- Best
Available
Copy

s I . YT St ey <

AD-763 673

MODEL BASED (INTERMEDIATE-LEVEL) COMPUTER VISION

STANFORD UNIVERSITY

PREPARED FOR
ADVANCED RESEARCH PROJECTS AGENCY

May 1973

Distributed By:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

STANFORD ARTIFICIAL INTELLIGENCE

MEMO AIMm-201
STAN-CS-73-366

MODEL BASED (INTERMED |ATE-LEVEL)
COMPUTER VISION

BY

AD 763673

GUNNAR RUTGER GRAPE

SUPPORTED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

MAY 1973

Reprodiuced by

NATIONAL TECHNITAL
INFUOSRMAT!ON SERV'ICE

Depariment of Comm arca
Springfield va 22°51

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

RN
.'.-E-: i:" / ::.3‘:‘ ‘P‘H‘_. T
I,f_.:r'.gq r.Ir . - ™
i f"‘"‘ A |
| ‘_'_'. ||. - Ii{ﬁ?‘ =

'l Y i /)f i
b Nl fy : G
%%} ¥

S ANIZE D 1o

A i

del o _ 228 ——_—

Unclassified

Secunty Classification

DOCUMENT CONTROL DATA-R& D

(Security classification of title, body ol abstract and indexing annotation must be entered when the vverall report Is classilled)

T OKIGINA "1, ¢ ACTIVITY (Carpaule ll”hof) 28, REFORT SECUR|TY CLASSIFICATION
Stanford University Unclassified
Dept. of Computer Science 2b. GROUP
Stanford, California 94305

' KEPORTY TITLE

MODEL BASED (INTERMEDIATE-LEVEL) COMPUTER VISION

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)
technical report, May 1973
5 AUTHORIS) (First name, middie initial, last name)

Gunnar R. Grape

—
6 REPORT DATE 78. TOTAL NO OF PAGES 7b. NO. OF REFS
May 1973 approx. 256 - (/;

f4. CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBE R(S)

ARPA-SD-183 STAN=-CS-72-366
b. PROJECT NO
Gr, 9b. OTHER REPORT NO(S) (Any other numbers that may be asslyned
this report)
d. AIM201

10 DISTRIBUTION STATEMENT
Releasable without limitations on dissemination.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13 ABSTRACT

A system for computer vision is presented, which is based on two-dimensional
prototypes, and which uses s hierarchy of features for mapping purposes.

More specifically, we-are dealing with scenes composed of planar faced, convex
objects. Extensions to the general plan~c faced case are discussed.,

The visual input is provided by & [V-camera. and the problem is to interpret
that input by computer, as a projection of a three-dimensional scene.

The digitized picture is first scanned for significant intensity gradients
(called edges), which are likely to appear at region=-and object Junctions. The
two-dimensional scene-representation given by the totality of such intensity
discontinuities (that word used somewhat inexactly) is referred to in the sequel
as the "edge-drawing", and constitutes the input to the vision system presented here.

The system proposed and demonstrated in this Payer utilizes berspectively
consistent two-dimensional models (prototypes) of viecws of three-dimensional
objects, and interpretations of scene-representations are based on the establishment
of mapping relationships from conglomerates of scene-elements (line-constellations)
to prototype templates. The Prototypes are learned by the program through
analysis of - and generalization on - ideal instances.

The system works better than any sequential (or other) system presented so
far. It should be well suited to the context of a complete vision system, using
depth, occlusion, support relations, etc. The general case of irregularly
shaped, planar faced objects, including concave ones, would necessitate such
an exbended context.

— e N
DD ‘F~%Kvnesl473 (PAGE ¢ 7 Unclassified

S/M 0101.807.66801

Security Classification

Security Classification
|

KEY WORDS

LINK A

LINK 8

ROLE

wT

ROLE wT

s

‘ DD 2¥..1473 (sacx)

| (PAGE Q)

Security Classification

1
MMAMMM#

ABSTRACZT:

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-201

perspectively consistent tuo-dimensional models
of vieus of three-dimensional objects, and
scene-representations are hased on the establishment
relationships from conglomerates of scene-elements
constellations) to prototype templates.

on - ideal instances.
The system iiorks better than any sequential (or other)
presented sc far, 1t should be well
complete vicion system, using depth, occlusion, su
etc. The general case of irregularly shaped, planar faced

objects, including concave ones, uould necessitate such an
extended context,

This research was suppor ted
Agency of the Office of the

The views and conclusions contained
author and should not be
official policies, either expressed or implied,
Project Agency or the U. S. Government.

APRIL 1973

COMPUTER SCIENCE DEPARTMENT
REPORT CS-366

MODEL BASED (INTERMEDIATE-LEVEL) COMPUTER VIS]ON

by

Gunnar Rutger Grape

A sustem for computer vision is presented, which is based on
tuo-dimensional prototypes, and which uses a hierarchy of
features for mapping purposes.

More specifically, we are dealing with scenes composed of

planar faced, convex objects. Extensions to the general
planar faced case are discussed

The visual input is provided by a TV-camera, and the problem is

to interret that input by computer, as a projection of a three-
dimensional scene.

The digitized picture ic first scanned for significant intensity
Jradients (called edg2c), which are likely to appear at region-
and object junctions. The tuo-dimensional scene-representation
given by the totality of such intensity discontinuities (that

word used somewhat inexactly) is referred to in the sequel as the

"edge-drawing", and constitutes the input to the vision system
presented here,

The system proposed and demonstrated in this paper utilizes

(prototypes)
interpretations of
of mapping
{(line-

The prototypes are
fearned by the program through analysis of - and generalization

system
suited to the context of a

in part by the Advanced Research Projects
Secretsry of Defense under Contract No. SD-183.

in this document are those of the
interpreted as necessarily representing tre

of the Advanced Research

'l
3

pport relations,

ABSTRACT

A system for computer vision is presented, which is based on two-
dimensional prototypes, and which uses a hierarchy of features for

mapping purposes.

More specifically, we are dealing uith scenes composed of planar faced,
convex objects. Extensions to the general planar faced case are

discussed.

The visual inpu* is provided by a TV-camera, and the problem is to
interpret that input by computer, as a projection of a three-dimensional

scene.

In this case the digitized picture is first scanned for significant
intensity gradients (called edges), which are likely to appear at
region- and object junctions. The two-dimensional scene-representation
given by the totality of such intensity discontinuities {that word used
somewhat inexactly) is referred to in the sequel as the "edge-drawing",

and constitutes the input to the vision system presented here.

It edge-drawings were perfect, the task of interpreting them, that is of
determining the composition of the scene (in terms of partaking
objects), would not be an excessively hard one. A rather simple scheme
of sequential abstractions would work adequately, obtaining successively
higher levels of abstraction {information compression), in some order

like: Edges - Lines - Vertices - Regions - Bodies - Scene.

Unfortunatelg. edge-drauwings are very seldom anyuhere near perfect, due
to effects like shadous, glare, reflections, insufficient intensity
gradients betueen regions, hardware imper fections, digitization errors,
etc. The sequential approach, ‘herefore, does not work adequately in
practice. The need for more global information (even at low levels of
abstraction) has become more evident with every effort put into the

deveiopment of sequential vision schemes.

The system proposed and demonstrated in this paper utilizes
perspectively consistent tuo-dimensional models (prototypes) of views of
three-dimensional objects, and interpretations of scene-representations
are based on the establishment of mapping relationships from
conglomerates of scene-elements (line-constellations) to prototype
templates. The prototypes are learned by the program through analysis

of - and generalization on - ideal instances.

A small hierarchy of features (specific line- and vertex consteilations)
is used in providing entry-points (keys) into such mappings, since an

exhaustive searcn is out of the question (for reasons of combinatorics),

Features are also used during the process of mapping scene-elements onto

a prototype, serving now as guides and templates.

This system is intermediate-leve| in the sense that it does not Work on
the basis of the original TV-image (but on information abstracted from

it), and that it does not determine {or use) spatial dimensions,

positions, or relationships of the objects in a given scene.

Its place in an extended three-dimensional system is discussed, as are

some possible aspects of such a system.

The results obtained are quite good, using scenes of realistic

complexity and with many examples of different kinds of inperfections in

the initial data.

In conclusion, the system works better than any sequential (or other)

system presented so far., It should be well suited to the context of a

complete vision system, using depth, occlusion, support relaticns, etc,

! The general case of irregularly shaped, planar faced objects, including

concave ones, would necessitate such an extended context.

.

7y

ACKNCWLEDGMENTS

l wish to express my thanks to Professor Jerome Feldman for his

invaluable help as my thesis adviser,

and to Professor Cordel! Green
and Dr.

Thomas Binford for serving on the rzading committee,

I grateful ly acknowledge the helpfulness of my fellow Wworkers, in
particular Dr. Manfred Huecke!, Dr,

and fir, Kari Pingle.

Richard Paul,

The research reported here Has supported in par: by the Advanced

_r
|
|
|
!
|
|
1

Research Projects Agency of the Offjce of the Sec

retary of Deferse
(S80-183).

vi

TABLE OF CONTENTS

SECTION
1.8 INTRODUCTION
2.8 COMMON DEFINITIONS AND ABBREVIAT'ONS

3.8 APPROACHES TO THE VISION PROBLEM
3.1 BRIEF PERSPECTIVE ON RELATEQ EFFORTS
3.2 OWN EXPEPIENCES - THE MAQ QUEST
3.3 SEQUENTIALISM VERSUS MCOEL IS

4.8 STRATEGY OVERVIEW
4.1 GENERALITIES
4.2 STRATEGIES

5.8 FEATURES

5.1 INTRODUCTGRY EXAMPLES

.2 FEATURE DEFINITIONS

THE FEATURE SIMILARITY RELATION
NON-DIRECTIONAL FEATURES

SOME RESUL TING FEATURE IDIOSYNCRASIES
PROJECTIVE INVARIANCE

SPECIFICITY AND FEATURES

)

5
S
5
S.
5
5

~N) O

6.8 PROTOTYPES
6.1 GENERALITIES
6.2 INTERNAL REPRESENTATION
6.3 LINE-FEATURE EQUIVALENCE CLASSES
6.4 PARALLELITY AND LENGTH GENERALIZATIONS
6.5 CENTRAL FEATURE REFERENCE STRUCTURE

vii

PAGE

11
24

35
35
38

41
41
46

57
62
69
74

73
79
80

b)
o)

0
s

) ——

SECTION

6.6 PROTOTYPE ACQUISITION

6.7 CURRENTLY USED PROTOTYPES
6.8 DEGENERATE VIEWS

6.5 REPRESENTATIONAL AMBIGUITIES

7.8 PREPROCESSING
7.1 INITIAL DATA
7.2 ABSTRACTION OF INITIAL LINES

8.8 THE PARSING PROCESS
8.1 PARSING STRATEGY
8.2 FORMATION OF TENTATIVE VERTICES
8.3 FEATURE EXTRACTION
8.4 NBJECT EVALUATION AND ISOLATION

3.8 PROTATYPE MATCHING
3.1 STRATEGY OUTLINE
9.2 DATA-STRUCTURES
9.3 PARTIALLY SIMILAR LINE-FEATURSS
3.4 LF MODIFICATION RECONCILIATION
3.5 MORE GENERALITIES - EXAMPLE
3.6 ThT RECURSIVE PROCESS

18.9 OBJECT CUMPLETION

11.8 EXAMPLES - RESULTS - DISCUSSIGNS
11.1 COMMENTS
11.2 EXAMPLES OF SYSTEM PERFORMANCE
11.3 DISCUSSION OF SYSTEM PERFORMANCE

viii

PAGE

33
98
108
183

189
189
114

<19
118
128
133
135

133
138
143
148
150
154
168

167

171
171
172
237

SECTION

PAGE

12.8 FUTURE POSSIBILITIES 233
12,1 EXTENSIONS OF THE FEATURE CONCEPTS 239

12.2 RECOURSE 10 INITIAL DATA 261

12.3 EXTENDED CONTEXTS AND 30 241

12.4 EXTENSION TO GENERAL PLANAR FACED OBJECTS

13.8 CONCLUSIONS

14.8 APPENDIX 247

247
243

14.1 THE GENERAL DATA-STRUCTURE
14,2 THE SUBCONSCIOUS

15.8 BIBLIOGRAPHY

251

FIGURE
3.1
8nd
.1
$.2
9.3
5.4
$.5
5.6
5.7
5.8
5.9

5.18
5.1l
8.12
5.13
5.14
5.15
5.16
617

6.1

6.2

6.3

6.4

6.5

6.6

6.7

LIST OF ILLUSTRATIONS

Difficulties in sequential ism
Adventages of modelism

Examples of features in a scene
Pretotype FAREP and its features
Line-features make up compound features
The line-feature ang its encoding

The compound feature and its ercoding
Feature similarities

Similar non-trihedral LF:s

Pairs of similar trihedral LF:s
Non-directional LF:s

A non-collinear CF is directional

Two non-similar LF:s

CF:s and angular convexity at center
Triangularly connected CF;:s

Triangle with exactly tuwo similar CF:s
Trouble-causing non-trihedral
Projective constraints

Secondary ray-constel latione

PAREP and equivaience classes

Same C2 - Same prototype

Prototype |ine length-classes

Central feature reference storage
Orientation dependent perspective deformation
Current and auxiliary prototypes

Degenerating vieus

Xi

- T W o — 1T T T N

F1GURE

6.8
6.9
7.1
T
b % |
7.4
7.5
5.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
s 1

3.3
9.4
9.5
9.8
s 7
9.8
8.9
g.10
3.11
11.1

Keys and ambiguities

Potentially ambiguous representations
Initial input: Edge-draning
Edge-detection

Initial input - edge-data

The line-extracting algorithm
Initial lines - Tentative vertices
Parsing strategy

Object 1 and amended scene

Object Z and amended scene

Object 3 and amended scene

Object 4 and amended scene

Objects superimposed

Tentative vertex formation
Tentative vertices - case analysis
Simplified matching strategy
Expanded prototype structure
Recursion data-structure
Line-feature modification word - MODIF
LF modification reconciliation
Simple example of mapping process
Main flow of the mapping process
Vertex orbiting - mapping - process
Ray mapping

Erasure and back-up

The main actions at back-up

SC18: Initial lines - Final interpretation

%1 i

PAGE

184
197
118
111
113
115
117
120
123

125
126
127
123
130
142
144
145
148
151
156
153
161
162
163
165
173

FIGURE PAGE _

11.2 SCl1: TV-image 174
11.3 SC11: Edge-data - Initial lines 175 i
: 11.4 SCI1: Tentative vertices - First isolation 17e
11.5 SCll: Amended scere - Second object 177
} 11.6 SCll: Amended scene - Third object 179
] 11.7 SCll: Amended scene - Fourth object 189
11.8 SCll: Amended scene - Final interpretation 181
11.8 SC12: TV-image 183
11.18 SCl2: Edge-data - Initial lines 184
i 11.11 SC12: Tentative vertices - First object 185
11.12 SC12: Amended scene - Second object 186
11.13 SC12: Amended scene - Third object 187
11.14 SC12: Amended scene - Fourth object 188
11.15 SC12: Amended scene - Final interpretation 189
11.16 SC3: TV-image 191
11.17 SC3: Edge-data - Initial Iines 192
11.18 SC3: Tentative vertices - First object 193
11.19 SC3: Amended scene - Second object 194
11.28 SC3: Amended scene - Third object 195
11.21 SC3: Amended scene - Fourth objzct 196
11.22 SC3: Amended scene - Fif*h ohject 197
11.23 SC3: Amended scene - Final interpretation 198
11.24 SC2: TV-image 193
11.25 SC2: Edge-drawing - Initial lines 201
11.26 SC2: Tentative vertices - First object 2082
11.27 SC2: Residual scene - Second object 2083
11.28 SC2: Alternatives for second object - DWEDGE & PAREP 204

Xiii

FIGURE PAGE

11.29 SC2: Alternatives for second object - Wedges 205
11.38 SC2: Residuai scene - Third object 286
11.31 SC2: Residual scene - Final interpretation 288
11.32 SU8: Edge-drawing - Initial lines 2ie
11.33 SC8: Tentative vertices - First object 211
11.34 SC8: Residual scene - Second object 212
11.35 SC8: Residual scene - Third object 213
11.36 SC&: Residual scene - Final interpretation 214
11.37 SC14: TV-image 216
11.38 SClé: Edge-drauing - Initial lines 217
11.39 SCl4: Tentative vertices - First object 218
11.48 SCl4: Residual scene - Second object 218
11.41 SCl4: Residual scene - Third object 228
11.42 SCl4: Residual scene - Fourth object 221
11.43 SClé4: Residual scene - Fifth object 223
11.44 SCl4: Residual scene - Sixth object 224
11.45 ©SCl4: Resicdval scene - Seventh object 225
11.46 SClé4: Residual scene - Final interpretation 226
11.47 SCS: Edge-drawing - Initial |ines 228]
11.48 SC9: Tentative vertices - First object 229 !
11.48 SC9: Residual scene - Second object 238 {
11.580 SC3: Residual scene - Third object 231]
11.51 SCS: Residual scene - Fourth object 232
11.52 SC3: Residual scene - Fifth object 233
11.53 SC3: Residual scene - Sixth object 23S
11.54 SC3: Residual scene - Final interpretation 238
12.1 Possible information flau in a 30 system 242 l

1.8

1.8 INTRODUCTION

In the context of the present paper, the term "computer vision" is

restricted in scope to & world of flanar-faced solids, notably

parallielepipeds, wedges, and other simple objects that may be expected

to be useful in a "Hand-Eye" context, for instance as building blocks.

This paser deals more or less exclusively with vision at an intermediate

level, viz. our "input" is an array of "brightness-discontinuitg points"

over a digitized TV-raster representing cur view of the scene). Our

“output" is a formalized interpretation of that information as a two-

dimensional representation uf a three-dimensional scene.

Statement of the probiem:

On a table is a collection of blocks. "Looking" at that scene is a Tv-

camera, which is linked to the computer, so that the latter may obtain a

digitized raster of the image. The problem, of course, is to program

the computer so as to enable it to output an ‘interpretation of that TV~

image, in terms of the nature and relationships of the objects in the

scene. This interpretation may then be the final product in itself, or

it may be used by other programs for purposes of manipulating the

objects in the scene.

At this early point | suggest that the reader take a look at at some of

the examples in Section 11, in arder to get a more concrete idea of what

this is all about,

E ———T—
B A S B I T TR EENEERN

1.9

This paper first touches on some related efforts toward solving the
vicion problem, and on the pros and cons of sequential (abstraction)
versus model driven schemes. Jts main body presents a system based on
prototypes and features, which uses global knowledge and goal-direction

to a higher exten® than nas previously been tried.
The basic lay-out of the present paper is the follouing:

Immediately after this introduction you will find & list of commonly
usecl terms and anbreviations (Section 2). | recommend a quick scan
through that list before reading the rest of this presentation, but the

main use of the list should be for easy reference whenever unfamilijar

terms are encountered throughout this paper.

Section 3 deals uith previcus and related efforts in this area of
interest, and contains a discussion of the difficulties inherent in
“sequential-abstraction" methods, contrasting that approach with

‘global-knouledge" schemes, particularly model-based ones.

Section 4 through Section 12, the main part of this presentation,
describe a model-based, feature-driven, intermediate-level vision
system. Examples of system performance are provid:d, as well as a
discussion of future possibilities, and the usual conclusions. There is

also an appendix containing a description of the general data-structure.

Th2 main part of the thesis is presented according to the followming

plan:

r

1.2

First an overview of general considerations and basic strategies,

Section 4, Then a thorough discussion of the feature hierarchy

{definitions - properties - utilization), Section 5. Section 6 then
introduces the prototype concept, in |ike manner and considerable |

detail.

Having thus established the conceptual machinery, we then embark on a

description of the process of interpreting the scene.

Preprocessing is dealt with in Section 7. The parsing process (which
utilizes the prototype matching program in interpreting the scene) is
presented in Section 8. The matching process is given in the following
section, which is rather technical and relies on a hierarchy of block-

diagrams for the presentation of the flow of process.

I have found it difficult to give a transparent account of the matching
program, and | ask the reader's indulgence, should she/he find the

presentation hard to absorb at first glance.

Section 18 discusses a possible object completion phase. This js
folloued by examples of system per formance (Section 11), and discussions
of future possibilities (Section 12). The last three sections are (in

order of appearance): Conclusions, Appendix, and Bibliography.

For subdivisions of the above, see table of contents,

A T e

2.8

2.8 COMMON DEFINITIONS AND ABBREVIATIONS

BARE (vertex): A vertex consisting of & single |ine-end, possibly before

insertions of extra lines,
BASE-LINE: See PARENT LINE.
CCUW.: Counter clockuise.
CF: Compound feature (Section 5),

COMPLEXITY: The number of lines involved (in a vertex, a feature, or a

prototupel,
CONNECTED: See SIMPLY CONNECTED.

CONSTELLATION: Usually the group of lines referenced by a vertex or a

feature (should be clear in each context).

CONVEX (object): An object where any line connecting two points of the

surface lies entirely inside the object or on its surface.

CUT: A lire (in the drauwing) chopping a small piece off another line, in

the formation of a vertex,

EQUALITY CLASS: Collective term for length class and paralielity class.

Preceding page blank

L e i e e e i e B e s e e e k4 R i i MR i o i nm b e pdeal gl ir L

EQUIVALENCE CLASS: Pertaining to LF:s in a prototype (Subsection B.3).
ILV-SYSTEM: Intermediate-Level Vision System.

LENGTH CLASS: Pertaining to lines in a prototype (Subscction 6.4).

LF: Line-feature (Section S).

MODEL (and derivatives): Alluding to a concrete pattern (prototype) for
matching, or an abstract, driving concept, such as the idea of
“object” ¢r "well-shaped region". Connected with the use of
global contexts (cf, Subsection 3.3). Sometimes "model" is

used interchangeabiy with “prototype".

OBJECT: Usually a physical entity, such as a block on the table. Also
used for the perceptual entity of an internal object

representation,

ORBIT: Orbiting a vertex neans cycling around it in a cew. direction,

visiting the lines one by one, from some given starting |ine.

ORBITAL DISTANCE: The number of lines from (excluding) a given line up

to (and including) another. in a ccw. direction around a ver tex.
PARALLELITY CLASS: Pertaining to lines in a prototype (Subsection B6.4).

