t a g e  o f  s y m b o l s ,  As d/i th the symbol UU (which denotes an
i nil i vi dua I, a  t r u t h  v a l u e  anii a n  i n f i n i t e nuriiber 0  f f u n c t i o n s  o f  d i f f e r e n t
t y p e s )  t h e  p a r t i c u l a r  p r e d i c a t e  intenciecl by ‘=’ can be determined by context.

T h e  r o l e  t h a t  t h e  f i r s t  t h r e e  clxionls  p lay  is  qu i te  straightforward:-
3 . 1  s a y s  t h a t  t h e  ‘=’ relation  ic, re f lex ive  on a l  I  ind iv idua ls

e x c e p t  Ml; I t says no:r,  i ng a\:Io~  t UU=UU;
3 . 2 says  tha t  the  re la t ion  is  onig t rue  in  the  re f lex ive  case;
3 . 3 i n t e r p r e t e d  i n  t h e  I  ight of 3.4, th is  axiom Gives us that

i f  n e i t h e r  x,y a r e  UU then x=y is either TT or FF; It
a l s o  g i v e s  t h a t  i f x=y i s  TT or FF then neither x or y is
the undefined element.

4



T h e  a x i o m  3.4 is  no t  rea l l y  nei-,c5s2ry in that i f  t h e r e  i s  a n y  c l e m e n t
i n the  domain  o f  ind iv idua ls  ( distinguishablf! frcm UU 1 then 3.4 fo I 10~1s f r o m
3 . 1 - 3 . 3  . For, supposing X t o  b e  d i s t i n g u i s h a b l e  fiord UU X&U is c
contradict ion and  SO LJ~ a r g u e  b y  CSS~S  o n  UU=UU  : if UU=UUnTT tken X=UUaTT  bl
monotonicity  a n d  XEUU b y  a x i o m  3 . 2  ; If UU=UUzFF  t h e n  X=X=FF b y monotonici ty
and XEUU  by axiom 3.1 : Since the TT and FF cases lead to contradictions 1Je
have uu=uu=uu.

A l t h o u g h  lde are indeed only interested in nontr iv ial  domains t-le want to
be able to prove a body of useful  theorems about equal i ty without ment ioning
a n y  p a r t i c u l a r  e l e m e n t s ,  3 . 4  i s needed to prove several of the theorems of
appendix 3 and this forces us to add it. For example, the theorem

v x .  x-uu = u u

can n o t  f o l  low f r o m  t h e  f i r s t  t h r e e  axio;ils s i n c e  i n  t h e  t r i v i a l  d o m a i n  o f  just

UU, Lie can  have  UU=UkTT  and the ax i oms  ,3rz sat i sf i ccl.

XZY can  a lways  be  deduce~l frC:rl  X=YzTT  as  p rescr ibed by  the  sxi ems,  b u t
we a I so eas i I y get theorems for go i ng the other Llay

X&,‘, X=?kiT t ;(=‘kTT
X&f, y=yzTT  )- X=YETT

and 2 v e r s i o n s  o f  t h e  commutative Iai.1 f o r  ‘=’ .
vx y. )(=y s y=:<
X=YtTV  1 Y=XaTV

The fac t  tha t  every  e lement  excep t  UU is  equa l  (4 to i tself ,  gives us
t h e  definedness  p r e d i c a t e  f o r  inciiviciuc71:l  b y  d e f i n i t i o n ,

:sCIEF 3. 5 ’ a 5 IAX. x=x1

rJhere J ~.ri I I be T T  o n  al I incjivici!~s I s CXC‘C~;~ t 1JU and d (UU)  1.1  i I I he LIU,

Appendix 3 a l  so g i v e s  u s e f u l  t.ll~:~~f~~/its :j!jr:)ut  t h e  6 l>r.eclica  te. Note
e s p e c i a l l y the fo I Iol-ii ng thf2oren:S, 14iSLi  ch c’lrt’ extreme I y i I;ljjor  tant 1.lhen  Pirgci i I-ICI
by cases on thda d e f i n e d n e s s  o f  some  inJividual:-

J(XkFF  J- TTsFF a()(j &iU f- ;(EUU  ,

It I.ias inferred above, ;ha t the ax i OXiS  for  ‘=’ dictate some structure
f o r the doma  I n of ind iv idua ls . This structure i s s i mp  I y f l a t n e s s  o r
d i s c r e t e n e s s  (Llhich means that  for  any eiement  X, if YcX t h e n  Y  i s  e i t h e r  U U  o r
X  i t s e l f ) . The  fo l  lol-jing  theoret,: shaiJ t h a t  t h i s  i s  s o  a n d  i t  i s  a s s e r t e d  t h a t
f l a t n e s s  i s n ’ t  a  h i g h  p r i c e  t o  pa5 fiJr ;he not ions of equal i ty and def i nedness.
i n  f a c t ,  S c o t t , in  h is  or ig ina l  propossi  s u g g e s t e d  t h a t  t h i s  iAas a reasonab I e
assunipt ion.

)(=YFF, XcY t TTzFF
J(X) zTT,  XcY J- i;=Y

i



4. NATURAL  NUMGEES
== =====z= ee=====

ing f o u r  a xThe natural numbers can be axiorildtized  by the follor.~
four def ini t ions:

i Otil5 and

z G [xx. x=01
2 (0) E TT
isnat 5 IaF. [hx, Z ix) +TT,  F ipred (xl 13 l
VX. i sna t (XI : : Z (XI -0, succ  (pred (XI 1 E X
VX,isnat(X)::Z(succ(XIl  E F F
VX. isnat(X)::pred(succ(X)) p X
1 =, succ(0i
2 s succw

LJhere  the  ax iomat ised quant i t ies  are  the  ind iv idua l  ‘0’. t h e  f u n c t i o n
and the f unc t i on ‘pred’ .

A glance at appendix 4 shoGIs that many ususal propert ies of the
numbers  a re  p rovab le .  In part icular,  the fo l lowing ones:-

‘succ’

natura I

i snat (0) P TT
i snat (XI ETT k Z (succ (x1 1 zFF
i snat (XI zTT 1 isnat(succMjsTT
isnat(X)zTT,  isnat(Y)aTT,succlX)=succ(Y)  t XzY
g (0) eTT, Vx, isnat(x)::g(x)::g(succ(x))rTT  1 Vx. i snat (x1 : : g (x1 ETT

ddhich  a p p r o x i m a t e  PEANO A x i o m s f o r  n a t u r a l  n u m b e r s ,  1 use the word
‘approx imate ’ s ince  the  f ree  var iab le  ‘g’ in the induction theorem can only be
ins tan t ia ted  to  a  cont inuous  func t ion . iioi.lever  , because doma  i n of i n d i v i d u a l s
we use is  d iscre te , i f  F is any funct ion on just the natural  numbers, i t  can be
ex tended to  a  cont inuous func t ion  by  defining F(UU)  to  be  UU.  Hence  theorems
which fo l  IOLI f rom the Peano  p o s t u l a t e s in  usua l  logics  wil I  be  va l id  (perhaps
IJi th relativisation) in this LCF environment,

See al so appendix S where a proof of the induct ion theorem i s given as
an exanip I e of a t echo  i que o f  u s i n g  S c o t t  i n d u c t i o n  t o  p r o v e  relativised
assert ions. I t  shou ld  a lso  ke noted that this induct ion thtlorein can  be  app l ied
to prove assert ions of the form

Vx. i snat (xl : : h (x1 zk (x1

b y  i n s t a n t i a t i n g  g  w i t h  t h e  t e r m  [Ax.h(x)=k(xjl  a n d  p r o v i n g

h(B)=k(o)ETT,  Vx, isnat(x h(x)=k(x)::  h(SuCC(xj)=k(SUCC(X))~TT  .

Note that th is doesn’ t  mean that the fol lowing sentence is a theorem:

h (0) zk (01, Vx. i snat (x) : : h(x) =k ix) : : h (succ (xl 1 Sk (succ  Ix) 1
1 Vx.  isnat(x)::h(x)zk(x)

fo r  cons ider  the  func t ions h z CXx,UUl and k o cxx,ztxMJu,01.



Simi lar ly, t h e  i n s t a n t i a t i o n  y&x,h(x)-FF,TTl means that  the theorem can be
applied to attack goals of the form

vx. i snat (x1 : : h (x1 eFF

We would now l ike to argue ( informal ly)  that there are no non-standard
mode ls  sa t is fy ing the ax i oms. We already have that succ”(0)  b e h a v e s  a s  t h e
integer n so we need only prove that the set (succ”(0))  e x h a u s t s  t h e  s e t  o f
t h i n g s  f o r  IJhich ‘isnat’ i s  t r u e .
Reasoning outside LCF we can say

pred (x) =y, i snat (y) ETT,  i snat (x1 G’T t
Hence ,  fo r  any  in teger  n ,

xzsucc (y) is provable:

pred” (Xl ~0, i sna t (Xl nTT t xn5uccn (0) is provable;
But we know from the recursive def ini t ion of isnat

1 if isnat (X)zTT  t h e n pred”  (io s3 for  some n;
so i snat (X1 impl ies Xzsuccni01  for some n.

I t  i s  c lear  f rom the  var ious preceding comments that the set of axioms
g i v e n  i s cons is ten t  and  a  fa i th fu l  represen ta t ion  o f  the  na tu ra l  numbers ,  Lie
now cons i der redundancy i n the ax i oms  and note

4.2 i s  te rse  and bas ic :  Wi thout  i t  i s  i s  no t  poss ib le t o  d e r i v e ,
i sna t (0) zTT or even that there exist any natural numbers;

4.4 may not be condensed to vx, Z(xl+O,succ(pred(xi)~x a s
there may be elements in the domain of individuals on which
‘pr ed’ i s  u n d e f i n e d  a n d  s o  Inoting  tha t  succKlUMJU  w i l l  b e
d e r i v a b l e )  Lie get a condradiction.
4.4 cannot be IJeakened to either of the sentences

Vx,  succ ipred (x0 1 EX ; VK. i snat (x1 : : succ (precl  (x1 1 EX
1di thout making a commi  fment to  the  ex is tence  o f  an  e lement
g i ven  by  pred(0).  I f  the axioms are to be used as  a  base  fo r
the integers this is OK but i f  the only numbers are to be the
na tura I numbers then we wou I d IJan  t pred (0) &U to be true,

4.5 is needed to get the dist inctness of succm(0)  and succ”(0);
Without the axiom at al l , i t  i s  n o t  p o s s i b l e  t o  shot4 t h a t  0
and 1 are not the same element. With o n l y Z(l)=FF  i n  i t s
p lace ,  i t  cannot  even  be  reasoned tha t  0  and  succisucc(0))
a r e  d i s t i n c t ;

4.6 is a basic property which cannot be derived f rom the  o the r
axioms.

I t  s h o u l d  b e  n o t e d  t h a t  t h e  f u n c t i o n s  ‘succ’  a n d  ‘ p r e d ’  a r e  o n l y
p a r t i a l l y  s p e c i f i e d  i n  t h e  n a t u r a l  n u m b e r  a x i o m s  s i n c e  w e  w a n t  t h e m  t o  b e
defined appropriately when we axiomatize the set of integers (both posit ive and
n e g a t i v e ) .

Care has been taken in assembl ing the appendix of theorems to exh i bi t
t h e  r o l e  t h a t  e q u a l i t y  p l a y s  i n  t h e  a x i o m a t i s a t i o n , The  f i r s t  g roup  o f
theorems depends only on axioms 4.2
def i nedness. T h e  l a t e r  theorerl-

to  4.8  w h i c h  d o  n o t  m e n t i o n  e q u a l i t y  o r
~ti require the equal i ty axioms and 4.1 as we.1  I

fo r  the i r  demons t ra t ion .

7



;~;;w;AX 5. 1 vx. isnat(x

5. INTEGERS AND ARITHMETIC
== =r=eP==I - - - - - -Ip== ===z------

1
v x ,  podx):: IsnaI\xJ~l I
VX. pos(mns(x)i  E pas(x)-FF,ZlxI+FF,TT
V x ,  pos(x)-+TT,TT  E kin:(x)-TT,UU
Vx.  i s in t  (x)+mns(mns(xIi  ,ons(xIzisint (xI+x,UU
Vx. succ (x1 Emns  (pred  imns (x1 1 )
Vx. pred (x1 =mns t succ  thins (x) 1) c
[AX. isintix)+TT,TTl s a

The i n t e r p r e t a t i o n  i n t e n d e d  h e r e  i s  that  a  pos i t i ve  in teger  ‘n’ , say,
i s represented b y  succn (0) a n d  that a  n e g a t i v e  i n t e g e r ‘-m , say, i 5
represented by predm (3i. Cbvi ous i y ‘mns’ i s the unary minus operator and \pos’
i s the greater- than-zero predicate. A p p e n d i x  s i x  g i v e s  a  l a r g e  c o t  lection  o f
b a s i c , b u t  u s e f u l , theorems provab l e from  the axioms of sect ions S,4,5, Note
that t h e  f u n c t i o n s  ‘isnat’, ‘pas’, ‘mns’,  ‘succ’ a n d  ‘ p r e d ’  a r e  a l l unde f i ned
where ‘ i  s i n t ’ i sn’ t true.

Just about al I that IJi I I be claimed about the above axioms for integers
i n  L C F  i s  t h a t  t h e y  a r e  c o n s i s t e n t (since each is true in the standard
intepretation of the integers) and the usual theorems can be proved using then;,
Because they are just  a bunch of sui table propert ies Llhich together do the job,
no individual deserves comment.

I t  i s  readi  ly d e m o n s t r a t e d  t h a t  1 succ”(0)  1 U 1 predm(Oi 3 is the
same set as i x 1 i sint (x1 zTT  1 ~1s fo I Ioi.is:
Suppose i s i n t  (XIzTT ;
From AX5.4 w get that pas(X)  must be TT or FF:
I f pos (X1 rTT then i snat (X1 aTT and 5~ X=succ”  (3) f o r  s o m e
I f pos (XI EFF then i sna t imns (Xi 1 zTT and so nins (X1 =succn (0
some 1120 g i v i fig Xwns (succn (01 1 :
But [Ax. mns (succ (x1 1 I E [Xx, pred imns (XI 11 so 1.1%  get Xzpred”  (0) ;
Hence i s i n t  O(IETT impI i e s ~~:cjucc*  (3) v Xzpred”  (0) for some

n>0;
1 for

na.
Also we see that i s i n t  twccmiO1)=Ti

isint(XIETT t -*
fzr al I mz0 from the theorem

isintisucc(X)IzTT
a11d i s i n t  (prednl(Ol)zTT  f o r  a l  I Ii123 ': roti:  t/ie correspond i ng theorem

isint(X)zTT t isintipred(X))ETT  .

Al though none of the theorems of appendix 6 are deep, one can see hol.l
many i mpor  tan t simple r e l a t i o n s  t h e r e  a r e  betueen  the  ob jec ts  axiomatised  in
t h i s  s e c t i o n .

The  ma in  induc t ion  theoreil\  for integers is simply stated thus:-

gi0IrTT,Vx. isint(xI::g(succix)izG!x) t Vx.isint(x)::g(xkTT .

