AD 763601

ORDERED HASH TABLES
by

OLE AMBLE
DONALD E. KNUTH

STAN-CS-73-367
June 1973

Reproduced by
NATIONAL TECHNICAL
INFORMA1 _N SERVICE

U § Deportment of Commaerce
Springfield VA 22151

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

TR e T LU T edeaeag
Disuibusion Untimited i

N O

© aem e ecedmem,

Unclagsified

Neecunty Classficstion

DOCUMENY CONTROL DATA.R& D

Secuesty Isssihication of titie, S0y of ABIIACT and Indexing annolation must be ontered when the overali repost 1s clansified)

'

Ctr CNATING &C Tivi TV (Corporate v thoe)
stanford University
bpl. 0f Jomputer Seience
Stanrored, Calitornia 9304

30, ATTONY SECUMITY CLASEII 1 ATION

Unclagsitiea
6. OROUP

M ONT YT R

Ordered tlash Tables

4

Il s(movwl- Nirtl (npa of report end inclusive dates)

hnical report May 1973

Y

AL THONS) (Firsl nome, middle inttial, 1oal neme)

Ole Amble ani Donald E. hnuth

¢ RteORT OavTE

78. TOTAL NO. OF PAGES 7h. NO OF REFS

May L1973 approx. }l(o’:"é
A CONTRACY OR GRANT MO 8. ORIGINATOR'S REPORT NUMAER(S)
"{muh 67-A-0112-0057 NR OhkL-402 STAN-CS~75-36T |
h PHOIFC T NO .
OkR—N-0057- l
« 0. JTHER REPOAT NOIS) (Any other numbers thet mry be assigned "
this report) i
{
4 |
]
'O DISTRIBUTION STATEMENT Y
lieleasable without limitations on dissemination
1t SUPPLEMFNTANY NOTES 12. SPONSORING MILITARY ACTIVITY
13 ABSTHACT

Some .ariants ot the traditicaal hash method, making use of the numerical
or alphabetical order of the keys, lead to faster searching at the cxpense
of a little extra work when items nre inserted, %This paper presents the
new alyorithms nt analyzes their average running time.

DD °™. 1473 (PAGE 1)

PR IR N e cmm————

Ordered Hach Tables

by Ole Amble and Donald E. Kmth

University of Oslo and Stanford University

Abstract: Some variants of the traditional hash method, making use
of the numerical or alphabetical order of the keys, lead to
faster searching at the expense of a little extra work when items
are inserted. This paper presents the new algorithms and analyzes

their average running time.

Keywords and phrases: Searching, hash tables, analysis of algorithms,

address calculation

CR categories: 3.7h, 5.3

The preparation of this paper was supported in part by Norge,é
Almenvitenskapelige Forskningsrad, and in part by the U. S. Office of
Faval Research under grant number ONR 000L:-67-A-0112-0057 NR Obk-boz2.
Reproduction in whole or in part is permitted for any purpose of tie
United States Government.

Ordered Hash Tables

Traditional methcds of search are usually based either on the numerical
or alphabetical ordering of keys {e.g. binary search), or on the keys'
arithmetical properties (e.g. hashing). By cambining these two approaches
it is possible to obsain methods which are often superior to the traditional
algorithms.

In this paper we shall discuss a new class of search procedures which
use both the idea of ordering and the idea of "open" hash addressing.

A mathematical analysis of the expected running time is also given.

Given a file or table of data containing N distinct keys
Kl,l(g, . "’KN » the search problem consists of teking a given argument K
and determining whether or not K = Ki for some i . In practice
the key 1(1 is part of a larger record of information, Ri ,» which s
being retrieved via its key; but for the purposes of our discussion we
may concentrate solely on the keys themselves, since they are the only
things which significantly enter into the search algorithms. If the
search argument K 1s not in the table, we sometimes want to put it in;
therefore we are generally interested in two algorithms, one for
‘)' searching and one for insertion. The recent book by Knuth (1975) containrs
an extensive account of the algorithms which are commonly used for
searching and insertion.

Cne of the important families of search algorithms is the so-called
method of "open addressing with double hashing", which works as follows.

The table is stored in a larger array of M positions, numbered O

throush M-t . 1f U is the universe of all possible keys that might
ever he souht (e.;r., U might be all n-bit numbers or all n-character
identifiers, for some n), we define two functions for each X in U,

namely

h(K) = the "hash address” of X,

i(K) = the "hash increment" of X .

1]

These functions are constrained so that O < h(K) <M and 1 < i(K) <M
and i(k) is relatively prime to M , for sll K . Thus if M =2" ,
i(K) 1s allowed to be any odd positive number less than M ; alternatively
3f M is prime, 1(K) 1s allowed to be any positive number less than M .
For best results these functions are usually chosen to be efficiently
computable, yet with the proverty that distinct keys will tend to have
different hash addresses.

Some of the M positions of the hash table are unoccupied, while
N of the positions contain keys. For convenience we shall assume that
all keys have a strictly positive numeric value. The entries of the
hash table will bte denoted by TO’Tl’ ""TM-l s where T;) =0 1if that

position is empty and T,j >0 1if TJ. is the key stored in position J .

Algorithms
Using these definitiors, it is possible to describe the conventional

algorithm for open addressing with double hashing as follows.

Algorithm A. Let K be the search argument.

Step Al. 3et J - h(K) -
Step A2. 1If TJ = K , the algorithm terminates 'succegsfully’.

Step AD. ir 'I“j = 0 , the algorithm teminates 'unsuccessfully’.
Step Ak. Set -J-1(K) . Ifnow j <O, set J « j*M .

Return to step A2. U

The search is said to be 'successful' or 'unsuccessful' according
as K has been found 40r not. After a successful search, it is possible
to fetcn the entire record having the given key.