PARENT LINE(S) (of a feature): The line (or lines) which is (are)

partaking fully (i.e. with both ends) in the feature.

|
|
1
i
:
um—-ﬁu#

T
R R ™ W—
P T p—

2.8

PARTIAL: Short for partially matched object.

P-LINE: Prototype line.

RAY: A I ine-segment with only one end and a direction given or currently

referenced.

SCENE: A collection of real-world objects, or the internal

representation thereof,

SEQUENTIAL (and derivatives): Usually referring to the idea of
"sequential abstractions" (cf. MOOEL and Subsection 3.3). Not

used as opposite of "parallel” {processing).

SIMPLY CONNECTED: Tuwo vertices are simply connected jff they have a |ine
in common, two non-parallel lines iff they share a vertex, two

parallel lines iff they have a connecting |ine,

SUCCESSOR LINE: The line tollowing a given line, in the orbit of a

vertex,

TOPOLOGY: Besides its usual meaning, it is sometimes used in conjunction
With features, namely with their normal context in mind (as

parts of complete topologies).

TRIHEDRAL: Sometimes short for TRIHEDRAL OBJECT.

2.8

: TRIHEDRAL OBJECT: A planar faced object with TRIHEDRAL VERTICES only.

TRIHEDRAL VERTEX: A vertex where exactly three surfaces meet,

3.9

3.8 APPROACHES TO THE VISION PROBLEM

In most fields of science the established pattern of research has been

the selection and investigation of subproblems, rather than broad

frontal attacks on complex systems. Of course, practicality oftentimes

prompts such policies, and mostly the results achieved are relevant to

the understanding or function of the whole.

I am not quite certain whether research in computer vision fits into

such a pattern.

During the las: decade, many man-years have been spent on investigating

problems conceived as relevant parts of some nebulous whole, To the

extent that we have gathered understanding of the difficulties inherent

in vision, the results have certainly been relevant. Whether they are

applicable in the context of future, complete vision systems, is a

different consideration,

Research in this field has been more or less confined to an idealized

world of objecte whose surfaces are al | planar. The rationale behind

this is twofold. Such objects are comparatively easy to represent in a

compuiter, and many every-day manipulatory tasks, interesting from the

standpoint of Artifi.ial Intelligence, involve such cojects,

The implicit assumption has been that from this kind of first

approximation to computer vision we should be able to build more

generally applicable systems.

308

Such assumptions are dangerous, in my opinion. The confinement to
planar faced objects has invited all kinds of klugery and special-case

analysis that is completeiy irrelevant to perception of more general

objects.

Many people have elected to further limit the scope of treir research to
the segmentation of ideal |ine-representations of scenes, in terms of
their constituent object-interpretations. While that subproblem is by
no means trivial, and certainly elucidating in its own right, it would
seem not immediately relevant to the intensely practical realities of

computer vision, even in the restricted context.

The seeming simplicity of the subproblem (dealing with planar faced
objects) has seduced us into attempting solutions with limited
machinery, using restrictive assumptions and special-case heuristics. |

think this is unfortunate, but magbe a "necessary” way to develop this

young field of research.

Vision is a hard problem. | guess we have al! learned from the lack of

spectacular rasults so far.

This section deals nith related history in computer vision, describes

the mad qguest for the Perfect Line-drauwing (alias Pimpernel), and

discusses hierarchical (local decision) versus model driven schemes.

|
|
|
i'

3.1

3.1 BRIEF PERSFECTIVE ON RELATED EFFORTS

. ls He in Heaven . (7). Is He in Hell .7?),

That damned elusive Pimpernel?!"

[Roberts 1963];

For current purposes the history of computer vision starts with Roberts,

His work covered the complete spectrum, from camera output to three-

dimensional interpretation, and is in that sense a unique effort, Most

other work in computer vision, so far, has dealt With subsystems, But

even Roberts paid scant attention to the pre-processing stages of his

system, concentrating on the aspects of handling representations of

three-dimensional objects,

Using a facsimile scanner on a photograph of the scene to provide

picture input, he then deploys some fairly simple heuristics to abstract

a connected |ine-drawing from the original raster, The program

subsequentiy finds all well-shaped regions, and attempts to match

consteiiations of such regions with similar constellations recorded for

the three-dimensional models. This is performed in a series of steps,

each one performed uhen the previous one yields no results, and each one
requiring less information than the previous one:

1. Using regions around a vertex,

2. Using regions surrounding a !ine,

3. Using a region and a third line from one vertex,

4

+ Using a three-line vartex,

3.1

Note that step 4 signifies a |iberation from the requirement for well-
shaped regions, but since 4 points are enough to determine a perfect
partial projection of any of his models, this easily leads to forbidding

combinatorics and nonsensical interpretations in non-trivial scenes.

A fixed set of 3 models (parallelepiped, wedge, hexagonal prism) is used
and, given the key match, the picture and model points are “cycled
around" in order to "line up the order of the polygons". If the orders
can be matched, a list of equivalent point-pairs is created, the
transformation from the 3D model to the scene representation is
computed, as uell as the error of fit. [f the match is acceptable the
lines belonging to the object projection are removed from the scene, and

the prccess iterates.

The treatment of composite objects, or rather, the interpretation of
complex objects as conglomerates of instances of his simple models, is
of particular interest. When a picture polygon is divided during the
process of back-projecting an object, !ines inside that region - and
belonging to that object - are inserted, and that fact is remembered so
that a linkage of the parts of a composite object may be obtained. Such
objects may then be back-projected in any position and under any

rotation.

The models are not fixed as to size, so that any right-angle
parallelepiped would match his "cube"-model, for instance. They are

fixed as to skew, however.

8l

To sum up, Roverts work constitutes an important initial effort. His
rrogram worked on very simple scenes under ideal conditions. The
preprocessing heuristics are not sophisticated enough to handle complex
scenes. and the matching program seems highly dependent on perfect |ine-
dravings. The program also seems dependent on the fixed set of mode |l s,
sc that the incorporation of a new model would reguire program changes.
This drawback is somewhat offset by allowing for composite objects. The
treatment of such objects, and the three-dimensional manipulations, are

particularly interesting.

Quoting Roberts: "The biggest bziefit of this investigation, however, is
an increased understanding of the pussible processes of visual

perception."

{Guzman 1968]:

The major contribution of Guzman vas the demonstration that - for quite
complex scenes - assuming essentially perfect line-drawings without
fhadous or other irregularities - one nay very often infer
interpretations in terms of projections of three-dimensional objects
twody segmentation), using a rather limited set of chiefly local

heuristics based on the properties of the vertices in the sceres.

Using such heuristics, weak or strong |inks (depending on the vertices

in question) may be estab!shed betueen regions across |ines, Regions

are subsequently grouped together into "nuclei” according to the nature

of such links, and the final nuclei constitute the body interpretations.

81

Little global context is used, and that is provided in a limited Hay by

mechanisms for link inhibition in some contexts of T-joints, and for

link creation in cases of matching T:s (continuing, obstructed objects).

A bedy may sometimes ve correctly identified even though an interjor
line be missing, provided the resulting resions get linked together

strongly enough.

By the same token several objects may be clumped together into one, due

to missing exterior |ines.

Basing segmentation on the formation of links between regions makes this

program very sensitive to imperfections.

Thus Guzman's program is dependent on a very clever preprocessor,
unrealistically clever, in fact. | shall get back to that subject later
in this section, but let us just list a feu things such a preprocessor
is supposed to be able to do. It must produce an essentially perfect
line-drawing, that is, eliminate lines caused by shadow effects (as i1.ell
as other spurious lines)., [t must also insert missing lines, and group
together lines into vertices correctly, since the proper links would

otherwise not be formed., No small task!

The results of Guzman's work seemed impressive. His program
successful ly analyzed very complex, careful ly constructed scenes. One
tends to forget that those scenes are not "live", and that the results
are in that sense not immediately and implicitly relevant to the

practical problem of computer vision.

14

B T I IIIE—_————

<)

(linston 1879):

Based on perfect (synthetic) line-drawings and region analysis, Guzman's

Program was used by Winston in a system that analyzes scenes

structurally, and learns structural descriptions froi examples,

Since

vuzman several people have chosen to work on the same subprobiem,

namely the interpretation of an esventially perfect line-drauing (with

or without shadow [ines) a@s a conglomerate of objects.

(Orban 19701 :

Orban provided some shadou-eliminating heuristics that could be used in

Conjunction with Guzman's program, in a Preprocessing stage. Those

heuristics were local in nature and based on the observation that joints

caused by shadous often are X:s and T:s, and that such joints are often
chainuise |inked together.

(Huffman 1969] & (Clowes 19717

These tuo authors devised labelling schemes to catalogue the possible
interpretations of vertices that may be found in perfect, shadowless

line-dranings of scenes of trihedral objects. Such labellings hay serve

to provide nore global contexts for segmentation proce

LTS

sses, !

Such and related concepts were utilized by Falk and expanded by Waltz.

il B S

(Falk 1970):

In the context of the Stanford Hand-Eye Project [Feldman et al 19691,
Falk embarked or the devcinpment of programs to “interpret imperfect

line-drawings as three-dimensional scenes".

Utilizing a vertex labelling scheme related to Huffman's ideas, Falk
devised heuristics for body separation, which work for more general
scenes than those of Guzman, in asmuch as some cases of missing |ines,

or parts of lines (at object intersections), do not cause the program to

make erroneous dacisions.

After body separation, such lines may subsequently be detected and
inserted. The program uses the vertex labels to form links between the
lines in the drawing, and the bodies are defined in terms of such links.
The assignment of regions to objects, and possibly of dividing regions

betueen objects, is a secondary problem,

Note that ba-ing segwentation on Iinks among |ines, rather than between

regions, makes this approach less error sensitive than Guzman's,

Following body segmentation, some sinple heuristics are used in
determining occlusion relations over the scene, and the extracted bodies
luhich may be partially occluded) are completed as far as possible,
based on collinearities and extension-vertices.

Base edges are then found, and support relations are inferred. Such

data is used in the determination of locations in space, belou,

16

3.1

The recognition part of the system works with a programmed set of fixeqd
size models, for which the numbers of faces and vertices are stored for
each different vien, along with the number of sides for each visible
face. Such properties are compared uith those of bodies in the scene,
giving a certain list of possible matches for each body. Secondari |y,
the nature of the regions is used in order to reduce such lists, and the
final choice is based on physical properties - lengths and angles -
Which are computed from the monocular view, using hypotheses of ground
Plane or object support. The use of objects supporting objects (flat on
top) represents an extension of Roberts work, which only used the ground
plane assumption. [f an object cannot be recognized, a second attempt

is made, using relaxed parameters,

The identities and locations in space of the recognized objects are now
known, and the objects may be hatk-projected and compared wWith the
original line-drauing, Technigues akin to thcse of Roberts are used
here, including a fairly sinple hidden-|ine eliminator. The
correspondence of the original and projected drawing is evaluated, |ine
for line, based on some parametric tolerances regarding the number and
nature as well as the closeness of coincidences between original and

back-projected !ines.

Falk's program is related to both Roberts' (the use of models) and
Guzman's (the implementation of body segmentation). The combination of
those techniques is an interesting idea. The program is somewhat less
error sensitive and more practically useful than Cuzman's, and it has

been successful ly demonstrated on live data (using a preprocessor coded

17

|
1

by yours truly). Houever, due to the way segmentation is inplemented -
unrelated to recognition - it shares the weakness of Guzman's program
(to a great extent) of being unable to cope With realistically imperfect

line-drawings. Like that program, it is shadow and noise sensitive,

(Waltz 1972]:

The concepts of vertex lapelling introduced by Huffman have been
extended by Waltz, who not only handles, but actually also utilizes,
shadows in the process of segmenting the scene. Here, too, the original
data is & line-drawing, which is assumed essential ly perfect. The

following is a brief sk:tch of how the program works.

First the vertices in the scene are labelled according to all their
possible interpretations, given that the scene consists of convex,
trihedral objects. Each label at a vertex assigns a specific label to
each one of its lines. Such lire labels cover most of the possible edge
interpretations in a three-dimensional scene (convex, concave, bounding,
obscuring. crack, shadow), and they also cover the lighting conditions

on the sides.

Waltz now applies a filtering program which checks the inter-consistency
of the two sets of vertex labels for each line, deleting inconsistent
labels (i.e. where the line labels could not agree). This filtering
program was found to assign unigue lahels in a surprisingly large number
of cases. If the labelling is not unigque, a full tree-search for
consistency is performed over the entire scene, and inconsistent labels

are deleted.

18

3.1

The resulting labelling determines the segnentation(s) of the scene. If
not unique, the labelling gives rise to several possible
interpretations, which is one of the strong points of the program., |t

doesn’t jump to conclusions.

Waltz' work contains some of the more amazing case analysis | have seen.
The specificity of labellings aids in the segmentation process, but also
makes the program sensitive to inperfections in the line-drawing. The
pProgram handles shadows, in fact categorizes them as such, but those
have to be consistent as uel| as the rest of the lines. |[n other words
He still have essentially the requirement for perfect Iine—drauings,

though this time with (perfect) shadous.

Some facilities for dealing with missing lines are included in the
program. fiore precisely, the case of a missing interior line of an
object is treated, simply by including such special case possibilities

in the label | ing scheme.

Waltz' program is so far the most elaborate lIne~draning segmenter in
existence., |t represents a radical departure from earlier (local-
heuristic) schemes, in that the ertire context is utilized and the scene
is interpreted as a whole. That is an impor tant achievement, in my

opinion.
However, in order to be practically useful, the Program would require an

unrealistically clever preprocessor, a need it shares with all

segmenters discussed here so far. It is dependent on very special rules

18

e
Ll e T e

3.1

regarding the labels (shadows, background, etc.), which makes it error

sensitive. Furthermore the order in which the labelling is performed

may be crucial to the final result,

This concludes the discussion of Systems based on the assumption of
essentially perfect or almost perfect line-drawings (uith or Without
shadons) . Comparatively feu people have ventured into the nessy

realities of live scenes - feuer have emerged with anyuhere near

spectacular results.

Some preprocessors:

Visual preprocessors have been constructed by Binford [(Binford 1979),
Brice and Fennema [(Brice & Fennena 13531, Hueckel [Hueckel 1971 § 1973}
(edge-finder), Pingle [Pingle & Tenenbaum 19717, Baumgart (cf. end of

this subsection), and others.

Tenenbaum [Tenenbaum 1978) fathered a substantial thesis on accomodat i on

in vision, including work on edge (line) verification and depth through

variable focus.

My oun experiences in the field of endeavour of preprocessing will pe

discussed shortly.

| shall here first briefly deal with an interesting heterarchical

approach to the problem, and uith a |imited system using learning and
recognition. | shall also mention an effort regarding vision of more

general objects, and an approach using sequences cf vieus.

20

Svl

[Shirai 1972):

Shirai constructed a program that tries to find bodies in a scene,
working directly on the digitized picture, and utilizing an initially
extracted, perfect contour (the background is black, and the objects are

uhite),

The process is heterarchical, and analyzes the data, looking for |jnes
and vertices, with a general concept of "body" as a guide. |t utilizes
the information it has already obtained, in order to further complete an
object. This is in contrast to hierarchical schemes, uhere successively
higher abstractions are formed nore or less in sequence, by a hierarchy

of heuristic processes.

More specifically, the program looks for .ines at concave junctions in
the contour, or in other interesting places. Having found evidence of a
line, it tracks along that line, looking far vertices or extensions,
determining the implications of its findings as far as the concept of
object goes. The global context {of object) enables parameter threshold

adjustments according to rurrent search contexts.

Shirai's program is an interesting and promising effort toward a
heterarchical vision system. The idea of having recourse to the
original intensity information throughout the process of segmentation is

a good one, although not new, of course.

The program does not work in the presence of shadows or other

21

31

detrimental effects, and is not general enough for concave obhjects.
Houever, in simple scenes, under ideal lighting conditions, it should do
an adequate job. It is therefore a member in the sparsely populated
class of practically applicable vision systems. So is the final related

program to be described here.

(Underwood & Coates 1972]:

This work is related to mine, in that it uses learning and recognition.
It is a limited vision system, working only with single objects, which

are planar faced and convex.

Interactively with an image dissector camera, an edge-!ine-drauwing is

obtained. Regions are then found and their connectivity investigated.

Ouring the learning phase, the program is presented with vieus showing
all the different surfaces of an object, and it is able te form an
internal, complete mode! based on topology and on certain projection
invariant shape measures for the faces. Those topology models represent

planar unfoldings of the objects, except for actual surface sizes.

Equipped uith a set of previously learned models, the program is
subsequently able to match any view of such an object with one or more
of the models, using the topology and the number of sides of each
surface in view. [f there are several matches, the shape measures are
compared in order to form probabilistic estimates of the closeness of

fit.

22

3.1

As a vision system, it is limited to scenes of single objects, but it jg
Complete in the sense that it goes all the Nay from camera input to
recognition, The Preprocessing phase of the program is required to

produce perfect line-drauings, otheruise the recognition (or learning)

Hill not work,

The idea of "learning by looking" is an appealing one.

(Agin 1972);:

Agin has provided some interesting initia| Work on the representation of
Curved obiects, and the use of laser ranging to obtain depth

information,

curvature. As mentioned, Agin also notes the possible use of a laser to
get depth information in the context of 3 system |ike the one presented

in this paper. | definitely agree to that as a good idea, as indicated

in the section on future work (Section 120

(Baumgart 1974):

Baumgart's systen, which is currently under development, uses sequences
of vieus (for instance by rotation) in analyzing scenes, Besides being
able to provide 30 information, this process often tends to neutralize
the effects of shadows, glare, noise, etc, The edge-finding stage of

preprocessing is based on thresholding and merging.

23

- T ey . PR — - ——)
p— W L ——

)
-

This concludes the brief outline of related efforts in computer vision.

3.2 OWN EXPERIENCES - THE MAD QUEST

"Mine is & long and sad tale..."

As e have seen, the usual first step in interpreting a digitized Tv-

raster by computer (as a visual scene) has been to condense the

information, to abstract relevant parts of it and thus get. a smaller

database, and one that is more conveniently formatted for further

analysis.

The traditional Way of abstracting and condensing such information is to
apply a brightness-discontinuity detecting operator over the entire

picture, analyzing a small fraction of it at a time. This provides a
map of the relevant parts, nanely where the brightness changes occur,

and where we may hope to find (for instance) outliines of objects,

Roberts used this approach, followed by a line-fit, and it is used today

(ten years later), at the Stanford Hand-Eye Project. Our edge~operator,

however,

19731).

is @ much more powerful one (described in [Hueckel 1971 &

The initial line-fit further reduces the database, further abstracts |

relevant information, and further renders it a format suitable for

3.2

interpretation, These things are described in not too much detail in

Section 7.

We nou come to a somewhat crucial point, nane lys

What is the general nature of such initia| line-drawings? To What extent

can ue expect to rely on their information? ls everything there, that

should be there? More?

Some alternative ansuers are: "Hm .,", "Yes!", “Nol", "(Numble‘..'ﬂ

"Maybe (?)", ...

I shai! get back to those questions, but let us for a moment assume that

the line-drauing is pertect. In such a case there are no problems, We

group the lines into vertices, based on the (small) intersection

distances, detect T-joints, find closed regions. All of that becomes
more or less trivial, Houever, thz task of interpreting the jumble of
regions (or |ines and vertices) as a jumble of objects is non-trivial,

We have seen several different dapproaches to that problem, in the

preceding subsection.

I't was tempting, when | started Norking in this field g few years back,

to use existing programs as building blocks for a system that would work

on live scenes. The Huecke] edge-finder existed in a power ful enough

incarnation. We had a copy of Guzman's program (boldly called "GEE") ,

I set out to investigate uhat kinds of results one could obtain, using

the edge-dranings to produce the highest possible quality line-drauings

el ek . e L b 2 o
B WY — —

W

3.2

(With reasonanble effort), and then entrusting those to "SEE" for

segmentation,

Amazingly enough, the progréam | came up with worked reasonably well for
simple scenes [Grape 1969 and 1978]. By then it had been elaborated

considerably.

The follouing table briefly describes the f]ow of the final version of

that preprocessor (K stands for Kluge):

Kl1. Edge detection.
K2, Initial line-fit.

K3. Formation of initial vertices, based on closeness of

edges,

K4, Formation of exhaustive cross reference tables, for each
line-end listing the vest 3 extension intersections,

blecking lines, possinhle cuts, nearest collinear |ine.
KS. Using that cross reference table to fornm secondary
vertices (iteratively, in a parameter relaxing loop),

using brightness information as an additional criterion.

K6. Grouping of initial, secondary, and final vertices into

final vertices (i.e. iteratively), using different

K

K8.

KS'

K18.

3.2

heuristics according to appearances of the constituent

vertices. This necessitated fairly elaborate heuristics

to prevent the line-drawing from self—destructing. since

moving a line (to accomodate @ nNew vertex) might cause

secondary movements to existin vertices, especial' in
Y

connection with T-joints. [t was solved essentially by

allowing the line-drauing to float, only describing the

connectivity, until all vertices were determined, at which

time their constituent lines uere al| weighted to provide

the hest possible vertex coordinates.

Finding connected paths, ocutsides and insides.

Determining closed regions.

Line prediction and verification, This loop was based or

criteria for well-shaped-ness of regions, and on

parallelogram compietion. Predicted |ines were accepted

or rejected on the basis of the number of edge points
found inside an elliptic (or sometimes rhombic or
rectangular) operator of parametric width

v and With the
predicted line as main axis,

Producing the resulting line-drawing in the format

required by "SEE" (also knoun as "Guzmanizing") .

The final building block in that vision system (at that time) was then
provided by "SEE",

27

3.2

Note that step K9 constituted a step away from sequentialism, and toward

modelisu, The model, in this case, uas the concept of a Hell-shaped

region. Note also the interaction with the original edge-data,

In the meantime Falk urote his program (described above), for which my
pPreprocessor was expected to provide reliable input. The prediction -
verification loop was then unfor tunately not yet accessible for common
use, and consequently Falk hag more trouble than necessary in obtaining
scenes on which to demonstrate his program, Luckily, my system

incorporated facilitjes for editing l'ine-drawings.

I't became increasingly clear to me that the perfect Iine-drauing could
not be achieved by a preprocessor based on local heuristics. Most
People in vision work probably agree, by now. I never expected to be
able to provide such line-drauings in general (hy a long shot), but the
messiness of |ive data exceeded my expectations, Due to disturbances in
the sceine, as well as hardware glitches, one is almost aluays faced with
defective initial data (for scenes of reasonable cﬁmplexitg) in such a
Hay as to make locally based decisions impossible. Experience. it
nothing clse, has demonstrated the need for global knouledge of some

form, even at the intermediate and low levels of computer visjon,

The next subsection is an attempt to analyze that need for global
knowledge. Possible solutions are discussed, particularily as provided

by the deployment of prototype-driven schemes.