T o  p r e v e n t  c o n f u s i o n  a r i s i n g  fro;)  t::; sir~~i lar i ty betr.reen  th is  theorem and
t h e  i n d u c t i o n  p r i n c i p l e  f o r  n a t u r a l  nb:i:::IEr:4, note the fol IoL1ing PiON-  t heorem: -

g(0)=TT,  Vx. isint(x)::gix) ::gis~cci~ii~TT  k Vx.isint(xkgixkTT

-
8



numbers
The  d i s c u s s i o n  o f  the cor-;~e~pC7nc~if7g  i n d u c t i o n  p r i n c i p l e  fcrr  n a t u r a l

i n t r o d u c e d  a  t e c h n i q u e  r.:hich is qpropriate,  in  th is  sec t ion  a lso  fo r
at tacking goals of  the form
i n s t a n t i a t e

Vx.hix)Ek(x) u s i n g  s u c h  a  r u l e .  T h a t  ~~74  to
the ‘g’ of the theorem

s h o w s ,  horJever,  t h a t  i t  i s  economica
wi th  the  te rm [Xx,h(x)=k(x)l,  P r a c t i c e

incorpora te  the  idea  :-
to restate the theorem so as to

h (0) =k (01,
Vx. i s i n t (x1 : : 3 (h (x1 1 nTT,
Vx. isint(x) : : d (k (x1 1 zTT,
Vx.isint(x):: (h(x)=k(x)!::C!sLcco)lk(succ(x))
Vx. isinttx)::

/- vx.
ih(x)=k(x)i::h(predix)lnk~~)red~x)):

isinttx):: h(x)zkix);

A l though th is  i s  cons iderab ly  more  cumbersome,  each no t ion  expressed by
a n t e c e d e n t s  m u s t  b e  p r o v e d

the
any eithw case and so the economy  l i e s  i n  n o t

having to prove by nested cases arguments

Vx. isint(x1:: (h(x)=k(x),)Elh(succ(x))=k(succixj))

W i t h  t h e  i n t e g e r s  axiomatised sat is fac tor i l y ,  we proceed to  de f in i t ion
o f  the  bas ic  a r i thmet ic  func t ions  and  predicates:-

Funct ions :

Pred ica tes :

+ B LaG,  CXx y. Z(y)+isint (x)+x,UU,

- p [xx

pm (y)-+G  hcc (4, pred fy) 1, G (pred  (xl, succ (~1) I I

ye xtmns  tyj I

,‘c E IaG. 1Xx y. Z(y)+isint  Cx)-+0,UU,
POS iy) d ix, j?red iy) ) tX,

/E

G IX, SUCC iy) ) -X] ]

IaL [ X x  y. Z(y)-tllli,Z(x)-,!isint  (yI+0,UU),
pas (XI -pas (g! -( pas (y-x)-4, succ  lG (x-y, y) ) ,

mns tG Ix, 1~117s (g)  1) , mns  (G (mns  (x1 , CJ) j ] ]
@E LX yb X- ( bhjit4.J 3

Fat 5 IaG. hx. z (xl 4 ) pas (xl *>i:kG  (x-1 1 (UUI 3
Look E IaG. [XX f p. iJ(x)-*x,G(f(x),f,j~)ll

> z [Ax y. poslx-y)  3
1 z [xx y. Z (x-yI+TT,  pos Ix-y) I
< f Lxx  y. cj>xl
5 =’ [XX y. Lj>Xl

even L [xx, z ixs2) I
o d d  a [Xx, z (xs2) -+Fi, TTj
buq z LaG. [XX LJ p. ix>yj,TT,pIxl~G(x+l,y,p)  ,FFll
beq f EaG. [h y p.
P r  I CXX,

(x>y)jFF,p(x)JTT,G(x+l,y,p)ll
[?y. (y>l j + buci (2, y-l, [Xi, (y~z) =O+FF, TTI  1,

FFI lx>3 4x, mns ix) 13
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Most of these def ini t ions are self explanatory and the others become
obvious with a few points of exp /anation:-

i) ‘/’ i s i n t e g e r  d i v i s i o n ,  o f  c o u r s e ,  a n d  ‘3’ is the ‘clod’
operator which gives remaIncier on drvl,810n.‘C. These are
defined in the norma  I manner for posi t  iife i n t e g e r s  a n d
are extended (to operat ions involving negative integers)
i n  s u c h  a  IJay t h a t  the si ijn of x/y is a I ways appropriate
a lgebra ica l l y  and  the  sic;n of SNJ is the same as the
s i g n  o f  x . Th is  cho ice  L:naoles  the reconstruct ion oi a
number from i t s quo t i en t and rema  i nder iwi th respect to
a  g i ven  d i v i so r  1,

i i ) ‘Fat’ i s  t h e  f a c t o r i a l  f u n c t i o n  a n d  i s  o n l y  d e f i n e d  f o r
non-negat ive integer arguments.

i i i )  Look(x,f,p) y i e l d s  t h e  f i r s t  i n t e g e r  y ( i f  a n y )  i n  t h e
sequence (x, fx, ffx, fffx, -. . 9 6 . 1 wh ich sat is f ies  the
predicate p (provided no previous member of the sequence
caused p to yield UUL

iv) ‘buq’ stands for Bounded Universal Quantifer  and ‘beq’
denotes Bounded Exist ential ouanti f ier and are meant to
take the place of  regular quant i f iers in numeric proofs.
The importance of  hq comes from the pair of theorems:

buq(X,Y,p)rTT  k Vz.z~X::Yrt::p(r)~TT
Vz.zLX::YLz:: p(z)rTT i- buq(X,Y,pIsTT

A  s i m i l a r  r e s u l t  f o r  ‘beq’ i s  e x p r e s s a b l e  a s  t h e  meta-
theorem that (F’rovicled p  i s  t o t a l  o n  t h e  r a n g e  <X,Y>  1
beq (X, Y, p) =TT IFF 3  i n t e g e r  i n  <X,Yj t h a t  s a t i s f i e s  p,

T h e  t o t a l i t y  p r o v i s o  i n  this result  is essential,  for if
p (n) EUIJ and p (ntl)  =TT then beq In, ntl , p) rUU even though
there does exist an integer in the range which sat isf ies
the given predicate.
Al though the predicate i.ihich gives TT exactly Llhen  there
is an appropriate element in the range i s  d e f i n a b l e  a s

LaG. [Xx y p.x>y~TT,~;(x)v~~xtl,y,p~ll,
DEF 5.23 is preferred because of the useful relationship
between that version of  beq and the Look funct ion.

VI Pr 1x1 i s  T T  i f  e i t h e r x  o r  mns (x) i  s a natura  I number
1.which  i s  p r ime in  the  usual sense ( n o t  1). P r  i s  a  t o t a l
predicate over the integers.

vi)  Note that al l  the f u n c t i o n s  a n d  p r e d i c a t e s  t a k e  a t  l e a s t
one argument which is of tg;je ‘i ndi vi dua I’, Al I these
func t ions  (except  Looki  ter,ome  unde f ined  i,rhen appl ied to
individuals which are not iritegers.



Append i x 7 conta i ns a rathw b~rrjt! cobxtion  o f  r e s u l t s  t h a t  folioL~
f rom the  resu l t s  on  in tegers  and  the tilsfinitions  Iistt?d above .  There  a re  bas ic
t heor-ems about a I I o f t h e  funct i ot75  40~; r:lredi  Gates e x c e p t  < and 5 , If a

and 5. 19 shou  I d beproblem con ta ins  these pred ica tes  t&n tl-re  de f in i t ions  5 .18
app I i ed to transf arm  the goa I s to ones c13n  t;r i I-, i ng > antj  2 ,

.

I.

W e  h a v e  a l r e a d y  introduceci  2 mJihe;iiGt ical i n d u c t
r e q u i r e , f o r  t h e i r  appl icat i o n ,  s t e p s  o f  the forms:  -

g(x) f- g(succ(x)) +) k g{pred(xH

Such statements are often as inconvenient to prepare as the

ion theorems Id-l i c t-1

resul t Lie Lli sh
e s t a b l i s h . A c t u a l  ly, ue lwtt to mod&

to

induct ion  g iven (in p red ica te  ca lcu lus )  ljg:-
in LCF, that  form of  mathematical

fVx. ( vy. ry<x A yL01 I) p(y) 1 2 iI(X) 1 2 Rx. x>B 2 p(x)]

L

<t

The  obv ious p r o b l e m  a b o u t  uhat to do Edith this in LCF, is Llhat to do trith t h e
nes ted  quant i f ie rs .  For tunate ly , the nested quantifier is bounded and so ide get
the LCF version of the theorem as:-

L vx. x20:: buq(B,x-l,P)::P(x)zTT  f- V x .  x10:: P(x)zTT

Actua l  l y  a  more  p r im i t i ve  fo rm ot: t h e  t h e o r e m  cdas n e e d e d  t o  p r o v e
resu I ts about d i vi s i on blh i Ch precrldetl  the I.lork  on re 1 at i ons and ‘bucl’ ,

c e r t a i n

L T w o  m o r e  f u n c t i o n s  blhich r.li I I !je  :,i:ni lar l y  t r e a t e d  a r e  t h e  s u m  and
produc t  o f  a  f in i te  sequence  - t h e  big SIG% and b ig  PI  no ta t ion  o f  ana lys is .

sun1 3 IaC. [Xx y f .  ycx
Prod E

-+ 3, f (xM(xtl,y,f)ll
laC. [Ax y f, y<x + 1, f ixI9;G(xtl,y,f)ll



6.
c =LZ

L I STS and S-EXPRESS IONS

S i 1x63  I i s ts are a spec i 2 I case cJ f S-ex;:rressi 033, Me proi:t3tiE:I:l 1.1
axiomatisation  of the more general object.

i ssexpiUU1 E UU
i ssexp(MIL)  z TT
n u l  I  z [>\x. x=iiILl
a t o m  z [Xx, i ssexp (x)+,nu  I I ix) , TTI
YX, a tom (Xl : : head (9) dN
V X .  atonio()::  tai 1 iKMU
VX Y. heati~conso(,Yj)rd~‘r’~~X,iiU
VX Y. tai I iconsol~,Y)  Mi:ij-+Y,UU
VX. cons (head ix), ;a i I I;:‘1 1 Ea tom 1x1 +UU, X
J z [zG, [,1x. atomix)-Ti,G(hs~dix))-G( ta I (xl > JJUI 3

i th an

Note first that AX s.i is valid for a I I doma  i ns idh i ch t-rave def i ned
i nd i v i dua I s other than S-express i ons - t h e  m o s t  c o m m o n  c i r c u m s t a n c e .  I n
si tuat ions I.lher  e al I indiviciubis are  S-express ions i t  ~iould be  cons is ten t  to
s a y  that i ssexp (UU)  =TT but it IUJIC~ IE unlikely t o  g i v e  a n y  a d v a n t a g e over
p o s t u l a t i n g i ssexp (UU)  =UU. Hence, fcr the sake of proving some handy theorems
about S-express i ons (141~  i ch must be trbe idhznever  tiiL i s  n o t  t h e  o n l y  a t o m ) we
a s s e r t  6.i ins tead o f  leav ing i ssexp iljlt ! unspecif ied.

The purpose of axiom 6.10  is to eliminate ( from models 1 any
s t r u c t u r e s 1-h i ch are i n f i n i t e . Th i s a i so means t h a t  c i r c u l a r i t y  (t.lhich  i s
p o s s i b l e  i n  L I S P ,  f o r  e x a m p l e )  i s  ruled o u t , As an i Ilustration of the

i, i mp I i cat i on5 of this axiom, a theorerf;  i s proved in appendix 8 IJh i ch g i ves that
i f  head(XjsX  t h e n  XrUU.  A more Cot;l;jIete r e s u l t  a b o u t  c i r c u l a r i t y  i s  d i s c u s s e d

\ below using the not ion of subexpression.

t

L

L.

T h e r e  i s one other deba  ta13 I e po i fit about these ax i oms. I t i s that L.I~
have, as you may have anticipated f r c; III the e a r l i e r cli scussion o f ecpa I i t \1
be t men i nd i v i dua l s , adopted .  the  doctriniz  of discreteness for the domain of
S-exyressi ons. T h e  o p p o s i n g  p o i n t  o f  vie:! i s  t h a t  a  t e r m  such a s  consW,Xj
!I.J~ i ch c l e a r l y must be ‘under’ both the  te rms  consiA,X) a n d  cons(B,X) fo r  a r t y
i nc!  i vi dua I s A & B) i s not the same as liU and, moreover, tai I (cons (UU,X)  1 ax. As
f a r  a s  t h e  r e l a t i v e  pal-Jet-s  o f  t h e  opposin;j systerjls  a r e  c o n c e r n e d ,  i t  see;hs that
moL;t t h e o r e m s  a r e  i d e n t i c a l ,  b u t  There a r e  a some not i on6 expressab I e r,: 0 r e
si r,:p t y in one system than the ~t:-~?r. The 5ig argument in favor of  the a b o v e
s e t  df ax i oms  i s  t ha t I: i t h d i s c I’ e i e r e a:# 5 c 3 L’, e s the notion of equal iry ais
expCwl7ded e a r l i e r . T h e  only  t r i c k y ;:lar  t abocl  t amend i ng the above ax i ems to
al  low for  the case where consiUU,X)*Uti  is the problem of excluding the inf ini te
S-express i 017s.



Append i x 8 con ta i ns t heorel;ls  abcjil  t the f unc t i ons i ssexp, head, ta i  I ,
COIliS, atom a n d  n u l l . We men  t i on h e r e  o n l y  a n i n d u c t i o n  t h e o r e m  f o r
S-express i ons: -

V x  y, g ( x ) : :  g ( y ) : :  gkOnsix,$kTT,
V x  y. a t o m ( x ) : :  g(x)zTT  b Vx, d(x):: g(x)‘TT

Fol lowing LISP, a list is a special case of an S-expression, namely one
which t ransforms to N I L  a f te r  some number  of  appl icat ions of the tai  I  operator.
As such, l i s ts  a re  eas i l y  de f ined.

MDEF 6.11 islist E k& [XX, nul I (x)+TT,atom(x)+FF,G(tai  I (x)Hl

As usual, a number of theorems form an append i x (9) but we give an
i nduc t i on theorem I oca I I y .

VX y .  J(x):: islist(y g ( y ) : :  g(Co;lsix,yjjrrTT,
g(NIL)zTT t vx. islist(x g(xkTT

A number of  usual  olzerations  on lists and S-expressions are given with
some o thers t h a t  foreshadcw the  t rea tment  o f  se ts  in  the  nex t  sec t ion  o f  th is
r e p o r t .

;MDEF  6. 16

MDEF 6. 17

t

;wDEF 6. 26

r e v  = [AX, rev2 iX,NIL) I
rev2 z IaG. [Xx y. n u l  I  ix)+y,G(tai I (x),cons(head(x),y))ll

&H [aG. [Xx y. nul  I  tx!+y,cons(head(x),G(tai  I (x),y))ll
ANDmapz  [aG. [Xx p .  i  sl i  st (x1-

(nb I I (x1-T’1,p(head(xH+G(tai  I (x),p),FF),UUll
ORmap  E [aG,  [4x  p. i s l  ist(x)-,

hul I (x)~FF,p(head(x))~TT,G(tai  I (x),p)),UUll
FNmap 5 IaG.  [xx  f.

(nul I (x)+NIL,cof;s.if(head(xWG(tai I (x),fH)ll
FRUNE E [aG, CXx  p,nul I (xMiIL,pk~ead(x) )-+G(tai  I (x1 ,p),

cons(head(x),G(tai  I (x),p))ll
niem z [xx y. ~9 (xJ -0Rmap (1~ , [X2, x=zl 1 , UUI

mem?  B [Ax y, i s I i s t iy) +APIC;i:iaj:, (x, [AZ.  nienl iz, y1 I) ,UUI
memEQ p IAX y, memL  (x, y) +n:t?;k  (y, xj , FFI

metifS  f [Ax y. PRUNE ix, k. y=zl  )I
nien;SL  z fox y.FEUi\fE  ix, K\z. ;iienl iz, y) I) I
subexp= [KG, [Xx y. (x=&1 -(TT, atom (y) -tFF, G (x, head (y) 1 +TT,

G(x, tai I (yH11
a s s o c  B [aG. [XX y. &XI-, kl ist(yi+ n u l  I  iyj+NIL,

x=head ihead (y) )-kezd (y) ,G Ix, tai I ty) 1, UU, UUI 1
forL 3 [aG. [XL f fN!L.  ncl I (L)-fNIL,

f(hesd(L~,G(tail(L),f,fNIL))ll
nodes E [cYG. [XX,atom(M)-O,sllcc(G(head(Xjj+G(tai  I (X)))ll
l e n g t h r  CaG. IXX,nul I (XM,SucciG(tai  I (X)))ll

-
13
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T h e  f u n c t i o n  ‘ r e v ’ i s  the  func t ion  thick p roduces  a  i ist which is the
reverse  o f  the  a rgument  l i s t  and  is  de f ined  in  the  t rad i t iona l way
aux i  I  i a r y  f unc t i on  ‘rev2’).  ‘&‘,

iusing an ’

o f  t h e  a p p r o p r i a t e  corqlutation.
the append f unc  t i on i s de f i ned as the f i xpo i 17 t

It i s  p r o v e d  ( s e e  a p p e n d i x  18) t h a t  ‘8‘ could
h a v e  been defined by :

&Z [Xx y. rev2 (rev (x1, y) I.

