- Best
Available
Copy

AD-786 721

COPILOT A MULTIPLE PROCESS APPROACH
TO INTERACTIVE PROGRAMMING SYSTEMS

Daniel Carl Swinehart

Stanford University

Prepared for:

Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

e

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMGC AIM-230 :

STAN-CS-74 - 412

COPILOT A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

BY
DANIEL CARL SWINEHART

AD786721

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORCER NO. 457

JULY 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

5 ST,
@0 JUN;, X MION ST i mee
VR ———— N STATART A
g&/ 2L APPfovod fo i ———
\ T pulb-
dal -p o i uge;
g ‘,fi"" w L] UI.I.I.Lm"”
.:I o HI - .‘I | =4 | ——-—q_____________‘_--'-
A i o
.':';I_ . N .} . .‘_:..
%‘.. ?" . IA)-:
P AT T

“TNATIONAL TECHNICA
| INFORMATION SERVICE zig
U S Department of Commerce
Springheld VA 22151

o
i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

%
3,

REPCRT DOCUMENTATION PAGE

READ INSTRUCTIONS

7. REPORT NUMBER _
STAN=-CS=T4=L412

2. GC /T ACCESSION NO.

BEFORE COMPLETING FORM
3. RECIPIENT'S GATALOG NUMBER

4. TITLE (and Subtitle)
COPILOT: A MULTIPLE PROCESS APPROACH IO
INTERACTIVE PROGRAMMING SYSTHMS

5. TYPE OF REPORT & PERIOD CCVERED

technical, July 1974

6. PERFORMING ORG. REPORT NUMEER

STAN-T5-74-412

7. AUTHOR(S)

Daniel ¢, Swinehart

3. CONTRACT OR GRANT NUMBER(s)

5D=183

9. PERFORMING ORGANIZAT.ON NAME AND ADDRESS
Stanford Jniversity
Computer Science Dept.
Stanford, California 94305

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA ORDER HO. 457

11. CONTROLLING OFFICE NAME AND ADDRESS
ARPA/IPT, Attn: Stephen D. Crocker
1400 Wilson Blvd., Arlington, Va. 22209

12. REPORT DATE

July 197k

13. NUMBER OF PAGCS

214

8. MONITORING AGENCY NAME & ADDRESS(If difterent from Controlling Office)
ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanford University
Stanford, Ca. 94305

15. SECURITY CL ASS. fof this report)

CN DOWNGRADING

6. DISTRIBUTION STATEMENT (of this Report)

releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the absatrat sntered in Block 20, if different from Report 1
i
S - R e e
8 SuPPBLEMENT ARY NOTES !
S S S R R S e : i
19 KEy wORDS (Continue on rvorse side il necessary and identio lock numYer) t
!
'
1
!
/
v
30 ABETRACT /Continun an roverse side !f necessary and identify by block o)
An cxperimental interactive tem, COPILOT, !
- ' . - }
vehicle for tecting and describing method: i i
. * i
facilities to an interactive lanjuage enviromm . |
COPTILOT allows the uger Lo ¢ te, modi Sy p
programs written in an Algol-] ike lancuage, A) =
Althoupgh COPILOT is c r=hased, y | {
be applied to an inter them,
ntral to the dealgn is the uge of CRT displa 5
s ; A
DD(""_’ 1473 EDITION OF 1 NOY 65 16 OBSOLE T ¢
. z e
i AR AT PAGE Wher Dara Entersd

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1074 '
MEMO AIM.220 :

COMPUTER SCIENCE DEPARTMENT REPORT
STAN-CS-74-412

COPILOT: A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

e e M v TR .

by
Daniel Carl Swinehart

e

ABSTRACT: An expenimental interactive system, CGPILOT, 1s used as the conciete
vehicle for testing and describing methods for adding multiple processing facihities to an
mnteractive language enviror.ment.

COPILOT allows the user to create, modify, nvestigate, and control programs written 1
an Algnl-like language, augmented for multiple processing. Although COPILOT i<
compiler-based, many of our solutions could also be applied to an terpretive system.

Central to the design 1s the use of CRT displays to present progranis, program data, anl 1
system status. T his continnous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to 1w
affected by his commands.

COPILOT uses the muluple processing facihtes ta ats advantage to achieve a "ne.- 1
preemptive” kind of interactive control. The nser's terminal 1s continuously available 1oy
tomnands of any kind: program editimg, varnible anquuny, progiam contiol, o,
melependent of the execution state of the pocesses he as controlling. No jrrocess .y
mmilarerally gam posiessian of the user's mpnt; the user retans control at all times

-

—

The emphasis thronghout 15 on improving the characteristics of the interface between the
user and the system.

S

Thus 1esearch was supported in part by the Advanced Research Projects Agency of the Office
of Defense under Contract No. $D-183.

The views and conclusions in this document are those of the author and should not 1w
mterpreted as necessarily representing the official pohares, either expressed or imphed, of the

Advanced Research Projects Agency or the US. Government.

Reproduced in the USA. Available from the National Techmical Information Service,

Springfield, Virgna 22151,
Reproduced from
best available copy.

\§ i

ACKNOWLEDGMENTS

I would like to express special appreciation to my dissertation adviser, Professor Jerry
Feldman, for his guidance, and for his unfailing confidence in me, even when my own

was waning. | am indebted to Dr. Jim Mitchell, who offrred immeasurable assistance

with the technical problems, through many conversations and several thorough
readings. Professor Robert Floyd contributed helpful, detailed suggestions for

improving the style and clarity of this work, as well as several key ideas.

1 would like particularly to thank these colleagues who read the driufts, even though
they didn't have to: Alan Kay, Jim Low, Andy Moorer, Hanan Sanet, Dave Smith,
Bot Sproull, Larry Tesler, and Russell Taylor.

The publication of this document would not have been possible without the support of
the Stanford Artificial Intelligence Laboratory; nor could I have done without the aid
of Larry Tesler, who provided the publication system, and Brian Harvey, who helped

me make it work.

My deepest gratitude is reserved for my wife, Ann, who always understood why I was

gone, and who will have to put up with me now that I am back.

ii

TABLE OF CONTENTS

chapter

I INTRODUCTION

LA THE PROBLEM

I.LB COPILOT

I.C A BRIEF OUTLINE

HUMAN INTERACTIVE CHARACTERISTICS
2.A THE BEHAVIOR MATCH
2.B SCOPE OF APPLICATION

2.C SPECIFIC ATTRIBUTES
Multiple Activities
Single Language
Non-Preé¢mption
Response Time
Minimal (output) Modes
Maximum (input) Context
Access to Information

Non-symbolic operations

2.0 THE BEHAVIOR MATCH REVISITED

3 ASURVEY OF REPRESENTATIVE IHTERACTIVE PROGRAMMING SYSTEMS

3A BATCH COMPUTING SYSTEMS 16

3.B EARLY INTERACTIVE SYSTEMS (FSA/IPS) 17
Attribute Analysis 20
Representative Systems 21

3.C EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) 21
Attribute Analysis 23
Representative Systems 23

3D REDUCED MODE SYSTEMS (FSA/IPS/RED) 23
Attribute Analysis 2
Representative Systems 26

3. E NESTED USER SYSTEMS (UPDA/IPS) 27
Attribute Analysis 30
Representative Systems 30

3F ADVANCED IPS SYSTEMS 31
BBN LISP 3
SLICE 32
ECL 33
FLEX 33
FLEX Attribute Analysis 34

3.G ATTRIBUTE SUMMARY 16

4 DESIGN OF COPILOT

4.A ACHIEVING THE BEHAVIOR MATCH 37
Use of Multiple Processes 3%
Use of Displays a8
Single Language 40

Abbreviation 40

4.B ADDITIONAL DESIGN DECISIONS
Compiler-Oriented 42
Static Block Structure 43
Emphasis on Large Systems 44

No Automatic Program Composition 45

4.C AN OVERVIEW OF THE COPILOT SYSTEM 45
The Environment 46
Basic Dialogue 51
A glimpse of Non-preémption 57

4D ATTRIBUTE ANALYSIS OF COPILOT 65

5 THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION

| , 5A BALIC SYSTEM STRUCTURE TERMINOLOGY 67
Screens 68

Regions 68

Scenes 69

Scene Types 69

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 70

Informatton Structure Models 70

The Contour Model 70

The COPILOT Context Scenes 73

The Snapshot Requirement 73

COPILOT Context Scene Types 73

5C PROGRAM SCENES — THE PROGRAM COMPONENT

The MISLE Language

The Basic Featur<s of MISLE
Semantics of Extensions
Processes

Special Features

Program Scene Organization

The Instruction Point Portion of the Control Component

D DATA SCENES — THE STATIC DATA COMPONENT

Data Language Syntax

Semantics, Pragmatics

Data Scene Organization

The Data Language as an Input Facility

The Environment Point Portion of the Control Component

5E DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

T he Context Point

Adequacy of Scenes as External Information Structures

5F STAT SCENE — PROCESS STATUS

5G USER SCENES

5H REGIONS

Regions for Data Scenes — Special Problems and Provisions

6 THE CONTROL ALGORITHM

6.A SYSTEM STRUCTURE

The UCP — User Control Process

Crucial Primitives

vii

74
74
75
77
717
79
80
83

87

88

88

89

91

al
92

8 8 ¥

6.B THE USER LOOP
Algorithm A — Basic
Algorithm B — the Expand Routine
Algorithm C — Using the UCP
Algorithm D — Selective Interpretation

6.C THE POST PROCESS

Display of Users’ Scenes

7 COPILOT TERMINAL PRIMITIVES

7.A USER-ACCESSIBLE STRUCTURES

Access Primitives

7B GLOBAL STRUCTURE VARIABLES

7.C THE COPILOT TERMINAL PRIMITIVES

Notation

7.0 SEMANTICS OF SPECIAL STATEMENTS
Variable Query (Data Display)
Breakpoints

Temporary Statements

7E CONCLUSIONS

8 IMPLEMENTATION CONSIDERATIONS

8A TIERS
Tier Equivalence
Inter-Tier Connections
Tier Fidelity

Tiers 1n other Systems

8.B SCENE-TIER RELATIONSHIP

Permanent Scene Representation

8.C COPILOT TIERS
Text Tier
Token Tier
Tree Tier
The Symbol Table
Other Trees
Code Tier

Synchrofization

8D SELECTIVE EFFICIENCY
Space Efficiency .

8.E PARSING AND COMPILING
Parsing Methods
Detection of Increments
Timing of Parse Events
Process Structure
The Parse Process
Compiling: When and How
Mocifying Active Code

Compiling Temporary Statements

9 SHORT SUBJECTS

9.A ADDITIONAL COPILOT SUBJECTS

User Programs in the System Environment— Assistant Procedures

Display of (unnamtd) Expressions

Operations on the UCP Scene

151
152

156
156
157
159
160
161
162
163
164

165
165
166
167

9.B PROBLEMS
A UCP Scene Problem
Type Ahead Problems
Data Scene Flickering
Data Monitoring

Restoration of Active Context

9.C EXTENSIONS
Environment Modification by DYNA Scene Editing
Scene Branching
Modifying the User Loop
Display of Structured Data
' Error Messages
Text Scene Monitoring
Program Communication
A Final Modification to the User Loop

9D SUMMARY

APPENDIX A SYNTAX CONVENTIOMS

APPENDIX B ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE

BIBLIOGRAPHY

169
169
169
170
171
172

173
173
174
178
178
181
181
183
184

186

187

189

194

3

ey |

gressy gessy geeey

Rapioe |

2]

Toamuy

w4y

=

By

FIGURES

figure page

2-1 Thoughts to Action

31 FSA/IS Behavior of DEC TOPS-10 Executive
3.2 FSA/IPS Behavior of BASIC Terminal Interface
33 FSA/IPS/RED Behavior of JOSS Terminal Interface
3.4 DPDA/IPS Behavior of LCC Terminal Interface
4-1 Typical COPILOT Scenes and Regions (screen I)
4-2 Typical COPILOT Scenes and Regions (screen 2)
4-3 The Stanford Al Project Keyboard

4-4 Simple Editing and Execution Control (part 1)
4.5 Simple Editing and Execution Control (part 2)
4-6 Controt of Muluple Processes (part 1)

4-7 Control of Multiple Processes (part 2)

4-8 Control of Multiple Processes (part 3)

4-9 Non-Preémptive Operation {part 1)

4-10 Non-Preémpiive QOperation (part 2)

4-11 Non-Preémptive Operation (part 3)

5-1 The Contour Model Representation for an Algorithm
5.2 PROG Scene Linkage

6-1 Global COPILOT Structure

8-1 (Inadequate) View of Scene/Tier Structures

8.2 Interconnected COPILOT Scenes

8-3 Overall View of COPILOT Tier Structures (part I)

8-4 Overall View of COPILOT Tier Structures (part 2)

8-5 COPILOT Program Text and Token Tiers

8-6 COPILOT Program Tree Tier

8-7 COPILOT Symbol Table Organization

8-8 COPILOT Program and Data Code T'ers

8-9 Selective Connectivity

8-10 Proposed Memory Organization for COPILOT Implemented in MULTICS
8-11 Proposed Memory Organization for COPILO™ Impiemented 1n TENEX
8-12 Additional Token Tier Structure to Record Source Changes

Xi

4

User's View of Scene Branching

Efficient Scene Branch Implementation (Token, Tree)
Efficient Scene Branch Implementation (Code)
Possible Scene for Displaying Array Sections

Xii

TABLES

i table page

i.

§ 31 Behavior Match Attribute Summary %6
4.1 Commands Used in Chapter 4 Examples 53
5-1 Display Terminology 68
5-2 COPILOT Process Coutrol Primitives 78
5-3 Copi'ot Process Execution States 90
6-1 Shortcomings of User Loop Algorithm A 99
7-1 Structure Access (conversion) Priinitives 107
7-2 Global IPS Structure Variables 108
7-3 COPILOT Command Notation Conventions 110

|
:

Xiii

i
i
I
i
i
I
I
i
I
1
I
i
f
|
1
I
i
1
=

#
-

ABSTRACT

The addition of multiple processing facilities to a language used in an interactive computing
environment requires new techniques. This dissertation presents one approach, emphasizing

the characteristics of the interface betwse~, the user and the system.

We have designed an experimental interactive programming system, COPILOT, as the
concrete vehicle for testing and describing our methods. COPILOT allows the user to create,
modify, investigate, and control programs written in an Algol-like language, which has beei.
augmented with facilities for multiple processing. Although COPILOT is compiler-based,

many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. This continuous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to be

affected by his commands.

COPILOT uses the multiple processing facilities to its advantage to achieve a kind of
interactive control which we have termed "non-preémptive”. The user’s terminal is
continuously available for commands of any kind: program editing, variable inquiry,
program control, etc, independent of the execution state of the processes he is controlling.
No process may unilaterally gain possession of the user’s input; the user retains control at all

times.

Commands in COPILOT are expressed as statements in the programming language. This
single language policy adds consistency to the system, and permits the user to construct
procedures for the execution of repetitive or complex command sequences. An abbreviation

facility is provided for the most common terminal operations, for convenience and speed.

We have attempted in this thesis to extend the facilities of interactive programming systems
in response to developments in language design and information display technology. The
resultant system provides an interface which, we think, is better matched to the interactive

needs of its user than are its predecessors.

Xiv

Baog oo

bl b’ P Skt

4 GEBR GEB o 0N O U S b i N e W

CHAPTER |
INTRODUCTION

Interactive, or conversational, computing owes its existence to the development of
multiprogramming, or multiple processing, facilities. The scaicity and expense of
computing equipment prevented direct, convenient user interaction with the programs he
wrote until a way was found for several people io share the resources of a computer system

simultaneously.

A process, as we will use it, is "an activity comprised of a time-ordered sequence of actions”
[56). The behavior of a process does not deperd on the activity of other processes— except,
perhaps, for the time and other resources it requires to execute— unless such interaction is
intended. We may therciore treat a process as if it had sole use of its own processor
(computer or other active agent). Processes may communicate with each other, through

messages or shared data, or they may operate independently.

This multiple process activity can be simulated by a single processor, under control of the
appropriate operating system. In such a multiprogramming system, use of the processor
(and other resources) is allocated among the competing processes, providing for each a virtual
processor somewhat slower than the real one. A time sharing system is a multiprogramming
system to which terminal devices (eg, teletypes or display terminals) have been connected,

allowing users to communicate directly with active processes within the system.

Joss [7), Basic [29), LCC [45), APL [26), and BBN-Lisp (53] are examples of
language systems which are designed to operate in a time shai2d environment: they are all
Interactive Programming Systems (IPSs). (x) They all allow a user to create a program "on
line", to execute it, examine its state, and modify its definition (to "debug” it); and to supply it
with requested data. In the current versions of these systems, the system algorithms and data,

along with those created by the user, form a single process within the operating system.

......................................

(%) We will examine these and other notable Interactive Programming Systems in Chapter 3.
1

TR

ILA. THE PROBLEM

A time sharing system can use process structures to provide a totally independent operating
environment for each of its users. However, when processes are allowed to communicate and
to codperate with each other, they can become a useful facility for the performance of a
single project. The Simula 67 document [14] contains several simple examples of
cotperating processes. More recently, other operating systems and language systems have

begun providing their users direct access to multiple processing facilities.

Inherent 1n an Interactive Programming Systen, design 1s a specification of the role the user
plays in its operation: the appearance of the interiuce between the user and the system. The
more sophisticated =7 the IPSs mentioned above (those which impiement the more powerful
and complex langua _es) define a user role which cannot easily be extended to handle the
multple simultaneous control and data environments of a language system which supports

multiple processes. We will present arguments to support this contention.

In this dissertation we will address the problem of building Interactive Programming Systems
which can contend with multiple procesting environments. Instead of treating this endeavor
as a burden, we will look for ways to use these facilities to improve the performance of the

system, and of the user.

1.B. COPILOT

The bulk of this thesis 1s a description of an experimental IPS, COPILOT, which we have

designed as theXoncrete vehicle for testing and describing our methods. COPILOT allows

the user to create nodify, investigate, and control programs written in an Algol-like language,

which has been augment.d with facilities for muluple processing. Although COPILOT s

compiler-based, many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. T his continuous display of information with some associated context helps the
user to retain comprehension of complex program environments, and to indicate the

environments to be affected by his commands.

5

[

i
i
i
I
I
I
[
i
v

COPILOT uses the multiple processing facilities to its advantage, to achieve a kind of
irteractive control which we call "non-preémptive”. The user’s terminal Is continuously
available for cormmands of any kind: program editing, variable inquiry, program control, etc.,
independent of the execution state of the processes he is controlling. No process may

unilaterally gain possession of the user's input; the user retains control at all times.

Commands in COPILOT are expressed as MISLE language statements. This single
language policy adds consistency to the system, and permits the user to construct procedures
for the execution of repetitive o1 complex commard sequences. A top-leve. abbreviation

facility is provided for the most common terminal operations.

The role of the COPILOT user is that of a global observer and controller, with equal access
to all his program and data environments, sub ject only to protection restrictions imposed by
the operating system. We will demonstrate that this view is substantially different from the

more local focus provided by the typicai single process IPS.

1.C. A BRIEF OUTLINE

The early chapters of this dissertation establiz’ a basis for the study, defining our goals
based on observed needs. A survey of existing IPSs follows, provided as a basis for
comparison, and to indicate the debt we owe to our predecessors.

Chapter 4 is an overview of the COPILO™ design. After describing the basic facilities of
the system, emphasizing the achievement ci the stated goals, we present a detailed example of
system operation. The reader interested in system design may choose to read this chapter

first; the references to earlier chapters should not interfere with this procedure.

Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special
attention to the facilities for multiple processing, and to our reliance on the use of display

devices to enhance these facilities.

We have limited implementation considerations to a brief chapter which concentrates on the
structures we have created for representing programs at different levels, or “Tiers", and the

means for maintaining the necessary relationships betweea Tiers.

e BT

The final chapter is a compendium of miscellaneous topics, unsolved problems, and =

-~

suggestions for further research. |
.

9
-—-1

L -
sscme b

[25

o gy

§roemonsy

tmd

o1 e

-
[a] [4 []
[V} [

2
-

CHAPTER 2
HUMAN INTERACTIVE CHARACTERISTICS

2.A. THE BEHAVIOR MATCH

An Interactive computer System (IS) is the hardware and software which allows composition,
testing, debugging, and operation of computer programs, enhancing the “ability of the user to

initiate, interrupt, and generally interject himself into the control of the system” [44). Ir

practice, an 1S consists of a user con:ole (keyboard and printer), and the set of program and
interactive features which are available to it, operating on a ciigital computer, which is
usually time-shared. An Interactive Programming System (IPS) is an IS incorporating a

single programming language for all programming and prograra control.

Most recent emphases in IPS design (t) have been on improved laaguage design, improved
debugging facilities, and on the development of “single language” systems, which extend the
programming language to include the interactive facilities. Mitchell's thesis [44), itself a
significant contribution to Interactive Programming Systems, contains as well a good survey
of the leading examples of cuirent systems. His emphasis is is on language design and on
implementation considerations (flexibility, efficiency, and portability).

The emphasis of this disseitation 1s on the user-system interface. It is our desire to provide a
convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this
by providing a system whose behavior matches as closely as possible the relevant
characteristics of the people who use it. Our thesis is that such a system can measurably

increase user performance.

There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the
"impedance match”. For maximum efficiency (minimum wasted energy), the impedance of an
output from one device must ciosely match the input impedance of any device to which it is
connected. If the impedance mismatch is too great, the connection will fajl to perform
successfully at all. We will call our IPS analogue a "Behavior Match" — a term which we

shall attempt to justify.

(1) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter
3.
5

To emphasize our conviction of the importance of this Behavior Match concept, and the

necessity for some terminology to express it, we offer these informal definitions and terms:

The Behavior of an entity is that set of processes which determine the manner in which

information can be presented to it, and 1s presented by it.

A Behavior Match has been achieved when the "behavior” of a system complements the

behavior of its user, optimizing his performance.

These definitions are clearly sub jective, containing as well enough undefined terms and vague

he e b e

semantics to preclude their use for any measurement purposes. Although we hope to clarify
these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis

for discussion.

S

The Behavior Match diverges from the impedance match example in that user and system

behavior neec not be identical, or even similar; they need only be “complementary.” However,

we shall show that the similarity 1s stronger than one might expect.

At the risk of overloading the "impedance match’ analogy, let us point out one additional
similarity: the impedance match between communicating devices need only exist at the
interface between them. It is possible to design circuits which isoiate the main body of a
device from its interface, allowing it to employ impedances (and other related characteristics)
which are internally convenient. Similarly, many of the internal details of an efficient,
powerful IPS must be hidden from the user, since their functions (eg. compilation, data
conversion) are not involved in the problem-solving efforts of the user, nor are their results

(binary machine instructions, etc.) likely to be meaning{ul to him.

2.B. SCOPE OF APPLICATION

The bulk of this dissertation is dedicated to the design of system interface characteristics
which will improve the interactive behavior match between system and user. Just as the
interface characteristics one chooses for an electronic device place certain constraints on the
internal device design, our IPS interface decisions will have an effect on all aspects of system

design and implementation. However, we should not let our human engineering decisions

P NN g o v e S Of

-

\ {?

unduly reduce our range of options in such fundamental areas as: the selection of a
programming language; the choice of cxecution methods (compiled or interpreted), whether
the system is intended for the creation of large, "production” programs, or for smaller,
"Instructional” ones, or whether it is intended chiefly for novice or expert users. We hope to
show that the approaches to IPS design which we advocate apply to systems which vary

widely In these parameters.

We will present in the course of the dissertation an IPS, COPILOT, as a concrete vehicle for
discussing methods for attaining 1 good Behavior Match. Because it 15 a concrete system,
COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we
have made the more difficult, perhaps less inherently flexible choice in nearly every case.
This is true in part because of the particular needs of the environment for which we have
designed the system, in part because of a desire to demonstrate the versatihty limits of our
methods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those

areas where choices can be made, and those which are heavily constrained by our solutions.

2.C. ¢PECIFIC ATTRIBUTES

We have chosen for study a set of human interactive attributes which, we believe, an IPS
should accommodate in order to achie /e a behavior match. This set of characterstics, which
follows, was derived in two ways: some are characteristics which we have observed, and
which influenced our design — a priori observations. The rest are, admittedly, a posteriori
observations, attributes we have noticed which are fortunate in light of what our methods

provide. This fact should not affect their validity.

We do not claim to have isolated all relevant interactive attributes. We have concentrated on
these behavioral aspects which relate to “process” and "information transfer”. Additionally,
these con jectures will have to stand as the opinions of the author— based on his observations
of the way he and others use interactive computer systems— used to justify and guide the
design of the COPILOT system'’s behavior.

2.Cl Multiple Activities

The activity of someone engaged in the solution of an intellectual problem can be model'ed

as a single processor executing a set of cotrdinated sequential processes (coroutines), in che

sense that:

1) He is likely to shift his attention rapidly between different “processes.” His reason for
doing this may be generated internally (eg. boredom, inspiration) or externally (the
phone rings; or perhaps the part hasn't come In yet).

2) He may retain encugh “state” informatton about an abandoned process to return to it
again in time, or he may abandon it entirely.

3) If the alternauve 1s excessive unproductive waiting, he will often turn his attention to
some unrelated sub ject (the processes need not all codperate), returning to the task at
hand when 1t 1s again possible.

4) He can carry some state information concerning a previous actuivity in.> the next, often
correlating the two 1n order to understand complex relations. After all, he s presumably
pursuing some overall goal.

5) Although we have not modelled his internal behavior as true parallel processes (we give
him credit for single-mindedness), he can make use of several concurrent external
operations (stove burners, machines, computer programs, or whatever), as long as they
do not all require constant monitoring.

6) He seldom operates very recursively, or even properly nests operations— the above
coroutine-like model ts a more accurate one than a simpler recursive model.

2.C2 Single Language

Symbolic communications between people (and between a person and his later self, for that
matter) are primarily conducted by means of natural language. The same language base is
used for all areas of endeavor, although specialized lexicons (seldom specialized grammars)

form dialects for specific topics. All necessary symbolic activities are possible in a natural

language.

For efficiency and brevity, people have added to their communication abilities in two ma jor

ways:

1) through formal languages (eg. mathematics) which, though not contained in the base
language, nonetheless have a (usually cumbersome) mapping into it.

= ==

Y -

2) through acronyms, abbreviations, and possibly non-grammatical collogquialisms, often

understood by only a small segment of thie population (“far out!™). These artifacts clearly
m2p (though not always precisely) into grammatical forms in the base language.

Providing good symbolic communication between the user and his system wii. be a major
goal of tlus work. We believe that an iPS with a single input language, encompassing all
system commands, can enhance this communicaiion. We share an emphasis on the

importance of the single language idea with most IPS designers.

2.C3 Non-Preémption

A request for one's services is not always granted instantly. In fact, it is sometimes not
granted at all. At any rate, having noticed such a request, one may respond to it
immediately, queue it temporarily until some other task is comp'ete, or ignore it entirely. He
is not automatically preémpted by a "service request”, he can continue what he is doing, or

go on to something else entirely, nor must he take care of things in a fixed order.

This non-preémptive pattern is often thwarted at the user terminal connected to a modern

IPS. Much of our attention will be devoted to correcting the situation.

2.C4 Respouse Time

In contrast, when one reques's a service, he would liie it to be handled at once. We would
like to distinguish between the time required to complete a request, which we call completion
time, and a potentially different interval, which we call response time: the time delay, after
submission one request, ural that request 1s acknowledged, and another may be submitted.
If there 1s but one agent for execution of requests, these two quantities will probably be the
same. However, in an environment which supports multiple activities, successive requests
may call for the initiation of concurrent activities, or they may terminate previous ones. If
such a<tivities are possible, then, in order to make maximum use of the concurrent facilities,
the response time should be short, independent of the completion time. (In our experience,
this time should be short compared to the time required to make the request, and should
seldom exceed one or two seconds) Miller {4i) has studied computer system response,
determining empirically, for a variety of situations, what kinds of delays people will tolerate.

These times range from a second or two, in highly interactive situations, to fifteen seconds or

more for complex requests. Miller's report does not make our distinction between completion
time and response time. However, in most of the situations he cites in which people will

tolerate only short delays, it is rapid response which they seem to be seeking.

Simon, in [51), studied a related time interval, which he called the "minimum human
response time”. This is the smallest “time shce” which one can efficiently use to work on a
task, particularly in .i.e context of waiting for some possibly unrelated activity to complete.
In Simon's experience, this time is approximately ten minutes. We do not dispute it, kuat we
do believe that the "minimum human response time" could be reduced, if it were easizr to
establish the context necessary to switch to a new task. In a computing environment, this

requires a system which 1s both non-preémptive and responsive.

To summarize, people want to schedule requests for their services (output), but to obtain
rapid aitenticn to their own requests (input). This double standard is not always possible in

dealings with other people, but we can try to optimize it in an IPS.

2.C5 Minimal (output) Modes

This topic introduces another input/output double standard. People are capable of
understanding stimuli which are context-sensitive: whose meaning depends on the
environment, or context, in which they are presented. English itself is internally context-
sensitive, although normally only in a quite localized fashion- paragraphs can generally

stand alone.

In general, we think it is desirable to reduce the context-sensitivity of what one must say
(output) by reducing the number of "states”, or “modes’, which impose different
interpretations on his communications. The single-language criterion also aids us here: a
sentence, especially one intended to convey information unambiguously, should always "mean”
the same thing. This cannot be true if disjoint (or even worse, partially disjoint) languages
are provided for different purposes, since in the latter case a "mode” must be established to

determine which language to look for.

We do not mean to imply that the same results will obtain, no matter what the situation (or
state), when a yiven utterance is uttered, or when a given command is typed. There are

environmental conditions which influence the interpretation of communications. This context

1s usually implicit, however, and need not be included in the message.
10

|
|

We do not even intend that every statement be meaningful in every instance. Clearly, there
are sentences in nearly any language which are senseless, impossible, or merely silly under
some conditions. However, normally one can at least understand such a sentence, to the
extent that he can respond that it is senseless, silly, or impossible— and why. We would like

to preserve this behavior

We will, therefore, require of our non-preémptive. single language IPS, that it must allow a
user to express anything in that language, at any time— even if it is meaningless in context—

a system without excessive "modes”.

2.C6 Maximum (input) Context

While one prefers to supply as little explicit contextual information as possible when
conveying information (output), one absorbs information (input) most readily when the
environment in which it i1s presented is as completely described as possible. The more one
knows about a situation, the more capable he is of handling his part in it Our goal should
be to provide as rich a context as possible, without including irrelevant information which
could obscure understanding. Further, it 15 best if this information is continually present,

continually up to date.

When 1t is possible, we think that contextual information is best presented visually. This
sort of presentation can be made to satisfy the "continuously accurate” requirement, without
fliooding our sensory channeis— particularly because visual input also satisfies our non-
preémptive requirement— one need not look at everything all the ume, and in fact can select

what to look at, and when to look at it.

2.C7 Access to Information

This topic 15 closely related 1o the previous one, which requires that the available
information be presented as complotely and coherently as postible. Now we wish o require,
in addition, that as much information as possible be available (accessible). One is clearly
more able to deal with a situation or cbject when all its components are accessible (to see and,

hopefully, to change} than when he :nust treat it as a "black box" (or perhaps "gray box").

2.C8 Non-symbolic operations

Most of the topics we have discussed have dealt with symbolic terms: with language, its uses
and effects. But a remarkable number of things people do are not (at least at the conscious
"interface”) expressed symbolically at all; they are instead "manipulative” activities. We affect

things directly by moving them; we sense them directly by touch, sight or smell.

As an example, after one has become experienced at driving a car, he is seldom aware of
turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows
down- another example of levels of internal mapping which involve intermediartes at other
than conscious levels. Perhaps a better example is the playing of a musical instrument: one
does not (except when learning something difficult) think in terms of plucking strings,
pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic

phrases, of the desired pitches, amplitudes, durations, and tonal quality.

Exaniples of these operations for a computer terminal might be functions performed by a
single keystroke, perhaps qualified with “control key" modification, or by hght pens. function
kevboards, etc. The conscious mind 1s aware only of their effect. This feeling applies
especially to those operations which have an immediate and visible effect— for instance, the

movement of cursors or the deletion or movement of text on a display screen.

What we are advocating here is that the way in which such repetitive operations have to be
performed be made simple enough thit one thinks of them {(while doing them) only in terms
of their effect. In this way they tend to lose any symbolic meaning and to become practically

bodily extensions.

Having made the distinction betwzen symbolic and "manipulative” operations, we would like
to soften it somewhat. Although we do not normally do it, we can describe nearly any action
in words: there is a way to map a given action into an “equivalent” symbolic form. We will

find this duality very useful in the sequel.

12

i b meaeh S

W

9D. THE BEHAVIOR MATCH REVISITED

’«Wave attempted in the preceding section to indicate some characteristics of the IPS user
*_which the TPS must "complement” to achieve an acceptable "Behavior Match". Before we
proceed to an analysis of the success of previous systems in this regard, we should attempt to

clarify what we mean by "complementary” behavior (recall the definition of Behavior Match

in Section 2.A).

Whatever the means of communization, the user does not really "do” any of the things he
requests: the computer does them, under the control of the interface routines of the IPS.
Thus before he can communicate a message to his system, he must translate that (hought,
using his own internal model of this interface. into the series of symbols which will

accomplish the transmission.

This internal model must adequately represent the real thing, given the low tolerance of most

language systems for syntactic errors (}). In this sense the Behavior of model and system
must be quite similar; i.e., their Behavior must match precisely. What we wish to achieve, in

these terms, is a system which allows natural, intuitive, and convenient translation from the

original thought to the model.

P Gd B B i o

(1) Teitelman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the
necessity for such precision by detecting and correcting simple errors (mismatches). We have
not treated error detection, correction, or minimization in this treatise, although in Section
9.C5 we have attempted to indicate how our non-preémptive methods can be used to soften
the effect of errors.

13

HOLVW HOIAVHIE ¥04 LIN3ITVAIND3 38 1SN

NOILOV | 3OV4HILNI SINOYLS uu«uu_mmm_._wz_ L NOILOV mu._mmwuoma
[W31SA ViIN3IN
0381530 [~ "ggNywmoo | W3LSAS AN 40 1300W | G3¥IS30 | NMONMINN

£
2
Ll
L4
<
°
L
[
Ll
-
s
=
°
=
-
&
[4
-
=
2
-

W31SAS 3OV4H3ILNI NOS¥3d

CHAPTER 3
A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS

To the extent that designers of computer systems have considered behavior match issues, we
believe that the designs refiect the designers’ views of adequate user models: that the user
could think quite naturally in the terms necessary for modelling the system’s behavior. Just
as we have suggested above, for example, that a person “is" a pseudo-parallel processor, the
designer of one of the early systems described below might have said that a person “is" a
finite-state automaton. We see a remarkable progression in complexity from early systems to
today's IPS systems, reflecting perhaps an increased respect for the complexity of human
processes. (%) In the discussion that follows, we present several different 1S designs, each
based on a different interface behavior model. Following the description of each model is a

list of real systems which approximately fit into the category defined by the model.

3A. BATCH COMPUTING SYSTEMS

We mention these systems only for completeness. The meager control languages provided for
these systems are adequate to define the environment and resources necessary for a run, and

to specify the order of application of programs in a multi-step job To be sure, systems

exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit
by applying some of the lessons learned from IPS design to the batch regime. However, there
is not much to be learned about the problem at hand from analysis of batch systems.

We include in this category systems which use terminals for so-called remote job entry (R JE),

since they are not truly interactive systems.

(x) The structure of this section is largely the resull of a conversation with J. Mitchell.
16

4 G OB N SE n N ond e Oed e ded Nd W O e NS e 0E

3.B. EARLY INTERACTIVE SYSTEMS (FSA/IPS)

The terminal interface of some early time-shared computer systems (examples of which thrive
today) provide an excellent example of what we call the FSA/IS model. Here the system is
portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based
on current input and previous states. These states typically fall into a much smaller set of

classes (modes), as we shall explain.