. A d

3.3 SEQUENTIALISM VERSUS MODELISM

The following is a clarification of the title of this subsection.

The term sequentialism refers to the common method of sequentialiy
finding successively higher abstractions {(starting with the digitized
image, and possibly ending with body-segmentation), where an abstraction
pPhase cannot be repeated at the request of some higher-level procedure,
using global contexts. Decisions in sequzntialism are often of

necessity based on local contexts,

By modelism [here refer to the utilization of global knouledge at
various levels (by the use of a concrete set of models, or an abstract,
driving concept), in such a Hay that lou-level decisions may be subject
to revision, based on the findings of higher-level processes, or that

such knouledge is used to drive those stages in the vision process.

We have noted the assumption of essential ly perfect Iine-drauings for
several vision projects described previously. Those provide exanples of
sequent.alism. On the cther hand, for instance, Shirai's proyram works
somewhat in the spirit of modelism, in asmuch as it interprets the
picture with the concept (model) of object as a driver of the process,

and actively looks for objects in the scene from the beginning.

The idea of actively looking for things, based on various clues present
in a tentative initial line-draning of the scene, is the basic principle

behind the vision system aescribed in this paper.

T -

Let me now give an exanple to illustrate the difficu!

ties of vision
through sequentialism.

Figure 3.1 demonstrates the hazards of locally based decisions, in the

formation of vertices or in otherwise interpreting scenes,

Nou take a look at Figure 3.2, which shous the complete initia) line-

draning, from which the close-ups in the previous figure are excerpts,

Being human, ue understand this scene very quickly,

all of it. But that

now that we can see

is exactly what it takes here! Not necessarily to

be human, but the ability to see global relationships,

interpret those,

and to be able to

even in the presence of spurious data and the absence

of lines that should have been there,

The principles of human vision are not necessarily something we want to

ate a computer vision system. Ue simply

couldn't! But that great Master, Evolution,

imitate, in order to cre

has had a long time at his

disposal, and we should learn as much as possible from our own ways of

visually perceiving the world,

I think we tend to see the whole before the details, as g3 rule. The

examples | have just given certainly support such a theory, Seeing the

global relationships, we are able to correctly interpret or classify the

elements in the partial pictures. Sequentialism, of Course, attempts to

do exactly the opposite. namely classify the loca| relationships, and

from them somehow to infer the whole.

38

Figure 3.1

Difficulties in sequential ism

o Sk SRRl b b e

©)
(73]

In my opinion, and judging from my owun experiences, sequentialism is
doomed to failure, at least in dealing with realistically complex visual
scenes. The concept of global knowledge is crucial, not only at low and
intermediate levels (such gs vertex formation) but also at the level of
three-dimensional interpretation. Here, global concepts enter in the
form of support theory, understanding of depth and occlusion relations,
etc. Ideally, I think, this should alsc interact down to the |ower

levels,

I am now about to embark on the main purpose of this paper, the
presentation of a vision system in the modelistic spirit, It learns its
prototypes, and the understanding of the scenes is based on recognition.
It tends to see global structures in somewhat the same way | do, and is
therefore relatively insensitive to imperfections in the scene

representations.

33

- .y 2 e w1 L =

T S TP ¥ L o

4.8

4.8 STRATEGY OVERVIEW

4.1 GENERALITIES

It should be clear by now that the purpose of the present intermediate-
level Qision sustem is not to produce a "perfect line~drawing", to be

fur ther processed by "higher-level" programs. The perfect(ed) |ine-

drawing rather has the character of an optional by-product, which is
nice to display as a demonstration perhaps, but which is not necessary

for the purpose of the computer "understanding" and/or being able to

manipulate the scene.

The purpose of the system presented here is to parse the scene,
"parsing" being defined as determining the nature and location of the

partaking objects as expressed in their tho-dimensional projections. |t

leaves the aspects of three-dimensional positions and relations to a

higher-level program, which is as yet non-existent as a whole, but fopr

which parts of Falk's work may be adapted (cf. Subsection 3.1). The

development of such a system is currently under Hay at the Stanford

Hand-Eye Project.

I shall only briefly discuss the role and reason for the dichotomy into

different levels of models, the main discussion having been presented in

Subsection 3.3. The ILV-system proposed in this paper uses 2D

prototypes, which are perspectively consistent projections of the

35

Preceding page blank

4.1

different vieus of their parent objects. This method has the advantages

of simplicity in representation, ease in feature-extraction and

conven.ence in mapping. Basically this system is an experimental subse t

of a possible, more extensive system based on 30 models. From such

models the 20 prototypes might easily be extracted through systematic
projections. Some aspects of an extended system are treated in Section

12. A detailed account of the 20 models is to be found in Section 6.

The present system runs a complete parse on the entire scene, stonhping

only when the scene is exhausted. One good reason for this behaviour is
that there is nothing else for it to do, since the higher level (30)
package does not exist. Given the presence of such a higher leve]
program, it may prove desirable to drive the parse from that extended
system, with full utilization of the concept of 30 and with the

necessary support theorems, etc., checking each mapping individual Iy,

The concept of generality has been of considerable importance to the
author during the course of this undertaking, and the present 20 system
does (within its scope) have that desirable property. Input, analysis,
and learning of prototypes is fully automatic. There is no special case
analysis (with the exception of perspectively degsnerate views) other
than that which is implicit in the structuring of the feature hierarchy
(Section B), which influences the prediction - verification elements of
the matching program {(Section 9). Perspectively degenerate vieus

{Subsection 6.8) have required some degree of special treatment.

Since it is out of the question to exhaust all mapping possibilities

36

4.1

between the scene and the prototypes on a random basis, the utilization
of easily extracted, easily mapped and recognized features becomes

imperative. The features ser

ve as keys for the matching process, and

are also used throughout that process for purposes of prediction and
verification.

The overall structure of the system is bujlt up in the following way:

s Preprocessing (Section .

2% Parsing (Section &),

(3.) Object completion (Section 18).

The third of those phases is an unimplemented possibility, Each of

these processes displays some hon-sequential behaviour, notably the

parser, which uses 3 non-sequential

(recursive) matching program. The

term "non-sequential"

is used here to stress that the process is
different from that of "

sequential abstractions".

Many examples of the broceedings of this system are provided in Section
34

and [strongly suggest that you take a pretiminary look at those

not,

before continuing in the text (unless you are an expert, and knou

what is going on),

This should make the rest of the presentatijon easijer

to follow,

4.2 STRATEGIES

More precisely the strategy is as follows:

[' s

(34}

The thus obtaired interpretation of the line-drauing,

of a 30 scene, consists of a set of disjoint,

Fit lines to initial edge-data, iteratively and

conservatively.

Parse the resulting line-drawing, in a looping

process, each time finding the best possiblie match

beti:en elements of the scene and some prototype,

isolating that mapping, modifying the scene (by

removing the |ines), and iterating. This process ends

uwhen there are no nore possible mappings.

Bring isolated, incomplete mappings (parts of

prototypes) back into the scene, one by one, in order

of decreasing complexity., Then investigate for

possible extensions of the mappings {taken one by

onel. This program could use the same principles as

(and indeed parts of) the mapping program,

as a 20 projection

possibly only partially

mapped, prototype instarces,

At this stage it would be possible to further

these instances, comparing with the initial data,

investigate the union of

thus determining most

38

4.2

of the occlusion relationships betueen the different objects. MWe Wou | i

then quite often ve able to abtain a corrected (I refrain from eaying

"perfect") line-draning. The reason | have abstained from implementing

such heuristics is simply that the program would not be dependable

enough, it would be somewhat klugy in nature, and it would pe uncal led

for in the context of an extended system, where such relationships (as

mentioned earlier) would be much more elegantly and soundly determined

on the basis of positions in Space, support relations, etc.

For the present the parsing program is non-recursive, i,e. it accepts

the currently best match betueen scene and prototypes, amends the scene

accordingly, and then carries on in the same style with the amended

scene. Another possibility might be to introduze recursion at that

level as well (as the matching level), thus keeping a number of

different alternative parses around, among which a most likely candidate

may be chosen (verified). The combinatorics, however, would seem rather

forbidding, as would storage requirements. Furthermore there is no

sufficiently established need {yet) to warrant an effort in that

direction.

From this strategy overview ue now turn to more detailed accounts of the

component parts of the systen,

5.8

5.8 FEATURES

S.1 INTRODUCTORY EXAMPLES

The use of features to provide mapping clues (and matching guides) from

scene-elements to prototype elements is essential to the system

presented here. | shall consequently deal with these concepts
detail,

in some

The general idea behind this system is one of recognizing elements

encountered before, as parts of familiar things (objects). After such

"first impressions" the system proceeds to verify or refute its initial
theory regarding the identity of the object. The instruments of “first

impressions" are called "features",

The feature hierarchy is based on the (personal) observation that we get
strong visual clues (in a 20 image) from the way in which side regions
(face projections) of objects come together (information that We use

With the shape of the regions in order to make sense of objects).

Therefore the features have been constructed to contain extensive

information about region junctions, i.e. the |lines lincluding end-ver tex

constellations) of tuo-dimensional projections (object or prototypel.

While the features do not contain full shape information, they provide

enough to serve as strong clues and as guides during the matching

process.

41

Preceding page blank

5.4

In order to avoid thousands of words | hasten to give an illustrative

example. Figure 5.1 shous a scene and somie of the features we may find

in it {heavier lines).

I shall also give an exanple of a prototype and the features it
contains. That presentation wiil be followed by more precise
definitions. Figure 5.2 shows o 20 projection of a paralielepiped. We
see that the junction of any tuo faces (as given in the projection by
their common line) and the corner junctions at the ends of their common
edge (as given by the end-vertices of the |ine) Presents one of only

three rotaticnally distinct line and end-vertex constellations (in the

plane), namely as given by L1, L2, and L3.

Those line constellations are exanples of the basic feature, called
"line-feature" (abbreviation: LF). and there are three instances of each
one of them in the figure. It will become clear later why L1 and L2 are

essentially different. The LF:s are directional (this will be clarified

shortfy), as indicated by the arrous.

There is one more leve! in the feature hierarchy, namely the "compound”
(composite/compliex/combined) feature (sbbreviation: CF), which is simply
an aggregate description of two connected LF:s, each of which is a ray

of the other. Figure 5.3 demonstrates this.

That description shouws hou they are connected, and also gives additional
joint information about opposing rays extending from the extreme ends.

The CF is a strong discriminator, which may be seen in the prototype

T

T R T L T ——

5.1

Figure 5.1

’ 1
Examples of features in a scene 3 3

Ci=L1+La

C4=L3+L3

ComLi+L2

Figure 5.2
Prototype PAREP and its features

44

8.1

\. c - e —_—
e S ———

Figure 6,3

Line-features make up compound features

Rl - R

>

45

T e T T e

61

example (Figure 5.2) from the fact that there is one CF (C4 in the
figure) that contains references to all but two of the lines in the
projection of the parallielepiped. The CF:s are intended for use

primarily as initializations (keys) in the matching (mapping) process.

Figure 5.2 shous all of the five different compound features of the
PAREP prototype. C3 and C5 are essentially different for reasons given

belou.

Hoping that these examples have provided some of the flavour of the

feature concept, we now proceed to more formal definitions,

5.2 FEATURE DEFINITIONS

The features conform to the foliowing de?initions:

LFB. A line-feature (LF) is an encoded description of certain
basic, projectively invariant characteristics (in 20) of
the combined junctions of the side-regions of two simply
connected vertices (representing corners in 30), i.e. of

a line and its end-vertices.

CF8. A compound feature (CF) is an encoded description of the
same properties for three chain-wise simply connected
vertices, in terms of the LF:s of the two connected

lines, and additionzl information.

46

-

6.

The concept of projective invariance is explained in Subsection 5.6.
“Line-feature" is sometimes, and <omeuhat loosely, used interchangeablg

Hith "line" uhen the meaning is clear,

Note that in CF@ the vertices may be connected in a triangle, in which
case we generally get three basically different CF:s, We may also get
only one, but never tuo in the case of a trihedrai, interestinglg
enough. A proof of this is given later (in Subsection $.5), not
because the result is of any use but because the case is of vaiue as an

illustration of the concepts presented here.

We proceed now to a description of the encoded information lillustrated
by examples), which will be followed by discussions of some of the
properties of the LF and CF. Both kinds of feature are coded into 36
bits (one word) of storage, and are largely handied by the same

routines.

The line-feature consists of the following items for each direction of

the line (18 hits):

LRl F = BF discriminator {flag),

LF2. Number ¢f rays forming an angle 188 (measured ccw. from

the ray) with this end of the parent |ine.

LF3. Anu of those rays approximately =189?

47

LF&.

LFS.

LF6.

LF7.

8.2

Number of rays forming an angle of <180.

Any of those rays approximately =180?

Outside angle (< s 2 > 188?), measured from the last ray
in item LF2 to the first ray in LF4, either of which may
be the base line itself, This item shows the convexity

of the vertex.

Constellation of the two opposing rays on the right-hand
side of the parent line, traversed from the present end
to the other. Viz., are they converging to this side, or
diverging? Could they be paraliel (al lowing for

perspective)?

Item LF7 is of special importance for the prediction aspects of the

mapping program, as the secuel will show. Figure 5.4 provides examples

of LF:s and their encodings.

The compound feature contains, for each direction of traversal of the

line-pair (18 bits):

CF1.

GF2:

CF - LF discriminator (flag).

LF identifier for first line-feature in this direction

(refers to a central list of encountered LF:s).

g -

LF-items separated by "-n

LF-1-/180-1+Jr80-<1an-ronv&pnr

Ra (0-1-0-1-n_0_1)
¥ ¢ Ray
4 'pposing rays —_—
Base-line

—e Opposing rays ——m— »
Ray Ray
(0-1-0-1-0-1-1)
————————

LF-1-/180-1-/180->180-conv&par

LF-l-/180-2-;1en-<1so-converqinz
(0-1-0-2-0-0-0)

4+—
@ (Opposing TAYS

4——— Opposing rays —

(0-2-0-1-n-1-3)

LP-2-/180-1-/180->180-d1v&par

Figure 5.4

The line-feature and its encoding

43

5.2

CFR. Direction in which that LF is "traversed", goina toward

the junction of the pair.

CF4. Position of the other parent |ine, ccw. around center

vertex, relative to this parent |ine, l.e. (1 + number-

of-rays-in-between).

CFS. Constellation of opposing end-rays, similarly to the

corresponding LF-item, but with additional bits for
collinearity, and for the direction in which these rays

{uould) intersect (out from - or touard - the CF),

Exanples of CF:s and their encodings are provided in Figure 5.5,

Both kinds of feature are subject to an internal ordering, so that if

the tuo halfiords (each describing one directicn of traversal) are not

similar (the intuitive meaning is close to the formal definition), they

are orderec uith the least halfuord first, Similarity will be defined

immediately following this. Most LF:s are ordered (directional), and we

shall see that all CF:s are directional.

Subsection 5.4 treats such
matters in detail.

CP-items separated by "-°

CF-LFI-opp-1-conv&out

-

Opposing rays —p
lranrent lines

A

4

CF-LFI-opp-2-conv&out&par

~ Opposing rays

—»
‘l CF-LFI2-same-2-div&out
Opposing R22
rays: R22&R1 LPI2 .,///,//r
LFI1 Opposing
gays R21

I CF-LFIl-same-1-conv&out

Opposing rays: Rt & R21
R1

e

Figure 6.5

The compound feature and its encoding

5.3 THE FEATURE SIMILARITY RELATION

The basic iea behind the similarity concept is that we want to be sure
that two similar features are projectively equivalent, in terms of the
junctions of their affected side-regions. The impor tant things here are
the number of side-regions, their constellations at parent-|ine end-

vertices, and also the angular convexities.

Information regarding shape of regions is of secondary importance and we
allow some laxity here, as indicated by the definitional exceptions for
parallelities and collinearities below. This is also inherent in the

feature implementation, since there are no references to secondary ray

constellations. The matching program is of course much more rigorous in

such matters (Section 9).

Oefinitions of feature similarity:

LFS. Two line-features are said to be similar {loosely "equal"
or “the same") if and only if all the items in the LF-
definitions are identical, with the exceptions that
"=180"-items are ignored, and convergence-divergence
indicators are ignored in cases of parallelism (for

opposing-ray items).

ey

CFS. Two compound teatures are said to be simjlar

if and only

if all the items in the CF-definitions are identical,
exceht that convergence-divergence indicators (for

oprosing rays) are ignored in cases of parallelism or

collinearity.

Figure 5.6 motivates tre comparison exceptions in parallelsm cases.

"2180"-pits are ignored here, simply because they are not relianle.

Practically, i.e. in the progran, comparisons are per formed through

appropriate masks, using logical operations and shifts. Thus the

feature handling is very efficient, and is somewhat in the nature of

"harduare". From simifarity tests we get information about relative

magnitude of tested features, in the case where they are not similar,
This

is used as a hasis for the internal ordering of features, as well

as for the ordering of central feature reference storage.

Figure 5.7 illustrates the situation of simjlar features but different
shares for non-trihedral objects. The features in that figure are all

similar,

In the case of trihedrals we preserve shape relations to a greater
extent, see Figure 5.8, The cases where we do not have ful|

information for combinations of rays i. where we have 3 or 4 rays

extending from the same side of the parent |ine.

convergence

: Lact

PROTOTYPK

Lp1 Lp2

LFI2

We want the ohject to match the prototype,
Thus LTI1 and LFI2 should be Judged asimilar,
Lsc1 and Lsc2 are diverging, but approximately narallel,

Lpl and Lp2 are converging, and approximately narallel,

Figure 5.6

Feature similarities

54

Figure 5.7

Similar non-trihedral LF:s

65

o e il

ol
(4

e Ly

| SO . TR, TR

| e N

Figure §.8

Paire of similar irihedral LF:s

{
|

.3

Let me point out, once more, that we do not rely on the features for

(partial) shape information about regions.

In the context of matching (Section 9) we wil| “ome back to similarity,

more precisely to the concept of "partialiy similar line-features",

which is used ‘or prediction purposes Within that process,

5.4 NON-DIRECTIONAL FEATURES

Almost all commonly encountered {non-degenerate) features are

directional, i.e. the half-words are not similar, Another term for this

is "ordered". We shall See now what similarity of the hal fuords would

imply about the line-constellations, Intuitivelg We would expect

symmetries, and that is basically what we get. At least for the LF. We

shall shou that there is no such thing as an unordsred CF,

In the case of the non-directional LF the two halves are essentially the

same, traversed in opposite directions, so that, topologicallg at least,

HWe get a rotational symmetry around the center of the parent |ine,

Figure 5.9, part (a), demonstrates - through stepuise build-up - the

fact that in order to be non-directional, a convex trihedral |ine-

feature must have exactly two rays at each vertex and on each side of

the parent line, with ray convergence and outside angles in agreement.

The figure also indicates some of the reasons for the various steps,

S7

(a)

By econvexity

\ ‘ Hy convexity

— — — — e e —

Another

By LF2 // examnle

(b)

Non-trihedril
feature

Figure 5.9

Non-directional LF:s

58

5.4

The same figure, part (b), shous 2 non-trihedra| example of the general

topologicalliy rotationally synmetric case,

We nou prove the following irteresting property for compound features:

Theorem 1:

All compound features are directional (internal ly orJered).

This theorem will be a direct consequence of the follouwing assertion:

NOCF. If a compound feature is to be non-directional, the

two parent lires musc¢ bo collinear,

Proof of assertion NOCF:

Let s assume that the parent lines are not collinear (see Figure 5.18).

We then have:

(1) The LF:s must be simjlar (this is obvious from CF2).

{2) The LF:s must be non-directional,
Figure 5.18 (a) shows the parent line-pair. Let us assume, in
contradiction to (2), that the LF:s are directional. Thejr internal

ordering relative to the center vertex must then be the same (from CF-

def. item CF3), This is indicated by the arrows in (b) of the fig. The

53

5.4

(a)

(b)

()

Figure 5.18

A non-collinear CF is directional

504

lines L3, L4, LS, ... are neeued one by one according to the following

argument,

The need for the existence of line L3 arises from the fact that the
center vertex represents the same constellation for both LF:s, However,
noW e must have line L4, bhased on rays-in-betueen-parent-lines (CF4).
After this we need LS, by the previous argument. Etc, etc. Clearly
this process never ends, whereby we infer a contradiction.

Thus (2} has been proven.

Part (c) in the same figure shous the case uhere the LF:s are unordered.
Lines L3 and L4 are necessary because constellations for L1 and L2
(resp.) must be rotationally symmetric. Next we find that the LF:s are
no longer similar, which we try to remedy by inserting LS, LG, ond L7.
From then on the argument is brought back to case (b) and the ceiter
vertex,

We arrive at a contradiction, wnich proves NOCF,

All we need to do now to prove the theorem is to remember that the LF-
definition groups collinear rays on the "<]188"-gide (LF4), and that we

are not making a special case of the collinearity,

Lining up tuo copies of the final feature in Figure 5.9 (a) gives an
idea of what an unordered CF might have looked like, had it existed.
The subject of degenerate views is treated in the prototype context,

Subsection 6.8.

5.6

5.5 SOME RESULTING FEATURE IDIOSYNCRASIES

It may be seen now. that the LF-encodings for the two constellations L]
and L2 in Figure 5.2 are completely different, being ordered in opposite
directions to start with, as Figure 5.11 demonstrates. This is very
well - they should be - since the tuo line-constel lations are
essentially different. There is ro Hay in which one of them can be made
to cover the other by a rotation-translation (in two dimensions), a

basic inherent principle of the matching process,

Taking the line-constellations by themselves, as conglomerates of lines
in space, ue may achieve a match by also rotating one of them in a plane
at an angle to that of the page. This would correspond to looking at
the back of the object. In the general case, of course, we know nothing
about the back of an object, and can make no assumptions regarding its
features. [f the back differs, a different 20 prototype is created for

that view. The same line of reasoning applies to the CF:s, Cl and C2.

