
AD 763601

ORDERED HASH TABLES

by

OLE AMBLE
DONALD E. KNUTH

STAN- CS-73-367
June 1973

'-.doIe.db,

NATIONAL TECHNICAL
INFORMA 1 N SERVICE

U S DeIHl,tment of Commerce
Sprjngfi.ld VA 221.51

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STAtEORD UNIVERSITY

1., '. .. -:-fi\'-
.- . " .. -. ..- _. -..--

Ar~' :; ... : :.<i ; L.iJil:; ;~
Dis.nbu~ 'oll UIIliJnMed

So \ I f . ','"", \ ." , I('.th",

DOCUMENT CONTROL DATA •• & D ~ ~'" ""'. ,' ,I'r.,'fJI't •• ''',., ,. of ... , , •• Nf ,nde.;,. ,a,iOfl , .. .,.,.,." _".n ,,,. I#~.'.II ,."." I. ~/ ••• "i~"J . (,1" ,'". ' e. A(TIVI TV ,C"OfI'CH'_I. r. _or, 0 .. ' '':CU''"'1 CtA.',II, ""~'t4 I ;jt.an ('or-d Unlvcrsi Ly
Unclll.~sinel; I), ';.d, • () :' ,:,.rnpu Ll' r ~" ielll'l' ,,, "ou" ----- ..

;~!On II f'1 't", l, C:d.i 1'01'111 a .)I~.')O~

------- ---.- _.
"""O'l1 '111.

Ol'dered Illlsh Tables

• "I .. c ~IPTIV.F. "',T". (~". 01 HflHWI MII'AC'UI' •• de •••)
t":hnH'1l report May 1973

,
A(. ' 0 .. 1". (,,,., "'''' •. ... tN,. '"";". , •• ,)

Ole Amllle ani Donald E. r,Jluth
I

• " 0 .. ' DAY!: '.0 TOTAL NO. Ofl' P •• IIS 1'''' .. 0
0" "I!:".

Mny 1')73 aP1l.rox. ,;;L~ t-
Ii

... ("ON T",,,,C T 0" c;. ... NT .. O ... O_,CI'NATO.·S 1It.~O"T NU II:"' ••
tV 044-402 S'1'AN-CS-'(3-36'(~QQ~4-61-A-Ol12-0051 NR

I[

.. OJFCTNO

Q~1l :.I QQ~~ . .&, ':l THe .. "."0"" NO' •• (An,. 0"' ... nllM"'. "'., lIt,,, .,. •• •• .,..rJ
'1110 _") :

I
d I

In CI'l1111'YUTIQN ST.TI:"~,,T

Hclel\3able 'WithOU1. limi tation." Oil dissemination I
II ~u."L£.IIA"'NT"." NOT!:. " 0 .. '0"' ",1'-1 T A"", ACTIYITv

" _ft$T"ACT

:::;()m~' arianLc or t:le LI"tdi tic.Hl.l h:1Sh met.hod, makiJlg use of' the mllllerical
(II" al phalletl<:al order 01' the J.:eys, l,ell.u to faster searching at t.he l'XpelHH~

cd- a 1 it t.lC' ext.ra work when lCelll;J are inlierted. 'lM5 paper pre:;ent,; the
ril!W " ll~od t1uns a:I,1 ,ulal.vzes t I.dr ~lVC r-a.c:jC running time.

I ,

I I

DD ,'~ •• 1473 (PAGE ')
Unc1as i,l, a, " " "":' ~~': --------

Ordered Hach Tables

by Ole Amble and Donald E. Knuth

University of Oslo and Stanford University

Abstract: Salle variants of the traditional hash method, making use

of the numerical or alphabetical order of the keys, lead to

faster searching at the expense of a little extra work when items

are inserted. This paper presents the new algoritbDs and analyzes

their average running time.

Keywords and phrases: Searching, hash tables, analysis of algorithms,

address calculatioo

CR categories:

J
The p!'ept.ration Qf this paper was supported in part by Norge,S . .
Almenvitenskapelige Forskningsrad, and in part by the U. S. Ofi'lcf' of

Naval Research under grflDt number (fiR ooolJ~-67-A-0ll2-OO57 NR 04ll.-4D2.

Reproduction in whole or in part is pe1'l'll1tted for any purpose of the

United States Government.

1

Orde:red I{~sh Tables

Traditional methcds of search are usually based either on the numerical

or alphabetical ordering of keys (e. g. binary search), or)n the keys'

arithmetical propert:les (e.g. hashing). By canbining these two am'roaches

it is po~sible to ob':;ain methods which are orten superior to the traditional

algori tbms .

In this paper we shall discuss a new class or search procedures which

use both the idea or ordering and the idea of "open" hash addressing,

A mathematical analysis of the expected running time is also given.

Definitions

Given a file or ~ of data containing N distinct ~

Kl'~' ... , ~ , the search problem consists of taking a given argument K

a.nd determining whether or not K = Ki for some i. In practice

the key Ki is part of a larger record of inrormation, Ri , which is

being retrieved via its key; but ror the purposes or our discussion we

may concentrate solely on the keys themselves, since they are the only

things which significantly enter into the search algorithms. If the

search argument K is not in the table, we sometimes want to put it in;

therefore we are generally interested in two algorithms, one for

~
'searching and one for insertion. The recent book by Knuth (l97~) contail~s

an extensive account of the algorithms which are COJllnonly used ror

searching and insertion.

One or the important ramil1es of search algorithms is the so-called

method of "open addressing with double hashing" I which works as follows.

The table is stored in a larger array of M positions, numbered 0

2

t.hl'oUt~b M-I. If U j s the universe of all polUlible keys that mieht

ev('r he SOUt:ht (e.t~., II mit';ht be ail n-bit nwnberr or all n-charact.er

identifiers, for ~OlTle n), we define two functions for each K in U,

namely

h(K) = the "hash address" of K,

i(K) :0 the "hash increment" of K

These functions are cOIlstrained so that 0:5 h(K) < M and 1:5 i(K) < M

and i(K} is relatively prime to M, for all K. Thus if M = .zn ,
i(K) is allowed to be any odd positive number less than M; alternatively

if to, is prime, i(K) is allowed to be any positive number less th&n M .

For best results these f'unc:tions are usually chosen to be effiCiently

computable, yet with the pro!'E!rty that distinct keys will tend to have

different hash addresses.

Some of the M positions of the hash table are unoccupied, while

N of tba poSitions contain keys. For coovenience we shall assume' that

all keys have a strictly positive numeric value. The entries of the

hash table will be denoted by TO' T l' ••• , '1'M_l ,where '1' j = 0 if that

position is empty and T
j

> 0 if T. is the ke:y stored in poSition j
.J

Algoritbms

Using these definitior.s, it is possible to describe the conventional

algorithm for open addressing With douDle hashing as follows.

