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This thesis examines various methods of performing associative 

searches of a random-access file. An abstract model of the retrieval 

process is used to evaluate the different techniques. 

For partial-match queries, both generalized hash-coding and trie 

algorithms are analyzed. An exact lower bound is derived for the 

required average number of buckets examined by hash-coding algorithms, 

and the optimal hash functions are precisely characterized. A new 

class of combinatorial designs, called associative block designs, is 

introduced which have excellent worst-case behavior as well as optimal 

average retrieval time when employed as hash functions. Tries are 

f'ound to be about as efficient as the optimal hash functions on the 

average. In general, the time required to answer a partial match 

query is found to decrease approximately exponentially with the amount 

of information specified in the query. The efficiency gains achievable 

through storing records in several locations are also examined. 

For answering best-match queries, a hash-coding algorithm due 

to Elias based on error-correcting codes is shown to be optimal. 

This work was supported by the National Science Foundation under grant 
GJ-33l-70X. 



( 



QUOT ATJQNS 

Oh where, oh where, has my little dog gone? 

Oh where, oh where can he be? 

With his tail cut short, and his ears cut long, 

Oh where, Oh where can he be? 

[Nursery rhyme] 

You must look where it is not, as well as where it is. 

[Gnomologia - Adages and Proverbs. 

by T. Fuller ( 1 732)] 
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In this thesis we examine algorithms for "associatively" searching a direct­

access file to determine their optimal form and achievable efficiency. This 

chapter presents an abstract model of the file and query specifications, and we 

analyze the search algorithms within this framework. Chapter 2 discusses the 

historical development of the "associative search" problem, and reviews 

previously published search algorithms. Chapters 3 and 4 examine partial-match 

search algorithms, and chapter 5 studies a best-match search algorithm. 

An information retrieval system must consist of at least the following parts: 

(i) a collection of information, called a til~. An individual unit of this 

collection is usually called a r:_e~cm:J. If records may be added to or deleted from 

the file (that is, the file may be !J.RQ_at!:!.9), the file is said to be ~y..ruunl~, otherwise 

it is said to be s!atic. 

(ii) a storage or recording procedure by which to represent the file (in the 

abstract) on some physical medium for future reference. This operation we call 

the encoding of the file. The encoded version of the file must of course be 

distinguishable from the encoded versions of other files. The medium used is 

1 



ent-irely arbitrary: for example, punched or printed cards, ferromagnetic cores, 

magnetic tape or disk, holograms or knotted ropes. There are clearly many 

possible encoding functions, even for a given storage medium. To choose the 

best one for an application is called the enc_Q..d)_ng or d_&t_a ~trJ.!~LL!.re problem. 

(iii) a method by which to access and read (or decode) the encoded file. 

The access method depends only on the storage medium used, while the encoding 

function determines what interpretation should be given to the accessed data. 

The encoded version of the file will in general consist of the encodings of its 

constituent records, together with the encoding of some auxiliary information. If 

(the encoded version of) any particular item of information can be independently 

accessed with (approximately) unit cost, we say the file is stored on a direct­

access storage device. · Card files and magnetic disks are thus direct-access, 

whereas magnetic tapes are not. The access cost usually consists of two 

independent quantities: the physi~al. a~c~s-~ time needed to move a reading head 

or some other mechanical unit into position, and the tr~n~mi~~iOJl time required to 

actually read the desired data. The transmission time is proportional to the 

amount of information read, while the physical access time usually depends on the 

relative location of the last item of information read. Devices such as core 

memory have zero physical access time. 

2 

( 



8 

(iv) a user of the system. This person t:S assumed to have one or more 

queries (information requests) for the system. The r_~spon_se to a query is 

assumed to be a subset of the file - that is, the user expects some portion of the 

records of the file to be retrieved and presented to him. If the user presents his 

queries one at a time in an interactive fashion, we say that the retrieval system is 

being used on-line, otherwise we say that it is being used in batch mode. In this 

thesis we shall only consider on-line systems. 

(v) a search algorithm. This is a procedure for accessing and reading part 

of the encoded file in order to produce a response to a user's query. It is of 

course dependent, but not entirely, on the choice of storage medium and encoding 

function. This algorithm may be performed either by a computer or some 

individual who can access the file (such as a librarian). 

The above broad outline of an information retrieval system needs to be 

fleshed out with more detail in order to make precise the problem to be studied. 

We now present some formal definitions required for the r~st o1 this 'thesis. 

These details restrict the model's generality somewhat, although it remains a good 

approximation to a large class of practical situations. 

3 
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A r~corq R is defined to be an ordered k-tuple (q,r2,· .. ,rk) of values (that 

is, each record contains exactly k ~~y_s, or §!lr:i_b.Ul!t~). We will assume that the 

j-th key can have at most vj values, for some" finite vj, 2svj<oo, so that 

o~rj<vj for 1 ~j~k and any record R. For simplicity we shall usually assume that 

all the vj's are equal to a particular value v. In addition, we will usually consider 

only the case v = 2, since any other record type can easily be encoded as a 

binary string. Binary records are thus in a certain sense the most general case. 

In this situation each record is a binary string (or word) of length k. Let R = 

{R 1, R2, ... } denote the set of all valid records, so that IRI = v1v2 .. •Vk· We 

also reserve the notation Rk for the set of all binary words of length k. A file F 

is defined to be any nonempty subset of R. We shall consistently use the letter 

n to denote IFI, the number of records in the file being considered. 

These conventions are not the most general possible. For example, in the 

model proposed by Hsiao and Harary [Hs70], a record is defined to be an arbitrary 

collection of (attribute, value) pairs rather than a complete list of values for a 

predetermined set of attributes. A study of the complexity of associative 

retrieval in this more general setting, however, would certainly require many 

additional assumptions about the file characteristics. 
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1. 2. QUERIES 

Let Q denote the set of queries the information retrieval system is 

designed to handle. For a given file F, the proper response to a query Qi E Q is 

denoted by Qi(F) and is assumed to be a (perhaps null) subset of the records in 

F. 

The following sections give a framework within which to categorize query 

types, and describe the particular query types to be considered in this thesis. 

1. 2. 1. INTERSECTION QUERIE_S. 

The most common query type is certainly the intE!rsec;ti_on que]y, which is 

named after the defining characteristic of its response: a record in the file F is 

to be retrieved if and only if it is also in a predetermined subset Qi(R) of R , 

so that 

(1) 

The notation here is consistent since if F==R then ( 1) implies Qj(F) == Qi(R). 

The sets Qi(R) completely characterize the functions Qi(F) for any file F by 

the ubove intersection formula. Intersection queries enjoy the property that 

whether some record REF is in Qi(F) does not depend upon the rest of the file 

(that is, upon F-{R}), so that no "global" dependencies are involved. The class 
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of intersection queries contains many important subclasses which we present in a 

hierarchy of increasing generality: 

(1) Exact match queries: Each Qi(R) contains just a single record of R . 

An exact match query thus asks whether a specific record is present in 

F. 

(2) Single-key queries: Qi(R) contains all records having a particular vaiCJe for 

.. ~· a specified attribute. For example, consider the query defined by 

(2) 

(3) Partial match queries: A "partial match query Oi with t keys specified" 

(for some t :s k) is represented by a record RER with k-t keys 

replaced by the special symbol "*" (meaning "unspecified"). If Oi = (qi 1, 

qi2' ... , qik) then for t values of j. we have O:squ<vj and for the other 

values of j we have qu="*"· The set Qi(R) is the set of all records 

agreeing with Oi in the specified positions. Thus, 

(3) 

A sample application might be a cross-word puzzle dictionary,, where a 

typical query could require finding all words of the form "B*T**R" (that 

is: BATHER, BATTER, BETTER, BETTOR, BITTER, BOTHER, BUTLER, 

BUTTER). We shall use Qt throughout to denote the set of all partial 

match queries with t keys specified. 
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( 4) Range queries: These are the same as partial match queries except that a 

range of desired values rather than just a single value may be specified 

for each attribute. For example, consider the query defined by 

Q(R) = { RER I (1 srp;3) 1\ (1 ::; r2 ::; 4) } (4) 

(5) Best-match queries with r_estrlcl~d qjstan_~~: These require that a 

distance function d be defined on R . Query Qi will specify a record 

Rc. and a distance Ai , and have · 
I 

(5) 

Query Oi requests all records within distance "i of the record Rc. to be 
I 

retrieved. The distance function d(R,R') is usually defined to be the 

number of attri.bute positions for which R and R' have different 

values; this is the Hamming distance metric. 

( 6) Boolean queries: These are defined by Boolean functions of the 

attributes. For example, consider the query Q defined by 

Q(R) = { RER I ((q = 0) v (r2 = 1)) 1\ (r3 cJ 3)} (6) 

The class of Boolean queries is identical to the class of intersection 

queries, since one can construct a Boolean function which is true only for 

records in some given subset Oi(R) of R (the ~harq_~le_ris_t~ fi.,Jn~tiq_n of 

7 



Note that each intersection query requires tQ.tC!t rElc_all, that is, ~!'Elt:Y record 

in F meeting the specification must be retrieved. Many practical applications 

have limitations on the number of records to be retrieved, so as not to burden the 

user with too much information if he has specified a query too loosely. 
•' 

1. 2. 2. BEST -MATCH QUERIES. 

A different query type is the pure PEt$t-maJch ql.J~ry. A pure best-match 

query Q; requests the retrieval of all the nearest neighbors in F of the record 

Ri E R using the Hamming distance metric d over R. Performing a pure best-

match search is equivalent to decoding the input word R into one or more of the 

"code words" in F, using a maximum likelihood decoding rule (see Peterson 

[Pe 72]). Thus we have 

Qi(F) ::: {REF I -,(3R' EF)(d(R' ,Ri)<d(R,Ri)) } ( 7) 

1. 2. 3. QUERY TYPES TO BE CONSIDERED. 

In this thesis we shall only consider partial-match and best-match queries. 

The justification for this choice is that these query types are quite common yet 

have not been "solved" in the sense of having known optimal search algorithms to 

answer them. In addition, these query types are the ones usually considered as 

the paradigms of "associative" queries. The simpler intersection query types 
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seem to already have adequate algorithms for handling them. The more general 

situation where it is desired to handle any intersection query can be easily shown 

to require searching the entire file in almost all cases, if the file is encoded in a 

reasonably efficient manner. (Besides, it takes an average of IRI bits to specify 
~ 

which intersection query one is interested in, so that it would generally take 

longer to specify the query than to read the entire file!) A practical retrieval 

system must therefore be based on a restricted set of query types or detailed 

knowledge of the query statistics. 

1. 3. CQMPLEXI.TY MEASUR~S 

The difficulty of performing a particular task on a computer is usually 

measured in terms of the amount of time required. We shall measure the 

difficulty of performing an associative search by the amount of time it takes to 

perform that search. 

Our measure is the "on-line" measure, that is, how much time it takes to 

answer a single query. This is the appropriate measure for interactive retrieval 

systems, where it is desired to minimize the user's waiting time. Many 

information retrieval systems can of course handle queries more efficiently in an 

"off-line" manner - that is, they can accumulate a number of queries until it 

9 
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becomes efficient to make a pass through the entire file answering all the queries 

at once, perhaps after having sorted the queries. The practicality of designing a 

retrieval system to operate "on-lint:!" thus depends on the relative efficiency with 

which a single query can be answered. That is thus the study of this thesis. 