A new record may be inserted into such a table by first searching
for its key K ; when the algorithm terminates unsuccessfully in step A3,
the new record may be placed into the j-th position of the table.
Subsequent searches for this key will follow the same path to position J .

The fact that 1(K) is relatively prime tc M ensures that no
part of the table is examin>A twice, until all M locations have been
probed. Since we assime that there is at least one empty position, the
search must terminate if X i1s not present.

The sbove algorithm includes several noteworthy special cases. If
i(K) is identically 1 for all K, it is the well-known method of

linear probing. If i(K) =1 and h(K) = M-1 for all K, it reduces

to the straightforward method of sequential scanning. If 1(K) = £(h(K))
vhere f 1is a more-or-less random function, the algorithm is called

double hashing with secondary clustering. On the other hand, if the

probability that h(K) = h(K') and i(K) = i(K') , for distinct keys K
and K' in U, is 1/Mp(M) , i.e., if each of the possible values of
the pair (h(K),1(K)) 1is equally likely, the method is called

independent double hashing.

Algorithm A makes decisions only by testing for equality vs. inequality.
By using the numerical order of keys we obtain a new algorithm which is

almost identical to the other:

Algorithm B. (Searching in an ordered hash table.)

Step BL. Set j ~h(X) .

3 2. - K t i t 7 t 's 218 '.
Step B It TJ K , the algorithm terminates 'succeasfully
Step B3. if TJ < K, the algoritim terminates 'unsuccecsfully'.
Step B4. Set i~ j-i(K) . Ifnow j <O, set J ~ j*M .

Return to step B2.

Only step B3 has changed, and in a trivial way. Unsuccessful searches
will now be faster.

0f course we cannot use Algorithm B unless the positions of the hash
table have been filled in a suitable way. If the keys have been inserted
in decreasing order by the ordinary method (i.e., if we start with an
empty tabie, then insert the largest key, then the sccond-largest, etc.),
it is easy to see that Algorithm B will work properly. This proves that
there is always an arrangement of keys such that Algorithm B is valid.

Of course in practice we need to be able to insert keys in arbitrary

order, as ther arrive "on line". The following method can be used:

Algorithm C. (Insertion into an ordered hash table.)

Assume that K £ T, for 0< Jj <M, and that N <M-2 .

J
Step C1. Set J ~ h(K) .

Step C2. 1f Tj =0, set T, ~ K and terminate.

3

Step C3. If 'T'j < K, interchange the values of Tj - K .
Step Ch. Set J ~ J-i(K) . Ifnow J <O, set j = M.

Return to step C2. O

During this algorithm, the variable K takes on a decreasing sequence of

velues, and the increments in step Cl will vary (in general). This is a

rather peculiar state of affairs, in spite of the innocuous appearance
of Algorithm C, so it is helpful to look at an eismple.
Suppose that M = 11 and that there are N = 8 keys
1ks, 293, 397, Ws8, 553, 626, 841, 931,
where the middle digit is the h-value and the rightmost digit is the
i-value; thus, h(293) =9 and 1(293) =3 . Then the keys may be

distributed in the T table as follows:

T T T T Th T. T6 T TB T9 110

0 0 626 931 841 553 295 O Ls8 397 1ks

The reader may verify that Algorithm B will indeed retrieve each of these
keys properly. Now if we wish to insert the new key 759 , Algorithm C
first replaces T5 by 759 and sets K - 553 ; after examining

T, = €26 , it sets Ty = 553 » K ~ 145 ; and eventually T, « 145 .

The table “or all nine keys is therefore

T T

0 T T Ty, T T6 T7 TB T T

2 3 5 9 10
ks 0 626 931 841 759 203 O W58 397 553

To verily that Algorithm C is correct, consider the path corresponding

to key K , namely the sequence of table position numbers
h(K), h(K)-1(X), h(K)-21(K), ..., h({K)=-(M-1)i(K)

mod M . Since i(K) is relatively prime Yo M , this sequence consists
of the numbers O,1,...,M-1 in some order. Algorithm B works properly
if and only if, for every key K = Tj in the table, we do not have K >Td'
for some Jj' which appears earlier than J in the path corresponding
to K . (This is the essential "invariant" which is relevant to formal
proofs of Algorithm B.) Since Algorithm C never decreases the value of

any table position, it preserves this condition.

6

Analyses

Now let us attempt. to determine how much facter (if at all) the new
aliorithme will go. The following unliqueness theorem is very helpful in

this regard.

Theorem. A set of N keys Kl”Kﬂ can be arranged in a table

TO’Tl""’TM-l of M >N positions in one and only one way such that

Algorithm B is valid.

Proof. We have observed that at least one arrangement is possible.
Suppose that there are at least two, and let Kj be the largest key
which appears in different positions in two different arrangements. 'Thus,
2ll keys larger than K.j occupy fixed positions in all possible arrange-
ments. If we look at the path corresponding to X 50 as defined above,
the positions of keys larger than Kj are predetermined; and all keys
smaller than K‘_j must occur later than Kj . Therefore K;] must occupy
the first vacant place in its peth, after the larger keys, contradicting

the assunption that KJ. can appear in different places. [

In order to know the behavior of these search algorithas, we want to
Jnow the correcponding average number of iterations or probes in the
table, i.e., the average number of times steps A2, B2, or (2 are performed
respectively. (Only the average number is generally considered in
discussions of hashing, since the worst case is too horrible to contemplate.)
The classical Algorithm A has been extensively investigated (see Knuth
(1973) for a review of the literature), and the results can be sumarized
as follows. Let a = N/M be the 'load factor' of the hash table. Iet

A“ be the average number of times step A2 is performed in a random

successful search, and let A['q be the corresponding number in a random
unsuccessful search. By 'random' and 'average' we mean that the hash
addresses of the keys are assumed to be independent and unjiformly
distributed in the range O through M-1 , and that each of the N
keye of the teble is equally likely in a successful search. Then the

following approximate forwulas have been derived, as M and N approach

infinity:
Increment method AN Al‘l
linear probing #(1+ (1) -1) #(1+ (1<) -2)
secondary clustering 1-1n(1-a) -4a (1) "1-1n(1-0) -
independent double hashing -a ' In(1-x) (1) "t