Aljorithm A. Let K be the Eearch argument.

Step Al. 3et j ~ h(K) •

Step A2.. If T j = K , the algorithm terminates 'succesatuJ.ly'.

Step A'5. If T j "' 0 , the algoritmn terminates 'unsuccessfully'.

step A4. Set j - j-i(K) • If now j < 0 , set j - j+M •

Return to step A2. 0

The search is said to be 'successfUl' or 'unsuccessful' according

as K has been found or not. After a success:f'u.l search, it is possible

to relch the entire record having the given key.

A new record may be inserted into such a table by first searching

for its key K; when the algoritllm terminates unsUCCf!sstu.lly in step A3,

the neW' record may be placed into the j -th position of the table.

Subsequent searches for thiS key will follow the same path to position j •

The fact that i(K) is relatively prime to M ensures that no

part of the table is e~ .. amih""'_ twice, until all M locations have been

probed. Since we ass'AIIle that there is at least one empty position, the

search mus~ terminate if K is not present.

The a.bove algorithm inc ludes several noteworthy special cases. If

i(K) is identically 1 for all K, it is the well-known method of

linear probing. If' i(K) .. 1 and h(K) = M-l tor all K, it reduces

t~ the straightforward method of sequential scanning. If i(K) = f(h(K»

where f is a more-or-less random function, the algorithm is called

double hashing with secondary clustering. c.a the other hand, if the

probability that h(K) = h(X') and i(K) = i(K') , for distinct keys K

and K' in U, is l/_(M) , 1. e., if each of the possible values of

the pa1!' (h (X) , i (K» is equally likely, the method is called

ind!pendent double hashing.

Algorithm A makes deciSions only by testing for equality VB. inequality.

By using the numerical order of key£ we obtain a new algorithm which i~

almost identical to the ather:

4

Al~orit hm B. (Search~.ng in an ordered hash table.)

StcE B1. Sf't ,j .- h(K)

GteE 1)2. rr T. - K
<I

, the a4~or:ithm terminates I succe;~~t'ully' .

Step JJ5. If T. <K, the algoritlm terminates 'unsuccecr.fUlly' ,
J

SteE 1~. Set .i .- j-i(K) If now ,j < 0 , t;et j - j+M .
Return to st ep '82. :J

Only step B3 has changed, and in a trbrial way. Unsuccessful searches

will now be faster.

Of ~ourse we cannot use Algoritlun B unless the positions of the hash

table ha're been filled in a suitable way. If the keys have been inserted

in decreasing order by the ordinary method (i.e., if we start with an

empty tab:e, then insert the largest Hey, then the F~=vnd-largest, etc.),

it is easy to see that Algoritbn B will work properly. This proVE'S that

there is ahrays an arrangement of keys such that JUgorithm B is valid.

Of cour;;e in practice we need to be able to insert keys in arbitrary

order, as the~r arrive "on line". The following method can be used:

Algori thrn. C. (Insertion into an ordered hash tabl.e.)

Assume that K 1= T j for 0::: j < M , and that N < M-2

steE Cl. Set j ... h(K) •

Stej! C2.

Step q.

Step C4.

If T
j

= 0 , set 'fj'- K and tenninate.

If ~j < K , interchange the values of T
j

K .

Set J - j-i(K) If now j <' 0 , set j - .;+M •

Return to step C2. oJ

Durintl; tbb algorithm, the \rariable K takes on a. decreasing sequence of

values, and the increments in step c4 will vary (in general.). This is a

5

rather peculiar state of af'1'airs, in spite ot the innocuous appearance

of Algorithm C, so it is helpful to look at an e;.cample.

Suppose that M ~ 11 and tha~ there are H: 8 keys

145. 293. 397, 458, 553, 626, 841, 931,

where the middle digit is the h-value and the rightmost digit is the

i-value; thus. h(293):: 9 and i(29}) = 3. Tben the keys may be

distributed in the T table as follows:

T T T 'r o 1 2 j

o 0 626 931

The reader may verity that Algorithm B will indeed retrieve each of these

keys properly. Now if we Wish to insert the new key 759, Algorithm C

first replaces T 5 by 759 8l1d sets K ... 553 ; after examining

T2 = 626 • it sets T10 - 553, K - 145 ; and eventually TO - 145 •

The table ~or all nine keys is therefore

TO Tl T2 T; T4 T5 T6 T7 TS T9 T10

145 n (;26 9;1 841 759 293 0 458 3crr 553

To ver1l'y that Aleorithm C is correct, consider the ~ correcponding

to key K, n8l!lely the sequence of table position numbers

h(K), h(K)-i(K), h(K)-2i(K), ..• , b{K)-(M-l)1(K)

mod M. Since i(K) it. l'elatively prime 'to M, this sequence consists

ot the n':Jlllbers 0,1, ... ,M-l in sCIIle order. Algor1ttlll B works properly

if and only if, for every key Ie = T
j

in the table, we do not have K > T j t

for sane j t which appears earlier than j in the path corresponding

to K. (This is the essential "invariant" which is relevant to fomal

proofs of Algorithm B.) Since Algorithm C never decreases the vnlue or

any table position, it preserves this condition.

6

Analyses

Now let us nt.tempt. to .tctennine how mlJ,ch fa:~ter (1 f nt a]l) the IlI'W

al,\orit.bms ..,ill f:.o. 'rhe rollo..,ing \U\iqueneas theorem. 18 VCl"'J hel_pful in

this regard.

Theorem. A set of N ~ IS,,"" ~ can be arranged in a table

TO,T
l
,·· .,T

M
_l £f M > N positions in one and only one way such that

Algorithm B is valid.

Proof. We have observed that at least one arrangement is possible.

Suppose that there are at lea.st two, and let K
j

be the l.argest key

which nppears in different positions in two dif1'erent arrangements. 'rhus,

1l.11 keys larger than K .
• J

occupy fixed positions in all possible arran~e-

ments. If we look at the path corresponding to K
j

, as defined above,

the positions of keys larger than K
j

are predetermined; and all keys

smaller than K
j

must occur later than K
j

. Therefore K
j

must occupy

the first vacant place in its path, after the larger keys, contradicting

the assumption that K. can appear in different places.
J

o

In order to mow the behaVior of these search algorithms, we want to

mC)\1 the correcponding average number of iterations or probes in the

table, i.e., the average number of ti'l1e~ steps A2, B2, or C2 are per:fonned

respectively. (On~1 the average number is generally considered in

discussions of hashing, since the worst case 1s too horrible to contemplate.)