(Based on the arguments 1n the introduction to this chapter, the implication of the FSA
design is that the user, also, is fundamentally content cast in the role of a very clever FSA.
He must maintain in his head a model of the current state, along with the meaning and
legality of the commands he might issue while in each state. Given this buman model, the
FSA/IS system provides an excellent behavior match. The same sort of argument can be

made for all of the systems which follow.)

This terminal interface model, though failing many of our behavior match requirements, has

performed admirably, especially in light of the accompanying software systems (compilers,
loaders, and the like), which are typically batch-oriented, and not suited for modification to
highly interactive situations. Elements of this design exist in nearly every subsequent

interactive system, though some of the shortcomings have been overcome.

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment
Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we
consider typical of the FSA/IS discipline.

{(7¥D H314¥) INNILNOD

{(3d¥3S3 AODN3IOH3INI) 1V

(S30ONENS H3SN AHMVYHLIBYY)

L1X3 TVWNHON

s
.«.r_. LY w
LNdNI 90ud @V SRR sy ¥
oa‘o. 50N8d M3SN s
N
a
= 2
_ <-9ne3aq (INWN) NNY &
. . — a
]
£
¥30vol e idiald, 2
il &
| w <
| avoT <
1 Y ¢}
NIDOT 3344 o
Ll NI =
HOLIO3 3 | HOl1103 tn.:_ S33N0 3
| HOLINOW :
i &
l1Q3 _ t
: | |
1 _ _
I ALIILN 304 |
| | _
= Ad0D
[| _
I | _
., S300WeNS, Q3NI430-¥3SN “ 300N ¥3SN _ Iaon tntzu:_ 300N 3344
|

I -

To the reader already familiar with this common- organization, the interpretation of this
diagram should be particularly straightforward. The user agproaches the terminal in Free
mode (both system and user, according to our assumptions!) He (and the system) enters the

basic System mode using a restricted, and unique, Login language inierchange, then proceeds

to work.

While in System, or Monitor mode, the user communicates with the system using a verb-
argument syntax (eg, "RUN X[20,35]" or "COMPILE PTRAN"), which is interpreted
directly by the operating system. If this syntax appears elsewhere in the system (in other
modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands,
rotably those requesting simple status information ("What time is it?") perform their
functions, then return immediately to Moniwor mode to await additional commands. The
more interesting commands, however, cause other programs to be mapped into main memory
and run, entering one of 1 multitude of so-called User states (in User mode), whose input
grammars depend entirely on the program implementations. From here on, the system makes
I ttle modal distinction. The user can, however, in his programs, define his own substates,

specifying differently at different times what constitutes acceptable communication.

Control passes from User mode back to Monitor mode either by program request (only
indirectly influenced by user input), or by use of the special interrupt character, CALL (or
control-C), whose function is always to stop operation of the User-mode prograrn and to

return to Monitor mode.

This (crucial) CALL feature falls short of providing the non-preémptive environment to
which we subscribe, but its existence leads us to the following interesting observation:
although the user of this system has no direct access to it, at some level of implementation— a
very low one, in this instance— a non-preémptive discipline is in effect. The system responds
in a simtlar way to each character as 1t is typed, echos it on the output device (printer or
Aisplay), analyzes it for special meaning (eg, CALL), then either arranges for the return to
System mode or dispatches the character to the process currently preémpting the terminal.
Thus, though control of it has not been granted directly to the user, the value of a non-

preémptive regime has long been implicitly recognized.

At this level, the non-preémptive discipline reduces simply to an interrupt-driven, multiple

process priority discipline. This example illuminates the intimate connection between non-

preémptive and multiple process organizations.
19

o oo ot o o

N R

In general, no simple way exists in these systems to suspend one action temporarily, in order

to perform some other (perhaps unrelated) action, then to return to the original task; mode

changes are usually destructive in that sense. More generally, little, if any, information about

previous states is retained by these systems — such memory must be provided by the user. 1

3.BI Attribute Analysis
Let us now analyze systems of this character with respect to our Behavior match attributes.
An attribute is classified as variable if it is typically absent, but could be included in a system

without altering that system’s basic category:

ik

1) Multiple activities: nonexistent or cumbersome to use.

L
b i

2) Non-preémption: poor. As we have seen, the entire design embraces the concept of
preémption of the terminal by processes implementing different modes. One must in
every instance type only what is expected at that point, or else a specific (e.g. exit or
substate-entering) or general (e.g. CALL) "escape” character to change modes.

.

3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are
long and sequential, often requiring manuzl intervention between steps to initiate the
next. No fruitful work can be done during, for example, the compile phase.

4) Mode reduction: antithetical. In such systems there is a mode for every purpose.
5) Single Language: not provided. There is generally a different language for each mode.

6) Accessibility: variable. In a computer system we desire accessibility to such things as: the
variables of the running environment (the data);, the statements or functions of the
language (the program), and, hopefully, the control structures of the system (the
interpreter).

e o o

The only global program and data variables in the TOPS-10 system are data and
program files on secondary storage. Any other data are defined and controlled by the
programs which run in User mode; the accessibility of these data is thus determined by
these programs, varying with each instance. These operating systems do not limit the
ability of their subsystems to provide good accessibility; most of the systems which we
will discuss were implemented using the facilities of general-purpose FSA/IPS systems.

A

it A}

20

7) Context: variable, typically poor. Later we shall assert that a system cannot supply the
continuous context information we advocate without display devices with rapid random-
access capabilities. There is in principle no reason that :ich contextual displays could
not be integrated into any IS. However economic considerations have legislated heavily
against their use. lronically, many batch systems have fairly good context displays for
their operators [25]

8) Non-symbolic features: variable. The manipulative operations we envision could be
provided in any IPS, regardless of category. We know of only scattered instances where
any have been provided.

3.B2 Representative Systems

The command languages of most general purpose time sharing systems fit this category. In
addition to the TOPS-10 system [10] used in this section, they include the pioneering
CTSS system at MIT [9), The Stanford Computation Center time-sharing facility (25],
as well as newer systems like TENEX [5), MULTICS [43) and ITS [17). The latter
three do possess facilities for controlling multiple processes, by explicit assignment of the user
terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS

systems.

aC. EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS)

This class of programming system was developed for use where the needs of the user
community did not warrant development of a general time-sharing system, or where the need
for simplicity and comprehensive diagnostic infurmation was paramount. Although, unlike
the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around
a single language), these systems are actually more restrictive in many ways.

The terminal state diagram for BASIC [22], which we ccnsider representative of this
system type, appears in Figure 3-2. Operation of the system alternates between the edit
phase, in which programs are created, modified, fetched and stored to secondary storage, and
the execution phase, in which the meaning of user inputs are defined by the user’s program.
The number of mode classes is not really reduced from our TOPS-10 example, but the
number of User mode states is sharply reduced, restricting the user to the single language.

21

(S300NENS ¥3ISN AMVHLIBNY)

€4
c

31nd3X3

Figure 3-2. FSA/IPS Behavior of BASIC Termminal Interface

—— e - B e

3.CI Attribute Analysis

FSA/IPS systems have about the same degree of success at meeting the behavior match

requirements that FSA/IS systems do. The one possible exception is the single language

criterion. BASIC does not even really qualify as a single language system, though, but is

simply a restricted (or dedicated) language system; there is no intersection between the syntax L

of the program editing commands and that of the statements which are edited.

3.C2 Representative Systems

BASIC and its derivatives are representative of this "compile and go” class.

3.D. REDUCED MODE SYSTEMS (FSA/IPS/RED)

These are the first truly interactive systems we have encountered. in these systems the user
can switch rapidly from program modification to partial program execution to variable value
query. They are also the first really single-language systems we have seen: statements which
implement user algorithms resemble in syntax those for modifying program text and for
controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases,
either type of statement is legal whether executed "directly” (typed in at the terminal,
interpreted and obeyed immediately), or "indirectly” (as part of some previously created

program).

Our archetypical system of the FSA/IPS/RED type is JOSS [7). Figure 3-3 is an
approximation to the console state transition diagram for JOSS. Chiefly due to the
implementation of all functions as part of a single language, the segmentation of programs in
that language into parts and subparts (steps) which can be executed separately, and the
implementation of an interpreter for the language which can to perform these functions
incrementally, the designers were able to reduce greatly the number of modes. In JOSS,
there is the one predominant Command mode, the nearly irrelevant Free mode, and the

mode entered to accept input to the user program, on program request.

A system of this sort could presumably support any programming language. However, most
do not feature any but the simplest name scopes (static or dynamic), since the command

routine operates only at the "top level” of the system, requiring suspension of user program

23

i
L
i
i
i
]
i
i
5
i
1
I
i
i
i
i
1
{
\

execution (and perhaps loss of local context) before control returns to it. JOSS, for instance,
has only a single naming level (all variables are global). Others allow simple local
parameters to procedures. In other systens, including some LISPs [49), it is possible to
inhibit loss of local context after an error, or after an otherwise interrupted computation.
Because the nested User structure to be exhibited in the next section does not exist in these
systems, full interactive control is usually not possible in these suspended environments;

typically, only variable query and "backtrace” operations are available.

NOIL3ITdNOD

ANNILNOD

(S3lvisans SRR
¥3SN ‘8yY)

1504 904d

1NdNI 9508d

J3X3 1u8vd

S.NINILVLS JOVNONY TVNHON

1100

i__g. ||!‘l.\.1\.\|\..l|

ces 110Q330e -

WA—313730

(HOLNI3X3)

Vv CELL]

3
R
ONYWNNOD u3 3344

Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface

3.D1 Attribute Analysis

1) Multiple activities: poor. The single program task may be interruptable, or even
continuable, but only trivial operations may be performed in the interim without
destroying the state of that task. Complete freedom does not necessarily exist to examine
all active data using terminal commands.

2) Non-preémption: not provided.

3) Response Time: fair. Unless the user’s program is running, preventing the system from
listening, commands are obeyed quickly (depending on system load, of course). Gaining
control can sometimes be a destructive process, however.

4) Mode-reduction: good. Unless the terminal has been preémpted for user input, nearly
any statement or command is legal whenever the system is willing to listen.

5) Single language: good. All but user-defined commands are in the same language.

6) Accessibility: moderately good. In some systems one can examine the state of any data
item, but only because the complexity of data declaration is sufficiently restricted. In
others, one is denied complete freedom to examine all active data from the terminal.

7) Context. variable. These systems do not present data continuously (do not support
displays), although they could. They therefore fall short of our context goals.

3.D2 Representative Systems

We have placed JOSS (and systems patterned after it: eg., AID [I1]), along with RUSH
(1), PL/ACME [63), QUICKTRAN ([13), and unaugmented (1) versions of some
LISPs (eg., [49)) in this category.

(1) LISP 1s seif-defining, allowing the user to write a command loop which, for the most part,
upgrades the system to the next ecategory.

26

3E. NESTED USER SYSTEMS (DPDA/IPS)

The systems we have seen so far have restricted the complexity of the programming
languages they could support. Major attributes of modern programring languages are the
naming and data allocation facilities which allow multiple recursive or parallel instances of
the data environments for procedures, and multiple use of names by scope-qualification.
Most of these facilities have been sacrificed in the IPSs we have described, because otherwise
they could not provide for the user convenient ways to “manipulate and roam around in the
information space which 1s of interest to him when it 1s of interest to him.” (3) In our terms,

they would provide inadequate accessibility.

The systems of the next category extend and modify the role of the user (or his
representative system interface, if you wish), greatly extending his ability to interact with

complex environments.

Our model system this time is LCC [45). In LCC the user is modelled as a recursively-
instantiable procedure “written” in the language supported by the IPS (see Figuie 3-4). The
system interface still interprei: input as program statements, generally executing them
consecutively, in FSA fashion. However, the means for accomplishing this are now more
explicit: an activation record for a PART'0 (or User) procedure exists on the stack, defining
the environment of the user. Each statement submitted from the terminal is treated as if it
were (had always been) the next statement 1n the User procedure. Such a system resembles at
the user interface (or models the user as) a finite state automator: with access to a push-down
stack for data and previcus state information. Such a device is known in automata theory as
a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type.
LCC is quite representative of the DPDA/IPS.

The differences between DPDA systems and other FSA systems are not striking at the “top
jevel"— while the keyboard input 1s driving the original outer-level User procedure instance.
However multiple instances of User procedure, at differen’ recursive levels, are permitted.
The running program may instantiate a User procedure cirectly, by a procedure call; or an
instance may be created synchronously (via a preset breakpoint), or asynchronously (eg., an

unexpected procedure call {47])) in response to a user-initiated “attention” signal. In any

......................................

(3) From (44]

i
i
§
|
i
I
i
I
I
I
I
1
1
[
i
i
b
i
b

case, only one User procedure may be active— responding to the keyboard— at any instant,
and then only when that User instance is the most recently entered procedure. This

automatically prevents any but the most deeply nested User procedure from being active.

Now it is possible to establish a precise interpretation for the meaning of names typed by the
user: they are interpreted in the environment of the User procedure in control, just as names
are interpreted 1n any other procedure. It is therefore possible to provide accessibility to
variables in any environment, by arranging to instantiate a User procedure which can "see”

that environment.

This arrangement still does not meet all our accessibility requirements. For instance, in any
recursive language, for a given User procedure instance there can be variables hidden from
view (using normal access methods) due to recursive instan.es of the same variable. In Algol-
like languages, the problem is worse: each instance of the User procedure must be considered
to be declared within the procedure from which it is called (or which it interrupts— it
amounts to the same thing) in order to "see” the data for that procedure. Not only is this
difficult to implement, but it also does not provide access to those active data not in the

lexical scope of any User procedure instance.

LCC does not suffer from the latter (Algol-induced) malady, but shares the former with other
systems. It solves them by providing rather clumsy (but complete) means for violating scope
restrictions, through extended names or explicit scope specification, indicating environments
of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS

which provides both a powerful enough language and an accessible enough system.

28

FREE =

ACTIVATION RECORD FOR
OUTER-LEVEL USER

ACTIVATION RECORD FOR
FIRST USER-CALLED

PROCEDURE
: eee
. /\/\/\/\A—- FSA/IPS/RED
) RETURN TO PREVIOUS

FUNCTION

N PREVIOUS

** FUNCTION
\ USER

AR FOR PROCEDURE
i, ""-—-.____..,\

/__... see

AR FOR PROCEDURE n % a0 e

" LB N

AR FOR SECOND - [=
LIZVEL USER CALL

FSA/IPS/RED

R e Ve

Figure 3.4. DPDA/IPS Behavior of LCC Terminal Interface
29

3.E1 Attribute Analysis

)

2)

3)

1)

5)

6)

Multiple activities: fair. These systems, by allowing multiple instances of User procedure
(or a similar construct), gain some of the control powers we advocate, at least allowing
the user to switch his environment of interest without destroying previous information
(losing his place). However the system still has too much of a hand in when and how
this switch is made, which leads us to the following:

Non-Preémption: poor. A breakpoint or explicit program call to the USER function
preémpts the terminal for the new instance and context. When the user gains control via
“attention”, he is the instrument of this preémption. This facility lessens the preémptive
behavior, but does not eliminate it.

Response time: moderately good. When a User procedure is active, response is good by
all our measures. During a lengthy operation (e.g., a user’s problem program execution),
a new User instance can be asynchronously instantiated, again providing good response
time, at the expense of having to remember (with some system help) to return control to
lower levels later.

Single Language, Modes: as before, good.
Accessibility: pr: sent, but impaired. In most of these systems, the complexity of the
name and allocation structures has increased slightly beyond the ability of the user

interface to accommodate it.

Context: variable.

3.E2 Representative Systems

LCC [45) and all LISPs, at least with appropriate user-provided functions, perform: as

DPDA systems. BBN Lisp [53] exhibits this organizaion and, as we shall see, surpasses it

in scme important ways. There are also elements of DPDA behavior in Kay's FLEX design

(28], upon which we also intend to elaborate, for it too exhibits major behavior match

improvements over the systems in this category. The current incarnation of the ECL System

(58], under refinement at Harvard, seems to fall into this category. We shall discuss

Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique -and

human engineering attributes which we have not stressed. Other DPDA/IPS systems include
APL [26] and CCs [50])

g 3F. ADVANCED IPS SYSTEMS

In this section we will consider the salient behavior match features of recent IPS <ys.erns, or

designs, which have provided much of the guidance and inspiration for this work.

3.F1 BBN LISP

This system [53) behaves mostly as a DPDA system, with several distinct modes in its FSA

component; some of the additional modes provide function editing capabilities and special
facilities within breakpoints. Of Particular interest to us are the contributions which

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, (5¢], and L
have since been presented and elaborated in [53], [55].

Teitelman shares with us the desire for a system whose behavior complements the user’s,

ailowing him to work more efficiently and effectively. His chief emphases, however, treat user

attributes which we have not addressed:

1) Errors. People make errors when they speak, write, or type. Simple typographical,
logical or spelling errors do not usually interfere with the comprehension of messages f
the recipients are also people. It is therefore irritating and diverting to be forced to
correct such simple errors in order to be understood. Most IPSs are very unforgiving of
errors.

2) Repetition. A common act is to develop, by trial and error, a method for accomplishing
something, then to apply that method again when similar situations arise.

Teitelman’s provision for the first attribute is the DWIM (for "Do What | Mean”) facility.

This constitutes a refinement of the User procedure/system interface: DWIM routines
intervene before the User procedure is called. They examine the reason for calling User
procedure, and try to handle the situation themselves (es., by correcting simple spelling
errors, or simple parenthesis blunders) In the most common configuration, DWIM simply
notifies the user of its actions and retirns to the caller with the error corrected. Only when

DWIM fails to find a solution does it invoke BBN-LISP’s User procedure analogue.

If the User can anticipate more complex errors or exceptional conditions, he can have his
program handle them by advising selected functions to take specified temporary actions

before, during, after, or in lieu of their normal operations.

3

R LT g . T | UL THPEppoTC gy e aggen g T

Koot

A SO

T T

[]

Juom—y

| 2SR |
IR

R

- e 4

It is quite often possible for the BBN LISP user to cancel the effect of an operation, even a
complicated one, using the undo command. This feature is a powerful error-correcting tool

in combination with the DWIM features.

If a user anticipates the need, he can arrange, in most IPSs, to repeat a complex sequence of
operations: he can create a macro or function to do it, then call it repeatedly. However, if he
has simply carried out this sequence of operations, he must then recreate them in order to
repeat them. BBN LISP maintains a History List of recent terminal operations, typically the
last thirty or so. One can redo one or more recent operations by referring to entries in this
list. One can also save a sequence of History entries for permanent accessibility as a Lisp
function. We have attempted to refine this facility in our system (see Section 6.A1, the UCP

Scene).

3.F2 SLICE

The system described here is the one Mitchell uses in his thesis [44) to describe his IPS
methods. His system, a derivative of LCC, shares with LCC the DPDA/FSA/RED
classification, and would submit to essentially the same attribute analysis. Its novelty lies in

its translation algorithms.

Mitchell demonstrates that there is a spectrum of possibilities between a purely interpretive
and a purely compiled system. He discusses the merits of the two approaches in terms of the
inherently conflicting qualities of fiexibility and efficiency. Flexibility is the ability to modify
program and data elements interactively, to inquire intelligently about program operation,
and to intervene in the flow of control. Efficiency in this case is a measure of the speed of
execution of the user’s program.

Mitchell supports his view that flexibility decreases while efficiency increases as one traverses
the spectrum from interpreted to compiled programs. He then describes an interpreter-based
system which illuminates his contentions. Mitchell’s system interprets the source program by
compiling and immediately executing sections of it as they are encountered, retaining the
compiled code segiments as a fortunate side-effect. By reusing the compiled segments as long
as they remain valid, he obtains a system which smoothly traverses the spectrum from
flexibility to efficiency as an algorithm is perfected, and as the frequency of program

modification decreases. The keys to his methods are the algorithms and data structures he

32

NPT T A Th

B T T L pre

developed to detect and correct segments made invalid by modifications to source statements

and declarations.

We shall have more to say about Mitchell's findings in Section 8.ES6, for we have borrowed

heavily from them in our translation methods.

3.F3 ECL

ECL is the result of reseirch begun by Wegbreit in his thesis [57] on extensible languages
for 1PSs. The current effort is a 1. ige project, directed by Wegbreit and Cheatham (581 ai
Harvard, dedicated to the creation of a software laboratory. An interpreter and eqi:valent
compiler for the ECL language, ELI, will allow operation at both euds of the
flexibility/efficiency spectrum. A major goal of ECL is application of scphisticated software
aids to the development of very large, complex systems (for instance, an automatic

programming experiment) (8], without sacrificing ultimate efficiency.

Most of the novel aspects of ECL lie in areas not directly treated in this work; efficient
extensible language design is foremost among them. In our Behavior Match terms, as we
mentioned, ECL is at present a DPDA/FSA system. We are unaware of plans for enhanced
terminal facilities at this writing. However, we believe that our methods would apply very

nicely in the ECL environment.

3.F4 FLEX

The FLEX mini-computer and extensible language system form the central subject of Kay'’s
dissertation, The Reactive Engine [28). This system (and its successors, for it is still in a
state of evolution), until now existing only in experimental versions, gives one as much power
to define and control his own language and programs as any now available, on machines of
any size. Kay has combined theories of language, software, and machine design in a

comprehensive proposal for an easily learned, personal, and very powerful system.

In the domain of our Behavior Match attributes, FLEX and its derivatives possess qualities
which we have found missing in other systems. Kay's philosophies have strongly influenced

our design.

33

1

A Ol e =4 B B B

FLENX is a display-oriented system, incorporating a graphics tablet and a special keyset for
convenient manipulative inputs, along with a standard keyboard for symbolic input. The
built-in, extensible FLEX language allows concurrent operation of multiple processes. The
full-blown system, written in FLEX (x), makes copious use of this ability, using parallel
components in the hardware to allow scanning, parsing, compiling, and execution of
programs to proceed concurrently. In this way, though a structured text representation of a
program is the only permanent (and displayable) representation of that program, acceptably
efficient execution i$ maintained. The system provides powerful display techniques, for
editing and observing the operation of programs, for displaying structured textual and
graphical data, and for "echoing” the user's input of structured data.

In our classification system, FLE> is a DPDA/IPS/RED system, whose stack environment is
extended to the stack configuration (similar to that used in the B6700 computer [47] or in

Simula implementations [14])) needed for the operation of concurrent active processes.

3.F5 FLEX Attribute Analysis

1) Multiple activities: good. The system makes use of multiple processes, and the user has
control of them, both in his programs, and directly at the terminal.

2) Minimal Modes: excellent, due to its single input language.

3) Single Language: excellent. All commands are expressible in the user-extensible
language. A few “invisible” edit commands duplicate some FLEX functions, for
convenience in editing. Like Lisp, FLEX is "homoiconic™ the executable and external
representations of programs are essentially the same.

4 Accessibility: good. All active data are accessible to the User procedure, and the user can
activate a User procedure in arbitrary active processes.

5 Context: very good. The display facilities allow presentation of user programs in
context, and observation of their operation in that context. The user is free to provide
additional context-rich displays in his programs and subsystems.

(x) We are being intentionally vague about the distinction between the hardware and software.
The machine is microcoded, essentially implementing the nucleus language 3.d the system
kernel.

34

6 Non-symbolic operations: excellent. The combination of the keyset and tablet supply
impressive manipulative tools which enhance editing and graphical operations. The
short, easy editing commands, and the ability of the user to extend his language,
supplement these tools.

7 Non-preémption: alrost provided. The recursive (and now concurrently recursive),
nested USER concept is maintained in the breakpoint and terminal interrupt structure
of FLEX. It is not made clear what happens if two processes attempt to break at once.
The user may "ride piggyback” on the program evaluator (observe its interpretation of
the execution of his program, step by step), in order to follow and control the fiow of
operations in his multiple processing environment.

Kay would not necessarily stress these points as the most important topics of his work. We
would therefore be doing him a disservice to suggest that we have captured the “essence of
FLEX" in this short repori. The Reactive Engine is a comprehensive work, which has

contributions to make to most areas of system design.

35

=

prsm—
= |

3.G. ATTRIBUTE SUMMARY

Table 3-1 is a summary of the attribute analyses for the basic system categories we have

studied. FLEX is included in a separate column, because it excels in many attributes.

Table 3-1. Behavior Match Attribute Summary

Category FSA/IS FSA/IPS FSA/IPS/RED DPDA/IPS FLEX

Attribute

Multiple Activities ? - - X v
Single Language . X v v v
Non-Preémption - X
Response time - - - X v
Minimal modes X X v
Maximum context ? ? ? v
Accessibility ? v v v
Non-symbolic ops. ? ? ? v

These systems do not support this behavior; their implementors may not
agree that such behavior is desirable.

x All or most of these systems partially support this behavior.

? This attribute is generally absent from these systems, although nothing in
their basic designs prevents its inclusior..

v These systems support this behavior.

CHAPTER 4
DESIGN OF COPILOT

In this chapter we shall use the criteria of Chapter 2 to help specify the design of our
experimental IPS, COPILOT. Here, we shall match the human traits to the corresponding
desired behavior of the system. We shall also introduce additional design decisions (choice
of language, method of interpretation, etc) with reasons for their choice, although these do
not relate directly to the behavior match topics. Finally we shall present an overview of the

COPILOT system, w'th emphasis on the ways in which it meets the design criteria.

Subsequent chapters will present the COPILOT system in more detail.

4.A. ACHIEVING THE BEHAVIOR MATCH

4.A1 Use of Multiple Processes

If one accepts our assumptions, people can monitor multiple simultaneous external activities,
and can maintain, at the conscious interface, multiple pseudo-parallel “processes”, or
"coroutines" of their own, while pursuing a task. They want to be able to schedule their own
actions independent of the order or frequency of external requests (non-preémption), but they

desire rapid response, at least by acknowledgement, to their own requests for services.

To satisfy these requirements, we must first include facilicies, in the language and operating
environment of our IPS, for the specification of multiple processes, allowing programs to
instantiate, activate, suspend and terminate "simultaneous” operations. Thomas [56] defines
a process as "an ac.'vity comprised of a time.ordered sequence of actions”. Within a
computer system, a process is usually represented by an algorithm, specifying the sequence to
perform, a collection of data elements upon which that algorithm can operate, and a pair of
indicators, or environment pointers, which together identify the current point of operation
within the algorithm, and the current active values within the process data. By alternating
among sets of environment pointer pairs, a single computer, or processor, can, in large part,
simulate the concurrent operation of more than one process. This allows the creation of the
multiple processing {or multiprogramming) environment upon which this work is predicated.

We will describe the specific COPILOT implementation in Section 5.C4.

37

Al e, '-_.1.,..-_

The use of multiple-process facilities must be extended to the operation of the IPS itself.
This, as we will show, allows us to provide the terminal user the ability to control processes
directly. More importantly, we will use the multiple process discipline to provide the
decoupling effect needed for non-preémptive control with good response time. Our process
structure comprises a high-priority User process, operating a User loop (see Section 4.C2),
to listen to the keyboard and respond to its commands, combined with a Post process to
maintain a display of the status of all processes. This allows the user's problem, or target,
programs to run in one or more target processes, undisturbed by terminal operations except
where interaction is intended. Conversely, these target processes are not allowed to disturb
(preémpt) the User process, so they cannot bother the user save by supplying status
information to the Post process. The User process replaces the recursively instantiated User

procedure of previous systems.

We also hope to show that an IPS which uses multiple process structures properly can
operate very efficiently, in its use of both time and space, particularly when the interactive

facilities 2-e not actively in use.

4.A2 Use of Displays
We have argued that, ideally, one’s statements should not be dependent on context for their
interpretation (mode-minimization), but that one finds it easier to interpret communications

when they are surrounded by appropriate contextual (environmental) information.

Applied to IPS design, this need for adequate and current context, along with the need for
rapid response, nearly eliminates the traditional hard-cbpy sequential-character computer
terminal as a feasible terminal output device. To achieve our context match, we require a
graphic display device, which we will henceforth term a display. The most common displays

today are CRT-based point, vector, or raster-scan (TV) devices.

Current display devices do not contain sufficient area and resolution to present even the
minimum information we require to operate the system. Unless and until displays are
improved, we must provide a reasonable alternative. Ameng currently possible alternatives

are:

38

o — G e— e e

1) to use multiple display screens.

2) to implement multiple virtual display screens. This is possible if the available display
hardware and software permits rapid replacement of a screen’s contents.

3) to provide a very flexible mapping of groups of lines to areas of the display screen, so
that the user or program can select the most important text "windows" at any time.

We have chosen to design COPILOT in terms of multiple display screens. It would not be
difficult to modify the design to operate in the virtual screen mode of item 2 above. The
third method would require considerable redesign; its performance under the best
implementation would, we believe, be unsatisfactory, since it would require the user to

remember too much about the complex, time-varying screen organization.

] One important attribute of a display 1s its speed, allowing it to make large amounts of
information, and therefore adequate context, continuously visible. Perhaps as important is
{ ! its two-dimensional, random-access characteristics. We must be able to select and change one
section of the screen without affecting any other section. Using these facilities we can
I partition the screen(s) into Regions at fixed positions, each devoted to a specific purpose: the
[|
| display of a portion of a program, of some program data, of system status, or of information
: P 1] generated by the user. We can use this positional constancy to our advantage in achieving
' several of our other specific goals:
| l 1) In support of our non-preémptive control, the user knows where *2 look for information
generated by various runr “.cesses, so he need not constantly focus his attention on
] the output activity of his i
L
&
2) These processes can make the user aware of important occurrences (e.g. breakpoints)
r without interfering with his current activities.
9) Due to these visual reminders and event notices, the user can increase the number cf
. simultaneous activities which he can oversee without forgetting about them or losing
] geting 8
| | track of their operation.
4
- Our goal here 1s to give the user a window into his system which is wide enough and clear
H
i} enough that there is nothing more he needs to see, and to give him tools for directly
manipulating those things he can see. He should be able to perform most necessary control
i and modification functions by pointing and editing operations (again with random access) on
'™

this visual context.

39

- - e

4.A3 Single Language

We have asserted that people communicate with each other in a single language, with lexical
extensions for special purposes. Therefore, (3 achieve our behavior match, we must provide
our user with a single language with which to communicate with our 1PS. We must give it
enough power not only to perform the user’s algorithms, but also to carry out all terminal
operations: editing, program control, variable-monitoring, etc. The User process need only
accept statements in that language m order to provide all system functions. Conversely,
because all terminal commands are elements of our language, the user can write readable
procedures whose execution he can substitute for sequences of termina; operations. If the
user's recent commands are saved, he can even create these procidures from recent

operations. This facility eliminates the need for a special "macro” provi:ion at the terminal.

(1)

Any additional representations for programs (compiled code or other interr al structures) must

be totally hidden from the user: we must at all times preserve for him th illusion that he is

operating directly in the chosen language. We we will describe methods for maintaining
"equivalent” parallel representations for programs, their data, and other infcrmation at
several structural levels. We will maintain programs, for instance, as executable machine

code, as parse trees, and 1n an intermediate “parse token” representation.

4.A4 Abbreviation

Our observations have suggested that people avoid repetitive circumiocution by developing
formal concise notations or informal colloquialisms (jargon, slang), depending on the
formality of the sub ject. It 1s usually possible to map formal notations unambiguously into
sentences in the base language. There are also tasks which people do that are manipulative

rather than symbolic in nature.

We have attempted to provide both abbreviation and manipulative control in our IPS

design. The User process, while accepting compiete base language statements (sentences) will
also accept shortened, abbreviated commands, each of which can be algorith nically expanded

into syntactically correct language forms. We have attempted to implement the most common

......................................

(1) In the TVEDIT system for the PDP-1 [48], for instance, one can give a name to a string of
command characters. He can subsequently 1ssue a command, with that name as its argument,
which will cause that sequence of commands to be executed.

40

i
I
I
d
1
|
|
|
I
i
I
0
l
I
Il
l
il
i

simple commands as single keystrokes; in this way we hope to achieve a "manipulative”

feeling for these operations in the mind of the experienced user.

Because these facilities are available, we do not need to worry too much about the length or
ungainly structure of our basic system-control statements. Most of them turn out to be simple
intrinsic ("built-in") procedures and functions, called with many parameters. The standard
abbreviations which use them typically supply all or most of the parameters by referring to
current visual context. The result 1s a simple, flexible, and well-defined command structure,

as well as a reduced number of basic primitives.

These abbreviations provide a simple macro processor, which responds to user input, and
creates syntactically correct output. We have devoted little effort to the design of this facet of
COPILOT, except to attempt to make simple operations simple to evoke, and to partition the
system so that these front-end recognition algorithms can be replaced or altered, hopefully
even by the user, without affecting the base language facilities. A good deal of relevant
research Into macro processing has appeared in the literature, and could be useful in
improving the appearance of the system. For instanice, [34] and (62] suggest possible
improvements. We do feel that the simple schemes riescribed in the sequel will suffice to

ex hibit the power of the concept.

4B. ADDITIONAL DESIGN DECISIONS

The developments of the previous section follow directly from the behavior match
requirements. As we stated in Section 2.B, there 1s sull room for a variety of systems within
this framework. This section will discuss some of these parameters, presenting the particular
selections we have made in the COPILOT implementation. To a large extent these choices
reflect the environmenrt in which this research was begun. The goal was to provide an IPS
built around a local programming system (SAIL, [52)).

However, in each of the following cases, we seem to have chosen from the more difficult end
of the spectrum of possibilities. This 1s not necessarily laudable, nor even wise. It is,
however, fortunate in the context of this document, since, if our appraisal of the relative

difficulues 1s true, we can show that our IPS methods are widely applicable

4.BlI Compiler-Oriented

The predominant form of IPS 1s built around an interpreter. In such a system, a source
program is first converted to some internal form, retaining much or all of the symbolic and
structural information of the original. This program structure then drives a system routine,

called an interpreter, whose function is to carry out the actions specified by the algorithm.

In a compiler-oriented system translation is from source program to machine code, in which
the algorithm can be executed directly on a computer. Neither the source, nor any
intermediate structures used during the translation, are needed for correct program execution

after compilation is complete.

Arguments in favor of an interpretive IPS are:

1) The interpreter is an activc agent throughout the execution process. It is therefore easy
to include in the interpretation algorithm facilities for continuous monitoring of special
conditions, dynamically set breakpoints, etc.

2) Semantic information about all program entities (variables, expressions, etc.) must be
maintained throughout execution. Interpreters usually use this to advantage,
maintaining data types and other attributes dynamicaily. This late binding reduces the
number of attributes the user must declare, and increases the flexibility of the language.

3) Since this semantic information (and other data which is of interest to the user: names,
etc) s retained anyway, most systems provide sophisticated interactive features which
put this information to good use. This kind of information is typically lost when a
program is compiled.

As we stated in Section 3.F2, Mitchell's factored interpreter methods can achieve the speed of
compiled, though not necessarily optimal, code in a basically interpretive system. With iz
loss of flexibility, we have adapted Mitchell's methods to a system which maintains 1l user
programs in compiled form, compiling changes as they are made, rather than just befors the
changed sections are executed. This allows us to avoid periodic return of control to the
interpreter to check for modified sections, which in turn enables us to approach execution
speeds competitive with batch systems. This 1s an important attribute for very large systems,
which often run for long periods before requiring any interactive operations. The
disadvantage to compiling before execution 1s that we may recompile the same section of code
many times without executing it. Under some circumstances this will significantly degrade

performance. Our method also makes it more difficult for us to accept incomplete programs.

42

i

i S g S

When they are not interacting with the user, Copilot code segments do not require the
services, nor even the presence n memory, of the IPS routines cr data; nor do they require
the presence of the higher-level program structures (eg., text strings or parse trees). With
proper memory management, this allows debugged, non-interactive programs to approach the
size efficiency of conventional batch environments, without sacrificing the interactive facilities
when they are needed. This performance is achieved at the expense of additional time and
space overhead in the IPS routines. In Section 8D we will present these “sele:tive
efficiency” methods in some detail.