V a r i o u s  b a s i c  p r o p e r t i e s  o f  t h e s e  ti.io irllportant  func:ions  a r e  t o  b e  f o u n d in
a p p e n d i x  10. Note that the second argument of ‘8’ need not be a I ist for the
f u n c t i o n  t o  b e  d e f i n e d .  Hoblever, t h e  follouing  resu l t  i s  read i ly  p roved (and
a simi lar remark appl ies to ‘rev2’ 1 :

VX. islist(X islist(MGY~~islist~Y) ’

T h e  p r e d i c a t e  ANDmap  i  s used to describe s i t u a t i o n s  i n  LJhich  a l  I  the
elements of  a l is t  sat isfy some predicate. T h e  computat  i on  i  s  pe r  fo rmed tq
a p p l y i n g  t h e  p r e d i c a t e  t o  e a c h  list element in turn unt i  I  the end of the I  ist
i s r e a c h e d  (and  t h e  resul  t is TT)  o r  unt i I an element is encountered which does
not  sa t ’ i s fy  the  pred ica te . T h i s  method  O f
ANDmap  IX, p)

corqlutation  means that, for example,
may be unde f i ned because 13 (g)ziJU  f o r  s o m e  O b j e c t  y, Because 0 f

th is fact ,  many of  the basic theorems about  #lDrrlap  are based on the assump  t i on
t h a t  t h e  p r e d i c a t e  i s  t o t a l .
ANl3~lap.

T h e  p r e d i c a t e  ORnq is the disjunctive analogue  o f
T h e  m o t i v a t i o n  f o r  d e v e l o p i n g t h e s e  p r e d i c a t e s  Lias to aid in the

d e v e l o p m e n t  o f  some of the later I i s t operations. There are many t heoren:s
proved (see append ix  18) which describe the the interact ion between these two
n’aps a n d  ‘ r e v ’  ( o r  ‘&‘I.

FNmap  i s  s i m p l y  a  f u n c t i o n  o n  l i s t s  Llhich a p p l i e s  a  f u n c t i o n  t o  each
member of the argument I ist. PRUNE i s a f unc  t i on, a l s o  j u s t  d e f i n e d  f o r  l i s t s ,
wh i ch r e m o v e s  f r o m  t h e  arument l i s t  t h o s e  ale:i;ents  w h i c h  s a t i s f y  some
pred ica te . AS examp I es, FNmap  M, [Xy. y:Cl 1 \.:ould d o u b l e  e v e r y  e l e m e n t  o f  a
tnunler  i c) I i s t X and  PRUNE (Y, Exx. x<8J 1 wou I d remove every nega t i ve e I emen  t
f rom a  (numer ic )  l i s t  Y .

The group of operations 6 . 1 5  tG 6.23 a r e  c o n c e r n e d  cri th r~lenlber~~hi  p i n
I ists and are crucial to the theory of sets given in the next section.
menlIx,L)  wi I  I  be  t rue  whenever  x. is WC of the eIeiwnts  of I i st L, 1 t is shol.Jn
i n  t h e  t h e o r e m s  t h a t  t h e  folIocling  is  an  a l te rna te  de f in i t ion  o f  ‘mem’:-

L

mem I [aG. [Xx y, i s l  istiyI-9 n u l l  iy!-, i7(x)+FF,UU
Ix=hea.i  iy) 1 dTT,G(x, t a i  I(y)), UUII,

menlL(X,Y) Iqi I I be TT IJhenever  ALL the elenlents of I ist X are members of 1 ist Y
a l s o ,  T h e  f o l  iodling is  an  a l te rna te  de f in i t ion  fo r  ‘memL’:-

niemL  E EaG.  [.?x y. islist( islist(
n u l  I  (x)~TT,mem(head(x!,yjtG(tai  I (xI,y),FF,  UU,  LILI]],

me;,;EQ (X, Y) s i m p l y  i n d i c a t e s  Lihether  tLio i is ts , X and Y, have the same e 1 ements
( independent of  the order or  multiplkitg  of  those elements) .  memSIL,X)  de le tes
al 1 e lements of  I  ist L which are occurrences of the object X whi le memSL(L,M)

14
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k
cleietes  a l  I  e lements  o f  l i s t  L  ldhich are also elements of  l is t  t l .

The f unc t i on ‘subexp is l~rincipslly  u s e d  t o  i n d i c a t e  t h e  imbeddincJ  o f
one S-express i on i n another . SlJljtiXp  (A, 1’) i 5 T T  e x a c t  I  y L:hen sore  s e q u e n c e

( p o s s i b l y n u l  I) o f  head  and  ta i  I operations  take  ob jec t  Y  in to  ob jec t  X. T h u s
i  f  Y  i s  a n  S - e x p r e s s i o n  t h e n  sul3expiX.Y) i n d i c a t e s  t h a t  X  i s  inbedded i n  Y
(at least once) but if Y is an atom then subexp(X,Y) i n d i c a t e s  t h a t  X i s  t h e
same atom. We are 1~01~ able, us i ng th i s new not i on, to prove in LCF the non-
e x i s t e n c e  o f  c e r t a i n  i n f i n i t e  S - e x p r e s s i o n s .  r”L

subexp(X,Y):: subex1)tY.X)::  X2.Y

T h e  i n f i n i t e  l i s t s  f o r b i d d e n  b y  t h i s tni:orem are  the  ones  wh ich  in  L ISP cou ld
be represented  us ing  c i rcu la r i t y .

The  func t ion  ‘assoc ’ is ;lurelcj  LISP-inspired  and  cou ld  be  use fu l  Llhere
s o m e  a s s o c i a t i o n  t e c h n i q u e  i s  zppropriatc  to a proof. An al ternate clay of
d e f i n i n g  ‘ a s s o c ’  t.iould b e  a s : -

assoc = [XX y. I OOAL  (y, [Xz. head (z) =x1 ) 1
tihere

IookL 5 [aG, [ X L  p. isl ist(L)+nul I IL)+NIL,
p(headiL))~head(L),G(tai  I (L),p),  UU11

i s , i 17 genera I , a more useful function. However, such a funct ion which looked
for the first element of a list io sat isfy a given predicate could be more
s u i t a b l y  d e f i n e d  s i n c e  w i t h  t h i s  d e f i n i t i o n  lookL(X,p)Ei4IL  c o u l d ni e a n EITHER
p(NiL)=TT  and NIL is a member of X OR that no element of X satisfied P.

The func t i on ‘iorL’ is  a  dsvice ior s i m p l i f y i n g d e f i n i t i o n s  o f  o t h e r
f u n c t i o n s  t.lhich t a k e  a  I i st as t h e i r  on 1 c,l  aryn;en t and uh i ch CGiilpLJtE  f ram t h e
tai I of the list to the head. As an example, the SUM of the elements of a
nunler i c I ist X is given by forL(X,+,e)  Idhi le the product is given bl,r
forL(X,%V,l). One could also give slightly more compact ciefini tions of ‘PRUNE’
and ‘FNmap ( a n d  p r e d i c a t e s  Which 31.2  s im i la r  to  ‘ANDmap  a n d  ‘ORmap’)  u s i n g
‘f 0rL’.

T h e  funct  ion ‘nodes’ doun  ts the s’ubexpressi ens of an S-exprn. crh i ch are
not a t o m i c  o r  t h e  n u m b e r of nodes in a tree representat ion of the S-exprn.
‘ l e n g t h ’ is simply the number of elements in a i i st and cou I d have been clef  i ned
( t o  f u r t h e r  i  I  lustrate  ‘forL’):-

length = [Xx.forL(x, [Xy i.Z+13,0)1.

-_
T h e s e  l a s t  tr.ro f u n c t i o n s  ( Mch are the o n l y  o n e s to refer to the notions
cleve I aped f o r  a r i t h m e t i c ) are net expounded in  the appendix  but  the  usua l
p roper t ies  c lear l y  fo l  l ow f rom the  de f in i t i ons  and  the  a r i thmet ic  environment

i
already constructed and described.

-
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7. FINITE SETS

Sets  tu rn  ou t  to  be  qu i te  hard  to  categorise  in  LCF,  even f in i te  ones.
T h e  d i f f i c u l t y  a r i s e s  f r o m  t h e  l a c k  o f  e x i s t e n t i a l  q u a n t i f i e r s  o r  t h e  l a c k  o f
nes ted  quanti  f ication, depending how you look at it, The  problem occurs even BS
soon as you try to def ine the empty set and give i ts propert ies. We can easi ly
e x p r e s s  t h a t  n o t h i n g  i s  i n  t h i s  s e t  (call  ii NS)  b y  t h e  w f f  Vx, six):: xcNSaFF
but when we come to say that the nul I set is the ONLY set in crhich there is
no th ing , cre find no simple 14ay to express the sentence

Vx,xcA=FF t AINS as a well-formed formula of LCF,

Recal I that the form of an axiom in LCF is a WFF - not a sentence.

The s o l u t i o n s  w e d i scovered to the above problem al I invo lved
ax iomat is ing  a  cho ice  func t ion  fo r  se ts Idhi ch ~.~ould  pick some element from any
s e t it Leas  appl  ied t o .  Holdever,  u s i n g  t h i s  n o t i o n , sever a I deve I opmen t s o f the
theory  a re  poss ib le . Because of the enormous economy involved, LJ~ have baseci
our se t  theory  on  t rans fo rmat ions  betl.leen  se ts  and  l i s ts .  The cho ice  func t ion
invo lved is  the  tak ing  o f  the  head o f  the  l i s t  tha t  a  g iven se t  maps in to (see_ _
t h e  f u n c t i o n ‘select ’  def ined below).

The transformation funct ions are ‘I i s t o f ’  a n d  ‘setof’
axiomatised as fol  lows; note that f in i teness i s automat i c since I
a x i o m a t i s e d  t o  b e  f i n i t e .

\L
L - ;w~;AX  7 . 1 LXX. i sset (x)+TT,  TTI 3 3

;~M:AX 7 . 2 Vx, isset(setof(xIIa(isl ist(xl-+TT,UUl
:W:~;AX 7 . 3 V~.isiist(listof~xl1~(isset(x)+TT,UUl
:k:WAX  7. 4 Vx.setof(listof(x)Misset(x)+x,UU)
:~~>~i-I;AX  7 e 5 V x  y. memEQix,  yl 5 setof (XI =setof (y)

\

and are
s t s i4er e

Note  tha t  these ax ioms do  no t  imply that sets are dis joint  f rom I ists,
S-express i ons or any other data type that may be part  of  indivicluat s. In fact
i t  i s  n o t  i n c o n c e i v a b l e  t o  i d e n t i f y  s e t s  1.rith the  l i s ts  to  i.lhich they map by
‘I i s t o f ’ . However, al l  that is needed to ensure disjointness is an axiom l ike’

‘I v x . i sse t (XI : : i ssexp 1x1 zFF

With these not ions, Gle easi ly DEF!NE  a l l  t he  usua l  opera t ions on sets
in terms of the l ist  membership funct ions and predicates def ined in the last
sect ion. We start with some basic ones:-

kc.
Ycd<DEF 7 . 6 NS z setof  (NIL)
MDEF 7. 7 c z [Xx y .  mem(s, I  i s t o f  (y)jl
WEF 7. 8 s u b s e t  B [Xx y. me&i I i stof (x1, I i stof (y) )I._
:~<;~<DEF  7. 3 U E CXx y.setof(listof(x)&listof(y))J
+:>+DEF 7. 18 \ 3 [Xx y.setofiniemSL(listofix),listof(y~111
+iglDEF  7. 11 n 2\. [Xx y. setof imeniSL  ( I i stof (x1, I i stof (x\y) 1 I
MDEF  7 . 1 2 s e l e c t  z [XX,  head(listofixIij
MDEF 7 . 1 3 s i n g t n  = [Xx. setof (cons(x,NILl)l
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W i t h  r e g a r d  t o  t h e s e  d e f i n i t i o n s ,  i t  w i l l  s u f f i c e  t o  n o t e  :-

i) NS is to be taken to be the nul I (or empty) set;
ii) ‘c’ is the set membership predicate;
iii) XUY denotes the union of the sets X and Y;
iv1 XnY denotes the intersect ion of the sets X and Y:
VI ‘\’ i s  t h e  s e t  s u b t r a c t i o n  operation;
vi) ‘se I ec t’ is the choice funct ion for  p icking elements

from non-empty sets;
vi i) singtno() denotes the set with% “as it’q on ly  e lemen t .

The  d e f i n i t i o n s  j u s t  g i v e n  are t h e  b a s
theorems have been proved in LCF (for  this project).
t heorems relevent to these operations.

tc se t  opera t ions  fo r  wh ich
A p p e n d i x  t w e l v e  conta:ns

There are many theorems di  splayed -in appendix 12 ’ but  consider how
simi lar the  fo l  l ow ing s h o r t  c o l l e c t i o n  o f  p r o v a b l e  r e s u l t s  i s  t o  t h e  u s u a l
p r e d i c a t e  c a l c u l u s  a x i o m s  f o r  s e t  t h e o r y .  In fac t ,  i t  i s  poss ib le  to  p rove a l l
t h e  o t h e r r e s u l t s  o f  a p p e n d i x 12 ( except  those  tha t  ment ion  the  func t ions
‘ I  i s t o f ’  o r ‘setof’) just  f rom these theorems. Can, therefore,  these sentences
be taken as an alternate basis for a set theory in LCF? No! Two of  these
theorems have  un iversa l  quant i f ie rs  in  the  assumpt ions  and as  no ted  ear l ie r ,
o n l y sentences wi th no assumptions are admi ssable as axioms, Note another
disadvantage: none o f  t h e  s e t  o p e r a t i o n s
d e f i n i t i o n .

are i n t r o d u c e d  b y e x p l i c i t

[ X x .  isset(x)+TT,TTl  = a

V X  Y .  XcY+TT,TT  E J(X)+(isset (Y)+TT,UU)  ,UU

isset (Y)sTT, V W .  WtX E WcY /- X f Y

a (Xl =TT  1 XcNS E F F

V X  Y .  subset(X,Y)+TT,TT  z.isset(X)+(isset(Y) +TT,UU)  ,UU

i sset (XI ETT, i sset (YleTT,  VW. WcX: : WcYnTT

subset (X, Y 1 zTT 1 VW. WcX:: WrYrTT

t subset(X,Y)zTT

VW x Y. WC (XUY)  H (WrX)+ isset (Y)+TT,UU,  (WcY)+TT,FF

VW x Y.  WdX\Y)  E (WrX)-, (W<Y)+FF,TT,  isset(YI+FF,UU

V W  x  Y, WC (XnY) me IW<X)+  (WcYj+TT,FF,  isset IY)+FF,UU

VW X.  Wcsingtn(X1 3 JIWI+( isset(X)+(W=X),UUI,UU



There  a re  some other  very  impor tan t  se t  opera t ions  wh ich  have been
d e f i n e d  a p p r o p r i a t e l y Isee beloL4)  b u t (mainly because of  lack of  t ime) no
r i porous deve I opment  of their proper t i es has been done.

for!% laG, CXS  f fNS.  (x=NS)-,fFJS,  f (se I  e c t  (x1,
G(x\singtn(select(x)I,f,fNS)  1 31

Un E [Xx.forS(x, [Xy z,cj~zl  ,NS)l
In E [Ax, forS(x,  E?\y z.yi7zl ,x)1
reducen [Xx p. for’%,  [Xy z, p(yI+singtn(y)Uz,zl  ,NS)l
seq = [Xx p. (reduce (x, p1 =NS)  +FF,  TTI
SW I [Xx p .  r e d u c e  !x,p) =x 1
PS = LaG, [Ax. f orS (x, [Xy z.G(x\y)Uzl,singtn~xj133
Carda [Xx, forS(x,  [Xy z.ztll,8)1

is just an important auxi Iiary func t ion ;

where, in words,

i) forS

i i )  UnCX

i i i )  In(X

) is the n-way union of all the sets that are in X;

1 i s  t h e  n - w a y  i n t e r s e c t i o n  o f  t h e  e l e m e n t s  o f  X ;

iv ) reduce (X, p) is used to denote the set which in normal
n o t a t i o n  i s  w r i t t e n ( z 1 zrx A p(z) 1;

VI ‘seq’  d e n o t e s  S e t  E x i s t e n t i a l  Q u a n t i f i e r  6 seq(X,p)=TT
when there is a member of X which satifies predicate ‘p’
and ‘p’ is def ined on the rest of  the set;

v i ) ‘suq’  denotes Set Universal Quantifier and seq (X, p) eTT
i f f  p r e d i c a t e  ‘p’ is TT on ai I elements of set X;

vi i )  PS is the power set funct ion;

i  ix) Card is the cardinal i ty funct ion for sets.
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8. CONCLUSION
-'= ==fre====a

AXIOMATISATION  TECHNIQUES.