We have noted that CF:s are directional, and that the number of rays
from one parent line to the next, ccu. around the center vertex, is one
of the distinguishing items of information. However, the convexity of

the angle betueen the parent |ines is not (for any direction of

traversal), and we nou proceed to show the reason for omitting it,

5.5

Theorem 2:

Tuo similar (Subsection 5.3) compound features have the same anaular
convexity of parent lines 2t the center vertex in the directions of

traversal,

Proof:

Assume that all partaking features are directional, Theorem 1
(Subsection 5.4) shoued that the CF:s are. The case where the LF:s are

not is handled analoguousiy to that case in the proof of Theorem 1.

Figure 5.12 illustrates the steps below, with parts I and 1] showing the
actiors in parallel, Assume that the CF:s consist of the LF:s LFI1 and
LFI2 (those may or may not be similar). Since LFI1 is directional, and
e know that the LF direction bits (CF3) in the CF:s must be equal, the
tuo instances of LFIl are both pointed the same way with reference to
the center vertices, as indicated by the arrows in the figure. But then
items LF2 and LF4 in the line-feature definition (Subsection §.2)
necessitate the presence of the |ines Ll and L2, respectively, as shoun

in the second step, (b) in the figure.

Now item CF4 (orbital distance) needs line L3 ir. order for CFI11 and CFl12
to be similar. Then LF2 and LF4 demand L4, etc. We reach a state of
contradiction, since we can never satisfy the CF de‘inition and the LF

definition simultaneous!y.

63

LF-0-¢180-1-§180->180-, , . %par

LF-2-¢180-0-¢180-3180-div

| CIP——

LF-items separated hy "-"

LF-0-§180-2-4180->180-, , .&par

LF-1-¢180-0-§180->180-div

Figure 5.11

Two non-similar LF:s

(=

A

>
<%

L 2

5.5

(a) (b) L1

¥4 LFI2 ¥y LrPI2
I I

(e) /L‘
LFPI2
PSS
LFI1

11

(b)
LPI2

L2
Il

(e) LFI2

LFIl

Figure 5.12

CF:s and angular convexity at center

65

n
a

This concludes the proof.

As a further illustration of feature idiosyncrasies we now prove that,
in the convex trihedral case, for three |ines forming a triangle (uithin
a structure of otherr lines), we get either three similar CF:s or three
mutually different ones, never tuo similar, with the third non-similar

to those.

Proof:

(Refer to Figure 5.13). Part (a) illustrates the case of one LF and one
CF only. Nou (part (b), rays omitted) assume that the CF:s L18L3 and
L28L3 are similar (other cases are treated analoguouslyl), with two
different LF:s present. Then, by Theorem 2, we get a contradiction on

angular convexity.

It follous that the LF:s nust all be the same, and that the CF:s are
traversed LZ8L3, L28L1, as shoun in part (c) of the figure. In order to
have L18L2 non-similar to the others, we must add at least one line
somewhere, say L4, Part 1d) exemplifies this, for a direction of LF}1
of L1. But if tne line-features are all similar, we must insert LS and
L6 (and then more), as shoun in (e). However, this would be impossible
in the case of a convex trihedral, unless the extra lines are positioned
symmetrically. But in that case the CF:s would all be similar again
{part (f)). The case uhere LFIl is non-directional is treated
analoguous iy,

This concludes the proof.

e6

&¢

LFI1 LPI2 LFI1 LFI1

LrI1

L1

(t)

Figure 5,13

Triangularly connected CF:s

67

L1

(a)
— F—.“-—FF’
=~ o
/
L2 \
=

Figure 5.14

(¢)

Triangle with exactly tuo similar CF:e

68

5.5

Figure 5.14 shous why the assertion does not hold for non-trihedral s.
The lines L1, L2, L3 all have identical LF:s. The CF:s L18L2 and L1&L3
are similar, uhereas L28L2 is in a class by itself. Tne discriminating

item here is CFS in the feature definitics.

We now proceed to a discussion of projective invariance,

5.6 PROJECTIVE INVARIANCE

This is a basic idea behing depending on one single 20 prototype for
each essentially different view of an object {cf. Section 12}, and
behind the construction of the features (and prototypes).

Definition:

Let C2 stand for the total class of tuo-dimensional perspective

projections in which the same given faces of an cbject are visible,

Ne shall show that both LF:s and CF:s are projectively invariant over

C2, given certain rather liberal constraints.

63

5:6

Referring back to the feature definitions (Suhsection 5.2}, it is easily

seen that the following LF-itens are ‘nvariant over Cz:

®Ti.

Pl

P13.

Bi4.,

LF2 and LF4 (constraines to trihedrals).

LF24LF4 (not constrained to trihedrals).

LF3 and LFS (in the case of strict equality, and then
constrained to trihedrals). These bits are ignored for
present purposes (used for degenerate views, see next

section).

LF7 funder reascnable projective constraints, see below).

Thus the complete LF is projectiveiy invariant over C2, uith the

constraints above., It follous that (uith the same reservations) the

follouing CF-items are invariant:

PTS.

Pl6.

That is, tne complete CF, as well, is invariant undzi the same

conditions.

CF2 and CF3.

CF4,

CES,

78

Proofs of essential points above:

PPI1. Otheruise a ray would have to shift over the extension
of the parent line, which means that a previousiy seen
face of the object would disappear. This is not
necessarily true for non-trihedrals, as shown in Figure
5.15, uhere the top and bottom vieus require different

modle | s.

PPI2. By the same argument (also in the general convex case).

The reasonable constraints for Pl4 are:

1f the rays are parallel in space, the projections should still be

Within a liberal tolerance of being paraliel. This is true where e are

not too close to the degenerate case.

Otherwise the two rays, or their extensions, intersect someuhere (only

the case where there really are tuo rays on the same side of the parent
line is practically relevant), and ue stipulate that the triangle with
the base line as one side and the intersection of the rays as the
Opposing vertex, not extend beyond the plane of the observer (lerns

plane).

The latter case is illustrated in Figure 5.16. The shaded area shows
(in 20) where the observer must be situated in order for the projection

to stay in CZ. The object might be a truncated wedge, seen (by the

.8

N N N

</\
%

Figure 5,15

Trouble-causing non-tribedral |

72

U
G

Figure 5.16

Projective constraints

5.6

observer, not the reader) from ccieunere aoove and beyond., We note that
for observer 0l, the lirme Ll seems longer than L2, and thus that the
connecting lines would szem to converge away from this observer, For
observer 02, houever, L1 ceems shorter than L2, and the connecting lines
seem to diverge, as they should, and as the two-dimensional prototype

should indicate.

The condition for Pl4 1s ainays sufficient in order to preserve the
convergence - divergence properties as expressed in the projection of
the trianyle. [f e get closer to the object, divergence may degenerate
into convergence (or vice versal, as ue nave seen. In the practical
case this condition should very seldom be violated, and if so, then for
"border-line" objects with edges deviating only narrowly from being

paraliel,

5.7 SPECIFICITY AMD FEATURES

It may ne of some interest to sl | shortiy on the question of how much
or hou little information we would uant a feature to contain, leaving
aside the considerations of convenience in storage and hand!ing, etc.
The contention, naturally, is that the LF and CF contain the proper

amounts, apart from being obviousiy convenient to handle.

Looking at the LF, there reaily isn't much more inforwation around,
given that 1e nant to preserve the projective inveriance. But tuo

additional items might be included, namelys:

74

8.7

LFAl. Connectivity of outgoing rays (ex. triangle).

LFAZ. Convergence-paralIelism-divergence for all combinations

of rays on the same side of the base-line (not just the

two opposing rays).

The reasons ue do not want LFAl are, first, that (in the scene

representation) the connectivity of the rays may be obscured by other

objects, in uhich case the features would not match - and, secondly,

that there really is no need for it in the matching program, since that

process uses the connectivity of che prototype as a template.

LFA2 might be more ussful, mostly in the case of non-trihedrals. For

example, in Figure 5.17 the lire-feature of the bottom line is the same

for all three objects. Implementing LFA2 would be slightly painful,

since we get a combinatorial amount both of storage and of hand!ing,

The second reason against LFAl

is still a good one here, complemented by

the fact that the prototype acquisition program generalizes on

parallelities, and that such information is used in the mapping process,

ds we shall see,

We would not want less, on the other hand, since al! the information is

necessary (to the present system) in order to provide power of

discrimination and prediction (Section 6 - prototypes, and Section 9 -
matching),

Similar arguments hold true in the case of the CF. [n Section 6 we

75

- - i s e
LM P T S ——— 3 -

8.7

I T —
R L T — T e e ey

Figure §5.17

Secondary ray-constellations

8.7

shall deal with some additional aspects of features, such as their

uniqueness properties as keys into prototypes.

77

————
.

T N N S N TN i S e ——

44

L

6.0

6.8 PROTOTYPES

6.1 GENERALITIES

The handling of prototypes, like features, is fully generalized and
automatic. This is true for acquisition as well as for their use in the
matching process. The prototypes are perspectively consistent tuwo-
dimensional representations of vieus of objects in space. All objects

are assumed planar-faced and convex.

We are not imposing a restriction to trihedral objects, but additional

prototypes may be required here, as we have seen in Subsection 5.8,

Note that the restriction to convex objects has nothing to do with the
basic structures of the features and prototypes. Those &~e quite
general and would handle concave objects as well. No, the reason for
this restriction is simply that concave cbjects give rise to an
abundance of weird vieuws (self-occlusions, vertex coincidences, edge
alignments, ... you name it), each of which would require its oun 20
prototyze. They would also introduce difficulties in the forn of

partial matches.

Those circumstances would rapidly make the parsing strategy unworkable,
due to overunhelming combinatoriecs. Experiments with an L-bean (tuwo

equally wide parallelepipeds "glued" together into an L) have borne this

out,

78

Preceding page blank

6.1

An extension to concave objects may be based on regarding such objects

as composed of several convex parts (cf. [Roberts) in Subsection 8l

and Section 12).

The mode!s are based on extended topological equivalence (including

convergence- and parallelism-properties) and are therefore very general.

Thus one single prototype is used to represent al| non-degenerate vieus

of parallielepipeds, including skeued ones. The final object

classification. in an extenced scheme,

would take place in a context of
three-dimensional models.

1% would have been Possible to use 30 models exclusively, with a

projection-generating. feature-extracting program working directly on
those, and using back-projections for purposes of matching., This

Possibilitu has been tested theoretical iy and, while Conceptual |y

appealing, would seem to introduce additional difficulties concerning

general ity and sensitivity to error. A discussion of related subjects

can be found in Section]2,

6.2 INTERNAL REPRESENTATION

The internal structure of a prototype is b

ased mainly on its constituent

lines, and that information (below) is stored in a shared structure,

pointed into by every prototype, since the number of

betueen modeis,

. . 4
lines varies

:
88 '

6.2

The following basic items are stored for each model:

Pl. Name (string),

R T N T R N | e ————

R T s S—
o s
K. -4

P2. Number of vertices,

P3. Number of |ines.

i
i
[P4, Pointer into line-reference storage.

The following is the information for each line in a prototype (3 words
of storage):

PLl. End-vertices.

PL2. Pointers to next lines (ccw.) at end-vertices,

Which side (if any) is part of the object contour.

Line-feature equivalence class {explained below),

Line parallelity class and length class {also explaine.
belou).

{

Line-feature identifier, and the LF itsel¢ for easy

reference.

The lines are ordered iairected) the same as their line-teatures, and
both lines and vertices are assigned an internal labelling. This makes
PL1 through PL3 meaningful, and makes it possible to reference every

element of a model.

6.3 LINE-FEATURE EQUIVALENCE CLASSES

Let us for a moment contemplate the somehow familijar object in Figure
B.1. Let us assume that, somewhere in the scene, We have found the CF
depicted at (b) in the same figure. The natural thing to say is: "Aha,
it fits precisely on LPl and LP3 in the model..". This is true, but the
CF fits equally well on LP3 and LP2, or on LP2 and LPl. These are
distinct lines in the internal representation of the prototype, as was

noted above.

Looking at the figure, houever, one realizes that all of those three
initial mappings are equivalent, in the sense that the topology context
(including parallelisms and convergence properties) is the same for each
one of the three |ine-pairs. This can be clearly seen by turning the
page around, and using in turn LP4, LPS, and LPB as the bottom |ine of
the object. Note that the different parallelenipeds in Figure 6.2
essentially (but for proportions) differ only in the angle of viewing.

They are in the same C2 (Subsection 5.8).

This leads us to the conclusion that, having investigated the mapping

82

&3

P
“w

(a)

LP6

LP1

(v)

‘/u

Figure B.1

PAREP and eauivalance classes

&3

(2]
L)

Figure 8.2

Same C2 - Same prototype

84

"7 |
&
. |
6.3
L18L24LP18LP3, there is absolutely no sense in bothering uith
L18L24LP28LPL, since the result will be no different from the first one.
|
WE ; . : N
- We say that tle |ine-features of LP1, LP2, and LP3 are equivalent, or in
o
1 the same equivalence class. This is true @lso for the aforementioned
CF:s, but that fact is not explicitly recorded in the protot.ne itself
3 (since it contains no CF storage), only implicitly in the central
feature reference pointer structure (Subsection 6.5). CF:s are not
1 formally assigned equivalence classes. 0f course the equivalence of
: ./ CF:s is contingent on the equivalence of their LF:s, as defined below.
Note that the concept of equivalence class is meaningful oniy in the
context of a specific prototype. We proceed now With the formal
(recursive) definition.

OEFINITIONS:

Tuo lines (line-features) of a prototype are said to have the same
equivalence classification if and only if the line-features are similar,
and all lines attached to the tuo given lines (in the proper cc-uise
order around the vertices, and in the direction of the LF) beiong

pairuise to the same equivalence-ciasses.

Tuo line-pairs (compound features) are said to ke in the same

equivalence class if and only if their respective compound feature uords

are similar, and their constituent line-features, taken in the order of

the internal orderings of the CF:s, belong (pairuise) to the same LF- ;

i
. |
:

equivalence classes,

SRl RS L oahoat o i ag B LULE LR G Ll Sl Rhy Gutha i e 2 gl s B Bl il

s

6.3

P T

The following algorithm is used in the prototype analyzer to determine

the equivalence classes for line-features,

ALGORI THM:

A. Give the lines an initial assignment of tentative equivalence
classes, a different class for each different line-feature

type, so that the initial conditjon (feature similarity) is

satisfied.

PR, P Y St
[se)
.

For each equivalence class, EQ, the first encountered line is
now assumed correctly classified. Go donn the list of other
lines belonging (so far) to EQ, checking whether they conform
to the definition, using the original line as a template., 1If
a line does not conform, make a note of this, but do not at

this stage change the classification,

C. If there are no changes noted, exit., Otherwise change all
marked lines, so that all such |ines of a given EQ are

assigned the same, new, equi:alence class. lterate from B. F

Note that we cannot effect changes as soon as the need is seen, since we
might encounter a situation where such action would partially change
some EQ assignment, thereby obscuring the fact that some pair of
differently grouped lines should really have the same classification.

As a matter of taste, we could make the change betueen equivalence

classes, but it doesn't make much difference, and the present algorithm

is convenient for programming reasons.

&6

i

6.3

We now proceed to prove the correctness of the algorithm, and also that
it provides the minimum-spread such classification, i.e. that two lines

are classified differently if and only if they do not belong to the same

EQ, according to the definition.

PROOF OF ACCURACY OF THE ALGORITHM:

From the fact that step B af the algorithm anaiuzes the complete

brototype, testing the EQ-classifications for all |ines according to the

recursive definition, it follows that those classifications are in

accordance With *ne definition, when the algorithm is exited. Otherwise

step B would be reiterated.

On the other hand, all lines with an initial assignment to an
equivalence class ure assigned the same n.u classification if and on'y
if they do not conform to the first line of that class. Furthermore,
the changes are performed at the sanme time, just before iteration, and

do not influence the conformity tests in step B, Thus it is impossible

to exit with two lines ciassified differentiy, unless they should be,

W

6.4

6.4 PARALLELITY AND LENGTH GENERAL 1ZATIONS

The prototype analyzer generalizes on two things particularly and
explicitly (besides those generalizaticns inherent in the features),

viz, parallelity and length, in the follcwing restricted sense:

Gl. Two lines in a prototype are said to be in the same
parallelity class if and only if the smaliest difference
between their angular arguments in some direction is less

than some given limit, currently 5 degrees,

G2. Tuo prototype lines are s21d to belong to the same basic
length class if and only if they are in the same
parallelity class (length class = parallelity class).
Honever, we allow two length-categories, one long and one
short. within each length class. Any line (Within some
length class) will be assigned to the longer citegory if
and only if it is longer than 1.25 times the length of the

shortest line in that length class,

The chief reason for the use of parallelity classes js prediction, where
Ne may have to know the approximate direction of a missing line in order
to insert a tentative one, or the direction we expect a new line to
i'ave, in order to be able to discard one that deviates too much, This
is not always possible on the basis of the line-feature data alone (the
only feature used throughout the mapping), since the parallel lines may

sometimes not be simply connected. It is also convenient for easy

referencing.

e p—— pe—. <
B S A e i i P

i
i

r

6.4

There are two basic reasons for the introduction nf length classes. The
first one is that knouing the approximate length of a line, we may be
able to quickly decide whether to believe in it, or to look for an

extension, or if it seems necessary to divide the line and use only part

of it.

The second reason is that it gives us a more tangible hold on
perspective, since perspective deformations have less effect on relative
lengths within parallelity classes than they have on angles. Figure
6.3, part (a), shous this clearly. The lines L3 and L4, while parallel
in space, have an angular difference of about 45 degrees, uhereas the
effect on the relative lengths of the parallel lines L1 and L2 is much
slighter (someuwhat awkuardly expressed), Ll being about 1/8 longer than
Lz, Thus the refative lengths of L1 and L2 would not refute the
assumption that L3 and L4 are parallel, which the prototype demands,
Using the angle alone, we would have to set the discriminator very

l'iberally, thereby likely introducing erroneous assumptions elsewhere.
The truncated wedge in Figure B.3, part (b), indicates the reasons for
introducing length sub-classes. We are assuming that we will not be
dealing with objects that would necessitate more than tuwo such

categories,

We shall sometimes talk of "equality-classes" as a collective term for
y

these generalizations.

The concepts above (reasons for -y use of -) will become clearer tur ther

&3

G
4

(a)
L2 ’
L3 //{ L;\\fﬂg’
L1
(b)
.; L3
L2
L1

Figure 6.3

Frototype line length-rlasses

38

T 6T

6.4

on (Section 9), in dealing with the matching from scene elements to gl

prototypes. He shall now briefly return to the feature structure,

6.5 CENTRAL FEATURE REFERENCE STRUCTURE

The following is a description of how the feature table is built up,
With reference to prototype access. Use is made here of the concept of

equivalence class, so that redundancies are avoided,

Figure 6.4 shous the details of this central feature reference !ist
structure. This storage is a complete ordered array of all features
found in the prototypes, augmented by pointer structures for references
back to the prototypes. The prototype analyzer ascertains that there is
exactly one reference from each different line-feature to each model
that contains that specific LF, and to some |ine belonging to each

equivalence class of that LF, within the prototype.

In the case of CF:s, we make sure there is exactly one pointer to each
line in the pair of the CF, with similar restrictions to avoid

redundancy.

The reference list also contains pointers to all CF:s encountered in the

scene at any given time of analysis. Therefore the parsing program

simply goes doun the lists, exploring teature matches in order of
decreasing feature complexity, essentially investigating all injtial

mapping possibilities.

SR e R L T L e -

Feature

identitier | ——P Feature word

l

- -1 - -y To— - =) . - R — R auf L G Rl
- s . - g a P L ML LT A - il '
— . o TN P TSR P

6.5

Feature reference word

All Complexity Feature Pointer to Pointer to
keys number of is un- scene~ prototype
tried? rays) ordered? substruct, substruct,
v

End at Scene- End at Scene- Next- _

center line 1 center line 2 pointer

Pointer back Pointer to Next-) '

to protptype prot, inst, pointer

substruct.

®0o0® 0o

Pointer back Pointer back Number of items
to prototype to feature in sublist
Case of compound feature
First First CF Second Second Next-
line-end prot, ind line-end prot, ptr —
at inters, line at inters, line
Case of line-feature ST
Prototype LF LF equivalence Next-
line ind class ptr 4_"....an
Figure B.4

Central feature reference storage

b e s o S e i e R R

6.5

We shall return to these subjects in the context of the parsing process,

Section 8, uwhich among other things describes tha feature extraction

over the scene,

6.6 PROTOTYPE ACQUISITION

As has been pointed cut, the acquisition (or "learning") of a new
prototype is fully automated, and all prototypes are treateq exactiy the
same, The following is an account of the steps in the input of a new
prototype.

IPI. Input berspzctively consistent line-drawing.

IP2. Analyze this line-dirauing, using the pre-processing

package.

Call the prototype analyzing pregram.

Flush the line-drawing and associated data-structures

(created in [P2),

el e e T kel p el e
N e o R i e

6.6

Main actions performed by the prototype analyzer are:

PAl. Classify constituent lines in terms of line-features, If

heretofore unknoun features are encountered they are

added to the central feature list,

PA2. Create compacted topological data-structure for the

model,

PA3. Find |.F-equivalence classes, parallelity classes, and

length categories.

PA4, Update LF pointers in the central reference |ist, so that

it contains one reference to this prototype (and a |ine)

for each combination of LF and LF-equivalence-class,

PAS. In parallel with PA4 find CF:s, and update the central

feature list as in PAl, and also update pointer

structures similarly to PA4 (Subsection 6.5).
The following are some comments to clarify steps above.

In IP1 the tine~rrawing is given by providing (from the console or via a

file) the end coordinates for all participating lines. Care must be

taken to obtain approximate parallelisms where such are desired, and :o

avoid them where unwanted. By "perspectively consistent", we mean that

spatially parallel lines should be adjusted length- and angle-ujse by

94 ;

6.6

Ca

some small amount in order to indicate a perspective deformation, since
that concept is used in the matching program (Section 3) (and only

thers),

Sometimes we cannot generalize on such perspective deformations, namely
if those object faces (that contain the parallel lines) form an exterior
angle of less that 279 degrees, in which case we get a dependence on
orientation. Figure 8.5 demonstrates this state of affairs, in the case

of a skewed parallelepiped.