The classical Algorithm A has bf!en extensively investigated (see Knuth

(1973) for a. review of the literature), and the results can be SUlII'Ilarized

as follows. Let ex = HIM be the' loa.d factor' of the ha.sh table. J,et

~ be the average number of times step A2 is per:f'omed in a random

7

successful search, and 1et "N be the corresponding number in a random

unsuccessf'ul. search. By 'random' and 'average' we mean tbat the hash

addresses of the keys are assumed to be independent and unifo~

distributed in the range 0 through M-l, and that each of the N

keys of the table is eq~ likely in a. succesatul search. Then the

following approximate fomulas have been derived, as M aud N approach

in1'inity:

Increment method Ax

linea.r probing ,(1+ (l~)-l)

flecandary cluster1ng I-ln(l~) -ta:

independent double hashins -a-l In(l-a)

AN

t(1 + (1-0) -2)

(loa)·1 -In(l-a) - ex

(l-a) ·1

Since the number of probes needed to retrieve an item with Algorithm. A

is the same as the numbe:r needed to insert it, the average number of probes

needed to find the k-th item inserted is Ak-l' It follows that

(1)

Now let us ccnsider the performance of Algorithm B. We shall assume

that there 1s no significant correlation between the hash addresses and

the numerlca.l ordering of the keys. Since the position of art:I fixed set

of keys in the table is unique, we may as well assume tbE..':. they have been

inserted. in decreaSing order. Then the insertion al80ritbm 1s identical

to that used with ~rittln A, and the average number of probes needed

to find the k-th largest item 1s Ak-l' It follovs tbat

(2)

8

In other words, Algorithm B is equivalent to Algorithm A with respect to

successful searching, on the average.

In an W"lGuccessfu1 search with Algoritlvn B, the number of probes

i~ the sumc at: would be required in a successf'ul seo.rch if the keys were

{IS.,K2,·· "Fw,K) instead of {IS.' IS, .. "I<N}

BN =- ~+1 = '\+1

Therefore

The above fonnulas for ~ and AN show that this is indeed an

(3)

improvement. For example, when a =.~ (1.e., When the table is 90 percent

tull), the quantities for unsuccessful search are

increment method Aft BN
linear probing 50·5 5·500

secondary cl.ustering 11.4 2.853

independent double hashing 10.0 2·558

As a-I , the ratio PAN/AN approaches o .

Fina~ let us investigate the new cost of insertion with Algorith!D C.

Let; C
N

be the averaee number of times step C2 is performed when

inserting the N-th item. Each time we execute step C2, we increase by

one the total n"Wllber of probes needed to find one of the keys. Thus,

if we sum over N insertions, we must have

C 1 + ••• + CN = N"N

This equation together With (1) implies that

CN = AN-I
In other words, the average nU'TIber of probes needed to insert a new

itsl is exactly the s8ll\e as it was with Algorttlun A.

9

(h)

It is worth noting that the probability distribution of eli is not

in general the same as that of AN-l' although the average value is the

same. In fact, a. single insertion with Algorittn C might take up to

order N2 iterations (although such an event is extremely rare).

Consider again the case of.tpree-digit keys whose middle digit is the
~

h-vA.lue and whose rightmost digit is the i-value; and let M = 10 .

the ~nsertion of 941 into the table

TO Tl T2 T3 T4 T5 T6 T1 T8 T9

101 311 521 731 849 659 469 279 0 0

is amazingly slow, as the reader may verifY. In general, the table

might contain n keys in "organ-pipe order",

and we might have

{

+l,

M-l

for 0 ~ j < fn/21

for In/21 ~ j < n

Then

then the insertion of a new hrgest key whose hash address is Ln/2J will

take maximum tiIre, namely (n+1)n/2+1 iterations of step ca.

We have now analyzed the average number of iterations in both

Algorithms B l:Il.J C. The analysis isn't canplete, however, because we

have not determined. the average number of inter<:b!nges perfonned in

step C3. This is an impcrtant conSideration, since it is the number of

times we need to compute an increment i(K) ; with Algorithm A, the

increment, needs to be computed only once. Therefore let DR be the

a.verage nUlliber of times the operation T j .. K is performed in step C3

while inserting the N -th itan.

10

IJn1'nl'tllnntely th(' :ulo"llysis of DN 1s complicated, IUlIl we mu~t

ueL'el' the eaJ.culntic~(' to Appendix 1.

-1 -1) approximately (l-l) +a In(l-<x

It turno out that DN is

for linear probing, and

approximatel:' equal to ~-l for independent double hashing.

Further Development

The above algorithms can be extended in various ways, to gain

further ~provements. For example, it is easy to see that the ideas

can immediately be generalized to the case of external searching, where

each of' the M table positions is a "bucket" cootaining b or less

ireys for some given b .

. ~0ther type of extension will make unsuccessful searching still

faster, at the expense of M more bits of memory. Let Bo,III ,··· '~-l

be a vector of bits w1th all B
j

init:ia~ O. Suppose that we set

B
j

- 1 in step C3 of the insertion algorithm, so that B
j

= I if and

only if some sllccesst'ul search "passes through" position j . Then if

the search algorithm ever gets to step B3 and finds B
j

= 0 , the search

must be unsuccessful.

ThiE extra-hit approach applies, of course, to unordered hash tables

as well as ordered one~, but it i~ especially attractive in the ordered

case because the extra testing can be done with almost no cost. We c~n

combine the bit test with the ordinary test if we assume thB.l LdC!j' bit B
j

appears at the left of T. as a new significant bit. Then Al.eorithm B
J

can be rewritten as fo1lows.

11

step Bl. Set j ~ b(K) .

step B2. If' (Bj,T j) < (l,K) , then tbe algor1thn terminates success~

or unsuccesstully according as T
j

; K or not.

step B~. If (Bj,T
j

) = (1,K) , then the algorithm terminates successfully.

step :s4. Set j ... j-1(lC) • If now j < 0 , set j ... j+M. Return

to step 82. 0

Only steps B2 and B3 have changed, and the cbange is such tha.t the computer

time per iteration is the same as before; there is just a little more

calculation at the end of a successfUl search, plus the cost of attachin~

a 1 at the lett of the input argument K wben the search begins.

The average number of probes per unsuccesstul search with this

modified algorithm appears to be difficult to analyze, but the empirical

data in Table 1 at the and of this paper shovs that the idea eM be

worthwhile. Of course the number of probes per successful search is

unaffected by the extra b1ts.