I n  t h i s  w o r k  c e r t a i n techniques were used in axiomatising various
mathemat ica l  no t  i ons ,  T o  i I lustrate  these w e  t a k e  a n  a b s t r a c t  examp  I e:
“Axiomatise boops using the previously axiomatised notion of beeps !I’

We start  working with the assumption that there will be things in the
doma  i n of individuals that are not boops ,  not beeps (which may overlap with
the set of  hoops) and are  no t  any th ing  tha t  i s  ment ioned in  the  ax ioms tha t
the ‘boo/3 ax i onis’ wi I I depend on. Th i s assump  t i on means that many theorems
a b o u t  hoops  w i l l  have  to  be  relativised b u t  i t  a l s o  g u a r a n t e e s  t h a t  w e  w i l l
b e  a b l e  c o m b i n e  s u c h  g r o u p s  o f  a x i o m s  w i t h o u t  f e a r  o f  i n c o n s i s t e n c y .
R e l a t i v i s a t i o n  i s  o n l y  p o s s i b l e  i f  t h e r e  i s  a  p r e d i c a t e  ‘ i s b o o p ’  w h i c h  wi I I
be true on1 y on boops, We wi I I probably want

a a [Xx, isboop (x)+TT,TTl

t o  b e  t r u e  a n d  i f  t h i s  i s  n o t  p r o v a b l e  f r o m  t h e  o t h e r  ‘ b o o p  a x i o m s ’ then
thought should be given to making it an axiom. In the  preced ing  sec t ions  th is
resu l t  was  provab le  fo r  i ssexp,  isi ist, in t roduced as  an ax iom for  i s in t , i sse t
b u t  n o t  e v e n  t r u e  f o r  isnat,

Then the various functions and predicates which are peculiar to boops
i n i t i o r i sare axiomatised paying spec

wherever possible.
ial cat-e to do so by means of explicit def

DISJOINTNESS OF DOMAINS

In the development of the environment so far,  nothing has been said
a b o u t  d i s j o i n t n e s s  o f l i s t s  a n d  i n t e g e r s ,  say, B e f o r e  t h e  t h e o r i e s  h e r e
developed as modules can be used usefully as a unified whole, another axiom
must be suppl ied to insure that any appropriate disjointness is provable.

As an example of what is required in general, we give now an axiom
that guarantees the disjointness of integers, S-expressions, sets and beeps:-

- Vx. isint(x) + i ssexp (x)+UU, i sset (x1 +UU, i sheep (x1 -JJU, x
i ssexp (x1 -) i sset (x1 411, i sbeep (x) AUU,  x

isset( isbe2pix)+UU,x
i sbeep (x)+x, UU I x.
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PROJECT STAT ISTICS.

Tt-te  tota I I  i n e  c o u n t  for- tl-;t2 l.lroots o f  ttic lQQ0  (3pprox. 1 t t-ioor-rrn~s
g i ven  i n  t he append i ces s tonils 3t 51391.1  t 23, G38 us i ni_l on I y those f e a  tut-es o f
‘ v e r s i o n  1 ’ L C F  (that i s  t h e  p r o o f  c h e c k e r  t h a t  i s  decribed  i n  t h e  1 3 7 2
manua  I [ll . The to ta I cpu t i me used 1.~8~  about 58 hours and the hum a I-I e f f o r t
invo lved eras about 8 m 2i n - n 0 n t h s (al I of which LIPS spent at a
t ime-shar ing-system console). The f igures for  man  and  compute r  e f fo r t  shou ld
be in te rp re ted i n I ight of the fact tha t  much  of the proving had to be
re-done because of a revis ion of  the axions ( A f t e r  a b o u t  15,&X! l i n e s  o f
pr 00 f some i niprovemen  t s in  the  axior,ls i.;ere  deemed essent i a I and so about 6
m a n  Lleeks  of effort Lias expenc!ed to al ter the proofs).

These s t a t i s t i c s  p r o v i d e ,  I be I iave, a valuable benchmark against
L.lh  i ch to measure the ef feet i veness o f  Iogics a n d  a i d s  f o r  p r o o f  g e n e r a t i o n .
It is proposed in the near future to use at least some of these proofs to
gauge some proposed aaandmen  ts to the input I anyuage  of  the proof  checker.

INCOMPLETENESS.

Inspect ion o f  t h e  theorenls c o n c e r n i n g  t h e  c o n c e p t  o f in teger
P r i m e n e s s  i m m e d i a t e l y  r e v e a l s  t h a t  t h e  t h e  ones g iven are on ly  the t r iv ia l
proper t i es of ‘Pr’. It ~8s a lso  no ted  in sec t ions  G and 7 that no propert ies

.  are giv,en fo r  some o f  the  qu i  te inportant operations t h a t  a r e  d e f i n e d  o n
I  i s t s  a n d  s e t s . T h e r e  a r e  a l s o ,  undoubtably,  m a n y  poLIerfuI  a n d  u s e f u l
t h e o r e m s  f o r t h e  o t h e r  a r e a s  which reniain u n s t a t e d . A I though t h i s
incompleteness dictates that a user may in  ce r ta in  c i rcumstances  be  ob l iged
t o  p r o v e  f u r t h e r  r e s u l t s , l Ljork on expanding the theorem base (for its 0:.ln
sake) has been stopped because the point of diminishing returns has been
r e a c h e d ,  T h e  f u t u r e  d e v e l o p m e n t  o f  t h i s  nathematical  e n v i r o n m e n t  wi I I b e
accomp l i shed  by individuals enunciat ing theorems as required and supplying
the  p roo fs .

Another important reason for on I y adding (proved) theorems as they
are needed is that a,new version of the LCF checker lJi I I appear I sooner  o r
later)  and LJi I  I  incorporate fea tures iihlch cri I I make the tc?sk o f  genera t ing  a
proof more automatic and so much shorter. There  i s  a lso  the  possibi  I i ty that
the typed log ic will be replaced by tt?e type free theory proposed bLl Scott
and so the Ljhole treatment uould have to be redone (aside: t h i s  ~.~ould take
much less than the 8 man- months quoted here because the proof out I ines are
a I I cone and the proof checker LIOUICI  be better - 3 months  i s  an  upper  l im i t ) .



TO USE THE ENVI EONMENT.

I nevi tab I y some rraders ::i I I Il;fnt to make use of theorems from the
append i ces of t h i s report i t- the Stanford AI project POPi system. The axioms
are located in a f i le  cal  led kXIA en [TH,tlALI a n d  t h e  t h e o r e m s  a p p e a r  i n  a
f o r m  w h i c h  LCF can read in the f i I e THPI’S on CTH,MAL:  . Note that a large
p r o p o r t i o n  o f  t h e o r e m s  w i  thGut dssuiill!t i o n s  a r e  s u i  t a b l e  f o r  i m m e d i a t e
i nc I us i on i n the SI UPSET ( for examp  I e VX. X+tiU z UU 1 a I though some 1 such
as t h e  v a r i o u s  c o m m u t a t i v e  rules)  wi I  I  c a u s e  n o n - t e r m i n a t i o n  o f  t h e
s imp l i f i ca t ion  p rocess . There  a re  ac tua l l y  more  theorems in  th i s  f i l e  than
wi I I f i t , w i t h  LCF, in  the  S0h’ of core c u r r e n t l y  a v a i l a b l e  t o  j o b s  i n  t h e
PDF10  system at Stanford, so the user ::lay have to prune a copy of THRMS to
meet  h i  s n e e d s . There  w i  I I shortly be avai lable  a core image wi th a large
se lec t ion  o f  the  mos t  impor tan t  theorc/tls d I ready read in (and moved to binary
program space to reduce garbage col lect i on time).

THEOREM NAMES,

L C F  r e q u i r e s  a  n a m e  f o r  ev$!r-y t h e o r e m  (arbi  trary a l p h a n u m e r i c
i d e n t i f i e r ) bu t  p rov ides  on ly  one hzindle for  access to a resul t  - i t s  name,
Exper ience immedia te ly  sugges ts  to  the  user  tha t  mnemonics  w i  I  I  be  an
important ingredient in the organizat ion of the environment and this is so as
examples indicate:-

PC.60  - pos (01 =FF
PLUSUX - vx. UU+XnUU
TIMESBX  - i  s i n t  (X)=TT )- 0:f;X=0
E L T X N S  - 3 (X)aTT  1 XtNS=FF

However, f o r the many objects we have, mnemonic tags help only for a sma I I
f rac t ion  o f  the  cases . Most theorems are not results which have words already
a s s o c i a t e d  w i t h them (like associativity) and most have a good number of
tokens in the assumptions and conclusion (combined).  The author rel ied on a
f a i r l y complex system of mnemonic notions but names tended to be long and
abso lu te ly  unintel I igible to anyone else. What can one do about theorems such
a s  :-

isint(W)zTT  b (WtX)>(WtY)  z K’,Y
XaYz0, i s i n t  tW)zTT  t (X;~:Wf~Y=0
islist(X&Y)rTT  t isIist(Y)zTT
isset (X)=TT, V W .  WtXsWcY t XzY

to provide mnemonic signif icance without being so long that typing errors are
encouraged undu I y? It is apparent that proof generat ion should be wri t ten
w i t h  more faci I i  t i e s  t o  a d d r e s s t h e o r e m s  b y  t h e i r  c o n t e n t  a n d  t3 h a v e
appropr ia te  goa l -d i rec ted  p rocedures t o  s e a r c h  f o r  t h e  r i g h t  t h e o r e m  t o
awb
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ALGEBRAIC MANIPULATION.

Another- si tuat ion I./here proof generat  ion seemed unreasonab  I y ted i ous
eras where an expression i nvo I v i ng opera t clrs i,lh i ch had special proper t i es -
commutat  i vi ty and associst  ivi  ty in part icular. A good example of this sort
of painful p roo f  ocurred in trying to prove t h e  t h e o r e m

(X+Y) :‘; (X-Y) E tX;kX)  - (Y;kYi .

I gnore the prob I em of IJha  t happ?i:2 i,ihetT  >( ot‘ \’ are e i t her undef i ned or s i m;j I y
n o t  i n t e g e r s  a n d  s u p p o s e  isint(Xj=TT, isint(Yj=iT , T h e  s t e p s  i n  t h e  p r o o f
are: -

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

FUTURE WORK

i s i nt (X:~:X)  _=TT
(X9:X)  t0rX:~;X
i s i n t (Y:f;X)  sTT
(YYtX) - (YAX)  50
V X  Y  Z .  CXtV)-ZSk(Y-Zj  -
v x  Y  z, ~x+Y):kzs i?h;Z) t iY:!,Z)
VX  Y  Z, X-(YtZjzWYj+Z
vx Y z. Xt(YtZ)z  (:<tY) tz
i (XtY) :7(x)  - ( (XtY):l;Y)  z iX:?X) - (YII(Y)
V X  Y Z. X,t (Y-2) 9 HAW - O:AZ)
(x+Y)~~(x-Y)~Ix~~~x)-IY;~;Y)

(BY ?,4,5:5)

(BY 9,101

This research has given bir th to a lot  of  suggest ions about poss ib le
i mprovemen  t s to  LCF. Be fo re  th i s  mathemat i ca l  env i ronment is expanded,
therefore,  a new, more-automat ic  proof  generator  should be developed. l?hen  a
nei.1 one i s produced, the body of theorems should be reviewed and expanded.

The same sor t of exper i men  t i s p I anned  to g i ve the same sort of a
r i g o r o u s  t h e o r y f o r  a  prograIilrli  i ng language, A suitable language (such as
LISP, ALGOL) or a subset of a latquac~e  i.li I I be taken and the semantics
ax i oma  t i sed us i ng LCF. Then .i mpor  t an t t heorenis wi I I be formu I atecl and pt.ovecI
as t ime and imaginat ion permit .
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APPENDi  X 1 - Theorems depending on NO axioms.
nr===zz=  r = E=======: o======== EZ ==I =EPtP==

t L4X . UUI  = uu

t VP. (P+TT,FF)  = P
t VP. ~P+uu,uu1  E uu

Ad. BcX k VP . (P4,B) c :<

P+TT, UU=TT
P+TT, FFzTT
P+FF, UUsFF
P-FF, TTrFF
P+UU, TTEFF
P+FF, TTaTT
P+UU, FFrFF
P+TT,FF=FF
P+TT, TTEUU
P+FF, FFzUU
P+TT,FFdkJ
P-+FF, TTdJU

t
t
t
I-
t
t
t
t
t
t
t
t

P H TT

P-+FF,FF=TT
P+FF, UUETT
P+llU, FF-ITT
P+TT, TTEFF
P-TT, UUEFF
P4U, TTzFF

P 3 TT
P I TT
P z TT
P z FF
P z FF
P z FF
P = FF
P E 1lU
P s uu
P z uu
P = uu

TT z FF
TT E FF
TT E FF
TT H FF
TT P FF
TT E FF

PtUU)  ETT i- P 5 [xx . TTI
P (UU) EFF /- P = Lxx ,FFI



APPEND I X 2 - Theorenls  t h a t  f o l  IOLJ from the proposi tior~a~ axiotl\s,
===.9==93  = = c:r===tc= lKr== - - - -E=====  - - - -  ==s PPL=tDtPDte== z:======

t -l-T z FF
j- -uu = uu
t -FF = TT

t

TTvTT = TT
TTdJ 3 TT
TTvFF z TT
UUvTT J TT
uuvuu 3 uu
UUvFF J UU
FFvTT E TT
FFvUU z UU
FFvFF E FF

1 VP, TTvP L TT
/- VP. FFvP s P
/- VP. PvTT -= TT
j- VP. PviF 5 P
\ VP. UUvP c TT
)- VP. PvUU c TT

TTATT s TT
TTdU 3 UU
STAFF t FF
UUATT 3 UU
UUAUU s uu
ULhFF z FF
FFATT P FF
FFdU 3 FF
FFAFF 5 FF

t VP. TTAP s P
t VP, FFAP 5 FF
,L VP, PnTT I P
/- VP, PAFF s FF
t VP.CkhPcFF  .
t VP. P&U c FF

/- TT=TT 3 TT
1 TT=UU z UU
/= TT=FF s FF
f- UU=TT z UU
/- uu=uu s uu
j- UU=FF ,= UU
/- FF=TT 3 FF
1 FF=UU 5 UU
t FF=FF s TT

25



i

APPENDIX  2 kont  inued).
w-----v- -

1 VP, UUmP M UIJ
1 VP. Fwu u uu

P=Q E TT t P pi Q

t VP. 4-P) = P
t PVQ z QVP
t VP Q R, (PvQhR
1 PAQ = QAP
t VP Q R. (PAQJAR
t P=Q E Q=P
t VP Q R. (P=Q)=R

E Pv(QvR)