Since the number of probes needed to retrieve an item with Algorithm A
is the same as the number needed to insert it, the average number of probes

needed to find the k-th item inserted is A'llc-l . It follows that
Ay = (Ah+AL+ .. +AL) /N . (1)

Now let us ccnsider the performance of Algorithm B. We shall assume
that there is no significant correlation between the hash addresses and
the numerical ordering of the keys. Since the position of any fixed set
of keys in the table is unique, we may as well assume tha’. they have been
inserted in decreasing order. Then the insertion algorithm is ldentical
to that used with Algorithm A, and the average number of probes needed

to find the k-th largest item is Al'&-l . It follows that

By = (A(')+Ai+...+A&_l)/N = A - (2)

In other words, Algorithm B is equivalent to Algorithm A with respect to
successful searching, on the average.
In an unsuccesstul search with Algorithm B, the number of probes

is the same as would be required in a successful search if the keys were

{Kl,Ka,...,l(N,K} instead of {Kl,l{2,...,lcn} . Therefore
By = By = By (%)

The above formilas for AN and Al'i show that this is indeed an
improvement. For example, when « = .90 (i.e., when the table is 90 percent

full), the quantities for unsuccessful search are

increment method AI'I Bl'i
linear probing 50.5 5.500
secondary clustering 1.4 2.853

independent double hashing 10.0 2.558

As a -1, the ratio B&/Aﬁ approaches O .

Finally let us investigate the new cost of insertion with Algoritim C.
Let CN be the average number of times step C2 is performed when
inserting the N-th item. Each time we execute step C2, we increase by
one the total number of probes needed to find one of the keys. Thus,

if we sum over N insertions, we must have
Cyt..-+Cy = NAy
This equation together with (1) implies that
P t
CN - AN-l ‘ (2
In other words, the average number of probes needed to insert a new

iten. is exactly the same as it was with Algorithm A.

It is worth noting that the probability distribution of (‘IC is not
in general the same as that of Al'J-l » although the average value is the
same. In fact, a single insertion with Algorithm C might take up to
order N2 jterations (although such an event is extremely rare).
Consider agaln the case of,tpree-digit keys whose mliddle digit is tne
h-value and whose rightmost digit is the i-value; and let M = ‘10 . Then

the insertion of 941 into the table

. T, T, T

o T, T, T3 T, Tg Tg T, Tg T

5 7 9
101 311 521 731 8hkg 659 L69 279 O 0

is amazingly slow, as the reader may verify. 1In general, the table

might contain n keys in "organ-pipe order",

0 = T, <TE<T,) STy <o ST n s

and we might have
+1, for 0<j<in/2l ,

i(T) =
J M-1, for [n/2l <j<n ;

then the insertion of a new largest key whose hash address is |n/2] will
take maximum tire, namely (n+l)n/2+1 iterations of step C2. s
We have now analyzed the average number of iterations in both
Algorithms B ard C. The analysis isn't complete, however, because we
have not determined the average number of interchanges perfommed in
step C3. This is an impcrtant consideration, since it is the number of
times we need to compute an increment i(K) ; with Algorithm A, the
increment needs to be computed only once. Therefore let D be the

average nunber of times the operation T, « K is performed in step C3

J
while inserting the N-th item.

10

Untortunately the analysis of DN is complicated, and we muct
defer the calculaticne to Appendix 1. It turns out that DN is
l+

approximately (1-v)~ at In(l<@) for linear probing, and

approximately equal to AN-l for independemt double hashing.

Further Development

The above algorithms can be extended in various ways, to gain
further improvements. For example, it is easy to see that the ideas
can immediately be generalized to the case of external searching, where
each of the M table positions is a "bucket" containing b or less
keys for some given b .

Another type of extension will make unsuccessful searching still
faster, at the expense of M more bits of memory. Let BO’Bl’ ""BM-l
be a vector of bits with all B, initislly O . Suppose that we set

J

B,j ~ 1 in step C3 of the insertion algorithm, so that B, = 1 if and

J
only if some successful search "passes through" position Jj . Then if
the search algorithm ever gets to step B3 and finds B 5 = 0 , the search

must be unsuccecsful.

This extra-bit approach applies, of course, to unordered hash tables
as well as ordered ones, but it iz especially attractive in the ordered
case because the extra testing can be done with almost no cost. We can
combine the bit test with the ordinary test if we assume thet .aecb bit B 3
appears at the left of Tj as a new significant bit. Then Algorithm B

can be rewritten as follows.

Step Bl. sSet J ~h(K) .

Step B2. If (BJ,TJ) < (1,K) , then the algorithm terminates successfully
or unsuccessfully according as TJ = K or not.

Step B3. If (BJ’TJ) = (1.K) , then the algorithm terminates successfully.

Step Bh. Set j e« j-i(X) . Ifnow J<0O, set J «~ j*M . Returmn

to step B2. a

Only steps B2 and B3 have changed, and the change is such thet the computer
time per iteration is the same as before; there is Just a little more
calculation at the end of a successful search, plus the cost of attaching
a 1 at the left of the input argument K when the search begins.

The average number of probes per unsuccessful search with this
modified algorithm appears to be difficult to analyze, but the empirical
data in Table 1 at the ond of this paper shows that the idea can be
worthwhile. Of course the number of probes per successful search is
unaffected by the extra bits.

So far none of the ideas mentioned have been of any use in the case
of successful search. One possibility which suggests itself is to start
searching one place ahead (i.e., to start at position h(K)-i(K)), because
this will save one probe if K is not at its hash address, and because
we will be able to test whether X is in position h(X) if the first
gsearch 1s unsuccessful. Since we have greatly improved the ability to
detect unsuccessful searches, we can perhaps use some of this capabllity
in connection with successful searches.