When a file is stored on a secondary storage device such as a magnetic 

disk unit; the time taken to search for a particular set of items can be measured 

in terms of (i) the number of distinct accesses, or read commands, issued, and (ii) 

the amount of data transmitted from secondary storage to main storage. For most 

of our modeling we shall consider only the number of accesses. Thus, for the 

generalizations of hash-coding schemes discussed in §3, we count only the number 

of buckets accessed to answer the query. 

Several measures are explicitly rl.Qt considered here. The amount of 

storage space used to represent the file is not considered, except in §3. 3 to 

show that using extra storage space may reduce the time taken to answer the 

query. The time required to update a particular file structure is also not 

considered - this can always be kept quite small for the data structures 

examined. 

10 
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1. 4. RESULTS_ TO BE PRESENTED 

A brief exposition of the historical development of the subject is presented 

1n §2. 

In §3 generalized hash functions are- studied as a means for answering 

partial match queries. A lower bound on their achievable performance is proved, 

and the class of optimal hash functions is precisely characterized. A new class of 

combinatorial designs, called associative block designs, is then introduced. When 

interpreted as hash functions, associative block designs are found to have 

excellent worst-case behavior while maintaining optimum average retrieval times. 

We also examine a method for utilizing storage redundancy (that is, we examine 

the achievable efficiency gains obtainable from storing each record in more than 

one place). 

In §4 we study tries as a means for responding to partial match queries. 

"Tries" (plural of "trie") are a particular kind of tree in which bra~ching decisions 

are made only according to the specific record being inserted or searched for, and 

not according to the results of comparisons between that record and others in the 

tree. Their average pe~formance turns out to be nearly the same as the optimal 

hash functions of §3. 

11 



The results of §3 and §4 seem to support the following. 

Co'njecture: There is a positive constant c such that for all positive 

integers n, k, and t the average time required by any algorithm to answer a single 

partial match query Q E Qt must be at least 

c n<k-t)/k, 

where the average is taken over all queries Q E Qt and all files F of n k-bit 

records which are represented efficiently on a direct-access storage device. 

<That is, no more than snk bits of storage are used, for some small constant s. ) 
i!o:> 

In §5 we again consider hash functions, this time as a means for answering 

best-match rather than partial-match queries. An algorithm due to Elias is proved 

to be optimal. 
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2. 1. QRJGINS JN _HARDWARF; __ DESJG.N 

The class of associative search problems was first discussed by people 

interested in building associative memory g~_y_ic~!;!. According to Slade [SI64] the 

first associative memory design was proposed by Dudley Buck in 1955. Many 

other designs soon appeared in the literature (see Slade & MacMahon [SI57] or 

Kiseda [Ki61 ]). These memories could perform arbitrary partial match searches, 

as well as searching for the maximum or minimum record stored, or finding all 

records between specified limits (interpreting a record as a number in radix v 

notation.) 

The hoped-for technological breakthrough allowing large associative 

memories to be built cheaply has not (yet) occurred, however. Small associative 

memories (on the order of 10 words) have found applications - most notably in 

"paging boxes" for virtual memory systems (see [De70]). The only large 

associative processor available commercially is the STARAN S, introduced by 

13 



Goodyear Aerospace Corp. in 1971 [Ru72]. This $500,000 system has 512 

256-bit words of associative memory (as well as 24K of random accl;lss core 

memory). An associative search for a partial match query takes 150 nanoseconds 

per bit specified. STARAN is cost-effective only for applications demanding very 

high data rate processing in real time - such as air traffic controlling. Minker 

[Mi 72] has written an excellent survey of the development of associative 

processors up to the appearance of ST ARAN. 

2. 2. EXACT MATCH ALGORITI:lMS 

New algorithms for performing searches on a conventional computer with 

random-access memory were also being rapidly discovered at the same time. 

The first problem studied (since it is an extremely important practical problem) 

was the problem of searching for an exact match in a file of single-key records. 

Binary searching of an ordered file was first proposed by Mauchly [Ma46]. The 

use of binary trees for searching was invented in the early 1950's acc:;ording to 

[Kn72], with published algorithms appearing around 1960 (see for example 

Windley [Wi60] - there were also many others). 

Tries were first described about the same time by Rene de Ia Briandais 

[de59]. These are similar to binary trees, except that the i-th key or bit of a 
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record R is used to make the i-th branching decision, instead of using a 

comparision between all of R and the record associated with the current tree 

node (treating them as binary numbers). Tries are roughly as efficient as binary 

trees for exact-match searches. We shall examine trie algorithms in chapter 4 

for performing partial match searches. 

Hash-coding (invented by Luhn around 1953 according to Knuth [Kn 72, 

vol. 3]) seems to provide the best solution for many applications. . Given b 

storage locations (with b ~ n) in which to store the records of the file, a b_ash 

fundi on h: R .... { 1, 2, ... ,b} is used to compute the address h( Ri) of the storage 

location at which to store each record Rj. The function h is chosen to be a 

suitably "random" function of the input - the goal is to have each record of the 

file assigned to a distinct storage location. Unfortunately this is nearly impossible 

to achieve (consider generalizations of the "birthday phenomenon" as in Knuth 

[Kn72,§6. 4]), so a method must be used to handle "collisions" (two records 

hashing to the same address). Perhaps the simplest solution (separate chaining) 

maintains b distinct lists, or bucke_ts. A record Ri is stored in bucket 8· J 

(where 1 'C: j ~ b) iff h(Ri) = j. Each bucket can now store an arbitrary number 

of records, so collisions are no longer a problem. To determine if an arbitrary 

record Ri(R is in the file one need merely examine the contents of bucket · 
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Bh(Rj) to see if it is present there. Since the expected number of records 

present in each bucket is small, very little work need be done. Chaining can be 

implemented easily with simple linear linked list techniques (see [i<n72,§6. 4]). 

2. 3. SINGLE-KEY SEARCH ALGORITHMS 

The next problem to be considered was that of single-key retrieval for 

records having more than one key (that is, k > 1 ). This is often called the 

problem of "retrieval on secondary keys". L. R. Johnson [Jo61] proposed the 

use of k distinct hash functions hj and k sets of buckets sij - for 1 ~ i s k 

and 1 ::; j ::; b . Record Rm is stored in k buckets - bucket Bih·(r ·) for 
r mr 

1 s i ::; k . This is an efficient solution, although storage and updating time will 

grow with k. Prywes and Gray suggested a similar solution - called Multilist - in 

which each attribute-value is assigned a unique bucket through the USE;! of indices . 
(search trees) instead of hash functions to compute bucket addresses (see [Gr59], 

[Pr63]). Davis and Lin [Da65] describe another variant in which list techniques 

arc replaced by compact storage of the record addresses relevant to each 

bucket. The above class of methods are often called iflv~rted li~t techniques 

since a separate list is maintained of all the records having a particular attribute 

value, thus mapping attribute to records·rather than the reverse as in an ordinary 

file. 
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2. 4. PARTIAL-MATCH SEARCH_~LGORLIHMS 

Inverted list techniques, while adequate for single-key retrieval of multiple 

key records, do not work well for partial match queries unless t, the number of 

keys specified in the query, is small. This is because the response to a query is 

the intersection of t · buckets of the inverted list system. Thus the amount of 

work required to perform this intersection gr.QW~ with the number of keys given, 

while the expected number of records satisfying the query ~-ec:rea$e~1 One would 

expect a "reasonable" algorithm to do an amount of work that decreases with 

E(IQi(F)j), the expected size of the answer. One might even hope for an amount 

of work proportional to the number of records in the answer. Unfortunately, no 

such "linear" algorithms have been discovered that do not use exorbitant amounts 

of storage. The algorithms presented in chapters 3 and 4, while non-linear, easily 

outperform inverted list techniques. These algorithms do an amount of work that 

decreases approximately exponentially with t, the number of bits specified ·i':l the 

query. When t=O, the whole file must of course be searched, and when t=k unit 

work must be done. In between, log(work) decreases linearly with t. 

J. A. Feldman's and P. D. Rovner's system LEAP [Fe69] allows complete 

generality in specifying a partial match query. LEAP handles only 3-key records, 

however, so that there are ut most eight query types. This is not as restrictive 
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as might seem at first, since any kind of data can in fact be expressed as a 

collection of "triples": (attributename, objectname, value). While arbitrary 

Boolean queries are easily programmed, the theoretical retrieval efficiency is 

equivalent to an inverted list system. 

Several authors have published algorithms for the partial match problem 

different from the inverted list technique. One approach is to create a very large 

number of tiny buckets so that the response to each query can always be 

constructed as the union of some of the buckets, instead of an intersection. 

Wong and Chiang [Wo71] discuss this approach in detail. Note, however, that the 

requisite number of buckets is at least IRI if the system must handle ·all partial 

match queries (since exuct match queries are a subset of the partial match 

queries)! Having such a large number of buckets (most of them empty if n<<IRI , 

as is usual) is not practical. A large number of authors (C. T. Abraham, S. P. 

Ghosh, D. K. Ray-Chaudhuri, G. G. Koch, David K. Chow, and R. C. Bose - see 

references for titles and dates) have therefore considered the case where t is· 

not allowed to exceed some fixed small value t' (for example, t' = 3). It is easy 

to see that the number of buckets required is now at most 

t' C(k,t') (max v1) • (8) 
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(Here C(k,t') denotes the binomial coefficient "k choose t' ".) This is achieved by 

reserving a bucket for the response to each query with the maximal number t' 

of keys given; the response to other queries is then the union of existing 

buckets. Note that each record is now stored in C(k,t') buckets, however! The 

papers referred to show how to reduce the number of buckets used and record 

redundancy somewhat, by the clever use of combinatorial designs, but another 

approach is really needed to escape combinatorial explosion. 

The first efficient solution to an associative retrieval problem is described 

by Richard A. Gustafson in his Ph. D. thesis [Gu69,Gu71]. Gustafson assumes 

that each record Ri is an t.m_Qrd~r.ed list {q 1 li2•· .. } of at most k' attribute 

values (these might be keywords, where the records represent documents). Let 

w be chosen so that C(w,k') is a reasonable number of buckets to have in the 

system, and let a hash function h map attribute values into the range { 1, 2, ... , 

w}. Each bucket is associated with a unique w-bit word having exactly k' 
! 

ones in it, and each record R is stored in the bucket associated with the word · 

having ones in positions h(q ), h(r2), ... , h(rk' ). (If these are not all distinct 

positions, extra ones are added randomly until there there are exactly k' ones.) 

A query specifying attributes a1, a2, ... , at (with t:sk') need only examine the 

C(w-t,k' -t) buckets associated with words having ones in positions h(al ), h(a2), 
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... , Nat)· The amount of work thus decreases rapidly with t . Note that the 

response to the query is not formed merely by taking the union of the relevant 

buckets, since records not satisfying the query may also be stored in these 

buckets. We are guaranteed, however, that all the relevant records are stored in 

the examined buckets. In essence Gustafson reduces the number of record types 

by creating w attribute classes, a record being filed according to which attribute 

classes describe it. His method has the following desirable properties: 

(a) each record is stored in only one bucket (so updating is easy), and 

(b) the expected amount of work required to answer a query decreases 

approximately exponentially with the number of attributes specified. 

His definition of a record differs from the one used here, however, so that the 

allowable queries in his system correspond to a proper subset of our partial 

match queries - those having no zeros specified. (Convert each of his records 

into a very long bitstring having ones in exactly k' places - each bit position 

corresponding to a permissible keyword in the system.) 