E PdQr\R)

E P=(Q=R)

PAQ~FF /= P+X,(Q+Y,Z) 0 Q+Y,(P+X,Z)
PvQeFF t P I FF
PvQsFF t Q z FF
PnQ;iTT  t= P E TT
PAQETT t Q I TT

c



APPEND I X 3 - Theorems  tha t  f o l  IoL: from the equal i ty axioms alone.
EEEEE=EE  E E EEEEEPEE EEEP EEEP==  SElE EEE PEEEEEEE EPEPEE  EEZEEE

j- l3(uu)  8 uu
t vx. uu-x 3 uu
t vx. x=uu E uu

a(XMJU t x 3 uu
dtX)eFF  /- TT z FF

t vx , acx,+x,x 8 x

iX=Y) zTT t cl(X)  8 TT
(X=Y 1 sFF t J(X) z TT
;I (Xl ETT J- X=X c TT

t vx . x=x 8 13(X)

(X=Y 1 aTf t
d(Xb:TT,  X a Y t
X=YzTT,  YdzTT  )-
d(X)=TT,  X=kUU t
iX=Y 1 sTV t

t
(X-YkFF,  XcY t

d (XbTT,  XcY 1

x 3 Y
X-Y E T T -
X=z E T T
Y = uu
Y-X E TV
X=Y 8 Y-X
TT P FF
XSY
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APPENDIX 4 - Theorems about  Natural  kmbers  6eee sect ion 4).
EEEEEEZE  E = =====-w-m-e CEEEE =====z= =E=EEPE

a) Theorems wh ich  fo l l ow  from  axioms 4.2 to 4.8 alone:

t Z(0)  a TT
t isnat (8) PE TT
t sucd0) E 1
t pred(l)  E 0
t succw  s 2
t Z(1)  E FF
t isnat (1) ES TT
t pred(2)  5 1
t Z(2)  T FF
t isnat (2) 3 TT
/= ZUJ) s uu
t isnat (UU)  z U U

Z (Xl ETT t x=0
isnatCXkTT  1 Z(succ(X))  = F F
isnat(X)ETT  /- isnat(succ(XH  E T T
i mat (XI =FF t TT z FF

isnat(X)sTT,  Z(X)eFF t isnat(pred(X))  B T T
isnatlXkTT t predkwc(X)  1 B X
isnatiXkTT,  Z(X)BFF 1 succ(pred(X))  B X

isnat(XkTT,  isnat(Y)PTT, succ(X)zsucc(Y)  1 X B Y

g (0) sTT, V X .  isnato(k:  g(X):: g(succ(XH~TT  t
VX. i mat  (XI : : g (XI sTT

b) Theorem that use 4.1 to 4.8 and the equal ity axioms,

isnat(X)aTT  1 d(X)  E TT
Z (Xl sFF t iHX> u TT
z (Xl EUU t xauu

f- WI 3 TT
t a!21  = TT
t succuJ)  3 u u
1 pred(UU) z U U
/- U--0) o FF
t G!=0)  E F F
/= (2-l)  3.F

28



!

i

APPENDIX 5 - Proo f  o f  an  Induc t ion  Theorenl  for  Natural  Numbers.
EEPPEEEE  E E EDIEEE  PP EE PPEE:=EE== EEPEEEE UEE EPPEEPE rnPEEEEEE

[ The proof is as suppl ied TD the p roo f  checker .  1
I nraterial  i n  s q u a r e  b r a c k e t s  is coaitwntary.  ]
[ theorenl  THl i s Z(x)nTT  t X10

theorem TH2 is t I(O)
theorenl TH3 is isnat(x1tTT,Z(x1aFF  1 isnat(pred(xllnTT
theorem TH4 is isnat(xI=TT,Z(x1mFF  t succ(pred(xIlsx  1

i

LABEL Ll:
ASSUME g(0bTT;
ASSUME VX. isnatoil:: g(X):: g(succ(X))sTT;
G O A L  V X .  isnat(X isnato():: g(X)nTT;
TRY INDUCT istep no. of DEF 4.3) OCC 1,3;
TRY 1 SIMPL:
LABEL L2;

TRY 2 ABSTR: [ S t e p  .L2 is VX: F Xl : : isnato():: g(XI=TT

L

L
.

TRY 1 CASES Z(X);
TRY 1 SIMPL;
USE THl,-; USE THZ:
TRY  SIMPL BY -,--,.Ll;

TRY 2 SIMPL;
LABEL L3;

TRY 3 CASES F(predoW;
TRY 2 SIMPLj
TRY 3 SIMPL;
TRY 1 CASES isnato(I:

TRY 1 SIMPL;
L USE TH3,-,.L3;

APPL .L&pred(Xl;  S I M P L  - BY --;
c USE TH4,----,.L3;

APPL .Ll+l,pred(XI:  SIMPL - BY --)
TRY SIMPL BY -;

TRY 2 SIMPL:
TRY 3 SIMPL;

L GOAL VX. isnato(1::  g(Xl=TT;
TRY ABSTR;

T R Y  1  C A S E S  isnato();.
TRY 1 SIMPL;
APPL --, X: SIMPL -;
TRY 1 SIMPL BY -;

c TRY 2 SIMPL;
TRY 3 SIMPL;

T HEO REM MATHIND:  -;

[ The theorenl MATHIND is
g(B)zTT,  V x ,  isnat(x g(x):: g(succ(x)IzTT

/- vx. isnat(x g(xl=TT I

[ Z(Xl=TT

[ ztx)E~u 3

1 Z(XIzFF
[ F(pred(X11 ~JUU
[ F(prdX)hFF
[ F(pred(X)  )aTT

[ isnat(X)zTT
t isnattpred(XI)=TT

I g(pred(XllsTT

-9 -----t [ g(Xl=TT

[ isnat(XI=UU
1 isnat(Xl=FF

1

I
1

[ isnat(XlzTT

[ isnat(X)=UU
[ isnat(Xl~FF

3
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APPENDIX 6 - Theorems that  fo l low f rom axioms 51.1 to 5.8
mP====zc  E ==ss:-,,-- -MM--e--s ---s z=====  == =csID=L=*s (c UieP lcIC
(together IJi;h axioms of sect ions 3 and 4).

)- pod01  I FF
t pas(l) o TT
t pas(2) = TT
t posuJ) = u u

1 isintOJU1 z UU
i s i n t (XI aUU t XdJU
i s i n t (XI =TT t dtX, 3 TT
pos (Xl cTT t isinto() z T T
pos 1x1 EFF /- isinto() = T T
i  sna t  (XkTT /= isinto() = T T

isint(mns(X))zTT  )- isint(X)  5 T T
i s i nt (XI =TT t i sint (clns(X)  1 =- TT

t isint(0) P T T
t isinttli = T T
t isint(2) P T T

t mns  (0) E 0
isint(XkTT  /= mns(mns(XH  I X

1 mns(UU1  E U U
isint(Xk.FF  J- mns(X)  = U U

isint(X)sFF t Z(X) 5 FF
pas(X) HFF,  pos(rnnso(l )mFF t X = 0
pos (XI iiTT t Z(X) z FF
pos (mns  (XI 1 sTT t Z(X) 3 FF
isnat(XbTT,  pos(X1~FF f- Xr0

j= V S .  Z(mns  (X‘IIris

i sna t (XI ETT, Z (XI arFF t pdXi P TT
i snat (mns  (XI 1 =TT t postSI z iF
pos (mns  (XI 1 E;TT t pas(S) z FF
pos(mns(X)  )=FF, Z(XkFF  1 p~sC~0 5 T T
pos (Xi zTT t posimnsi)o  I z F F
pos (XI =FF, Z (XI sFF I t pos(mns(Xi  1 z T T
isint(XkFF t p0dxj E uu

Z(mnsiXHtTT  t X H 0
pos (XI zTT t isnat (XI = TT
pos (XI aFF j= isnat(mns(XH  5 T T

int (X)+Z(X)  ,UU

-
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APPENDIX 6 kont  inued).
--m----m  m.

i s i n t  (XjsFF
i s i n t  (XlzFF

t succo() = u u

isint(XkTT
/= predof)  5 U U

i s i n t  (XkTT
j- pred(succ(X)  1 z i(

pos 1x1 aTJ
t succ{predCO i s X

pos IX1 =FF
t pos(succ(X))  z T J

isint(XlzTT
1 pos(pred(X)  1 z F F  ”

isint(X)=TT
/- isint(succ(X1)  E T T
t isint(Dred(XH a  T T

isint(succ(X))zTT  c isint(kl 8 Tf
T-risint(pred(X))~TT  b isinto()

t vx * succ
t VX . pred

h-6 (Xl  1 8 mns (pred (Xl 1
hs (Xl 1 8 nms (WCC (Xl 1

pos(x)dlJ,  isint(X)zTT
nms(X)dU, isint(X)%TT

t TJ
t JJ

pred(XMJU,  isint(X)rTT  t TT
SUCC(XMJU,  isintlX)sTT /- TJ

E FF
E FF
E FF
8 FF

g(ObTT, Vx. isinttxl::g(x)~g(succo) t V X .  isint(X):: g ( X )
E T T

g (0) Eh (01, VX. isint(X)::dig(X))~TT, VX. isint(X1::a(h(XllnTT,
VX, isinto():: (g(X)=h(X))::  gkucc(Xil  P h(succlX))

VX. isinto():: ((g(X)-h(X))::  g~prado())  E h(pred(Xi)

V X .  isinto():: g(X) a h(X)
t
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APPENDIX 7 - Theorems about the operations of arithmetic,
PI=*c-cPP  s e=Dszz== fz=zz=  ==z.
( uses  the  a;ioms o f  sec t ions  3,

=P=Pa EO PPIuIIP=s=P
4=~~~k 1,

a) C o n s i d e r  f i r s t  t h e  a r i t h m e t i c  o f  +  a n d  -*

t vx. xiuu 8 uu
t vx. uu+xdJu
t vx, x-uu 8 uu
t vx. uu-x 8 uu

isint(X)EFF j= VY. X+Y f uu
isint(Y)=FF 1 vx. XtY z u u
isint(XIrFF j- VY, X - Y  2 uu
isint(Y)sFF 1 vs. X-Y 9 u u _

isint(X)ETT  1 x+0 E x
isint(XI=TT )- x-0 H x

t vx. x+1 E SUCCK)
t VX. X-l = pred(i0

isint(XkTT j- Xtmns  1x1 z 0
isint(XkTT t nins (X1+X  E 0
isint(XkTT t X - X  E 0

j- V X  Y .  succ(X)tpred(Y)  z X+Y
t V X  Y, predoikxw(Y) E XtY
t vx Y. SUCdjotY E ;+SUCC(\i)
t V X  Y, pred(X)tY  E Xtprccji'!)
t VXY, s u c c  (X+Y) 3 Xt:dCc  (‘0
t v x  Y .  succ~XtY1  8 succ (ii) -t-Y
1 V X  Y .  pred(XtY) E Xtpr'ecr(Y)
/- V X  Y .  pred(XtY) RI pred(k!tY

isint(X)=TT, isint(Y)rTT k isint(XtY) E T T
isintiXtY)sTT t isinto() a TT
isint(XtYkTT t isint(Y) 5 T T

t vx Y z. (XtYItZ 5 Xt(YtZ)

isint(XtW)rTT, XtWEYtW f- X z '1
isint(X)aTT t 0+x P x

t VX, 0-X 3 mnso(i
fi vx. 1+x s SUCCiX)
t VX .  1 - X  E mns(pred(XI)
t XtY 16 YtX

1 V X  Y .  nins(XtY)  E mnsiX)ttiinstY)
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APPENDIX 7 kontinuedL
--Wm.----  -

b)

t V X  Y .  succ(X)-Y 0 X-precW
t V X  Y, predtX)-Y  t X-succiY)
t v x  Y, succ(xbsucc(Y)  3 X - Y
t V X  Y, pred(Xi-predIY)  s X - Y
t VX Y, nins(X-Y) H Y-X
)- vx Y z. x-(Y-Z) 3 (X-Y!tZ . . . .
t VX Y Z. X-(YtZ)  z o(-YLZ
t vx Y 1. X+(Y-Z)  3 (X+Y)-z
t V X  Y, succ(X-Y) H X-precl(Yj
t vx  Y, succ (X-Y)  8 succ  (Xl  - Y
1 V X  Y, pred(X-Y)  z X-succ(Yi
t V X  Y  .  pred(X-Y)  a predo()-Y

isint(X)sTT,  isint(Y)oTT  1 i sint(X-Y)  P TT
isint(X-Y)aTT t isinto() B T T
isint(X-YltTT t isint(Y)  E T T

X-YE0 t x 3 Y

NOM theorems f rom the defn. of  mult ip l icat ion.

t vx. X>kUU  3 uu
t vx. uu:tx  2 uu

isint(X)rFF  /= VY, X&Y 3 u u
isint(Y)oFF 1 vx, X$tY 3 u u

isint(X)=TT t x;t0 E 0
isint(X)eTT t X:ltl  3 x

isint(X)=TT, isint(Y)rTT 1 isint(Xj;Y) E TT
isint(XltY)mTT t isinto() a TT
isint(X#rY)mTT t isint(Y) o T T

t V X  Y .  XkY 3 (X3kpredIY)  1+X
t v x  Y. X:NUCC(Y)  = o(9;YLtX
t V X  Y, X:kpred(Y)  E (X:kY)-X

isint(X)=TT k 0;r;x 3 0
/= V X  Y. XstY P (pred(XLvY)+Y
t v x  Y .  succ IXhY 3 CI(;tY)tY
1 V X  Y, pred(X)& s tX:kYLY

t X:tY 8 YAX
isint(X)rTT  t l;kX 3 x

t V X  Y .  mns(X)sr;Y  z mnsiX5Y)
t V X  Y, X9fmns(Yj  p mns(X9;Y)
1 V X  Y .  mns(X)+~mns(Y)  i X;f;Y
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APPENDIX 7 (continued),
--w--w--  -

t vx Y z, X;tlY+Z)  E IX;tY)  + oI(AZ)
t vx Y 2, X&Y-zz E 1X,vY)-  CkZ)
t V X  Y  I, (XtYhZ I (X:(tZM‘kZi
t v x  Y  z, (X-YhZ  8 (Xd) - (Y;kZ)
t v x  Y  z, (X-ikYhZ  8 Xdr  (Y;lrZ)
t v x  Y .  (X+Y)*(X-Y)  E (X,kXLiY:kY)

isnat(X)=TT,  isnat(Y)=TT t isnatIX+Y) z T T
pos(XkTT,  pos(YkTT 1 pos(X+Y) s TT
pos(XkFF,  pos(Y)eFF t pos(X+Y) 5 FF
pos(XbTT,  pos(Y)tFF t pos(X-Y) P TT
pos(XkFF,  pos(YbTT t poso(-Y)  H FF
isnat(X)=TT,  isnat(YfsTT t isnat(X) E T T
pos(XkTT,  pos(YkTT /- pos(X:lsY)  I TT
pos(XkTT,  poslY)sFF t posiX;tY)  B FF
pos(mns(XI  IsTT, pos(mns(YI  )ITT  t -pos(X>kY)  ro TT
pos(l-XbTT,  isnat(X)sTT t x30

c) Now add the  d iv is ion  opera tor .

t vx. x/uu  z uu
t vx . x/0 = uu
t vx. uu/x a uu

isint(X)zFF t VY. X/Y 3 u u
isint(Y)=FF t v x .  X / Y  3 uu

isint(X)=TT,  Z(X)eFF t 0/x 3 0
isint(X)rTT,  Z(X)zFF t x/x 3 1
pos(Y-X)aTT,  isnat(XkTT  t X/Y 30