Unfortunately, a more careful analysis shows that guch an idee is
unsound; it actuzlly increases the average number of probes for both

successful and unsuccessful rearching. (See Appendix 2.) There is,

12

however, a case in which it does work, namely if we force h(K) to be
correlated with the magnitude of the table entry for X . Suppose we
bave a hash function such that

K <K' implies h(K) <h(x') ,
and suppose further that we are using linear probing (i.e., that i(K) ic
identically 1). Then it is not hard to see that the correlation causes
the number of probes for successful search in an ordered hash table to have
a much smaller variance; there will be fewer keys requiring very small or very
large numbers of probes, although the average mumber will remain unchanged.
Appendix 2 shows that this "start one ahead" approach will lead to less
probes per successful search when the table is more than about 6L4.38
percent full. (The limiting value « = 0.643797758 , where the one-ahead
method begins to excel, is the rcot of 2(1-x) (ea-l) =q.)

An obvious problem arises, however, if we want the hash function to
correlate with the keys in this way. Our options for the choice of hash
functicn will be so drastically reduced that it will probably be impossible
to find an efficiently computable h(K) that works well with typical
sets of keys. A solution to this dilemma is achieved if we store

transformed keys in the T table, instead of the keys themselves. Thus,

let t(K) be any function which scrambles keys without loss of information:
t(K) = t(K') implies that K = K!
Then we can store t(Kl)’t(Ke)"" in the table, and search for t(K)
instead of K . We can now achieve the desired correlation betveen
h(K) and t(K) by letting h(K) be the leading bits of t(X) .
For example, if M 1is a prime number and if h(K) = Kmod M , we

can let t(K) be a packed binary number whose leftmost bits are h(K)

13

and whose rightmost bits represent the quotient [K/M| . This
transformed key t(K) is one bit larger than the original key. Alter-
natively if M = 2° 4s a power of 2, we may let t(K) = (aK) mod 2%,
where w is the key length and a 4s any odd number; then h(K) may be
chosen as the leading m bits of t(X) .

The reader may justifiably feel at this point that the method is
getting "barogue”. The last few paragraphs have discussed detailed
refinements which are mildly interesting, but they can obviously never
save more than one probe per search. Therefore the reader may wonder why
we are going on and on, "heating a desd horse”. The answer is that it
was precisely the above train of thought, together with hand simulations
on randaom numbers, which led us to consider another algorithm which does
offer a substantial improvement. We shall now discuss this improved
algorithm, which uses the correlation between hash addresses and table

entries in a somevwhat different fashion.

Bidirectional Linear Probing
Let t(K) be any one-to-one transformation of keys:

t(K) = £+(X') implies K =K'
Furthermore let nh(X) be a hash function such that

t(K) < t(K') implies h(XK) <h(K') .
We have already discussed practical ways of finding such functions; and
it is natural to assume that a hash method using such tranaformations
would keep the nonempty positions of the hash table in sorted order:

T, #0 and TJ,Lo anl 1<) implles T, <T, .

Consider now the following straightforward search procedure:

1

Algorithm X. (Bidirectional linear probing.)

Slep AL, Set i - h(K) , and set K - t(K) .

Step X2. If T‘_j = K , the aliorithm terminates ‘successfully'. 1If

Tj > K, go to step X5 (downward search). If CL“j =0, the
algoritlm terminates ‘'unsuccessfully®. Otherwise go to
step X3 (upward search).

Step X3. (At this point, O <'r'j <K.) Set J~j+1 .

Step xk. If T‘j = K , the algoritim terminates 'successfully'. If
Tj =0 or T,j
Otherwise return to step X3.

> k , the algorithm terminates 'unsuccessfully’'.

Step X5. (At this point, T, >K .) Set j - 3-1.
Step ¥6. 1f Tj = K , the algorithm terminates ‘'cuccessfully'. If
T 3 < K , the algorithm temminates 'unsuccessfully'. Otherwise

return to step X5.

This algorithm searches either up or down depending on the result of
the first comparison. Its validity depends on having a table TJ. whose
nonempty entries are orcered as stated above, having the additional
property that no empty space occurc between the location of any
transformed key and its hash address. Furthermore there must be empty
positions at the ends of the table; we can take care of this by extending
the bDoundaries so that T-l = 'I'M =0 .

In this case there are, in general, many configurations of the T's
which will guarantee correct retrieval. For example, suppose that M = 10
and consider the transformed keys 61k4, 621, 637, €41, 647, 698, Shl ,
where h(K) is the leading digit. (It is not typlcal to have so many

keys with the same hash address, but our intent is to give a small example

15

which exhibits same of the more interesting things thet can happen.)
If we use the ordinary method of linear probing (Algorithm B), the table
is filled thus:

TJ=O 618 621 637 641 647 698 o0 8h1 0O

probes) 5 L 3 2 1 1

The bottom line shows how many table entries are examined when searching
for TJ. ; 1.e., it takes 4 probes to find ' 637 ' , since we start at T -

Algorithm X allows us to rearrange the T J's so thet many of the keys

will be found sooner:

J =0 1 2 3 ¥ 5 6 T 8 9

T, 0 0 61k 621 637 6kl 6h7 698 8k

o
probes IR 3 2 1l 2 3 2

i}
(o]

The search for ' 8kl ' goes upwards now, but we save two probes when
searching for ' 614 '. The average number of probes per successf1l search
is reduced fram (6+5+L+3+2+1+41)/7 =22/7 to
(b+5+2+1+2+5+2)/7 = 17/7 .

Appendix 5 shows how to characterize the optimum arrangements of
the TJ's s for any given set of keys, i.e., those arrangements which
minimize the average number of probes per successful search by
Algorithm X. As a consequence of the theory developed there, we may use
the following algorithm to insert into a bidirectional hash table, main-

taining optimum arrangements at all times.