So far none of the ideas mentioned have been of any use in tbe case

of successfUl search. One pos~ibllity wbicb sug~ests itself is to start

searching one place ahead (i.e., to ttart at position h(K)-i(K)), be~au~e

this will save one probe if K is not at 1ts hasb address, and because

we w111 be able to teat whether K is in position h(K) if the first

searcb is uns\lccess1Ul.. Since we haV'f! greatly improved the a.bility to

detect unsuccessful .earcbes, we can perhaps use sane ot tbis capability

in connection with successful searches.

Untortunate~, a morc carefUl analySis shows that euch an idee. j s

unsound; it actually increasez the average number of v~be~ for both

successfUl anll unsuccessful ~ea.rching. (See Appendix '2.) There is,

12

however, a case in which it does work, namely if we force h(K) to be

correlated ... ·i th the maeni tude of the table entry for K. Suppose we

hnve a hash fUnction such that

K < K' implies h(K) 5 h(K')

and suppose further that we are using linear probing (1. e., that i (r.) i£

identically l). Then it is not hard to see that the c~rrelat1on causez

the number of probes for succe5sfUl search in an ordered hash table to have

a much smaller variance; there will be fewer keys requiring very small or '/ery

large numbers of probes, although the average number will remain unchanged.

AppendiX 2 shows that this "start one ahead" approach will lead to less

prob:::-s per successful search when the table is more than about 64.;8

percent full. (The limiting value ct = o.6437gr158 , where the one-ahead

method begins to excel, is the rcot of 2(l-a) (ect -1) = ex .)

An. obvious problem ariFes, however, if we want the hash function to

correlate with the keys in this way. Our options for the Choice of hash

functicn will be so drastical.ly reduced that it will probably be impossible

to find :m efficiently computable h(K) that works well with typica.l

sets of keys. A solution to this dilemma is achieved if we store

transfonned key.; in the '1' table, instead of the keys themselves. 'I'hUG,

let t(K) be any function which scrambles keys without loss of infonnation:

t(K) = t(K') implies that K .. K'

Then we can store t(IS.),t(~),... in the table, and search for t(K)

instead of K. We can now achieve the desired correlation betlceen

h(K) and t(K) by letting h(K) be the leading bits of t(K) .

For example, if ~ is a prime number and if h(K) = K mod M , we

can let t(K) be a packed binary number whose leftmost bits are h(K)

1;

and whose rightmost bits represent the quotient L K/MJ • This

transfol'llled key t(K) is one bit larger than the or1g1nal key. Alter­

natively if M II i" is a p:riIer of' 2 I we may let t(K) = (aK) mod 2
w

,

where w is the key length and a 18 any odd. number; then h(K) may be

chosen as the leading m bits of t(K) .

The reader may justifiabl¥ feel at this point that the method is

getting "baroque". The last few paragraphs have discussed detailed

refinements which are mildly interesting, but they can obv1ousl¥ never

save more than ooe probe per search. Therefore the reader may wonder why

we are going on and on, "lIeat1ng a dea.d horse". The answer is that it

vas preci8e~ the above train of thought, together with hand simulations

on randan nWllber£:, which led us to con3ider another algori tbm which ~

offer a substantial improvement. We shall now discuss this improved

al.gorithm, Which uses the correlation between haah addresses and table

entries in a somewhat different fashion.

Bidirectional Linear Probing

Let t(K) be any one-to-one transformation of keys:

t(K) = t(Kt) illlplies K = KI

Furthennore let h (K) be a hash function such tha.t

t(K) S t(K') ~plies h(K) < h(K')

We have already discussed practical ways of finding such f'unctions; and

it is natural. to assume that a ha.sh method using such transformations

would keep the non empty positions of the bash table in sorted order:

Ti ~ 0 and T J ~ 0 and 1 < j lmplies Ti < T j

Consider now the following straightforward search procedure:

Alcorlthn X. (Bj.dlrect.lonal linear probing.)

Gtep X2.

step x3.

Step x4.

Step X5.

Dei, .i - h(K) , and sct K ... 1;(K) •

If T. -" K , the algorithm terminate. 'succ8as:f'ully'. If
J

T
j

> K , go to step X5 (downward searcb). If T
j

= 0 , the

algoritbm te:nninates 'unsuccessfllll¥'. otberwise go to

step X3 (uporard search).

(At this point, 0 < Tj < K.) set J ... j+l .

If T. = K , the algori thin terminates 'successf'ulJ.y'. If
J

T~ ,., 0 or Tj > II. , the algorithm terminates 'unsuccessf'ully'.

otherwise return to step X3.

(At this point, T.
1

"> K .) Set j ... j-l •

Step x6. If T
j

= K , the algoritlun terminates 'cuccess:t\l1J.¥'. If

T j < K , the algorithm tenninates 'unsuccessfu.lJ.¥'. otherwise

retum to step X5.

This algorithm searches either up or down depending on the result of

the first comparison. It:] validity depends on havin~ a table T. whose
J

non empty entries are or~ered as stated above, having the additional

property that no empty space OCCurll between the location of any

transformed key and it.!) hash address. Furthennore there must be empty

positions at the ends of the table; we can take care of this by extending

the ~oundaries so that T_1 = TM = 0 •

In this case there are, in general, many configurations of the T's

which will guarantee correct retrieval. For example, suppose that M = 10

and consider the transfonned keys 614, 621, 637, G4l, 647 t 698, 841 ,

where h(K) is the leading digit. (It is not typical to hn ve ~o many

keys with the same hash address, but our intent is to give a small cx<ll'lp1e

15

which exhibits sane of the more int erest ing things that can happen.)

If we use the ordinary method of linear probing (~orithn B), the table

is tilled thus:

j = 0 1 2 4 5 6 7 8 9

T
j

0 614 621 631 641 641 6gB 0 841 0

probes 6 5 4 2 1 1

The bottan line shows how many table entries are examined when searching

for T. ; i.e., it takes 4 probes to find ' 631' , since we start at T6 J

Algori ttun X allows us to rearrange the T 's
j

so that many of the keys

will be fOWld sooner:

j = 0 1 2 3 4 5 6 1 8 9

T, 0 0 0 614 G21 631 641 641 698 841
J

probes 4 3 2 1 2 3 2

The search for ' 841 I goes upwards now, but we save two probefl when

searching for • 614 '. The average number of probes per successf'll search

is reduced fran (6+5+4+3+2+1+1)/7'" 22/1 to

(4 + .) + 2 -+ 1 + 2 + .) + 2) /7 = 17/1 .

AppendiX 5 shows how to characterize the optimum arrangements of

the T j' s , for any given set of keys, i.e., those arrangements which

minimize the average number of probes per successfUl search by

Algorithm X. As a consequence of the theory developed there, we may use

the following algorithm to insert into a bidirectional hash table, main-

taining optimUll'l arrangenents at all times.