VY* isnat(y [ah. [Xw.Z(w)~TT,g(pred(cl))~h(pred(w)),UUIl(y)::  g(yItiTT
t vz, isnat(z g(z)  B T T

posIX)rTT,  [ah, Ehw.ZI~~)~TT,f(pred(~~))~h(pred(w)),UUll  (XkTT
t VY. isnat(Y postX-Y)::  f(Y) e T T

isnat(X)~TT,  pos(Y)=TT. t isnat(X/Y)  E TT
isint(X)%TT,  isint(Y)zTT, Z(Y)SFF  t isint(X/Y)  in TT

t V X  Y .  mns(X)/Y a mns(X/Y)
t V X  Y, X/mns(Y) s mns(X/Y)
t V X  Y .  mns(X)/mns(Y)  3 X / Y

isint (X/Y)rTT t isinto() E T T
isint(X/Y)zTT  t Z(Y) E FF
isint(X/Y)rTT  t isint(Y) E TT

isnatiX)=TT,  pos(Y)nTT,  isnat tW)rTT t 1 (X:W +Wl /Y 3 x+ WY)
isint(X)sTT,  isint(Y)zTT, Z(Y)SFF t (XaY)/Y 3 x

-
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APPENDIX 7 kontinusd),
- - - - - - - -  -

d) The mod operator  (9) is remainder on div

t vx, xouu 8 uu
t vx. xo0dJu
f- vx. UUsXeUU

isint(XkFF 1 VY. xst' E u u
isint(YlHFF t vx, XQY = u u

isint(X)zTT,  Z(X)zFF f= 00x s 0
isint(X)=TT, Zo\')eFF t xsx 9 0
isnat(X)sTT,  pos(Y-XIPTT  /- XOY E X

t V X  Y, nins(X)sY B nins(XsY)
t VX Y, Xemns(Y) in XoY
t V X  Y, mns  (X)snins  (Y) 10 mns (Xc49

isint(X)zTT,  isint(YbaTT,  Z(YkFF t isint(XoY) P T T
isint(X~YGl'T t isinto(1 B T T
isint(XeYlnTT t Z(Y) a F F
isintIXsY)wTT t isint(Y)  E TT

isint(X)ETT, isint(Y)aTT, Z(YbFF t (X:t:YhY  f 0
isnat(X)=TT,  pos(YkTT,  isnat(W)=TT  t t (X&Y)  +W) QY 8 WQY

t V X  Y, XaY 3i Z(YMJU, Z(XMisint(Y)+B,UU),  (pas(X)+  (pas(Y)+
(pos(Y-X)+X,  (X-YlsY),  Xww(YH,  mns(mns(X)sY) 1

t vx Y, (XSYISY = XSY
t v x  Y .  (X/YhY E x-(XSY)

isnat(X)zTT,  isint(YkTT,  Z(Y)=-FF  f- isnat(Xe)Yl = T T
isint(X)mTT,  isint(Y)sTT, Z(Y)zFF t ((X/YltJrY)+(XQY) I x
isnat(X)aTT,  isnat(Y)aTT t VW. (X+Y)oW 8 ((xsw)+(YQw~hw
(X/W)  - (Y/W)  00, (XOW)  - (YSW) 10 t X8Y

isint(W)rTT, isint(Y)mTT,  ZtYkFF, WoYe(WtXbY  f- XdpY 8 0
XaY=0,  isint(W)aTT  t. (X:~<W)cY  E 0
X~YE~,  isint(WlsTT  1 (WYrXhY E 0

e) R e l a t i o n a l  o p e r a t o r s  I > , 2 1.

t vx . xruu 8 uu
t vx 9 UUlX 8 uu
t vx . x>uu 3 uu
t vx . uu>x  8 uu
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APPEND I X 7 (con t i nued)  .

isinttX)eFF j-
isinto')eFF  t
isint(X!aFF 1
isint(YhFF /-
X>Y  E TT t
XzY E T T t
X>Y E FF 1
X>Y E FF f-
X>Y E TT j-
XzY  E FF /-
X>X z TT f-
XrX E FF t
X>YzTT,  Y>XzTT
XrY=FF, YrXcFF

VY , XLY z uu
vx * X2Y e UU
VY . X>Y 3 u u
vx , X>Y = uu
isintt)o E T T
isint(Y)  E T T
isint(Xj E T T
isint(YJ z T T
XrY e T T
X>Y z FF
TT E FF
TT E FF
t TT z FF
t TT = FF

isinto() I T T ,  isint(Y1 3 T T ,  X>Y z UU 1 TT z FF
isint(X) a  T T ,  isintfY1 I T T ,  XLY ES U U  t TT E FF
X>YaTT,  YrXzTT  t x e Y
Y>X 1 F F t XzY i TT
YzX a FF t X>Y a TT
Y>X E TT t XzY s FF
YIX E T T /= X>Y 4 FF
W>X=TT, X>YsTT  1 W>Y E TT
W>X=TT,  X>kTT  1 W>Y H T T
W>XETT,  XIYETT t W>Y -z T T
WzXsTT,  X,,YaTT  1 WrY = T T
isintiX) z T T t XIX z TT
isint(>o E T T t X>X E FF

t vx * posco z x>0
pas(X) E T T t X>0 E TT
X>0 E T T t pas(X) I TT

t vx Y , (X-Y)  20 5 XIY
i sna t (X-Y) 2 TT t XLY E T T
isnat (X) PB T T k Xr0 r I-T
i snat (mns  (Xl 1 =TTt .X>0 = F F
X>Y 5 T T t isnat (X-Y) z T T
Xr0 E T T t isnat E T T

t VX . pos 00 E 0wwis (Xl
0rX 3 T T t pas(X) P FF
t V X  .  X>0 =r 0xnns (Xl
1 V X  .  X10 3 02hins  (Xl
t VXY. mns (Xl  >mns Pf) E Y>X
t VXY. mns  (Xl  Zmns (Y 1 = Y>X
t vx Y , XmJcc(Y)  E X>Y
t VX Y . X>predh')  z XZY
1 VX Y . pred(X)>Y E X>Y
t VXY. succo(bY 3 X2Y
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APPENDIX 7 (continued).
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f) The relat ional  operators and ar i thmet ic,

isinto()  P TT t VY , (XtY)>X e Y20
isint(Y) n TT )I VX . (X+YkY in X20
isinto() a TT t VY , (Xt\o>X B Y>0
isint (Y) a TT j= VX . (X+Y)>Y  E X>0
isinto()  I TT t VY . IX-YILX E 0rY
isinto()  P TT 1 VY , (X-Y)>X  E 0>Y
X>0 E TT t VY , (X:l;YkX I Y21
Y>0 a TT t vx , o(d:Yj  2Y z x21
X>0 E TT t VY , (XY:Y)>X  E Y>l
Y>0 s TT t vx. (X;kY)  >Y P X>l
X>OaTT,  Yrl=TT t X2(X/Y)  E T T
X>OzTT,  Y>lrTT  1 X>tX/Y) o iT _
YrBzTT, X>BzTT  t X>(YsX)  ii T T

isint(W)  = TT t vx Y . (XtW)> (Y+W) 3 X>Y
isint(W)  a TT 1 vx Y . tlMMw+Y)  a X>Y
isint(W) s T T  t vx Y . (X+W)r  (Y+W) z XrY
isint(W)  m TT t vx Y 4 bltx~2  (WtY)  % X2Y
jsint(W) z T T  j- vx Y . ix-W)>(Y-WI  3E X>Y
isint(W)  in TT 1 vx Y . tw-XMW-Y)  P Y>X
isint(W)  a TT t vx Y * (X-W) rtY-WI  E X2Y
isint(W)  m TT 1 vx Y , (W-XMW-Y)  3 YrX
W>0 E TT t VXY, IX;kW) > (Y&W)  S X>Y
W>0 G TT t VXY, (W;I:X  1 > (WAY  1 z X>Y
W>0 E TT t VXY, (X:f;W)  2 tYd4  3 X2Y
W>0 i TT t VXY. UVX) 2 (W9;Y  1 0 XrY
XrkTT, W>BzTT  1 (X/Wl2(Y/Wl z T T
(X/W)  > (Y/W) E TT, W>0 P TT t X>Y iz TT

W>0 E T T ,  X>0 s.TT, YrX H T T t (W/X)r(W/Y)  B T T
(W/XMW/YkTT,  W>,O=TT,  Yz0sTT  1 Y>X 10 TT

XrBzTT,  YzQzTT  1 (XtY) 20 P TT
X>BeTT,  Y>OzTT  t tX+YbD  = TT
X>BaTT,  YrB=TT  t (XtYj >0 E TT
XrBzTT,  Y>BzTT  t (XtYb0 s T T
XsB=TT,  Y20zTT  1 (X,vYjrB E T T
X>BzFF,  Y>0nFF  t tX~tYb0 E T T
Y>0 s T T t vx, (Xf;Yl20 E x 2 0
Y>0 E T T t vx , (X%kY! >0 E x>0
B>XizTT,  O>YeTT  t (X:kYb0 E T T
XrBfiTT,  Y>B=TT  1 (X/Y120 E T T
Y>0 EE T T t vx, (X/Y)>0 s XrY
X20oTT,  isint(Y)oTT, Z(Y)sFF t (XoYl20 P TT
lXoYb0  m T T t X>0 E T T
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APPENDIX 7 (continued).
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c$ T h e  f a c t o r i a l  operatw.

i s in t  (
x20 5

x20 a
d fFac
X20 E
x>0 E

t Fat (WI P UU
Xl sFF t Fat(X)  B UU
FF t FCC(X)  B UU

t Fact01 4
t FacW  z 1
t FacCD  s2

TT t Faco(b0  a TT
XHmTT  1 X>0 =, TT
TT t Fat Wtl I 3 Oki) ;I:Fac (XI
TT t FacoiIsX  z 0

Y>B=TT,  XzYzTT  /- FaciXbY s Z
Y>OzTT,  XZYETT t Fac(XkFac(Y)  z 0
Y>BaTT,  X>YSTT  1 Fat (XI >Fac (Y) 2 TT

h) The oddness and evenness predicates.

t e v e n  MUI P UU
t o d d  IUU) B UU

isinto() PI F F  t even(X) = U U
isinto() I F F  1 odd(X) z UU

t even 3 [Xx . (odd (x1 +FF, TT)  1
t o d d  I bx . (even (x1 +FF,  TT) 3

even(X) E TT t isintlX1 z TT
even(X) 3 FF t isintlX1 E TT
odd(X)  E TT t isinti)o P T T
odd o() o FF t isint(X)  5 T T
even (XI = UU, isintIX1 E TT 1 TT 5 FF
odd(X) 3 UU , isinto() E TT t TT 3 FF
isinto() = T T  1 even(X+2) E T T
isinto() z T T  t even (252ii 3 TT

t vx, eVei7 !i;lns (Xl 1 z e v e n  (XI
t vx, odd imns iX) ) s odd IX)

even(X) E TT t even (Xti) 5 FF

t even (0) I TT
t add(0) 3 F F
t even(l)  s F F
t odd(l)  P T T
t ever43  3 T T
t odd(z)  3 F F

-



APPENDIX 7 (cent  inusd).

i 1 The ‘Look’ operat ion,

I.

t.

c

POJUMJU  t V F  .  Look(UU,F,P)  E U U
P(X)=FF  t Look(X,UU,P)  = U U

t VX F . Look(X,F,UUl z UU
P(X)STT t VF . Look(X,F,P)  E X
VX, P (Xl cFF t VX F . Look(X,F;P)  in UU
P(X)SFF,  F(X)aX  1 Look(X,F,P)  s U U

j) The bounded

t Vt’P,
t VXP.

X>Y s F F

q u a n t i f i e r s  - ‘buq a n d  ‘beq’.

buq(Uti,Y,P)  = UU
buq(X,UU,P~  E uu

t buq(X,Y,UU)  r UU
isinto() s F F
isint(Y) s F F
X>Y E T T
isintiX) 35 T T
buq 1X, Y, P) =-TT
buq(X,Y,P)=TT
buq(X,Y,P)EFF
buytX,Y,P)EFF

t ‘if’ . buqo(,Y,P)  E UU
t VP 9 buq(X,Y,P)  3 UU
1 VP . buqoi,Y,P)  = TT
t VP . buqo(,X,P)  = P(X)
t isinto(1 z T T
t isint(Y) z T T
t isint(X)  s T T
t isinto() s T T

t VYP. beq(UU,Y,P)  = U U
t VXP, heq(X,UU,P)  z u u

X>Y 6 F F 1 beq(X,Y,UU)  z U U
isinto() B F F  /- VP . bey(X,‘f,P)  E U U
isint(Y) P F F  t VP  .  bec$i,Y,P)  S u u
X>Y s T T t VP . beqoi,Y,P) E FF
isint (Xl 2 TT t VP . beqKX,Pl  E P(X)
bec+X,Y,P)=TT t isint(i0 =, T T
beyiX,Y,P)ETT t isint(Y) 5 T T
beq (X, Y,Pl EFF 1 isinto() E T T
beq(X,Y,P)EFF  1 isinto() E T T

k) The pr imeness predicate for  integers.

t PI- (UU)  = uu
isinto() z F F  /- Pr (Xl  B UU

t PrW P FF
t Pr(?i SFF
t Pr (2!  3 TT

Pr (Xl E TT t isint(X)  5 T T
Pr(X) z FF t isinto() z T T

t V X  .  Pr(nms(X))  t Pr(X)
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APPEND I X 8 - Basic Theorems about S-expressions.

;=;I~~~;~ in

-m--wm(C=tt:  E====e==  ----w zz===z
;he equal i ty axioms plus 6.1

s-----------=z=
- 6.18 1.

t i ssexl-1 CUU)  ii U U
t a tom (l.JlJ)  m UU
t 171~ I I (CICI  i I llll
t head (LJU)  0 UU
t tail(W) SUU

atom(X)  E T T 1 head(X) 2 UU
atom(X)  H T T t tai I (X1 H UU
i ssexp(XI z U U  J- x =’ uu
a t o m  (X1 0 UU t XdJU
nu I I (X1 3 UU t XAJU

I- issexp(NIL) I T T
k JiNIL)  I TT
t nu l  I (NIL) = T T
t atom(NIL)  E T T
/- head(l\Jk)  E U U
t tai I INIL) 5 U U

issexpo(I E T T  1 a co E TT
i ssexp(X) 2 FF t NX) E T T
atom(X) = TT t d(X) 5 TT
atom(X) 8 FF t &Xl  i3 TT

nul I (X1 E TT 1 X z NIL
issexyo()  c F F  j- nul I CO = FF
atom 1x1 E TT , i ssexp (XI E TT \ nullIX) H T T
atom(X) E FF t nul I (Xl  z FF

i ssexpo() 9 F F  j- atomo() z T T
i ssexp (X1 ETT, null(X)  =-FF t atom(X)  3 F F
atom(X)  3 FF 1 issexp(i0 z T T
a tom (XI aTT, n u l l ( X )  SFF t issexpo(1 z F F

i
d (head (X1 ) z TT 1 . atom(X) P FF
actail 1x1)  3 T T  j- atom (X1 -E FF

t vx. cons (X,UU) 2 uu
t vx. cons(UU,X)  is U U

i
d(Y) e T T f= V X  .  headkons(X,YI  I z X
a (Xl z TT t VY, t a i  I  lcons(X,Y))  r’ Y

atom(X)  B F F 1 a(heado()  1 2 TT
atom(X)  ip F F t &tail(ii) a T T

i
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APPENDIX 8 (continued).
--------  -

head(x)  E UU t atom(X)  c TT
tail(X) PUU 1 atomi) c TT

a (Xl zTT, a(Y) aTT j- issexpkons(X,Y))  P T T
a (Xl =TT, J(Y) zTT  t nul I kons(X,YH  z F F
8 (Xl = TT , J(Y) 2 T T  t atomtcons(X,Y)) P F F
t3 (cons (X, Y) I tp TT t J(X) z TT
Jkons(X,YH s T T f- 3(Y) 8 TT

t V X  , a(head(X))  3 actail  (Xl)

head(X)  o X t xsuu
tail(X) mX t x f uu

nullkons(X,Y))  8 TT t TT 3 FF
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APPENDIX 3 - Gasic Theorems ior Lists.
zIz=zc=f=z  = a =*=Psf t==t=E==  z=‘- Lc===G

t isI i~~t(I\lIL)  I rf
t i 5 I i s t (l!U 1 s 1NJ

..islist z F F  t nui I Hi z FF
i ssexpiX) z FF t islistI.0 2 F F
islisto(1 3 T T  t (3 (Xl E TT
islisto() I FF 1 d(X) z TT
islisto() z T T  t i ssexpi:O E T T
islistoi) P TT , null(X) E FF 1 atomo() = F F
a (Xl E TT t VY, isIist(consiX,Y))  E islistiY1
islisto() z UU t X 3 UU -
islistttai I (XI) E T T  )- islist E TT
islist E TT , nul I (XI 3 FF t islist(tail(XH a T T

g(NIL)  =, TT ,
V X  Y  ,  S(X) : :  islisti\i : :  CJ(Y) : :  gkw-dX,Y))  a  T T

t ‘*‘1 i isl istoi) :: g(X) m TT

vx . a t 0 ni ( X 1 : : qi)o B TT ,
VX Y , CJ(~)  :: yiyi :: qkmdX,Yj)  L TT

t VX . diX) :: g(X) s TT



APPENDIX 18 -  T h e o r e m s  a b o u t  the l ist  operat ions of sect ion 6,
mm1mmmm~ mm l 9hommmmmm l mmmm ..D mmmm l mmmmmmm~m  a m l m m m w w -  II