4.B2 Static Block Structure

Another important design parameter for any programming system concerns the meaning of a
name n that system: its scope (lexical and dynamic range of validity), how its value is

obtained, and when this binding of name to value occurs.

None of these i1ssues has any direct bearing on our main topics of study. However the choice
we make has a large effect on the behavior of the language, and therefore on the overall

behavior of the system. It has an immense effect on the difficulty of implementing the

Ianguage In an interactive environment.

We must consider this choice in the light of our previous decision to build a compiler-based
system. Here a modification to the definition of a name can have far-reaching effects. These
changes are particularly difficult to handle incrementally, if the code compiled to gain access

to that name must also be changed; eg., if the name is bound to its access algorithm at
compile time.

Such 1s the case, for example, with the static block structure employed in Algol 60 [46], but
not with the dynamic scope rules used to access variables i LISP 1.5, where all non-local
names are bound to their values whenever they are referenced at run time. The problem is
compounded 1n Algol 60 by the static lexical scope, which tends (in practice) to distribute ine

effects of changing a global variable's declaration over a wider range than do other methods.
True to form, we have chosen to use the Algol block structure, again picking the more
difficult end of the spectrum of possibilities. Fortunately, Mitchell's incremental compilation

methods are equipped to handle this structure, and we shali use them in our design. The

43

static Algol block structure affects our ability to display program variables conveniently, as we

shall see.

4.B3 Emphasis on Large Systems -
The typical IPS is oriented towards aiding the development of the small (however complex)
program or cystem. Typical users are the beginning student of programming, and the
occasional user. They require that the system be easy to learn and use, that it be helpful, and
that it be resilient to erroneous inputs. Efficiency is usually a secondary issue. When
programs grow too large to survive economically In an interpretive environment, their
creators must abandon these highly interactive and context-rich programming systems for
more traditional batch-oriented methods. A few systems have survived the enlargement
fairly well, among them most LISP systems. The LISP user sacrifices some of the flexibility
and interactive facility of the interpreter by compiling most functicns. In exchange, he :
achieves a significant improvement in speed and size. (The user may replace a compiled

function by its interpretable equivalent in LISP, so that if he anticipates the need to interact

with a function before calling 1t. he may not suffer at all. However, there 1s a danger that a
l function which must be interpreted may be executed frequently enough to dominate

execution time).

In our experience, very large programs need comprehensive interactive methods most. Small
programs, even very complex ones, can usually be debugged with relatively unsophisticated
aids. In larger systems, troubles are often the result of “second or third order effects”. These
effects can appear, due perhaps to new kinds of inputs, in routines long thought perfected,
whose detalls may have been forgotten. Such a situation typically develops only after a
l2ngthy input sequence which would be expensive (or in real-time situations, impossible) to
reproduce. The user needs the ability to apply a wide range of interactive aids to the

problem, wherever it occurs.

Many of our COPILOT design decisions are independent of the size and complexity of the
programs we expect to handle. Where they are not, however, we have chosen in favor of
large systems. This 1s the chief reason for our emphasis on efficiency through compiled code.
It 1s the reason we segment the system so that IPS features can “retract” when idle. It is even
partially responsible for our choice of a statc block structure, since this name structure

sacrifices lers efficiency for its power than do other schemes.

14

NPT T ¥ T NP T T T T

3 =

I

We do not claim to be alone in decrying the neglect of large systems in IPS designs.
Remedying it i1s an important goal of the BBN block-compiled LISP features (53], the
ECL system at Harvard [58]), MPS and Smalltalk, being independently developed at the
Xerox Palo Alto Research Center, and Lisp70 under development at Stanford. All of them
are highly interactive systems, embodying many of the principles we support (see also Section
3F).

4.B4 No Automatic Program Composition

Most language processors place no restrictions on the assignment of language elements to text
lines. the indentation of hines, or the spacing between elements on a line. The composition,
or physical appearance, of a program strongly affects its readability. Not anly do people
disagree with cach other concerning program composition rules, but a programmer may also
vary the format he chooses from one program area to another. We have therefore chosen to
do no recomposition of user programs, but to retain the form in which they are submitted.
“This does not preclude the provision of composition tools (e.g., Prettyprint in BBN-LISP), as

optional facilities.

4.C. AN OVERVIEW OF THE COPILOT SYSTEM

The final sections of this chapter serve as an introduction to the next chapter, which is a
rather detailed presentation of our experimental IPS implementation, COPILOT (3).
COPILOT, as it appears on paper, possesses most of the traits we have advanced. The
current PDP-10 implementation falls considerably short of that, but is complete enough to
demonstrate the feasibility and utility of out recommendations. Section 9.B deals with the

aspects of COPILOT which we consider incomplete.

Our overview conc'sts of pictorial examples which should give the reader (and vicarious
user) a "feel” for the use of COPILOT. We begin with a description of what he would see

on his screens.

(1) The name is derived from Teitelman's "PILOT" -- used with permission.
45

4.Cl The Environment

We will describe the system as it might appear after a significant amount of dialogue has
taken place, taking us from the initial state to something more typical. The user faces one or
more display screens— in our implementation we require at least two. Referring to figures
4-1 and 4.2, the available display area has been segmented into several Regions, each
displaying a portion, or window, of a text Scene. (x) The configuration shown is a simple
one. This user's entire target (applications) program requires but one process. It therefore
contains at one time at most one active statement, which we will call the Instruction Point
(IP). Our user has simplified the situation by selecting for display only those few Scenes
required to understand the operation of his program, at the current IP and EP (or
Environment Point, indicating the current “record of execution”, or active data

environment). We call the current time tl.

The Region marked RPROG, available in one form or another in every IPS, is a
representation of a window of the user's program. The program is stored and displayed in

exactly the same form in which the user (or some program) created it. The context cursor
("»" character) indicates the exact location of the IP in the program, at time tl. The language

is MISLE, which claims Algol 60 as a distant ancestor.

The RDATA Region is the visible representation of the instantaneous data environment,
consisting of the names and values of selected variables at tl. The context cursor ("»") here

identifies the Environment point (EP), indicating the variables for the procedure most

recently entered.

The RDYNA region reveals the dynamic state of the computation through a graphic
representation of the process-stack configurations at time tl, while the RSTAT Region
exhibits the current execution status of all processes (including in additior. to the Target

(applications) process the User and UCP processes which instantiate the basic IPS facilities).

These four Context Scene types nearly exhaust the COPILOT repertory, although
unlimited additional user-defined Scene types are possible. A few secondary COPILOT
Scene types are described in Section 5.B5.

(%) The labels at the top of each region name the entities represented there. They take the
form <region>/<scene>(type), where the type entry is omitted if its name is the same as the
scene.

16

I
I
I
I
I
I
|
I
I
I
I
L {

RPROG/EDIT (PRDG)

BOOLEAN PROCEOURE EOIT(INTEGER CONMAND, EDIT_SCN, EDIT_LINE;
INTEGER EDIT_CHAR, A1, R2; STRING S1);
BEGIN
INTEGER SERRCH_SCENE, SERRCH_LINE, SEARCH_CHAR;
INTEGER SERRCH_CNT, TIHE®, TIHEL;

OTHER_EOIT_ROUTINES;
BOOLERN PROCEDURE SEARCH(INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SEARCH_PRIMITIVES;
SCN « S_SCENE; TIMEL « SYSTEM_TIME() - TIMES;
4

SEARCH_CNT; TIHEL,
FOR LN ~ S_LINE STEP | UNTIL GETLENGTH(SCN)
00 BEGIN
» SEARCH_CNT « SERRCH_CNT + };
SRCH_STR « GET_TEXT(SCN, LN, CHR+), 999); CHR « 8;
IF (CH1-FINO_STRING (NHRT, SRCH_STR)) THEN BEGIN
SERRCH_SCN »~ SCN; SEARCN_LINE « LN;
SERRCH_CHRR +~ CHR+CHi+1; RETURN (TRUE)
ENO Comment recursive search;;
WHILE (CH1«FINO_STRING("#", SRCH_STR)' DD
IF SEARCH (F IND_SCENE (SRCH_STRI(CH1+1 TO 9991), 1, 8, WHAT)

RSTAT/STAT

ANRITING User Input
AHARITING Postevent
STEPPED

STEPPED

Figure 4-1. Typical COPILOT Scenes and Regions (screen 1)
47

e ‘
T —— RDATA/DATA \

USER.COPILDT(...);
BEGIN
TARGL. TEXTPRDG (...)}
BECIN i
TARGL.EDIT(...); ;
BEGIN .
...t SERRCH_CNT s 12 1
XX} TINEL = ‘-.s; vee}
TARG1.SEARCH#2(S_SCENE = 3, ..., WHRT = "THIS DNE");
» BEGIN
.o CHR = §7; ... !
END; i
END;
END;
END;
RDYNR/DYNR
1l 1
USER.COPILOT ---
24 34 4l
PDST.POST UCP.UCP TARGL.JEXTPRDG
}
EDIT
|
SEARCH#L
|
» SEARCHA?
4
\ ,
. 4
= J

Figure 4-2. Typical COPILOT Scenes and Regiuns (screen 2)
48

Almost any modern computer terminal keyboard and operating system interface would suffice
for a COPILOT:like system. Qurs (see Figure 4-3) can communicate with the program one
character at a time when desired, increasing the possibilities for abbreviation. These
possibilities are further multiplied by the TOP, CONTROL, and META keys. These keys,
like the alphabetic SHIFT, allow multiple-interpretation of each character. TOP selectes an
alternate character, while the remaining two simply qualify the selected basic code. We will
use “aA" for CONTROL-A, "3B" for META-B, and "eC" for CONTROL-META-C.

19

Best Available

Copy
for page 50

|
|FoRN
|

]
|-

X

! [| |
by | . | TOP | SHIFT |

| | ‘ A
JLOCK| SHIFT | TOP | 2 | x | C | V | B | N |
| | | |

| | | | | |
| NEYR | CONTROL | | CONTROL | RETA)
) | t&___| et ___J___ter |

Contrui/Snist Group

Tabut itian roap

Reproduced from
best available copy.

Figare 4.3. The S.auford Al Project Keyboard
50

P T P T P L T m—p—

Bal Wl NSl BeA e

—

| —— | .|

M’

4.C2 Basic Dialogue

The IPS must provide the routines for reading what the user types, and for invoking the
facilities of the IPS in response. We have said that the nature of these interface routines
establishes the behavior of the IPS, and thus the (interface) behavior the user must exhibit.

We are now in a position to treat the interface behavior of our system in some detail.

" We will call that routine which controls the operation of the user-IPS interface the basic

control loop, or User loop. Its existence is at least implicit in all the IPSs reviewed in Chapter
3, usually it is quite explicit, forming the central control ‘or the entire system. The basic
User loops are remarkably similar from one system to the next. When the loop gains control

(in a fashion to be described later), it performs approximately these functions:

1) Accepts one command from the keyboard.
2) Deciphers its meaning, and carries out its intent.
3) Reports the results, if necessary.

4) Returns to step 1.

An elegant example of this sort of algorithm is the top level of most LISP systems (e.g.
[(49)). This algorithm, itself expressed in LISP, can be approximately stated in the LISP
M-expression language [40] as:

L: Al};prog2(prinilevailread(]NIL]JL]
or, using the less pure PROG form

prog(}[L: printlevallread[JNIL}, golL2

Although not all IPS implementations can express 1t quite this succinctly, they all have
something like this Read-Eval-Print User loop op - ating at the command level. Though all
are similar, there are important differences betwezn these User loops. One is the nature of
the commands supplied to the 'Read’ function: in an IFS these commands are usually
st stements (S-expressions) in the single source language. The User loops of the various IPSs
can be distinguished from each other by the ways in which they are able to gain control, the

times when that is possible, and the meaning of statements for a given instance of the User

51

e

g e -

-
-

» T

procedure or process (the scope of interpretation). In general, they differ in the relationships

between the basic control routines and the remainder of the system.

To a user familiar with any of ihese systems the User loop in COPILOT will present no
immediate surprises. Commands in the form of MISLE statements are accepted sequentially
from the keyboard, and usually are carried out in incoming order. Results of user
commands, if they need to be reported, are revealed by changes in the text displayed in the
appropriate Regions of his screen. As long as the cperations to be performed are simple,
commands and actions progress alternately, as in JOSS or BBN LISP. By describing
situations designed to demonstrate the non-preémptive aspects of COPILOT we shall soon

shatter this illusion, but for the present we shall retain it.

COPILOT commands are available for editing program (and other) text, for examining
progiam data, for controlling program operation, or simply for their effect as statements (to
test program sections, or for "desk calculator” operations). Figures 4-4 and 4.5 are
continuations of the picture sequence begun in Figure 4-1, showing the effects of COPILOT
operations on the contents of the user's screens. Regions are sometimes shown in different
positions from figure to figure in these examples, to minimize the information in each figure
(in the actual system, the Regions would remain in fixed screen and line positions). A Region
is shown only when ihere is a significant change in its data. Each figure represents the state

of the Regions it show: after execution of the commands which accompany that figure.

The locus of user activity is indicated by the edit-cursor, a "A" character beneath a selected
character position in one Scene. Most of the editing primitives (EDIT_CHAR,
INSERT _LINE, etc.) use the location of the edit cursor.

The entries in the COMMANDS column are the actual character strings the user types to
perform the functions described in the examples. Entries in the EXPANDED column are the
actual MISLE statements which he could type to get the same effect. Table 4-1 briefly

describes the functions of the commands used in these examples. More complete descriptions

of these commands and their expansions appear in Chapter 7.

Table 4-1. Commands Used in Chapter 4 Examples

COMMAND MEANING

en<cr> Move the edit cursor ("A") down n lines (n is a number, and <cr>
means "carriage return”).

enaF <char> Move the edit cursor to the nth occurrence of the character <char>
following the current cursor position.

®: Move the edit cursor to the first token of the statement which begins
nearest the current cursor p-sition.

<char> Place <char> in the current edit cursor position. Replace any
character which might aiready be there.

enaD Delete n characiers.

®; Move the control cursor (instruction or environment point indicator
("»")) to the edit cursor position.

¢B Set a breakpoint (insert a BREAK statement, see below) at the
statement nearest the edit cursor.

oP Allow the process indicated by the DATA Region containing the EP
contro! cursor ("»") to proceed. This is usually used to resume a
process after a break.

eX Allow the process identified by the EP cursor to execute one
statement, identified by the IP cursor.

@S If the statement at IP contains substatements, allow the process to

continue to its first substatement. Otherwise, this command is the
same as oX.

o& <string> Execute the statement specified by <string>, in the environment
specified by the EP context cursor ("»").

o> Make visible the PROG, DATA, and DYNA Scenes corresponding to
the most recently broken process.

53

! . ®, Move the edit cursor to the control cursor position.

oM <str><cr> The string <str> is the name of new data which replaces the current
data in the Region containing the edit cursor.

eneR Move the edit cursor to the last pusition it occupied in the Region n
Regions away from the current one, where Regions are arranged in a

reasonable circular order.

— A statement containing only an expression means that that expression’s current value

should be displayed in a DATA Region (eg. "J.").

"BREAK(proc)” will cause the process named proc to suspend when it encounters the

BREAK statement.

"{ s1; 52, .. sn } sm", where 5|, etc. are statements, Is equivalent to "BEGIN sl; .. sn; sm

END". See Section 7.D3, which describes these temporary statements.

After examining these figures, it should be clear why some formi of abbreviation is desirable.
A user should not be forced to submit a "mouthful” ke "MOVE_CURSOR(..)" simply to
F reposition his edit-cursor, although the same string might be the best form (for precision and

legibility) to include in a program ("macro”) to position the cursor. Consequently, we have

caused the command “<cr>" (carriage return) to perform the same action as the
MOVE_CURSOR operation in Figure 4-4, by a mechanism explained in Section 6.B2.
In fact, the form marked COMMAND in_each of our examples is the preferred form of
direct input to our User loop: the expanded forms are always available for inclusion in

programs and for documentation.

Notice that the cata display statements of Figure 4.5 are executed for their effect on the
program, operating in the program's environment. Others operate essenually in the
environment of the system (the “interpreter”). We will show these relationships in detail in
Section 7.C8. This distinction 1s a very important one, the subject of a great deal of study

by Fisher (21] and others (for instance, Bobrow and Wegbreit in [6]).

4 eeeimmmmcccceacae- RPROG/EDIT (PROG) -ecccccccccccmcaaccannaa.. \

BOULEAN PROCEQURE EDITC(INTEGER CONMMANO, EDIT_SCN, EDIT_LINE;
INTEGER EOIT_CHAR, AL, A2; STRING S1);
BEGIN
INTEGER SERRCH_SCENE, SERRCH_LINE, SEARCH_CHAR;
INTEGER SERRCH_CNT, TINEQ, TIMEL;

DTHER EDIT_ROUTINES;
BOOLEAN PROCEDURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CH1; STRING SRCH_STR;

SEARCH_PRIMITIVES;

SCN « S_SCENE; TIMEL - SYSTEM_TIMED - TIMED;
SERRCH_CNT; TIMEL;

FOR LN « S_LINE STEP | UNTIL GETLENGTH(SCN)

00 BEGIN
SEARCH _CNT - SERRCH_CNT o |;
SRCH_STR « GET_TEXT(SCN, LN, CHRel, 999); CHR « §; 1
.

IF (CH1-FIND_STRING (WMRT, SRCH_STR)) THEN BEGIN
SERRCH_SCN ~ SCN; SERRCH_LINE « LN;
SEARCH _CHAR « CHReCHlel; RETURN(TRUE)
ENO Comment recursive sedrch;;
» WHILE (CHI-FIND_STRING (2", SRCH_STR}) 00 121
IF SEARCH (FIND_SCENE (SRCH_STRICHlel TO 9991),1,8,HHAT)

g Oung Oun) Qum Pumd Gemed Pumed Pumd Pemd Bee Deed Baeel D D

.................. ROATA/OATA cccecccccmcccacamamcanan
USER.COPILOT(...);]
BEGIN
TARGL. TEXTPROG(...);
BEGIN
TARGL.EDITC...);
BEGIN
ooy SEARCH_CNT = 12;
ooy TIMEL = 4.05; ...
TARGL.SERRCHA2(S_SCENE = 3, ..., WHRT « "THIS ONE"); !
» BEGIN 4
ooy CHR = B; ... {21
ENO;
ENO;
END; /
< END; i
CONMAND EXPANDED COMMENT
: B
1 wherrs MOVE _CURSOR (CRNT _REG, 4, 8, 8, &; (1] Move the edit-cursor (4) down 4 iines, 1!
1 of; FIND_STRING (CRNT_REG,";",1); then out to the first “C" alter a ";" Q
P of C FIND_STRING(CRNT_REG,"C",I); |
' v SET_P(GET_PROCESS(EP), [2] Fove tre context cursor (»), 1agentitying ;
E EDIT_STRUCT (CRNT_REG) 1 the IP (Instruction Point) 1o the 1
| wX STEPP(GET_PROCESS(ERP), “i"); edit-cursor (oc., then erecule two
! X STEPP (GET_PROCESS (EP), “4°); stmts. The assignment 1o the B

variable CHR has changed 115 value
trom 17 in the previous diagram to
8 in this one.

Figure 4-4. Simple Editing and Execution Control (part 1)

55

A TR

P .
/ RPROG/EDIT (PROG) \

INTEGER SEARCH_SCENE, SEARCH_LINE, SEARCH_CHAR;
INTEGER SEARCH_CNT, TINE®, TIMEL;

OTHER_EOIT_ROUTINES;
BOOLEAN PROCEOURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CH1; STRING SRCH_STR;

SERARCH_PRINITIVES;
SCN « S_SCENE; TIMEL « SYSTEM_TIME() - TIMEQ;
SEARCH_STR; TIMEL;
FOR LN « S_LINE STEP 1 UNTIL GETLENGTH(SCN)
00 BEGIN
SEARCH_CNT « SEARCH_CNT « 1;
SRCK_STR - GET_TEXT(SCN, LN, CHR+}, 999); CHR « §;
1F (CH1-FINO_STRING (WHRT, SRCH_STR)) THEN BEGIN
SEARCH_SCN «» SCN; SEARCH_LINE « LN;
SEARCK_CHAR « CHR+CK1+1; RETURN(TRUE)
ENO Comment recursive search;)
IF (CH1+FINO_STRING("#°, SRCK_STR)) THEN
[

» 1F SEARCH (F INO_SCENE (SRCH_STRICHl+1 TO 9991),1,8,UHAT) 131

------------------ ROATA/DATA comeevecmccmmmeccccrccaa
USER.COPILOT(...);
BEGIN
TARG1. TEXTPROG(,..);
BEGIN
TARG1.EOIT(COMMAND = 17, ...); 141
BEGIN
voo} SERRCH_CNT = 12;
..o TINEL = 4.85; ...
TARG1.SEARCH#2(S_SCENE = 3, ..., WHAT « "THIS ONE");
» BEGIN
oo CHR = 8; ...
SRCK_STR = "1S IT TH13 ONE?" 14)
ENO;
ENO,
ENO;
\ ENO;
\v
- —
CONMANO EXPANOED COMMENT
“, SET_CURSOR (GET_REGION(IP), 131 Now bring tne edit cursor to the new
GET_LINECIP), GET_COLUNN(IP), -1); context cursor (IP) position, change the
IF FNIT_CHAR (CRNT_REG, "1F",0) "WHILE® to an °"IF" (replace "HH" by °“IF°,
«300 EOIT_CHRR (CRNT_REG,NULL,-3) then delete "ERE"), and *he "DD" to "THEN".
x20F0 FIKD_STRING(CRNT_REG,"0",2) Then "step 1n" to the statement at P by
THEN EQI '_CHAR(CRNT_REG, "THEN",8) executing the (successful) test and suspending
&S STEFP (CET_PROCESS (EP), "=") at the substatement.
w&SRCH_STR; <ccr> 14) Finally, execute data-display operstions
EVAL ("SRCH_STR; ", IP,EP) to inspect (and retain in view) some
«8CONNAND ; <cr> additional vuriablesx.
EVAL ("CONNANG; ", IP,EP)

Figure 4-5. Simple Editing and Execution Control (pzrt 2)
5%

4.C3 A glimpse of Non-pre¢mption

The User-loop of COPILOT is continuously active. This means that, within second or two
(a reasonable response interval) after accepting one command, it will be ready to accept (and
act on) another. We have arranged to implement those operations which require longer
intervals as separate, lower-priority processes, in order to maintain this response. Chief

among these other processes are the user’s target (applications) processes.

Figures 4.6 through 4.8 portray a sequence which we hope will not appear too contrived.
Program-editing statements (exparded from the simple B command) first add a BREAK
(breakpointing) statemeit temporanly. Then (Figure 4-6) the oP (proceed) statement allows
processing to continue from (IP, EP) in the Target process. The breakpoint has been planted
to detect an unexpected condition, and the user knows that whether or not this condition
develops, execution will take some time. He therefore (Figure 4-7) 1ssues commands to
change some of his Regions, selecting a new Scene for view in the PROG Region and cutting

off most visual contact with the TARGI process, which continues to operate, indicating its

progress by occasional changes in the TIMEl and SEARCH_CNT variables. In this

instance the new Scene (SUBST) is a piece of code which he has just begun to compose.

|

Because the process(es) implementing the User loop algorithm operate at a high priority, his
editing commands (Figure 4-8) receive service as they come in, “stealing cycles” from his
running target, or applicaticns, process. In short, he has been able to initiate an external
operation, then to shift his locus of interest, while monitoring some aspects of the previous
operation. He has 1ssued a stream of interspersed editing, debugging, and program control
operations. He has accomplished this, we contend, with no noticeable loss of continuity, from
his standpoint. We have an IPS which satisfies our multiple-process, minimal mode, rich-

context criteria.

57

M.
2 PUREERY WL < T ROy W mpae s S T

- Gl gumg Gy Gy B B B B

s T T TN VT m— Y e e

CDNNAND

wbacr>
®e:

B
oP

RPRDG/E JIT (PRDG)

INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SERRCH_PRIMITIVES;
SCN « S_SCENE; TINE] « SYSTEM_TIMEC) - TINE®;
SEARCH_STR; TINEI
FDR LN « S_LINE STEP I UNTIL GETLENGTH{(SCN)
DD BEGIN
SEARCH_CNT « SEARCH_CNT + 1;
SRCH_GTR « GLT_TCXTUGCN, LN, CHR«l, 999); CHR « &;
IF (CH1-FIND_STRING (HHAT, SRCH_STR)) THEN BEGIN
SERRCH_SCN « SCN; SEARCH_LINE « LN;
SEARCH_CHAR » CHR#CHl+I; RETURN(TRUE)
END Comment recursive search;;
iF (CH1-FIND_STRING("#~, SRCH_STR)) THEN
IF SEARCH (FIND_SCENE (SRCH_STRI(CHl+1 TD 999]1),1,8,UHAT)
THEN RE TURK (TRUE)
END Comment one line;
IBRERK (TARG1) ! RETURN(FALSE);
A

END Comment Search;;
CASE CDMMAND DF BEGIN

DTHER_EDITS;
BEGIN

TINE® ~ SYSTEM_TINE(); SERRCH_CNT « 8;

RETURN (SERRCH(EDIT_SCENE, EDIT_LINE, EDIT_CHAR, S1))
END Comment search command;

STILL_DTHER_EDITS;

END Comment case;
END Comment Edit;;

RSTAT/STAT

ABAITING User Input
AURITING Postevent
STEPPED
RUNNING

EXPANDED CDMMENT

MDVE _CURSDR (CRNT_REG,4,8,8,8); [SINow “plant a breakpoint® (the temporary
STRUCT_MOVE (CPNT_REG, ": ") "BREAK(TARGI)") at & point which will
ED)T_CHAR (CRN'C_REC, " IBRERK (TRRG1)1",1); only be reached if ar error occurs, and
RCTIVATE (GET_PRDCESS(EP)); iet the process proceed.

Figure 4-6. Control of Multiple Processes (part 1)
58

A I oom m om N N e Duwd P B el D e

o

~
e RPROG/SUBST (PROG)
PROCEQURE SUBST(INTEGER S_SCENE, S_LINE, S_CHAR;
. STRING FROM, TD; INTEGER HOWMANY);
BEGIN
INTEGER TINEL, LN;
FOR LN «~ S_LINE STEP 18)
[y
- RORTA/DATA == =
USER.COPILOT(...);
BEGIN
TRRG1.TEXTPROG(...};
BEGIN
TRRG1.EQIT(CONMANG « 17, ...);
BEGIN
...3 SERRCH_CNT = 1183
.oo3 TINEL = 10.87; ...;
TARG1.SEARCHA2(S_SCENE = 3, ..., WHAT = "TH]S ONE");
BEGIN
voey CHR 2 05 ...y
SRCH_STR = "R RRNDOft SERRCH STRING"
ENO;
END;
END;
END;
-------------------- ROYNR/CALSEQ (USER) —-c-cccccccmmaa- (]
c {13 o £ Pri .
L « GETLENGTH (SCENE) returns number of lines In Scene
S « GET_TEXT(SCENE,LINE, returns 2 selected substring, not
STRRTCHR, ENDCHR) to exceed remaining length of line.
B ~ FIND_STRING("FOR", "IN™) TRUE 1t FOR n IN, FALSE oterwise.
CONMANG EXPRNDED COMMENT
e2uR EOIT_REGION(NEXT_REGION(CRNT_REG,2), [6)Move the edit cursor to the RDYNR
-1, -1, -1} Region, temporarily change 1ts
sMCALSEQ<cr> MAP_SCENE (CALSEQ,CRNT_REG,1,1,1); Scene to one containing a
e-e2«R EDIT_REGION(NEXT_REGIDN(CRNT_REGN,-2), function-description dorument,
-1, =1, =1} then go back, switch the RPROG
«HSURST-cr> NAP_SCENE (CRNT_REGN,SUBST); Region to a text Scene for a
...STRIN.,.. EOIT_CHRR(CRNT_REG,"...ST...",08); routine under deveiopment, and
...BEGIN... EDIT_CHRR(CRNT_REG,"...BEGIN..",0); begin editing 1t. RSTRT and ROYNR
cee are still monitoring the Activity

of the running process (TRRGI).

Figure 4-7. Control of Multiple Processes (part 2)
59

/ RPROG/SUBST (PROG)

PROCEDURE SUBST (INTEGER S_SCENE, S_LINE;
STRING FRON, TO; INTEGER HOWMANY);
BEGIN
INTEGER TIMEL, LN;
FOR LN ~ S_LINE STEP | UNTIL GET_LENGTH(S_SCENE) 00
IF FINO_STRING (FROM,GET_TEXT(S_SCENE,S_LINE,1)) THEN
BEGIN

INSERT_TEXT((73
s

ROATA/ORTA dare

USER.COPILOT(...)};
BEGIN
TARGL. TEXTPROG(...);
BECIN
TARG! .EOIT(CONMANG = 17, ...)y
BEGIN
ooo; SERRCH_CNT s 145,
Lo TIREL = 13.23; ..
TARGL,SEARCH#2 (S _SCENE = 3, ..., WHAT = "THIS ONE");
» BEGIN
ooy CHR o 8; ...
SRCH_STR = “This is indeed a string”
ENO;
END;
ENO;
ENO;

RSTAT/STAT

! USER AUAITING User Input
POST RUAITING Postevent
uce STEPPED

ss TARG! BROKEK

COMMANG EXPANDED COMMENT
INTEGER TI.. EQIT_CHAR(CRNT_REG,"...IN..",0); [7JEven though the TARGI process
FOR LN .. EDIT_CHAR (CRNT_REG,"...F0..",0); has suspended at the BRERK statement,
.BEGIN. . EDIT_CHAR(CRNT_REG,"...BEGIN..",8); continue editing the SUBST Scene
(an exampie of non-preémption),

Figure 4-8. Control of Multiple Processes (part 3)
60

Figures 4-8 through 4-11 provide our last example, demonstrating non-preémption. In
' Figure 4-8 the STAT Scene indicates suspension of the TARGI process due to a BREAK
N statement, and flashes the asterisk (at one-second inervals) to attract attention. Our user,
however, has devoted a good deal of thought to the construction of the line of code which he
was inserting when the BREAK occurred. Fortunately, he is under no obligation to do
anything about the broken Target process. He finishes his line, adds another (Figure 4-10),
then (Figure 4-11) calls up the environment cf the broken TARGI process, and faces the

bad news with a clear head.

s ¢
pwm= 4

-]

61

-y

P .
; RPROG/SUBST (PROG) \
L
L
FOR LN = S_LINE STEP I UNTIL GET_LENGTH(S_SCENE) DO :
IF (CHR1«F IND_STRING (FROM,GET_TEXT(S_SCENE,S_LINE,1))) THEN
BEGIN
INSERT_TEXT(S_SCENE, S_LINE, CHR1, T0);
(8) |
&
-
3
'S
\ /
. il N
|
1]
CONNAND EXPANDED CONNENT

++ INSERT_T...

EDIT_CHAR(CRNT_REG,"...IN..",8); [8iResch a convenient place to stop Ll
editing SUPST befors handling the
breakpoint condition,

Figure 4-9. Non-Pre¢mptive Operation (part 1)
62

COMMAND
L1 g

------------------ RPROG/EDIT (PROG) ———ee--19)

BEGIN
INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SERRCH_PRIMITIVES;
SCN « S_SCENE; TIMEL « SYSTEH_TIME() - TINED;
SEARCH_3TR; TIMEL;
FOR LN « S_LINE STEP I UNTIL GETLENGTH(SCN)
00 BEGIN
SEARCH_CNT « SERRCH_CNT + 1;
SRCH_STR ~ GET_TEXT(SCN, LN, CHR+l, 993); CHR « 8;
IF (CHI-FIND_STRING(WHRT, SRCH_STR)) THEN BEGIN
SEARCH_SCN « SCN; SEARCH_LINE «~ LN;
SEARCH_CHRR « CHR4CHi+1; RETURN(TRUE)
END Comment recursive search;;
IF (CH1-FIND_STRING("£", SRCH_STR)) THEN
IF SEARCH(F INO_SCENE (SRCH_STRICHI+1 TO 8981),1,8,UHRAT)
THEN RETURN (TRUE)
END Comment on iine;
IBRERK (TARGL)§ PRETURN(FALSE);
N

ENO Commant Search;;
CASE COMHAND OF BEGIN

OTHER_EOQITS;
BEGIN

TIMED « SYSTEH_TIME(); SEARCH_CNT «~ 0;

RETURN (SERRCH(EQIT_SCENE, EOIT_LINE, EDIT_CHRR, S1))
END Comment search command;

STILL_DTHER _EOITS;
ENO Comment cass:
END Comment Edit;;

! USER AUAITING User Input
POST RUAITING Postevent
uce STEPPED

¢+ TARGI BROKEN

EXPANDEOD COMMENT
TO_CONTEXT(-1); 181 Finatly, return RPRDG anu RDYNR Regions to
the context of the process (TARGL) which brole,
and prepare to fix 1t. See aiso the next figurs.

Figure 4-10. Non-Pre¢mptive Operation (part 2)
63

Y esssassemsvamee=— RDATR/DATA

USER.COPILOT(...); g
BEGIN
TARGL. TEXTPROG(...)} I
BEGIN }
TARGL.EDIT(COMHAND « 17, ...)} .
BEGIN
...3 SERRCH_CNT =« 145
veey TINEL & 13.23; .00y l
TARG1.SERRCH#2(S_SCENE = 3, ..., WHAT « "THIS DNE")) .
» BEGIN
veoj CHR & 83 .00y
SRCH_STR « "This is indead & string”
END;
END; =
END;
END;
L
------------------ ROYNR/DYNR ---- 9)
- 11
USER.COPILDT --- ccvereccnn coceem-
21 31 7]
POST.POST UCP.UCP TARGI.TEXTPROG
§
EDIT
I
SEARCHAL
I
» SERRCH#2
1 1
|
L / o
\.\ // {
CONNAND EXPRANDED COMHENT
Remainder of final state, after returning
attention to the suspended process.

Figure 4-11. Non-Pre¢mptive Operation (part 3)
64

—

R e L

T

1

A I Em N e = =~

4D. ATTRIBUTE ANALYSIS OF COPILOT

We will apply the same behavior match ar.alysis to COPILOT which we applied to other
IPSs. We will indicate, for each attribute, those qualities of COPILOT which satisty the
requirements imposed by that attribute.

The User loop of COPILOT, in common with other systems, fits the .educed mode FSA
model in its basic operation. In common with DP*DA systems, the statements executed & this
loop have different interpretations when applied te different program contexts. COPILOT
can not be considered a DPDA system, however. We have replaced the nested user concept,
which DPDA systems implement by creating instances of a User procedure in some operating
environment, by a sort of "omniscient user” organization. The user is given the illusion that
he is "above the plane of his program, looking down” (or some illusion to that effect). He
can, by pointing, cause any active environment to be influenced by his actions. User
“instances” no longer need follow any particular control discipline. (In reality, thzre is hut

one User instance, whose activities invoke appropriate activities in other processes.)

Let us now perform the detailed attribute aralysis:

1) Muluple Activities. COPILOT allows the user complete control over the processes he
creates. The system atself makes copious use of the multiple processing and event
handling facilities of the language. We have described some of these system processes.
Others operate behind the scenes; they will be described in Chapter 8.

2) Non-preémption. Ironically, we have achieved non-preémptive behavior by having one
process, the User process, totally preémpt the terminal. This process is, fortunately,
designed as the mechanism for non-preémptive control of the other processes. The
terminal is always available for user commands.

3) Response time. The user may issue any meaningful command, and have it begun,
immediately after the system has accepted the previous command (limited only by the
time delay of the User loop, which 1s determined by system load, but should remain

short). This 1s the combined result of the process structure, the User process design, and
mode minimization.