Such line-drauings could be generated automatically in a fulf-fledged 30

system, as indicated in Section 12 (future possibilities),

Step IP2 entaiis finding the vertex connections and setting up the
normal cross-reference data-structure. Such things are treated later,

¥ in Section 7,

After the fearning of a prototype, ali that remains is the internal

representation, not the line-draning. This data-structure (for aj|

—_— o e e v

Current models) may then be conveniently saved on auxiliary storage., We

may thus have different sets of models, which can be used easily and at

will. One mzy conceive of a future system that makes some intelligent

use of such different sets of prototypes, trying a new set if the

current one seems to yield unsatistactory results, |t Hould to some

extent be able to accomodate itself to the surroundings, However, there 4

is no use for such a scheme in the present system, but possibly in a

more sophisticated one, where we utilize thres-dimensional models and

35

SO

. = i R T . R W NPT STt g T e 7
Fare ik L b o

- P e
sl guaal ol e B Rl e T AL el M ot R S LS T L e e e s e, e

- o . - TR g TR PR S T N
Diieadl W e R T SR Y e Al -~
TR TIrTaa e -

6.6

b LB L s SRR R Sl e s

S L TN e e o

Skewed parallelepiped resting on table,

Orders of apparent lengths of L1,
observers at o1,

L2, and L3 for the
02, and 03, respectively:

01: L1-L2-L3 02: L2-L3-Li 03: L3-12-11
The nbservers are all thought tn be in a plane parallel

to a plane through the center roints of 11, L2, and 1.3,

Figure 6.5

Orientation dependent perspective deformation

36

LT T o

é
E
E
E
!

6.6

have access to depth information in the an
12).

alysis of the scene (Section

Another possibility is to have the Program learn new prototypes by

"consistent encountering", i.e. by finding something new a sufficient

number of times te conclude that it probably is some object it should

know about. Such a scheme is njce because it is more general, but it is
also more error-prone, since we Nedld not necessarily encounter perfect

(enough) instances of the object projections.

In an extended scheme (30) the prototypes uould be given by the end-

coordinates of their edges, and the acquisition program would generate

all different views of the object in question, creating a new 20 model

whenever the current projection does not map onto any of the existing 20

prototypes.

The next two sub-sections deal with the currently used set of model s,
and wWill provide some discussion of the extent to which objects can be

conveniently and unambiguousty represented through the prototype and

feature schemes given here.

Sl

v P
A

6.7

6.7 CURRENTLY USED PROTOTYPES

In this subsection ue refer to Figure 6.8, which provides a set of the

most usefu! (and realistic) models. The most often used prototypes are

given in the following table (for a definition of "degenerate",

Subsection 6.8},

see

Ml. PAREP; Parallelepiped (hon-degenerate) .
M2. WEDGE: Wedge (non-degenerate).

M3. DPAREP: Parallelepiped (degenerate).

M4, DWEDGE: Wedge (degenerate) .

M5. TWEDGE: Truncated uedge (auxiliary model}.

In other words we have four 20 Prototypes, which represent all possible
views of our tuwo different objects (not counting the TWEDGE). The
choice of objects was based on their simplicity and regularity., Of
course, one might want a nore varied set of models, such as a
tetrahedron, truncated objects, etc. The truncated Hedge has been used

from time to time, experimentaliu., It is not currently an active

prototype.

The fact that onc nf the models (the PAREP) may be thought of as

composed of two instances of another (the WEDGE) tests the

98

Rl

R R TRy W L

Figure 8.6
Current a

nd auxiliary prototupes

6.7

discriminatory powers of the system, since it introduces partial
matches. We shall get back to that topic later, in Section 9 and

Section 11,

6.8 DEGENERATE VIEWS

As we have seen (Figure 6.6), the prototypes contain representations of
degenerate vieuws as well as "normal" ones. A degenerate view is here
defined as one in which there is no vertex where more than two side-
regions meet. Usually such a view is one where, for that orthogonal
projection which shows the same sides of the object, rotating the object
a small angle around some axis Would change the topology of that
orthogonal projection. Note that with suitable projective constraints

(Subsection 5.68) tiere is always such an orthogonal projection.

We shall use the tarm "perspectively degenerate" in the case Where a
similar rotation would change the topology of the perspective
projection. MWe shall sometimes use the obvious abbreviations D-view and

PD-vieu,

Thus (a) in Figure 6.7 shous a degenerate parallelepiped and wedge,
whereas (b) represents perspectively degenerate vieus of the same
objects. Note that the term degenerate is used somewhat inconsistent |y
with its usual meaning in cases |ike the wedge. It was chosen for

convenience.

100

Figure 6.7

Degenerating vieus

|
:
:
E

Famg: SRR Ta

Gl AL < i e R b T e) i RN Ty, TR e

4
-

6.8

So, in the present system, degenerate views are represented by
degenerate models. However, we cannot do the same for perspectively

degenerate views, since in those cases {cf. L1 and L2 in the same

figure) we do not often find the initial lines representing degenerate

planes unbroken. On the contrary, they are often split into two or nore

parts which form small angles with one another, This often wnakes it

difficult to decide whether we are dealing with a PD-view or not.

As an added attraction, we often get views like those in Figure 8.7,

part (b), due to occlusions. In most cases, however, such an occluding

object should he better matched to some prototype and thus disappear,

leaving us with a partial mapping (part (b}, with L1 and L2 gone),

Therefore PD-viens is one of the problems in. the present system, as

indeed they nould tend to be (] suspect) in any vision system dealing

With the real world, They have to be regarded as special cases of D-

vieus. 0On the other hand. we Want to be able to pick up the marginal ly

non-degenerate cases, as indicated in part (c) of the same figure,

What makes the problem hard is partly that a very slight change in the

data may result in a dramatic change in topology. The other unfortunate

circumstance is a consistent lack of helpful edge-information in such
areas, due to their narrouness. This makes it hard to verify predicted

line-elements. A slight amount of ad hoc -ery has been necessary in

order to detect these cases and channe] them into the proper prototypes.

This is done by channeling border-line instances (where an outer angle

of an LF is between 188-Alpha and 188 degrees, Alpha currently being set

182

i Bt oot) oD e et o e e

p—

i maaar s [

a2

6.8

to 7.8) into the degenszrate case, rather than trying to complete them as
regular, almost degenerate objects. The reason for this s partly very
practical, since some subroutines for intersections, collinearities, and
the like, get fouled up when dealing with a region that has been
squeezed almost into a line. Nevertheiess, there is g global suwitch to

enable this scheme.

6.9 REFRESENTATIONAL AMBIGUITIES

It may be interesting to make an assessment of the extent to which
objects can be adequately and unambiguously represented through the
features and prototypes suggested here, That is, are there objects for
which the parsing program, or rather the prototype matching program,

might mistake one object for another?

Of secondary importance is the uniqueness of the initial line-mappings
provided by (primarily) the compound feature and (secondarily) the [ine-
feature. The reason this is not crucial is that the matching program

has the full power of decision and will give low marks to bad mappings.

Let us look at the last question first (see Figure 6.8). The Iine-
feature, appiied on L1 in the fig., will put all three objects in the
same class. The compound feature, applied on L1 and L2, will be able to
distinguish betueen (a) and (b) but not betueen (b) and (c). However,

the objects with which we are dealing are usually not as complicated as

163

6.9

(a) (h)]

L1

e

bl

Figure 6.8

Keys and ambiguities

6.3

that. The following table (over the four most |y used prototypes)
demonstrates the performance of the compound feature in terms of

uniqueness as initiator into mappings:

Total number of CF:s 30.
CF:s mapping into 1 prototype only 25,
CF:s mapping into 2 prototypes 4,
CF:s mapping into 3 prototypes 1.

This shows that for the most commonly useful (uncomplicated) objects,
the compound feature is quite an accurate guids for mapping
initializations. Of course, degree of uniqueness is directly
proportional to complexity (number of rays), and therefore the |ine-

f feature is much less suited for mapping initializations.
Now to the main question:

How similar do two object projections have to be, in order for their
prototype - feature representations to be potentially subject to

confusion?

Clearly, to start with, the topologies must be the same. Fur thermore
every pair of corresponding |ine-features has to be similar betueen the
tuo projections, so that, at every vertex and on both sides of tje
extended base-line, the topologies must agres. Angular convexities must

also agree, for all line-junctions. Parallelities and relative lengths

of parallel lines must agree (within toclerances), not only as given by
the limited reach of the line-feature, but also as recorded in the

paralielity- and length-class items, which reach over the entire model.

185

e i 1 s St

8.9

We may therefore conclude that ambiguities in the prototype
representation of 20 projections are introduced only in terms defined by

our tolerance leveis for parallelity and length-quotients,

Figure 6.9 gives an exanple of such ambiguities, Clearly, the models
may be constructed (and analyzed) with any desired levels of tolerance,
but the crucial issue is how well we (the program} will manage to

distinguish betueen them in the parsing process,

Here is one case in which the perspective information (as indicated in
the prototypes) may be helpful. Thus in Figure 6.9 we may be able to
distinguish betueen (a) and (b), or (b} and (c). However, (c) might be
a perspectively deformed version of (a), or it might be another model (a

truncated wedge, on its head, for instance}.

This is a case that should not be likely to arise in practice, and where
(if it did) we would be compelled to rely on 30 knowledge for the

decision,

This concludes the sections on features and prototypes, and before
continuing with the related topics of mapping and parsing I shall now
briefly describe the nature of initial data and necessary preprocessing

stages.

186

6.9

(a)

(b)
i e L
4
(e)
Figure 8.9
Potentially amhiguous representations

107

i

7.0

7.8 PREPROCESSING

7.1 INITIAL DATA

The initial input consists of an array of two-dimensional coordinates
for locations of intensity discontinuitjes in the TV-image, Those
points are called edges throughout this paper, That total input is
hereafter called the edge-drauing. Figure 7.1 demonstrates the

character of such initial edge-drawings,

The edge-fol lower is part of the Stanford Hand-Eye System, [t Was coded
mainly by Karl Pingle [Pingle & Tenenbaum 1971], It uses Tenenbaum’s
accommodation routines [Tenenbaum 1979] and the powerful edge~-detecting
operator created by Manfred Huecke| [Hueckel 1971 & 1973). | shall not
attenpt to descrihe the operation of the edge-fol lower in any but the

following extremely broad terms,

The edge-operator consists of a variable size, approximately circular
matrix which, applied over some small area of the TV-raster, utilizes a
number of elaborate mathematical functions to obtain {basically) the
location of the edge, the intensity gradient vector, and the brightness
difference. Figure 7.2 Shows an ideal edge, its intensity profile, and

the resulting operator output.,

The edye-extraction is per formed on a 333%256 matrix of intensi ty

109

Figure 7.1

Initial input: Edge-drawing

7.1

PR T T

9—-&? Light >
Oey) X,

Figure 7.2

1{
Edge-detection 1

111

Bho &

values, each of which has 4 or 6 bits of information. A single TV-scan
results in 4 bits, but 6 may be obtained by combining several scans at

different intensity ranges.

The edge-follouer makes a coarse scan over the picture until it finds an
edge, which it subsequentiy tries to follou until a closed curve is
found. It contains a line-fitter which it uses to obtain some idea of
the locations of the vertices in the scene. A closer edge-scan may then
be performed in some area around each of those vertices, so that other
lines may be detected. Since this may sometimes lose (due to glare,
shadous, adverse lighting conditions, etc) there is another mode
available, in which a complete scan is performed on the inside of all
closed regions found previously. The program accomodetes the
sensitivity of the TV-camera as it proceeds, so as to be able to see

better in the local area of current interest.

Alternatively we may work on stored TV-matrices, in which case
accomodation is by definition inpossible, and where the quality of the
edge-drawing becomes lower (as a rule), even |f B-bit intensities are

used,

Whatever the case might be, as the next step in the processing of the
picture, the original edge-data is transformed and sorted before we

start the line-abstracting phase.

The transformation replaces each edge-point and gradient vector by an

edge-pair (see Figure 7.3, (a)), so that the direction of the local

WLz

Figure 7.3

Initial input - edge-data

R o S e R O < T

e et

T L S e .

T 3,

intensity-discontinuity is from then on implicit in the vector formed by

each pair,

The sorting program crcates a linkage among the edge-pairs to ensure
that each edge-pair is in the proper context in terms of closeness to
other pairs, ard in terms of the angles of the pair-vectors. In other
Words, the list of pairs is ordared in a Wiy conducive to extracting the
best possible lines. The input data already to a great extent conforms
to such an ordering, but it is not satisfactory in areas near vertices,

or in other regions with complicated patterns.

7.2 ABSTRACTION OF INITIAL LINES

Looking at Figure 7.1, our (human) vision system tends to abstract
shape: or objects from the data. It is unclear (to me) how big the

chunks of abstracted information are, hut it seems (judging from my aun

experience) that we intuitively perceive lines where the picture

contains straight arrays of edges, and that the patterns of those |ines

are interpreted in meaningful Nays,

Be that as it may: Line-extraction is the first point on the agenda for

the present systen.

The line-extracting progran attenpts to fit lines within the connected

subsets of edge-pairs resulting from the sorting phase, and it uses an

exact least square method for the line-fit.

114

-

7.2

New edge-pair
close enough

to current line?

i

¥

Least square
fit is 0K?

Start process
for next line

:

JT

More pairs in
current set?

N

i

Instigate
backwards
search

the
lines

Fuse d——6— Is current line fusable

4
Direction
forward?

l

with the previous one?
(Least-square fit)

Figure 7.4

The line-extracting algorithm

115

e jiam " g I T WY

U5

E Figure 7.4 gives the flow of the line-finder. A couple of things are

Wworth noting here.

1. Neu edge-pairs are tested for closeness to current line
(before least-square fit) and rejected (line stopped) if
not close encugh. This prevents wrapping around corners,
as Figure 7.3 also demonstrates (part (b)), The least-

square fit itself, for lony lines, is not sensitive enough

here.

2. HWhen ne get no further in one direction, we try extending

the line at the other end, in the same kind of process.

i 3. UWhen both directions are exhausted, we try merging the
present |ine With the previous one, iteratively, before

starting on a new |ine.

After all possible lines have been created, we finally clean up the
picture, removing lines that are bhased on an insufficient number of

edge-pairs (parameter), and shrinking each one of the rest of the lines

by an amount proportional to the quantity DEP in Figure 7.3, limited by
an amount proportional to the lenyth of the line. This is done in order

to clean up around the vertices as much as possible before we

investigate the tutality of line-intersections (next subsection).

Figure 7.5 shows the result of |ine-extraction on the edge-data in

S T T T TRy e g e

Figure 7.1.

=

116

Figure 7.5

Initial lines - Tentative vertices

117

A yict:

This concludes the preprocessing of the scene. The story continues in

the section on parsing, which conveniently follows next.

PN

e i A e Pt

fmimams s

PSP

118

PPy — e e

s Jai

8.0

8.8 THE PARSING PROCESS

8.1 PARSING STRATEGY

The word "parse"

happens in this process.

object at a time, each time modi fying the scene by removing the lines or

segments belonging to that object.

for "object projection". The input to the parser is the initjal

drawing, which was described in the previous section.

The diagram in Figure 8.1 shous the floy of the parsing process. The

first tuo blocks,

for each iteration within the parser, They are described in the tuwo

following subsections.

The result of the actions in block A (described in Subsection 8.2)

pointer structure which, although the original line-drawing is

unchanged, gives the tentative vertices based on intersection relations.

In Figure 7.5 (bottom)
tentative linkage of the tines.
are the connectivity relationships,

The data-structure is described in the appendix, Subsection 14.1.

The tentative topology is the basis for the next step, feature

119

. e s e - il | B s ot e e L T ek

has been chosen because t describes very well what

The parser works iteratively, extracting one

"Object" is used here and elseuhere

line-~

A and B, may be Characterized as Preprocessing stages

is

that pointer structure has been used to shou the
Note that what is shoun in the figure

using weighted vertex coordinates,

[

Compute cross-reference tables
and form tentative vertices

Feature extraction

l

Find mapping key of
maximum complexity
to initiglize mapping

4

All keys are Call matching
exhausted? program

Reset data- Mapping 0K?
structures i]

? Is there o

satisfactory
mapping?

3

END OF PARSE

Is this a
complete
mapping?

‘L Memorize the mapping
Isolate this object Evaluate the object

from the scene Update if hest so far

‘_

Figure 8.1

Parsing strategy

T g

8.1

extraction. Ouring that process, links are created between scene-
elements and prototype-elements. Those |inks, called mapping keys, are
investigated by the parser (one by one) in order of decreasing
complexity until the mapping program finds a complete object or the
links are exhausted. In the former case the object is accepted
directly, otherwise the different mappings are compared, and the best

one is chosen. Complexity of a feature is measured in terms of the

number of lines involved.

The mapping routine tries to find as good a match as possible, given an
initial scene-elenent and the prototype element it is currently assumed
to map into. On return, that program has stored the best match (for

that key) in compacted form for the parser to study.

The parser now compares it to the best mapping it has found so far,
updating the "best"-pointer if the new mapping is better, otherwise just
stepping the map-storage pointer. Thus all mappings are remembered at
each iteration (but not between iterations), and before investigating a
new key it is easy to check whether that key has already (implicitly)
been used, i.e. if that line in the scene has already been tried for the

current equivalence class and prototype combination.

Subsection 8.4 discusses object evaluation (and isolation). We must be
able to decide whether one partial mapping is better than another, in
order to isolate the best object. As the diagram shous (Figure 8.1),
object isolation takes place when all keys have been investigated, or a

complete object has been found. Since an isolated object disappears

121

MR

8.1

DaEe b | 2o A i

from the current scene, the topclogy may subsequently have changed in

j some drastic way, and that necessitates g reiteration of the parser

Preprocessing routines. But before that we reset all data-structures to

the initial line-drawing state,

1 So we may note that as far as the parser knows, each iteration deals

With a completely neu scene. The program does not remember what it did

. before. nor does it use its stored Knouwledge of previously extracted

i objects. It does not Worry about occlusions. A match may take place

even if it means that the object Wwill partly cross over other elements

of the current scene.

Such information could be utilized to some extent even in the present 5

system,

but would be fully effective only in the context of a complete,

three-dimensional ly based vision system,

Figure 8.2, Figure 8.3, Figure 8.4, and Figure 8.5 show the results of

the iterative pasing process on our sample scene,

Figure 8.6 gives the collectiv

e final scene Wwith no elimination of

hidden lines.

There could be one more process in the total schene,

namely object
completion,

the idea of which would be to try combining (in turn) each

of the isolated objects with the final residual

line-drauing, using the

matching program,

in order to determine whether some partial object may

be completed or at least extended. Section 18 is devoted entirely to

that subject.

Figure 8.2

Object 1 and amended scene

Figure 8.3

Object 2 and amended scene

8.1

2 e rvipcnco e e

Figure 8.4

b Object 3 and amended scene

125

5,
~3

Figure 8.5

Object 4 and anended scene

3.1

L]

L]

Figure 8.8

Objects superimposed

127

o S

R e 25 e R
i = -

ShEl

Now we proceed with three subsections dealing uith blocks A, B, and C in

the strategy diagram, Figure 8.1,

3.2 FORMATION OF TENTATIVE VERTICES

Since the entire parse depends on the initial mappings, and features are
based on end-vertex ray-constellations for the lines, we have to somehow
obtain a tentative topoloyy in terms of linking lines together in
possible vertices. This should be done fairly conservatively in order
to avoid grouping excessive nunbers of |ines together, which would
complicate the task of matching, besides possihly destroying
recognizable features. On the other hand we do not want to be too

conservative, either, for similar reasons.

Thus the formation of tentative vertices, with no global knowledge, is

of @ great deal of impnrtance. The block diagram for this process is

shoun in Figure 8,7,

A "cut stop" (point B3 in that figure) is exemplified in part (b) of
Figure 8.8, and consists of one line {extended) running into another,
If one of the cut-off ends is short enough, a vertex could be formed

here, by assuming that the short piece may be ignored.

Block A, the formation of cross-reference tables, is the process of

mapping the relationships between the lines in terms of intersections

128

802
b 4
/3 A: Form intersection cross~reference tahles
B: 1 Join acceptable extension-intersectiona
2 (distances 0K, no obstructing lines)
I using restrictive parauneter settings
2 Same as 1, except use full parameters
3 Join line-ends with small cut stops if
and only if either end is free, giving
i preference to the line with the least
extension, if both are eligible
4 Same as 3, except no preference
5 Extend still free line-ends into
¥ closest vertices, subject to various
distance criteria
a Join closest free line-end pairs, using
_ liberal parameters for one of the lines
b 2
C: Iteratively, merge pairs of vertices, provided
the distance between them is short enough
*
"’ .

Figure 8,7

Tentative vertex formation

Figure 8.8

Tentative vertices - case analysis

8.2

§ and collinearities.

This is done for every pair of lines., For eich end

of each line the following information results (refer also to Figure
8.8, where L1

is assumed to be the current line in all cases)

’ = -

X1l. Closest extension-intersection. and both distances,
subject to acceptability (L2, rl, r2 in part (a) of Figure
| g
5 8.8).
X2. Closest collinear line, and distance (L3, rc in part (a)
of the same figure),
i
| X3.

Closest stopping line, and distances (L3, rkl, dl
(n)),

in part

That block (A) is iterated once more, in order to find next-best

g
intersections in cases where the best ones were subsequently blocked, as
illustrated in Figure 8.8, part (d),

Line L3 is first associated wjth
LS, but later L4 s found to block that

intersection, so that L3 is

grouped with L2 instead, during the course of the second iteration,

One might of course store several best intersections for each |ine,

begin wWith,

to
My previous preprocessor did just that (Subsection 3.2).
It is hasically

@ question of space versus time,

The present schemne was

chosen because (1) subsequent blockings are not overly frequent, and (2)

“the best feu" may be blocked as well

» S0 that the extra code is still

necessary.

8.2

Once the cross-referaence tables exist
steps, namely temporary vertex linking, and vertex merge.
vertices are created in an iterative process where each step is

conservative in relation to the previous, but where the end-result

is as
liberal as possible without creating confusion, | shall briefly
indicate the reasc s for each of the six passes, using the examples in
Figure 8.8.
Pass | and pass 2 do the same thing, with a different extension
tolerance level. Part (f} in Figure 8.& demonstrates whye If rl is an

acceptable extension for pass 2, but not for pass 1, and if the maximum
vertex-merging distance is less than rl, the two vertices in (f) are
kept separate, as seens reasonable. That would not have been the case

Wwith only one pass here, since L1 would |ink to L2.

Pass 3 joins L3 with L2 in (b}, provided the cut, d3, is small enough,
and rk3 is short enough. 1f the preference clause had not existed, L1

nwould have heen joined with L3, and the resulting vertices would have

looked differently.

Pass 4 would have joined L1 with L3, if the former hadn't already found

L5, and the latter L2 (still in part (b)).