16

Algoritbn Y. (Optimum insertion for bidirectional linear probing.)

In this algorithm, let h'(T
j

) be h(t-l(T
j
» ; thus if T

j
= t(K

j
)

then h'(T
j

) : h(K
j

) .

step Yl. set j ... h(K) , K ~ t(K)

Step Y2. If Tj = 0 , set T
j

- K and terminate the algorithm.

stepY3. set p to the largest index < j sucb that T = 0 .
p

q to the smallest index > j such that T = 0
q

Set

step Y4. set J ... q. Then if T
j

_
l

> K , repeatedly set T
j

... T
j

_
l

and .1.- j-l , until T
j

_
1

< K • Fina14 s~t T.... K •
J

(Thus, K has been sorted into the proper place with respect

to the oth E!' transt'ormed keys.)

St!l' Y5. set d ... O. Then for j - pH,pt-2, •.. ,q (in this order),

repeatedly set

d ... d+l if h'(T
j

) ~ j

d d-l it' h'(T
j

) < j

1f at any time during this process d becomes negative, go

immediately to step y6 without flnbhing the loop. But if d

remains 2: 0 throughout the entire loop, term1n8.te ti.~ algorithm.

step y6. set Tj T,1+1 for P:5 j < q , and set Tq '" 0 •

Algoritmn Y finds the smallest block of consecutive nonempty locations

containing position h(K) , and inserts t(K) into this block by shirting

the transfo:nned keys which are larger. Then step Y5 is used to decide

Whether or not it would have been better to shift the transformed keys

which are smaller; if so, step y6 moves the whole block down. (Empirical

tests shOW'that step y6 is required only about 1/4 as ot'ten as step Y5.)

17

In order t.o use this a18orltlun, a dozen or so extra table poaitions

T. should be included for j < 0 and for j.? M , to avoid end effects.
J

('l'here are t:everal Wll.y3 to rr:ake the algorithm cyclically s~etric

modulo M , but these are more canplicated and time-consuming than simply

to provide extra "breathing space" at both ends. The optimum arrangement

rarely spills over very far; in our experiments with M = 4096 and tables

95 percent fUll, no more than five locations were needed at either end.)

The theory of linear probing shows that this insertion method isn't

extremely slow; the average size q-p of the block of keys considered

when the (N+l) -st key is being inserted will be 2AN-2 R:S (l~) -2_1

when B/M == ex (Cf. Knuth (1973), exercise 6.4-47.) When this size is

averaged over N insertions, it reduces to ~-2 R:S aj(l-a) • Thus,

insertion by Algorithm Y is only four or five times slower than insertion

by the classical linear probing a18oritbns. On the other hand, empirical

results (see Table 1) show that retrieval by Algorithm X is Significantly

better than classical linear probing.

Conclusions

Traditional hash methods are c3Ilparati\rely slow with respect to

unsuccessful cearch. By extending them to make use of the inherent

ordering of keys, we have shown that the time for unsuccessful. search can

be slgnif1ca.ntly reduced.

Two main algorithmS have been presented in this paper. First we

discussed Algorithm B, a.nd the corresponding Algorithm C for insertion.

This method reduced the time for unsuccessfUl search to the t.ime for

succe .. of'Ul search, \nthout significantly increasing the cost per insertion.

Therefore it is attractive for applications in which unsu~ce~sfu.l. searches

are Camton, A rcfinP.ll\ent, .. ddine "pIlSS b1tJ", m8.kes u'lsuccessfUl search

t:\I'Cll J:1.stel', However, thf' metll<)(l ic ncvC'r useful in typ:i cul canpller or

nta:ollblcr applic:atlonr'J loItlel'e un;·uccet:sf'ul. seal'ehec arc u.lJncet ulway:;

followed by insertions.

The ~econd methoo we have discussed is Algorithm X, together with the

corresponding AJ.gorithrn Y for insertion, Here both success:f'ul and

unsuccessi\.l search times are reduced, at the expense of greater insertion

time and sligh-r.ly more complex programs. (The method may be compared with

a scheme recently published by Brent (1973); his m~thod requires less

probes than ours on successful searches, but it does not reduce the

unsuccesst'ul search t:iJne.)

Table 1 presents the behavioral charact~ristics of the algorithms

di :::cussed here, assuming randan hash :t\mctiollS. Sane of the results have

been derived by theoretical analyses; these are shown to '~hree decimal

pl&.ces. '~e other results, for which only one decimal place of accuracy

appears in the table, have not yet been verified theoretically, Every

entry in Table 1 it; the number 0 f probes per search, 1. e ., the number of

T. entries examined. This information can be used to predict the
,1

behavior of each algorithm; but it should be empha.sized that the time

per probe and the setup time will vary fran one method to another. For

example, linear probing and Algorithm X will have faster inner ~oops

than independent double hashing, while the latter (especially With "pass

bitslt) involves fewer probes. Thus the n'llnber of probes is not an

absolute measure ot goodness, the entire al80rithm must be considered.

when maldng comparisons.

19

!!!!!!2! S1ICCe.at\al. ~ .. areb tJbauec ••• t\&l &Ml"Cb

10: :J [pere .. t :\Ill) ~5 5Q 75 50,; ~5 :JO 9' 25 5" 75 60 95 90 9~

Ale· A. Unear _ 1.167 1·500 ~.500 ~.OOO ,.8" 5.500 10·500 •. Xl9 2·500 8·500 1,.000 22.722 51). ,ao loOo.JlO

Ale· A. 'ecG1111U7 ~lUt.utAc :.16, i.", 2.0ll 2.209 2.1072 2.8" '·521 1.'71 2.11' lo.6~ 5·SlO 7·715 1l.1oOe 22·oa.5

Ale. A. in4ep. ~le bUb1A« ~ ,n 1.,)(1.8lo8 2.012 2.2'2 2.558 ,.15' 1.", 2.'XlO lo. XIl 5·00c '0.667 1(\ .000 20.000

Ala· •• ~ JNII1aI 1167 1.5)(1 ~.5OC ,.000).8'3 ~·500 lC,5(.O :".167 1. SOC, 2·500 !.OOO ~.?~3 5·500 :~ .5C)C

2! Ale· I. "''''''Uz7 elutertas 1.16, 1.J.~! 2_~U 2.~ 2.1072 2.85.3 '.52::' 1.1e 1.101t, 2.'U 2·209 2.1"'2 2.8~3 '.521