65

-

4)

6)

N

8)

Minimal modes. There are no global modes in COPILOT; no special command must
be 1ssued to begin editing a function, or to begin inspecting program variables. There
1s a different command, or statement, in the single input language, for each interactive
operation in the system. This might require more different commands than systems
which provide modes, but the increase is not too great. The number of commands is
held tn check by the use of the same text-oriented and structure-oriented editing
operations on each kind of IPS data. Thus, editing the program (eg., RPROG) Region
corresponds 0 a “program edit mode”, while editing a data (RDATA) or dynamic
activation tree (RDYNA) region corresponds to some "debug mode” operations. Chapter
7 presents, in just 39 commands and special statements, a reasonably complete set of IPS
facilities, whose power may be enhanced by direct execution of normal language
statements.

Single language. Every action in COPILOT is expressible as a statement in the MISLE
language. A statement, if correct and .neaningful, will always mean the same thing,
except for the environment.dependent bindings of names.

Accessibility. By referring to supplementary data structures, COPILOT facilities can
transcend normal scope limits, gaining access in a controlled manner to names and
values of any data in the "job".

Context. All program contexts: programs, data, and execution state, can be visually
displayed, in a manner revealing their structi.re.

Non-symbolic operations. The common operations for editing and process control are
very short, manipulative in nature. We could extend our expansion algorithms to
accept non-symbolic input from devices such as a "mouse” or "graphics tablet”, again
creating MISLE statements for execution.

The chapters which follow present the COPILOT design in more detail— first the user level

descriptions, then some implementation considerations. In the final chapter, we will discuss

some of its shortcomings, and some possible extenstons.

e L e i

CHAPTER 5
THE COPILOT SYSTEM: A USER-LLVEL DESCRIPTION

In this chapter we wish to expand the introduction of Section 4.C, presenting the COPILOT
experimental design in some detail. Our goal is not to write a user's manual, but to cover all
the major aspects of the system, to give the reader a general understanding of its capabilities,

and a feeling for its philosophy.

5A. BASIC SYSTEM STRUCTURE TERMINOLOGY

Our discussion of COPILOT begins with the structures we have developed for the display
of information. These structures, while they need not stiongly affect such things as the
programming language design— the control and data structures it supports— do determine

how the user views his programs, and what role he can play in their operations.

We will show that the Scere types defined in COPILOT constitute an adequate external
model for the Information Structure of most block-structured languages and that, when
linked to the operant structures underlying them, these Scenes provide all necessary context

for viewing and controlling program operation.

We begin the discussion with a definition of the COPILOT display terminology.

{
{
i
i
{
i
1
3
|
1
1
|
i

Table 5-1. Display Terminology

SCREEN A physical display device, also known as a “display”.

REGION A contiguous, named group of lines on a Screen, assigned by user or program to
a specific Screen location.

SCENE A logically related, ordered set of text lines — a "page” from a user program, for
instance. Each Scene also possesses a Scene Type to clarify its use. A Scene may
be part of a program, of 2 data specification, or any other textually representable
entity.

WINDOW The contiguous set of lines from a Scene, visible in the Region to which the
Scene is assigned (mapped).

5.A1 Screens

In Section 4.A2 we statec that we would support multiple screens. A Screen, or Display, 1s a
device capable of presenting continuously several lines of text. The Fardware and software
supporting each display must allow programs to control completely the data displayed on the
screen. Updating must be fast enough that no appreciable delay is encountered while
changing part or all of the data on the Screen. In addition, it must be possible to show
several distinct indicators, or cursors, without disturbing the data. In COPILOT, the
Screens assigned to a user are assigned permanent numbers during installation— naming
facilities at the screen level are not very important.

5.A2 Regions

Given enough Screens, a COPILOT user could devote one to each independent data Scene
which he or the system has created. [However, it is rot usually possible to sausfy the
voracious appetites of COPILOT processes for display area Thus there 1s a need for
facihities which will allocate sections of the available Screens to these disparate uses

A Region 1s a named area on some Screen. Region names and ranges may be assigned by
programs or by the user. the iniual system configuration features a few Regions whose Scenes
display the initial system context. The subsequent creation and mapping of Region to Screen
is an infrequent operation Typically, the user does it but once, at the beginning of a session,
to establish an augmented configuration 1o suit his needs and resources

68

A Region 15 usually named, created, and used for a specific kind of Scene; iIf one wishes to
use the same Screen area for muluple purposes, he assigns multiple Regions to that area. In
the current system. no two Regions whose areas overlap may have Scenes mapped into them
(be visible) simultaneously. Such a facility would require a priority scheme to resolve

conflicts

We will treat Regions and their relationship to Scenes in Section 5H, after a detailed

consideration of Scenes and what we put into them

5.A3 Scenes

We have used the term “Scene” loosely in the preceding paragraphs to describe the collections
of hnes displayed in a Region In cur formal defimition, such a collection of hnes 15 a
“Window" of some Scene If the Scene has fewer lines than its Region, enough empty lines
will be inserted to fill the Window The archetypical example 15 the Scene used for storing
and displaying program text Program Scenes resemble the user-defined “pages” which often
segment program text files into logical groups A program Scene might be just one page from
the fle. although we intend to suggest an orgar.ization of programs into Scenes which 15 more
intuitively structured for interactive operation We have avoided use of the term "page” to

avoid confusion with the memory “pages” of some modern computing systems.

5.A4 Scene Types

Every Scene has the same format a set of text hnes As we have suggested, though, Scenes
are put to various uses Some Scenes correspond to structures (such as “ompiled code) at other
levels, or contain data which system processes need to read The user may also define Scenes
whick require special treatment We associate with each Scene a Scene type. a code

identifying 1ts uses

Additional arrributes for a Scene include 1ts name. a string optionally assigned 0 1t when it
18 created, its length (the number of lines). and the (urren: editing position within this Scene
The edit cursor ("7 character) visibly incicates this point whenever the Scene is selected for

terminal-controlled editing operations

Other attributes could be used to place restrictions on the use of Scenes These attributes

69

would be similar to the "Capabilities” of [32] and would specify for each process whether,

for instance, that proces: was permitted to read, modify, or (for Program Scenes) execute the

Scene, who 1ts owner was (for shared Scenes), etc.

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES

Before we consider the Scene types which we have provided in COPILOT, we should say
just what 1t 1s we want these Scenes to accomphsh: to supply the user with that contextual
information needed both to observe the instantaneous state of a computation 1n a coherent
manner, and to predict and influence 1ts future actions. We will refer collectively to these

Scene types as Context Scenes.

5.B1 Information Structure Models

In [59), Wegner formalized the need for a way to describe program execution context with
his Information Structure Models. He categorized programming languages by the data
structures required to specify their Information Structures within a processor. These
structures include algorithms, data, and their control mechanisms. A set of Information
Structures, I, time.ordered “snapshots” of program and data configurations during a
computation; an initial configuration Ig from I, and a set of transformations (interpretation
rules), F, taking configurations I to their successors— constitutes an Information Structure
Model of the computation, 1n a given programming language and sys'em. In the Context
Scenes. we will be concerned with the external representation of elements from I. For most

programming languages, Wegner shows that one can further factor the Information

Structures of I into the following components:

1) The Program Component: a representation of the algorithm.

2) The Data Component ob jects allocated and manipulated by the algorithm.

3) The Control Component indicators of currently active program steps and data
environments within each active process.

5.B2 The Contour Model

Johnston, [27], has developed an Information Structure Model, the Contour Model, for

70

AT PN

P

e

block-structured languages. This model has been shown adequate for representing the
information structures of Algol60, Algol68 [47), and Oregano, (4], which was designed
around 1it. The Contour Model appears to extend to the complex naming structures of PL/I
and Simula, as well, although 1t does not support the dynamically inherited naming scopes of
Lisp, LCC, and their 1lk.

Figure 51 15 an example of a “snapshot” from an Algol60 program, expressed in the
Contour Model. The Program Component 1s called the algorithn, the Data Compon: nt the
record of activation. In the latter the nested Contours define the lexically nested access
environment, while the dynamic (control, eg. caller and callee) nesting 1s shown by
connecting arrows. The Control Component consists of one or more processors, each
defining the locus of control of an independent process, each represented 1n the model by the
IP (instruction point), and EP (environment point) arrows emanating from the "n" graphic

which depicts the processor.

n

| bl: BEGIN

Figure 5-1. The Contour Model Represen:ation for an Algorithm

REAL o,b,x;
2 PROCEDURE P(x,y); :
REAL 1x,y; ¢
3 bp: BEGIN .
REAL c;
4 P(..,...)
5-6 END;
7 b2:BEGIN
REAL b,c;
8 P{a,b)
9 END
W00 gy , BI Bl
/a) (a | 35.8)
b b |
X x | 146.35
2 P p— - ’ ”
x BP:3 BP P P
—— -4 x| 2% x]24
! l c] | 048] y
: ' 2y 18] gp | [2LIE] g
4 LN N] %> ‘ —t
RN =R G
) J7-05 -
6 [GOTO 2
® ,
i B2 B2
b | ‘v| 88
c . —mc! 1.4
e * e @
CALL P(a,b)
s _J __ Y,

7

5.B3 The COPILOT Context Scenes

By viewing a snapshot, I, in a Contour Model representation, and knowing how the
interpreter, F, operates, one can predict the content: of snapshot I;,;, to whatever level of

detail one chooses. This is precisely the kind of condition we want to create with our
Context Scenes. Although we have not used the Contour Model notation directly, we will
show the (potential) functional equivalence between the Contour Model and our Context

Scenes. This will deronstrate the adequacy of the Context Scenes as an external

Information Structure representation, for MISLE and a variety of other languages. To

handle Lisp-like structures would require additional development.

5.B4 The Snapshot Requ cement

We are imited by current hardware in the amount of concurrence we can achieve. Because
much of what we display (the name and value of a vaniable, for instance) must be converted
from the internal forms required for efficient operation, and because of the expense of this
conversion, 1t 15 impossible to record each change visibly as soon as it occurs. Text Scenes
are made to agree with changes in the ultimate underlying structures, not instantaneously, but

at frequent and adequate intervals, in a manner revealed in Section 6.C.

In order to preserve the "snapshot” quality of the Contour Model in our system, we will
impose the following requirement: all visible context Scenes must be updated simultaneously,
each time the display 1s changed. Therefore, at any instant, all visible system information is
a correct 1epresentation of some subset of the system state at a single previous instant. Thus,
the user sees 1s a single coherent “snapshot” of his system, not an album of individual

pictures whose time relationship is unclear.

5.B5 COPILOT Context Scene Types
We can now present desctiptions of the Context Scene types. In each we will follow

approximately the same foimat

a) Which component(s) of the Information Structure it exhibits
b) Details of the information content of this type (syntax, semantics).
¢) How the information is organized into Scenes.

73

There are only four different Scene types predefined in COPILOT: program, data, dynamic

structure, and status Scenes. We will deal with each in turn.

5C. PROGRAM SCENES — THE PROGRAM COMPONENT

We have designed a programming language, MISLE, in which the user both describes his
algorithms and contrels their operacion, by manipulating their representations as program
Scenes. Although these operators require substantial underlying structure, none is visible to
the user: he see: only the text of his programs, stored in Scenes. We have chosen this
standard textual representation over other alternatives (eg., Johnston's representation of
programs as flowcharts nested in Contour Templates) for a variety of reasons, among which

are:

1) The notation is more compact.

2) The control structure is more obvious (with a slight loss in the clarity of the data
structure).

3) Editing operations are easier.

4) The text format 1s mote easily stored, transmitted and printed.

5.C1 The MISLE Language

MISLE is an easily-implemented subset of the language SAIL [52] SAIL is derived from
Algol60 [46), with some syntactic modifications to suit the designers. Extensions were
originally made to this base to include a variable length character string facility, and to
include a variant of the associative processing language LEAP [18). More recently, in
response to an increased need for sophisticated control and data structures in Artificial
Intelligence research, a major revision was developed (19) The addition mo:t relevant to
our needs is a comprehensive set of facilities providing multiple processes in the style of
Algol 68 [61]

The current COPILOT implementation is written predominantly using SAIL; our preferred
language would be a SAIL superset. However, we have yielded in this dissertation to the
need for a language which i1s simple to implement, and to understand. Therefore, MISLE 1s
a limited SAIL subset, adding to the basic Algol-like constructs just enough to support the

IPS primitives which the user will need: process control primitives, text strings, etc.

74

H
|
1
M

o ——
i
e s

,«.‘4_.

5.C2 The Basic Features of MISLE

What follows is the syntax (and a brief semantic discussion) of the more or less standard
SAIL-like aspects of MISLE. The reader who is already familiar with this sort of language
would do well to skim this section and proceed with Section 5.C5, defining special additions
to the language for interactive uses. Refer to Appendix A for a description of our syntax
notation.

<program> := <block>

<block> s <head> <tail>

<head> := BEGIN <decl list>

<tail> := <statement> { ; <statement> }« END

s W N -

o

<decl_list> = <decl> {decl}:
6 <decl> := <type> <idlist> ; | <pdec> |
<algol-like array declarations>
7 <idlist> == <id> {, <id> }=
8 <type> := <atype> | LABEL
9 <atype> := INTEGER | STRING
10 <pdec> == <untyped pdec> | <atype> <untyped_pdec>
11 <untyped_pdec> :=
PROCEDURE <id> ({ <param_list> }) ; <statement>
12 <param_list> := <param> {; <param> }:
13 <param> := <atype> <id>

14 <statement> := <block> |<compound_statement> |
<conditional> | <assignment: | <jump> |
<for> | <while> | « | <pcall> |
<id> : <statement> | <pi..ess control statement>

15 <compound statement> := BEGIN <tail>

16 <conditional> ::= IF <Boolean_expr>

THEN <statement> { ELSE <statement> }

17 <assignment> := <id> « <expression>

18 <jump> := GO «id>

19 <for> := FOR <forhead> <statement>

20 <forliead> := <id> « <arith expression> STEP
<arith_expression> UNTIL <arith_exg “ssion>

7%

e el g

22

23

24

25

26
27
28
29

30

3
32
33
34
35

36

37

<while> := WHILE <Boolean _expr> DO <statement>
<case> 1= CASE
<arith_expression> OF <compound _statement>

<pcall> u= <id> ({ <expr_list> })

<process control statement> := ACTIVATE (<process_id>) |
TERMINATE (<process_id>) |
SUSPEND (<process_id>) |
SET PRIORITY (<process_id> , <expression>)

<process 1d> ::= <arith expression>

<expr list> = <expression> { , <expression> b
<Boolean_expr - := <disjunct> { V <disjunct> }»
<disjunct> z~ <relation> { A <relation> }
<relation> := <a-ith_expression>
{ <relup> <arith_expression> }»
<expression> := <arith_expression>
{ & <arith_expression> }u
<arith_expression> := { <pm> } <term> { <pm> <term> Jn
<pm> = s | -
<term> u= <primary> { <td> <primary> }»
<td> := |/ | MOD
<primary> z= <id> { [<arith_expression>
TO «<arith_expression> 1} |
<<all> | <constant> | (<expression>) |
<process control_primary>

<algol-like array element specifications>

<process_control_primary> :=
SPROU . (<pcall> <father> <stacksize>,<priority>) |
EV_TYPE () | CAUSE (<evtype> , <value>) |
EV_WAIT (<evtype>) | EV_GET (<evtype>) |
AR _EV WAIT (<evtypearray>) | AR_.EV_GET ..

<evtype> := <arith_expression>

<father> = <process id>

- hdbadedes |- ——ar el o B bl i

39 <stacksize> := <arith_expression>
40 <priority> := <arith_expression>

41 <constant> := <string_constant> | <integer_constant>

42 <comment > := COMMENT <algol-like comment, ending in " >

5.C3 Semantics of Extensions

MISLE 1s for the most part a slightly modified subset of Algolé0 with the SAIL String data
type added. Its only data types are scalars and arrays of integer and string values, denoted
by identifiers, constants, and expressions. Only explicit conversions (string to integer, integer
to string) are provided. The operators +, -, % /, and MOD are available for arithmetic
operations; normal relationals are available for Booleans. Strings may be concatenated using
the operator &. S[n FOR m] yields the m-character substring of S, beginning with the nth
character. Parameters are passed to procedures by value only. Control facilities include (in
addition to proceduits), GO TO, IF, FOR, WHILE, and CASE (alternative selection)
statements. A syntactic modification places both the naming and type descriptions of

procedure parameters within the (parenthesized) parameter list, as in Algol W [3].

5.C4 Processes

The process-manipulation primitives of the unenhanced language allow creation, deletion,
suspension and activation of processes (see (4] as a reference to the kind of “cactus stack”
process strictu.e we employ) We mean by "unenhanced” that these do not rely on the

facilities of the IPS for thewr operation.

Processes are assigned execution priorities when they are created. Whenever a running
process suspends, or specifically requests 1t, the system scheduler selects a new process to run,

choosing the highest-priority process which 1s READY to run (see Section 5.F).

Events are interrupt and process-communication fechanisms. A process may cause an event
of a chosen event type, and may specify a value to be associated with the event. When the
scheduler next runs (the running process suspends), it will ready any processes which are
waiting for an event of this type, returning the associated value as the result of the function

which does the waiting.

77

For each occurrence of an external interrupt (I/O, timer, etc.) basic system routines simulate a
very high priority process which causes an appropriate event and forces rescheduling as soon
as possible. Processes handle interrupts by waiting for, or testing (polling) for, events of the
corresponding type. This approach to interrupts, as opposed to more standard interrupt
rnechanisms like those in {47) ("unexpected” procedure calls), is supported by Wirth [64).
The result is a consistent, process-oriented method for handling all asynchronous activity.

Table 5-2 provides the meanings of the basic process-control primitives. In Section 7.C7

we will describe additional process control functions, intended for interactive use.

Table 5-2. COPILOT Process Contro! Primitives

Sprout(...) Creates a new, suspended process, with given stack size and priority.

An 1nstance of the specified procedure is readied within the new process.
Sprout returns a unique integer process identifier, or pid.

Activate(pid) sets the state of the process pid to READY. It will be set RUNNING as
soon as possible, based on its priority and the availability of resources.

Suspend(pid) Sets the state of the process to SUSPENDED. It will not run again
until some other process Activates it.

Terminate(pid) Destroys the process pid, and any subprocesses.

Set_priority(..) Changes the execution priority of a process.

Cause(..) creates an event of given type and value, READIES any processes

awaiung events of that type, and forces reschedu ing.

Ev_wait(..) ylelds the value of an event of given type. It causes the process caliing
it to wait (SUSPEND), if necessary, until such an event is available.
The event 1s then forgotten by the system.

Ev_get(.) never waits. [t yields 0 if no such event has been caused (and still
exists). Otherwise, 1t is the same as Ev_wait.

Ev type() creates a new event type.

[S ’l

e

LR

Ar_ev wait(..)

Ar e get(.)

actual event.

as Ar_ev wait.

5.C5 Special Features

We have added the following additional constructs to the language in order tc make some of
the interactive facilities more convenient. The additions include variable-display (debugging)

statements, breakpointing statements, and Scene linking constructs. The syntax follows:

- W N

o

9

<statement> :s <Scene link> ; <statement>
<declaration> == <Scene link> ; <declaration>
<Scene link> = #» <Scene id>

<Scene id> ::= <id>

<statement> ;= <show>

<show> := <expression>

<statement> = <t2mporary statement> <statement> |
<statement> <temporary Statement> |
<affect> <class>

<temporary statement> := '{ {<class> :} {<switch> !}
<statement> {; <statements}: '}

<affect> == TURN ON | TURN OFF | DELETE

10 <class> == <id>

<switch> .= ON | OFF

12 <statement> := BREAK (<process 1d>) |

ARR BREAK (<process_id array>)

waits for one of a set of event types, specified in an array. The result is
the type of event which was actually caused. Ar_ev_wait does not
delete the event; hence, an Ev _get may subsequently be used to fetch the

never waits. [t yields 0 if no such event exists. Otherwise, it is the same

Each of these additions depends heavily o1 uspect: of the IPS which remain to be described.

We will delay explanation of their semantics until the descriptions are complete.

For an example of a MISLE program, refer to the PROG Scene of Figure 4.1, or one of

those which follow it.

5.C6 Program Scene Organization
Traditional program source text organization is straightforward: a deck of cards, a magnetic
tape, or a disc file containing the lines of the program. In the latter case, perhaps the file is

linearly segmented into logical pages, mostly for display purposes.

One notable exception is the file system for NLS [15], developed over the !isc decade at
SRI's Augmentation Research Center. Very briefly, the purpose of this display-based system
is to provide a complete interactive environment for the user, to dispense entirely with paper
and pencil, yielding a corresponding increase (augmentation) in intellectual power. The NLS
work has proved a major influence in this research. We hope to retain something of this
power in COPILOT, while extending its domain to direct interaction with user algorithms.

Files (not only program files) are not organized in simple linear fashiun in NLS. Instead,

they are hierarchical, resembling outlines; the NLS user can choose to view only the level of
detail which suits him: just the major topics, the major and first subtopics, or the entire
structure. He can also place hidden or visible links at arbitrary points in his files, providing
a path to related material in the same or other files. NLS makes it easy to follow these links,

to save previous views, and generally to navigate fruitfully about a web of cross-references.

We cannot hope to do the NLS system justice in so short an introduction, nor have we space

to describe other text-manipulation systems which support structured file organization. We

can suggest in addition the references [60), [24), and (42])

MISLE programs, being block-structured, are inherently hierarchical We envision an
implementation of COPILOT which would allow the user NLS-like control of the degree of
detail (depth of nesting) of the displayed program. For instance, one could view only the top
level statements of a block, with substatements merely indicated. Hansen used something like
this 1n his thesis [24). The BBN-Lisp editor, (53], because of the need to be concise,

80

uses a similar structure-compression technique in its teletype-oriented system. Our system

contains many hierarchical structures, and techniques like these would enharce any of them.

At present, however, our use of hierarchical design is explicit. Instead of fragmenting a
program into consecutive linear Scenes, the user can include Scene link constructs to achieve
a hierarchical segmentation. Figure 5-2 gives a simple example. The system views the
program as if it were a procedure, expressed in one Scene, containing the data of Figure
5.2.c. it treats a Scene link as a sort of "macro” call. The user views it as a procedure
.ontaining a suppressed subprocedure (Figures 5-2.2 and 5-2b). The system prcvides
complete facilities for “following the links", both forward and backward, when the user
wishes more or less detail. When a Scene link occurs as the last line of a Scene, simulating

linear connections, special treatment avoids unnecessary nesting.

Our personal experience (supported by Mills in [42]) is that it is useful to segment a
program so that each Scene is fairly small, each representing a logizal section of the program

and of the control structure of the algorithm. The system will nevertheless support Scenes of

arbitrary size.

81

s e o o |

Scene oStl;
PROCEDURE TI(INTEGER DUM);
BEGIN
oSRNP ;
INTEGER JK; STRING §;
FOR J«1 STEP | UNTIL 100 DO BEGIN
Ke]J+3 K
WHILE K<J+10 DO OUTPUT(RNP(K))
END
END

a) Containing Scene

Scene sSrnp;
STRING PROCEDURE RNP(INTEGER 1);
IF 1=0 THEN RETURN(™) ELSE
RETURN(RNP(1/10)PUTCH(I MOD 10+48));

b) Contained Scene

PROCEDURE TI(INTEGER DUM);
BEGIN
STRING PROCEDURE RNP(INTEGER 1),
IF 1.0 THEN RETURN(™) ELSE
RETURN(RNP(1/10)&PUTCH(l MOD 10+48));
INTEGER J.K;
FOR J«1 STEP 1 UNTIL 100 DO BEGIN
KeJ+3 K;
WHILE K<J+10 DO OUTPUT(RNP(K))
END
END

¢) Apparent Program

Figure 5-2. PROG Scene Linkage
82

i el Gl Bd

S

[]
4

ol

3

]
4

W i

e

. T —

| = e &= =

| omenuny

=4 = 0

:'d “

5.C7 The Instruction Point Portion of the Control Component

As we have indicated, we have distributed our representation of the Control Component
among the Context Scenes. In Program Scenes we indicate the IP (for a selected process) by
a special contex* cursor, represented by the "»" character. This context cursor precedes the
text for a statement in the selected process. Which of the active IPs is selected for display
depends on an indicator in the DYNA Scene (see Section 5.EI). Any terminal commands

which require implicit program location data obtain it from this selected IP.

The context cursor is the visible represeniation of the active statement within the selected
process. No function used to retrieve program Scene data will ever yield a string containing

the context cursor. See Chapter 7 for functions which yieid its location.

5D. DATA SCENES - THE STATIC DATA CUMPONENT

Because algorithmic languages like MISLE were designed before we designed COPILOT, we
had little trouble deciding a representation for the Program Component in the program
Scenes. This is not true of the Data Component, where few attempts have been made to

create formal external representations for the data environments (for any language).

Again, a logical candidate might be the Contour Model -epresentation; again we have
decided against using it directly. In addition to the reasons we gave in Section 5.C, we feel
that use of Contours to display the Recora of Execution would create Scenes of confusing
complexity. We have instead developed a more linguistic method which we can prove
equivalent in facilities to the Contour Model, thus adequate for Data Component

representation.

Qur solution requires two new constructs:

1) A data specification notation, or Data Language *), intimately related to the MISLE
language, for defining data values in their static (lexical) contexts (the static Data
Component)

2) A tree notation for exhibiting the dynamic (control) relationships of the Record of
Execution.

(1) Some object to this term because the "language” is not algorithmic (no verbs). It is a
language formally, however. Read "specification” for ™anguage” throughout, if you wish.
83

o

We begin with the Data Language.

5.D] Data Language Syntax
. <data layout> := <data block>
<data block> := BEGIN «data tail>
<data tail> == <data spec> {; <data spec> }» END
<data spec> := <equation> | <data block> | <pcall spec>
<pcall spec> = <pcall descr> ; <da.2 block>
<equa’ion> «= <id> = <constant> | ..
<pcall descr> = <instance> ({ <equation list> })
<instance> zw { <process name> . }
<procedure id> {s <nesting level> }

<equation list> := <equation> {, <equation> }»

5.D2 Semantics, Pragmatics

The Data Language is a parasitic language. The syntax hints at this in its resemblance to

MISLE: the procedure and block structure productions are nearly identical, the equations of

the Data Language correspond closely to MISLE declarations. We require that the
dependence be even more pronounced, however. A <data layout> is meaningless without
reference to a section of the MISLE program to which it is linked (we cousider this linkage
in more detail below). One <pcall spec> or <data block> may exist at any instant for each

instance of a procedure or block activation.

There are two kinds of information in a <data layout>. The first, provided by equations,
comprises the names and values of selected variables (and expressions) at some instant. The
constant in an equation must agree in data type with the type of the linked variable whose

name appears in the equation, and whose value it represents. We will say that an identifier

is marked if it has been selected by the operations of Section 7.D1 for display in data

Scenes.
The second is structural, provided by the block and procedure structure (whose interpretation
is transparent), and by ellipses (..). The ellipsis is an optional device which informs the

viewer that there are variables in the Contour whose values do not appear in the Scene.

84

e S R L T TS ——

The position of the ellipsis (or ellipses) in a <data block> or <equation list> corresponds to
I the position of the omitted names in the declaration list of the linked algorithm. Figure 4-2
contains a Data Layout for one of the states enccuiitered by the program in the same figure

during its execution.

5.D3 Data Scene Organization
The second COPILOT Context Scene type is the data Scene. Each data Scene contains one
data layout which is linked (}) to a procedure in some program Scene. In COPILOT, a

sir.gle data Scene, DS, can contain text level representations for the data from at most one

| instance of some procedure, p, and from those forming its lexical ancestors. This means any

older recursive instances of this same procedure, any instances of other procedures in the

l dynamic ancestry of p (and in other process branches) whose variables are not accessible to p,
can have no representation in DS. It is possible, however, to form other data Scenes at the

same time which do represent these hidden environments.

| 3 The user, or more commonly che system, can create a legal data Scene as follows:

1) Choose a procedure, P=P, from some Scene, and some instance of that procedure,

f p=po Begin with an empty data Scene.
(]
. 2) Record in a <pcall spec> the values of marked local variables and actual parameter
{ | values (with their formal names) from p, following the pattern established by P.
y 3) Obtain the immediate lexical parent, P, of P, and the corresponding instance, p', from
[the static environment of p. Quit if there is none.

4 Embed the lines of the <pcall spec> created in step 2 in a <pcall spec> formed by
'r repeating steps 2 through 4, substituting P’ for P, p’ for p. An embedded <pcall spec: is
. inserted just after the other declarations in the <data block> which corresponds to its

point of declaration.

[The hinkage of pq to Pg defines completely the linkage of the data Scene to the program
- Scene.
o

We shou!d emphasize that we have made many arbitrary decisions in this design. We
it

(1) This is the antecedent link of Johnston's model; its exphcit existence is usually omitted in his

L

examples, but would have to be present in any implementation.

85

considered several other algorithms for generating data Scenes. Some of these allowed
multiple instances of the same procedure, thereby including much more dynamic context
directly. Perhaps one of these methods (or one which d.d not occur to us) would be a
superior cne. Surely the designer of a COPILOT -like IPS for a different type of language
should reconsider the issue. Our final choice is based mainly on a desire for clarity. The

dynamic Scenes of the next section help cure many of the inadequacies of the data Scenes.

Section 5H1 will depic: data Scenes in action. There we shall show how these Scenes are
created and used, emphasizing tne most common situations.

5.D4 The Data Language as an Input Facility
Using Contour Model terminology, the Program Component of a Snapshot, Ij, of a

computadion (k)is externally represented in COPILCT by program Scenes. In some sense,
these Scenes also form a complete external representation of the initial state, Iy, since the

initial Record of Execution is empty; they cannot specify any subsequent Snapshot, Ij' j=0.

Thus, although the language can specify a computation via an algorithm, it cannot directly
express intermediate states of that computation. R. Floyd has pointed out that it would be
useful to have linguistic facilities for constructing these intermediate states (). This would

make it possible to:

1) Directly create a test environment for testing a routine in an incomplete program which
does not yet include code for supplying that environment.

2) Directly modify an environment, perhaps to agree with a modified algorithm, perhaps
preparatory to altering the instruction point (IP) of a process operating in that
environment (in complicated cases this might be preferable to what the system could do
automatically).

3) Save and restore intermediate computation f*aies in human-readable form. (For small
programs, this “core dump” technique would allow one to save computations over
conscie sessions. In Section 8.B1 we will examine more efficient methods.)

4) View Snapshots of a computation in a reasonable form.

(x) The collection of snapshots defining the total operation of one program "run"

(1) Personal communication, October 1972,
86

We have not seen this kind of facility in an IPS. Comment (4) above should reveal our
approach to providing it. We already possess a linguistic facility, the Data Language, for
disp'aying intermediate computatic 1 states. By selecting a data Scene for editing, then using
standard text-editing operatior.; to modify it, the user can even indicate changes he would
like to make. To turn this into a full data-specification facility, it is only necessary to
convince the system to convert these changes into corresponding changes in the actual
underlying data structures. We have done this in the COPILOT design. Similar user
changes will be shown useful in dynamic Scenes, as well (see Section 9.C1). This achieves a
very pleasing symmetry within the Context Scenes: all constructs are useful for two-way

communications between the user and the system.

The editing operations required to accomplish text changes are presented in Chapter 7,

including special convenience commands particular to data Scenes.

5.D5 The Environment Point Portion of the Control Component

We use here a development paralleling that for program Scenes. There is an Environment
Point (EP) in the Control Component for each active Process, defining its access
environmert. Information in the dynamic Scenes will indicate all the active Environment

Points.

Again, the user (or orie of his programs) may select a “distinguished” EP, which will be
displayed as a context cursor ("») if the environment it defines appears in a visible data
Scene. All terminal commands which require implicit environmental specification will obtain

it from this cursor.

5E. DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

Data Scenes can show any or every element of the Data Component, and the static (lexical)
relationships between activations of <blocks> and <procedures>. They do not exhibit the
dynamic connections (eg., for procedure instance p, which procedure instance called it, or
which created (-prouted) it; to which instance it will return). The purpose of the dynamic

Scene is to provide this information.

87

We are tempted to suggest another "language” here, with its own related syntax; we have

decided instead to develop a mare graphical representation for the dynamic "cactus-stack” i
structure of MISLE programs. This dynamic structure tree does share constructs in common o
with Data Language elements, however, and this linkage is important to our powerful il
context-roaming operations (Section 5.HI). o
There is but one dynamic Scene in a COPILOT environment, containing the single dynamic !

structure tree. Figure 4-2 is an example of the dynamic Scene. Its structure is quite simple:
Each node (terminal or non-terminal) of the tree is an <instance>, as defined in the Data qi
Language grammar in Section 5D1. The root node ("USER.COPILOT#I") provides the -
base environment of the entire computation, or "job", including IPS facilities. Instances of

active procedures in a process appear (in order of call) below each other in the same column. .
The root nodes of subordinate processes are placed in adjacent columns as shown, then P
connected by horizontal line segments to the processes which own them (3). The terminal

nodes of the dynamic tree define the set of active Environment Points.

5.E1 The Context Point $
At any one time, there can be but one EP visible (as a context cursor) in a data Scene, and ‘i
bu* one IP context cursor in a program Scene. In fact, given a computation in progress, and -
a particular EP, the corresponding IP is completely determined. Thus to select an (IP, EP) _J {

pair for display as context cursors, one need specify only the EP.

We accomplish this manual selection of e. ecution environment using an additiona!l indicator,

which we will call the Context Point (CP). The CP is represented by a context cursor which ']
selects an instance in the dynamic Scene. We have functions for moving the Context Point - 3
within the dynamic tree, and for generating data and program Scenes, with their context o [
cursors, to exhibit the environments which the CP selects. We will describe these functions ..(
in Chapter 7.

i
5.E2 Adequacy of Scenes as External Information Structures]
In Section 5B3 we announced our intention to show a functional equivalsnce between the “

oy
...................................... el

{$) For simplicity, MISLE follows the retention rules implicit in Algol60, and explicit in Algol68: A
process must be extarminated if its owner ceases to exist.

88 A

- PR
L

U

Context Scenes and Johnston's Contour Model. This is important, because it expands the

power of our formulation to all the language types amenable to the Contour analysis.

Now that each of our Scene types has been developed, the demonstration of this equivalence
18 quite simple: one need only select all variables for display, then create enough data Scenes
to contain each instance of each active procedure and block at least once. Then for each
relationship or value revealed in a Contour Snapshot one can identify constructs from one or
more Context Scenes which reveal the same relationship or value (a formal proof would

simply enumerate these correspundences).

5F. STAT SCENE — PROCESS STATUS

We have consistently omitted one important quantity from our Control Component
descriptions: the execution state of each process. A user viewing a snapshot composed only of
program, data, and dynamic Scenes could not predict from it the appearance of the next,

since he does not know which processes are running, which suspended.

We have theiefore added one last Context Scene type: the status Scene. Figure 4-5 contains
an example of one. It indicates for each process the execution status of that process:
RUNNING, READY, or SUSPENDED. In a single processor system there can be but one
RUNNING process; those lacking only the processor to run them are instead termed

READY. For most purposes the two states can be considered equivalent.

We have further distinguished suspended processes in the status Scene by including in their
status the reason for their suspension. (A final state, terminal, is aften included in the set of

process states (see for instance [14] or [4)). In MISLE programs, for simplicity, all
structures connected with a process disappear on process termination. The entry therefore

just disappears from the STAT Scene).

Table 5-3 is a list of the current STAT Scene state descriftors.

89

FLAG STATE

> RUNNING
READY
VIRGIN

Table 5-3. Copilot Process Execution States

REASON

The processor is executing this process, either because it has the
highest priority of any ready process, or because one of ther., after all,
has to run.

This process will run when the processor can e assigned to it.

This suspended process has been created, but has neve: been READY
or RUNNING.

SUSPENDED This process was unconditionally suspended, either by its own volition

STEPPED

or by some other process with the right to suspend it. Only another
process can reactivate it.

This process has unconditionally suspended itself due to completion of
a "single step” command to execute but one complete statemen. (see
Section 7.C7). The state is otherwise identical to SUSPENDED.