16

Algorithm Y. (Optimum insertion for bidirectional linear probing.)

In this algoritim, let h'(TJ) be h(t'l(Td)) 5 thus 1f T, = t(KJ)
' -)

then h (Tj) h(KJ)

step Y1. Set j«-h(kK), K-~ t(x) .

Step Y2. If T.j =0, set T, — K and terminate the algorithm.

3
Step ¥Y3. Set p to the largest index < J such that ‘1‘p =0 . Set
q to the smallest index > j such that Tq =0 .

Step Y4. Set je~q . Then if T > K, repeatedly set T_ ~ T

J=1 J =1

end J - j-1, until T < K . Finally set TJ_»K.

J-1
(Thus, K has been sorted into the proper place with respect
to the other transformed keys.)
Step Y5. Set d -0 . Then for J - prl,p+2,...,q (in this order),
repeatedly set
d -4+l 1if h'('rj) >3
d ~d-l 1if h'(Tj) <3 .
1f at any time during this process d becomes negative, go
immediately to step Y6 without finishing the loop. But if &
remains >0 throughout the entire loop, terminate tho algorithm.

Step Y6. Set ’l‘j-T for p<j <q, and set Tq-o.

M1

Algoritim Y finds the smallest block of consecutive nonempty locations
containing position h(K) , and inserts t(K) into this block by shifting
the transformed keys which are larger. Then step Y5 is used to decide
whether or not it would have been better to shift the transformed keys
which are smaller; if so, step Y6 moves the whole block down. (Empirical

tests show that step Y6 is required only about 1/L as often as step Y5.)

17

In order to use this algorithm, a dozen or so extra table positions
T‘j should be included for j <0 and for J >M, to avoid end effects.
(There are :everal ways to make the algorithm cyclically symmetric
modulo M , but these are more complicated and time-consuming than simply
to provide extra "breasthing space" at both ends. The optimum arrangement
rarely spills over very far; in our experiments with M = L0O96 and tables
95 percent full, no more than five locations were needed at either end.)

The theory of linear probing shows that this insertion method isn't
extremely slow; the average size q-p of the block of keys considered
vhen the (N+1) -st key is being inserted will be 2A'-2 ~ (1-1) 24
when N/M =a . (Cf. Knuth (1973), exercise 6.4-47.) When this size is
averaged over N insertions, it reduces to 2AN-2 ~ 0f/(1-q) . Thus, .
insertion by Algorithm Y is only four or five times slower than insertion
by the classical linear probing algorithms. On the other hand, empirical
results (see Table 1) show that retrieval by Algorithm X is significantly

better than classical linear probing.

Conclusions

Traditional hash methods are comparatively slow with respect to
unsuccessful cearch. By extending them to make use of the inherent
ordering of keys, we have shown that the time for unsuccessful search can
be significantly reduced.

Two main algorithms have been presented in this paper. First we
discussed Algorithm B, and the corresponding Algorithm C for insertion.
This method reduced the time for unsuccessful search to the time for
successful search, without significantly increasing the cost per insertion.

Therefore it is attractive for applications in which unsuccecsful searches

18

&re coomon. A refinement, odding "pass bits", makes unsuccessful search
cven laster. However, the method ic never useful in typical compiler or
assombler applications, where uniucceuvsful searche:s are ulmcot always
followed by insertions.

The cecond method we have discussed is Algorithm X, together with the
corresponding Algorithm Y for insertion. Here both successful and
unsuccessiul search times are reduced, at the expense of greater insertion
time and slightly more complex programs. (The method may be compared with
a scheme recently published by Brent (1973); his method requires less
probes than ours on successful searches, but it dces not reduce the
unsuccessful search time.)

Table 1 presents the behavioral characteristics of the algorithms
discussed here, assuming random hash functions. Some of tre results have
been derived by theoretical analyses; these are shown to ihre:z decimal
pleces. The other results, for which only one decimal place of accuracy
appears in the table, have not yet been verified theoretically. Every
entry in Table 1 is the number of probes per search, i.e., the number of
Tj entries examined. This information can be used to predict the
behavior of each algorithm; but it should be emphasized that the timc
per probe and the setup time will vary from one method to another. For
example, linear probing end Algorithm X will have faster inner loops
than independent double hashing, while the latter (especially with "pass
bits") involves fewer probes. Thus the number of probes is not an
absolute measure of goodness, the entire algorithm must be considered

when making comparisons.

19

I

EEEFEEEEREEEREER

100 X {pexcent Tull)

A,
Ay
A,
B,
3,
B,
B,
B,
B,

s

linear probing
secondary c¢lusiering
indep. doudle hashing
linear probding
secondary clustering
indep. doubtle hashing
lisear, with pass bits

indep.. vith paas dits

Successful search
25 » 75

1.167 1.500 2.50C
1.163 i.kk3 2.01
1131 L1.35¢ 1.8.8
1167 .52 £.50C
1.143 L.kLr 201
1.151 1.386 1.

1.167 1.500 2.90
1.151 1.38¢ 1.848

iinear, correlated, one ahesd 1.87T1 1.797 2.265

bidirectianal linear

Table i.

i.l 1.3 a7

ATerage mmber of proter required by the algorithms, as a function of the load factor 2 = N/M .

5¢
3.000
2.209
2.012
3.000
2.209
2.012
1.000
2.012
2.613
2.0

3

3.853
2.472
2.232
3.823
2.472
2.252
3.833
2.232
3.306
2.3

©

$.500
2.853
2.558
£+ 500
2.853
2.558
$.500
2.5%8
4.825
2.9

3.153
9.667
L2

Unsuccessful search

33
- 309
1.371
1.3%
1.167
1.1€3
1.151
1.0

1.0

2.0

1.3

50

2.5m
2.193
2.700
1.50C
1.4b3
1.366
1.2
11
2.2
1.5

15

8.500
b.636
k.o
2.500
2.01
1.548
2.0
1.3
2.9

99 95
50.500 L00.500
1.002 22.0h§
10.900 20.000

5.50 17.500

2.8%3 5.52)
2.558 3.15)

5.k 10.3

1.7 2.2

5.8 .0

3. [3

Appendix 1. Analysis of step C3.