Terry Welch, in his Ph. D. thesis [We71 ], studies the achievable 

performance of file structures which include directories. His main result is that 

the size of the directory is the critical component of such systems. He briefly 

considers directoryless files, for which he derives a lower bound on the required 
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average time to perform a partial match search with hash-coding methods that is 

much smaller than the precise answer given in §3. He also presents Elias' 

algorithm for handling best-match queries without proof of optimality. 
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QHAE.T~Ii -~ 

HASHING_ALGQRliHMS IO_B _p ART18LM_A TCH__Ql,J_E:_~_I_E..S 

The problem is: given a universe R of possible records, and a number b 
of lists (buckets) desired in a filing scheme, construct a good hash function h: R 
~ {1, 2, ... , b} so that partial match queries can be answered efficiently (either 
on the average or in the worst case). A record R E F is stored in bucket Bj iff 

h(R):::j, with collisions handled by separate chaining. In a notation analogous to 
that used for the responses to intersection queries, we define 

B/R,h) = {RtR I h(R)=j}, 
(9) 

Bj(F,h) = Bj(R,h) n F, for any F ~ R. (10) 

When a particular hash function h is understood from context, we shall usually 
omit it from the argument list of Bj' The set Bj(R,h) we call the ext~mi, and 

B/F,h) the ~-QIJjents, of bucket j. This notation is consistent sihce (1 0) is an 

identity when F = R. We shall often denote the extent Bj(R) of a bucket by 
the notation Bj , when no confusion can arise. The sets B!J . · .. , Bb form a 
partition of R since they are disjoint sets whose union is R. A hash function is 
said to be balanced if IBjl = IRI/b for 1 $j$b. To answer a query Qi E Q , the 
contents of the buckets whose indices range over 

h(Q;) =def { j I (Bj n Q;(R)) -# null } 
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or equivalently, 

(12) 

must be examined to find the response to Oi (that is, Oi(F)). Here we make the 

natural extension of h onto the domain Q. 

Here we present the basic retrieval algorithm: 

comment SEAf~CH finds the response to query QEQ, given that the file FsR is 
~I 

stored in the buckets 81, ... ,Bb, using the hash function h. 

begin integer i; record ~ 

for each i E h(Q) do 

for each R E Bi(F ,h) do 

if R E Qi(R) then print( R ); 

end SEARCH; 

The difficulty of computing the set h(Q) depends very much on the nature 

of the hash function h. It is conceivable that for some pseudo-random hash-

functions it is more time-consuming to determine whether jEh(Q) than it is to 

read Bj(F) from the secondary storage device! (For some hash functions the 

relation ( 12) is the only way to compute h(Q) . ) Such hash functions are of course 
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useless, since one would always skip the computation of h(Q) and read the entire 

file in order to answer a query.· We will restrict our attention to hash functions 

h for which the time. required to compute h(Q) is always negligible in 

comparison with the time required to read the required bucket contents. 

We shall use the following notation for the average and worst case costs of 

using various hash functions to answer a partial match query with t keys 

specified: 

(13) 

(14) 

These are the average and worst-case number of buckets 'examined by_ SEARCH 

to answer a query Q E Qt as a function of the hash function h used. If the 
.r, 

setond argument is omitted from the function oc:, we assume that the average is 

taken over all queries in Q: 

oc:(h) ""def ( ~QEQ lh(Q)I ) I IQI. (15) 

We shall also use the following notation for the best possible cost of any 

hash function: 

A(k,w,t,v) =def minh o<:(h,t) ( 16) 

where h ranges over all balanced hash functions mapping R -+ { 1, ... ,b }. This is 

the minimum possible average number of buckets examined by SEARCH to answer 
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a partial match query QEQt, over all balanced hash functions h. We assume that 

the file contains k-key records, and that b = 2w buckets are used. All the v;'s 

are assumed to be equal to the v given, with the convention that if v is omitted, 

v = 2 is assumed. 

Note that the number of buckets examined in either case does not depend 

at all upon the particular file F being searched, but only upon the particular 

hash function h being used. 

For some applications it is easy to construct an efficient hash function. For 

example, suppose we wish to construct a "crossword puzzle" dictionary for six-

letter English words. Let b = 212 be the number of buckets used. Given a 

word (for example, "SEARCH") we can construct a 12-blt bucket address by 

forming the concatenation 

h("SEARCH")=g("S") g("E") g("A") g("R") g(''C") g("H") (17) 

of six two-bit values; here g is an auxiliary hash function mapping the alphabet 

into two-bit values. For a query with t letters given we have 

"'(h,t) = ;.J(h,t) = 212-2t. {18) 

This approach is clearly feasible as long as b ~ 2k , since one or more bits of the 
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bucket address can be assodated with each attribute position. A similar 

technique has been proposed by M. Arisawa [Ar71] in which the i-th key 

determines, via an auxiliary hash function, the residue class of the bucket address 

modulo the i-th prime (see also [Ni 72]). 

3. 1. 1. THE OPTIMAL SHAPE OF A BUCKETEOR_ BINARY __ RECORDS. 

When k > w, where b == 2w , it is not immediately clear what should be' 

done. Terry Welch in [We 71] suggests, but does not prove, that extracting the 

first w keys of each record for a bucket address may be optimal. His 

conjecture is correct for binary records; in this section we give a proof of this 

fact. 

We will say that two buckets B and 8' have the same "shape" if there 

exists a permutation of the bit positions, followed by the complementation of bits 

in certain positions, which transforms every record of 8 into a record of 8'. In 

other words, 8 and 8' have the same shape if there is an automorphism of R 

which carries 8 into 8' . 

We introduce the notation 41(8) to denote the number of queries in Q 

which examine a bucket 8. · More precisely, 

<P(8) =def I{ Q ( Q I Q(R) n B ~null }I . (19) 

Let n(s,k) denote the minimum possible number of queries in Q which examine 
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any bucket 8 with an s element extent chosen from the r·ecord space Rk· More 

precisely, 

~(s,k) =def min9 <t(8), (20) 

where the minimum is taken over all s-element subsets E1 of Rk· Let ~(s,k) c: oo 

if s > 2k, and let ~(l ,0)= 1, ~(0,0)=0. The characteristics of an s-element 

bucket 8 chosen from Rk which achieves the minimum t(B) = Tl'(s,k) will be 

those of an optimal bucket. We will investigate individual s-element buckets to 

find what characteristics they must have in order be optimal. Then we may 

construct an optimal balanced hash function by selecting b optimal buckets which 

cover Rk (if possible), since 

.x:(h) = < ~QiEQ lh(Q;)I ) I IQI 

= (number of pairs 8j,Oi such that 8jnO;~~) I IQI 

= < ~l:>j:>b t(BJ}) /IQI 

~ b ~<IRkl/b,k)/IQI (21) 

We require that the hash function be balanced in order to avoid the 

degenerate solution having all the records in a single bucket (costing one bucket 

per search). If we also counted the cost of reading each record, by arguments of 

symmetry we would find a balanced hash function to be optimal, once the 
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expected cost of reading a bucket becomes commensurate with accessing it. 

Furthermore, the physical constraints imposed by a particular storage device, such 

as magnetic core, sometimes make a balanced hash function the only reasonable 

model. 

th~orem J. Let s = 2u for some integer u, 1 s u s k, and let 8 be an 

s-element subset of Rk· Then t(B) = Tl'(s,k) if and only if B is a "subcube" of 

Rk; that is, if and only if 8 is a cartesian product 

(22) 

where each D; is a nonempty subset of {0,1}. 

Pro_of: Let T(s,k) denote the s-subset of Rk consisting of those records 

which have binary value less than s when interpreted as binary numbers. In ·· 

other words, T(s,k) consists of the s "tiniest" k-bit numbers (for those who like 

mnemonics). We will first prove that T(s,k) is an optimal bucket for ~ny s, not 

just s a power of two. This will imply the "if" part of our the.orem~ .since . T(s;k) 

is a subcube of Rk whenever s is a power of two. We will then examine the 

proof a little more closely to derive the "only if" part of the theorem. 

We first need to derive c~>(T(s,k)). We will do this by defining an auxiliary 

function >,(x), then proving that c~>(T(s,k))=>-(x) if x is the record in T(s,k) with 

largest binary value. (The binary value of x will of course be s-1.) Define A 

by ·the following recurrence relations: 
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:x(null) = 1, 

:x(Ox) = 2 :x(x), and 

:x( 1 x) = 2 :x( 1lxl) + ;>.,(x). 

(23) 

(24) 

(25) 

Here we treat ;>.,'s argument as a §\r.ing of O's and 1 's, and define ;>.. in terms of 

shorter strings. We denote the length of x by lxl, so that the notation 1lxl 

represents a string of lxl 1 's. The notation Ox (or lx) stands for the 

concatenation of 0 (or 1) and the string x. Let <x> denote the binary value of 

the string x. 

Lemma. t<T(s,k)) = ;>.,(x) if x is the record in T(s,k) with the largest binary 

value. 

Proof: By induction on lxl = k. It is clearly true for k = 1, since ;>.,(0) = 2 

and ;x( 1) = 3 are correct. It is true for x = Ox' by (24) since all of the records 

in T<s,k) will have a 0 in first position. Thus any query which examines 
• •, I 

T(s,k-1) = T( <x' >+ 1 ,lx' D may be preceded by either a "0" or a "*.".to obtain a 

query which examines T(s,k). On the other hand, if x = 1 x' then T(s,k) 

contains two different kinds of records: 2k·l will begin with a zero and finish up 

in all possible ways, and the remaining s - 2k-l will begin with a· 1 and finish 

up identically to the records in T(s-2k-l,k-1) = T(<x'>+1,k-1). The first term of 

(25) thus counts all queries beginning with a "0" or a "*", while the second term 

counts all queries beginni'ng with a "1 ". This completes the proof of the lemma. 

29 

E-) 



~ The rightmost column of the following table gives the value of :>-(x) for 

some small strings x. (The rest of the table shall be used later.) 

@ I At (X) I >.( X) 

-~-- _ J t_ =0 ______ t-----~--~--j ______ 
null I 1 I 1 

Ol 1 1 I 2 
1 I 1 2 I 3 

oo I 1 2 1 I 4 ~ 01 I 1 3 2 I 6 
10 I . 1 4 3 I 8 
11 I 1 4 4 I 9 

ooo I 1 3 3 1 I 8 
001 I 1 4 5 2 I 12 
010 I 1 5 7 3 I 16 ~ 
011 I 1 5 8 4 I 18 
100 I 1 6 10 5 I 22 
101 I 1 6 11 6 I 24 
11 o I 1 6 12 7 I 26 
111 I 1 6 12 7 I 27 

~ 

Figure 1. Table of values for :>..(x) and 1-t(x) 

We must now show that :>..(x) = n(s,k) (again, assuming that x is the record 

of T(s,k) with largest binary value). To do this, we must first prove the 

recurrence 

n(s,k) =min [ n(max(fo,f1),k-1) + n(fo,k-1) + n(ft,k-1)], (26) 

where the minimum is taken over all pairs of nonnegative integers fo, f1 such that 

fo + f 1 = s. Suppose a bucket 8 containing s records has fo records which 
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begin with a zero and f1 records which begin with a 1. Then 7t(fo,k) + 1t(f1,k) 

is the number of queries which examine 8 which begin with a digit. The number 

of queries which examine 8 which begin with a "*" is clearly at least 

7t(max(fo,fl ),k). Furthermore, it can be held to this VEIIue by requiring that the 

number of distinct k-1 tuples ocurring in positions 2 thrc>ugh k of the records of 8 

be held to this number. Thus, if fo>f1 and ly E B (for some string y, IYI=k-1 ), 

we would require that Oy ~ B as well. This proves (26). 