AWAITING x

BROKEN

The string x is a description of some cendition whose occurrence will
ready the process. The flag (") is present only if that condition is to
be satisfied by user action (or a procedure running for the user). The
flag blinks on and off until the user stops it.

This state is again equivalent to SUSPENDED, except that suspension
occurred due to a Break Statement. The flag (":") flashes until the user
stops it (or causes the process to continue execution), in order to draw
his attention to the breakpoint’s occurrence.

80

e s S . il o — PR RS I e VN

5G. USER SCENES

The Scene is the basic unit of classifiable allocation for the storage of data to be displayed by
COPILOT. Only Scenes can be mapped into Regions for view. So if the user wishes to
display and edit his own information, he will need Scene types in addition to those we have

provided. Consequently we might provide primitives to do the following:

1) Create a new Scene type, assigning a name to a system-provided type identification.

2) Specify for a new Scene type a process which will activate (trigger) whenever selected
events occur (Scene made visible, user changed line, etc.).

3) Create and name new Scenes of any type, and explicitly insert or delete information
from them (unless they are protected from modification).

4) Delete Scenes.

This is an undeveloped area of COPILOT. The definition of user Scenes would follow the
same sorts of derivations we have used for the context Scenes. The triggered process (above)
could maintain user-defined structures corresponding to text Scenes, just as COPILOT
routines do for context Scenes— we will describe these methods in Chapter 8. Graphic (non-

textual) Scenes should not prove difficuit.

5H. REGIONS

Regions are named areas with fixed Screen locations. A Region contains the following fixed
(%) attribugtes:

1) Its name, a unique global identifier.

2) Its location (x in columns, y in lines, Screen) and extent (X in columns, y in lines) —
thus its Window size.

When the user or the system Maps a Scene into a Region, the Region acquires the following

dynamic attributes:

1) The mapped Scene’s Name, and therefore indirectly the Scene data, type, length,
capabilities, structures, edit and context cursors.

2) The index of the first visible line in the Region.

4) Other bookkeeping information.

......................................

(») Assigned by user or system at Region creation and allocation time -- ran be changed by re-
allocating.

91

This is all that is required to generate the display of an active Region.

The initial system configuration contains four Regions:

RSTAT, with the STAT Scene (also named STAT) mapped into it, showing that only
system processes exist, and none are running.

RDYNA, with the DYNA Scene (named DYNA) mapped, showing that the only active
procedures belong to system processes.

RPROG, with no Scene mapped.

RDATA, with no Scene mapped.

the user then proceeds to complicate this picture by fetching and interacting with his

programs.

5.HI Regions for Data Scenes — Special Problems and Provisions

Data Regions require special treatment, because more than one is required for all but the
simplest tasks. In a fairly complex situation, for instance, there might be one or more data
Regions monitoring the progress of running processes, which would cause occasional screen
updates by executing data display statements. Another data Region, containing the context
cursor, would display the data Scene for the possibly suspended process currently under the

user's direct control.

We have discovered that these two uses— monitoring running processes, and manually
investigating suspended ones— require data Regions with somewhat different behavior. We
have therefore subdivided daia Regions, providing fixed context and variable context

Regions.

To monitor running processes, we need to guarantee that successive values of a variable (and
only values of that variable) will be displaved in a single location of a screen. The
alternative would be an impossibly "noisy”, confusing situation. We therefore provide fixed
context, or simply fixed, data Regions. A fixed Region is one which 1s constrained to the
dispiay of variables in the lexical range of but one program block, and from but one process.
Whenever any instaace of that block, or any of its lexical parents, executes a data display
statement, a data Scene containing a Snapshot of that instance will appear in the Region.

The structure of data appearing in that Pegion remains fixed, although the values, and even

92

=

the procedure instances represented there, may change. The user should create a fixed

Region for any program section whose behavior is of long-term interest.

For convenience, we have relaxed the Snapshot requirement of Section 5.B4 to permit the
retenticni of a data Scene in a fixed Region after the corresponding procedure instance has
disappeared. This Scene is replaced whenever a new instance of the same context is created;
it is deleted whenever the process suspends, if no corresponding instance really exists. This

facility prevents a fixed Region from flashing and flickering, as instances appear and

disappear.

Our other application is the manual observation of data values. In this instance, a data

Scene responding to variable query, or to “single-step” operations, will not be changing
rapidly. Successive operations might require the creation of entirely different data Scenes.
For convenience and conservation, we would like to be able to display all these Scenes,
successively, within the same Region. We will call such a Region a variable context, or

variable, data Region. Any data environment may be displayed in a variable Region.

One variable Region must be selected at all times as a default for the display of data which
do not fit into any fixed Region. Initally, the RDATA Region is the only available Region
for data Scenes. RDATA is a variable Region. Until more Regions are created, it provides
all data display services. The user can create specific fixed Regions, and additional variable
Regions, if he wishes. In particular, he can designate a new variable Region as the default,
to handle otherwise unassigned display requests from running processes. The original

RDATA Region may then react to his direct queries, viithout interference.

Due to our data Scene creaticii algorithms, variable Regions are susceptible to the annoying

"Aicker” properties which the fixed Regions avoid.

93

4

N P R TIREE N e T e T, T T e

CHAPTER 6
THE CONTROL ALGORITHM

This chapter completes the user-level presentation of COPILOT. It has three ma jor sections,

roughly responsible for describing:

A) The Block and Process Structures of the COPILOT System
B) The COPILOT terminal control (USER) loop

C) Constraints on MISLE statements used for top-level control

6.A. SYSTEM STRUCTURE

Every COPILOT job, whatever its function, can be expressed in MISLE as:

begin
Euniversal; comment system intrinsics, basic process-control primitives, global data
structures,
stargets, comment a Scene which ‘n turn contains links to the program Scenes
ccntaining the user target, or applications, programs,
begin
ssystem; comment all IPS data and primitives, display primitives, invisible to
Targets;
spost; comment a high-priority process to post state change information and
data display requests;
sucp; comment the spectal User Control Process (see text);
eassistants, comment processes created by the user to perform "macro” actions for
him. They have access to IPS primitives and data.;
sprout(post,post,..high);
sprout(ucp,ucp....higher);
suser; comment the terminal-response program, the active body of COPILOT;

e g

end
end comment the system;
Figure 6-1. Global COPILOT Structure

This program is contained within the system as a Scene nariel Copilot. When a user
activates a COPILOT System for himself, the target and assistants Scenes are empty, and
the UCP is initialized as shown below. During inutialization, the equivalent of a i

Sprout(User,Copilot,...highest priority) operation occurs, placing the Copilot procedure in the

94

l srocedure COPILOT; P

base of the environmental hierarchy: the process named User. This procedure, whose only
active code is the basic control, or User loop, thus constitutes an entire COPILOT job. Ali
user and system subprocesses are, as evidenced in the skeleton above, formed from routines

local to Copilot. (This skeleton is a “real” one: it supports the actuai COPILOT system, when

it is fleshed out by expansion of the Scene links).

The target Scene contains links to the user’s target, or applications. programs— the programs
which he has written, and with which he wishes to interacr. Target procedures, running in
their own process or processes, have access only ‘o the basic system routines and structures,
and to the environments which they themselves create. They interact with system processes
only indirectly (through the event mechanisms), when they suspend, terminate, or request
modifications to data Scenes. This denial of lexical access to system environment is useful not
only in the protection it affords, but also in the storage efficiency it can support (by allowing

system routines and data to be “swapped out” of main storagz while inactive— Section 8.D1).

Target procedures, lacking convenient access to the IPS's interactive environment and
facilities, can not te written to operate in the user’s stead, performing directly statements
which define the meanings of terminal commands. Such an abulity 15 desirable, both to
facilitate execution of command sequences ("macros™), and to allow composition of more
sophisticated sequences, embedding these IPS statements in conditional and iterative control

statements.

The assistant Scene is designed to serve this purpose. Routines which are contained in the
assistant Scene, or in Scenes accessible from it, do possess the necessary access to perform IPS
operations. We will demonstrate in Section 9.A1 the means for invoking these sequences,

and for maintaining system integrity when fauity routines are executed.
The sections which follow describe the operation of User, and its parasitic UCP, which

define completely the input behavior of Copilot. The concluding section explains the role of

the POST process in maintaming the Context Scenes— defining the output behavior.

95

|
¥
{
1

6.Al The UCP — User Control Process

The following represents the initial contents of the Scene named UCP:

procedure ucp,
begin

rend

A

(The context and edit cursors are, as we have said, not part of the Scene data). The system
implements but one instance of the UCP procedure, as shown above in Figure 6-1. The sole
use of this process, also called UCP, is as a repository of user-submitted statements to be
executed. Operation of the UCP is controlled exclusively by the User loop; descriptions of
UCP functions begin in Section 6.B3.

6.A2 Crucial Primitives
We will introduce most of the IPS prunitives, those statements invoked by the user at the
terminal, in the next chapter. A few, however, are crucial to the operation of the USER loop

itself. Brief descriptions of these routines follow.

stepp(process,”l”). This function is a special modification to the activate function. Its effect
1s to activate (make READY) the selected process, having first conditioned that process to
suspend itself on completing one MISLE statement — the one in the current environment (IP,
EP) for this process. Vhen the process suspends, it will cause a suspension event, for the
Post process, containing the location of the suspension and the reason (STEPPED) for it.
Stepp is usually executed by a process at the same or higher priority than the process it
readies, so that the activated process will not run until the activator next suspends. The
siepped statement may be simple, or it may be complex, containing substatements and
procedure calls which arbiatrarily extend its effects and duration. If Stepp is applied to a
running process, its effect is normally to extend that process's execution by another statement,

before suspending; tut see Section 7.C7

set_p(process, statement). The instruction point (IP) for this process is placed, if legal, at the

indicated statement (an expression derived from functions like the next one).

get_struct(scene or region, line, space). This returns the unique statement identifier for the

first statement beginning after the indicated point.

insert_line(scene or region, line, "string”). The string becomes a new line, in the selected
Scene, just preceding the indicated one. This simple line-oriented function will suffice for

insertions in the UCP. More versatile text modification functions may be found in Chapter
7.

delete_line(scene or region, line, coun:). The number of lines indicated L, “count” disappear

from the Scene.

6.B. THE USER LOOP

The ultimate interface behavior of COPILOT is determined by the program which listens to
the ternuanal and responds to what it hears: the User loop. We shall first present a MISLE
program for a basic User algorithm which (barely) implements a non-pre#mptive terminal.
We shall subsequently sub ject this algorithm to a series of refinements which enhance its

power and efficiency.

The User process always operates at a scheduling priority higher than any other process’s.
This allows the "sser process (whose active agent is the User loog) to be set RUNNING
immediately, whenever it becomes READY; the user's commands will have immediate effect.
(See Section 8.E3 for our definition of "immediate”). Adjacent high-priority levels are

reserved for the UCP, Post, and other special processes (see Section €.A and Section 9.A1).

6.B1 Algorithm A - Basic
This program, and all subsequent refinements, would occupy the Coptlot Scene in the system
of Figure 6-1. The meanings of undefined procedures in these examples will be explained in

the text following each example. The initial loop does not require the UCP.

97

wJ

-

[
Mt s

p! —

s
[T

1 user:

2 while true do begin

3 string statement; integer char, state,
4 read: statement « readaline

5 insert: insert line(user,8,statement);
6 compil: update_world;

7 doit:

8 cleanup:delete line(user8,1)

9

end,

Operation of this program is simple: it repeatedly accepts a one line statement from the
terminal, inserts it into the text representation of User loop itself, transiates (compiles) it, then
"falls into" the just-presented statement, executing it in the environment of User. Before

returning for more input, 1t deletes all representations of the statement.

In the function Readaline the User process suspends, alicwing other processes to run, until
the complete line (comprising but one statement) has been presented. When the line is
complete, the User process supersedes Any other running process and returns the resulting
line as a text string. The Insert call puts this string into a new line between Doit and
Cleanup. The function of Update-world is to perform any compilations necessary to make all
program Scenes (including Copilot) executable as they are currently stated. We will defer
any further compilation consideration until Chapter 8, where this and other implemenitation
topics appear. The user sees only the source-language behavior; we shall at present assume

that the system maintains all necessary structures to make this behavior correct.
The final delete statement returns the Copilot Scene to the state shown in the figure.

This program alone, coupled with the posting algorithm below, can support a nearly non-
preémptive IPS with adequate visual context. It does not, however, satisfy all our behavior
match requirements, nor is it free from other shortcomings. Our objections are listed in

Table 6-1.

98

L

1)

2)

3)

4)

5)

Table 6-1. Shortcomings of User Loop Algorithm A

The Readaline function meets none of our abbreviation ob jectives: only complete

statements are permitted. Commands requiring multiple lines are likewise not possible.

The Usei loop is self-modifying! This is unacceptable in Copilot, for all the usual
reasons.

This algorithm maintains no record of the user's recent activity. Such a facility,
although dispensable, is desirable, both as a reference for the user, and as a source of
statements for future operations (see Section 9.A3).

If the statement at Doit requires a long (or infinite) time to execute, the non-preémptive
facility is lost: the user has no way to terminate its execution. The class of permissible
statements must be severely restricted, probably to the original system-provided
primitives.

In practice, this method proves too inefficient for the execution of frequent, simple
operations (especially simple text-editing commands).

Remedying these ob jections is the goal of the refinements we have made to this algorithm.

Let us first provide a mechanism allowing abbreviat d and "manipulative” commands, in

order to eliminate ob jection 1.

99

6.B2 Algorithm B — the Expand Routine

To achieve the abbreviation we desire, we replace the statement at Read by:

read: char « readachar;

expand: case getcom(char) of begin
comment getcom provides a direct mapping of characters
to commands, often many to one;
fO(char);

—

fi char),

| fn(char)

end

3

end,

L.] This particular solution imposes a simple prefix grammar on our terminal “language”;
another method with a comparable result would be equally acceptable. The f(char)
statements may use the original char, as well as local state information, and perhaps even
additional input characters (via Readachar). To do this, 1t may have to implement 2 sort of

i local FSA interpreter, in order to gather and correctly interpret the parameters, etc. In other
‘ words, although there are no global modes in COPILOT, the basic User loop recognition

] algorithm may establish local modes, corresponding to parser states, to interpret the syntax of
user input. This will normally go unnoticed, but will result in the need for a continuously
active facility which permits abortion of a partially completed command input, in order to

begin a different one.

Executing any f; statement a‘signs a string, comprising a complete MISLE statement, to the

string named statement, which 1s used, as before, in the completion of the User loop. This

facility, expanding commands to calls on the primitive IPS functions defined in Chapter 7,

permits the terse commands exemplified in Section 4.C2.

' 100

This is but one recognition algorithm. Any method for generating statement strings from
input character sequences could be substituted for it, to provide a custom-tailored user

interface (see Section 9.C3).

6.B3 Algorithm C ~ Using the UCP
This small modification removes ob jections 2 and 3 from the list in Table 6-1 (self-
modification and the lack of a history list), and alleviates #4 (lengthy or non-terminating

input statements). In Algorithm C, we replace the Insert, Doit, and Delete statements by:

insert: insert(statement, ucp, currentline),
currentline « currentline «+ 1

compil: ... as before ...

doit: suspend(ucp), stepp(ucp),

cleanup: if desired then delete(ucp, 2, 1), comment optional;

This algorithm does not modify itself (ob jection #2). Instead, it adds its statements to the
UCP text Scene, then causes them to be executed in the UCP process. Depending on the
predicate desired (optional), algorithm C retains all or part of the user's input sequence, or

protocol, in this Scene. By mapping the last Window of this Scene to a Region, the user can

have a visible record of his recent activity. This Scene may be edited, with interesting

results. We will pursue this sub ject further in Section 9.A3.

Ob jections #2 and #3 have been overcome by the introduction of the UCP Scene. However
the most radical change in Algorithm C is the introduction of the UCP process. The Stepp
call at Doit arranges to READY the UCP process. Its IP is set to the newly compiled
statement. Its EP is the activation record for the UCP procedure within the UCP process;
since the procedure ha; no parameters or local variables, this data environment is virtually
identical to that of Deit. Thus this change in the algorithm cannot change the meanings of

user statements.

The User process, because it has the highest priority, continues to run after the UCP
ac ivation statement at Doit. The User process does not suspend until control returns to

Read; then the UCP, at a slightly lower priority, is guaranteed to run. The UCP process

suspends again after executing the one statement. We have achieved the final decoupling

needed for a non-preémptive system since, by giving another command, the user can

supersede execution of the previous one (assured by the explicit UCP suspension at Doit).

This implicit abortion facility, though useful for terminating long or runaway commands,
may not always be desirable. See Section 9B2 for further consideration of the conflict

between "type ahead” and command "abortion”.

Although the decoupling achieved by executing user statements in the UCP process prevents
any user-initiated operation from locking out (preémpting) the terminal, it is not the
preferred method for accomplishing lengthy functions. Instead, statements executed in the
UCP should be restricted to those whose operations will complete in a time consistent with
the response time of the system (a matter of one or two seconds at most). Anything which
takes longer should be accomplished by activating a separate process to do it. The system
provides this facility for standard kinds of operations (eg., string search within text Scenes),
and could make it easy for the user to use it for his own operations. The UCP’s major
functions are to collect a user input history and to eliminate modifications to User loop code.
Normally, it will run in "lock-step” with the User process, behaving more as a subroutine

than as a coroutine or parallel process.

6.B4 Algorithm D — Selective Interpretation

We can expect certain basic operaticns to occur quite frequently during the course of a
session with COPILOT. Examples are cursor-moving operations, and process control
functions such as Stepp. To perform these operations on current hardware, using the
insert/compile/execute algorithms of this section, is quite expensive. For more complex

operations, even fundamental ones, the inherent flex1bility of these methods justify the cost.

As one possible remedy to the expense of basic operations, we can enclose the final steps of

the User loop with the following conditional:

if length(statement) » O then begin

insert: ..;

cleanup: ..;
statement « null

end;

Now any of the f; cases at Expand can leave the string variable (statement) empty, and

directly execute the statement which it wouid otherwise store there. Since the execution

environment at f| is effectively the same as the UCP environment, the effect is guaranteed

the same.

A serious flaw in this modification is that by bypassing the Insert step we have eliminated
the recording of some of the user protocol, thus re-introducing ob jection 3 (in Table 6-1),
with an irritating mutation. We have deferred discussion of this anomaly to Section 9.BI.
Fortunately, this recognition and expansion algorithm is easy to replace and modify, in a
modular fashion (see Section 9.C3).

6.C. THE POST PROCESS

The input services of the User-UCP process pair join with the output services of the Post
process to define the interface behavior of COPILOT. Post maintains and displays the
context Scenes. Whenever it runs, it updates the contents of the dynamic, the static, and all
data Scenes, assures that all program Scene cursors are correct (other processes maintain the

program text), and displays the results for visible Scenes.

The Post process runs only in response to specific status changes in the running processes, or

to specific requests by these processes. The mechanism in each case is the same: when a

103

"

1 . ')
-) oo s [

i1

4.6

process makes such a request ar changes its status, it causes a posting event, whose value

contains a code describing the reason. ‘This occurrence wakes the high-priority Post process,

which then issues an updated snapshot.

The Post process operates in response to events caused by:

1) Process suspension. The process has BROKEN, STEPPED, SUSPENDED, or is
AWAITING some external waking condition (an event occurrence). The reason for
suspension, and the current process state, are supplied in the event notice’s value.

Process activation. Snapshots are issued whenever a process becomes READY, and
again when it begins RUNNING.

(This choice assumes that processes change state infrequently with respect to the
overhead for issuing a snapshot. We could choose to bypass snapshot issuance where
process activation or suspension does not directly interact with the IPS facilities.)

3) Data display requests. The statements of Section 7.D1, by causing posting events, cause
variables to be added to and removed from DATA Scenes. The Post process responds
by adding or removing these variables, then performing a standard update.

We could have implemented posting through subroutines declared in Copilot’s outer block.
The scheduler routines and data-display statements would call them to report results. We
have chosen the process/event mechanisms instead, as we have for other facilities, because
this decoupling allows us to embed all system structures and display routines in a block
inaccessible to target programs, affording them protection and name space independence from

each other. In add:tion, in Section 8.D1, we will show that this structure, with appropriate |

segmentation, helps us achieve space efficiency.

6.Cl] Display of Users' Scenes

The Post process only maintains context Scenes. However, it will update the display of all
Scenes which currently have visible windows. this relieves the user of much of the effort of
displaying his Scenes. He need only maintain the data in the Scene and indicate current
cursor and window positions. He can have his programs issue a Post-only request for
immed iate visual response. In this way he can synchronize ‘his data display with the Context
snapshots. Facilities exist as well for directly updating a user-maintained Scene, for better

efficiency.

CHAPTER 7
COPILOT TERMINAL PRIMITIVES

This "user's manual” chapter explains many of the terminal operations which are built in to
COPILOT. It should also serve as a guide for the implementation of additional features.

The first section deals with the user-accessible structures for describing and manipulating
system entities such as Scenes, Regions, and processes. It also defines terminology for these
entities. The following section presents a small number of variables, global to the User and

UCP routines, which are central to system operation.

Section 7.C is a description of the more important primitive system functions, and the

terminal-level commands which use them. The last section defines the semantics of the

special statements of Section 5.C5.

7.A. USER-ACCESSIBLE STRUCLTURES

In the previous chapters we presented proces:-control statements which used integer values as
process designators. We did this because the MISLE language lacks sophisticated data type

facilities. We will extend the use of integer values as structure designators, to handle ob jects
such as Scenes and Regions. We will also employ them as instruction point, environment

point, and context point indicators (ip, ep, and cp). (D)

A structure desiguator is always generated by the system, on request. Structure designators
are unique, like LISP atoms or LEAP Items. Associated with each structure is a structure

type code defining what kind of entity it represents, as well as its actual value: Scene data, a

process stack, etc.

Some structures (Scenes, Regions, processes) possess string-valued pnames, used to identify
them in Scenes. Whenever such an entity is stored in a named variable, our convention is

that the entity name and variable name should be the same.

105

Instruction, environment, and context points could be represented as <Scene, line, colunin>
triples, where program, data, or dynamic Scenes, respectively, would be selected. For
convenience, however, we have chosen to define structure designators for them, collectively
called structptrs. One can derive from a structptr the <Scene, line, column> position it

defines, as well as the process (if any) associated with it.

Some procedures need the ability to accept as arguments structures of different types. An
example is an editing function, whose Scene argument cou'd be supplied directly as a Scene
structptr, or indirectly by specifying the Region to which the Scene is mapped. Another
example is a structure-following procedure which can be applied to any structptr (see the
successor functions of Section 7.C4). These functions can obtain the structure types of their
parameters, and can perform appropriate conversions, using the access primitives of the next
paragraph. (Scene types are subtypes of the structure type "Scene”).

7.A1 Access Primitives

From a given structure it is often possible to derive related structures or values: the Scene,
line, and column locations of an ip, the Region corresponding to a Scene, or the cusrent line
and column locations for the edit cursor ("A”) in a Scene (or Region, if mapped). The
following table defines a set of access (conversion) primitives and the structure types they will
accept. Legal types are marked "x" in the table; braces surround the entry ("[x]") if the
legality of the function depends on the Scere type of its argument (e.g., an IP can only be
obtained from a program Scene). Each function attempts to return some reasonable default

when the requested value is meaningless (marked "-"), or does not exist.

Table 7-1. Structure Access (conversion) Primitives
Struct. Type Scene Region ip ep cp process

Function

GET_SCENE . X X X X -
GET_REGION X . X X X -
GET_LINE X X X X

GET_COLUMN x X X X X -
GET.'P (x] (x] - - - X
GET_:P (x] (x] - - - X
GET_CP (x] (x] S
GET_PROCESS - - X X X -

7.B. GLOBAL STRUCTURE VARIABLES

The variables of Table 7.2 form the bases for access to all IPS structures. They are
declared in the System block (in the esystem Scene), they provide access to all Scenes and
Regions, most processes, and some location structures (structptrs). (The primitives for
creating Scenes and Regions cause declarations for the new objects to be inserted

automatically into the System block.)

107

Table 7-2. Global IPS Structure Variables

RPROG, RDATA, .. Structptrs of the initial Regions.

PROG, DATA, DYNA, .. Structptrs of the initial Scenes.

CURRENT_REGION Structptr of the Region, in which the edit cursor ("A") s visible,
and which therefore is affected by edit commands.

CP Structptr of the current Context Point, seen in the RDYNA
Region as a context cursor ("™»").

IP The Instruction Point selected by CP.

EP The Environment Point selected by CP.

7.C. THE COPILOT TERMINAL PRIMITIVES

The COPILOT design includes an intermediate mapping between the terminal commands
and the corresponding lengthy primitives. For each command we have defined a command
procedure, whose name is short and at least moderately mi.emonic, which is defined in terms
of one of the primitive functions (supplying the default arguments to it). Each command
procedure accepts vnly one or two parameters, those which the user might provide in his

terminal commands.

As an example, the command procedure expansion of the "<rept><cr>” command in Section
7.C2 is "DOWN(<rept>)"; its meaning is, as before,
"MOVE_CURSOR(CURRENT_REGION,<rept>,-999,0,0)" .

Although the intermediate command procedures make sequences of IPS statements easier to
read and modify (in the UCP and in assistant procedures, for instance), the extra lev:| of
mapping does not aid their exposition. In the descriptions which follow, we will directly
express the COPILOT commands in terms of the primitive functions.

id

The casual reader need not study the function descriptions in detail; he may scan the calling

sequences and read the command descriptions to infer their general behavior.

7.C1 Notation

We have arranged the following pages in pairs: even-numbered (left-facing) pages contain
the names, calling sequences, and descriptions of primitive functions. The odd-numbered
(right-facing) pages describe the commands whose expansions use these functions. Some
copies of this dissertation are prinied in one side only. The reader may find it convenient to

reverse the even pages in order to accomplish this correspondence.

On the function description pages, when more than one structure type is permitted as a

parameter, the alternatives will appear as (scenelregion). This example will commonly be

abbreviated (sir).
The command descriptions employ the following conventions:

The left column, labelled "COMMANDS", lists the commands, with possible parameters,
using the notation of Table 7-3. The middle column, "EXPANSIONS®, defines for each
command the MISLE statement, in terms of the specified parameters, which the User loop
algorithm creates from that command, and which it will cause to be executed. The expanded
statements 1n this presentation are all calls on primitive functions, using a “keyword
parameter” form: PCALL(x=5, y="abc") means PCALL(5,"abc"), wiicre the formals used in
declaring PCALL were x and y, respectively. Whenever the procedure name is omitted from

an expansion, the most recently mentioned procedure is intended; whenever a parameter is

missing, the most recently mentioned parameter with the same keyword is intended.

Table 7-3. COPILOT Command Notation Conventions

« The CONTROL key should modify the command character
¢ The META key should be employed

° Both CONTROL and META are required

<cr> Carriage return

<If> Line Feed

<alt> Alt mode -- a special "escape character”

<vt> Vertical tabulation character

<sp> Space, or Blank, character

<bs> Backspace, or Delete, character

<rept> A numerical repeat factor, composed of a<digits>

110

EDITING COMMANDS
7.C2 FUNCTIONS, EXPLANATIONS
MOVE_CURSOR([scene|region] lines,spaces,windowline,limitflag)
“This function moves the edit cursor for the selected Scene a specified distance relative to the

current edit cursor position for this Scene. It also ad justs the position of the window on the
Scene, if it is mapped.

[scene| Must be a valid Scene, or

region] the designator for a mapped Region. In the latter case, MOVE_CURSOR
applies GET _SCENE to select a Scene.

lines Number of text lines to move (positive is "down”, negative is "up”).

spaces Number of columns to move (+/-).

windowline If himitflag enables 1t, after determining the new cursor position, arranges the
window such that line | of the window is ‘windowline’ lines away from the
cursor line (+/-). Ad justs if rwcessary so that the cursor is in the window.
limitflag
0: Cursor may move beyond current window boundaries, ad just window to make
the cursor visible, if mapped.
1: Cursor may not move beyond current window boundaries.
2. Cursor may move beyond current window boundaries, place window as nearly
as possible to the position indicated by ‘windowline’.
3. Cursor may not move beyond current window boundaries. Update window
after moving cursor.

SET_CURSOR([scene|region]line,space,windowline)
This function is equivalent to:

MOV E_CURSOR(region,-999..9,-999..9,0,2), then
MOVE_CURSOR(region line,space,windowline,2).

In other words, SET_CURSOR sets cursor and window to "absolute™ positions (relative to
the beginning of the Scene).

FIND_STRING([scene|region},"srchstr",number)

This always uses GET_LINE(slr) and GET _COLUMNY(slr) for its position. It searches from
that position to the number’th occurrence of the search string, and does a i.ew
SET_CURSOR if it finds enough matches. Otherwise, the user is informed that the search
failed, and the edit cursor 1s not moved.

Preceding page biank

112

/ﬁ---——-—————mu—m-_-

COMMANDS EXPANSIONS
<rept><cr> move_cursor (
region=current_region,
limitflag=0,
spaces = -999,
lines = <rept>)
<rept><vt> lines = - <rept>
<rept><If> spaces = 0
lines = <rept>
<rept><alt> lines = <rept>
<rept>a<sp> lines = 0
spaces = <rept>
<rept>a<bs> spaces = -<rept>
oT limitflag=1
spaces= -999..9
lines = -999..9
oB lines = 999..9
o] spaces = 0
lines = 0
windowline = line
limitflag = 2 (or 3)
oW lines = 999..9,
limitflag = 3,
windowline= -999..9,
oL lines = -999..9,

windowline = 999..9,

<rept>eF<str><cr> find_string (

region = current_region,

srchstr = "<str>”,

number = <rept>)

113

COMMENTS

Moves edit cursor <rept> lines
vertically, horizontally to left margin.
Cursor may move out of current
window, requiring window
ad justment.

<rept><vt> performs e-<rept><cr>.

Moves edit cursor <rept> lines
vertically, but not horizontally.

<rept><alt> performs e-<rept><If>.

Moves cursor <rept> columns
forward, horizontally.

Moves cursor <rept> column
packward.

Moves cursor to top left hand corner
of screen (window).

Moves cursor to bottom left corner.

Moves current line to top of screen,
ad justs window so that the line with
the cursor is line one of the window.

Moves the bottom line to the top of
the Region (if possible), by ad justing
the window.

Moves the top line to the bottom of
the Region, if possible.

Sets the edit cursor to the location of
the <rept>th copy of "str”, starting at
the current position.

-

pRer N T

EDITING COMMANDS, continued
7.C3 FUNCTIONS, EXPLANATIONS
NEXT_REGION (region, howmany)

There is some reasonable circular ordering among Regions, based on their Screen position.
NEXT_REGION yields the Region structptr for the howmany'th region from the one
specified.

EDIT_REGION(region, line, space, windowline)

This function selects the specified Region for (terminal) editing. It then performs a
SET CURSOQR operation using the remaining parameters. If any parameter is -1 it is not
changed from the setting it had the last time this Region was edited. (Region-switching is a
sort of coroutine-switching operation.)

CHANGE CHAR([scene|region]linespace,“char(s)" number)

CHANGE CHAR can refer to its Scene directly, or indirectly through its mapped Region.
Its tunction is to insert, replace, or delete characters from the Scene. The edit cursor is
always placed beyond the affected string on termination of the command.

char A 7-bit character. .
number =0: replace current character(s) with ‘char(s)"
>0: insert 'char(s)' before current.
<0: deleie jnumber| characters at current position.

scene, region, line, space as before.
EDIT_CHAR((scene|region], "char(s)", number) is:

CHANGE _CHAR((scenejregion), GET_LINE([scene|region],
GET_COLUMN([s|r]), "char(s)", number)

INSERT_LINE ([scenelregion], line, string)
DELETE_LINE ([scene|region], line, count)

The specified string is inserted as a text line before the indicated line. (Or) count lines are
deleted at the indicated line.

114

| M

i

. .
| ST

od

s S i

fpm——y

. ;[l

COMMANDS

<rept>eR

<arg>eR

<char>

B<char>

<rept><bs>

<rept>aD

<rept>e®<cr>

<rept>eD

EXPANSIONS

edit_region (

line = -1

space = -1
windowline = -}
region = next_region

(current_region,<rept>)

region = <arg>

change_char (

line = get_line
(current_region),

space = get_column
(current_region),

region=current_region,

number = 0,

char = "<char>")

char = "<char>"
space = cur.. - <rept>
number = -<rept>
space = cur...

space = 999..9

char = <ssss. 0>

number = |

delete_line (
region = current_region

line = get_line(current_region)

count = <rept>)

115

COMMENTS

Selects for editing the howmany'th
Region from the currently selected
Region. Makes the edit cursor
visible in that Region.

Selects the named region, as above.

<char> is a 7-bit, non-activating
character. Replaces with it the
character under the edit cursor.

Inserts <char> at the edit cursor.
Move other characters over.

Deletes <rept> characters t: the left
of the edit cursor.

Deletes <rept> characters to the right
of the eoit cursor.

Inseris <rept> new lines after the
current one. (e is <cr>).

Deletes <rept> lines.

g - — g

STRUCTURED EDITING COMMANDS (PROGRAMS, DATA LAYOUTS)

7.C4 FUNCTIONS, EXPLANATIONS

structptr « GET_STRUCT ([scene|region), line, space)

In a PROG Scene, finds the closest statement to the specified location, and returns its
structptr. The effect is similar in a DATA Scene, returning the closest equation (next page).

structptr « EDIT_STRUCT ([scenelregion])

EDIT _STRUCT(([slr]) is defined as:
GET_STRUCT ([sir), GET_LINE([s{r)), GET_SPACE([s|r)))

structptr « NEXT_STRUCTURE (structptr1, "code")

"I" Given structptr] (denoted by SC in the following examples),
NEXT_STRUCTURE returns its successor (SN in these examples):

. BEGIN ... SC; SN .. END;
.. BEGIN .. BEGIN ... SC END; SN ...
. IF .. THEN SC ELSE SN; ..

"1" Returns the predecessor to structptrl. The definition is similar.
"+" Returns the first substructure of strucptrl, if it has any. Otherwise returns
structptrl: SC is structptrl, SN the resultant substructure in the following:

.. SC: BEGIN SN; .. END; ...
.. SC: IF .. THEN SN ELSE ..
.. SC: SN: [«3; ..

«" Returns the "father” structure, SN, to the given structptrl, SC:

.. SN: BEGIN ... SC; .. END;
.. SN: IF .. THEN SC ELSE ...

"H" Returns a structptr to the block or compound statement containing the given
structptrl.

y

s S o4 i 4 B Bl o DN OOW O B0 O B O B B O Bm

COMMANDS

el

ot

-

[1

oH

EXPANSIONS

struct_move (

region = current region,

code = "1")

code » “1"

code = "o"
code = "&"

code = ™"

code = "H"

17

COMMENTS

Moves edit cursor to the statement
(or corresp. structure, for other Scene
types), following the stmt. nearest
current the cursor pos.

Moves edit cursor to the statement
preceding the nearest one.

Moves cursor to first nested stmt.
Moves cursor to father stmt.

Moves edit cursor to the statement
nearest its current position.

Moves cursor to block head
containing the nearest statement.

PROGRAMS, DATA LAYOUTS (cont)
7.C5 FUNCTIONS, EXPLANATIONS

STRUCT_MOVE (region, "code”)

v
STRUCT_MOVE is defined as:

BEGIN
integer stmt;
stmt«EDIT_STRUCT (region);
if code » ™" then
stmt « NEXT_STRUCTURE (stmt,code);
SET_CURSOR (region, GET_LINE(stmt), GET_COLUMN(stmt), -1)
END;

i el il i S At

APPLICATION OF STRUCT_MOVE TO OTHER SCENE TYPES:

DATA SCENES — Let EC be the equation nearest the edit cursor, EN the equation

ol

ot
.
[13

identified .y that cursor after perforiaing the command:

3.procs2(..EC, EN,..)
3.proce2(...EC); begin EN; ..