In order to analyze the quantity DN defined in ihe text, let us
assume Lhat the keys are Kl <K, < ... < KN . Let Dl"l de the averupe
number of times, durings N random incertions, that the variable K is

set to the smallest key K, at same time during the insertion process.

1
In other words, Dﬁ is the average number of times Kl is "moved"”.
Then Dlzl-l is the average number of times l(2 is moved, since the

behavior of the algorithm on [KE""’IS\I} is essentially independent

] s N
of](1 . Similarly, DN+l-i is the average number of times Ki is
moved. Therefore

Di+ eee¥Dy = (n'l-l) + ...+ (D'l-l)

Tor all N , and we have
by = Dﬁ-l .

Consider now the case of independent double hashing. Experience
shows (but it has not been rigorously proved) that this case is
satisfactorily approximated by uniform hashing, where each key's path is a
random permutation of {0,1,...,M-1} , independent of all other keys.
Under this assumption, which has been tacitly made in the text, the
analysis of hashing algorithms usually becomes quite easy. However, the
"organ pipe" example of the text indicates some of the complexities of
Algorithm C, and a rather indirect approach to the analysis of DN
(or g) seems to be necessary.

Tet D" be the probability that the smallest key K, is moved

N 1
during the insertion of the N-th key. It follows that

" 4 opn "
Dl+,_D2+ .--+NDN
N N

21

since the probability that Kl is moved on the j-th insertion is D:_i
times J/N , tbe probability that K, appears among the first J keys
inserted.

Consider the entire sequence of actions which occur when the keys
{Kl, ...,1(“} are inserted into the table in decreasing order. This
sequence of actions states for example that, when Kj was inserted,
a certain sequence of larger keys were encountered before an emply place
was found. We shall call the elements of the latter sequence the

dominators of KJ .

decreasing-order case, we can deduce what actions will occur vhen the

Knowing all the sequences of dominators, in the

keys are inserted in any other specified order. Define the function »p
on the indices 12,...,N} such that, if K, is the last of {Ky,---,Kyc)
to be inserted, then 1&)(3) will be the last of {x2, ...,KN] to ve
moved. Now the very last insertion moves Kl if and only if elther
(1) k, was the last element inserted, or (ii) K.1 was the last
element inserted, for some Jj >2 , and KP(J) is one of the daminators

of K1 .

For example, suppose N =3 , so that K} >K2>Kl . I.-‘.‘.K5 is a
dominator of K, , we have p(3) =p(2) =2, and K; is moved on the
third insertion if and only if it is the last to be inserted or it is
dominated by x2 . On the other hand if 55 does not dominate K2 , then
P(3) =3 and p(2) = 2 ; hence K is moved on the third insertion if
and only if it is either the last to be inserted, or it is dominated by
the last to be inserted.

For any fixed choice of dominator sequences on {1(2,... ,KN} , and for

fixed J > 2 , the probability that l&)(3) dominates Kl is & function only

of M and N , independent of Jj and the given actions, because of the

assumptions of uniform hashing. This probability may be expressed &s

z (r-1) P,

1
FI .3

where Pr is the probability that KJ. has r-1 dominators, since

exactly (f‘::) /(lf‘:i') = (r-l) / (N-1) of the possible choices

of r-1 dominators include the given key Kp(9 Since Pr is also
the probability that r probes are needed to insert the N-th item by
Algorithm A, we have

1 1 '
dr D enn g,

The probability that KJ is inserted last is 1/N ; surming for

2<J <N, and adding 1/N for the case that K, comes last, gives

n-N;l(L :) 1_ 1,
G =% (FT@®aD)*F = sk -
The above formulas now yield the desired answer,
DN = AN-l

Such & simple result deserves a simpler proof; however, it is surprisingly
easy to derive this formula by plausible but fallaclous arguments, and
the above approach is the only reliasble one for this analysis that is
known to the authors.

We come finally to the case of linear probing. This is much more
complicated, and the derivation will only be sketched here. Consider

the M® ‘'hash sequences’ a,...a to be equally likely, where the k-th

1
key inserted has h(K) = a, . Then the probability that the (n+l) -st

key inserted moves Kl and is not itself K1 is

23

% Y ka(Mm,k)M, (%)

where a(M,n,k,i) denotes the number of hash sequences a e, which

1
cause TO through Tk—l to be occupled, Tk to be empty, and TO = Kl
if the smellest key K, 1s the i-th to be insertei. Let g(M,n,k) be
+he number of hash sequences which cause To through Tk-l to be

occupied and TM-l
sequences which cause TM-l =0 . Then the formulas

=T, =0, end let f(M,n) be the number of hash

f(myn) = (men)a® , glmn,k) = (})E(s+1, k) f(m-k-1,n-k)

can be derived by simple arguments (see Knuth (1973), p. 529). Also
let bn be the number of hash sequences 5 ...8, which cause TO, o "Tn-l

to be sccupied, and for which the "pass bit" B

5 is set to 1 for

0 <j<n-1. Framthe relation

f+l,n) = = (D)f(k+l,K)b
YT ock<n K n-k

and Abel's binomial formula, we deduce that bn = (n-l)ml . Now the

value of (*) may be expressed as

5 (1)ap; T (30g(M-3s3,0-5,0) B (%)
150

by
1<j<n
because we obtain esch sequence enumerated by a(M,n,k,i) by plecing
together, in (3‘) ways, & sequence emumerated by bJ and a sequence
enumerated by g(M-j+l,n-j,f) , where 1<i<J and k = j+I . The
sum (**) can be eveluated as described in Knuth (1973), page 691, exercise 27;

the result is

2h

1fn n(n-l) ngn-lggnoal
ﬁ(ﬁ + 2 M2 + 3 + ..)]

essentially an incomplete gamma function. Summing for O <n<N, and

adding 1 for when Kl is inserted, yields the desired result

N-1,6 2 (N-2)(N-2) 3 (N-1)(N-2)(N-3) .
M 3 ¥ L M3

av

Dy = 1

25

Appendix 2. Starting one place ahead.