We will need the following two lemmas. 

Lemma. 

>-(xl) :=: 3 >-(x), for any string x of O's and l's. . (27) 

Proof: If ll(x) = <t(T(s,k)), then t~(xl) = <t(T(2s,k+l)). For each query q 

counted in ~(T(s,k)), the queries qO, ql and q* are counted in ~(T(2s,k+l)), since 

x ~ T(s,k) implies that xO and xl are both in T(2s,k+l). 

Let p(x) denote 2j, where j is the number of zeros in the string x. 

Lem_ma. 

>-(x) - >-(x - 1) = p(x), for any string x of O's and 1 's, <x> ~ 0. (28) 

Here x - 1 denotes the string y of length lxl such that <y> = <x> - 1. 

Pro9f: By induction on lxl. By inspection of Figure' ( 1) it is true for lxl s 3. 

For larger values of lxl· it will be true from the inductive hypothesis and the 
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definition of >-. when x and x - 1 begin with the same digit. The exceptional 

case occurs when x = 1 ok-1, x - 1 = 0 1 k-1. But here we have 

>,(x)- >,(x-1) == (2. 3k-l + 2k-l)- 2. 3k-1 = 2k-l, 

since :A(Ok-1) = 2k-l. This proves the lemma. 

To prove >-(x) = n(s,k), it now suffices by (26) to prove that 

>-(x) ::: 2 :A(y) + >-.(z), 

(29) 

(30) 

for any pairs of strings y, z such that IYI = lzl = lxl - 1, <y> + <z> + 1 = <x>, 

und <y> _, <z>, since >-.(0) = n(l,l) = 2 and t-0) = T{(2,1) = 3. The. proof is by 

induction on lxl ,~ k, although it goes from the right end of x to the left, instead of 

the other way around. 

The proof of (30) now proceeds by a four-part case analysis, depending on 

the right-most digits of y and z. It will also be an inductive proof, so we 

assume that (30) holds for all strings x' shorter than the current x. The last 

three cases will have two subparts as we reduce (30) in two different ways using 

the lemmas. In each case at least one of the two reductions must be true. 

Case l : y=y' 1, z=z' I, and x=x' 1. 

Here (30) is implied directly by the inductive hypothesis, since it is 

equivalent in this case to: 

3 >-(x') :; 6 >-.(y') + 3 >-.(z' ), 
(31) 

with <x'> = <y'> + <z'> + 1, andy'~ z'. 
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Case 2: y=y' 0, z==z' 1, and x=x' 0. _ 

Here we reduce (30) to the two inequalities: 

3 !-(x'-1) + 2 p(x') ~ 6 1-(y'-1) + 4 p(y') + 3 :>-(z'), and 

3 ;;.,(x') - p(x') 5 6 ;;.,(y') - 2 p(y') + 3 :>-(z' ). 

(32) 

(33) 

Since <x' -1 > = <y' -1 > + <z' > + 1 and <x' > = <y' > + <z' > + 1 , we may 

reduce these two equalities using the inductive hypothesis to the statements 

p( x' ) 5 2 p(y' ) and p(x') ~ 2 p(y' ), at least one of which must be true. 

Case 3: y=y' 1, zo.=z' 0, and x=x' 0. __ 

In this case we get (30) reducing to: 

3 \(x' -1) + 2p(x') ~ 6 ;;.,(y') + 3 :>-(z' -1) + 2 p(z' ), and 

3 \(x') - p(x') ~ 3 \(y') + 3 !-(z') - p(z' ). 

(34) 

(35) 

Using the inductive hypothesis we get that (34) and (35) are equivalent to 

p(x') ~; p(z') and p(x') ~ p(z' ), at least one of which must be true. There is the 

exceptional case when <z'>=O, where (34) is sufficient (if we define !-(z'-1) to 

be zero), since x' -1 ~Oy' and p(z' )~p(x' ). 

Case 4: y=y' 0, z=-=z' 0, and x = x' 1. _ 

In this case (30) can be reduced to the two inequalities: 

3 ;;.,(x') ~ 6 \(y')- 2 p(y') + 3 !-(z'-1) + 2 p(z'), and (36) 

3 1-(x') ~ 6 1-(y' -1) + 4 p(y') + 3 \(z') + p(z' ). (37) 
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Since <x'> = <y'> + <z'-1> + 1 = <y'-1> + <z'> + 1, we invoke the inductive 

hypothesis twice to obtain p(y') s p(z') and p(y') ~ p(z' )/4. These can not 

both hold simultaneously so one of these reductions will suffice to prove (30) in 

this case. This argument must be amended to consider two exceptional 

conditions: when <z'>=O, so that 3 >-(z'-1) is undefined in (36), and when y':r.z' 

so that the condition y' -1 ~z' does not hold for the inductive hypothesis used on 

(37). In the first condition we have Oy' =x', and that (30) is equivalent to 

3 >-(x') s 6 ).(y') - 2p(y') + 2p(z' ). (38) 

The other exception to this argument occurs when <y' >=<z' >;o!O, so that the 

inductive hypothesis can not be invoked to reduce (37). Here though we have 

p(y' )=p(z' ), so the proof follows from (36). 

This completes the proof of the "if" portion of the theorem, since for any 

bucket B such that IBI=s,· we will have 41(8) = 4'(T(s,k)) if B has the same "shape" 

as T(s,k). 

The "only if" part of the theorem shall again be proved by an induction on 

lxl=k, using the previous analysis as a foundation. What needs to be proved is 

that if s is a power of two then (30) will hold with equality only if y = z. Here 

we have s = 2u, so that x = ok-u 1 u. It is clear that equality does obtain when 

y = z. It needs then to be shown that (30) holds with equality only when y = z. 

This is equivalent to 
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(39) 

for all i, 1::; i::: 2u- L 1. This reduces directly to 

(40) 

It is in fact easier to prove the general statement: 

>-(x) < >-(y) + ;._(z), (41) 

for lxl~lyl=lzl=k, <y> + <z> + 1 = <x>, and <y> > <z>. We shall prove this by an 

induction on k. If x==Ox', then y==Oy' and z==Oz', so that the theorem follows 

directly from (24). Similarly, if x==lx' and y==ly' then we may turn both of these 

initial 1 's into O's and lose an equal amount from each side of (41). The remaining 

case is when x= 1 x', y=Oy', and z=Oz'. Divide y and z into two pieces each so 

<x' > as a consequence. This can be done in such a fashion that the k-bit 

representations of Yl• Y2• z1, and z2 all begin with a 0. (There. is a triv.ial 

exceptional case when <y> = <z> = 0.) 

Then we can derive 

(42) 

>-(x') (43) 

>.(x) < >-(y) + >-(z), immediately. (44) 

This proves the "only if" portion of the theorem. 
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Our theorem implies the following corollary. 

CqroU_ary: For binary records, the hashing function which extracts w of the 

key-bits to use as a bucket-address, where w = log2(b), minimizes the expected 

number of buckets examined over all balanced hash functions, assuming that each 

partial match query is equally likely. 

Note that there may be other optimal hash functions with respect to the 

expected search time. In fact, we shall examine others in the following sections. 

The preceding theorem gives a good characterization of the bucket shapes 

which will minimize ~(8), the number of queries in Q which will examine B. We 

shall next prove that the same shapes are optimal when the queries are 

restricted to Qt, for some t, Ostsk. The "only if" portion of the preceding 

theorem shall not again be proved, however. 

Let ~t(B), and T(t(s,k) denote the functions ~ and T((s,k) restricted to 

counting queries in Qt rather than Q. The following theorem makes the relevant 

assertion. 

Theorem 2. . Let s = 2u for some u, 1 s u :s k, and let 8 be an s­

element subset of Rk· Then ~t(B) = T(t(s,k) if 8 is a "subcube" of Rk; that is, 

if 8 is a cartesian product 

B = 01 X 02 X ... )( ok (45) 

where each Oi is a nonempty subset of {0,1 }. 
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Proof: This proof is almost identical to the preceding one, so only the 

changes necessary shall be indicated. 

Let l..t(x) be defined b'y the recurrence relations (here lxl=k): 

"o(x) =def 1' for all x. (46) 

l..t(null) =def 0, for t~l. (47) 

l..t(OX) =def l..tO k) + "t-1 (x), for tH and all x .. (48) 

1..t( 1 x) =def l..t(lk) + "t-10k) + "t-l(x), for t~1 and all x. (49) 

The values of >-.t(x) for some small values of t and x are displayed in the table. 

The following lemma we state without proof, as it is essentially identical to the 

proof of the corresponding lemma of the preceding theorem. 

Lemma. <~>t<T<s,k))=>-t<x) if x is the record in T(s,k) with largest binary 

value. 

Again, the following identity can be proved in a manner similar to the proof 

of its corresponding identity in the preceding theorem. 

(50) 

where the minimum is taken over all pairs of nonnegative integers fo, f 1 such that 

t0 + t 1 = s. 

To prove that >-.t(x) = Tlt(s,k), where x is the lc:trgest record in T(s,k), by 

(50) it is only necessary to show that 

(51) 
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where lyl=lzl=lxl-l=k-1, <y'-> + <z> + 1 = <x>, and <y> > <z>, since ::\t(x)=-n(s,k) 

for x=O and x=l. This proof will again use induction on lxl, proceeding from the 

right end of x to the left. The following two lemmas will be used instead of the 

corresponding lemmas of the last theorem. 

Lemma. 

(52) 

Proof_; For each query q counted in ::\t-1 (x)=tt-1 (T(s,k)), we have queries 

qO and q1 counted in >-t(x1)=41t(T(2s,k+l)). In addition, for each query q counted 

in ).t(X)=tt<T<s,k)) we have the query q* also in !..t(xl). 

Let p(x,t) denote the value C(j,jxj-t), where j is the number of zeros in the 

string x. Then the following lemma can be easily proved by induction on k (proof 

omitted here); 

Lemma. 

. (53) 

The rest of the proof follows the same four-part cas·e analysis as the proof 

of the Theorem 1. It shall be omitted here as there it is merely a variation on 

the preceding analysis, using At for A and p(x,t) for p(x). 

This theorem can not be proved in the "only if" direction for all t, since it is 

not true for the cases t =0 or t =k. 

Q. E. D. 
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3. 1. 2. THE OPTIMAL SHAPE OF_ A BUCKET FOR GENERAL RECORDS. 

It turns out that binary records are in fact the most difficult case to 

analyze. In this section we derive the optimal bucket shape for nonbinary 

records. Let 

R ~def xl . k {0, ... , vi-1} 
SIS 

(54) 

be the record space under consideration, where vl s v2 s • • • s vk, and let 

n(s,{vl, ... , vk}) be the minimum possible number of queries in Q which examine 

a bucket 8 consisting of s records chosen from R. Corresponding to (26) we have 

the definition: 

+:EO . n(f,·,{v2, ... ' vk}) ] st<vl 
(55) 

where the minimum is taken over all sets of nonnegative integers to, ... , fvl-1 

such that 2:
0 

. fi ~ s. 
st<vl ~. 