EC: 3proce2(..); begin .. end; EN...
(inverse of el)

EC: 3.procs2(..); begin EN;
(inverse of o)

EN<EC.

DYNA SCENE — Each number is some instance node— ">" means “yields™:

[elat1o2 olat2o3

e —— elat4oh et at4o3
| | etathbo2 esat2>5
8 5 osat55b ecat6=2
| | e-at2>52 e at 4o 4
4 6 eHat6ob5eH at4o |

119

B uiroil 5 MR,

A)

SCENE MAPPING
7.C6 FUNCTIONS, EXPLANATIONS
scene « SCENE_LINK([sceneregion], line, space)
This command follows Scene links ("s scene” constructs). Given a location within a Scene, it
finds the nearest Scene link, if any, and returns a structptr to the Scene it identifies. If there

are no Scene links, it returns a null structptr, which should be treated as an error or "no-
operation”.

MAP_SCENE (scene, region, first line, fspace, fwindow)

This makes the Scene visible within the Region, and sets the window and edit cursor
poritions as specified, using SET_CURSOR.

P >y

o=

= = EBEE

r

=

r

=

I
I
I
11
1
I
I
I
11
1
I
I
I
1
I
I
I
I
L

T Ly L L I il St

il 54

o Ol e 2 1 B v sl B 12 E o el

COMMANDS EXPANSIONS

oM map_scene (

scene = scene_tink (
region=current_region,
line = cur..,
space = cur...),

region = current_region,

first line = 1,

fspace = 1,

fwindow = 1)

<arg>eM scene = <arg>

121

COMMENTS

Follows the nearest sscene link.

Maps the indicated Scene into the
current Region (the one with an edit
cursor).

PROCESS CONTROL
7.C7 FUNCTIONS, EXPLANATIONS
SET_P (process, [ipleplcp])

Places the context cursor at IP if structptr is a statement, EP if it is an instance in a data
Scene, or CP for a dynamic Scene.

STEPP (process, code)

code:
"1" Single-steps one statement.
"," The same as "I", if the statement at ¢ has no substatements. Otherwise,
executes to the first encountered substatement (see examples on next page).

Stepp activates the process, at its current IP and EP, first setting Synch variables to suspend
after the desired execution. The "»" code suspends execution at the first encountered
substatement of the one indicated by IP.

STEPPN (process, n)
This is a multiple-step command. If n=2, it executes the next two statements before
suspending; if n=3, the next three, etc. When applied to a statement within n statements of

the end of a loop statement, n is reduced to prevent executing beyond that scope.

STEPP(--"1"), when applied to a process which is already being stepped, has the effect of
STEPPN(--n), for n=2, 3, ..

(ACTIVATE (process), SUSPEND (process), SUSPALL())

These are the normal MISLE functions for activating, and suspending processes. SUSPALL
suspends all but USER.

TO_CONTEXT (process)

This sets RDYNA, RSTAT, RPROG, and RDATA Regions to the Scenes describing the
context point of the selected process. If -1 is the argument, it alternates among the suspended
Target processes, beginning with the mo:t recently broken one. This is the normal vsay to
establish context after a BREAK.

Process either -1 (some broken process), or a precess 1d.

COMMANDS

eX

<arg>eX

<arg>eS

eS

oP

<arg>eP

{<arg>}e.

oB

<arg>eB

or

<arg>o>

EXPANSIONS
set_p (

process = get_process (ep),
edit_struct(current_region))

stepp (
process = get_process(ep),
code « "I)

process = <arg>

Code - ol-.n

process = get_process(ep)

activate (
process = get_process (ep))

process = <arg>

suspend (get_process (ep)),
or <arg>

suspall ()

edit_char(

region = current_region

char(s) = "{break
(get_process(ep))}”,

number = 1),

process = <arg>

to_context (process « -1)

process = <arg>

123

COMMENTS

Moves the context cursor,
representing an ip, ep, or cp
(depending on Scene type), to the
stmt, equation, or procedure
instance nearest the edit cursor.

Single-steps one stmt. in the p
context cursor is visible (the current
process).

Single-sieps the selected process.

"Steps in" to (executes to the first
substmt. of) the current stmt. of the
selected process.

"Steps in” to the current process.

Proceeds— readies the current
process.

Readies the selected process.

Stops (suspends) a process.

Stops all processes.

Sets a break point at the edit cursor
pos. Will break only when the
process encountering is the one
which now has the context cursor.

instead of .get_p.. Sets a break
point at the edit cursor position and
specifies which process can trigger it.

Switches context Scenes to a
representation of the environ-ment
of some reasonable process (see
previous page).

Switches to the context of the chosen
process.

DIRECT STATEMENTS

7.C8 FUNCTIONS, EXPLANATIONS
EVAL("statement”, ip, ep)
Effectively, the statement is inserted in the scene at ip. Then it is executed in the

environment (therefore the process) uf ep. When the process suspends (on eventual
completion of that full step), the staternent and all levels of representation are deleted.

124

+d

~

| :
l COMMANDS EXPANSIONS COMMENTS
l o'line<cr> line Executes the line as one statement.
l ekline<cr> eval(“line”, ip, ep) Evaluates the line in the selected
I environment.
i |
i
' |
i "
]
125 1

1.D. SEMANTICS OF SPECIAL STATEMENTS

In Section 5.C5, we presented the syntax for a set of MISLE constructs which are especially
useful in an interactive environment. At that time we had not adequately presented the
contexts in which they are useful. Here we will explain these special statements, by means of

several examples.

7.D1 Variable Query (Data Display)
Example: J; K12+3;

A data display statement comprises a single expression. Executing one causes that
expression’s value to be displayed in a data Scene. The first statement, above, is
representative of the most common use: the display of a named quantity. The variable] (in
the scope of the current context cursor), is given the marked attribute (Section 5.D2), if it
does not already possess it. this will cause an equation to be created for J, in any data Scenes
which display instances of the block or procedure in which ‘] is declared. Data display
statements execute by causing posting events which awaken the Post process. When this
process runs, it causes all visible data Scenes to be updated— thus displaying J's current

value, among others.

The second example above causes the selected expression to be displayed temporarily in the
default data Region (see Section 5HI). It is difficult to formulate a general algorithm for
doing this satisfactorily. We will explore the problem further in Section 9.A2.

7.D2 Breakpoints
Example: BREAK(-1);

This statement always breaks. To do this, it simply suspends, after causing a POSTing
event. The post process subsequently indicates in the STAT Scene that the process has
BROKEN. The user can, when he chooses, turn his attention to the broken process,
examine its causes, then take whatever action is appropriate.

Example. BREAK(TARGI),

[

W

This statement will break only when the process encountering it is the one designated by
4 TARGI.

A last BREAK statement, ARR_BREAK, takes an array as its parameter, and will break if
the running process is any of those specified in the array.

7.D3 Temporary Statements

i-* Example:
. {TEST_SRCH: ON! IF SEARCH_CNT MOD 50 »0 then BREAK(-1)} J-PTXXMT),

A temporary statement of the form { tsl; ts2; ... tsn } sl is functionally equivalent to BEGIN
tsl; ts2; ... tsn; s| END. Similarly, s1 {tsl; ..} behaves as BEGIN sl; tsl; .. END. We make

the distinction for three reasons:

T
L : 1) As a purely visual device. It is easier to see that the statements within the braces are
temporary.)
2) To aid :n insertion and deletion. One need not find the end of the qualified statement
(e.g., s1) in order to place an END there, or to remove it.
3) To allow the additional <class> and <switch> syntax.
t A temporary statement containing the switch "ON" behaves as one without a switch at all: all

its substatements are executed in order, as described above. However, if a temporary
statement contains an "OFF", none of its substatements are executed. One may thus turn a
temporary statement on and off by toggling this execution swiich. Section 8.E8 presents an
implementation for this feature which allows inactive (OFF) temporary statements to be left

in a program, at no execution cost.

The class label need not be unique to one temporary statement. If a set of temporary
statements exists, whose collective function is to monitor a particular situation, one may give
them all the same class name. He may then use the TURN ON and TURN OFF statements
to toggle all members of a class simultaneously. Class names are global labels, whose scope is

the entice system.

i e ey = B =3

R e o a e o el B g oo o bR L

The DELETE statement physically removes all statements labelled by a given class name

from the Scenes they modify.

Temporary statements give us nearly all the power of Teitelman’s ADVISE facilities for
BBN Lisp, which allow a user to change temporarily the meaning of a function, whether
compiled or interpreted, whether defined by the system or user. We cannot provide his
selective advising facility in the current design. (When this is specified, a function is
modified by its advice only when called from one of a selected list of functions.)

7.E. CONCLUSIONS
We have presented in this chapter only the essentials of COPILOT. We are convinced that
this design provides the basis for many elegant capabilities which are not possible in a

preémptive system, or in one which presents less context. Some suggested extensions to

COPILOT appear in Chapter 9. Others will require further research.

128

[e
O) e

e o g
ety (o= |

s DR o B es |

CHAPTER 8
IMPLEMENTATION CONSIDERATIONS

8 A. TIERS

We have intentionally couched all our descriptions in terms of the Text Scenes which the
COPILOT user can see directly. We have demonstrated that we can provide a remarkably

rich set of primitives for IPS control in these terms.

To provide the facilities described in the previous chapters, we require, in addition to the
Text Scenes, the support of additional structures. We can see clear evidence of the kinds of

structures required in the following:

1) We need the Text itself, for visual display and text operations.

2) We need to locate the Tokens, within a text line, which begin selected statements, as, for
instance, in the EDIT STRUCT(.) (e:) command. Some internal representation of
program text as lists of Tokens would be useful, though not absolutely necessary.

3) We need access to the program structure, or abstract syntax tree [38], of the user’s
program, in order to perform operations like STRUCT_MOVE (e, oi, etc), and
process control operations. Similarly, we need a structured representation of the names
in the user's program (a symboi table), closely related to the program tree.

4) Because we have chosen a compiler-oriented system, each statement in each PROG
Scene must have a corresponding code segment which, when run on the host machine,
will perform the specified actions. Conversely, the data (activation records) on which
these segments operate may be reflected in DATA Scenes at the text level.

We will call these levels of data representation Tiers. These same four kinds of Tiers (text,
token, tree, and code) exist for most of the Context Scenes in COPILOT. We will treat each
use in detail below. Each Tier is the most convenient representation of the facts it expresses

for some class of system operations.

8.Al Tier Equivalence

For each Tiered quantity in the system there is a source Tier, where new information is

129

introduced. For programs, this is the text Tier, where new statements are added. For data,
the code Tier (of activation records) usually supplies the needed information. The contents
of each Tier (other than the source Tier) is the byproduct of some translation operation. For

programs, these operations have familiar names:

NAME TRANSLATION (Tier | to Tier 2)
Scanning Text to Token

Parsing Token to Tree

Compiling Tree to Code

For data representations, we could speak of Uncompiling, Unparsing, and Unscanning,
beginning with activation records in the Code Tier, yielding readable Data Language

"programs”.

In each case the intent is to create a representation which is in some sense equivalent to the
original; that is, its meaning with respect to some set of attributes is invariant over the
translation. (For compiling, this is the requirement of correctness. Most formal treatments of
compiler correctness concentrate on proving this "equivalence” between the abstract syntax
(Tree Tier) and the Code (Code Tier) (39)) In order for the translation to have any value,
of course, there must be other attributes which are not invariant: some information will be
lost, while other things will be added. Using our program example again, the scanning and
parsing operations do not carry program format (spacing, etc.), into the Tree Tier, nor do
they always preserve the order of expressions, or even the precise choice of keywords and
operators. In addition, through these translations, explicit structural information about a
program is added. Further compilation (to code) usually loses some of this structural

information, and much symbolic data, while gaining efficient code for execution.

We will say that structures in two Tiers are weakly equivalent, or simply equivalent, if they
satisfy (or presume to satisfy (3)) specified correctness criteria for a selected set of attributes.

We will say that two Tiers are strongly equivalent if either can be completely regenerated,

given the other.

There must be, for each class of multi-Tiered entities, and for each ad jacent pair of Tiers, a
translation rule (algorithm), operating in at least one direction, which will convert from one

Tier to the other. Compilers, parsers, and scanners are elements of this set of translators.

8.A2 Inter-Tier Connections
The data of two equivalent Tiers need not be fully independent. Each may contain
references to locations or entities in the other. It must be possible, for instance, to find the

statement in the Code Tier corresponding to a given node in the program tree.

This division of IPS structures into Tiers and cannections between Tiers allows us similarly
to segment the universe of IPS system routines into those which deal with the relationships
between "adjacent” Tiers, (compilers, etc, as well as routines like GET_STRUCT and
GET_LINE), and these whose effects are confined to a single Tier (e.g, MOVE_CURSOR
and STRUCT_MOVE).

We will find that it is useful in some Tiers to minimize the number of extra-Tier connections,

while other Tiers will contain numerous connections to their neighbors. We will discuss the

advantages and drawbacks to this imbalance in Section 8.D.

8.A3 Tier Fidelity

In his thesis [44], Mitchell states what he calls a Visual Fidelity Principle, which requires
that “the user must be able to expect that the appearance (text) of a program is a reliable
indication of the way that program acts (its semantics).” While this is predominantly a
restatement of our Tier equivalence requirements, it carries some additional implications.
Program Tiers are not always equivalent; there is a time after new text has been inserted in
a program, but before it has been translated, when they are not. If we use the Visual
Fidelity Principle as our guide, we require only that Tier equivalence between text and tree
be restored before doing any structured editing, and that tree and code Tiers be updated
before attempting execution of the modified algorithm. We can extend this notion of fidelity
to other translations, specifying for each the conditions which require that necessary
transiations be made. For instance, code-tree-..stext translations, for data, dynamic, and
status information, must occur whenever a posting event (Section 6.C) occurs; and our

Snapshot requirement (Section 5.B4) means that al! such translations must be done whenever

131

any is done. (The Snapshot requirement states that the visible data must represent a subset

of total system state at a single previous instant.)

We will define the specific conditions for each COPILOT translation in the following
sections. These conditions may be different in other IPS systems, depending on the methods

of translation and interpretation.

8.A4 Tiers in other Systems

The Tier concept is our attempt to normalize the naming conventions for the kinds of
structures which have been developed for IPSs (and other language systems), including
COPILOT. All of the systems we reviewed in Section 3, for instance, have constructs
corresponding to the Text Tier; most possess representations corresponding to one or more of
our other Tiers: JOSS maintains text only. Most LISP systems keep the trees (S-expressions)
and, for compiled functions, the code. Mitchell’s system has representations at each Tier
levei. We are satisfied with the generality of the Tier levels we have chosen, since we have

encountered no trouble in categorizing the structures of other systems in terms of these Tiers.

8.B. SCENE-TIER RELATIONSHIP

In the previous chapters we have developed two mechanisms for storing, naming, and
manipulating the data structures in our IPS: Scenes, for managing the text that presents
elements of the system to its user; and Tiers, for relating this text to its underlying structures.
In this section we will consider the. relationship between these mechanisms.

For each COPILOT program Scene in the text Tier there is a directly corresponding
collection of token lists in the Token Tier, equivalent to it. Similarly, for each of these
collections there exists an identifiable set of equivalent (x) instruction segments in the code
Tier. It would be tempting to extend this observation, and to state that each Context Scene
can be considered a multi-Tier structure, with disjoint equivalent representations in each
Tier (Figure 8-1). This technique, however, immediately leads to trouble in the tree Tier.
Since the information in a data Scene represents data generated from the algorithms of

(x) Always in the weak sense

program Scenes, one must expect this relationship to be expressed at some level, through
shared structures. The natural place for this sharing is the tree Tier. In COPILOT (Figure
8-2, and Figure 8-3), the tree structures which express data Scene information share
symbol table nodes with the program trees; from these symbol nodes, block structure

information from the program tree itself is available.

Another difficulty with the disjoint structure of Figure 8-1 is that many data Scenes may
L exist at once, for many simultaneous instances of the same procedure. These occurrences
place a many to one relationship between some Text Scenes and some elements of their
equivalent representations. Notice that not even data Scenes and their code Tier information
need be in one to one correspondence, since the same information can appear in more than

one data Scene.

Because of these arguments, we will relax our proposed Scene-Tier requirements, demanding

only that:

1) An observer with access to all system data can derive from a quantity in one Tier all
equivalent quantities (1-1 or 1-many) in ail other Tiers.

2) Where necessary, direct or computable connections exist between Tiers to allow
programs to derive the equivalent entities. Not all possible connections need be
derivable.

8.B1 Permanent Scene Representation
L For each type of Scene, one or more Tiers contain the most complete information about that
Scene. From that Tier, all other representations can be generated. The source Tier (the one

into which new information can be introduced) must be one such Tier.

We designate one of these Tiers as the Permanent Tier for each Scene type. We can then

choose to maintain equivalent information in the other Tiers only when it is necessary. The

permanent Tiers for each context Scene are:

SCENE TYPE SOURCE PERMANENT
PROG Tree Token

DATA Code Code

DYNA Code Code

STAT Code Code

Examples: data, status, and dynamic text Scenes are not needed at all for non-interactive
system operation. Thus it is possible never to generate Token or Text level information for
them at all, as long as the code and trees exist for regenerating them. In COPILOT,
program Scenes need only exist in the text Tier when they are mapped to Regions, or when a
text-oriented function needs to look at it. We maintain all programs permanently in the

strongly equivalent Token Tier (see Section 8.C2).

While a user is logged in, COPILOT maintains his program representations for all Tiers.
To save space, we could choose to delete Code and Tree information when the user leaves
the system. This information would be regenerated when he next logged in, returning his
system to the state it was in when he left. Notice that, although there are multiple
representations for a given program, they all represent the same algorithm, maintaining the

illusion that there is but one representation— text Scenes— within the system for a user’s

program.

134

| SN S

S

4

S SRS

L4
wo

l PROG DATA, DATA , DYNA STAT
TEXT TEXT TEXT TEXT TEXT
'l P B { i) A
PROG DATA, DATA,
-I TOKENS TOKENS TOKENS
; § ¢ ¢ !
PROG DATA, DATA, DYNA
5 TREES TREES TREES TREE
PROG DATA, DATA » DYNA STAT
CODE CODE CODE CODE CODE
[. (7) (7
I_ Figure 8-1. (Inadequale) View of Scene/Tier Structures
|
- PROG DATA, DATA > DYNA STAT
I TEXT TEXT TEXT TEXT TEXT
T Jf, I]
PROG DATA, DATA,
] TOKENS TOKENS TOKENS
{ A AN
V-1 WV !
SYMBOL | .. | __ 1 M |70 PROG TREE
] PRO __. | DATA; |___ | DATA, | | DYNA |TO SYMBOL TABLE
TABLE "L 1rees H Trees Y tREc [TODATA, TREE
TREES e — —— —(_ = A A L Jley
] * A4 4 v J y J
1% bl = ~ = > = = = - ——
i PROG DATA, DATA, ™76 DATA, CODE
CODE CODE CODE | — — —— d— — — _
| I TO DATA, CODE
l Figure 8-2. Interconnected COPILOT Scenes
135

R BRI S 30 7 i

'

| @
|
|

B
g
§
E:

8.C. COPILOT TIERS

This section briefly treats the COPILOT Tier structures, defining what each Tier is, and
what it is used for.

The COPILOT system is coded in the SAIL language. The token and tree Tiers use the
LEAP facilities of SAIL, creating the trees and lists which they require by making
associations between items (see Appendix B for a very brief description of the LEAP
associative facilities, and of their pictorial representations, used in this chapter.) Numerical
and symbolic information in these Tiers are normal Algol-like structures. They are
appended to the LEAP nodes as datums.

Specially coded machine language routines manage the allocation and maintenance of text
and code Tier data, all in straightforward ways; type conversion routines exist to normalize
inter-Tier references in these cases.

Figures 8-3 and 84 give an overall view of the COPILOT structures. Since each
important aspect will be expanded in later diagrams, much detail is missing from these. They
do, however, best demonstrate the sha;ing of Scene data in the Tree Tier, especially the
symbol table entries. Notice also the relative density of references within and emanating
from the central Tiers, compared to those of the outer two. Our reasons for this appear in
Section 8.D. The process status Scene information (not shown) is quite simple in structure.
It is composed only of its text Scenes and the corresponding status data in the code Tier.

136

et

-

PROCEDURE P3 (INTEGER PARAM); TARG 3.P3 # | (PARAM=100);
BEGIN BEGIN

INTEGER 1,4, K; 1=1540,

| o= J+K; LITIN

K e ooo

Q SCENE ITEM

(BEGIN)

— \
RELOCATABLE

INSTRUCTION
SEGMENTS SEGMENTS K = 1540

[PROCEDURE NODE REF

- . .

I N

PROGRAM TIERS DATA TIERS

Figure 8-3. Overall View of COPILOT Tier Structures (part 1)
127

|
2
3 TARG 3.PI #1
: | | TEXT
3 TARG 3.PI #2
) 6 g S |
7 |
8 ... TARG3.P3#I
NO TOKEN TIER NECESSARY TOKEN
"USER" " USER COPILOT # 1"
PROC [~). SPROUTED BY TREE
“TARG 3"

&
v
Ko
a <
(| o
] > CALLED BY |
. ® TARG3.P3# " _a
| : |
4
T T T N\\———iexunks | T T
DATA FOR LEXICAL LINKS CODE
USER COPILOT #:i
INSTANCE
LEX LINKS DATA FOR
o
"] DATA FOR OTHER PI#| w 3’:,*3,{,%2
| DATA FOR PROCEDURE P~ PROCESS
CALLED INSTANCES W | INSTATIATING
INSTANCES IN MAIN DATA FOR o Pl
IN UCP PROCESS PI#2 >
e o o o o 0 ._
VT ANAAAAN W\A DATA FOR m o
R P,.3.#,|wr * L ANAAANT
UCP STACK MAINS Tz%o'g:ess TARG 3 STACK TARG 4 STACK

Figure 8-4. Overall View of COPILOT Tier Structures (part 2)
138

8.Cl1 Text Tier

We have exhaustively described this level. Its implementation is straightforward, providing
for the storage, insertion, deletion, and replacement of lines of text. For convenience in
implementing the user-level routines, these structures may be indexed by line and character
number. Each line in the text Scene contains a reference to the LEAP item, in the token

Tier, which represents that line.

8.C2 Token Tier

The output of a language processor’s lexical scanner is a sequence of tokens, internal
representations of the language symbols. In most languages, including MISLE, many
program symbols are members of the relatively small set of terminal symbols, and the rest are
identifiers and constants chosen from a relatively small number of declaration instances.
Therefore, by proper encoding, an expression of the program in terms of these tokens may be
smaller than its text representation, depending on the implementation and the user's identifier
naming style. Its chief advantages, however, are the increased parsing speed when sections of
the text must be recompiled, and the additional structure which can be maintained in token
lists (see Section 8.A). For these reasons we have chosen the token Tier as the permanent
Tier for programs. To do this, we must achieve strong equivalence by adding format
information, chiefly to specify where spacing characters were present in the original. Figure
8-5 exhibits a section of the token Tier for the accompanying program. The Scene at this
level is a two-way threaded chain of line items, each of whose datuins is the token list and
spacing information describing the line. Linked to each line item is an index into the text

Scene for that line.

We have taken advantage of the discreet nature of token lists to insert connections to the tree
Tier, so that statement nodes may bLe located (by GET_STRUCTY..), for instance). These
frsimrk items (see Figure 8-5) are distinguishable from token entries. Th.eir datums contain

indices to aid (along with FIRST and LAST links) the inverse tree-to-token conversions.

We will introduce soime additional Token structures in Section 8.E2, when w2 discuss the

storage and parsing of program modifications.

139

S e e el o L

-

FROM TOKEN --+ | BEGIN
FROM TOKEN --+ 2 INTEGER i,j; (LEVEL |)

3

@ N O O b

FROM TOKEN--® 9 jei+2
FROM TOKEN--+ |0 END,

TO LINE |
IN TEXT

jo3,ieje3+5;

BEGIN

INTEGER i,k; (LEVEL la)
ke j-5;iekefn(jl+7,;

IF i<j+| THEN...ELSE...
END;

¢
DATUM ___ ﬁh s

C___"FRSMRK’ITEM

FURTHER IDENT. 1
INFO]

3
’?‘lNTEGER) §
IJN!E[& ,—FmggAcmq u FQ J l

o RS S Bl %L}%%g oo B :

_m°

FIRST ™

o

{ENDD

Figure 8-5. COPILOT Program Text and Token Tiers
140

’ . i s oAl

8.C3 Tree Tier

This is the central data structure of the IPS. Program trees are the product of parsing
operations ([36], [44]). Other tree Tier structures (data, status, dynamic) are derived i
from code-level information. The program tree of Figure 8-6 represents a fragment of the

- i A

programs of the previous figures. It implements n-ary trees, where n is sometimes fixed ("IF
<be> THEN <s> ELSE <s>", n=3), sometimes variable ("BEGIN <s>; ... <s> END", n=n). The
trees are connected by leftmost-son, next-brother linkages [$1]. The tree is pruned, after
compilation, to include only the statement structure and lists of identifiers and function calls
which appear in each statement. Although this limits the amount of resolution we can

achieve in program control and in recompilation to statement units, it does not seem to us a

PR T PR S S —

great problem in view of the gain in compactness, especially for long, complex operations.

141

SON 1

TREE
, [l
£ H e
BLOCK INFO l
BRO BRO 0
dio” : BEGIN’ 4
LR N] - ae

SON N 1/_\;— YR .
- —\L/ ‘—sﬂ\

€Tc. | cun‘é u'::mus ETC L:
‘ ETC.
IN WORD 7, 'V'v-v-uJ
TOKENS BEGIN
IN LIST [I1]

LI

CALL AT
WORD 10
IN SEGMENT
LIST [6]

D)
(SEE NEXT
FIGURE)

[PNAME-"1"]

CODE
SEGMENTS
INSTRUCTIONS

Figure 8-6. COPILOT Program Tree Tier
142

S el o o e o e e o e Sl o B i

— = 2

A Y

8.C4 The Symbol Table
We have placed the symbol table () in the tree Tier, because of its close ties to the program
trees. Links from symbol entries to the block and procedure nodes in this tree define the

scope (range of access) of the instances of a given name.

F'gure 8-7 contains a program tree, pruned of all but block structure detail. The symbol

entries are accessible in a variety of ways:

1) As terminal program tree nodes. The compiler follows the SEMIS connections to these
entries to generate access or calling sequences for data and procedures.

2) By their point of declaration. Any local variable or formal parameter can be reached
from the node for the block or procedure containing its declaration. The same links,
followed backward, allow identification of the scope of a given entity.

3) Symbolically. There is a unique name item in COPILOT for each identifier name.
Linked to it by SYM links are all the entities (symbol items) with that name. In most
of the applications we have described, environmental information (in the form of block
or procedure nodes) is then used to choose the correct entity for the current scops.

R g

Symbol table quantities, though all their connections are in the tree Tier, are really multi-

. - . - g - T E - - - g . - - L5, .
e . =
4R W OO SN O N DN N e el Bl O O B Dol Do D e e

Tier entities. Identifiers in the token Tier lists are actually symbol items. Additionally,

symbol items appear in generated code, to identify procedures on the stack, and to select

-
e

variables for display.

(1) The use of "table" is historical, since our actual structures are hardly tabular.
143

B e e s I P Sy Spravi

b T P S ..

| BEGIN (LEVEL 1)

2 INTEGER i, ;
3 BEGIN (LEVEL 1a)
4 INTEGER i,k;
5 200
6 END;
7 BEGIN (LEVEL 1b)
8 INTEGER i,m;
9 es e
10 END
Il END;
BEGIN -~ LEVEL 1
SON
' BLCK | | BLCK g’
SYM SYM
ouIN: D(J1)
‘ LOCAT ION
| TYPE FROM
ETC. PROGRAM
TREE
i =
| BEGIN'-- LEVEL 1a BEGIN--LEVEL 16 O
BRO
2
F
Kia" 1o’ | 11b° LIS
BLCK | BLCK BLCK BLCK
= = -
oikta)| |% 2 D(l1a) DUI1b) 5| [omib)
Q_ (o)
[PNamE-- k"] [PNamME-"1" \'/E’NAME--"J"] %NAME--"M"]

Figure 8.7. COPILOT Sywmbol Table Organization
44

o B 12

8.C5 Other Trees

Figures 8-3 and 8-4 are examples of tree Tier structures underlying data and dynamic Scenes.
There is one tree structure for the dynamic Scene, and one for each current data Scene.
These trees are heavily connected to their "templates” in the program tree— algorithmic and
symbolic information. This sharing of structure reduces the amount of tree Tier information

which must be maintained for non-program Scenes.

In Chapter 7 we introduced entities called structptrs, produced by access primitives such as
GET_IP and GET_EP, to provide compact representations for statements, data
environments, Scenes, etc. In the COPILOT implementation, these structptrs are integer
representations for the items forming tree nodes, token Tier entities, Scene and Region items.
Extending MISLE to include the entire implementation language (SAIL) would eliminate this

conversion, allowing structptrs to be directly represented as items.

8.C6 Code Tier

Since COPILOT is a compiler-based system, the most important (least dispensable) product
of program translation is the set of machine instructions comprising the code Tier for
programs. However, most aspects of code generation do not bear heavily on our IPS
considerations. Consequently, we shall not discuss code generation techniques as such. (3) We
will be content to list the requirements and constraints which our generated code satisfies, in

order to interface properly with the IPS and process facilities.

|. The code is organized as segments, built around the statement structure, which can be
independently replaced. Major control points, labelled statements, procedures, and blocks
always begin segments. Segments are limited in size, so that recompilation of still-correct
statements in replaced segments will be acceptably infrequent. The compiler routines control

the replacement, insertion and deletion of code, always in segment units.

......................................

() We might suggest Gries's book, Compiler Construction for Digital Computers [23]), as an
excellent reference for all aspects of compilation.
145

2. Code segments are relocatable. A segment can be moved In order to compact storage, or to
accommodate the expansion of other storage blocks. We have chosen to make all but a small
number of header instructions in each segment address-independent. The header words
contain transfer instructions which link each segment to the segments which precede and
follow 1t in the execution sequence, and to the segments which implement its substatements.
The base address of a running segment is available in a machine register to allow relative
transfers of control within the segment. Other registers provide data access. Transfers to
other segments from within a segment are performed by transferring to instructions in the
segment header. When a segment is moved, only the header instructions in those segments
which link to it must change. We can locate these other segments by referring to the tree

Tier structures, which contain complete segment location information,

3. To allow pregram modifications, we can delete and insert arbitrary code Segments. Given
our relocation facilities, this is #ot hard. The tree Tier contains a complete description of the
segment structure of the Code Tier. After a new segment or set of segments has been created,
after header instructions have been inserted to iink them together, and after the segments to
be deleted have been identified (see Section 8.E5), it is then easy to modify the relocation

routines to treat the new Segments as relocated versions of the old ones.

4. We nsert synchronization instructions in the code, to denote points where process-
rescheduling interrupts may take effect: so-called “clean points”. These synchronization
instructions also provide a mechanism for controlling Stepp, Break and data display

operations.

8.C7 Synchronization

We have chosen to use the statement as our grain of resolution for synchronization. T his is

evident in the primitives of Chapter 7, where control is available down to the statement level.

(x)

Within the data for each process, we allocate a varlable, which we call a synch cell, for each

code segment which can operate in that process. A synch cell, normally zero, may be set by

(%) We may also gain control at orocedure calls wiihia a statement.
146

L

;)

-

system functions to request suspension of code running in the corresponding segment; the
value placed in the cell indicates the reason for suspension, and aiso identifies the statement(s)
within the segment for which the synchronization request is intended. This latter value is

necessary because we sometimes compile several statements into one segment.

The initial instruction of code for each MISLE statement implements a synch test, which

tests the corresponding synch cell for a non-zero value. If the test fails, execution of the body

of the statement continues.

The second instruction of each statement is a routine call, or synch trap. This call is

executed when the synch test succeeds. An argument to the call is a structptr to the tree Tier
node corresponding to the trapping statement.

The synch routine, called by the synch trap instruction, is a small procedure in the global
environment of all COPILOT processes. If the synch cell value indicates that the trapping
statement should actually trap (is not simply a "segment-mate” of the intended statement), the
synch routine collects: the current process structptr (from a global variable), a structptr to the
tree Tier node which identifies the procedure which trapped (from the current activation
record, see Figure 8-8), the statement node structptr provided in the call, and the value of
the synch variable. It then causes an event, whose value contains the collected information.
The event is either a keyboard event, if the process is becoming inactive to allow the User
loop to run, or a posting event, if the deactivation is due to a Stepp, Break, Suspend,
Terminate, or data display request. Having caused the synchronization event, the process

may suspend, depending on the reason for the trap. The following paragraphs treat each

trapping reason in more detail.

1) When the user types a character which the User process needs to react to, the resulting
machine interrupt triggers a small procedure in the global environment. This interrupt
procedure sets the synch cell for the next statement to be executed in the RUNNING
process, the current-segment machine register which allows intra-segment control
transfers also allows this routine to find the right segment. The interrupt procedure
then releases the interrupt, allowing the program to run to the next synch test, whkich
must trap. The synch routine causes a keyboard event, but does not suspend the
trapping process, which therefore goes from RUNNING to READY, in deference to the
higher-priority User process. The User process awakens at Readaline (see Section 6.B1),
where it had been waiting for a keyboard event.

147

e

e

The Stepp function operates by setting the synch cells for all possible successors to the
chosen statement (its immediate successor, as well as the successors of all its
substatements, if they leave the range of the chosen statement). It then activates the
selected process. When that process traps at one of the successor statements, the trap
routine causes a posting event and suspends the stepped process, which will not run
again until some other process restarts it.

3) A Break statement contains only the synch test and synch trap instructions. The synch
cell for a segment containing a Break statement is always set, for the process selected by
the argument to Break (all processes, if that argument is -1). Otherwise, a broken
process behaves as a stepped one.

4) Whenever a RUNNING or READY process is suspended by a Suspend or Terminate
call, the process-suspension primitive causes a posting event. The subsequent behavior
is quite similar to that for Stepp. The only difference is the reason code in the synch -

- cell.

] We could eliminate the overhead of the synch test and trap operations by employing code-

replacement techniques. We could temporarily replace the first instructions of a selected

statement with 2 synch trap, then simulate their behavior when the process next ran. The
trap instruction would be removed, and the originals replaced, when the trap condition no
longer obtained. We are wary, however, of any technique which requires modification of the
compiled code (t) for its operation, and have avoided it here. In Chapter 9 we will consider
the extent to which specialized hardware can improve synchronization operations,

eliminating the in-line instructions without code modification techniques. o

Figure 8-8 derionstrates the general structure of the code Tier. Code Items, whose datums
are code segments, form the interface between the program code and program tree Tiers.
Additional information in the datum of each statement node locates that statement within its
(first) Segment. This figure also sketches the storage organization for process data in the code
Tier. Each process uses a stack array for storage of its activation records (frames) and
temporary values. Each activation record contains a procedure node referent, and links to
static and dynamic ancestors. This structure is dictated more by the requirements of the

language than those of the IPS.

Although we have drawn them as the lowest Tiers of a multi-Tiered structure, in reality all

the data in the system, implementing all Tiers, reside in, or are accessed through, references

(1) Except, of course, in response to changes in the source text.
148

|

B mE

2_1

gena—

in activation records of system processes within the code Tier. It is the special nature of this
data, possessing references to information outside the normal lexical scope of the code
possessing it, which allows us to circumvent control and environmental scope rules, in

controlied fashion, to perform our complex IPS functions.