A..i4, I. 1.Ddep. 4clut.le hubiJl« 1.151 l.~ 1.i!118 2.:>12 2.2,2 2.558 : .15' 1.151 1.~ l.~ ~.O12 2.232 2·558 '.153
Ale. I. u-r. with JIU' bU. 1.1f7 1·500 ".5'JO !.ooo }.e" 5·500 1~·500 1.0 L.2 2.0 2.k ,.6 5. 10 10.'
Alo!. B. 1ftdI!S>. -' dth JlUI blt. 1.15! 1.}8i 1.8lo8 2.012 2.2'2 2.558 '.15' 1.0 1 1 1.' 1.1t 1.6 1·7 2.2

A.4. B, 1111 carrelatell, ODe 1.8T1 1·797 2.2"5 2.613 ,.,06 4.825 9·667 2.0 2.2 2·9 , ., 10.0 5·6 11.0

Ale. :0:, bt4lnctlC111&l lta_r ... 1 1., ... 7 2.0 2.' 2·9 1..2 l.~ 1·5 ~.l 2., 2.E '.1 1,.10

lUll 1. I'-.~ INIber of FO"H nq'l1n4 b7 t.he aJcorttllM. u to ~t1011 of tile 10K ractor !l. 1/11 •

Appendix 1. Analysis of step c~.

In order to annly\!'e the quantity Dw defined in the text, let un

us:.:wnc t.hat. the !,eye: arp. IS. < K:! < ... < ~. .Let DN ;,e t.he avcr~c

nwnber of tilDes, durinl~ N randon inEertions, that the variable K i:.;

set to the smallest key Kl at same time during the insertion process.

In other words, Dr is the average number of times
N

KI is "moved".

Then DN_
1

is the average number of times ~ is moved, since the

behavior of the algorithm on (K2' ... , ~} is essentialJ.y independent

of IS.' Similarly, DN+1- i is the average number of times Ki is

mo\ed. Therefore

for all N , and we have

DN '" DN-l
Consider now the case of independent double ha.shing. Experience

Shows (but it has not been rigorously proved) that this case is

satlp.lactorily approximated by uniform hashing, where each key's path is a

randan pennutation of {O,l, •.• ,M-1} , independent of all other keys.

Under this assumption, Which has been tacitly made in the text, the

a.na~sis of ha.shing algorithms usuall.y becanes quite easy. However, the

"organ pipell exa:nple of the text indicates sane of the canplexities of

Algoritbn C, and a rather indirect approach to the analysis ot DN

(or Dft) seems to be necessary.

I,et DN be the probabUity that the smal.1est key Kl is moved

during the insertion of the N-th key. It follows that

D'
N

D" + ')nll + + ND" 1 cOJJ2 • • • N

N

21

,

since the probability that IS. is moved. on the j-th insertion is Dj

times j/W, the probability that 11. appears among the first j keys

inserted.

Consider the entire sequence of actions which occur When the keys

(Is.,' .. ,~} are inserted into the tab~e in decreasing order. This

sequence of actions states for example that, when K
j

VBS inserted,

a certain sequence of larger keys were encountered before an empty place

was found. We shall call the elements of the lAtter sequence the

dad1n&tors of K
j

. Knowing all the sequences of daninators, in the

decreasing-order case, we can deduce what actions will occur when the

keys are inserted in any other specified order. Define the f'unction p

on the indices l2, ••. ,N} such that, if Kj is the lAst of (K2""'KN)

to be inserted, then 1),(j) will be the last Of (~, ••• , Its 1 to be

moved. Now the very ast insertion moves IS. if and on~ if either

(i) IS. was the last element inserted, or (11) K
j

was the last

elElllent inserted, for sane j ~ 2 , and ~(j) is one of the dan1nators

of IS. .
For example, suppose N = , , so that X, > ~ > IS.' If, K, is a

daninator of ~, we have p(;) ;: p(2) = 2 , and IS. 18 moved on the

third insertion if and only it' it is the lAst to be inserted or it is

daa1Dated by ~. On the other hand if X, does not daninate ~,then

pC;) a.3 and p(2) = :2 ; bence IS. is moved on tbe third insertion if

and onl¥ if it is either the last to be inserted, or it is dominated by

the last to be inserted.

For any fixed chOice of dc.m1nator sequences on tK.a' ... , ~ 1 , and for

fixed j > 2 , the probability that ~(j) daninates IS. is a. f'unetion only

22

of M and N , independent of j and the given actions, because of the

aSSllJllptions of uniform hashing. This probability may be expressed as

-1:.... ~ (r-l) P ,
B-1 r >1 r

where Pr is the probability that lS. has r-l dominators, since

ey.actl¥ (~:~)A~:i) = (r-l) I (B-I) of the possible chOices

of r-l daninators include the given key Kp(j) . Since P is also
r

the probability that r probes are needed to insert the N-th item by

Algoritm A, we have

-1:.... ~ (r-l) P
r

= -1:.... (A-'- -1)
N-l r >1 N-1 -~-1

The probability that Kj is inserted last is lIN; SlDl!!lling f'or

2 ~ j $ B , and adding liB for the case that IS. comes last, gives

n!~ = B-1 (.l:.... (A-'- -1») +! "" 1 A-'_
-B N N-1 -N-l N N -~-l

The above formulas now yield the desired an5Wer,

Dw = ~-l

Such a simple result deserves a simpler proof; however, it is surprisingly

easy to derive tr.is formula by plausible but fallacious arguments, and

the above approach is the only reliable one for this analysis that is

known to the authors.

We cOIIle finally to 'the case of linear probing. This is much more

complicated, and the derivation will only be sketched here. Consider

the ~ 'hash sequences' a1 •.. an to be equally likely, where the k-th

key inserted has h(K) = a k • Then the proba.bility that the (n+l) -st

key inserted moves ~ and is not itself IS. is

23

1 " t-J

N 1<k <n

1<1 <n

) -n ka(M,n,k,l M

where a(M,n,k,i) denotes the number of hash sequences a
1

... Bn which

cause To through T k-1 to be occupied, Tk to be empty, ~ TO:: Kl

if the smallest key Kl is th~ i-th to be 1nserte~. Let g(M, n, k) be

the number of hash sequences which cause TO through Tk_1 to be

occupied and TM_1 = Tk = 0 , and let f(M,n) be the number of hash

sequences which cause T
M

_
1

= 0 . Then the fomulas

) n-1 f(m,n) = (m-n m , g(m,n,k) = (~)f(k+l,k)f(m-k-l,n-k)