Here we can perform the analysis by passing to the continuous case. The 

analog of (55) would then be: 

(56) 

where the infimum is taken over all nonnegative functions f(x) such that 

Jovl f(x)dx=s. If we let n'(s,null)=l for O<ssl, n'(s,null)=oo for s>l, and 

n' (s,nuii)=O otherwise then (56) turns out to have the solution: 
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- --- - ~~--~~-

= 0 if s=O, 

= oo if v 1 • • • vk < s. (57) 

The function n:' is obviously a lower bound for rc The optimal function f(x) 

is then a step function which is equal to s/s' for Osx:>s' and 0 otherwise, where 

s' ==def min( v l•s 1 /k). This proves the following theorem. 

Theorem 3. If R == Xl:sisk {O, ... ,v;-1} then ~(B)=n(s,{vl, ... ,vk}) if 

(58) 

where each Di £ {0, ... , vi-1}, fltsisk IDil =sand there is an integer z, 

_ 2 :s z :s maxi vi, such that for all i, 1 :s i s k, we have IDjl s z ar'~ ·furthermore, 

IDil < z implies IDJI = vi· 

The theorem says then that our crossword-puzzle hashing scheme of §3. 1 

is in fact optimal, as long as the function g divides the alphabet into four exactly 

equal pieces. (This is not possible for a 26-letter alphabet, but we conjecture 

that four nearly equal pieces are optimal in this case.) 
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3. 1. 3. NUMBER OF BUCKETS_EXAMINED. 

What then is the behavior of such an optimal hashing scheme for the 

"classic" case of retrieving k-bit words for partial match queries with t bits 

given? Let w =def log2(b) (and assume this is integral), and let our optimal 

bucket system use (say) the first w bits of a record as the bucket address. We 

then have 

A(k,w,t) = C(k,t)-1 2: O::; i::;t C(w,i) C(k-w,t-i) 2w-i 

= b C(k,t)-1 :EOsist C(w,i) C(k-w,t-i) 2-i (59) 

The number of buckets examined satisfies the following inequality, for all b = 2w 

(with k ~ w), and all t, 0 :s t :s k : 

A(k,w,t) ~ bl-t/k (60) 

This inequality is a special case of a well-known mean value theorem [Ha59:Thm 

86], which says 

fe·· 
2:0 . t q; .p(x;) ~ q,(Eo . tqi x;), :SI :5 :SI:S 

( 61) 

for any positive numbers qi which sum· to one and any continuous convex 

function .p( X). Here we have ~· 

Xj == i, (62) 

q; = C(k,t)-1 C(w,i) C(k-w,t-i), and (63) 

~· 
.p(x) = 2-x. (64) 

~~ 
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The inequ<:~lity (60) will be strict unless k = w, in which case equality holds. 

Fip,urc 1 graphs (60) for k = 50 and w == 5, 25, and 50. The value A(k,w,t) 

is <:1n achievable lower bound on the performance of a balanced hashing scheme 

for binary records. Note that performance similar to Gustafson's is obtained, i.e. 
<j-_ =-

each record is stored only once, but search time decreases approximately 

exponentially with the number of bits given in the query. 

Theorem 1 adequately characterizes the optimal "shape" of a single bucket, 

but does not tell us what the best number of buckets is. This question can be 

unswered by using an accurate model of the particular storage device used. 
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3. 1. 4. A SAMPLE APPLICATION. 

Let us consider a particular application in detail, in order to illustrate the · 

preceding sections and to show how one would proceed to select the proper 

number of buckets for a hashing scheme. 

Suppose we have a file of n = 220 1 00-byte records, each having k .= 

32 one-bit keys, which we wish to store on an IBM 2314 disk storage device. 

Let us determine the optimal number, b , of equal-sized buckets for this device, 

assuming that all partial match queries are equally likely to occur. Let b = 2w, 

for some w, 1 :;;w:;;32, and let a record be stored in the bucket whose address is 

the first w of the one-bit keys. If i of the first w bits are specified in a 

query, then only 2w-i buckets need to be examined to answer the query. The 

time required to access these buckets is composed of three parts: head access 

time, rotational delay, and data transfer time. The head access time is at most 

the minimum of 75 milliseconds per bucket, or 25 milliseconds ·per cylinder 

required to store the entire file (1440 records can be stored per cylinder), since 

each seek is at most 75 ms., but the time to access an adjacent cylinder is only 

25 ms. The rotational delay is 12. 5 milliseconds per bucket accessed. The 

data transfer time will be . 32051 n 2-i milliseconds on the average (where i is 

defined as above). Let ca(i,w,n) be the time required to access 2w-i buckets, 

as computed using the above information. Thus we have: 
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f; 
(65) 

The expected time to answer a query with t bits given is then: 

o<:(h,t) = I:
0 

. C(w,i) C(k-w,t-i) C(k,t( 1 c8(i,w,n). 
:S:I:5W 

(66) 

The average time to answer any partial match query is then 

o<:(h) = I;O:::t:::k C(k,t) 2t 3-k o<:(h,t) . (67) 

Figure 3 shows o<:(h) plotted against w. The optimal value of w is seen to be 

13 , with an average response time of 5. 123 sees. This compares very 

favorably with the 336 sees. required to read the Emtire file if it is stored 

compactly. Figure 4 gives o<:(h,t) plotted against t , for w = 8, 13, and 20, and 

for O:::t:o:k. 
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3. 2. ANALYSIS OF WORST ~CASE; SEAB_G_I:i_TIM~ 

The hashing functions of the previous section, while providing good average 

response time to a query with t keys given, tend to have disastrous worst-case 

behavior. The entire file may be searched if none of the keys given are used by 

the hash function to compute the bucket address. We will show how the worst-

case performance can be made to approach the optimal expected time of the 

previous section by using either more complicated hash functions, or by using 

some storage redundancy. 

First, let us consider the non-redundant case - that is, each record will be 

stored in a single bucket: Section 3. 3 will consider the storage redundancy case. 

Our hash function 

h: R -+ { 1, 2, ... , b } (68) 

must now depend on all_ of the keys of a record, so that each key specified 

contributes approximately equally to decreasing the search tin:te. T~is is. simple 
. ' 

when k::: rlog2(b)1 , so we shall assume that k> rlog2(b)1 from now on. We shall 

furthermore assume for simplicity that each record is a k-bit word (that is, 

vi = 2 for 1 :::i!>k). 

There is one other assumption we shall make: that the buckets are shaped 

the same as in the optimal average search time case - that is, each bucket will 
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contain IRI/b records which agree in w = log2(b) bits and vary in the other k-

w bits. Each bucket is thus a Boolean sub-cube of dimension k-w of R. The 

justification for this assumption is that this minimizes the average retrieval time, 

which is of course a lower bound on the worst-case time. We have no proof, 

however, that these bucket shapes are optimal in the worst-case hash function. 

The reader may be wondering if we aren't studying exactly the same hash 

functions as before, where we extract w bits to use as a bucket address. 

Indeed, these are still candidates for the best worst-case hash function, but there 

are others. Consider the hash function of Figure 5, with k = 4 and b = 8. 

1 
2 

bucket 3 
address 4 

5 
6 
7 
8 

_1_2_ ---~---4 ___ +- bit position 
0 0 * 0 
1 0 0 * 
* 1 0 0 
1 * 1 0 
1 1 * 1 
0 1 1 * 
* 0 1 1 
0 * 0 1 

Figure 5. A Hash Function 
::; 

Here one row is given for each bucket describing the records that can be 

stored there (where"*" is a "don't care" character, as before). Thus h(OllO) = 

6 and h<lll 0) = 4. It is simple to verify that each record is assigned a unique 

bucket by h . This function was first pointed out to me by Donald E. Knuth, and 

can be interpreted as a perfect matching on the Boolean 4-cube (see Figure 6). 
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Figure 6. A perfect matching on R4 

How well does this hash-function perform? The symmetry of this design 

decreases the amount of work done in the worst case. For example, any query 

with 2 bits specified need only examine 3 buckets (e. g. query "hO*" requires 

only buckets 2, 3, and 5). Figure 7 gives the relevant statistics for each case .. 

L._l_0_1 ___ 2_3_4 
f.l( h, t ) . I 8 5 3 2 1 
r A< 4, 3, t ) 1 I 8 5 3 2 1 

Figure 7. Buckets examined per query bit given 

This is clearly as good as one can hope to do, since the worst-case time 

must be at least as big as A( 4,3,t). 
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3. 2. 1. fORMAL DEfiNITION QE_~.BO~S. 

Let us call a hash function presented in tabular form as above an 

"associative block design with parameters k and w" (where b = 2w), or an 

"ABD(k,w)" for short. More precisely, an ABD(k,w) will be such a hash function 

that is "uniform"with respect to each key. 

Definition: An ABD(k,W) is a table with b = 2w rows and k columns with entries 

over {0, 1, *}such that 

(i) each row contains exactly w digits and k - w *'s, 

(ii) given any two rows, there exists at least one column in which the two 

rows contain differing d!glls, and 

(iii) each column contains the same number b·(k-w)/k of *'s. 

Condition (ii) guarantees that distinct buckets are dis,ioint, while condition (i) 

ensures that each bucket is of the same size. Each record will be associated 

with a unique bucket since the disjoint buckets contain a total of 2k records~ 

Condition (iii) restricts ABD~s to hash functions having at least some uniformity 

with respect to how each individual bit· affects the buckE~t address computations. 

This ensures that an ABO will have minimal worst-case search time for queries 

with one bit specified (that is, t = 1 ). Since each row of the ABO represents a 

bucket which is actually a subcube of Rk by condition (i), an ABO is guaranteed to 

have minimal average search time as well. 
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The construction of ABO's of arbitrary size is a difficult combinatorial design 

problem, comparable to the construction of balanced incomplete block designs (see 

[Co52]). In fact, an ABO will be a group-divisible incomplete block design of 2k 

objects (one object type for each digit type of each column) each replicated 

w b j 2 k times in b blocks of size w, where there are k groups (the 

columns) with two objects in each group, and where two objects of the same 

group never occur together in the same block, if there is a number A2 such that 

each pair of objects of differing groups appear in exactly A2 blocks together 

(see [Bo52]). This requirement is an additional constraint, which may exclude 

many valid ABO's. In addition, not every group-divisible incomplete block design 

of the proper type will be an ABO, since the definition of a group-divisible 

incomplete block design does not guarantee that condition (ii) above will be met. 

Thus the question of the existence of ABO's of arbitrary size does not seem to be 

answered by any previous results of combinatorial design theory. 

3. 2. 2. CH~RACTERISTIC_S OF_ASD~S.. 

The following lemmas give some additional details on the characteristics of 

ABO's. 

Lemma 1. There must be an equal number of O's and 1 's in each column of an 

ABO. 
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Proof: There are an equal number of vectors in Rk having a 0 in a given column 
I 

as there are having a 1 Furthermore, each row with * in that column 

contributes an equal number of each type. Finally, then:! are an equal number of 

*'s in each row so a digit in a column always contributes exactly 2k-w vectors 

of that type. 

Corollary. The value of bw/2k must be integral (this is the number of O's or 1 's in 

each column). 

Lemma 2. The number of rows having u bits in common with any given record, 

for 0 ~ u $ w, is exactly C(w,u). 

Proof: Let zu be the number of rows having u bits in common with the given 

record. We must have 

zu = C(k,u) - :E
0 

zv C(k-w,u-v) 
sv<u 

(69) 

to cover all the vectors in Rk having exactly u bits in common with the given 

record. This equation is satisfied, uniquely by induction em u, by 

zu = C(w,u). ( 70) 

In particular, this lemma tells us how many rows there are having exactly u zeroes 

(or u ones). 