Pass 5 will permit L3 to join the others (L1 and L?) in {c), which it

couldn’t otherwise have done, assuning rl and r3 are too great.

Pass 6, finally, allous L1 to join L2 {part (e)), provided rl2 is in the

right length-bracket, but will generally not allow L1 to join L3.

» vertex formation proceeds in two

The temporary

e

o il e, SRR B

ey

S Dt s

&

P

e
w

o)

&4

8.2

The vertex merge fuses close enough vertices, subject to some
connectivity constraints., A weighted-least-square method (that takes
account of line-lengths) is used in computing the best vertex

coordinates for junctions of several lines.

"There are many hays to peel the banana ...". Which is the right one?

For tunately the matching programn is clever enough to be able to handle

the consequences of most of the unavoidable mistakes of the ignorant

procecdure above,

Finally, let me once more stress the fact that the formation of
tentative vertices (etc) is only reflected in the connectivity, i.e,
confined to the pointer structure (Subsection 14.1), and that the

initial line-drawing is in no sense affected by this.

8.3 FEATURE EXTRACTION

Assuming the program in the Previous suosection has done a fair job, we
should nou be able to establish some links betueen the scene and the

prototypes, in other words, recognize certain constellations as things

we have seen before,

The feature extracting procedure ig absolutely straight-forward,

-

e p il ool s b e o -l B BT Yok

o)

8.3
:

The line-features are extracted and compared with the centrally stored

ones, in a binary search through that ordered list, If 3 similarity is

FIp

found, we store that identifier (and direction-flag) with the data for

Cadene 4 Sall

that |line.

The compound features are conpared to central storage in similar

fashion, but as a match s found, e update that pointer structure so

that the particular CF. besides pointers to various prototypes, will now
also have a pointer to this specific instance in the scene. The central

feature reference structure was shoun in Figure B.4.

A global switch enables the follouwing extension in the feature

extraction phase (for messy scenes), Utilizing the concept of partial

similarity of line-features, an unrecognizable feature may be listed as

a potential key, provided it can be reconciled to some central ly stored

feature by the association only, or disassociation only, of one or more

rays. Thus both adding and deleting rays simul taneously is forbidden,

since such keys would he far fetched. MWe also want to keep changes as

simple as possible.

For each unrecognized feature the central list ig checked, in order of

decreasing conplexity, until a partial similarity is found {that

conforms to the rule abovel, or the list js exhausted. Thus the

recorded partial key refers to the maximum complexity feature which is

partially similar (and reconcilable) to the one causing trouble,

This scheme may seem arbitrary (and so it is!), but we really are only

8.3

trying to provide educated,

tocally based guesses at this point. There
is certainly an element of randomness inherent in any such local schene.
A more globally oriented, context conscious scheme would be nice, but a

bit harder to design. The concept of the super-feature,

Section 12 (future work)

discussed in

» Might possibly come in useful in this respect,

There are aimost aluays enough keys to initiate the mapping process,

since each iteration in the parser simplifies the scene and the

topology. Again, the concept of partially similar teatures is utilized

in the mapping heuristic, Section 9.

8.4 OBJECT EVALUATION AND 1SOLATION

Object evaluation, or rather mapping evaluation, is the procedure

Whereby We assess the goodness of a mapping. We need to do this in

order to be able to choose between different partial mappings to obtain
the best.

This is one of the processes that would fare exceedingly well from being

provicded access to all the good things inherent in 3D consciousness

{depth, occlusion, ...)

135

|
|
S
1

9.0}
i

The primary evaluation is vased on the following points (number of linas

or rays subject to absclute as well as relative tests):

MEl. Completely mapped lines (both ends) .

MEZ2. Incompletely mapped |ines (rays).

MES. Compiete lines present in the scene.

ME4. Rays present in the scene.

MES. Partialiy used (cut off) scene- | ines.

MEB. Inserted lines and rays.

ME7. LF-testable |ines.

MES. Lines passing through vertices,

I't shouid be fairiy olviaus in which directions (positive or negative)

those items contrihute in the evaluation. We want as many completie

elements as possibie, and ue prefer that they realiy exist in the scere,

Partially used scene-lines are abhorred, since they may be indicative of

an object cut off to fit the mapping. An object (complete) is never

accepted "cn faith" if it contains such |ines. We shall see exampies of

these and other exotic things later,

TN T Turg Sl L g s

ok p Caw
VG LT T TROEINIE NP RRE TS LN, BT Rl T TP T e

E
g

e _Roa T S gh -,

i e e e

8.4

Finailu., not all conplete lines are LF-testable, that is, some of them

may contain so called "assumed" rays at their end-vertices, Those are
y

rays for which no direction can be pinpointed - only their existence is

knoun to he a fact.

Besides the primary evaluation points, we use preference relations to

decide between equally well mapped objects. The preference {someuhat

arbitrari'y) calls for parallelepipeds rather than Wedges, non-

degenerats rather than degenerate vieus, for instance. This is not

crucially important, since the particulars of every mapping are

remembered, and a post-evaluation phase could be constructed, where

questionable matches could be further investigated,

Furthermore, as | have been pointing out, the system presented here is

not intended as a complete vision system. Its possible role in such a

system is discussed in Section 12 (future work),

OBJECT ISOLATION js simply the removal, from the active scene, of al|

lines belonging to the current object. The general data-structure

allous parts of the scene to become part of the "subconscious" (see

appendix, Subsection 14.1), and information regarding each isolated

object is grouped into thre- different areas of the subconscious,

nane | y:
SLLI. Final mapping, existing |ines.

S el mapping, inserted |ines.

e

8.4
SL3. Line-segments belanging to the object, but superceded by |
inserted lines.
We will get back to this subject in connection with the discussion of a

possible object completion phase (Section 18],

Some of the items in this subsection may seem slightly undefined at this

stage, but everything will become clear as we now proceed to the tale of

the matching process.

138

5 T SRS TR T e r Y Fhamas i o o

5.3

3.8 PROTOTYPE MATCHING

3.1 STRATEGY OUTLINE

The process of (partial ly) mapping a prototype onto elements of the
scene is crucial to this vision system, That task is by no means
trivial - the task of documenting it isn't either. The process is a
fairly complex recursive one, which] Will do my best to describe
clearly and concisely, using hierarchies of diagrams with pertinent

comments in the text,

The general idea is as fol lows:
Assume wWwe have an initial correspondence between one directed line in
the scene and one directed line in a prototype (I use “line" here, even

though it is not endowed with coordinates).

We now try to establish correspondences between the rays emanating from

the ends of those two lines. 1f we are lueky, those scene-rays are al |
in their proper places. Houever, realistical ly, they very often are
not. There may be too feu. or too many, or (even if the numbers agree)
they may not be pointing in the right directions. 0Oifferent
alternatives must then be investigated, and the line-features are used

as precdiction guides in this context,

Another problem is the fact that lines may have been broken up,

R LR S v | AT — B By T, Oy i Sk i BN
'y o -

sometines equipped with false but plausible-looking vertices, sometimes
with pieces missing. Other lines just die in the middle of nowhere, in
which case ne must attempt to get to them from elsewhere in the

topologu.

Thus the matching process is of necessity recursive, since in general we
have to investigate the consequences of alternate choices, recursively,
before findiny an optimal mapping. As a first approximation, each
mapped vertex defines a recursive level. 1f that mapping is successful,
He then try another line-end in that extended context, bumping the

_level. ldeally this carries on until the prototype has been matched.

In practice we may come to a grinding halt for many reasons, a few of

which are:

Two unfusable scene-lines lor two different vertices) are put into an

identity relation by consequence of the mapping.

A line-feature does not check.

Two lines extended to a vertex intersect in a topologically impossible
place.

A line is too long or too short.

Error conditions will be described in detaj| later, suffice it to say
here that we meet with conditions that necessitate recursive back-up.
Backing up to level R, we then investigate the next choice at that
level. All levels accounted for, the tree may become quite large, but
it is kept doun to size by the use of features, as well as parailelity

and length classes, for screening purposes. MWe shali see this later,

148

o i i m L bbbl s e St e i e

Sl B i

i o

9.1

Thus, given the initial mapping betueen two lines, the tdea is to work
doun the topology of the prototype, matching those elements with scene-
elenents until a complete match is found or the recursive process is
exhausted, in which case the result is a partially mapped object. In
that process there is a maximizing mechanism, ensuring that we exit with

the best such partial match.

We do not try to work from several different vantage-points at once,
e.g. trying to link up several individual ly recognized features or
regions into a partial or complete object, although that might be a
possibility to be used in conjunction with the present schenme,

Especially with good initial line-drawings.

The recursion has been programmed explicitly (as opposed to using
recursive procedures), for several reasons. We only have to save a very
limited amount of information at each level. We should |ike to be able
to have access to all stages of recursion at once, and to be able to

easily back up to any desired level. MWe also save time and space.

The first diagram, Figure 9.1, illustrates wuhat has bsen said above. [t
is simplified in the extreme, and in this section we shall proceed to

clarify the specifics of the process, giving diagrams for each building
block by itself (as far as possible), such as back-up, line-merge, ray-

identification ...

First, however, we shall describe the mapping data-structures and deal
With the concept of partially similar line-features, which is used for

purposes of hypothesis formation regarding new vertices.

141

3.1

Map initial line
given in the key

|

Bump recursive level
Map next line-end [(—
constellation

A

Is this a Error? Back up to
complete appropriate
mapping? rec, level

l ¥ l
T Can current partial mapping be extended? At

! : !

RETURN with Save partial
complete or mapping if
best partial best so far
mapping]

5 l

Back up to previous
recursive level and
look for other ways
to continue mapping

l

B Recursion
! exhausted?

o

Figure 9,1

Simplified matching strategy

a

e R L GOy T

v —

v

g
- o 4t W ol el b e s i 4
r PR (L R N) :

(ia G .

3.2

3.2 DATA-STRUCTURES

As a rule | do not |ike to burden the presentation with details, but in

this case they serve the honourable purpose of clarifying the rest of
the section, and making it easier to describe. For undefined terms, see

Section 2.

The first structure is the template, that is the expanded prototype
topology structure, see Figure 9.2. For each line, LENDV names end-
vertices, LENDP names orbital successor Iines; PARCLA contains the

parallelity classification, and LENCAT the length categorization within

that class. There is also storage for the physical entities associated

with those categories.

Figure 8.2 also provides an example to illustrate this. The lipes are

ordered the same as their LF:s, as has already been pointed out. Since

the general data-structure is organized similarly (see Subsection 14.1),
it is easy to search the topologies of prototype and scene in parallel,

setting up and checking correspondences.

The length-class information is used throughout the matching process,
for discriminatory purposes, allowing for some tolerances, of course.

In cases uhere the prototype indicates perspective deformations, those

tolerances are more |iberal, in the proper directions.

Figure 3.3 shous some of the structure used for recursion.

MAPORD is a vector containing (in the timewise order of mapping) the

Feature ward

LENDV LENDP
P-line (v2) | (v1) (Ls) | (18)
(L1) End1 End2 Endl Fnd2
PARCLA LFNCAT
]
ANGLE LENGTH1
INGTH2

Figure 9.2

Expanded prototype structure

144

R T — P —— bt A wg.vw

T e

MPORDS (LEV) Ptr | Ptr | Ptr | Ptr | Ptr | Pt: | ...
C
L e /
1 MAPORD(ID) PL1 | PL2 | PL3 | Pl4 | PL5 | P18 | ...
y MAPIS(LEV) Ptr | Ptr | Ptr | Ptr | Ptr | Ptr | ...
!
a ,
] b
PLMAP(P-line,End) PLMAPO(P-1ine,Fnd) !
] b
' Scene line-end Scene line-end f
mapped mapped _
1
LLFV(P-line ,End) LLEVO(P-1ine ,Fnd)
Rec, level Rec. level
of mapping of mapping
PVMAP(P-vertex) VLFV(P-vertex)
Scene-vertex Rec. level §
mapped of mapping 4
1 Figure 9.3

Recursion data-structure

T 8

s L e oF
Sy WL L e | e ey " L

prototype lines referenced so far. The corresponding scene-elements are

stored in PLMAP etc.
MPORDS is indexed on recursive level, and contains pointers to the
currently referenced MAPORD entries, at each level. As ue shall see,

those pointers may cross,

MAPIS, also indexed on level, contains pointers to the last MAPORD items

created at the different lavels.

Thus the main mapping alternatives are |isted in MAPORD, but there are
usually several possibilities for each one of those entries. | feel |
should clarify one thing already, namely that a new MAPORD entry is
created if and only if a previously unreferenced prototype line is
encountered in orbiting a vertex. Furthermore, a MAPORD entry
constitutes a mapping alternative if and only if that P-line is unmapped

at one end, i.e. that end-vertex has not bean orbited (modulo recursive

baCk-up) .

In the same diagram, Figure 9.3, e demonstrate how mappings are

recorded,

PLMAP contains, for each prototype line end, the corresponding scene

element,

LLEV, indexed in parallel, contains the recursive level at which that
mapping took place.

PLMAPO and LLEVO are 1-level push-doun stacks for PLMAP and LLEV, used
When a line is being replaced (in the creation of a8 new vertex, or
connecting two vertices), as will be explained later.

PVMAP and VLEV store vertex information,

146

i Lo dllabat () o] e TR D T PP 3 gl ol agil ML

i
:
:
:
;

e

Sk

The final item in this subsection deals with the line-fusion mechanism.
Fusions deal with collinearities, and only take place for base-|jnes

every vertex mapping has a base-line, the MAPORD entry).

If we want to explore a new branch at some level, we check literatively)
Whether the present base-line may be extended. [f that happens to be
so, that alternative is tried and the fact is recorded for the P-line
end, at which the fusion took place.

LFUSE is a stack (B levels), for each P-line end, containing packed
pointers (a sixpack indeed) into a common area.

LFUSES is that common area, where each word supplies enough information
(about the fusion of two lines) to enable proper back-up, if and when

necessary.

At a fusion, which is always based on existing collinearity links, a new
compound line is created and linked into the data-structure, while the
constituents are shoved into the subconscious. Note that the fusion and
line replacement mechanisms use different stacks, and are therefore

independent.

We shall now turn to a discussion of partially similar |ine-features.

147

T L S 1Y S -,

b &)

3.3 PARTIALLY SIMILAR LINE-FEATURES

Since the line-feature is used in checking ali lines and their end
constellations, it seemed a natural thing to use it also in determining

what uas urong (and what should be done by way of correction) jf the

check was negative.

The input to this algorithm consists of two feature‘uords, and two
direction bits. The first feature word is used as a template. The
second is the one to be checked, and for which {if necessary and
possible) corrections should be indicated. For reasons of sanity we
require that one end of the second feature be OK (this is checked, of

course), The requirement is also a realistic one as regards the way in

Which the model is traversed, one line-end at 3 time, such that the

other end is mapped previously.

I shall give no details of the program here - it is straight-foruard -
only the format of the modification word (MODIF), which is one of the
outputs, and a few examples, All of that in Figure 9.4, Orbits start

from the base-line, and the rays are referenced in that order.

As "bare" we define a vertex with as many insertions as there are rays
{excepting the base-line). The entire MODIF word (part {a) in the
figure) is defined as "ambiguous’ if and only if there is an ambiguous
ray position somewhere, i.e. e.g. if we do not know which of several

rays to delete,

Part (b) gives the template for cases (c), (d), and (e), in which the

148

1 e

faaie comt

AR 5

- L Lhat ol ¢ A p— PP
Ll el e it it o LR e R s S] o . - ’

3.3

(a)

3 Special bits | List of action-elements (2 bits for each ray
(first 2) at the vertex subject to modification)

ﬁ Codes Codes
00 Unambiguous, not bare 00 No change
01 Unamhiguous bare 01 Insert ray here
10 Ambiguous, not bare 10 Delete this ray
11 Ambiguous, bare 11 Anmbiguous

(v) (c)
;::::::]:::::’ ‘:::::::]//;;:;0,01)
(01.01.:)1

(00,00,10,00,10)

Figure 8.4 |

Line-feature modification word - MODIF

148

3.3

lower vertices are the ones to be compared and corrected.

MODIF words are given in the figure as well. Of course, if there is no

change, MODIF is set to zero.

The MODIF word is subsequently deployed as a template for the mapping of

rays at the vertex currently being investigated, as we shall see later.

The following subsection describes an extension of the concept treated

here.

3.4 LF MODIFICATION RECONCILIATION

This idea arose due to the fact that a vertex may sometimes be ambiguous

from the direction of one Iine, but unambiguous from another, Figure

3.5 shows an example of this.

The prototupe context is given in (a), and the scene in (b}, The vertex
under investigation is of course V, at the intersection of L1l and L2,
Suppose wWe are dealing with the |ine L1, in an effort to map: the rays of
V. The feature template (c), and the scene-feature (d), illustrate the
situation. The ray L4 is easily seen to be superfluous, but LS, L3, and
LZ are all converging with L8, so the program, Knowing that at least two
of them have to be deleted but not knowing unich two, marks all three as
ambiguous. Howuever, if L2 were the base |ine (f), and LP2 the template

(e}, then the situation is unambiguous (based on the parallelity bit),

The resulting

(10,10,11,11,11)

(1)

L7
(oo,oo,m,m,m,m)

Figure 9.5

LF modification reconciliation

:
3
:

b paeetl _aiCUlR . S L

:
1

E R LR, Mg @S Call T o T L - T UM - [S WM v

2.4

We introduce the following definition:

RECONCILIATION of a feature modification word from one |ine to another
(at the same vertex) is the process of rearranging the information of

that MODIF word so as to make jt applicable from the vantage point of

the sazcond |ine.

In our case, reconciliation of MODIF from L2 to L1 is a uay to

disambiguate MODIF af .1, using MODIF of L2 and the connectivity of the

vertex,

The following algorithm is used:
RECONCILIATION ALGORITHM.

Assume the MODIF word is (M,Al,A2,A3, «v0,AN, 88, ...,088], uhere the A:s
stand for 2-bit action items,
this case [88)

MODIF: s,

and M for the two characteristic bits, in

» since we are only interested in reconciling useful

Let PL1 and SCL1 be the template and scene eiement for the MODIF word,

Which is to be reconciled to PL2 and SCL2. We then define the follouwing

quantities:

DP = Orbital distance from PL1 to PL2.

DSC = Orbital distance from SCL1 to SCL2.

152

9.4

OL = Number of action elements indicating "leave", (08}, up
to and including "present” element in MODIF.

0l = Same for “insert", [81].

0D = Same for "dalete", [18).

We then look for that action element of MODIF, for wh, ch
DP =DI +0L

That element must be a "feave", [00]

0SC = 00 + OL

» and We also must have

This ensures identity of the second line in prototype, scene, and MODIF
Word, so that the reconciliation to that |ine may takc place., The new

MODIF word wWill then have the following format, assuming the action

element found above is Ak:
HODIF(I"EC) = [H,Ak+1' ---,An'Ak,Al, --.,Ak-l.aa. ---,aa].

In our example, Figure 9.5, MODIF for L2 is reconciled to L1 thus:
OP = DSC = DL =1 0l =00 -9
MODIF (old) = (28,20,10,10,01,18, ...}
MODIF (rec) = (@0,19,18,01,18,00, ...}

So we get the correct indication of the need for an inserted ray

paraliel to L7, while L3, L4, and L5 are all branded as non-conformists
and eliminated.

T T e

3.5

9.5 MORE GENERALITIES - EXAMPLE

The initial mapping references one scene-line, and it is assumed that
the rays emanating from that original line all map into the
corresponding prototype elements. 0f course we know that the |ine-
features agree, by definition. Thus the first three recursive levels
are:

Levl. The original line, provided by the key.

Lev2, The first end-ver tex, and its rays,

Lev3. The other end-vertex, and rays.

We never alliow recursive back-up to reach level 3, or below. Once
established, those mappings remain fixed. The reason for this is that
levels 1, 2, and 3 all refer to mappings directly involving the key, and

it would not make sense to provide back-up past that stage.

We note here that the initial mapping is always given as above,
regardless whether the key was provided by a |ine-feature opr a8 compound
feature. In the latter case, the first line referenced by the feature
is used. The other line will certainly be mapped later, since those

features of object and prototype are in agreement.

There is one inequity here - which | hasten to admit before being found
out - and that is the fact that the second line of a CF, being mapped at
level 2 or 3 at one end but 4 or more at the other, is subjected %o

recursive back-up (and thus to extension, for example). [f we really

wanted to push things we should aleo (when the results so indicate)

J.5

investigate the case of having the second line as the original. This
would only very rarely make a difference, however, and so is not worth

the extra computing.

This is especially so since, if the parsing process reaches the state of
dealing with L -mappings as well, this second alternative wii| be

investigated (but the first one, of course, will not be repeated).

There are two basic phases in the recursive process. The first phase
exhausts the LF-consistent (base-lines) mappings ("F-mappings") - does
not accept any others - and thus branches out over the most dependab | y
mapped part of the topology. The second phase deals with more difficult
mappings, utilizing partial feature similarity and reconciliation.
During the second phase we may get back into elements mapped during the
first, due to recursive back-up, by this time they are not treated as
special. The second-phase mappings are called consequence mappings ("C-

mappings"}.

In order to make these things a bit clearer | have provided a simple and
complete exanple of the typical actions of the mapping process. It does
not contain any of the more exotic pathologies, only one partially
missing line and a couple of super fluous ones. It does not necessitate
recursive back-up. Figure 9.6 gives prototype (a) and scene (b), and
also illustrates various stages of the mapping. The table below
demonstrates the order of the mapping process for this example.
Quantities in parentheses refer to the scene, others to the prototype.

First and second ray refer to elements being referenced for the first

155

e

i

3.5

Figure 9.8

Simple example of mapping process

156

9.5

time. This is the order in which they are introduced into MAPORD
(Figure 9.3),

Table 9.1
Order of exenplified mapping

LEVEL ORBITED VERTEX FIRST RAY SECOND RAY

1 PL2 (L7)

2 PV3 (vB) PL3 (L18)

& PV2 (V4) PLE (L&) PL1 (LB)
4 PV4 (v7) PL4 (L11) PLI (LS)
5 PVl (Vv3) PLE (L4)

6 PVS (V1) ALS (L1

% PV7 (vg, PL7 (IR1)

8 PVE (v2)

Here are some comments:

Levels 1, 2, and 3 constitute the injtial mapping, f{c) in the fig.
Levels 4, 5, and 6 represent additional F-mappings, almost completjng
the object, (d),

At level 7 (part fe}), partial similarity (V5 of L8 and PV7 of PL8) was
used, discarding L9 and inserting the tentative ray IRl (of unit
length), based on the parallelity class of L6 and L11, [R] js then
linked (one way) with L12, since they are found to be collinear,

At level 8 (part (f)), finally, partial similarity for L4 and PLG is

157

——_—

WO X .