( re ly on the axioms of sect ion 3 (equal i ty)  also 1.

a) Concern ing  ‘ rev ’ and the  aux i l ia ry  func t ion  ‘rev2’.

t vx. rev2(UU,X) H U U
t revklll) z U U
t vx, rev2 (X,UU)  E UU

* v

t vx, rev2INIL,X) 5 X
t vx. revZX,NILl a r e v  (X1
t rev(NILI  E N I L

islisto() E F F t VY. rev2(X,Y) = U U
islisto() %I FF t rev(X) P UU .
islisto() pi TT , a(Y) z TT t J(rev2(X,Y))  3 T T
isIisto() E T T t J(rev(X))  E TT
J(rev2(X,Y)) 5 T T  1 islist E-TT
3 (rev2 (X, Y) 1 a TT t J(Y) si TT
J(revIX)) a TT 1 islist 2 T T
islisto() m T T  ,  islist 61 Ti k revtrev2(X,YH  I rev2(Y,X)
ialisto() 8 TT 1 revhv(XH 8 x
islist l TT t VI’ . islist(rev2(X,Y)) 0 Mist(Y)
islist p TT t islist(rev(X1) a T T
t vx. revkons(X,NILH H cons(X,NILI
t VXY, revkons(X,cons(Y,NILH)  B cons(Y,cons(X,NILH

islisto() i TT t nul I (rev(X)1  a nul I (X1

b) Concerning the ‘&’ (append) f unc  t i on,

t vx , UU&X E uu
t vx . X&UU a uu

i s I i st (X1 EFF t VY . X&Y 3 UU
t VX . NIL&X z X

islist(X)sTT t X&NIL 5 X
t VXY. X&Y 2 rev2 (rev (X1, Y1

i s l  ist(X)eTT,  cl(Y)=TT  t d(W) D T T
is1 ist(X)sTT  /- VK, isl i s t  (X&Y) ~7 isl iat (Y)

t VXY. consIX,NIL)&Y  a cons(X,Y)
t VXY, rev&M 5 rev(Y)&rev(X)
t VXY, rev Wkons  (Y, NIL) i z cons (Y, rev (X1 1

islist(X)gTT,  31Y)zTT  t heacl (X&Y) in nul I (X)+head(Y)  , head (X1
i s l  ist(X)=TT  t ta i  I (X&Y) E nul I i)o+tai I (Y), (tai I (X)&Y)
29X&Y)  = TT 1 isIisto() E T T
dIX&Y) I TT t ii(Y) E TT
isl ist(X)aTT,  n u l  I  (X)rFF,  J(Y)=TT j- nu I I (X&Y) E FF
isl ist(XlsTT, nul I (Y)=FF t nul I (X&Y) E FF
X&Y 8 NIL t X I NIL
X&Y = NIL t Y E NIL

t VXYZ. (X&Y)&Z  z X&(Y&Z)
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APPENDIX 10 icontinued).

cl Propert  i  e s  o f  'ANDmap'  41 ICI 'OI%I~:~~ ,

L

c

-

i

t VP* ktithl;tl~-J  (1 li.i,  IJ)  m uu

i s  I ist (X1 nFF t Vp , ANDnlal:~(~;,p)  P U U
t VP* OEl&qI wu, p) B u u

i s l  istiX)sFF t vp * ORmapiX,p)  5 U U
p(X) E u u t VY. ANDmap (cons (X, Y) , p) B UU
p(X) E UU t VY. ORnap(consIX,Y),p)  E' U U

t VP* ANDmapINiL,p)  E T T
t Vp , ORmapiML,;~)  z FF

3 (Xl E TT t V p  .  ANDmap(cons(X,NIL),p)  P p(X)
a (Xl B TT t VP* ClRma;,IconsiX,  N I L ) ,  p) z p(X)

Ar?lDnlap(X,p)~TT,TT  = TT /- islist- 5 T T
ORmap(X,p)+TT,TT 5 TT /- is I i st (X1 z TT
ANDmap  1X, p) E F F t ntiI I (X1 5 FF
ORmap  iX,p) = T T t nul I ix) E FF
ANDmap(X,p)  E TT, p(X) B TT, St(X) 3 TT t kNDmap(cons(X,Y),p)E~T
rJ(x) H F F ,  isIist(cons(X,Y))  2 T T t iJJDmap  (cons (X,Y) , 1:))  HFF
ANDmap  (Y, p) s F F ,  po+&X),3W 3 T T  t ;+/Dmapkons(X,Y)  ,p) aFF
ORt,mp(Y,p)  E F F ,  r:,(X)  81 F F ,  SW = T T t ORmapkonsIX,Y),  rJ) EFF
p(X) ci T T , isIist(cotlso\',‘f)) r T T t ORmapkons(X,Y)  ,I:,) aTT
ORmap(Y,p) E T T ,  p(X)+,3(X),JW  E T T t ORmapkons(X,Y),pkTT

VX.~(X)::~(X)+TT,TTITT,  isIist(Y)rTT t ANDmap(Y,p)+TT,TTaTT
VX.S(X)::p(X)+TT,TTzTT,  islistC‘r/)zTT t ORmap(Y,p)+TT,TTsTT
ANDmap(Y,p)+TT,TT E T T ,  p(X)+J!XJ,J(Xl  t T T

1 ANDmap(cons(X,Y),p)~TT,TT  H T T
ORmap(Y,p)+TT,TT -z TT ,  piXM(X),J(X)  B T T

/- ORmap(cons(X,Y),pbTT,TT  = T T
ANDmapIX,l,)  z T T ,  nul l (X)=3 t p(heado()  1 = TT
Ai'JDt,lapfX,pt  E T T ,  n u l l  Cf! =7-F t ANDmap(tai  I (io,p) = T T
ORnlal:,  (X, p) = FF,  null(X)  =FF il p(head(XH  z F F
ORmap  (X, p) I F F ,  nulltXkFF J- ORmap(tai  I (X),p)  E F F
AND~~apiX,p)~TT,TTsTT,nulI  (X)zFF  1 p(head(X))+TT,TT  = T T
ORula;,(X,p)~TT.TT~TT, nul I iXkFF  1 p(head(XH+TT,TT  = T T

APlDr,lap iX, II) zTT, ANDn~al:,  (Y, I)) ETT )- ANDmap(rev2iX,Y)  ,p) = T T
@Finlap  (X, p) nFF, ORill~1i~  (Y, ~1 =FF j- ORmap(rev?(X,Y),p)  z F F
kli4Dmq-1  iX, p) ETT, ANDmap  iY, p) zTT k ANDmap  (XSY,p)  = T T
ORmap(X,p)=FF, ORmap(Y,pirFF k ORmap(X&Y,p)  s F F
ktKk~apiX,p) t T T  j- kbiD~i~~(r~~~iio,p)  3 T T
ORmap(;":.p)  z F F t 0R~ap (rev i:O ,p) P FF
ANDmap(X&Y,pJ  ETT j- kNOr,m3  (I<, pi z T T
ANDmap  iX&Y,p) rTT  j- .A;iGtvia/j  ('I',  ;jj 3 T T
ORmap(X&Y,pkFF t ORmapo:,p~  = F F
ORmap(XGY,p)=FF t ORnapiY,p) 3 F F
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ANDmap  (X, p) cFF, islist(Y)ETT. VS. I3(X):: p(X)+TT,TT  s T T
)- ANDlilsp (X&Y,  p) E F F

ANDmapIY,p)rFF,  isl i s t  IX)ETT,  7%. JiX):: p(X)+TT,TT  H T T
t AiJlhap  M;i,p, ‘= F F

ORmap  o(, p) =TT, islist(Y)=TT,  W. a(X):: p(X)+TT,TT  I T T
t ORmap  (MY, p) z T T

ORmap(Y,pkTT,  i s l  ist(X!=TT,  Vi<. aiX1::  p(X)+TT,TT  5 T T
t CF;IX+ iX&Y, p) s T T

ANDmap (X,p) nFF,  VX. 3(X):  : p IXMT, TT 5 T T
I- i17~,3i;;a~)  lrev (Xl , PI P F F

ORmap(X,pbTT,  VX, a(X): : p(YbTT,TT  z T T
t ORmap  irev ,p) I T T

d) Theorems concerning the ‘FNmap  func t i on.

t Vf. FNmap  (UU, f I E UU
isl ist(X)zFF  t V f  ,  FN;nap(X,f) z U U

t Vf. FNtmpiNIL,  f) 3 N I L
a (Xl z TT 1 FNmapkonsiX,NILI,  f) H consif (XI ,NILI
d (FNmap  (X, f 1 I PTT t isl ist(XI s T T
nu I I (FNmap  (X, f 1) =FF t nul I (Xi z FF
n u t  I (FNmap(X,  f))mTT t null(X)  P T T
V X .  a(X)::  r3(f(X)IzTT,  islist(S)zTT  k 3 (FNmap(X,  f) 1 = T T

t V X  f, isiistiFNmapiX,fH-=~iFNmapfX,f))
t V X  Y  f  .  FNmap(X&Y,f)  5 Ff\it;lapo(,f)&FNmap(Y,f)
t VXf. FNmap  (rev (X1, f 1 4 rev (FNmap  (X, f 1)

e) Propert ies of  the ‘PRUNE’ funct ion,
i

i

t Vp . F’RUNE  (UU, 1,) E U U
isI ist(X)eFF t V p  ,  FEUiilEb;,l.l)  3 U U

k V p  .  PRUNEWIL, p) E N I L
p(XkTT,  &X)=TT  t PRU:?;E~con~~!X,l~JIL~  ,p) D N I L
p(XkFF,  d(XkTT  t PRU~~~E(cons(X,NIL),p)  B cons(X,NIL)
a(PRUNE(X,pI )aTT  t islist E T T
n u t  I (PRUNE(X,p)  1 = F F  /- nut I (X1 z FF
V X .  a(X)::  p(X)+TT,TT  z T T , isl ist(%)rTT  I- ~(PRUNE(X,p))zTT

c

t VXP* isIist(PRUNE(X,p1)  3 a(PRUNE(X,pII
t V X  Y  p  ,  PRUNE(X&Y,p)  E ?RUNE(X,pMPRUNE(Y,pI
t VXP. PRUNE (rev (X1, p) L rev (PRUNE (X, p) 1
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f) The  ‘mem  p r e d i c a t e .

t vx. mem (UU,  X1 = UU
t vx. mem(X,UiJ)  e U U

islist(Y)zFF j= V X  .  memoi,Y) t U U
islist(Y)nTT,  mem(X,Y)sUU  f- X = Uir
mem  (X, Y 1 rTT t &Xl z TT
men1  (X, Y 1 =FF t a(X) P TT
mem(X,Y)zTT  t islist(Y1 = TT
meni  (X, Y 1 eFF t islist z T T
mem (X, Y1 aTT t nul l (Y) 3 F F
arx) nTT t mem  (X,NIL) 5 F F

Jo()sTT,  i s l  ist(Y)sTT t mm  iX,kons (X, Y1) 2: T T
mem(X,cons(Y,NILj  )sTT  /- X E Y
(X-head(Y)  1 5 F F t mem(X,  tai I (Y) 1 3 mem(X,Y)
v x .  aox>:: men1  1X, Y) EFF  )- Y = Il!IL
mem(X,YkTT,  J(WkTT  f- men1  (X, cans  (W, Y) 1 z T T
islist(tai I (X1)  3 T T I- mem  i head  1 X1 , X1 P TT
memo(,Y)zFF,nuI  I H=FF j- (X=head(Y))  E! F F
mem(X,YkFF,nul  I (YbFF  k mem  (X, tai I (Y) 1 I F F

t VXY, mem(X,rev(YH  s mem(X,Y)
mem(X,Yl)ETT,  i s l  ist(Y2)rTT  t memIX,  IYl&Y2))  z T T
memiX,Y2)=TT. is1 ist(Yl)rTT  t mem (X, (Yl&Y2) 1 s TT
mem(X,  (Yl&Y2) 1 a F F t mem(X,Y11  s F F
memoi,  (YMY2)  1 E F F t memIX,  Y2) P F F
mem(X,YlkFF,  mem(X,YZ)aFF  t mem(X,  (Yl&YZ)  1 z F F

t mem  r5 [aG, [Xx y  .  (isI ist($-+
~nulI~y~~~~~x~~FF,UUI,I~xPhcad~y~~~TT,Gtx,tail~y~~~~,UU~13

gl The ‘memLr  p red ica te .

t vx. memL  (U&X).  = UU
t vx. memL  (X,UU)  5 U U -

isl ist(X) I FF t VY . men?LC<,Yj  5 UU
isl ist(Y1 H FF t VX . memLKY1  s UU
memL  (X,Y)  E T T  t islisto() 3 T T
rnmL(X,Y)  z F F  t isIistiX1 - T T
men,L  (X,Y) E TT t islist(Yj =- T T
memL(X,  Y) z F F  t islist E T T
islist a T T  t memL(NIL,X)  z T T
isIisto() E T T  ,  islist z T T  ,  memL(X,Y)  o U U  1 TT z FF

j= VXY. memL(cons(X,NILi,Y)  z mem(X,Y)
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memL  (tai I (X1 ,Y) m T T t III~;~\L  (X, Y 1 q mem  (head (X1 , Y)
memL  tX,Y)eTT,  n u l  I  (X)eFF  t mm  (head  (%I, Y) B! T T
memL(X,Y)oTT,  nul I (X)aFF  t nletnL!tai I (X1 ,Y) l T T
memL(tai  l (X),Yl B F F t men:L(X,  Y) D F F
memL  IX, Y 1 mTT, mem (A, X1 PTT t nlelil(A,  Yl z T T

t memL  H IaG. [Xx y  .  (islistiy)~(islistIx)~
~null~x~~TT,~n~en~~head~x~,y~~G~tail~x~,y~,FF~~,UU~,UU)JJ

memL(X,  tai l (Y)) s T T t men:L(X,Y)  4 T T
nul 1 (Y) =FF,  memL(X,Y)rFF  1 rnemL  (X, tai I (Y) 1 s F F
islist z T T t menlL(X,X)  s T T
isl istIX)eTT, is l  is t  tY)rTT,  V A .  mendA,X)::  memiA,Y) 5 T T

t metllL(X,  Y) = T T
V X .  isl ist(X):: memL  (X, Y) mu I I iX) t Y 1 NIL
memL  (X, NIL) z TT t nul 1 (X1 E TT
memL  (W,X)  aTT,  memL  (X, Y) ETT  t nlemL  (W, Y) 3 T T

t VXY, memL (rev (X1 , Y) B memL  (X, Y)
t VXY, meniL  (X, r ev  (Y) 1 D memL  (X, Y) ’