53 

f 



I~ 

3. 2. 3. CONSTRUCTION THEOREMSFOR ABO'S. 

The following theorem, due to Ronald Graham, establishes the existence of 

an infinite class of simple ABO's. 

Theorem 4. An ABO( 2m,2m-1) exists for all m ~ 2. 

Proof: 

We shall use an extended notation for an ABO, using the symbol "-" in 

addition to the usual symbols of "0", "1 ", and "*"· A row having s "-"'s will 

represent 2s actual rows of the ABO, obtained by independently replacing each 

"-" of the row with a "0" or a "1". 

The construction consists of two parts: 

(i) The first rn+l rows have "-"'sin positions m+2 through k = 2m. The 

i-th of these rows has a "*" in position i. The other positions are filled 

in with digits in such a fashion as to satisfy condition (ii) of the definition 

of an ABO. This is easy to do; the rotations of the string * 1 om-1. 

will work, for example. 

(ii) The remaining rows are divided into k-m-1 pairs. The rows of the i-th 

pair have "-"'s in positions m+2 through k except for a "*" in 

position m+ 1 +i. The first m+ ~ positions are filled in with digits in a 

manner consistent with the definition of an ABO; this is simple to do. 
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It is easy to verify that this yields an ABD(2m,2m-1 ). 

Q. E. D. 

To illustrate the above construction, here is an A80(8,7) constructed by 

Graham's method (that is, this is the construction for rn = 3): 

* 1 0 0 - - - -
0 * 1 0 
0 0 * 1 - - - -
1 0 0 * 
0 0 0 0 * - - -
0101*---
0111-* 
1010-* 
1011--*-
1101--*-
1110---* 
1 1 1 1 - - - * 

Figure 8. An ABD(8,7) 

This general idea, of dividing the columns into two groups and filling in each 

part seperately, can be carried a little further; the following figure gives an 

A80(16, 13), also discovered by Graham. 
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tOOOI**--------­
*0101--**------­
* 0 111 ----* * -----
1 * 000------:t: * ---
1 * 0 1 0-------:.·4 *-
1 * 0 11 * ---------* 
01*00-**--------
01*01---**------
11 * 0 1 -----* * ----
001*0-------**--
101*0---------** 
111*0**---------
0001*--**-------
0101*----** ____ _ 
0111*------** __ _ 
00000--------*** 
l 1111--------*** 

Figure 9. An AB0(16, 13) 

The designs of Theorem 4 are not useful hash functions, however, with the 

possible exception of the A80(4,3), since the ratio k/w of key bits to bucket 

address bits approaches 1 as the designs get larger. What is really desired is a 

way to construct large designs with fewer buckets. The following theorem gives 

a basic upper bound on the ratio k/w achievable for a given k (':hat is, given a 

number of keys, it gives a lower bound on the number of buckets required for an 

ABD(k,w) to be possible). 

Theorem 5. 

(71) 
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Proof: Between each pair of rows of an ABO there must be at least one column in 

which they contain differing digits. There must be at least C(b,2) such row-row-

column differences. On the other hand, there are only wb/2k O's and 1 's per 

column. Thus we must have 

k (wb/2k)2 ~ C(b,2) (72) 

which directly yields our theorem. 

Q. E. D. 

As a consequence of the above theorem and lemma 2 of §3. 2. 2, we can 

tabulate the nontrivial pairs (k,w) for which ABD(k,w)'s may exist, for small k. fi 

k Permi ssabl e values __ oL _w, __ wlk __ 
4 3 
8 4, 5, 6, 7 

10 5 ~) 

12 6, 9 
14 7 
16 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 
18 6, 9, 12, 15 
20 10, 15 

EJ 

Figure 10. Permissable values of (k,w) 

One can also show, by an extension of theorem ~;,that an ABD(8,4) is also 

impossible. 

The following theorern gives a basic way of creating larger ABO's from 

smaller ones. 
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Theorem 6. (Concaten8tion) It is possible to construct an AElD(k+k' ,w+w') 

from an ABD<k,w) and an ABD(k' ,w' ), if k/w = k' fw'. 

Proof: Form the set of all 2w+w' rows of length k+k' obtained by concatenating 

each row of the second design onto the end of each row of the firs·: design. It is 

easy to see that this is an ABD(k+k' ,w+w' ). 

Q.E.D. 

Thus we can form an ABD(8,6) or an ABD(12,9) from the design of Figure 

5 Figure 11 gives the A80(8,6) so constructed. 

12345678 
11 OOi 000!0 
21 OO; 01 00:;: 
31 OO:tOt 100 
4j 00:!: 01:!: 10 
51 00:~:011* 1 
61 00t001 h 
71 OO:t:0~.011 
81 OOt: OOt 01 
9j 1 OO:r. OO:r. 0 

1 01 1 00:~ 1 OO:r. 
1 11 1 OO:i: :i: 1 00 
1 21 1 00:;: 1 * 1 0 
131 100:~:1lt1 
l 41 1 OOr. 01 h 
151 100:~::~011 
161 100.f0*01 

12345678 
1 71 * 1 0000* 0 
181 * 100100:!: 
1 91 * 1 OO:t: 1 00 
201 * 1 001 * 1 0 
211 d001 h 1 
221 * lOOOll:t: 
231 * 100:r.011 
241 * 1000:f01 
251 h1000:r.O 
261 hl0100* 
271 h10:~:100 
281 1:1: lOh 10 
291 1* 1011* 1 
301 h 1001 h 
311 h 1 0:~ 0 11 
321 h 100*01 

Figure 11. An A80(8,6) 

331 
341 
351 
361 
371 
381 
391 
401 
411 
421 
431 
441 
451 
461 
471 
481 

12345678 
1 h 100:t:O 
1 h 11 00* 
1 h h 100 
11*11*10 
lh11h1 
lh1011* 
lhl*Oll 
11 * 1 0* 01 
011*00*0 
01 h 100* 
011 * * 100. 
01l*h10 
011*lh1 
011:1:01 h 
01h*011 
011 * 0* 01 

12345678 
491 * 011 00* 0 
501 * 0111 00* 
511 *01 h 100 
521 *0111:1:10 
531 * 0 1111 * 1 
54 *011 01 h 
55 *01 hOll 
56 * 011 0* 01 
57 0*01 00*0 
58 0* 011 00* 

· · 59 ... ·a* o 1 * 1 oo : 
.·sor· o*01hlo 

6 li, 0* 0 1 1 h 1 
621 0*01011* 
631 0*01*011 
641 0*010*01 

Theorem 6 does not allow us to increase the achie'rable record 
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length/bucket address length (k/w). One might suspect that 4/3 is perhaps an 

upper bound for k/w. The following theorem shows that arbitrarily large. ratios 

are possible. 

Theorem 7. (Insertion) It is possible to construct an ABD(kk' ,ww') from an 

ABD(k,w) and an ABD(k' ,w' ). 

Proof: We will e;onstruct the larger ABO by independently replacing each digit of 

the first ABO by a row from the second, and each "*" of the first ABD by a string 

of k' ":r"'s. If the digit being replaced is a zero, we choose a .row from the top 

half of the second ABO (that is, from the first 2w' -1 rows) to replace it. If the 

digit being replaced is a one, we use a row from the bottom half of the second 

ABO. (Actually, any division of the second ABO into two halves may be used.) 

Each row of length k thus generates 2<w' -1 )w rows of length kk' , so that 

2ww' rows are generated altogether. Each such row has w(k' -w') + (k-w)k' = 

kk' - ww' "*"'s. Each pair of rows generated will differ in at. least one. place, 

since rows used to replace differing digits differ, or if the two rows were 

generated from the same row of the first design, then one of the digits replaced 

will have been replaced with different rows from the SE~cond design, which must 

differ in at least one place. Finally, the number of "*"'s in each column is 

= 2ww' (kk' - ww') I kk' . (74) 
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Therefore this construction yields a valid ABO(kk' ,ww' ). 

Q. E. D. 

The above theorem allows us to form ABO's with arbitrarily large ratios 

k/w. For example, we can now construct an ABO( 16,9) or an J\80(64,27) (in 

general, an ABO( 4m,3m) for m~ 1) from the ABO( 4,3) of Figure 5. The following 

figure illustrates the rows generated for an AB0(16,9). 

0*01 

ABO( 4, 3) 

Figure 12. 

... 

rOWS ...; 

00*000*0****00*0 
00*000*0****100* 
00*000*0*****100 
00*000*0****1*10 
00*0100*****00*0 

II* I 00* 000* 0* * * * 
11 * 1 00* 0* 1 00* * * * 
1 h lOO*Oh 10**** 

00*0****00*011* 1 
00*0****00*0011* 
00*0****00*0*011 

ABO( 16, 9) rOW$ 

Rows of an ABO( 16,9) 
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3. 2. 4. ANALYSIS OF A8D SEARCH _TIMES. 

How well do these ABDs perform as hash functions for associative retrieval 

of binary records? Let use derive the worst-case behe1vior of ABDs constructed 

by concatenation and insertion. 

Let us consider the concatenation of an ABD(k,w) with an ABD(k' ,w' ). Let 

(.1(g,t) and (.1(g' ,t) be the respective worst-case number of buckets examined in 

each case for a query Q E Qb and let ;.1(h,t) be the same function for the 

resultant ABO. Since g, g' and h are fixed, we are considering the associated 

functions ;.1 as functions of t only. We can then easily derive 

;.1(h,t) == maxu+v=-t ;3(g,u) ;3(g' ,v) , (75) 

for O:dsk+k', usk, vsk'. For example, concatenating an ABD(4,3) with itself 

yields an A80(8,6) with worst-case retrieval times: 

_t 

(.1( h' t ) 
r A( 8, 6, t ) 1 

_ I o 
I 64 
I 64 

1 ______ 2 ______ ~------~--5__ 6 ____ z. ____ s 
40 25 1 6 1 0 6 4 2 1 
40 25 15 9 6 4 2 1 

Figure 13. Performance of an ABD(8,6) 

Also shown are the values of rA<8,6,t)l, which is a lower bound for ;3(h,t). The 

A80(R,6) is seen to do nearly as well as possible. The exact asymptotics for the 

worst-cuse behavior of the repeated concatenation of an ABO with itself are 

quite simple to figure out for given values of k and w. Suppose we concatenate 
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an ABD(k,w) with worst-case behavior ;.t(g,t) with itself m times, yielding an 

ABO(mk,mw). Consider a partial match query Q E Qt. Let Yi be the number of 

k column blocks which have exactly i specified bits, for Osisk, so that 

and 

L:o . k Yi = m, 
:01:0: 

We also have, of course, the condition that 

Yi ~ 0 for Osisk. 

The worst-case behavior ;.t(h,t) of the resultant ABD(mk,mw) is defined by 

( 76) 

( 77) 

( 78) 

( 79) 

where the maximum is taken over all sets of integers YO, ... , Yk satisfying ( 77) -

( 79). Let ;.1' (h,t) = log(;.1(h,t)) and ;.1' (g,t) = log(;.1(g,t)) for all t. Then ( 79) 

becomes 

;.1' (h,t) = max 2:
0 

. k ;.1' (g,i) Yi, 
::01$ 

(80) 

transforming the above into a integer programming problem in k+l dimensional 

spucc. Since we are considering the asymptotic behavior as m-+oo, the solution to 

the corresponding linear programming problem, in which each Yi is replaced by the 

corresponding fraction xi = Yi/m, will give us the asymptotic behavior. The 

problem to be solved is thus: 

maximize ;.1' (h,t) == LOsisk ,.1' (g,i) Xj, (81) 
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subject to: 

LO , k Xj = 1, 
S:IS: 

ko . k i x; = tjm, and 
S:IS: 

xi ' 0 for Os:is:k. 