S5

used to get rid of L2 and L3. Finding that the other end of PL7 is
mapped into IRl, and using the collinearity, we decide that the mapping
of PL7 is OK. We insert the compound line IL1, and find that the object

is now complete, Al lines are LF-testable and OK.

Note that if partial similarity hadn't been able to make sense of the
situation at V2, that vertex would have been constructaed basical ly as an
intersection of L1 and L4, Then IL! would have been inserted as a

replacement for IRI.

The next subsection gives a fairly detailed account of the recursive

process.

3.6 THE RECURSIVE PROCESS

The presentation wil| center around six diagrams, The first provides
the main flow. The second deals Wwith vertex orbiting and the third with
ray mapping. The next tuwo explain the functions of érasure and back-up,
The last diagram gives a detailed account of the routine taking care of

back-up. HMessy though some of them may seem, the flowcharts only record
the main actions or branches. Minute detail is of course unnecessary

for the purposes of thia presentation,

Figure 9.7 is the main flou diagranm. Simply stated, ue study "the next

available alternative", that is, the next un-orbited P-line end in the

REC:

Find next
unorbi ted

ine-end
Update variable

context to new
vertex

v

By

Vertex is

an INCOV?

ambiguous
or bare?

Vertex Esl

MODIF¥Y and
F-mapping?

33

Find MODIF
word

Lon Dico

13

Are we backing
the base-ray or
dealing with an
inserted ray?

Determine if
the vertex is a
consequence of
line-mappings
pre-orbit
scan)

1

Base-line

[length-fault?

Figure 9.7

158

Have we tried
a fusion?

Look for an
intersection
consequence

vertex (INCOV) =t

Does the vertex Back up past
have a mapping level of
contradiction? contradiction

Try base-line

] fusion 0K?

Bump
level

Fuse base-line
with linked
collinear line

()

——

Is the vertex

) Back

consequence on?f level

line-mappings? {
Vertex is Erase
an INCOV? '
P-mapping | .

stage?

Main flow of the mapping process

T e ey v

|
%
,;

Gk et

0
13)

FAPORJ-1ist. Thnis end may aiready te flagged as bacning up., which means
that it is either an inserted ray or that we have investigated it

before, and are now left with the final alternative, namely regarding
the line as a ray. In that case we see if there is enough information
in the prototype topology to determine an intersection consequence
vertex ("INCOV")., Thus, in part (e) of Figure 8.8, the vertex V2 would

be an INCOV of L1 and L4, since their prototype counterparts, PL4 and
PLS, are linked at PV5 (part (a)).

Otherwise ue study the vertex, using the MODIF word (Figure 9.4) to
decide uhat actions to take. [f the vertex is ambiguous or the base-
line would be a ray before insertions, we look for an extension of the
line. The diagram should explain most of this. The "pre-orbit scan"
simply finds out whether the vertex is mapped by consequence of two

lines, as above, which influences the branching.

The diagrams in Figure 9.8 and Figure 9.9 demonstrate the process of
mapping a vertex-constellation (orbiting a vertex). The diagram should
be more or less self-explanatory. The heart of it is the referencing of
one ray-position at a time, and the MODIF-based action decision at that
point. When the vertex has been orbited we check the bareness again (a
ray may have been replaced on the basis of its angular argument), and we
demand that the finalized vertex contain at least one scene-ray besides

the base-line. [f that is the case, we then check that all new two-uay

mapped lines are LF-consistent.

Figure 9.18 explains the labels ERASE and BU in the previous diagranms,

168

P

sl St i

Rah R g

ORB :

Next P-line
at vertex

:

Vertex is
! exhausted?

e

Is-the new Vertex is
line marked an INCOV?
as backing
up?
Intersection
is OK? ‘
[} l Was last
position ¢ :
Back to "insert"
last of (INS)?
those l
line- .
K
levels L2

@)

Pind mapping
information
for next
scene-line

Create new
vertex
Retain same
rec, level

"

bl

MODIF action-

e

Vertex

element :
DELETE
INSERT CHE’
LEAVE q!i’

Figure

9.8

Is there at
least one
existing
ray?
LF-check | '
0K? Reset_
Mark base-
line as
backing up

| @)

Vertex seems
to be mapped
allright
Update data-
structures
and pointers
Bump level

orbiting - mapping - process

; o

3.6

LVE: Contradictory Back up
use of this |—6——p{ Frase one rec.

scene-1line? level

Is this line

Parallelity | mapped at the Set
class OK? other end? INS

¢

INS: Set
INS

4

Is this line Enter ray

rapped at the — (possibly TLength is NK?
other end? insert)

Update the mapping
(if necessary insert

compound line)
S) Then test the length

Agreement or

7 collinearity?

Figure 9.9
Ray mapping

162

ER:

Back up

'

Erase recursion results
at the current level
(simplified back~up)

one level l <

Is the vertex a
consequence of
line-mappingg?

BU:

Is target level

Set backing flag
for base-line and
look for a fusion

(e

less than 47

Call routine for
recursion back-up
to delete actions
at current level,
and reset status
to previous level

More levels
to back up?

Recursion exhausted
Restore scene, and
clean up structures

RETURN with
best mapping

Investigate next alt,
at target level

Figure 9,18

Erasure anc back-up

4

8.8

and shows how the process ends, if 3 complete object hasn’t been found

before then,

The final diagram is in Figure 8.11, and it shows the deietion (back-up)

of the actions at some recursive level, and of associated information.
The back-up program has mechanisms taking care of collinearities, that
is, of fusions and un-fusions of base-lines. If a consequence vertex s
found, this routine backs up one more level, since it would be no use
trying it again from another directjon. This is the case also for a
Negative ray, for which an INCOV must have been attempted at some point

in time,

It should be clear(er) now, how the recursive process makes use of
prototype topology as well as line-feature information and equality
classes (etc.) to provide guidance, in order to avoid much super f luous

Work, to direct back-up, and so for th.

The folloning section (a much shorter one) presents object completion,

which could be a firal process in this intermediate level| system.

8'6

Delete all the
Back up vertex entries o Back up
one more for this level [¥ one nore
level l level
Find next prot,
_ = line mapped at (¢—
this level
ﬁ l Delete it
] Vertex is a HES ;
1 consequence No more mappings *‘ ;
of lines? [¢©- at this level? :
Is a fusion Line is an o %
possible ? inserted
LAY Revive ita
l’ constituents
Fuse with T
linked Line is an =~ | 4
line inserted r. :
compound ? More i
Line is the levels 3
l result of a | ? ¢o back !
Mark ray] fusion? up? i
to show Line is] '
back-up marked as é (1)) ,
I backing? /
| ‘ Unfuse the lines .
Delete compound
Update indices Restore links
and structures
according to l 1
actions above
New line is also a
l il 2 i fusion, and more
Update equality- levels to back up?
RETURN classes and other L
data-structures
Figure 9.11

The main actions at back-up

165

e — L aa e i B e e e e s R T .

18.8

18.@ 0BJECT COMPLETION

THE BASIC IDEA:

The idea behind this phase is the following, Suppose the tinal scene
(with all mapped objects removed) still contains some |ines, and that
some of the isolated objects are only partialiy mapped. It is logical

in that situation to check and see whether some partial (s) might not be

extended, or even completed, using those remaining scene-elenents,

The concept is a very simple one, and so is the execution. MWe revive
each partial (in o der of decreasing complexity) and look for extensions
and intersections of its rays (one-way mapped |ines), Those are then

tested in a process similar to the original mapping process.

The way this is dore, practically, is simply as followus.

First ue nake sure the physical properties of the lines belonging to an
object reflect the topology of that object. That is, the vertices are
recomputed, and the |line-coordinates are changed accordingly. This is

done for all objects, whether completely or partially mapped,

Following this, the actual compietion phase begins, and proceeds thus,
The partial is brought out from the subconscious, and a new cross-

reference and tentative-ver tex evaluation js performed, this time With

more |iberal parameters, for instance allowing first intersections of
pairs of unlinked |ines regardless of distances, There s one important

reservation here, namely that we do not allow extra lines to join the :

167

10.9

fully mapped vertices of the ohject. He may safely allow relaxation of

parameters at this point, for several reasons:

The partial will be put together as before, except possibly for new
elements being |inked to incompletely napped parts of the object.
The scene is uncomplicated, having only comparatively few |ines.

We are not dependent on the scene for a mapping key.

The mapping process ensures correct topology and feature consistency.

A new mapping is only attenpted if there are changes in the connectivity

of the object {due to the new cross-reference pass). Using a fully

mapped line for the key, we call the mapping program, which returns Hith

the best partial mapping, according to that new structure, This partial

is at least as good as the original mapping, since the original will
have been encountered during the matching, We compute the new ar
amended vertices, adjust the |lines, and ship the object back into the
subconscious,

This process continues, with the next partial, until either the scene or

the subconscious is exhausted.

WHY NOT?

When this section was first uritten] had only done some preliminary

Wwork on implementing object completion. Having spent some more time

thinking about these things, | decided that it might all be a bad idea.

Let me explain...

18.2

First, experiments with many scenes have rarely produced cases where

guch a scheme would contribute to the performance of the system.

Secondly, it may well happen that spurious, irrelevant lines are

absorbed into partial mappings, since linkages are less strictly

required,

Thirdly, the elaborate heuristics for formation of tentative vertices,

as well as the scheme for using partially similar features as keys, both

contribute towards obviating the need for a specific object completion
pass.

The last reason - a matter of policy - is that we do not strive to

arrive at complete interpretations at any cost, If the scene is

ambiguous or otherwise too difficult

» He must rely on an extended ccheme
(such as proposed in Section 12} for further proce

ssing, Object

completion belongs in that context

» utilizing obstruction-, support-,

and depth relationships. The present recording of the mappings

(constituting scene interpretations) should prove wel! suited to the

requirements of such extended schemes.

e R W

1.8

POST-PROCESSING

In order to show interpreted scenes more clearly, and to demonstrate the
power of a knowledge-directed scheme, | could have added a hidden-|ine
elimination phase. That process would be based on obstruction
relationships, to be provided manual ly, lacking 30 knouledge and a
support theory. Those concepts are no longer "intermediate-|evel"

» and
one has to stop somewhere .,.

The elimination of hidden |ines or line-segments could be very
straightforward. Basically, each line of an obstructed object would be

intersected with the outlines of all obstructing ones, keeping the

unobstructed segments.

I have resisted this temptation to produce good-looking final drauings,

partly because | have had better things to do with my time, but mainly

because such a progran would not serve a useful purpose within the

frame-work of the present system,

The only post-processing presently in this system is the completion of

fully mapped parts of objects, according to the topologies of their

respective matching prototypes.

By way of clarifying the concepts presented so far, and demonstrating

the abilities (and weaknesses) of this intermediate-level vision system,

We now give some typical examples of scenes and their analysis.

a e et e 1,

170

:
.

11.9

11.8 EXAMPLES - RESULTS - DISCUSSIONS

11.1 COMMENTS

First some general comments. All examples of system performance in this
report represent scenes of uniformly coloured {whitish) objects, which
are not unrealistically ideal, in asmuch as they are fairly beat-up,

having been manhand!ed (and kicked around?) by many people since they

Were made [Falk 12797,

The scene background is aluays a black cloth covering the table-top.

(Feel free to regard this as cheating!)

In most of the examples normal of fice-type lighting (over-head, diffuse)

Has used, otheriise the auxiliary (diffused) light sources surrounding

the "Hand-Eye Tanle", Needless to say none of the exanples have been in

the least edited, nor are they a non-typical, selective sample of scenes

that uwork especially well, They also all use standard parameter

settings. Finally, some scenes Were created by people other than

mysel f,

The pattern of presentation of any given eximple is the logical
succession starting with the TV-image, going through pre-processing,
looping through object mapping and isolation {(showing isolated object
and amended scene each time}, and finally presenting the interpreted

scene as a conglomerate oy partially or fully mapped objects,

171

1.1

The examples are commented as needed, to focus attention on points of
particular interest or typicality., The section will end With a

discussion of results and system performance, treating fortes as wel| as

shor tcomings,

11.2 EXAMPLES OF SYSTEM PERFORMANCE

The example that has been presented in parallel with this unfolding
story provides instances of shadows, broken Iines, occluded vertices,
missing lines, double |ines, and a split object. The initial |ine-

drawing and the final scene interpretation are reproduced here for

convenience (Figure 11.1).

There uere good keys into all of the objects, and the matching program
was able to find complete mappings in all cases. We note how essential
the line-fusion heuristic was here, in establishing the |lower vertices
of the large body, which had keys only to the top part. The samé

heuristics were instrumental in finding the long horizontal object, and

the object in front.

The wedge presented no great problems, only extrapolated vertices. Note
also how double lines are removed With an object when they may be

assumed to be caused by it (judging by closeness and paralielity to

object |ines),

172

St Tl

e W Y

Figure 11.1

SCiB: Initial lines - Final interpretation

Bl .

Figure 11.2
SCil: TV-image

174

S
=i

\)/, 4

Figure 11,3
SC11: Edge-data - Initial lines

Q

- s

!
Figure 11.4 g
SC1l: Tentative vertices - First isolation
)

178

Figure 11.5

SC1l: Amended scenme - Second object

177

T — .
=k - (PG R T S G — S

il.2

The next scene (Figure 11.2, Figure 11.3, Figure 11.4, Figure 11.5,
Figure 11,6, Figure 11.7,and Figure 11.8) has a shadow in front of the
small cube, which makes that dimension hard to determine, and the final
object is slightly distorted here. The glare-line at the ieft end of
the wedge presented no problem - the feature-guided fusion mechanism
continued past it in search of the right kind of vertex. The line could
not be assumed to be a part of the final object, and it was left as

garbage.

The scene is finally parsed correctly, with some distortion.

Figure 11.8

SC11: Amended scene - Third object

VW2

—
o
-"“--I
\
TS
\
Figure 11,7

SC11: Amended scene - Fourth object

188

11.2
— ?
. ::
o |
-
--
ﬂﬂ- —
<—-—-"'
P,
Lkl
Figure 11.8
SC1l: Amended scene - Final interpretation] d

181

S R i A 2 i a2

b B o e el

=
-
ro

The third scene presented here has one area completely messed up by both
shadows and glare, namely the left side of the right-hand
parallelepiped. Both the TV-picture (Figure 11.9) and the edge- and
line-crauings (Figure 11.10) as well as the tentative vertex

connectivity (Figure i1.11) show the effects thereof.

The shadow on top of that object, caused by the reclining beam. gives
rise to a very specific problem in the extraction of the latter object
(Figure 11.12). The lowuer right-hand vertex of that beam does not get
connected properly, only through a short segment in-between, That
vertex, then, is found by the matching heuristics as an intersection
consequence vertex, defined by an inserted ray (from the top) and ar
existing ray (from the right). At that point, the feature template
demands an inserted rau, pointing to the left. That ray is found to be
collinear {and is therfore linked) with the bottom |ine ot the beam. and

that object may finally be complieted.

After easily extracting the wedge (Figure 11,13}, the remaining ob ject
is the shadowed parallelepiped. The center vertex is established by two
existing rays, but the three vertices on the left outline of the object
are hypothesized on the basis of the intersection-consequence heuristic,

using inserted rays when necessary., This is shoun in Figure 11.14.

Hence this scene is finally interpreted correctly (Figure 11.15),

182

Figure 11.9
SC12: TV-image

S i Gl 2 e

Figure 11.18

SC12: Edge-data - Initial lines

11.2

T

Figure 11.11

SC12: Tentative vertices - First object

185

1

i
i
e e i L e e e N B i —u

11.2

N

Figure 11,12

SC1Z: Amended scene - Second object

186

. . e S o
s et b S it i b el M N Ll S i L K o .
Lt i el e i i e €1 Lt i)
T e TH] A T Py

11.2

_____.——-"'

Figure 11.13
SC12: Amended scene - Third object

187

Figure 11.14

SCl12: Amended scene - Fourth object

B Tden ol oo 2y

A
.
—
—
rJ

=g b e 1 L R e

Figure 11.15

SC12: Amended scene - Final interpretation

RS Lovb e T 2 SRR

AT e

i =D
dd e

The fourth scene is slightly more compliex, in that it contains five
objects (TV-image in Figure 11.16, edges and iritial lines in Figure
11.17), but it presents no difficulties we haven't encountered in
previous examples, including coincidental |ine-vertex alignments (Figure

11.18), which are a source of sadistic delight to the template-driven

matcher.

The small cube is first to go, an easy match., There are alsg very good
keys into the large wedge, which follows next (Figure 11.19). The top
paralielepiped is then severed from the cube and the small wedge,

completed and isolated, taking the double Iine with it (Figure 11.28).

The wedge is the next object to be extracted (Figure 11.21), with ample

usage of fusion-, insertion-, and intersection-consequence heuristics.

The amended scene (Figure 11,22, top) shous a cube with tuo false
vertices (top-left), which are however easily discarded by the feature-

tempiate, parailelity-ciass, and length-class heuristics, so that the

cube may be extracted in perfect shape.

The shadow-iines are left as garbage, as shown in Figure 11.23, which

also presents all of the objects superimposed.

198

RO i e b a3

Figure 11,16
SC3: TV-image

Figure 11.17

0
o
[=
©
v
c
1
©
-~
o
T
]
Q
o
O
w
™
(-
w

11.2

7=

f i

i

Figure 11,18 k
SC3: Tentative vertices - First object
i

133

11.2

P T T

\A ,_M....,v

T TR R T

I T L A N e T T e g

Figure 11.19

SC3: Amended scene - Second object

194

11.2

N h
\I S l_—— -1/
N

Figure 11.28
SC3: Amended scene - Third object

135

&

Figure 11,21
SC3: Amended scene - Fourth object

196

Figure 11.22
SC3: Amended scene - Fifth object
|
197 ;

Figure 11,23

SC3: Amended scene - Final interpretition

198

s it 584

A R e

Figure 11.24
SC2: TV-image

11.2

The fifth example (TV-image in Figure 11.24) looks misleadingly simple,

at least compared with our previous exangles. Houever, there are a

couple of subtle problems involved in parsing this scene. Looking at

the edge~drauing and the initial line-drawing in Figure 11.25, we note
the presence of a short fine-segment at the lowest vertex of the large

wedge, and that the long bottom |ine of tiat body is not connested at

its right end.

This gives rise to a tentative, somewhat narroued Wedye,

Which is however discarded in favour of the correct one.

Figu'e 11.26 ehows the first match, a parallelepiped.

The correct match for the second object (the wedge mentioned above) ,

shoun in Figure 11.27, uses the fong bottom |ine rather than the short

segment. The connected drauing (top of Figure 11.26) indicates Why

those two alternatives are investigated {connectivity of left |ower

vertex).

e e S

I't may be interesting to see some of the contenders for this second

object, and | have included tuo figures containing alternative (but not

as good) matches, namely Figure 11.28 and Figure 11.23, The first of

those contains the narrou wedge | just mentioned, the second {top) a

partial wedge with the triangular face on the right,

Now there is only one thing left in the scene, a wedge. The edge-

drawing (Figure 11.25) clearly shous that one short interior line-

segnent is misdirected. This state of affairs gives rise to an

alternative, shorter wedge, which is eventually discarded for the better

match shown in Figure 11.38,

.;
i
:

11.2

N

-

T

1

™

/

—

/

l

Figure 11,

25

SC2: Edge-drawing - Initial lines

201

Figure 11.26

SC2: Tentative vertices - First object

282

11.2
//,

’

/ '
i |
Figure 11.27 3
SC2: Residual scene - Second object ;
t
263 %
: 3

. . - "

; '.
: _
.)
¢
:
! 11.2
#.
:
{ ,
]

|
, .

o

Figure 11,28
SC2: Alternatives for second object - DWEDGE & PAREP

2084

I R . g VR — <L AR g

Figure 11.29

SC2: Alternatives for second object - Wedges

Figure 11.30

SC2: Residual scene - Third object

11.2

The final amended scene, and the object superimposition, are given in

Figure 11.31. The normal imperfections did not cause much trouble in

this scene. They are left as impossible.

i .

Ll

=T

25

i

s N LS S e 3t

B2

AW

Figure 11,31

SC2: Residual scene - Final interpretation

208 #

R T T [N T L U - o

Tl 8

The next example is included because it demonstrates the potentia!
usefulness of features of connection independent elements, such as
constellations of parallel lines. Figure 11,32 shous this scene, which
contains a concave object, namely an L-beam. So this exanple also
indicates how concave objects may be thought of as consisting of several

recognizable parts, which is discussed in Section 12,
Figure 11.33 and Figure 11.34 should need no comments by now.

The case of the L-beam is more interesting. Figure 11.35 demonstrates
how the progrem deals with this situation. It finds a paralielepiped at
the bottom, thereby splitting the object into two, It preferred the
longer version of that PAREP to the shorter one, due to the perfect

outline at bottom left.

Anyhouw, in the amended scene {top of Figure 11.38) | can clearly see a
paralielepiped. The program could not. The reason is that there jg not
one good vertex around, which might provide a starting point. Here is
where global features, based on vertex independent |ine constellations,
would have heen most useful. It is easy to see how, for instance, a

parallelity feature might have provided a key into the mapping of this

object.

If the top of the L-beam had been found, the latter object would have
been neatly and automitically split into two recognizable parts. In

general, concave objects would necessitate more special treatment, as

discussed in Section 12.

. r . = . R T gy
: ; ’ R T T e T W
s (i e it e =

A
:

Figure 11,32
SC8: Edge-drauwing - Initial |ines

2le

o L e o SE T

-

el i o e il

S R T

Figure 11.33

SC8: Tentative vertices - First object

Figure 11.34

SC8: Residual scene - Second object

~
—
r~o

e,

- -y
—_— l""‘""--.../
—

4 -'Eq‘-‘
Figure 11.35
']
- SC8: Residual scene - Third object ;Z
:
213]
b

11.2

y-o
| P

Figure 11.36

SC&: Residual scene - Final interpretation

214

T TR Tt R o

el .2

The following scene - the seventh presented here - is the most
complicated one, in terms of the number of objects. It is also

difficult due to the small overall scale. Figure 11,37 shous this

scene.