memL(X,Ll)zTT,  i s l  ist(LZkTT t nlemL  (X, LML2)  = T T
memLo(,L2izTT,  i s l  ist(Ll)zTT t memL  (X, Ll&LZ) f T T
memL  (Xl,  Y 1 =TT, memL (X2, Y 1 eTT  t meniL  0(1&X2, Y 1 z TT
memL  (Xl&:i2,  Y 1 = T T t t,\emL(Xl,Y)  B T T
memL  (X1&X2, Y 1 I TT t rllemL (X2, Y) z T T
memL  oi, Yl&Y2) z F F t ruenlL(>(,  Yl) 5 F F
memL  (X, Yl&YZ)  3 F F t nlerdJX,Y2) B F F
memLIXl,Y)eFF,  isl ist(X2kTT 1 r,;emL  (X16X2, Y 1 = FF
memL  (X2, Y 1 =F , is1 i s t  (Xl)=TT  t memL  (Xl&XL”,  Y j IP FF

h) ‘ntemEQ - Equal i ty with respect to ( l ist)  membership,

1 VX . meniEQMJ,  X1 t U U
t vx. memEQ (XJJU)  5 U U

islisto() z FF 1 VY , memEG(X,Y)  z UU
isl ist (Y) s FF 1 VX . nlemECJX,Y)  z U U
memEQ(X,  Y) = T T  t islist E T T
memEQ(X,Yk F F  1 islisto() 5 T T
men~EQ(X,  Y) p T T  t islist I T T
memEQ(X,Y)z  F F  t islist 4 T T
islist(X)nTT,  islistiY)=TT,  menlEQ(X,YMJU  1 TT P FF
memEQ(X,Y)n  T T  t memL  (X, Y 1 E TT
memEQ(X,  Y) 3 T T  t memLiY,X)  g T T
memL  o(J) 2 F F  1 mend3  (X, Y 1 E FF
memL  (Y,X)  z F F  t memEQ  (X, Y 1 E FF
islist z T T  t nlemEQ(X,X)  = T T
islist 3 T T  /- men&Q (X, rev (io 1 B TT
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t V X  Y  ,  memEQ(Y,Y)  o memEQ(Y,Xj
memEQ(W,XkTT,  memEQ(X,YbTT  t memEQ(W,  Y) E T T
memEQ(W,X)~TT,  memEQ(X,YbFF  f- meinEQ (W, Y) H F F
memEQ(X,  Y) 5 T T t memEQ(XBY,X)  5 T T
memEQ  fX, Y 1 I T T t nwnEQ  (X&Y,  Y) E T T
memEQ  (X, Y 1 = TT 1 vz. iiieni (z, X1 E mem (z, Y)
isl ist(X)-tTT,  V z .  mem(z,X)~memiz,Y)  t memEQ  (X, Y) z T T

i 1 The 'mems'  operation (de I e t i ng an e I ement  from a I i st) .

t vx. meniS kJU,X)  9 U U
t YX. men6  o(,LrU1  E UU

islisto() ~0 F F t VY. men6 tX, 'f) H UU
a(memS(X,YHoTT  t islisto() z T T
~tmemSIX,Y))nTT  1 d(Y) E TT
isi i s t  tX)=TT,  a(Y)zTT  t is1 ist (nwnS(X,Y))  in T T
a(X) B T T t memS(NIL,Xj  2 N I L

t VXY, nien6(cons(Y,Xl ,Y) ii niemS(X,Y)
isIist(X)ETT,  d(Y)mTT t memtY,memS(X,YH  H F F
isI ist(X)nTT,  a(Y)arTT  1 ntenlL(n,emS(X,'f),X)  z T T
mem(Y,X)  5 FF 1 niemS(X,Y)  E X

t VXY. (meniS  (X, Y) =X1 z trnem(Y,X)-FF,TT)
t VXY. meniL (X, men6  (X, Y) 1 c (mem(Y,XbFF,TT)
t V X  Y . memEQ(rnemS(X,Y),X)  s (mem(Y,XbFF,TT)

j> The 'memSL' opera t i on.

c vx, meniSL  (UU, X1 pi UU
i= vx, man6L (X, UU)  B U U

isI ist (X1 E F F t VY, meriiSL  (X , Y 1 B UU
isIist(Y) e F F t vx, meniSL  (X,Y) 23 U U
a (memSL  o(, Y) 1 ETT  t isIisto() E T T
ir (men&L (X, Y) 1 eTT t islist p T T
isIist(X)zTT, islist(Y)rTT 1 i:,I ist(memSL(X,Y))  E T T
islisto() E TT 1 memSL  INIL,io E N I L
islisto(1 = TT t memSL  (X,NIL) E X

islisti)o = T T t V W  Y, nleni(W,r,lenlSL(X,Y))E(nienl(W,Y)~FF,nienl(W,X
mem(W,Y)=TT,  islist(X)=TT  j- meni  (W, rnemSL  (X, Y 1) z FF
mem(W,X)EFF,  is1 ist(Y)rTT 1 me:!1  (W, memSL  (X, Y 1 1 z FF
mem(W,X)ETT,  mem(W,YkFF  /- inen\ (W, n\en;SL  (X, Y) 1 e T T
mem (W, memSL  IX, Y) ) E TT t r,w (W, X1 E T T
men1  tW, memSL (X, Y) 1 p T T t nw(W,Y)  E F F
isIisto(1 5 T T t II~E:;:SL (X, X1 E Ni L
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k) Proper t ies  o f  ' subexp ' ,

t vx. subexp (XJJU)  P uu
t vx, subexp (l.lU,X)  P UU

subexp (X, Y) s TT t 13(X)  E TT
subexpIX,Y) f T T t J(Y) zTT
subexp (X, Y) 5 FF t d(X) z TT
subexptX,Y) z F F t d tY) P TT
J(X)=TT,  J(Y)sTT,  subexp(X,Y)=LlU t TT s FF
a (Xl B TT t subexp ii(,)0 E TT
atom(X) E FF t subexp (head (X1, X1 E TT
atom(X)  3 F F t subexpttai  I (X),X)  s T T
atom(Y) P TT t vx. subexp (X, Y 1 i5 (X=Y 1
3 (Xl s TT t VY. subexp(X,cons(X,Y))  = J(Y)
a (Xl P TT t VY, subexp(Y,cons(X,Y))  3 J(Y)
subexp(X,head(Y))=TT  t subexp(X,Y) s T T
subexpo(, tai I (YHmTT  t subexp(X,Y) D T T
subexp(W,X)rTT,  subexp(X,Y)sTT t subexp(W,Y) B T T
subexp (head (Xl,  Y) EFF t subexpiX,Y) 5 F F
subexpttai I (X),Y)EFF /- subexp (X, Y) 5 FF
subexp (X, Y) siFF, atom(Y) zFF t subexp ix, head (Y) 1 E FF
subexp(X,Y)eFF, atom(Y)sFF t subexpJX, tai I (Y)) B F F
subexp (X, Y) eTT, subexp (Y, X1 sTT f- XSY
atom(X)  3 F F t subexp (X, head (X1 1 s FF
atom(X) P FF t subexp (X, tai I (X1 1 o FF

I) P r o p e r t i e s  o f  'assoc'.

t vx. assoc(X,UU) = U U
t vx. ~ssocw,x)  = u u

islist a FF t vx, assoco(,  Y) = u u
atom(X) H TT t VWY. associW,cons(X,Y))  B U U
J(assoc(X,YHzTT  t c3!X)  E T T
J (assoc 1X, Y 1) sTT t iI(Y) H T T
a (Xl z TT t assoctX,RIL) = N I L
islist m T T 1 V W  X.assod(W,cons(conc(W,X),Y))~cons(W,X)

m)  T h e  'forL' f u n c t i o n .

t Vi fNIL . forL(UU,f,fNIL)  = U U
V X .  f  (XJJUMJU,  isl ist(X)EFF t VfNIL . forLtX,  f, fNIL) I U U
J(forL(X,f,fNIL))=TTt 8 (Xl z TT

J- V f  fNIL. forL(NIL,f,  fNIL) z fNIL
a (Xl z TT 1 V f  fNIL.forL(cons(X,NIL),f,fNiL)sf(X,fNIL)
J(X)=TT,  J(Y)=TT

t V f  fNIL, forL(consiX,cons(Y,NIL)  1, f, fNIL)=f  (X, f (Y, fNIL) 1
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APPENDIX 11 - Gasic Theorems fo r  F in i te  Se ts
31twww=a  =a I ===IW IDmmEE:pw w w z www WWI PIPE:*

luses the axioms of sect ions 3,6 and 7.1 to 7.5)

t isset MU) P U U
i sset (Xl dJU t X f UU
i sset (X)=TT  )- d (Xl E TT
isset(X)sFF  j- acx, -= TT

t setof (UU)  z U U
1 I istof (UUi = U U

isl ist(X)zFF  b setof (Xl E UU
i sset 0:) rFF t I istof (Xl  3 UU
isl isttX)zTT  1 issetlsztofiX)l E T T
i sset (Xl =TT j- isl ist(l i s t o f  CS)l 5 T T
i sse t (Xl zTT /= setofilistof(XH s X
abetof  (Xl )sTT  t islist z T T
d(l istofIX))zTTt isset z T T

memEQ  (X, Y 1 ETT t setof CO P setof(Yi .

t vx. setof(listof(setof(X)H  3 setofo()
t vx. listofisetof(listof(X)~~ f iistofo()

isl ist!X)asTT t memEQ(X,listof(setof(XH~  z T T
t VXL. mem(X,  I  i s t o f  (setof  (LN z meniiX,L)



APPENDIX 12 - Theorems About the Basic Set Operations,

(rel ies on the axioms of sect ions 3,&7),

a) Theorems involving the nul l  s e t ,

t isset e T T ^ .m.
t d(NS)  =, TT
t listof ,= N I L

setofo() = N S t XdJIL
listofo(I 5 NIL t X=NS
isset(XItTT,  (XaNSIcFF  1 nulI(listof(XH E F F

b) Properties of the membership re la t ion .

t vx . xcuu 4 uu
t vx . uurx = uu

isset(Y1eFF t vx . XCY 3 uu
isset(YI~TT,X~YaUUt x z uu
XrYrTT t dtX> E TT
,XcY=FF t d(X) z TT
XcYrTT t isset 3 T T
X<YaFF t isset a TT
81x1 3 T T t XcNS  e FF
VX, a(X):: XcYnFF  1 Y = NS
isset(YIzTT,  VX, XrY2sx~Y 1 Y2 = Y

c) In t roduc ing  the  ' subset '  re la t ion ,

t vx. subset (XJJU)  a UU
t vx, subsetIUU,X)  E U U

isseto(I  B F F  t VY . subset (X,Y) P UU
isset D F F  t vx * subset ix, Y) P u u
subset(X,YkTT  1 i sset(X) 5 T T
subset(X,Y)=TT t isset 3 Ti
subset(X,Y)zFF  t isset z- Ti
subset(X,Y)sFF  t isset 5 TT
isset(XInTT,  isset(YkTT, sutmdX,YMJU  t TT H FF
isset(XIaTT  t subset(NS,X) P T T
subset(X,NS)sTTt x 5 NS
subset(X,YkTT,  WtXfTT  t WC'Y E T T
subset(X,YhTT,  WtY=FF  t WCS s FF
isseto() B T T  1 subs&(X,X)  z T T
isset(X)=TT,isset(Y)=TT,  V W .  WcX::WcY=TT  t subset(X,YkTT
subset(X,YI=TT  t VW. WEX :: l&Y P TT
subset(X,NSkTT/- X B NS
subset(W,X)rTT,  subset(X,Y)nTT t subset(W,Y)  z T T
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d) The  usua l  un ion  opera t ion  - 'U' ,

t vx . xuuu z NJ
t vx . uuux  s 1JU

isset P F F  /= VY * XUY L uu
isset 8 F F  k vx . XUY 3 uu
iHXuY1 s TT t isseto() 4 T T
d(XuY) 3 TT j- isset 3 T T
isseto() B T T ,  isset E T T  b isset(XUY)  H T T
isset in T T ,  isset z T T  ,  XUY E IJU

WcX 3 TT, isset E TT /- LJc MJY) E TT
j= TT EJ FF

WcY E TT, isset z TT /- WC NuY) I TT
wtx E FF, W<'f 4 FF t W~oiu?')  z FF
Wr(XuY)  e F F t wtx s FF
WcIXuY) a FF t WCY z SF
isset e T T ,  isset(Yi I T T  t
isseto() H T T ,  isset H T T  j=

subset(X,X~Y) E T T
subset(Y,XUYl  E T T

XuNS  3 Xisset s T T  t
isseto() z T T  t
isseto() H T T  1
subset(X,YkTT  j-

t
t

NSuX E X
xux 3 x
XUY 5 Y
XIJY 3 YUX
vx Y 2 . (xul')uz 3 XU(YUZj

e) The se t  sub t rac t ion

t
t

isset H F F  t
isset E F F  t
dtX\Yl  3 TT t
do(\Y) 3 TT 1

( \ 1 o p e r a t i o n .

vx , xwu 3 u u
vx * uu\x 3 uu
VY . X\Y -z uu
vx . X\Y 3 uu
isset z T T
isset a T T

isset E T T ,  isset E T T t isset(X\Y)  E T T
isset(X)oTT,  isset(YlaTT,  X\Y=UU 1 T T  z F F
WtX E F F ,  isset EI T T
l&Y E T T ,  isset s T T

t WC(X\Y)  fi FF

W<X 3 TT, WcY '- FF
t WdX\Yl  3 FF

WC IX\Y) P TT /- W<X z TT
J- WC(X\YI 3 TT

Wc(X\Yj  3 TT t WCY I FF
isseto(i I T T ,  isset r' T T

-isset I T T  j=
t

X\X -= NS
subsetIX\Y,Xl  3 T T

isset H T T  J- X\NS P X
isseto() = TT t NS\X  I IJS
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L.
A P P E N D I X  1 2  (cord  inued).
- - - - - - - -  - -

f) P r o p e r t i e s  o f  u s u a l  i n t e r s e c t i o n  o p e r a t i o n  - YY .

I t VX , XnUU f UU
i vx , uunx  = uu

isset (Xl P FF b VY . XnY D UU
isset  (Y) 8 FF t, VX , XnY D UU
d(XnY)  E TT t isset ix) E T T
iI(XnY)  = TT t isset 85 TT
isset (Xl a TT, isset 5 T T I= isset (XnY) pi T T
isset(X)PTT,  isset(Y)oTT,  XnYdU t TT z FF
WcX it FF , isset  (Y) B T T t Lk(XnY)  pi FF
WrY H FF , i  s s e t  oil B T T t WC (XnYl  B FF
wcx iii TT , W<Y a TT /= WdXnY) 01 TT
WdXnY) t TT t WcX s TT -
WC MY) s TT /= WcY s TT
i sset (Xl I T T ,  isset (Y) z T T J- subset(XnY,X) z TT
isset (Xl m T T ,  isset  iY) = TT t subset(XnY,Y) ot T T
isset (Xl a TT t XnNS  E N S
isset (Xl E TT 1 NSnX  3 N S

+zseto()  m T T  t XnX E X
t XnY 5 YnX
t Vx Y z . (XnYlnZ  G Xn(YnZl

g) T h e  ‘ s e l e c t ’  f u n c t i o n .

t s e l e c t  (UUj 3 U U
I t select(NS)  5 U U

isset (Xl B FF t select(X)  E U U
L_ a (se I ect (Xl 1 ITTt isseto(1  5 T T

a(select(Xl)sTTt (X4JS) fi F F
isset (Xl II TT, o(=NS) B FF 1 3klect (Xl) B TT
isset (Xl sl TT, (X=NS) H FF t seiect(XkX  a T T

c,

h) T h e  ‘ s i n g t n ’  f u n c t i o n .

t singtn(UU) P U U
a (Xl E T T t issetkingtn(XH  e T T

c J(singtn(X)kTTt a (Xl I TT
a 1x1 s T T t XdngtnH E T T
XcsingtdYkTT  t X f Y
a (XI 5. TT. 1 (singtnIXj=NSj  3 F F
a(X) s T T t s e l e c t  (singtn(X)  1 P X

I -
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