149

CODE TO TREES
LOCATE
SEGMENT
SEGBASE
—d
HEADER INFORMATION
- -

SYNCH TEST, SKIP FALSE

FRON |
DYNA TRLE,
TO STACK BASE

PROCESS DATA -- SAVED ID
STATE, INTERV.\L REGISTERS,
WHILE SUSPENDED

L TO AR OF SPROUTER

TO DYNA TREE

PROCESS ID IN DYNA TREZE
P S S

STATIC (LEXICAL) PARENT

DYNAMIC LINK =¢

RETURN ADDRESS=¢

PARAMETER AND LOCAL

PROCEDURE D (NODE) IN PROG

TO PROG TREE

pe

STATIC LINK

1

]
~|! cALL sYNCH ROUTINE ACTIVATION
=11 RECORD OF
=l : SPROUTED—
2|, ’ PROCEDURE
|'\INTERNAL JUMPS RELATIVE
ol TO SEGBASE . LOCATES

STATEMENT

i 4IN TREE

' TEST £ CALL /

I(ARGUMENT IS STATEMENT ITEM) %

| . FROM BASE
o . OF SPROUTED
| oY . PROCESS STACK
Z| “—JUMPS TO OTHER EP
E SEGMENTS IND/RECT IN CODE TIER
> THROUGH HEADER (MAINTAINED
:.o. IN INDEX
@ ! REGISTER)

DYNAMIC LINK

|

RETURN ADDRESS

PARAMETERS AND LOCALS

PROCEDURE NODE ID

TO PROG TREE

—

Figure 8-8. COPILOT Program and Data Code Tiers
150

[

(13

TS T

8D. SELECTIVE EFFICIENCY

When IPS facilities are not active, we would like our target processes to run nearly as fast,
and occupy nearly as little space, as they would if :he interactive faciliies did not exist. This
requirement discourages extensive interaction between our compiled code and other Tiers,
either to maintain them or to gain information from them. Our description of the

COPILOT ccde Tier has reflected this paucity of code-to-tree connections: references in the

code Tier are restricted to tree node structptrs, in synch trap calling sequences, and in the

activation records for procedures; the compiled code makes no use of them except in the

| osenet |

synch routine sequences described in the previous section.

We also have reason to minimize text Tier information: "

0--,’

i‘ 1) All text Scenes are subject to the same set of text-oriented editing operations. An
i abundance of structural connections to the more specific underlying Tiers could interfere
: with the implementation of these commands.
]
3

9) Displaying text is often a costly operation. In most display systems, such simple

activities as moving the Scene window, or inserting a line require the regeneration and
1 transfer of large amounts of information. The complexity of the Text Scenes could
adversely affect this cost.

I's
[P

’ The Token and Text Tiers, therefore, must provide the inter-Tier connections missing from

i3 the other two.

) |
2 Token
A
; |
13 v
Tree
- |
v
Code !
[

Figure 8-9. Selective Connectivity

151

—————

R TP TR Ry T g —

We pay for the selective efficiency we have gained in our outer Tiers with a corresponding
loss 1n the inner ones, and in the operations which use and maintain these inner Tiers.
Perhaps the greatest price is the increased difficulty of maintaining equivalence between the
Tiers. As a running program modifies its environment (its data and control components),
information in corresponding sections of higher Tiers becomes incorrect. When a snapshot is
finally taken, updating these Tiers costs much more than constant maintenance would have

cost. We present our maintenance methods below, in Section 8.E. (3)

The interconnections between entities within the same Tier are also sparse for the outer
Tiers. No more links are maintained in the code Tier than are needed to support the
operation of the code. There 1s but one link per hne in the text Tier. Any outer Tier
operation which requires additional structure can find the corresponding tree node, follow
appropriate tree Tier links to the desired structure, then return to the corresponding point in

the original Tier. No power is lost; again, we sacrifice only time efficiency.

8.D1 Space Efficiency

Figure 8-4, exhibiting the "cactus stack” nature of MISLE processes, is a logical diagram of
the struciure of the computer memory while COPILOT is running. A contiguous data stack
is allocated for each process, then linkages are created to establish the connections needed for
normal references to lexically available names, in the stack of the sprouting process.
Additional references (not shown) in the stacks for IPS processes provide the structured
references to elements in all stacks which are needed for the Tier implementations we have
presented. Program code ssgments possess a similar logical organization, although this is

simplified because there is but one instance of the code for each procedure.

While a target process runs, only its code, its stack and those of processes in its lexical scope,
the structures accessed through these stacks, and the global system routines need be present in
memory until that process next suspends. We could accomplish this isolation in COPILOT
by maintaining physical, as well as logical, separation of the code Tier segments from other
elements of the system. Although the current irplementation does no: do this, we have
designed all our structures with this separation in mind. Nowhere do we depend on physical

proximity, of any pair of Tiers, or of the code segments for any pair of processes.

($) This analysis would almost certainly be different for an interpretive system.
152

Fortunately, the hardware and operating systems of maxny modern computers provide
facilities for memory management, sharing, and protection which make it easy for us to
implement this isolation. Figure 8-10 depicts the way in which the COPILOT
implementation might be achieved in the MULTICS (43) system. Figure 8-11 is a
possible solution for TENEX [5), which runs on a modified PDP-10. Both provide,
through their memory management policies, the complete withdrawal of recently unused

pages of information to inexpensive secondary storage, enhancing the Target process’s

performance. (Both figures assume a familiarity with the memory management acilities of

these systems).

For systems whose memory structures are less sophisticated, the isolation properties can be

simulated using either of these designs as a guide.

AHYON3NW

S3UNLINYLS ¥3IL
ONIGN ONI viva
viva 1394vl
Sdl = =3
i
3002
| 3000
W3LSAS
Sd | _ 13948Vl
$3SS300¥d ! “ S$3SS300¥d
sdi! I 1394Vl
! L !
| ~ |
| g |
| T~
—fl- -— = —
S434 3HNLONYILS viva
MNO019 TYNHON 8019
S3INILNOY
W3LSAS
NOWWO)D

$S3004d 3svsa

3ngvli
LN3IN93S

W31SAS
ONILVH340
SJLLNN

SLN3IN93S

e — — — — —

Sdl

SLN3IN93S 3000
N3LSAS NOWWOD

viva
NOWWOD

SLN3IN93S

b — — — — —

1398Vl

SONIY
NOI12310¥d

NOILJI3L0Hd 1S3HOIH

(ONISNVYD LN3A3
NEHL Ld30X3)

3NO SIHL Ol SS320V
123410 ON 3AYH
SONIH H3IMVT

NI S3IHNQ3IDINHd

INO SIHL Ol S5320V
31N23X3 ATNO 3AVH
SONIH H3IMOT

NI S38N33208d

— — —

ONIM SIHL NI 9NIHL
-AH3A3 0L SS300V
. 31N23%X3 ANV
JLI8M 'aV3IY 3AVH

S3NNA3208d 1V
f.101123108d MO

Figure 8-10. Proposed Memory Organization for COPILOT Implemented in MULTICS

154

e A S

% OWNERSHIP
SHARED

- CODE ~_ BASE PROCESS ety
~ T ouey

' "7// ROUTINES /// //
: b GLOBAL

DATA
N B2 TARGET SYSTEM (IPS)
) CODE I I CODE
/ ; : 4

: // /| ! ' / //
' 'ups /
i SHARED TARGET | ' SHARED
DATA PROCESSES | t PROCESSES DATA
| IPS
. / TARGET SYSTEM br 7
: // / § CODE CODE ‘// / /
IPS IPS DATA
-.r TARGET TARGET - mcDL‘ngms - INCLUDING TIER
J DATA DATA \ STRUCTURES

[as— P |

MAPPING TARGET
DATA

|
STRUCTURES [\
&
/ &, AREA FOR
¥ \IMAPPING TARGET
: CODE
/ / . _AREA FOR

| e]

TARGET PROCESS SYSTEM PROCESSES
PAGE MAP MEMORY PAGE MAP

Figure 8-i1. Proposed Memory Organization for COPILOT Implemented in TENENX
135

8.E. PARSING AND COMPILING

It is implicit in the COPILOT design that incremental changes to the text of programs must
result in changes to the other Tiers. The translation, to be acceptably efficient, must minimize
the replacement of information which is still correct; it must make corresponding incremental
changes to the lower Tiers. The Visual Fidelity Principle (Section 8.A3) determines the
maximum allowable delay between changes to text and the initiation of the corresponding
translations. We could perform them more often, but do not, since by waiting we are often

able to simplify the transiation, and to make more changes at once.

We can not offer significant contributions to the incremental compilation area. We will,
however, indicate the methods we have used in the COPILOT prototype, and hopefully

reveal any insights we have gained in the process.

We consider Mitchell’s thesis to be the most comprehensive on the sub ject of incremental
compilation. For additional treatments see (35), [36], (37], [53] (50] (28], and
(58]

8.E1 Parsing Methods

Lindstrom [35) defines an increment as a string of program elements (tokens) delimited by
tokens from a distinguished increment set of terminal symbcls (e.g., "Begin”, "End", and "}").
He demonstrates that to limit parsing operations to the replacement of complete increments,
rather than arbitrarily chosen strings, considerably reduces the complexity of an incremental

parser.

We suspect that most parsing methods would survive the modification to incremental
operation. Mitchell used a top-down approach, namely Tree-Meta (16). Lindstrom, in a
very promising approach to the subject, adapted the LR(k) algorithm of Knuth (30] for
the purpose. We have chosen to use the variant of the Floyd-Evans production language
parser (see references [22], [20], and (52]), which we developed for SAIL. Although
we currently reparse and recompile only complete procedures, we believe that the flexibility of
the production language technique would allow us to recreate a parse state which would
accept less restrictive increments, and to merge the results into the old program trees. For the

remainder of this section, we shall stipulate the existence of an adequate incremental parser

156

== =

v B "

and compiler, which can at least replace any sequence of complete statements, at the same
block level.

8.E2 Detection of increments
In order to identify which program increments need retranslation, we must keep track of text
Scene changes as they occur. We must also relate these changes to the old program structure,

for it is through study of the old structure that we can decide how to incorporate the new.

Figure 8-12 depicts an extension to our token Tier structures, which allows us to maintain
the needed update records. By following OLDLINE links, or NEXTLINE links whenever
OLDLINE links do not exist, we can recreate the original Scene. By following NEXTLINE
links only, we obtain the current state of the Scene. There are nu Token lists for new lines,

since 1o token-scanning operations have yet been applied to them.

We will define a suspect procedure as one which will need to be processed by the parser and
compiler before it is next executed, because it may contain invalid trees and/or invalid code.
For each set of changed lines, we must mark as suspect the tree node for the procedure
containing the lines. Because they may be invalidated by the change, we must also mark as
suspect all subprocedures of a suspect procedure. We attach to each suspect procedure a set of
references to the changed areas within its body. This algorithm guarantees that all

procedures containing changes will be marked, and will therefore not escape the eventual

attention of the parser.

157

OTHER CHANGES CHANGES
CHANGES SCENE ITEM SCENE ITEM

NEXTLINE NEXTLINE NEXTLINE L
CHANGES CHANGES CHANGES
TOKENS TOKENS TOKENS T
1 N I .
NEXTLIN NEXTLINE NEXTLINE
TOKENS TOKENS TOKENS
I il i
NEXTLINE NEXTLINE
TXT

|
TXT(TEXT ONLY)
o
NEWLINES
NEXTLINE

NEXTLINE

C:TKT (TXT
(TEXT ONLY) ' OLDLINE
NEXTLINE NS NEXTL INE
TOKENS TOKEN TOKENS
I | Il
OLDLINE
I NEXTLINE ' | NEXTLINE
’ o. DELETED LINES b. INSERTED LINES c. REPLACED LINES

Figure 8-12. Additional Token Tier Structure 10 Record Source Changes
158

= B e

8.E3 Timing of Parse Events

= There are possible advantages to parsing new Text Scene changes as they occur. Perhaps

‘l the most evident is that we could detect errors quickly, and notify the user of their nature.
Continuous parsing would also allow us to prompt the user, continuously disp'aying the

H "menu" of legal successors to the last input (see, for instance, (24]). In addition, continuous
parsing would make it easier to maintain tree equivalence.

i1

L There are also drawbacks to continuous parsing. The known methods for parsing

11 incomplete program fragments either place undue restrictions on program composition (the

i relationship between line and statement boundaries, conventions concerning line numbers,

o etc.), or could not cope with the COPILOT compiled-code environment. We could also
expect the continuous operation to be far les: efficient, for not only must the routines for

N performing these translations be constantly active (incurring switching and "swapping” or

{ "paging” overhead), but they must also maintain multiple parsing possibilities during the

- times when, because it is incomplete, the program is umbiguous. (x)

¥ We would prefer tc apply continuous pirsing methods. Since the above problems are

can unsolved, however, we have not employed them. In.tead, we delay parsing operations as long

| as possible, parsing only when not doing so would mean executing obsolete code. This allows

- the parser to expect that program changes are grammatically complete and correct when it

i parses them, or to be justified in seeking human aid if they are not.

aé

T Our methods for marking suspect procedures ensures that, if we operate the parser at the

.o times specified in the following paragraphs, the system will never execute incorrect code, nor

- exa.nine any incorrect data during structured editing operations.

-e

T he parser must be called:

1) Whenever a process activates (whether sprouted or resumed) if the procedure to be run
is suspect. This includes any change in state to RUNNING, from SUSPENDED,
STEPPED, .., or READY.

2) Whenever a procedure is called, If it is suspect.

(x) See, for instance, Lindstrom (35]

T N TR T Ta PV N rm—

3) Whenever a structured editing operation is performed, if the procedure containing the
indicated point is suspect (this covers operations which place the IP for a process into
uncompiled regions).

Since the compilation operations can only occur when no other processes are RUNNING,
case (1) above should be sufficient to guarantee that no incorrect code will be executed.
However, by adding case (2), we do not have to compile all changes each time, but need only
ensure that everything which can be reached without either suspending, or calling a
procedure, is correct. Thus, for example, UCP changes, required for the User loop operation,
can be compiled without attempting the translation of chang.; being made to other Scenes by
these UCP statements.

Placing the compiler in the activation path between processes allows a simplification of the
User algorithm. We may now remove the Compil step from line 3 of the program in Section
6.B3, and from the corresponding lines of subsequent examples, since the compiler will put
things right during the Stepp activation on the following line.

8.E4 Process Structure

We have chosen to implement the parsing algorithm as an independent process, with access
to all system structures. This gives it a particularly clean interface between the system and
target processes. This process, the Parse process, is nested in the same system block which

owns the Post and UCP processes. It runs at a priority between that of Post and UCP.

The Parse process, when not active, is suspended waiting for a parse event to occur. We can

best consider what happens by considering the following cases:

1) The User process inserts a statement into the UCP Scene, then executes Stepp. Stepp,
while activating the UCP at the new statement, causes a parse event. Because of the
User process’s priority, no further action occurs until it again suspends at Readaline.
Then the Parse process activates, preparing the new statement for execution before it, in
turn, suspends and allows the UCP process to run.

2) When a parse event 1s caused during a procedure call, or before a structured editing
operation, the Parse process gains control immediately, due to its priority. Because of
this event-driven operation, an instance of parser execution is invisible, except for a
time-delay, to the normal control transfers between processes and procedures.

160

B TP P

8.E5 The Parse Prncess

1

We will assume that, given a changed group of lines, our parser is capable of incrementally

P e
o o

translating them (perhaps combining these changes with other nearby or related changes.)

Here we will outline our procedure for applying this parser to a particular instance. The

r parameter to the parser is always the tree Tier node for 2 suspect procedure.
T ,
l The parsing process:

. 1) Examines, starting with the given procedure, all static ancestors (father first), yielding
[the outermost suspect procedure. 1)

2) Determines, using the old tree and token lists, in conjunction with the modified lines, a
[range of tokens and text to reparse.

- 3) Performs the parsing operations in lexical order, so that declaration changes will occur

Ll before the statements affected by them are encountered. ($)
. 4) Deletes old Token lists and linkages as they become useless. For each replaced or
I deleted tree node, the parser deletes the tree structures, subnode structures, and code
L. i
£ Segments for it.
. 5) Invalidates (see [44])) those tree nodes whose code is now nonexistent or incorrect. |
o The parser marks as invalid all new nodes, and all their lexical parents, terminating in '
each case with the outermost suspect procedure.
_[l i
& 6) Handles changes to block structure or declarations. This demands special treatment,

since the effects of these changes are distributed over a range of program statements

[n which might otherwise remain correct. Mitchell's design offsrs clear solutions to the
problems which arise from declaration changes. For each detected identifier deletion, 1
insertion, or attribute change, we mark as invalid any program tree node which uses
I 'r that 1dentifier. We must also invalidate all the ancestors of an invalidated node,
. terminating at the block or procedure containing the innermost current declaration for
the identifier. Although we use the associative facilities of SAIL to perform this search,
il its operation is analogous to searching Mitchell's dependency lists for the modified
! entities,
R R R R R R E R E R R R R

(1) Since all subprocedures of a suspect procedure are also suspect, this determines the
.e maximum range of current changes which could possibly impair correct operation of the code up
to the next procedure call or process rescheduling operation,

(3) This assumes that we require an identifier to be declared lexically ahead of its first use,
- even in a procedure nested within the same block. This is not a requirement of Algo! 60. If we
l relax this restriclion, the parsing job becomes somewhat more complex.

161

NEECTE T W ALY T g

The parser must sometimes decide to recompile statements whose code is stll correct. For

instance, since we cnly replace complete code segments, unchanged statements residing in the
same segment with a modified statement must also be recompiled. Unfortunately, not encugh
information about a statement remains in the pruned tree to allow the compiler to generate
new code (see Section 8.C3), so we must arrange to recreate the full tree by reparsing the
token lists which specify it. This is not difficult, for we know both that the increment to be
recompiled is syntactically correc’, and that it already fits correctly inco the surrounding

structure.

8.E6 Compiling: When and How

We need not necessarily compile the incremental tree Tier changes as they are made, as long
as the ultimate behavior satsfies the Visual Fidelity Principle. Previous systems have
handled this in different ways. The simplest are those, like most LISPs, which can either
interpret or compile their funcliois. sccommodating both forms in the same program
environment. In these systsms, the user chooses the compilation time for each function; the

only operational effect of compiling is to enhance speed and size characteristics.

Mitchell's system compiles code at fie last possible moment, applying what he calls a Tree
Factored Interpreter (TFI) to the tree structures (he parses changes immediately, on a line by
line basis). A tree-structured interpreter, much like LISP’s, is applied recursively to the
program tree. Each program node inherits the code compiled for its subnode:, then has
instructions of its own added o the inherited code. The code for a node is executed just
after it is created. Thus interpretation is factored into a control component, which follows
the tree structures, and an execution/interpretation component, which interprets the algorithm

(by compiling and running machine code.)

In Mitchell's system, nodes are validated by compilation, and invalidated during parsing,
using the methods described above (Section 8.E5). When the interpreter returns to a still
valid node, it can execute the previously compiled code. This policy, recursively applied,

means that only truly incorrect code need be replaced.

Mitchell's method requires IPS (interpreter) intervention at very frequent intervals, perhaps
at every statement, even when executing correct code. We could perform last-minute

compilation in COPILOT by using synchronization techniques, similar to those we have

162

e gy

described (see Section 8.C7), tc suspend in favor of compiler processes at the necessary

intervals.

However, if each transfer of process control caused minimum code recompilation, we could
expect an inordinate, probably unacceptable amount of process-switching to occur ufter even
minor changes. We could partially avoid these problems by making some reasonable

decisions each time about how much to compile.

At present, as we have seen, we restrict parsing events to times whose rarity would nullify any
benefits of such selective and freqizent compilation. In particular, we will seldom parse a
change until just before the code it represents is scheduled for execution. We are therefore
content to synchronize compilation with parsing events. After all changes have been parsed
for the outermost suspect proce 'ure (which will by the preceding constructions be invalid)
we apply a TFI compilation algorithm, similar to Mitchell’s, to the updated parse tree for

that procedure, without executing the code segments we compile. (%)

A final compilation task 1s to insert the resukant code segments into the code tier, and to

correctly link these segments to the surrounding code.

8.E7 Modifying Active Code

When the user (or any other agent) suspends operaition of a process, then modifies the
program in a way which affects code in any active procedure within that process, to maintain
correct program behavior requires special treatment. The IP location might have to be
repaired, for instance 1f a procedure is changed so that it no longer calls some active
procedure, or calls 1t from a different place, the return label needs to be modified.
Modifications to declarations often require substantial changes to the data environment.
Mitchell discusses this problem at length in his thesis. He presents an algorithm, called
REVERT, which can restore a legal state wheaever control transfers (by subroutine return,

the only possible time) to a modified context.

We have not given this matter the same exhaustive analysis for COPILOT. In the

(%) Normally, Mitchell's TFi compiles onlv those nodes which it actually executes (for instance, it
would compile only the selectec alternative of an IF statement, leaving the other until it was
selected.) He does provide modes, however, for compiling all nodes in such constructs, when
desired. This is the algorithm we are using.

163

prototype, the COPILOT user occasionally has to help reéstablish a correct environment by
direct editing of PROG, DATA, and DYNA Scenes. See Chapter 9 for thoughts on a more

satisfactory facility.

8.E8 Compiiing Temporary Statements

Temporary statements, when ON, are functionally indistinguishable frr.r any other
statements. When OFF, they are equivalent to null statements: they t.ave no effect at all.
Without the temporary statement facilities, the user could achiev: most of the same effects by
inserting conditional statements at selected program guints. These statements would test
variables used in place of our class identifiers, to determine whether or not to perform the

operations.

We demonstrated in Section 7.D3 that the enhanced syntax for temporary statements

constitutes a user convenience. It can benefit efficiency, as well When a temporary statement
is OFF, its code need not exist. The compiler can choose, while "in the vicinity”, to delete any
segments owned by inactive temporary statements. The expense of the recompilation
required to turn such statements back ON is offset by the ability to leave potentially useful

debugging or monitoring statements permanently in a program, without execution cost.

CHAPTER 9
SHORT SUBJECTS

In this concluding chapter, we wish to treat several topics:

1) Some facilities whose descriptions may be better understood in light of the
implementation information of Chapter 8.

2) Ursolved problems, some with partial solutions. We have mentioned most of these in
previous chapters.

3) Possible extensions to COPILOT, made passible by the basic design

The topics to be discussed do ot fall neatly into single categortes of any of the attribute
spectra we have discussed. They are therefore simply presented as separate discussions, with

no significance attached to their order of appearance.

9.A. ADDITIONAL COPILOT SUBJECTS

9.A1 User Programs in the Systemn Environment— Assistant Procedures
We have not mentioned this sub ject since Section 4. A3, when we briefly stated that the user
could write assistant procedures to perform repetitive terminal operations in his stead,

eliminating the need for a special "macro” facihity.

We need neither additional structure nor additional commands to provide this abtlity The
system skeleton of Figure 6-1, in fact, has a provision for such programs The wassistants

entry 1n that example indicates where Scenes containing special user procedures can be

placed, that Scene need not be called "assistants”, nor 1s there a limit to one such Scene.

The global variables described 1n Chapter 7. which the terminal primitives use for their
operations, form part of the environment of the assistant procedures. It 1s therefore possible,
by construction, for an assic nt procedure to do anything which the user can do in a single
terminal operation By combining several terminal primitives with normal language

constructs— loops, conditionals, etc.— one can achieve much more complex actions

Typically, the user will directly execute an assistant procedurs, by typing, for example,

165

“PROC(pl, ,pn)" The PROC call will execute in the UCP process environment. It should,
like any UCP-executed statement, be written to complete quickly, or invoke another process if

the operation might take lo, ger than a few seconds.

The behavior of the system under sequential application of some primiuves, particularly
process-activation functions like Stepp, depends on the ime intervals between successive calls,
since an acuivated subprocess may or may not have suspended when called upon to do
something else Although this condition is present in the operation of the User-UCP
processes, effecting the interpretation of user “type-ahead” (t), it 1s partcularly troublesome in

assistant procedures. We will discuss the problem further in Section 9.B2

9.A2 Display of (unnamed) Expressions

We have heretofore considered the display, in DATA Scenes, of named entities only (e.g.,
variables). We would like to attach a meaning to the general data display statement which,
in the syntax, allows us to select arbitrary expressions for display Our current solution 15 to
treat such expressions specially, adding the computed value to the current variable data
Scene, for one snapshot only., using the name "<temp>" to idenufy it. Unless explicitly

renewed. this entire entry Ct:appears during generation of the next snapshot

A better solution (but much more expensive) would require that we attach to the data tree
norie for an expression's equation a reference to that expression’s node in the program tree.
The expression would be re-evaluated, in the correct environnent, during each snapshot
update, unul the proper environment no longer existed, or until the user explhicitly deleted the
equation from the Text Tier In this case the text representation of the expression itself
wotild be used to name it (eg. "A<F(J»4 = 507), so that muluple simultaneous expressions

could be maintained

Another data display feature i1s provided as a convemence The stepping (eX. ®S) operations
are useless unless the user can see something of the results of executing a statzment. He can,
of course. explicitly select variables for display, | ut the necessity to do this can be irritating,
particularly in those cases when what he probably wants is clear A few situations are very

clear after stepping the execution of an assignment statement, one would like to know the

(1) The presentation of new commands faster than they are processed.
166

.

value of any affected variables; or when execution suspends, just prior to execution of a FOR

loop's controlled statement, the value of the contiulling variable is - arly always of interest.

The Post process spontaneously adds variables io the appropriate data Scene, whenever a
process suspends after "stepping” a statement which changed but one variable. The variable
1s not, however, marked for continuous display. The effect is to display this variable during

one snapshot only, unless data display statements nave previously selected it.

We could extend this facility to more complex statements (e.g., complete blocks or compound
statements), but we would, 1n each case, have to balance the added visual context this

achieves against the danger of flooding the data Scene with too much information.

9.A3 Operations on the UCP Scene

Since the User and UCP Scenes are ordinary Scenes, they should submit to user modification
through text-editing operations, particularly because such modifications could be quite useful,
permitting the user to tailor his system. However, 1n practice, such operations could yield
unpredictable resuits, some of which are detailed below. We must therefore place limits on
what can be done, 1n order to protect the integrity of the system. We would also like to

provide alternate facilities with equivalent power.

Any IPS which treats either the programs implementing the system or the history of user
commands as user-accessible entries must tackle these same problems. Teitelmar, encountered
some of them while implementing his BBN-Lisp facihiues; he gives a lucid description of the
results in [55). We share with him the belief that many of these operations are useful
enough that we should not prohibit them entirely. We have therefore introduced the

following restrictions:

1) We will permit no direct changes to the programs implementing the User loop, the Post
process, or the parser/compiler processes (but see Section 9C3 for ways to obtain the
same effect) This preserves the integrity of the basic system operation
We will permit no changes to the UCP Scene which alter the basic outer structure (that
of a procedure whose body 15 a compound statement). In addition, we will allow no
insertions of text into the UCP Scene below the current IP for that Scene, except by the
User process.

Only the User process may control the activation of the UCP process, or th~ placement
of 1ts IP

167

These latter requirements assure that the normal, sequential application of user commands

will not be impeded by user modifications to the UCP.

Let us briefly consider what the user might want to achizve by direct operations on the UCP
Scene. Perhaps most obvious, and most difficult to achieve in light of the above restrictions,
is repetition of previous commands. A conceptually easy way to achieve this would be to

map the UCP Scene to a visible Region, to point the edit cursor at a previous statement, and

to single-step the execution of that statement. To re-execute a series of commands, ¢ne would

surround a range of previous statements by BEGIN - END brackets, and step the execution

of the resulting compound statement.

The problem with this technique 1s restriction (3) above: the IP-modification and STEPP
operations implied by the above scenario are not allowed-- to allow them would destroy the
integrity of our interactive control The solution is quite simple: it costs little to create an
additional process, which we might call UCPI, as another .nstance of the UCP procedure.
As a separate process, UCP| possesses an independent executior. state (IP,EP); 1ts operation
will not interfere with the operation of the UCP process. Process control operations on
UCP| may be performed in a manner no different from the control of any other process.
For convenience, we may devise explicit commands fo: the most common UCPI transactions.

An example would be a command whose effect is similar to Teitelman’s redo operation (1),

repeating the action of a very recent statement.

The UCP Scene 1s a rich source of material for constructing assistant procedures, as well.
Text-copying operations, which we have not shown, make this job easy. By embedding
selected UCP statements within conditional and repetitive statements, a user can create quite
sophisticated sequences. As an example, having constructed and executed a sequence of
commaiids to test the performance of a new procedure, he could create an assistant procedure
to perform the same sequence, for a range of parameter values, using the statements from the
UCP to avoid reconstruction of the repeated text. One could, similarly, create another
assistant procedure to perform a complex sequence of text editing operations, then apply 1t to

a range of lines.

($) see [53) or [55]

A e Ay T A R N o

=R T TR

———

Xl &N sl N S e

[— | ?‘"l

9B PROBLEMS3

9.B1 A UCP Scene Problem

If we use algorithm A, B, or C of Chapter 6, the UCP Scene will contain a complete record
of recent terminal commands. However, algorithm D, which introduces the notion of
selective interpretation, also introduces a potential problem. In algorithm D it is not always
necessaiy to insert a statement string into the UCP in order to achieve that statement’s effect;
that statement may instead be executed directly. The UCP history wili therefore be
incomplete, rendering impossible automatic duplication of recent actions. A safe, although
expensive, solution is to insert each expansion into the UCP Scene whether 1t 1s used or not.
We could often increase efficiency by summarizing in the UCP Scene a sequence of actions
(for instance, cursor-moving operations) by a smaller number of statements, appropriziely

parameterized. We do nnt have a more satisfactory solution to this problem.

9.B2 Type Ahead Problems

In Section 6.B3 we discovered a drawback to the decoupled control achieved in the
User/UCP design: execution of one command will supersede that of a previous one if it is
typed before that previous command completes operation. This behavior 1s necessary 1If we
are to . etain non-pre¢mptive control over errant UCP statements. However, it 1s not the only

possible treatment of type-ahead C.ur cl ~ces are.

1) To cause new statements to supersede old ones, as above.

2) Tognore statements completed while the UCP is active.

3) To queue new statements behind the cxecuting ones, suspending the UCP only when
none remain to run (the normal behavior of Stepp when applied to a process which is
already stepping.)

We must immediately reject (2) as a solution, because 1t 15 completely unresponsive to the
user's n:eds. When affairs are progressing normaliy, in fact, (3) 1s the proper course,
perforiming all user commands in order Finally, as we have stated, we need to be able to
obtain the behavior of method (1)

No one has ever, to our knowledge, successfully resolved this conflict between the desire to be

able to type aheac, and the desire to be able to abort previous operations. We can offer no

169

complete solution here, but can at least offer a method which makes both the above
acceptable methods explicitly possible. To do it, we have further modified the User
algorithm, dividing the set of terminal commands into two classes. Each kind is expanded,
inserted, and compiled as usual When the UCP is inactive, both kinds behave identically.
When it is active, however, there is a type-ahead si:v'ation. For elements of one class, we
apply method (3), queueing the statements for eventual execution. We do 1t by bypassing the
suspend statement of Algorithm C in Section 6.B3. Elements of the other we arrange to
execute immediately, using method (1). We can now remove most of the commands of
Chapter 7 from this latter, immediate, class and place them into the more orderly queued

class.

Heretofore we have really needed only one command ("s!<statement string><cr>") to perform
any terminal operation: all others could be defined i1n terms of this one. Let us place this
command into the queued c.ass. We now need a command which will execute a statement
immediately: let us use "e?<statemen’ string><cr>" for that one. To abort the current UCP
operation, the user need type only "e?<cr>", which instantly terminates the current UCP
statement in order to execute the null statement. To suspend all non-system processes
immediately (a good idea in a crisis), one could type "e?2SUSPALL()<cr>", or, ideally, a
specially-designed CALL key which would expand to "SUSPALL()".

Having executed an immediate command, one could retry any or all of the interrupted

statements using redo or something like it.

9.B3 Data Scene Flickering

We mentioned this problem before, in Section 5HI. It does not arise when we are
examining the state of a suspended process, either looking at previously selected values, or
adding new ones via directly entered data display statements. However, consider a visible
DATA Scene, D, which 15 monitoring a running process, P, where P’s code contains several
data display statements. It 15 possible that these statements are being executed often,
generating a large number of snapshots in a short time. In this case, the value field for the
equation of a displayed variable which is changing between each snapshot will become an
unreadable blur (hopefuily, otherwise the system is not fast enough). We are not concerned

by this, though, for that blur is in itself useful information

170

However, if these data display statements are scattered among several procedures, all defined

within P and alternately called from within it, a far more serious "flicker” develops within D.
It occuis because the variables for :wo disjoint procedures cannot appear simultaneously
within D, even if both are simultaneously active. Even worse, if no action is taken to prevent
it, the equations for each will alternately occupy the same positions within the Scene. If these

transitions occur frequently enough, the result is not only chaotic, but uninterpretable.

if the user has enough disriay area, he can minimize this problem by creating several fixed
Scenes (see Section 5HI1), thus distributing the equations to fixed positions. With the
relaxation of the snapshot requirement which we described ‘n that section, these Scenes
shou!: be fairly well behaved. However, we have no general solu‘.on to the problem, when
it appears in the variable Scenes. lts effect could be reduced if tne Post process were to apply

heuristic guides to the placement of equations within variable Scenes.

9.B4 Data Monitoring

Data monitoring, or tracing, operations have always been a popular method of program
debugging For interactive systems, such a facility usually allows one to select a set of
variables to monitor, specifying for each whether he is interested in every reference to it, or is
only interested in store operations which change its value. The occurrence of such an event
can cause the current value to be printed or displayed, can cause a "program break”, or can

invoke some user-specified action.

We may distinguish between facilities provided by translators (eg., compilers), and those
provided by the “virtual machine™ the hardware and the IPS software. We have
concentrated most of our efforts on the latter, assuming as well that we can control only the
IPS software The structure of the virtual machine determines the category into which
continuous monitoring operations fall. If the hardware provides a way to interrupt when
selected events occur to selected memory locations, or 1If the system 1S Interpreter-based,
monitoring may be handled as an IPS facility. Otherwise it 1s something which must be
handled by the translator In COPILOT, this would involve the recompilation of large
amounts of code vhenever the monitoring attribute changed for a given variable. We feel
that, although we must accommodate explicit changes to identifer declarations, any other
facility which requires for its operation such widespread replacement of program code is

unacceptably inefficient, and should be avoided. The implementor willing to pay this price

17

could do so, by treating monitoring as a declaration attribute, and by depending on the

incremental compiler to {ind and replace the necessary references.

If our hardware possessed the ability to monitor individual variables, genera.ing an interrupt
or simulating a procedure call whenever one of them changed, our atitude would be much
different. Monitoring would become an ™S facility, well within our domain. Our data
display algorithm would respond readily to the needed modifications for displaying |
continously correct data values; and the process/event structures could provide more
sophisticated monitoring operations, including the so-called “continuously evaluating

expression” discussed by Kay (28] and Fisher (21]

The synch test and synch trap calls used to effect our process-control primitives are also
translator-dependent, so our avoidance of such facilities 15 not completely consistent. In this
case, since we always generaf~ this synch code, massive changes need not be made to install .
and remove 1t o occasion. We have had to accept the additional overhead this method
causes as unavoidable. Again, the addition of hardware memory facilities, which would
generate the appropriate exception conditions when control pzssed to selected tnstructions,

would virtually ehminate the synchronization overhead.

Several machines possess adequate memory monitoring facilities for a hardware

implementation of these features. ol

9.B5 Restoration of Active Context

This 15 the problem of restoring the control and data environment of an active procedure,
after its algorithm has been charged. We mention 1t here for completeness. We have
already described the problem and our progress in this area in Section 8.E7: that solutions

-4

exist for similar systems, but we have not yet succeeded in applying them to COPILOT.

172

9C. EXTENSIONS

9.Cl Environment Modification by DYNA Scene Editing

We have demonstrated the usefulness of structured pointing operations, applied to all the

similarly shown that one can modify this environment by suitable modifications to program
and data Scenes. We would like to consider here what we could accomplish by allowing

controlled modification to the dynamic Scene.