can be derived by s~p1e arguments (see Knuth (197}), p. 529). Also

let bn be the n\U'l1ber of hash sequences "1". an which cause To'·' .,Tn _l

to be occupied, and for which the "pass bit" B
j

is set to 1 for

() < j < n-1. Fl'an the relation

f(n+1,n) = 1: (~) f(k+l,k)b -k
o <k<n n

and Abel's binania1 fornrule., we deduce that b
n

= (n_1)n-1. Now the

value of (*) may be expressed as

(**)

because we obtain each sequence enumerated by a(M, nJ k, i) by plec ing

together, in (~) ways, s. sequence enumerated by b
j

and a sequence

enumerated by g(M-j+l,n-j,l) , where 1 ~ i ~ j and k = j+' • The

sum (**) CM be eve.luated as described in Knuth (1973), page 691, exercise 'i!l;

the result is

24

! (~ + 2 n(n-l) + 2. n(n-)'n-2) +) N M tl oJ •••

essent1a.l.ly an incomplete g8Dlll& f'Jnct1on. SUlllIling ror 0 ~ n < N , and

adding 1 for When Kl 1s inserted, y1el.ds the desired result

D..'_ _ 1 +! !:! + g (N-l) (N-2) +.3 (N-l) (N-2) (N-')
-N - 2 M 3 pf 1; i' + •••

25

AlJ)el1dix 2. Starting one place ahead.

heX)

Consider the case of linear probing in an ordered balh ta.ble, when

is uncorrel&ted with the magnitude ot X. Let P be the
r

probabillty that exactly I' probes a.re needed to find the (n+l) -st

largest key, for some fixed value of n. Then Pr is the probabil1ty

that the positions occupied by the n largest keys include

h-l,h-2, •.. ,h-r+l , but not positIon h-r, given any h; and Pr+l

1s the probability that h,h-l, ••. ,h-r+l (but not h-r) are included.

Hence Pr-Pr+l is the probability that h-l, ... ,h-rf-l are occupied,

but neither h nor h-r, for any given h. It follows that the

expected number of probes needed. to locate the (n+l) -st l&rgest key K,

if' we begin searching at location h(K)-l instead ot heX) , is

E (r-l) P + I: (r+!) (P -Pr+l)
r >2 r r >1 r

This always exceeds 1: r P r ' which 1s the correspond.ins average if we

begin searching at h(K) •

Essentially the same &rgum.ent appl1es to uniform bashing. So we may

conclude that it is not a good idea to start probing at location h(K)-i(K).

However, the situation is considerably different When b(K) 18

correlated with K, so that h(K) ~ h(K') wbenever K < K' , since

then Th_
1

is almost always less than T
h

• In order to anal¥ze this

dtuation, let us look first at the case that j never goes from 0

to M-l during a euccesatul search. (In otber words, the "pass bIt"

Bo is O.) Then the nonzero T j t 8 are sorted; bence if ve start a

search at b(K)-l, we wIll 108e only one probe when K is in its

"home posit1cm" h(K) wh11e we save one probe lIhenever K is not. It

26

follows that the one-ahead. method is favorable, for successf'ul searching,

whenever the nunber of k.eys in hane :position is less than ~ N

An :l.3sumption which great~ sirnlll1f1es the ana.l¥sis when BO f 0

is to restore cyclic syrlllletry, by assuming that keys which passed from

position 0 to position M-l behave subsequentJ¥ as if they are larger

than keys whicb haven't. Under this assumption we shall prove below

that the average number of keys in home position is exactly

For HIM'" ex as M - "" , this number is approximateJ¥

ex
(l~) e -1 N

ex

curiously as N ... M it drops to approxims.teJ.y e.

Without the above SynIIletry asslDDption, the number of keys in home

position might be drastically different. For example, when M '" 10 and

N : 8 , the hash sequence 9 8 1 6 5 1 1 1 leaves only one element

in home position und.er cyclic symmetry, but there Will be siX keys in

home position in the true ordered hash table. However, the average

effect of this correction is bounded by the length of search AN for

the smallest element, and for NIM = ex < 1 the correction is asymptotically

negligible. Similarly we may ignore the taet that the search for a key in

hane position TO might be adversely affected by the presence of larger

keys in T
M

_
l

, T
M

_2 ' etc.

To prove the formula for keys in bane position under cycllc symmetry,

we can observe that the number of hash sequences 8 1 , •. ~ which leave

an element in hane position M-l is exact~

f(MH,N) - f(M,S} ,

in the notation of Appendix 1. For if we add the f(M,N) hash sequences

which leave T
M

_
l

empty, we obtain all the f(M+l,N) hash sequences

which would leave TM empty in a linearly-probed hash table of size MH

Therefot'e the average total nwnber or elements in hane position, under

cyclic SYJIIIletry, 1s

M(f(Mt-l,N) - f(N,N») / Jl

The fonnula for f, given in Appendix l, canpletes the proof.

It is interesting to study the cyClically syYlllletric algorithm

f'urther, to find the average number of element.s dJspl.aced exactly d

locations tram their hane position when h(K) correlates nth K.

Let h(M,n,k) be the number of hash sequences a l •·· an for which < k

elements pass fran position 0 to M-l WIlen tl.ey are inserted. Then,

by consid~ring the number of such sequences containing exactly j zeroes,

we obtain the recurrence

h(m,n,k) = ~ h(m-l,n-j,kH-j)
j

ror all m,n,k ~ 0 Furthermore we have the initial conditions

h(m,n,O) '" f(IItH,n) '" (mH-n) (m+l)n-l ,

fran which it is possible to derive the general formula

h(m,n, k) = (m+l.+k-n) ~ (n)(mtk+l._r)n-l-r (r-k-l.) r
o <r <k r

for all. m,n,k ~ O. (Abel's bin~ia1 identity shows that this sum

equals mn whenever k ~ n .)

The hash sequence a1 ... ~ produces a key with hene address 0

and displacement d if and only if it is a sequence with ~ d keys

~ssing f'rom 0 to M-l but < d passing fran 1 to O. The number

28

ot' such haG~1 GequenceG, whe>n u' 0 , 1::

because h(M,N,d) is the number of bash sequences with ~ d keys

passing I"rorn 1 to 0, while h(M,N,d-l) 1s the munber with < d

passing from 0 to M-l and (consequent4') < d f'ran 1 to O. It

follows that the average total number of keys with displacement d > 0

M(h(M,N,d) - h(M,N,d-l» / JI

It wruld be 1nteresti.l'lg to ob-tain asymptotic data about this

rrobability distribution. When M.: N , the same fonnulas arise in

connection with the classical Kolmogorov-Smirnov tests for ra."ldom numbers:

the quantity h(n,n,k-l)/nn is the probability that the so-called

statistic }~ is ~ k/fn. j,ccordlng to a theorem of N. V. ,lmirnov in

lim ben,n, sin)
n n -• .., n

2
2

- s I-e

29

Apl)endilC 5. Opt.imum bidirectional linenr probing.