Consider the case of linear probing in an ordered hash table, vhen
h(K) 4is uncorrelated with the magnitude of K . Let Pr be the
probability that exactly r probes are needed to find the (n+l) -st
largest key, for some fixed value of n . Then Pr is the probability
that the positions occupied by the n largest Eeys include
h-l,h-2,...,h-r+1 , but not position h-r , given any h ; and Prﬂ.
is the probability that h,h-1,...,h-r+1 (but not h-r) are included.
Hence Pr-P 1 is the probability that h-1,...,h-r+l are occupied,
but neither h nor h-r , for any given h . It follows that the
expected mmber of probes needed to locate the (n+l) -st largest key K,

1f we begin searching at location h(K)-1 instead of h(K) , is

r§2 (r=1) P + r§1 (1) (P <P) = Py + r§1 rp, -

This always exceeds L rP, , which is the corresponding average if we
begin searching at h(K) .

Essentially the same argument applies to uniform hashing. So we may
conclude that it is not a good idea to start probing at location h(K) -1(K).

However, the situation is considerably different vhen h(K) is
correlated with K , so that h(X) < h(K') whenever K <K' , since
then Th-l is almost always less than Th . In order to unalyze this
situation, let us look first at the case that J never goes from O
to M-1 during a successful search. (In other words, the "pass bit"
Bo i8 0 .) Then the nonzero Tj's are sorted; hence if we start a
search at h(K)-1 , we will lose only one probe when X 1s in iis

"home position” h(K) while we save one probe vhemever K is mot. It

26

follows that the one-ahead method is favorable, for successful searching,
whenever the number of keys in home position is less than %N .

An assumption which greatly simplifies the analysis vhen B, £O
is to restore cyclic symmetry, by assuming that keys which passed from
position O to position M-1 behave subsequently as if they are larger
than keys which haven't. Under this assumption we shall prove below

that the average number of keys in home position is exactly

(M—N)((l + %)N_l-l) + (1 + ll‘)u-l .

For N/M =a as M — =, this number is approximately

ea-l

a ¥ 3

(1)

curiously as N - M it drops to approximstely e .

Without the above symmetry assumption, the number of keys in home
position might be drastically different. For example, when M = 10 and
N = 8 , the hash sequence 987 65111 leaves only one element
in home position under cyclic symmetry, but there will be six keys in
home position in the true ordered hash table. However, the average
effect of this correction is bounded by the length of search Al'! for
the smallest element, and for N/M = @ <1 the correction is asymptotically
negligible. Similarly we may ignore the fact that the search for a key in
home position TO might be adversely affected by the presence of larger
keys in TM-l > TM—2 s ete.

To prove the formula for keys in home position under cyclic symmetry,
we can observe that the number of hash sequences a8 -8y which leeve
an element in home position M-1 1s exactly

£(M+1,N) - £(M,N)

in the notation of Appendix 1. For if we add the f(M,N) hash sequences

which leave T empty, we obtein all the f(M+1,N) hash sequences

M-1
which would leave '1’M empty in a linearly-probed hash table of size M+1 .
Therefore the average total number of elements in home position, under
cyclic symmetry, 1s

M(E(MF1,N) - £(M,N)) / M

The formula for f , given in Appendix 1, completes the proof.

It is interesting to study the cyclically symmetric algorithm
further, to find the average number of elements displaced exactly a
locations from their home position when h(K) correlates with K .

Let h(M,n,k) be the number of hash sequences a. ... a for which < k

1
elements pass from position O to M-l when ii.ey are inserted. Then,
by considering the number of such sequences containing exactly J zeroes,
we obtain the recurrence

b(m,n,k) = 25 h(m-l,n-j,k+l-j)
J

for a1l myn,k >0 . Furthermore we have the initial conditions

h(m,n,0) = f(mtl,n) = (mtlen)(m1)®T ,

from which it is possible to derive the general formula

h(m,n,k) = (m+l+k-n) 2 (2)(m+k+l-r)n-1-r(r-k-l)r
C<r<k

for all m,nm,k >0 . (Abel's binamial identity shows that this sum
equals m" whenever k >n .)

The hash sequence 8] .8y produces a key with home address O
and displacement d if and only if it is a sequence with > d keys

passing from O to M-1 but <d passing from 1 to O . The number

28

of such has“ sequences, when d ~0, isg

n{M,N,d) = u(M,N,a-1) ,
because ©n(M,N,d) is the number of hash sequences with <4 keys
passing from L to O, while h(M,N,d-1) is the number with < d
pessing from O to M-l and (consequently) <d from 1 to O . Tt
follows that the average total number of keys with displacement 4 > 0
is

M(h(M,N,d) - h(M,N,d-1)) / i

It would be interesting to obtain asymptotic data about this

trobability distribution. When M = N , the same formulas arise in
connection with the classical Kolmogorov-Smirnov tests for random numbers:
the quantity h(n,n,k-1) /n"l is the probability that the so-called
statistic }:; is <Xx//n . iccording to & theorem of N. V. Smirnov in

1939, we have

~2
1im hgn,nnzafn! - l_e-as :
n -+ n

cf. ¥nuth (1969), p. 1.

29

Apvendix 5. Optimum bidirectional linear probing.