We would, as usual, imit the kinds of operations we would allow. Any changes which did
not make sense would be repaired, perhaps by ignoring the changes. For this reason, the
user would usually choose to "have the system make them”, by calling specific primitives (eg.,
Sprout), rather than use the general editing facilities, which would remain available for

activities unanticipated by the designers.

We would provide a translator which would reflect, in the lower Tiers, controlied dynamic

l context Scenes, for selecting and communicating environmer.tal information. We have

Scene changes of the following nature:

1) By deleting entries in the dynamic Scene one could "unwind the stack” of a process,
perhaps returnlng the environment to an earlier state, or removmg mtermediate
procedure instances (whatever that might mean).

2) o adding legal procedure instances, one could insert omitted procedure calls into the

rive environment, after correcting the omission in the code, or he could construct test

environments (see also Section 5D4). Default values would be assumed for variables in

the new activation records, until exphicitly overridden by additional user or program
operations

I 3) More importantly, by specifying that an entire process branch be copied, suitably
renamed, and inserted into the dynamic tree, one could accomplish a sort of = posteriori

I process sprouting. Such a duplication could be useful when uebugging, since it would
implement what amounts to a checkpoint to which one could later return. One would
run one of the duplicates for a while, then either terminate it and run the other

I (possibly modified) one. or terminate the second process If the first were successful. This
is a factlity similar to the one proposed by Lindstrom in [35]

|

4) Similarly (for symmetry) one could delete an entire process branch 1n the dyna tree, thus

terminating the process Directly terminating the process (using the Terminate primitive)
would have the same effect

173

i =g

9.C2 Scene Branching

in the COPILOT system as defined in chapters 5 through 7, there is but one copy. within

ea.h Tier, of the code for any given program segment; thus, the user need never perform
tewnndant modihcations, nur 1s there danger that changes will be left out of the “permanent”
copy of the program text () There 1s, however, a danger that he will make a change to the
text which 1s difficult to reverse, especially during early development. Let us consider some

of the kinds of things one would like to do during these early stages:

1) Try out proposed changes, without committing himself to them; try out several differenc
versions of the same change.
Add new, independent program segments individually, eliminating any possibility of
interference by other untested elements.
Merge several independent changes after each has been tested, resolving any conflicts
between them.

We alieady possess the means for i=-'aung a section of prograni for independen:
consideration: the nesied program Scene. The user can accomplish something similar to the
operations in the above list, using the existing facilities. By copying a Scene's data into a
new Scene, making the necessary modifications, and replacing the s<scene> reference which
includes 1t in the program, he can achieve the redundancy needed for all the above

capabilities.

We could significantly increase the convenience and efficiency of these operations, however, if
we were to extend the syntax for Scenes and Scerie references to include something like Scene
arrays, whose interpretation is shown in Figure 9-1. By editing SUPERSCN, or by
executing 2 special command, the user could switch alternatives at will. The major benefits
to this approach could be derived from proper implementation. For instance, all elements of
one Scene array could share common token, tree, and code Tier representations (see 9-2 and
9-3) where possible, diverging only where they differed. The currently selected index (in
the Scene link) would determine the accessible code segment: for each divergent program
increment. The data structures required for the other features would make the merger
operations (item 3, above) quite simple. As a final example, because they would be
mexpensive, one could retain several old “versions” of each Scene, for documentation or

safety purposes.

(%) The token Tier 1s the permanant representation of his programs. It i1s retained when the
user 15 not "logged 1n”, eiminating the need for separate "source files"”.
174

K-

4
|
- |
1 SUPERSCN :
PROCEDURE SRCH; ,
) BEGIN .
Jis !
END : : | ,
{
| | [{
| : '
; {
: - : |
: : | .
SCN[1] | scN [2] SCN[3] scN[1)]
i BEGIN BEGIN BEGIN BETIN
l W ew @ B ohE
i*3; j =104 o5,
e paw j._i..‘; e e
f END; END; END; END;

e

B

Figure 9-1. User's View of Scene Branching

175

- = i

SCN[*] ITEM

o8

H TOKEN TIER
f‘*}

NEXTLINE

€ W NEx A

W T
s NEXTLINE e 1)
NEE!;'I]_IHE [3]

@3 @5 @i

Ae % NEXTLINE
a7, [4 .we, /

o

BEGIN' TREE TIER
i
“ CONNECTIONS TO

TOKEN TIER, ETC.

.'/

" CONNECTION TO CODE TIER, ETC.

N

Figure 9-2. Efficient Scene Branching Implementation (Token. Tree)
176

JUMP

Sec (1)

je3

JUMP

CODE FOR '

JUMP

SEG [2]

JUMP . .:

SEG [3]

JUMP ...

SEG [i)

JUMP . .

JUMP

Figure 9.3. Efficient Scene Branching Implementation (Code)

1M

o

9.C3 Modifying the User Loop

We have explicitly forbidden direct changes to the code implementing the User loop, and
other critical system processes. We do not mean to prevent the user from designing his own;
we simply want to ensure that the transition to a new algorithm is orderly and correct. We
have already described an alternative for manipulations of the UCP, in Section 9.A3. The
branching facility just described could be used to allow User loop modification. If the "suser”
Scene link in Figure 6-1 were instead a link to an element of an array of User Scenes, the
user could create a new element of this array, copy the old User algorithm to it, and make
selected modifications. He would then call a special system primitive to switch from t4e old
algorithm to the new, within the same User process, or, alternately, to create a new process
and switch keyboard control to it.

We could also provide new primitives for customizing the User loop command structure bv

changing, adding, or deleting the expansion strings for selected commana characters.

9.C4 Display of Structured Data

Current data Scenes can manage only scalar values. Thus, while it is possible to present
single array elements in a Hata Scene, we cannot display an entire array, or selected rows and
columns from an array. More complex structures (eg, LEAP associations), are equally

unmanage:ble in data Scenes.

We have already shown the benefits of a nested Scene structure for program Scenes. A
similar approach could solve these data display problems. First, we would design a format
for the particular kind of code Tier structure to be displayed. Then we would compose

functions to create a text Scene, of a newly generated type, from the code Tier data for that

structure— we might create intermediate Tiers as well.

Finally, we would add to the syntax for data language “programs” the productions:
<equation> ;= & <scene 1d>
<data comment> = <comment>

We would also extend the data display statement syntax to include structure statements such

178

'z

w é

od

o)

(]

|

as "A", where A 15 a three dimensional array, "A[3,,:]", or, in SAIL, "SONe?s?". The first

k-

would display the entire array, A The second would show just the rows and columns of
"layer 3" of A. The third statement would present all those item (t) pairs related to each

other by the SON attribute (father/son pairs).

To satisfy one of these requests, the system would create the appropriate structured Scene,
map it to a selected Region, and insert a "sscene_id" entry, referring to this new Scene, into a
selected data Scene. We would include with the entry a "data ccmment”, bearing the orieinal
data display statement, to allow the user to identify the reference. Figure 9-4 is an example
of this design for the partial array A(3;,:). Examples of possible display formats for SAIL

associative structures abound in the figures of Chapter 8, for examole, Figure 8.-6.

We could extend this method to any of the basic, explicit structures of MISLE, of SAIL, or
of virtually any programming language. There is, however, a limit to the comprehensiveness
we could provide this way. A ucer, when developing d»ta structures for a specific use, must

use the provisions of the language to create them. The result need not resemble very closely

the structure as Ae visualizes it. This 1s true even for extensible languages, such as ECL,

-

Lisp70, or Algol68, in which the user tells the system a great deal about the structural

A
-

hierarchies he creates— although we might expect to do a good deal better in these cases. In
the past, as now, the burder [or creating any custom-tailored external representation for
structures has been on the user himself. In the present COPILOT system our text Scene
primitives can offer some aid, but a method is still needed for specifying the external
representation of user-defined structures. Balzs: has done some work in this area (see [2]),
as has Hansen (see [24]). Yonke, at Utah, is engaged in a promising study which could

provide the needed facilities.

(1) See Appendix B for a description of the LEAP associative features.
179

T D S L e T g e —

Al3,,0)

{1,] (2] [3,4] (4,¢] =
L]
() 15 0 0 0 [
|

(2] 12 15 0 0
)
(3] 4 9 1% 0 l
(4] -4% -137 -10 15 |

Figure 9-4. Possible Scene for Displaying Array Sections
180

9.C5 Error Messages

We could use the non-preémptive nature of COPILOT to take the sting out of error
messages: translation and execution-time errors detected by the system, or user-detected errors. 1/
7 u see how, we need to consider the nature of errors in a multiple-process environment. The
effect of an error, in general, is to place cunditions on the further activities of some process,
but not necessarily to prohibit them entirely. As an example, the detection of a syntactic or
semantic error during program translation need not, fortunately, prohibit further modification

to the Scene text, although 1t m.ght, for a serious problem, prevent execution of the resultant

compiled code.

i
I
|
i
|
|

In many cases, then, we can replace the notion of “error” with that of "incompletion”. A

=

*ranslation process can maintain, in an arpropriate Scene, a list of things which must be 1

done 1n order to remove all the consiraints tha: have been placed on a situation. in our

} compiiing example, the parser and compiler could maintain in an error Scene 2 list of the

) program Scene locations which contain incomplete or incorre .c code. Underlying error Scene '

’] Tiers could, as usual, provide structure, linking the error entries to the errant locales in the ,
program tree. This list, besides telling the user what problems remained, could help the '
translator to interpret the meaning of new changes in these locations. The important thing .

L about this technique is its potential kindness. it is non-preémptive, and it could provide]

substantial aid to the person attempting to rectify the situation.

9.C6 Text Scene Monitoring

We have described the control mechanisms for most of the translators which convert one
- COPILCT Tier to another. We have omitted tie one which builds the OLDLINE and
NEXTLINE structures of Figure 8-12 in Section 8.E2, when PROG Scenes are modified.

The current method is ad hoc, and not very interesting. We make special tests in the Scene

ﬂ modification routines, for selected Scene types, and take special action when they are found.
While designing translators between other Tiers, we have discovered the efficacy of building

n these translators as processes which monitor changes in their respective source Tiers. These
processes awaken at convenient and adequate intervals to perform their specified translations.

'i We subsequently developed the following generalization, which could handle the program

is‘ Scene maintenance case above, as well as other useful translations, some of which we will

== consider.

d

181

-4 =i

\

In each case, the goal would be to provide a translation algorithm which would maintain the
equivalence, as defined in Section 8.Al, of two or more structures, in order to satisfy a
requirerhent such as the Visual Fidelity Principle of Section 8.A3. Each translator would be
defined as a process with access to the data for its input Tier, and access to a suitable
destination 1:er. Its frequency of operation and translation volume would depend on the
conditions for invoking it. Each translator would specify these conditions by providing two
quantities as attributes of the input Scene type. They would provide an activation
predicate, which would determine the conditions for invoking the translation, and an event
type to cause whonever the predicate succeeded. The Scene modification primitives (eg.,
"change_char(.)") would evaluate the predicate for a Scene just after modifying the Scene.

This predicate could choose to activate its translator process:

a) On insertion, deletion, or replacement of a character in the Scene.
b) On insertion, deletion, or replacement of a line in the Scene.

¢) On insertion of a character . the end of the Scene.

d) On insertion of a line at the end of the Scene.

The activation predi~ate could also contain other Boolean terms, testing such attributes as the
name of the process doing the modification, and perhaps relevant Scene attributes: type,

mapped status_ etc.

The translation process would then wait (monitor) for an event of the type specified for the
Scene, acti ating as soon after one occurred as its priority would allow (usually immediately).
It would perform its actions, then suspend, awaiting another event. One proress might

handle more than one event type.
We will try in the following paragraphs to clarify this design with several examples.

The parse and compile processes form our first example, since they already operate this way.
As a second example, we could formalize the ad hoc operations which implement the Token
Tier change structures for PROG and DATA Scenes by a simple process causing, say, a

Token event whenever a type (b) or (a) change were made to a program or data Scene. 69)

(4) Combined with the compiler processes which lurk about the process activation interfaces,
the resulting system would resemble Kay's FLEX system design. Here the monitoring has a
random-access character, whereas Kay's processes operate linearly on their inputs.

182

ewl ewd

bowd Gl Gwd bud bed el

.=

&

)

Cr A e ———— - — o

——— H“";. T

9.C7 Program Commuunication

Scene monitoring can also aid user-program communicationt. We can categorize the kinds of
demands for data which programs make of their user: into two general classes. The first
includes initial parameters, file names, !imits, modes of operation and the like, which the user
provides to tailor the program for a particular “run”. The second is information actually
processed by the program, eg., commands and requests, statements to be translated, or data

points to be considered.

Our interactive facilit:»< have already eliminated the need for a third kind of user input to
programs: status and v:riable value requests, and many other debugging operations. We
think we have substantially reduced the need for the first kind (initialization), as well. After
all, the purpose of most such parameter requests is to set internal program variables to the
values provided, or perhaps to retain default values when the user’s response so indicates.
Typically the user, in testing his program, will give the same responses again and again, an
operation which becomes something of a ritual after a time. We can eliminate this sort of
request in COPILOT, since the user can set these internal variables using direct assignments
or function calls, often all~wing his selections to remain intact during multiple calls to the
tested program segment. His program can post, in a visible Text Scene, the names and
meanings of variables which it expects the user to set, or can simply create and present an
appropriate data Scene as an indication of what things he may want to change. That process

can further refuse to proceed until the user has provided satisfactory values for everything.

There will still, however, be occasions for more traditional input to programs (predominantly
the second kind above). In this case, the general moriitoring facilities of the previous section
yield a very iuce solution. The user could, for instance, engage in the following kinds of

dialogue with his program:

g

»n
~

3)

Synchronous operation. Suppose that process P would like to ask a series of questions
of the user, assuming that he will answer each question before being asked the next. P
could create, or gain access to, a text Scene to use for communication, then arrange to be
activated whenever a line were inserted, by any process other than P itself, as the last
line of that Scene (a type (d) modification). Upon each activation, P could insert
another question into that Scene (or into another Scene, if desired), and await user
response. With a slight modification, P cculd allow the speedy user to answer questions
befure they were asked, interlacing the questions later to create a readable record. For
some applications, the questions might be simple one-character prompts, indicating
completion of previous processing. Although this last mode resembles the preémptive
User input loops of COPILOT's predecessors, neither this nor any of the following
schemes are preémptive, for the user could choose at any tin.c to do something other
than provide data, requested or otherwise, to P's input/output Scene.

Command completion. Several recent operating systems, among them, the project Genie
system for the XDS940 [33], and the TENEX operating system for the PDP-10
[5], provide a facility for minimizing user input, while providing a quite readable
result. To do it, a program monitors each input character. On user request in some
cases, automatically in others, as soon as the value of the current input implies but one
legal successor, the system automatically "types” it, yielding complete commands, file
names, etc. Some systems insert additional "noise words” to make the result even more
readable. By using the methods of the previous example, but changing to a single
character (ype c) activation condition, we could easily implement this kind of dialogue.

General translation. The conditions labelled (a) and (b) in Section 9.C6 are the same
ones used by our idealized COPILOT to maintain program Tier equivalence. By using
them, the user could provide his own continuous incremental translation facilities,
thereby supporting his own language, or perhaps something less comprehensive.

9.C8 A Final Modification to the User Loop

The User Loop algorithms we presented in Section 6 demonstrated the capabilities which we

war.'~d our User loop to provide, but did so without forming an integral part of the Scene

and Tier structures which lend consistency and flexibility to most of our system design. We

have partially investigated the possibility of applying our Scene monitoring techniques to the

design of an improved top level interface.

We would begin by writing a new User process, whose only function would be to insert typed

184

o Pt

i

e W gy -

SR

3

L
I
T

—mar R -

characters into a linear terminal Scene. It could optionally perform simple editing
operations, allowing for deletion and replacement of incorrectly typed characters, etc.,
depending on the Scene monitoring frequency (see below). This terminal Scene would serve
merely as an input buffer, and operations upon it would be limited. We would implement it
as a Scene, so that the normal COPILOT operations could be used to view it, react to what

happened to it, and change it.

We could now create a process, Expand, to monitor changes in the terminal Scene, and to
translate them either into direct action, or into complete statements in the UCP Scene for
execution. By alternating between activation frequencies (c) and (d) of Section 9.C6, the
Expand process could allow the User process the simple editing capabilities, mentioned

above, whenever single-character reaction was unnecessary.

The ultimate behavior of these processes would not be too different from those of Chapter 6,
but the overall organization would become clearer, and potentially more powerful. In fact,

some useful extensions almost suggest themselves:

We need not limit to one the number of processes monitoring a Scene. We could, therefore,
add a Prompting process, at the user’s option, to help the novice or infrequent user with his
commands. The prompter could complete commands, as described in Section 9.C7, and insert
directives into the terminal Scene, as a guide to the user's responses, or to point out potential

mistakes.

The monitor process structure would also make multiple-language systems possible: The
expansion and compiling processes could be replaced in a modulai fashion, so that any
aspect— the terminal "language”, or the underlying base language— could be changed, without

altering basic system behavior. (We do not mean to imply that this task would be easy).

We feel that the monitoring technique dominating the preceding sections, though requiring

additional research, would help achieve a desirable system unity.

185

*

: 9.D. SUMMARY

We have presented the COPILOT system design ir order to investigate certain aspects of
Interactive Programming Systems in a multiple processing environment. Our major

approaches have been:

1) The application of multiple processing techniques to the IPS facilities t..emselves,
leading to a non-preémptive terminal operation, with convenient access to all relevant
environments, and rapid response to user commands, independent of the activity of his
target processes.

2) The use of (CRT) display devices, to increase the speed with which the system and user
imay communicate, and to allow information to be presented “in context”, improving the
user’s ability both to comprehend complex environments and to specify points of interest
within them,

| 3) The expression of all user algorithms and terminal commands in terms of a single

! programming language, providing a consistent, powerful user interface, and reducing
the number of modes which determine the meaning of user input. Top-level
abbreviation facilities allow the most common operations to become manipulative, refiex
actions, rather than symbolic commands.

In Chapters 5 through 7 we described the COPILOT system, which employ these methods to

meet the criteria of Chapter 2 for achieving a better behavior match.

In Chapter 8 we discussed 1mportant implementation considerations: the content and
structure of information used to represeni the system environment at different levels (Tiers),

and the methods for maintaining the necessary relationships (or equivalence) between Tiers.

Finally, in these closing sections, we have attempted to indicate possible implications of this

work, especially the potential for extension, using our methods as a basis.

l

n

et

APPENDIX A
SYNTAX CONVENTIONS

This appendix defines the modified BNF syntactic forms used to describe the MISLE
language and the Data layout in Chapter 5 It assumes a general knowledge of BNF, as

defined in [46), for instance.

Nonterminal symbols are expressed as lower case words surrounded by "<" and ">", eg,

"<statement>".

Termninal symbols include punctuation: single characters or "diphthongs” defining themselves;
reserved words: BEGIN, END, ELSE, etc; and the special nonterminal-like symbols <id>,

<string_constant>, <constant>, and <integer_constant>.

The character ™" causes the following character to be interpreted literally, if it would

otherwise have special meaning.

Each rule, or production, is a nonterminal, followed by the definer ":=", then by one or more
alternatives, separated by tne "|" character. An alternative is a list of terminal ard

nonterminal symbols, or is an option or a repeat alternative.

An option, of the form [<alternative> | <al..> | .. | <al.>] requires that one of the
alternatives be chosen. The repeat alternative takes the form { <alternative> }i« , and means

that instances of the alternative may appear zero or more times:

<¢> = A {, B }Juis the same as <c> i= A | <c>, B

187

= i = W, -.|-|..._ . i dLaw -.-..1- i - L% -1:‘..-‘{.‘,_'._ 3 ——

Expressed in its own language, this syntactic specification is:
Terminals: ‘['] '{ '}« = NONTERM TERM
where NONTERM and TERM represent nonterminals, as defined above.
<production> := NONTERM "= <alternative> {, <alternative> }u
<calternative> = <element> { <element> }:
<element> == TERM |NONTERM | <option> | <repeat>
<option> == [<alternative> { | <alternative> }: ']

<repeat> wm '{ <alternative> '}

188

i

L)

i
i
1
i
1
i
I

I
|
|
1

i

-

APPENDIX B
ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE

We have represented many of our COPILOT structures in terms of the LEAP associative
facilities embedded in SAIL. The structural diagrams of chapters 8 and 9 were presented in

a consistent pictorial style, representing these LEAP structures.

We will first briefly describe SAIL's associative facilities. Following that we will provide a

correspondence between the SAIL structures and our pictorial representations.

The LEAP description has been extracted from [19], with the permission of the other

authors:

SAIL contains an associative data system called LEAP which is used fer
symbolic computations. LEAP is a combination of syntax and runtime

subroutines for handling items, sets of items and associations.

Ttems

An Item is similar to a LISP atom. Items may be declared or obtained during
execution from a pool of items by using the function NEW. Items may be stored
in variables (Itemvars), be members of sets, be elements of lists, or be associated

together to form triples (associations) within the associative store.

Triples
Triples are ordered three_tuples of items, and may themselves be considered
items and occur in subsequent associations. They are added to the associative

store by executing MAKE statements. For example:
MAKE use ® plani = taskl;

The three item comp: nents of an association are refered to as the “attribute”, the
"object”, and the "valie” respectively. Associations may be removed from the

store by using ERASE statements such as.

189

R e ———

ERASE use planl = ANY;

Datums

Each item other than those representing associations may have a Datum which
s a scalar or array of any SAIL data-type. The data-type of a DATUM may be
checked during execution. DATUMs are used much as variables are. For

example:

DATUM(t) « 5

would cause the datum of the item "it" to be replaced with "5".

Sets and Lists

A Set is an unordered collection of distinct items. Items may be inserted into set
variables by "PUT” statements and removed from set variables by "REMOVE"
statements. Set expre:sions may also be assigned to set variables. Set
expressions including set constants, set functions, set union, subtraction and

intersection are provided.

Sets are deficient 1n some applications because they are unordered. To remedy
this. SAIL contains a data-type called "list”. A List is a (user)-ordered sequence
of items. An item may appear more than once within a list. List operations
include inserting and removing specific items from a list variable by indexed
PUT and REMOVE statements. List variables may also be assigned list

expressions, including list constants, list functions, concatenation, and sublists.

Foreach Statements
The standard way of searching the LEAP associative store is the Foreach

Statement. A Foreach Statement specifies a "binding list” of itemvars to be

assigned values (bindings), an "associative context” specifying how the cata

structure is to be searched to provide these bindings, and a statement to be
repeated for each set of binding values. Consider the following example:
190

= mm

A ! ‘mi

"’ | |

L gL O o

]
g

&1

FOREACH gp.pc | parent e c s p A parent ¢ p s gp DO
MAKE grandparent e c = gp;
In this example the binding-list consists of the itemvars "gp", "p", "c". The
associative context consists of two “elements”, "parent @ ¢ = p", and “parent @ p =

gp". The statement to be iterated is the MAKE statement.

Initially all three itemvars are "unbound”. That is, they are considered to have
no ttem value. Since "p" and "c" are unbound, the element “parent & ¢ = p”
represents an associative search. The LEAP interpreter is instructed to look for
triples containing “parent” as their attribute. On finding such a triple, the
interpreter assigns the ob ject and value components to "c” and “p” respectively.
We continue to the next element “parent ® p s gp”. In this element there is only
one unbound itemvar, “gp". "p” is not unbound even though it is in the binding
list because It was bound by a preceding element. A search is made for triples
with "parent” as their attribute and the current binding for “p” as their ob ject.
If such a triple 's found, its value component is bound to “gp" and the MAKE
statement is evecuted. After execution of the MAKE statement, the LEAP
interpreter will "back up" and attempt to find another biading for “gp” and then
execute the MAKE statement again. When the inteipreter fails to find another
binding, it backs up to the preceding element and trys to find other bindings for

p" and "c". Finally when all triples matching the pattern of the first element

have been tried, the execution of the FOREACH statement is complete.

191

Thus, with a FOREACH statement, one can provide answers to the following kinds of
questions (SON, HARRY, and GEORGE are aiready bound items):

SON ¢ HARRY s GEORGE Does this relationship exist?

SON ¢ HARRY #? Who is (are) the son(s) of Harry?

SON ¢ ? + GEORGE Who is (are) the father(s; of George?

? e HARRY: GEORGE What is (are) the relationships?
SONe?s? What are the father/son relationships

?e GEORGE ¢ ? etc.

? e ? + HARRY etc. (these aren't too interesting)

Pe?s? Dump associative men.ory (illegal in SAIL)

We suggested in Section 9.C4 that we might use the above question-mark form as a “pecial

syntax for display of associations.

Pnames

We can associate with each item a string value, which we call its Pname. There can be but
one Pname for each item, and conversely. Efficient means are provided for finding one,
given the other. We have used this Pname mechanism in COPILOT to implement the

symbolic access to symbols.

192

Pictorial Representation
In this dissertation an item 1s normally represented by a small circle, sometimes a small

square. Its datum representation, if any, s appended to the item piture by a small

unlabelled line segment. The datum 1s drawn in a convenient repre‘entation for its data

type. meaning, etc. For example.

rf PNAME -"1"])) >,
()— {BEGIN i’

]
-is

| DESCRIPTOR

An item’s pname, if relevar®, appears near the item, enclosed in brackets, as [PNAME - "I"].

Any other names apparently labelling an item 1is unofficial, included 1n the diagrams for

descriptive purposes.

The association "ATTeOBJsVAL" is drawn as an arc, labc'led by the attribute ATT,
connecting OB J and VAL, as:

ATT
o8y VAL

BIBLIOGRAPHY
(1] Rush: Terminal User's Manual. Allan-Babcock Company, Inc., 1966.

(2] Balzer, R.M., EXDAMS: Extendible Debugging and Monitoring System. Proc. 1969
Spring Joint Computer Conference, Vol. 34, pp. 567-580.

t3) Bauer, H. Becker, S, and Graham, S, ALGOL W 'mplementation. CS 98, Computer
Science Dept., Stanford Univ., 1968.

(4] Berry, D.M. Introduction to Oregano. Proceedings of a Symposium on Data
Structures in Programming Languages, Gainesville, Fla, February 1971.

(5] Bobrow, D.G., Burchfiel,].D., Murphy, D.L., and Tomlinson, RS, TENEX, a Paged
Time Sharing System for the PDP-10. Comm. ACM 15, 3 (March 1972), 135-143.

(6] —-, and Wegbreit, B, A Model and Stack Implementatioi of Multiple Environments.
BBN Report No. 2334, Cambridge, Mass, March 1972.

{77 Bryan, GE, and Smith, JW, Joss Language. Memorandum RM-5377-PR, The
RAND Corporation, August 1967.

(8] Cheatham, T.E, and Wegbreit, B, A Laboraiory for the Study of Automating
Programming. Proc. AFIPS 1972 Spring Joint Coinputer Conference, Vol. 40, pp. 11-
22.

(9] Corbato, F.J., CTSS Programmer’s Guide, Project MAC, MIT, May 1965.

(10] Decsystem10 Users Handbook. The Digital Equipment Corporation, Maynard Mass,,
1972.

(11] Algebraic Ipterpretive Dialogue Conversational Language Manual. The Digital
Equipment Corp., DEC-10-A JCO-D, Maynard, Mass,, 1970.

(12]) Depres, RF, A Command Structure for Interactive Programming. Project Genie
Report No. P-17, Berkeley, Ca, March 1969.
194

Ak T I G N D = .

Dunn, T M, and Morrissey, JH, Remote Computing — An Experimental System.

Proc. 1964 Spring Joint Computer Conference, Vol. 23, pp. 413-424.

(14] Dahl, O, Myhrhaug, B, ana Nygaard, K., Common Base Language. Publication No. i

S-22, Norsk Regnesentral, Norwegian Computing Center, Oslo, Norway, October 1967. .l

(15] Engelbart, D.E, and English, WK, A Research Center for Augmenting Human l
Intellect. Proc AFIPS 1968 Fall Joint Computer Conference, Vol. 33, part !, pp. 395.
410. l

(16) ——, ——, and Rulifson, JF., Development of a Multidisplay, Time-Shared Computer 1

Facility and Computer-Augmented M anagement Research. Stanford Research Institute -l
Report, April 1968.

(17] Eastlake, R, ITS 1.5 Reference Manual Project MAC, Mass, inst, of Tech.
Cambridge, Mass,, July 1969.

(18] Feldman, J.A, and Rovner, P.D, An Algol-Based Associative Language. Comm. ACM
12, 8 (Aug. 1969), 439-449.

(19] ——, Low, J.R, Swinehart, D.C, and Taylor, R.H., Recent Developments in SAIL - An
ALGOL-Based Language for Artificial Intelligence. Proc. AFIPS 1972 Fall Joint
Computer Conference, Vol. 41, pp. 1193-1202.

(20] ——, A Formal Semantics for Computer Oriented Languages (thesis). Carnegie Inst. of
Tech, Pittsburgh, Pa,, 1964.

(21] Fisher, D, Control Structures for Programming Languages (thesis). Carnegie-Melion
Univ., Dept. of Computer Science, May 1970.

(22] Floyd, R, A Descriptive Language for Symbol Manipulation.]. ACM 8, (1961) pp.
579-584.

(23] Gries, D, Compiler Construction for Digital Computers. John Wiley and Sons, Inc.,
New York, 1971.

N I T e~ T

L e s e A il & .

l

-
4

| o | [—— s

.]

S §

= ¥k &

A O el beed e

s

[24)

(25]

(26]

(27

(28]

(29]

(30]

(31]

[32]

(33]

(34]

Hansen, W.]., Creation of Hierarchic Text with a Computer Display (thesis). Stanford
Univ,, Dept. of Computer Science, Palo Alto, Ca., May 1971.

Hawker, E. (ed), USERS MANUAL. Computation Center, Stanford Univ., Stanford,
Ca, 1971.

Iverson, K.E, A Programming Language. John Wiley and Sons, Inc, New York,
1964.

Johnston, J.B., The Contour Model of Block Structure Processes. Proceedings of a
Sympostum on Data Structures in Programming Languages, Gainesville, Fla,, February
1971.

Kay, AC, The Reactive Engine (thesis). University of Utan, Dept. of Computer
Science, Salt Lake City, Utah, August 1969.

Kemeny,]J.G, and Kurtz, T.E, BASIC - A Manual for BASIC, the Elementary
Algebraic Langtage Designed for Use with the Dartmouth Time-Sharing System (third
edition), Dartmouth College, Jan. 1966.

Knuth, D.E, On the Translaicon of Languages From Left to Right. Information and
Control, Vol. 8 (1965), 607-639.

——, The Art of Computer Programming, Volume |; Fundamental Algorithms.
Addison Wesley, New York, 1968, pp. 305-434.

Lampson, B.W., Dynamic Protection Structures. Proc. 1969 Fall Joint Computer
Conference, Vol. 35, pp. 27-38.

—~—, Time-Sharing System Reference Manual. Document «30.10.30, Dept. of Defense
Contract S0-185, U.S. Printing Office, 1966.

Leavenworth, B.M,, Syntax Macros and Extended Translation. Comm. ACM 9, 11
(Nov. 1966), 790-792.

(35)]

(36]

(37

(38]

(39]

(40]

(41)

[42]

(43)

(44)

(45)

(46]

Lindstrom, G. Vanability in Programming Languages (thesis). Carnegie-Mellon
Univ, Pittsburgh, Pa, July 1970,

Lock, K., Structuring Programs for Multiprogram Time-Sharing On-Line Applications.
Proc. AFIPS 1965 Spring Joint Computer Coni<rence, Vol. 27.

——, Incremental Compilation (unpublished).

McCarthy, J., fowards a Mathematical Science of Computation. Stanfor. University,
1962.

——, and Painter,], Corf'ectness of a Compiler for Arithmetic Expressions. Stanford
Artficial Intelligence Memo Number 40, April 1966.

——. Abrahams, P, Edwards, D, Hart, T, and Levin, M., Lisp 1.5 Programmer’s
Manual. MIT Press, Cambridge, Mass., 1962

Miller, R, Response Time in Man-computei Conversational Transactions. Proc.
AFIPS 1968 Fall Joint Computer Conference, Vol. 53, pp. 267-278.

Mills, H. Top Down Programming in Large Systems, Debugging Techniques in
Large Systems, R. Rustin (ed). Prentice Hall, Englewood Cliffs, New Jersey, 1971.

The Multiplexec Information and Computing Service: Programmers’ Manual. Pro ject
MAC, Mass. Inst. of Tech, Cambridge, Mass,, 1971.

Mitchell, J.G., The Design and Construction of Flexible and Efficient Interactive
Programming Systems (thesis). Carnegie Mellon Univ,, Dept. of Computer Science,
Pittsburgh, Pa., June 1970,

——-, Newcomer, J, Peris, A, Van Zoeren, H, and Wile, D, Conversational
Programming — LCC. Carnegie-Mellon Univ,, Dept. of Computer Science, Pittsburgh,
Pa, June 1971

Naur, P. (Ed.), Revised report on the Algorithmic Language ALGOL 60. CACM 5, |
(1963).

197

ad

-

dod

(47]

(48]

(49]

(50)

(51)

(52)

(53]

(54)

(55)

(6]

(57)

Organick, EI, and Cleary, J.G, A Data Structure Model of the BE700 Computer
System. Proc. of a Symposium on Data Structures in Programming Languages,

Gainesville, Fla, February 1971

Prebus,], TVEDIT. Inst. for Math. Stud. in the Social Sciences (internal

documentation), December, 1970.

Quam, LH, and Diffie, B.W, Lisp 16 Reference Manual Stanford Artificial
Intelligence Laboratory Operating Note 28.5 (Sept. 1970).

Ryan, JL, Crandall, RL, and Medwedeff, M. A Conversational System for
Incremental Compilation and Execution in a Time-Sharing Environment. Proc.
AFIPS 1966 Fall Joint Computer Conference, Vol 29, pp. 1-22.

Simon, H., Reflections on Time Sharing From a User's Point of View. Carnegie

Institute of Technology Research Review, 1967.

Swinehart, D.C., and Sproull, R.F, SAIL. Stanford Artificial Intelligence Laboratory
Operating Note 57.2, January 971,

Teiteiman, W., Bobrow, D.G., Hartley, AK., and Murphy, DL, BBN-Lisp TENEX
Reference Manual. Boit Beranek and Newman Inc, Cambridge, Mass., July 1971.

——, PILOT: A Step Toward Man-Computer Symbiosis (thesis). Report TR-32, MIT
Project MAC, 1966.

——, Automated Programmering — The Programmer's Assistant. Proc. AFIPS 1972
Fall Joint Computer Conference, Vol. 41, Part 2, pp. 917-922.

Thomas, R. H., A Model for Process Representation and Synthesis (thesis). Report
TR-87, MIT Project MAC, 1971.

Wegbreit, B., Studies in Extensible Programming Languages (thesis). ESD-TR-70-297,

Harvard University, Cambridge, Mass., May 1970.

(58) —-, An Overview of the ECL Programming System. Proc. of the International
Symposium on Extensible Languages, SIGPLAN Notices, Vol. 6, Number 12
(December, 1971).

(59) Wegner, P, Data Structure Models for Programming Languages. Proc. of a
Symposium on Data Structures in Programming Languages, Gainesville, Fla, February
1971.

(60) Van Dam, A, and Rice, D.E, On-Line Text Editing: A Survey. Acm Computing
Surveys 3, 3 (Sept. 1971), 93-114.

(61) Van Wijngaarden, A(ed), Mailloux, B.J, Peck, JEL, and Koster, C.H.A, Report on
the Algorithmic Language Algol 68. Numerische Mathematik 14:79-218 (1969).

(62) Waite, WM, A Language-Independent Macro Processor. Comm. ACM 10, 7 (July
1967), 433-440.

(631 Wiederkold, V., PL/IACME. Stanford Univ. Computation Center ACME Facility,
1967.

(64) Wirth, N, On Multprogramming, Machine Coding, and Computer Organization.
Comm. ACM 12, 9 (Sept. 1969), 489-498).

199