.. 

(82) 

(83) 

(84) 

We must have at least k-1 of the xj's equal to zero in the optimal solution, since 

there are only k+3 constraints for this problem in k+l dimensions. Let xi and xj 

be the two nonzero values, with i<j. lf t3' (g,t) is a concave function we have 

i = Lt/mJ = j-1 (85) 

and 

t3' (h,t) = t3' (g,i)(i-t/m)/(i-j) + t3' (g,j)(j-t/m)/(j-i). {86) 

This is the general solution. When t/m is a multiple of 1 /k, then only Xtk/m is 

nonzero, and it is equal to one. This solution does not apply when t3' (g,t) is not 

concave. (For example, the t3' (g,t) for our A80(4,3) is not quite concav~, since 

{3(g,3)=2 is a little too large. This convexity is the cause of the discrepancies of 

Fig. 13). One can show, by a combinatorial argument, that if {3(g,t)=A(k,w,t) for 

0::: ts k, then {3(h,t)=A(mk,mw,t) for Os:h:mk as well. Thus concatenation of ABO's 

can be expected to preserve near-optimal worst-case behavior. 

The behavior of an ABO constructed by insertion is more difficult to work 

out. It seems the worst .... case here occurs when the specified bits occur together 
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in blocks corresponding to the digits of the first ABO used in the construction 

(that is, the one whose digits were replaced). (I have no proof of this.) Figure 

14 gives the worst-case behavior of an AB0(16,9) constructed by inserting the 

ABO( 4,3) of Figure 5 into itself, (computed using the assumption that the worst-

case behavior occurs with the queries having the specified bits occurring in 

blocks)._ Shown below the worst-case behavior ,l.l(h,t) for the above design are 

the values of A( 16,9,t), which are a lower bound for the number of buckets that 

must be examined in the worst case. 

,f.l( h, t ) 
r A( 16, 9, t ) 1 

J 
,l.l( h' t ) 

r A( 1 6, 9, t ) 1 

1._ - 2 
368 272 
368 263 

~ -- . 4 ___ 5 -- - 6 z ---·-- a-­
ss 36 

9 
33 
20 

224 1 76 116 76 
186 131 91 63 43 30 

10'_~ 11 12 ____ _1_ 3 ____ l4 ---- 1_~ ______ _16_ __ 
24 16 8 5 3 2 1 
14 9 6 4 3 2 1 

Figure 14. Behavior of the ABO( 16,9) 

We see the the lower bound is nearly achieved, that is, the worst-case 

behavior of this hashing· scheme approximates the average time. On the other 

hand, it is quite likely that even better designs for an ABO( 16,9) exist - the 

rer;ular fashion in which this one was constructed probably degrades its worst-

case performance somewhat. An exhaustive search by computer for better 

designs appears to be infeasible, so that a better construction method is needed. 
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(I was unable to determine whether an A80(8,5) exists or not, using one hour of 

computer time and a sophisticated backtracking procedure.) 

3. 2. 5. IRREGULAR ABO'S. 

The difficulty of constructing ABO's leads one to attempt simpler, less 

tightly constrained hash functions. Such CIQ hc;>c hash functions are easy to 

construct for small values of k and w. For example, consider the case k = 3, 

w = 2 (which does not satisfy the divisibility constraint of the corollary to Lemma 

1, so that an A80(3,2) can not exist). The following "design" yields reasonably 

good worst-case performance. 

____ 1 ___ 2 ____ ~--
1 0 0 * 
2 1 * 0 
3 * 1 1 
4 0 1 0 

1 0 1 

Figure 15. An "irregular" (3,2) design 

Here bucket 4 contains both records 010 and 101. This hash function has worst-

case behavior: 

t 1 ..... 0 _____ 1 ___ 2 ____ ~ 
,s( h , t ) I 4 3 2 1 

Figure 16. Behavior of the previous desigr1 
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Concatenating this function with itself will yield larger "designs" having a k/w 

ratio of 3/2 and having good worst-case retrieval times. Another "design" 

yields the k/w ratio of 2: 

I 1 2 3 4 
1 I 0 0 * * 2 I * 1 * 0 
3 I * 1 1 1 

I 1 0 1 * 4 I * 1 0 1 
I 1 0 0 * 

Figure 17. An "irregular" (4,2) design 

The above hash function has worst-case behavior: 

t .. . l - . _0 . J -· 2 ... 3 _ _4 
;:s( h, t ) I 4 4 3 2 1 

Figure 18. Behavior of the irregular ( 4,2) design 

3. 2. 6. CONCLUSIONS ON ABO'S. 

Associative block designs will have exactly the same average retrieval time 

as those hash function discussed in section 3. 1, where w 'key-bits were 

cxtt·Jcted to use us bucket oddress bits, since the buckets have the same shape. 

But by appropriately permuting the entries in each row, we can drastically reduce 

the worst-case time without affecting the average retrieval time. The recursive 

or iterative nature of the ABO construction theorems lends itself to simple 
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implementation. In summary, we see that the worst-case performance of hashing 
~~ 

schemes can be nearly minimized without increasing the average retrieval time or 

the amount of storage used. 

~) 

.. 
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3. 3. BENEfiTS OF STORAGE REDUNDANCY 

The perhaps difficult problems involved in constructing an ABO for a 

particular application can be circumvented if the user can afford a moderate 

amount of storage redundancy to achieve good worst-case behavior. By 

moderate I really mean moderate - the redundancy factor is not subject to 

combinatorial explosion as in the designs of Ghosh et al. Furthermore, both the 

worst-case and average behavior is even slightly improved over the designs of 

§ 3. 1 and the ABO's of § 3. 2. 

The technique is actually quite simple, and will be illustrated by an 

example. Suppose we have a file of n = 220 1 00-bit records (that is, each 

record consists of 100 one-bit keys). The method of the previous section would 

have required the construction of an ABD(l OO,w), for w near 20 - a difficult 

task. Let us instead simply create five (= 100/20) bucket systems, and let each 

record be filed once in each system. Each bucket system will have 220 

buckets. The first system will use the first 20 bits of each record as its bucket 

address, the second bucket system will use the second 20 bits of the record, and 

so on. 

Now suppose we have a query Q E Qt. At least one of the five bucket 

·systems will have at least rt/51 bits specified for its bucket address - so we can 
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use this bucket system to retrieve the desired records. The number of buckets 

searched is no more than 22q-rt/51 at worst. 

In general, if b = 2w is the number of buckets per bucket system, and we 

have k-bit records to store (records with non-binary keys can of course always 

be encoded into binary), we will establish m = k/w distinct bucket systems, 

divide the record into m w-bit fields, and use each field as a bucket address in 

one of the systems. 

The worst-case behavior of this scheme follc>ws a strict geometric 

inequality: 

,l.f(h,t) s 2w-rwt/kl (87) 

This surpasses even the best achievable gv~r_ag~ behavior of hash functions with 

no storage redundancy, although not by very much. If haU of the bits are given in 

a query ( i.e. t = k/2), then only sqrt(b) = 2w/2 buckets at most need be 

searched. The average behavior of this scheme is difficult to compute, but it · 

seems likely that it will approach the worst-case behavior, especially if w is 

large. 

The above idea, can be generalized further. lnstEtad of taking each of the 

m subfields of the record and using it directly as an address, one can treat each 

subfield as a record and use an ABD(k/m,w) or some other method (such as the 
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trie algorithm of §4) to calculate an address from each subfield. The efficiency of 

this composite method will of course depend on the efficiency of the the methods 

chosen for each sub-field. 
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CrtAPI~8_4 

IBIE_ ALGORJJHMS_EOR _e.~RT_I_AL_MAICH_QUERlES 

Theorem 1, which states that an optimal bucket shape for a hash table is a 

subcube of R, suggests that another data structure. might be preferable to hash 

tables. A trie also has the property that the set of records under consideration 

at any point of the trie is a subcube of R, which is recursively split into smaller 

subcubes at each level. Tries might thus behave like the best hash functions. 

They have the advantage that the data is structured all the way down to the 

terminal nodes (the records), in contrast with hash tables, where each bucket 

merely contains an unordered list. In this section we will try to estimate the 

average search time for a partial match query when the file F is maintained in 

random-access storage as a trie. 

4. 1. OEFINITION OF TRIES 

"Tries" were first described by Rene de Ia Briandais [de59] and were 

elaborated on by E. Fredkin in [Fr60] (see also [Kn72,§6. 3]). 

Definition. A tri_e is a tree such that 

(i) Records are its terminal (external) nodes. 
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<ii) Each internal node N specifies an attribute position j, such that attribute 

has not been specified on any node on the path from the root of the trie to N. 

In a standard trie the attribute position specified is always j, where j is the level 

of the node N in the trie. Nonstandard tries were first introduced by G. 

Gwehenberger [Gw68]. Each internal node is said to be g~so~iat~c;t with all of 

the records of its corresponding subtrie, and 

(iii) if node N specifies attribute j, then node N has vj subtries, one for 

each possible value of attribute j. The records associated with node N are each 

placed into the subtrie of N corresponding to their value for attribute j. 

Two kinds of tries will be considered. A fy_U trie will have al-l records at 

level k+ 1 (where the root is at level 1 ). Any subtr~e associated with zero 

records will be a special null node at some level less than k+l. A ~9r:npac_t trie 

will place the terminal node corresponding to a record at the uppermost level 

possible. In other words, a compact trie has a terminal node whenever the 

corresponding node in the full trie is associated with only one record, and all of· 

the ancestors of the node in the full trie are associated with more than one 

record. Figure 19 and 20 illustrate full and compact tries for the file of three-bit 

records F = { 000, 100, 101, 111 }. 
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I bi t 1 I 

= o I 
I 

I 

\ = 1 
\ 
\ 

I bit 2 I I bit 3 I 

= o I 
I 

I 

I bit 3 I 

= 0 I \ = 1 
I \ 

I \ -------

\ =1 
\ 
\ 

= o I 
I 

I 

NULL . I bi t 2 I 

= o I 
I 

I 

\ =1 
\ 
\ 

\ = 1 
\ 
\ 

I bit 2 I 

1=0 \=1 
I \ 

I \ 
I 000 I NULL. I 100 I NULL I 101 I I 111 I -------

Figure 1 9. A full trie 
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I bi t 1 I 

o I 
I 

I 

I ooo I 

= 0 

I 
I 

\ = 1. 
\ 
\ 

I bit 3 I 

I \ = 1 
\ 
\ 

------- ---------
I 100 I I bi t 2 I 
------- ---------

= o I 
I 

I 

I 101 I 

Figure 20. The corresponding compact trie 

4. 2. ALGORITHM FOR _SEARCf:liNG __ Iffif::_S 

\ = 1 
\ 
\ 

I 111 I 

To perform an associativ~ search of a trie is quite simple. Given a partial 

match query Q the search algorithm works as follows: 

Associative Search of a Jrie 

Step 1. Set pointer p to the root of the trie. 
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Step 2. If p points to a terminal node, print the associated record if it 

satisfies Q and return. 