In the line-drauing (bottom of Figure 11.38) even I (though a human) do
not know exactly uhat is going on, since there are many lines missing in
strategic places, as well as unuanted ones present in other places, |t
is very noticeable in this example how the parsing strategy of isolating
one object at a time (and removing the |ines belonging to it) has the

effect of cleaning up the picture, thereby facilitating subsequent work,

The first object is extracted without difficulty (Figure 11.39), however

With some distortion due to glare effects,

The extraction of the second ohject (Figure 11.48) does not present

anything new and exciting, either.

The case of the parallelepiped resting on the Nedges is more
interesting. Here the matcher initially finds a much shorter PAREP (1
think you can easily see where), which js eventual ly discarded when
further investigation yields the longer (and better) one, shoun in
Figure 11.41. The hottom right line is not assimilated into this object

due to a slight distortion of the front face.

In Figure 11.42 the uedge on the right is found. Not trivial - but ue

have seen similar examples previously.

215

s i o A G s e i
" ot £ e, Slbius e

!
| 1
-
|
{

3
T X MY Ezs Cxmapwasta gy

Figure 11.37

! SCl4: TV-image

Figure 11.38
SCl4: Edge-drauing - Initial |ines

Ficure 11.39

SCl4: Tentative vertices - First object

11.2

|

Figure 11,40

SCl4: Residual scene - Second object

219

T Ta 1T ey

AT s ST A B

L, e sl i

W2
pd
, hhh] ;
<" s i
17w
- ——
l.-h‘] e - . :ﬁh.aﬂ"#‘—’
—
——

Figure 11.41

SCl4: Residual scene - Third object

228

7 e ey —

e L — - e

Figure 11.42
SCl4: Residual scene - Fourth object

221

o BB Y BT e A st
i | seche ey S S S

ity

T o e R ST

11.2

That is the case with the tall, upright parallelepiped as well, which is

the next object to be isolated (Figure 11,43),

Finally the program finds two small, partially mapped parallelepipeds,

as shoun in Figure 11.44 and Figure 11.45. There is no Way to tell

where they end, and | couldn't have done better myself, on this scene,

The resulting interpretation is presented in Figure 11.46,

222

11.2
""-f...
<o ' / """/
l'\!‘ ' I--_I [

""'--.V
z
Figure 11.43
SCl4: Residual scene - Fifth object
;; 223

B R

“ra

11152

{ L]
I ~a
1 ~ ,
3 -
i,

L

Figure 11.44
SC14: Residual scene - Sixth object

224

11.2

L
"—_, 11

Figure 11,45 ’
SCl4: Residual scene - Seventh object

11.2

*<.
Y

Figure 11,46

SCl4: Residual scene - Final interpretation

226

: L i el
2n b =y Y S i’

TN 3 Kt

‘ el b e e S i ATt Lo i e T e i e et e

g) s 2o i

caloas

Al i e e ok Ul Yok

R b i e i o e el e b Y
a8 A o Sl o bR s | e it o L
R R S T e L s i . i

15 2

The last example does not contain as many objects as the previous one,

but it is far messier in terms of shadous and glare (Figure 11.47). In

fact, one of the objects (the wedge on the left) could not have been

recognized uithout the use of partially similar features as keys.
i The uedge on the right is the first to go (Figure 11.48)., There isn't
: much to say about that.
:
3 The second object (Figure 11.49) is identified somehow (it is hard to
& see hon the lines are |inked at the bottom), as a wedge. This seems
4 plausible enough, judging from the evidence at the top. 1 happen to
i know that the object uas a parallelepiped - but that is beside the
} point,
- Figure 11,58 shous the extraction of the tall, narrow parallelepiped.
Due to the uay the lines are |inked at the top of that object (cf. top

of Figure 11.48) the progran uses the short line for the left side. The

longer neighbour is close enough to be assinilated into the object. The

hottom vertex is extrapolated, leaving one |ine unused. The mapping is

good enough for acceptance at this point, and the program exits Without

investigating further.

Next to go is the big parallelepiped (Figure 11.51). No mean trick -

but not nuch different from things ue have seen before.

The isolation of the nedge (Figure 11.52) is more interesting, since

L e s

that object contains na recognizable features,

ka2l

The heuristic for using

AR it

v

; o
n--- i
'1,1 ‘ l
g 1
| - i
Figure 11.47 %
SC3: Edge-drawing - Injtial lines

228

v, T e i R e e e o Y o

et

Figure 11,48

SZ3: Tentative vertices - First object

L o L b s B A 1ot e e S ot 4 ke
L = " " st = e I o By X0 v ot Y, 3; e
25 R PR T - . — oy .

f ; --':T"ﬁ'r

Figure 11.49

SCY: Residual scene - Second object

230

r
[
———
-

\—

Figure 11.58 _
SC3: Residual scene - Third object 1

231

Rad s eIl - St T el B

\/

Figure 11,51

SCS: Residual scene - Fourth object

11.2

Sanhar g ok . Lol el

ey

Figure 11.52

SC3: Residual scene - Fifth object

253

A k. S (AL

TR foas

=2

partially similar features as keys is responsible for the success in

this‘case. by determining that it could create recognizable features by

disregarding the shadow line at the |ower vertex of the wedge. The

object can then be extracted without difficulty,

The amended scene (Figure 11.53) is messy enough to provide the parser

With one more possible object, which is found in the shadow effect on
the front of the central object (cf. Figure 11.47). 1t finds the

parallelogram of a degenerate Wedge, the missing two lines of which are

assumed, non-directional rays, The present program has no way of

knowing its mistake, whereas a complete system {using depth etc.) could

better realize the nature of the situation,

Thus the resulting scene interpretation in Figure 11,54 contains that

non-object as well, which is basically all right from the standpoint of

the present system. Left in the residual scene are the rest of the

shadow~ and glare lines, a messy lot which did not mislead the program,

This concludes the presentation of examples of system performance.

234

1IR3

{4
| L
gwws o, ° Ning
-]
\ / |
A '
L]
\.~
3
[]
;i Figure 11,53
4 SC3: Residuzal sceme - Sixth object E 3

Figure 11,54

SC3: Residual scene - Final interpretation

— 1

236

u & a il U ai dh S, ke
L Rl s ks el p i o i e e o e e | d o chl S g e o b o e il S e LE =
T TR . ey L i T B T e L s B oad ! Ralaciias o in onkid o ” 3 4

S
l
: % 11.3 -
11.3 DISCUSSION OF SYSTEM PERFORMANCE ;
b
: |
E ~ Actually, not much of a discussion should be needed here, since the
LV
: examples are thoroughly commented. ;
E :
‘ On the scenes tested so far, the present limited system has performed as
E 3 well as could be hoped. It is able to parse scenes of many ohjects, in i
t. the presence of a good deal of disturbance. In fact the utilization of
%‘ partially similar features as keys makes it possible to correctly 5
identify objects with only one good vertex, provided one of the |ines to El
that vertex is unbroken, ;f

Sometimes partially mapped objects are classified somewhat haphazardly,
but their classifications are not intended as final, A complete system i
could further process them, since the details of their mappings are

remembered.

The CPU-times for the examples given above range from 1 to B minutes, e
tupical ly staying around 2. The time is proportional to the square of
the number of lines, and roughly to the squares of the numbers of
prototypes and partially mapped cobjects (since full matches cause quick
exits). The dependence of computing time on the square of the
complexity of the picture is a neakness inherent in a system based on
models. It might be alleviated by the use of more extensive feature

schemes, as indicated in Section 12 (future work),

Little effort has been made in the direction of speeding up the program.

3 11.3

It could fairly easily be modified to run substantially faster, by
programming frequently used routines directly in assembly language,
rather than in the Algol subset of SAIL (approximately Algo!, plus ‘

associative features) [Swinehart & Sproull 19713,

Let us turn now to a discussion of the possible directions in which work

on the present system might proceed.

i
]
E

238 3

£.8 FUTURE POSSIBILITIES

The most immediate areas of possible future work concern extensions of

the present 20 system. More general aspects involve the use of concepts

of 30 in the development ot a complete vision system,

12,1 EXTENSIONS OF THE FEATURE CONCEPTS

The feature concept, as implemented here, has the weskness of demanding
connectivity, It is certainly possible - and might even be worth-uwhile
- to extend it to certain crinstellations of unconnected lines, such as
parallel pairs or triplets, and relationships of such. The example of

the L-beam demonstrates the potential advantages of connectivity

independent features,

Such features would be useful as guides for a matching supervisor
program, in that they could provide an extended context in some cases.

Of course they might also be helpful in guiding the process of injtjal

mapping,

Two immediate, more specific possibilities for extensions of the feature

concept are the following.

It often happens that lines are broken up by intervening objects, or for

other reasons. Most likely the |ine-features of the parts uwill not be

Y . byt ol
P T I 1L . P P 0. M G R [T A A

recognizable,

A future pcssibility here is to detect such cases and

temporarily insert compound lines, under the provision that the created

LF:s are recognizable., The relative messiness of such a scheme

motivates a "wait-and-see" attitude here.

The second scheme | had in mind concerns the introduction of the SF,

which here stands for "super-feature" (not San Francisco). In a super-

feature, which may be an extension of the LF concept, we would provide

(partial) information regarding the LF-designations of all the

participating lines in the feature. Such features would then reference,

directly or indirectly, all lines in simple prototypes, providing wider

contexts and extremely strong clues to mappings. 0f course, |ine-

draiwings of scenes are usual ly messy enough that complete SF:s would be

rare. We would almost aluays have to use partial ones, which is all

right.

In any case, SF:s could provide initial mappings (keys), based on much

broader contexts than do the present LF:s and CF:s. [n fact, SF:s could

conceivably guide the parsing process, providing the order in which to

explore the keys.

| see no use for SFis in the matching process itsel f.

22

12,2 RECOURSE TO INITIAL DATA

The present parsing program decides hetween different mappings on the
basis of the lines present in the initial tine-drauing, In the context
of the Stanford Hand-Eye Project it is fully possible to base such
judgments on data from the original TV-image, since that system includes

a statistically based line-verifier that operates on the digilized TV-

raster [Tenenbaum 1979].

While on the subject of having recourse to the TV-image itself, 1 should
mention the possibility of a "closer-!ook" strategy. This would apply
in areas of insufficient or confusing information, and would entaij|
sensitivity accomodation as well as (and perhaps especially) changing
the lens into one of greater magnification, Details regarding the

technicalities of related subjects nmay be found in [Sobel 1978),

12.3 EXTENDED CONTEXTS AND 20

The most interesting possibilities arise in the extended context of 30.

In a full-fledged three-dinensional ly based system, with access to
depth-information, the Lasic prototypes would be given by (fictitious)
coordinates in space, and the final scene interpretation would be based

on spatial considerations, suppor t-theorems, etc.

241

[

Supervisory program

Pre-

processor

Depth info

il

)

World-
model

Support
theory

——

3-D supervisor

parser)

Tentative

vertex

formation

Feature

2-D parser

]

extractor

Possible information flow in a 30 system

2=D matcher

Figure 12.1

242

Prototype
analyzer
(3-)

.ﬁ

nodels

Y

2=D
prototypes
Central
feature
storage

LA o

Figure 12.1 presents a diagram suggesting the flow of information in

such & system,

The feature scheme, and the 20 prototype matching scheme, could be much

the same as now. The 20 prototypes would be generated automatical ly

from models in 3-space. The prototype analyzer would generate al |

different vieus of an object, checking each one against existing 20

prototupss, and updating that hienory structure whenever necessary,

Handy programs for the creation and manipulation of 30 scene-

representations exist already (Baumgart 1973), and those should prove

most useful in such contexts.

The prototype matching would proceed more or less as it does at present,

but the decisions of acceptance and interpretation would nou, at least

in doubtful cases, be the responsibility of the 30 parsing supervisor,

NWith judgments based on information and theory not available to the

present parser, as uell as on the specific details of the current wor |d-

modet, which describes what the environnent is expected to be |like and

nhat kinds of objects make v the world.

Oepth-information nmay of course he obtained directly, using the laser.

Another alternative - el suited to the present system - would be to

use steceo corcelation, i.e. work in paratlel on tuo different vieus,

separated by an adequate angle (from the point of view of depth-

separation),

Since the 2D parser isolates one object at a time ("best first",

basically), the task of identifying and correlating objects betueen the

tuo views should not turn out to be excessively hard.

12.4 EXTENSION TO GENERAL PLANAR FACED OBJACTS

Roberts (cf. Subsection 3.1) introduced the idea of representing non-
convex bodies as composed of two or nore convex parts. This certainly
seens like a very sound approach, especially in a model-based system,
Where self-occlusions would otherwise create great difficulties and

vastly increase the required numbers of two-ditmensional prototypes.

What is needed, then, is a method of describing the junctions of convex
objects into more complex ones, so that the parser, having found the
parts, may infer the uhole (in some representation). The representation
of a concave body as @ collection of convex parts is at best a highly
ambiguous undertaking, which requires rigorous conventions on the part
of the prototype analyzer, and a great deal of flexibility on the part

of the parser.

It would seem that any meaningful extension to non-convex objects would
have to take place in the context of 30, and would probably require
verification loops accessing the TV-image.'since it might otherwise be
hard to determine whether we are looking at one object adjacent to

another, or just at one single, more complex body.

244

T
T

5.8 CONCLUSIGNS

A system for intermediate-level computer vision has been developed,
uhich utilizes ylobal information, in the form of two-dimensional
models, in interpreting an image as a representation of a three-

dimensional scene. The world is assumed limited to planar faced, convex

|
objects. :

System performance seems most satisfactory. For scenes of regularly
shaped objects, such as our dear old parallelepipeds and wedges, the
bresent system shows good discriminatory pouer, even under adverse

conditions, as in the presence of disturbances |ike shadous, glare, and

missing lines,

The sustem presented here uas created with the extended context of 3
three-dimensional interpretations in mind, and it should prove quite

readily adaptable for use in a complete vision system.

T T R AT

245

as

14.8

14.8 APPENDIX

It uas originally my intention to include the mathematics of least-
square |line-fit and vertex merging by a neighted-least-square method

here, as well as the edge-sorting algorithm, collinearity criteria, etc.

However, this paper is tong enough as it is, and | don’t want to burden
it with extra details, unless unusual or otherwise interesting, which to
my mind precludes the above-nentioned. | shall be content to give some

account of the basic data-structure of the present systenm.

14.1 THE GENERAL DATA-STRUCTURE

This presentation is intended to provide some general principies rather
than inplementation details. It will not deal with the data-structures
pertinent to features, prototypes, or mappings, since those were

discussed in their proper contexts,

Some of the impartant considerations behind the design of the data-
structure were:

Easy random access

List structure for context

An absolute minimum of shuf fling

Ability to expand if needed

247

Preceding page blank

14,1

It was designed some time before] developed the present feature- and

prototype schemes., It is of a general-purpose character (within its

frame-work), and has proven efficient and fairly easy to work with.

The scene-data is classified into three basic groups of pertinence,

namely lines, |ine-ends, and vertices.

The information pertaining to lines is of a more or less physical

nature, such as coordinates, coefficients in equation,

angular argument,

basis in edge-data, etc., A very important item associated with each

tine is its LCREDE (Line CREation and OEletion) value, to which I shal |

return below,

Associated with each line is also the linkage of its ends. Those are

referred to as SV:is (simple vertices)

» and they figure mainly in the

context of the list structure providing ver tex linkages.

Thus, for each

SV, e have a pointer to its orbital successor line(-end)

» and the angle

to that line, ccu. around the vertex in question,

Normal vertices, uhere several lines come together, are cailed CV:s

(compound vertices), and each SV also has a pointer to the CV (if anyl,

of which it is a member. Risking confusion, | hesitate to add. that CV:s

may be <ingle, as well. With each CV is associated a pointer to one of

the SVis in its ring, and also physical coordinates, which are obtained

through a neighted-ieast-square method | developed (which, incidental ly,

can be used to obtain perspective vanishing points, as well), and Which

minimizes the squares of the distances from the lines (1o the point),

weighted by the square rocts of the line-lengths,

248

To sum up, SV:is are line-ends, and CVis are vertices, and those
structures are completely separate. The linkages define the

interpretation of the scene-representation,

Therefore, each element, be it a |ine, an SV, or a CV, has a fixed
amount of storage associated with it, uhich makes its components
directly addressable, besides in some cases being members of list
structures. Furthermore, deleted elements are |inked into free-storage
lists, so that no shuffling is needed except when core has to be
expanded. This happens when the information content (or the messiness)

of a scene exceeds expected bounds.

14.2 THE SUBCONSCIOUS

The above-mentioned LCREDE defines the status of a line, i.e, whether it
is part of free storage (no line at all), inactivated, or currently

active, It also contains a short, tuo-level, memory of recent states,

Actually, the top of LCREDE only defines status in relation to two
global variahles which define the current range of the conscious., By

changing those global values, we may forget parts of the scene, and

bring other parts to the surface.

As an added possibility for diversity (confusion), we may have vertex

connections temporary or permanent, as defined by the signs of the SV.

T T a— ~ -

14.2

pointers (orbit-pointers). This has not yet been utilized in the
present system, uhere all links are temporarily permansent.

(I beg your pardon..?)

There is a vast library of subroutines that perform various exotic

actions on ‘he scene-representation, and those (When called properly)

can be instructed to work only in the subconscious, or the conscious, or
the temporarily subconscious, or ... For the present, most routines are

instructed to work in the temporarily permanent conscious, that is With

active lines only,

The tuwo glaobals defining the current range of the conscious are
manipulated by the parser, the natcher, and various other programs, in
the processing of a scene. Since each L.CREDE is a short memory stack,
lines may be temporarily forgotten (by pushing down), or conveniently
recalled (by popping the stack). This possibility is used extensively

in the matcher, who is very busy replacing lines or |ine-pairs in cases

of collinearities or plain substitutions,

I have found this system very flexible and efficient, especially in the
context of parsing and matching, where the scene (or the current object)

is subject to continual change.

This should be enough.

258

P

e

D e a

T T T o8 T LI (g, = = i

[
P (l

g 15.8
! ¥

1 15.8 BIBLIOGRAPHY

; AGIN G J
; "REPRESENTATION AND DESCRIPTION
1 OF CURVED OBJECTS"

Stanford Al Memo AIM-173

#4
i

Stanford University

October 1972

BAUMGART B G
"GEOMED"
Forthcoming Al Memo or Operating Note

Stanford University

1973

BAUMGART B G
“IMAGE CONTOURING AND COMPARING"
Forthcoming Al Memo

Stanford University
1974

BINFORD T O

"A VISUAL PREPROCESSOR"
Internal Report

MIT Project MAC

April 1970

15.8

BRICE C R & FENNEMA C L

"SCENE ANALYSIS OF PICTURES USING REGIONS"
Al Technical Note 17

SRl Project 7494

November 1963

CLOWES M B
"ON SEEING THINGS"
Al Journal

RS poliln oS

FALK G

"COMPUTER INTERPRETATION OF IMPERFECT LINE-DATA
AS A THREE-DIMENSIONAL SCENE"

Stanford Al Memo AIM-132

Stanford University

August 1970

FELOMAN J A et al.
"THE STANFORD HAND-EYE PROJECT"
Proc. 1JCAI (pp. 521-526)

May 1969

R S e b b

e e L

GRAPE G R

"COMPUTER VISION THROLIGH SEQUENTIAL ABSTRACTIONS"

Internal Memo |
Stanford Al Project 3 j

June 1989

3 GRAPE G R
"ON PREDICTING AND VERIFYING MISSING ELEMENTS IN

LINE-DRAWINGS, BASED ON BRIGHTNESS DISCONTINUITY
INFORMATION FROM THEIR INITIAL TV-IMAGES"

Course Project Report for CS225 anc CS382 !

Stanford University

March 1978

GUZMAN A

"COMPUTER RECOGNITION OF THREE-DIMENSIONAL OBJECTS
IN A VISUAL SCENE"
MAC-TR-59

MIT Project MAC
Oecember 1988

HUECKEL M

"AN OPERATOR WHICH LOCATES EDGES
IN DIGITIZED PICTURES"

Journal of the ACM (pp. 113-125)

January 1971

HUECKEL M

"A LOCAL OFPERATOR WHICH RECOGNIZES EOGES AND LINES"
Journal of the ACM

To be published 1973

T g T, . b o

HUFFMAN D A

"LOGICAL ANALYSIS OF PICTURES OF POLYHEDRA"
] Al Group, Technical Note No. 6
: SRI Project 7494

May 1968

ORBAN R

"REMOVING SHADOWS IN A SCENE"
Al Memo 192

MIT Al Laboratory
August 1978

PINGLE K K & TENENBAUI J M

“AN ACCOMMCDATING EDGE FNLLOWER"
Proc. 1JCAI

September 1971

ROBERTS L G
"MACHINE PERCEPTION OF THREE-DiMENSIONAL SOL1DS"

Technical Report No, 315

MIT Lincoln Laboratory

May 1963 (reissued May 1965)

L e . B e v

e i L T Ll s e o T L AN et

L
15.2
2
SHIRAI Y
"A HETERARCHICAL PROGRAM FOR RECOGNITION
. OF POLYHEDRA"
' Al Memo No. 263 {
MIT Al Laboratory f
June 1972 t?
y |
SOBEL 1 4
"CAMERA MODELS AND MACHINE PERCEPT]ON" 'k
§ Stanford Al Memo AIN-121 §
j Stanford University i:
May 1978 g
g
1 SWINEHART D C & SPROULL R F i
1 "SAIL" ¢
Stanford Al Project Operating Note No. 57.2 é
Stanford University i;
' January 1971 :
TENENBAUM J M 4
"ACCOMMODATION IN COMPUTER VISION® ?3
Stanford Al Memo AIM-134 %f
Stanford University %;~
October 1978 g]
! 1
255 %
i

E
E
:
1
?
E

Do taetilen baee Ll

15.0

UNDERWOOD S A & COATES C L

"VISUAL LEARNING AND RECOGNITION BY COMPUTER"
Technical Report No. 123

Information Systems Research Laboratory
Electronics Research Center

University of Texas at Austin

April 1972

WALTZ D L

"GENERATING SEMANTIC DESCRIPTIONS FROM
DRAWINGS OF SCENES WITH SHADOWS"

Al TR-271

MIT Al Laboratory

November 1972

WINSTON P H

"LEARNING STRUCTURAL DESCRIPTIONS
FROM EXAMPLES"

MAC-TR-76

MIT Project MAC

September 1978

256

3
;
i
:i
ki
i
.'