Given N keys K1 < 4ee < }(T and corresponding hash addresses

[
0 h(Kl) < ... < h(KN) < M , we wish to place them into table positions
50 that K,j appears in TF(J) for 1<J <N, where p(l) < ... < p/E)
Writing hj = h(KJ.) , we wish to find a placement which is optimum, in

the sense that the sum

2 ‘hj'P(j)l
1<j<N

is minimized. We shall call this sum the "cost" of the placement. For
convenience in exposition, we shall allow the positions p(J) to be
negative or greater than M , although the proofs could easily be extended
to characterize the optimum arrangements subject to p(1) >x and

p(N) <y , for any desired bounds x <0 and y > M-1 . Algoritim X
requires a placement such that all positions between h 3 and p{3j) are
occupied, for each |} ; however, we may ignore this condition, because
all optimum placements automatically gatisfy it.

Given any placement p(l) < ... < p(R) , we shall say that a block
{a,b] is a set of consecutive positions which are occupied by K,
through K (1.e., p(3+l) =p(3)+1l for a <J <b). An up-block is
a block followed by an empty positici, which would lead to less cost if
it were shifted one place higher; in other words, it is a block [a,b]

such that the shifted plecement p' has less cost, where

p(IH*+1 , if a<J<d
P'Q3) =
p(3) , otherwise.

By the definition of cost, we f4nd that [a,b] 4s an up-block if and

only 1if

30

(1) wither b U or plbil) ™ p(b)+1 3

and

(b) the number of j in the range & < Jj <b, for which

by > p(J) »

exceeds the number for which h 3 < p(d) -
Thus it is easy to test a given placement for the presence of up-blocks.
A down-block iz defined similarly.

An optimum placement will, ol course, contein neither up-blocks nor
down-blocke. Conversely, this condition of local optimality is sulficient

tor ;lobal optimality:

Theoroni. given N hush wldresses hl e EhN s 8 IZ‘-’LC’:XQ‘_‘_}L‘E

p(1) < ... - p(N) is optimwn ir and only if 3l contuint no vp-blockt

and no down-blochs.

Proof. Let ¢ be an arbitrary placement; we want to prove that p
either contains an up-blaock, or a down-block, or is optimun. ILet p'
be an optimum placement. If p(Jj) = p'(j) for all J , we are dore.
Otherwise suppose that p(j()) £ p‘(jo) ; by symmetry we may assume that
p(5,) <P ()

Tt would be nice if we could prove that p(j()) is part of an
up-block, under there hypotheses. fowever, the [vllowing example showd

thai the ar;ment cannol be quite o trisial;

Kk = 12 2 b5 79
A A
p(k) o1 2 b 67 8
pk) = o2 A W5 S 7 8y

31

If Jp = 6 , we have p(Jo) <p'(jo) » but p(jo) is actually part of
a down-block.

We can circumvent such difficulties by arguing as follows. Let a'
be minimal sc that [a',jo] is a block in placement p' . Then let b
be maximal so that [a',b] is a block in placement p . Then let a
be minimal so that [a,b] is a block in placement p' . (In the above
example, when jo=6,wewillhave a' =1 apd b =5 and a =1.)
In general we will alweys have p(a') <p'(a') , p(b) <p'(b) , and
[a,b] will always be a block in both placements; thus, p'(3) -p(3)
has a constant value t >1 for a < Jj <b . Furthermore, position
p(b)+*1 1s empty in placement D , while p'(a)-l1 is empty in
placement p' .

Let d_ be the number of displacements hj -p(3) 1in block [a,b]
that are positive for placement p ; also let d_ be the number of
negative dicplacements in the block, and let d'k be the number of
displacements which equal k . Define 4}, da' , and dl'(similarly
for placement p' . It follows that dk = d'l':-t for a1l k .

Now [a,b] is an up-block for p if end only if 4 > d0+d_ s
and it is a down-block for p' if ahd only if 4d' > d.(') +d} . Our
proof would be complete if [a,b] were an up-block for p , hence we
may assume that

d, €£4,+4,
The optimalily of p' dimplies that
a' < ap +ay

Now the latter inequality is equivalent to

d_+d + 4, + ... +d

ot 4y by S & - (@t td)

T2

hence we have

4, < dy+d_ < 4 -20d ... 4d)

This can be true only if d_ = d0+ d_ and 4! = d(')+ a; . If ve shift
block f[a,b] one position down from where it was in p' , we obtain a
new placement p" of cost equal to p' , hence P 1s optimum.
Furthermore p" 1is closer to the given placement, in an obviocus sense,
so the proof will eventually terminate.

It ic interesting to note that the above proof does not use the
hypothesis hl < ... < hN ; it characterizes the optimum placements for
arbitrary (even non-integral) h;j . It N =2, with hl = 100 and
h2 =1, there are actually one hundred optimum placements, namely
pk(j) = ktj for -1 <k <99 . The additional hypothesis h) < ... < Ly
leads to e slightly stronger theorem, showing that the optimum placements
are more constrained: When h Shd’fl , we have hJ. -p(J) < h,j+1°P(J)

J
hj+1'p(j+l) +1, for j and j+1 in the seme block. The above proof
can now be strengthened to show that dl >0 (end hence t = 1) whenever
p has no up-blocks. Thus, two optlmum plecements p and p' must

have {p(i)-p'(3)| < 1 for all . , vwhenever the hJ. form a nondecreasing

sequence.

23

Referancey

Brent, Richard P. (1973). "Reducing the retrieval time of uscattier
storage techniques,” Communications of the ACM, Vol. 16, No. 2,
February 1975.

Knuth, Donald E. (1969). Seminumerical Algorithms; The Art of

Computer Programming, Vol. 2, Addison-Wesley Publishing Company.

Knuth, Donald E. (1973). Sorting and Searching; The Art of Computer

PFrogramming, Vol. 3, Addison-wesley Publishing Company.

2