Given n keys IS.. < ... < Y'N and cor:respmding hash addressee

(I ::; h(Kl) $... S h(~) < M , we wish to place them into table positions

~othat K
j

appears in TF(j) for l~j $N, where p(l) < ... <pfr;)

Writing h
j

-= h(K
j

) , we wish to find a placeIIlent Yhich is optimum, j n

the sense that the sum

is minimized. We shall call this SUI'll the "cost" of the plac ement . For

convenience in expoSition, we shall allow the positions p(j) to be

negative or greater than M I although the proofs could eas1~ be extended

to characterize the optiJn\Jlll arrangements sub.1ect to p(l) > x and

p(N) :5 y , for any desired bounds x 5 0 and y ~ M-l. Algorithm X

req'.1ires a :placement such that all poSitions between h
j

and p(j) are

occupied, for each j ; however, we may ignore this Coodition, because

all optimum placements autanat1cally satisty it.

Given any placement p(l) < ... < pCB) I we shall say that a. block

(a,b 1 is a set of consecuti'fe posItions which are occupied by Ka

through lb (Le., p(j+1) = p(j)+l for a ~ j < b). An up-block is

a. block followed by an enpty poS1tic~1' which WOIlld lea.d to less cost if

it were shifted one place higher; in other words, it i8 a block (a,b]

such that the shifted ph.cement p' has leBa cost, where

{

P(J)+l I

p'{j) =
p(j) I

if aSj~b

otherwise.

By tht: definition of cost, we find that [a, b] is an up-block if and

only if

(a) dLlh.!I' b

(b) !.lte number of ,j in Lhe ran,:e a:5;j < b , for which

h
j

> p(j) ,

cxceed~ the number for which hj:S p(j) •

Thus it is easy to test a given placement for the presence of up-blocy..s,

A down-bloCk i~ defined ~imi1arly.

An opt:imum placement will, oi' course, contain neither up-blocks n0r

down-blockc. ":::onver::oely, this c?ndition of' local optimality is su~'fi~r.~ni

for dob:;d opti.mality:

'r'll(~() I" 'III. ---
p(J) < ... '~p(H) is optiIl!UJn if cu1d DUN if it contain:: no UI,-blt)(~y,~

and no down-blocLs.

Proof. Let p be an arbitrary placement; we want to prov-e that p

either contains an up-l1l.)('1~, 01' a down-block, or is optimUJn. r.eL p'

be an optimt.U'l1 placement. Ie p(j) = p'(j) for &11 j, we are dot,e.

otherwise £;upposc that p(jo) f p' (jo) ; by syrunetry we may n!J2ume that

(.).... t (i ') P·J C) . P ", .

It -vlould b~ nice if we em,lld prove t.haL p(;1() is part of an

tha.t the nri~unent cannuL be quite :.:.) triJiul:

k 1 ? , It 5 7 ~

h 4 4 4 4 4 6 " (, ,
J:

p(l'.) ,1 1 C) h (; 7 :3

1" (k) 2 "). 'j , . 7 8 ')

51

If JO = 6 , we have p(Jo) < pt(jo) ,but p(Jo) is actua~ part of

a down-b~ock.

We can circumvent such difficulties by arguing as folJ.ows. Let at

be min1Jllal se that [at ,jol 1s a b~ock in placement p' . Then let b

be maximal flO that [a t , b] is a block in placement p

be minimal so that [a,b] is a block in pacement p'

Then let a

(In the above

example, when JO = 6 , we will have at = 1 and b = 5 and a = 1 .)

In general we will always have p(a t } < pt(a t) , p(b) < p'(b) , and

[a,b] will always be a block in both placements; thus, p'(j) -p(j)

has a constant value t > 1 for a ~ j ~ b. FUrthermore, position

p(b)+l 15 empty in pacement p, while p' (a) -1 is empty in

plaCEment pt •

Let d+ be the number of dispacements h j -p(J) in block [n,b]

that are positi~e for placem~~t p; also let d be the number of

negative displacBllents in the block, and let ~ be the number of

displacements which equal k. Define d~, d t , and dk similarly

for placement pt . It follows that ~ = dk-t for all k.

Now [a, b] is an up-bl.ock for p if and only if <\ > do + d _ '

and it is a down-block for p' if and only if d~ > dO +d~ . OUr

proof w~d be ccmplete i£ [a,b 1 were an up-block for p, hence we

may a.ssume that

The optimality of' p' implies that

d' < d ' +d'
- - 0 +

Now the latter inequal1 ty is equi valent to

hence we have

ThiG can be true only if d+ = do + d_ and d~ = db + d~. Ii' we shift.

b~ock [a, b) one position down fran where it was in pi , we obtain a

new placartent pI! of cost equal ~o p' , hence p" is optimum.

Furthermore p" it: closer to the given lllacement, in an obvi-:>us sense,

SQ the proof will event~ terminate.

It ic intel'esting to note that the above proof does not use the

hypothesis h l :5 ••• :5 ~ ; it charf'.cterizes the opt:imum placements for

arbitrary (even non-integral) h, .
J

It' N:: 2 ,with hI = 100 and

h..., = 1 , there are actually one hundred optimwn placements, n8ll1ely
Co

Pk(j) ". k+.i for -1.::: k :5 99· The additional hypothesis hI S ••. S l~

leads to e. sl1ghtly strooger theorem, showing that the optimum placements

are more constrained: When h j '::: h j +1 ' we have h,j - p(j) .::: h j +l - p(j)

h
j
+1 - p(j+l) + 1 ~ for j and j+l in the same block. The above proof

can now be strengthened to show that d
1

> 0 (e.nd hence tc 1) whenever

p haf: 110 up-blockc. Thus, two optiJllUJll pl.e.cements p and pI must

hn'lc jp(.j) -p' (j) I <" 1 for all ,i, whenever the h
j

:form a. nondecrea.Ginp;

sP.quence.

Brent, Richn.rd p. (1.973). "Reducing the retrieval time at' ~~c.o.ttCl'

storace techniques," Communica.tions of the ACM, Vol. 16, No.2,

February l<Jl;.

Knuth, Donald E. (1969).

Computer Programming,

Knuth, Donald E. (1973).

Sem.inumericaJ. Algorithms; The Art of

Vol. 2, Addison-Wesley Publishing Company.

Sorting and Searching; The Art of Computer

FroBramming, Vol. 3, Addison-wesley PI1bl.1shtng Canpany.

)4