Step 3. (Here p points to an internal node N specifying attribute j). If 

attribute j is specified in the query, search the corresponding subtrie 

of N, otherwise search all subtries of N. (These recursive searches 

use this algorithm beginning at step 2). 

What is the average running time of this algorithm? Let the time be the 

average number of nodes (both internal and external) examined by the algorithm. 

We shall use a slightly different assumption about the file, in order to make the 

mathematics easier. Instead of letting our file F be a randomly chosen subset 

of H of size exactly n, let us instead assume that each record R ( R is chosen to 

be in F independently with probability p = n/IRI. Thus E(IFI) = n, but F 

may also have some other size. There will be no significant bias in our results 
due to this change in assumption. The following notation denotes our cost 

measure: 

f(k,t) = the average number of nodes examined by the above algorithm 

to answer a partial match query Q E Qt, where the file F 

consists of (approximately) n distinct records, each having k 

one-bit keys. 
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There is an interesting optimization problem resulting from the use of 

nonstandard tries. The problem is to select the attribute positions with which to 

label each internal node in such a fashion as to minimize the expected number of 

nodes e:><amined for any partial match query. The interesting point here is that it 

will be the most unbalanced trie which will have the minimal search time, since 

nodes deep in the trie are seldom examined. To actually determine the optimal 

trie seems to be a difficult optimization problem, and we shall not remark upon it 

further. In fact, we shall restrict our attention to standard tries. 

4. 3. UPPER BOUND ON THE SEt\RCH_I!ME 

The close relationship between tries and hash functions which extract bits 

to use as a bucket address allows an upper bound on f(k,t) to be derived very 

simply. 

We first note that the probability ~t(N) that a particular node· N will be 

examined is basically a function of the level I(N) of N in the trie: 

<tt(N) = C(k,t)-1 ~O~d~t C(I(N)-l,i) C(k-I(N)+l,t-i) 2-i 

= 2-I(N)+l A(k,I(N)-l,t). (88) 

As noted above, since 4>t(N) decreases so rapidly with I(N), of all the n-node tries 

it will be the most balanced tries which have the highest average retrieval time. 

76 



Thus we derive an upper bound for f(k,t) by only considering the most balanced 

tries of n nodes. Thus it is very simple to derive the bound: 

f(k,t) ::: 2:
1 

. I ( ) A(k,j,t), ::;;:::r og2 n 1 (89) 

since there are 2j-1 nodes on each level j of the most balanced trie except 

possibly the last. The dominant term in this sum will generally be the last one, 

corresponding to the highest level. Thus we see that tries will not generally do 

worse than the best hashing functions which use about n buckets. In the next 

section we will see that they do not perform significantly better, either. 

4. 4. LOWER BOUND ON SEARCH_ I_IM_I; 

(j We shall here assume that the file is stored as a full trie and not a compact 

trie. While a practical implementation would certainly use compact tries, we shall 

examine the full trie case since the mathematics is a little simpler. Compact tries 

are more efficient by a factor of at most 

( 90) 

This approaches 1 in the limit if we keep p fixed and let n~oo. We shall 

proceed with our analysis with the understanding that compact trees could be 

more efficient by this amount. 

We now prove our basic theorem for this section, which says that the 
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expected search time for a trie is bounded below by a exponentially decreasing 

function of the amount of information specified in the query. 

Theorem 8. 

f(k,t) ~ n<k-t)/k = P(k-t)/k 2k-t (91) 

Proof: The basic recurrence for f(k,t) is the following: 

f(k,t) = 1 + (1-~k)(2 f(k-l,t)(k-t)/k + f(k-l,t-1) t/k ), for k>l. (92) 

Here we define 

(93) . 

to be the probability that F is empty. The value (k-t)/k is the probability that 

the bit named at the root of the trie is not specified in the query, and t/k is the 

probability that it is specified in the query. The 2 is in the first term because if 

the bit named in the root is not specified in the query, then we have to search 

both subtries, otherwise we only have to search one. 

We will prove (91) by induction on k, using (92). The basic'inductive step. 

we need to prove is therefore the following inequality. 

p(k-t)/k 2k-t 

~ 1 + 2k-t (1 - Ek)(((k-t)/k) p(k-t-1)/(k-1) ·~ t/k p(k-t)/(k-1)) (94) 

If we prove (94), and also prove a basis for the induction, then (91} follows. 

Defining z to be: 

z =def p(k-t-1 )/(k-1) ( (k-t)/k + t/k pl /(k-1) ) (95) 
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we then get that ( 94) is equivalent to: 

1 ~ 2k-t ( p(k-t)/k - (1 - Ek) z) ) 

If we can show that 

z ~ p(k-t)/k 

then ( 96) reduces to showing that 

1 ~ (k 2k-t p(k-t)/k . 

( 96) 

( 97) 

(98) 

So we will first prove ( 97), and then ( 98). Now ( 97) is equivalent to the 

following. 

p(k-t)/k :; (k-t)/k p(k-t-1)/(k-1) + t/k p(k-t)/(k-1). ( 99) 

This is the same as 

pt/k(k-1) $ (k-t)/k + tjk pl/(k-1) . ( 1 00) 

But this is just an instance of a well-known mean-value theorem [Thm. 37,Ha59]. 

We shall now prove ( 98). This is equivalent to 

1 ~ (k 2k P <2 pl/krt. (1 01) 

Since Ek is independent of t we may set t=k if 2 pl/k < 1 to maximize the right 

hand side, reducing ( 101) to a trivial statement. Otherwise we set t = 0. 

Differentiating the resultant right-hand side with respect to p, we find that it 

reaches a maximum at 

PO= 1 I (2k + 1). ( 1 02) 
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But since 2 POl/k < 1 we only need to prove (101) for 2 p1/k = l, in which 

case it is again trivial. 

Therefore (91) is proved except for the basis for the induction. But for 

k = 1, (91) reduces to 

f(l ,0) ~ 2 p, (1 03) 

and 

f(l '1) ~ 1 . ( 104) 

Equation ( 1 04) is certainly true, since the root node must always be examined. 

Equation (103) requires computing the average work for a file of 1-bit records 

for a query with no keys specified; There are four possible files: F={0,1}, 

F={O}, F={l}, and F={}~ which occur with probabilities p2, p(l-p), p(l-p), and 

( 1-p)2 respectively. The number of nodes examined in each of these cases is 

3, 2, 2, and 1 respectively. Equation ( 1 03) thus reduces to proving the 

following. 

2 p $ 3 p2 + 2 p {1 - p) + 2 p (1 - p) + (1 - p)2 = 1 + 2p 

Q. E. 0. 
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CHAPTER 5 

HASHING ALGORITHMS fOR B_EST -MATCH QUERI_ES 

The task of searching a file for all best matches to a query has probably 

been more extensively studied than the the task of searching for all partial 

matches, due to the fundamental nature of identification problems when only 

partial and perhups incorrect attribute data is available. Finding the best-match 

for a transmitted message is the crux of the decoding problem, for example. 

Nevertheless, only very recently has significant theoretical progress been made on 

this problem. As late as 1969 Marvin Minsky conjectured that 

"Even for the best [algorithms], the speed-up value of large memory 

redundancies is very small, and for large data sets with long word lengths 

there are no practical alternatives to large searches that inspect large 
I 
I 
i' 

parts of the memory." [Mi69,p. 223] 

We shall see that the situation is not that bad, and that best-match searches may 
I 

often be made extremely rapidly, requiring the examination of only the smallest 

fraction of the file. 
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5. 1. THE ALGORITHM 

The method is due originally to Peter Elias, according to [We 71 ], although 

Burkhard has apparently independently discovered the idE1a more recently [Bu73]. 

The algorithm is a variant of the hash-coding scheme, with slightly different 

hash functions. We shall therefore use the same notation as §3. We divide the 

space R of records into b regions 81 (R,h), 82(R,h), ... , Bb(R,h) as before. 

Given an input record Q for which we want to find the best-match, we hope to 

limit our examination of the file to just a few buckets. To do this we need to find 

an appropriate hash function. 

Due to the nature of the problem, it seems likely that the buckets should 

be "neighborhoods" or "spheres" of R rather than subcubes. This conjecture is 

proved later on. One simple method of dividing R up into neighborhoods is to 

choose a set of "reference" records R' = {R' 1• R' 2• ... , R' b}, and then to 

associate one bucket with each reference record. A record is placed in the 

bucket( s) corresponding to the nearest reference record(s) using the Hamming 

distance metric d. Thus, 

G/R) ==def { Rdt I .... (Ji,l :dsb)[(i;tj)A(d(R' j,R)<d(F~' j,R)]}. 
. I 

( 1 06) 

Note that a record may belong to more than one bucket under this scheme. 

Clearly the reference records can be chosen in different ways. A large 

82 

~I 

~·.· 

~) 

f 



I~ 

amount of research going under the name of "cluster analysis" is directed at 

choosing the reference records to be records of F near the centers of naturally 

occurring "clusters" in F (for example, see [Ja71]). This method has the 

advantage of being tailored to the particular file in question, but has difficulties in 

terms of maintaining this structure while the file is being modified and in terms of 

organizing the search, since it is hard to determine whether a given bucket needs 

to be searched (that is, whether it could possibly contain a record closer to R 

than the closest found so far in the search). 

For the purposes of this discussion, we will assume that the file F is a 

randomly chosen subset of size n of R. Thus it is unlikely to expect the records 

of F to be nicely clustered in any way. How should the reference records be 

chosen in this situation? One would suspect that they should be rather evenly 

distributed throughout R. 

For the case of binary records, R' can be easily chosen if b is a power of 

two, so that b c= 2w, and there exists a perfect (k,w) error-correcting code, with 

minimum distance 2 :.\ + 1. Then R' will be the set of codewords, and Bj(R) will 

be the set of all k-bit words which would be interpreted under the decoding rule 

to be R' j· (While it has been shown (see [Ti73]) that there are no unknown 

perfect codes, 1n those cases where a perfect code does not exist one can do 

nearly as well by using a quasi-perfect code [Pe72], or the best code available.) 
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To perform a best-match search, the following algorithm is performed. 

Essentially the buckets are examined in order of increasing distance of their 

centers from the query until all the closest records are found. 

procedure SEARCH2( { 81, ... , Bb},h,Q,A); 

comment SEARCH2 finds all records stored in buckets 81, ... , Bb which 

are nearest to the record (query) Q. 
The value " is the minimal value such that every record is within distance 
>- of a reference record. ; 

begin set W, W', Y; integer m, m', i, j; 
m .:- oo; W ~ null; Y ~ { 1, 2, ... , b }; 
while Y ~ null do 

begin 
j ~ min { j I (j E Y) A (d(Rj,Q) = miniEY d(Ri,Q))}; 

if B/F) ~ null then 

begin 
m' ~ minREBj<F) d(R,Q); 

W' ~ { R E Bj(F) I d(R,Q) = m' }; 

if rn' = m then W ~ W U W' 
else if m' < m then 

begin W ~ W'; m ~ m' end 
end; 

Y .... { i I d(Rj,Q) ~ m + :>. } n Y - { j } 

end; 
print( W, m ) 

end SEARCH2; 

5. 2. A_ SAMPLE APPLICATION 

Let us consider a particular application. Suppose we have a file of n=215 
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23-bit words which we wish to organize for best-match searching. We can make 

use of the Golay perfect (23,12) code (see [Pe72, §5. 2]) in our hash function. 

We will thus have 4096 buckets, each containing about 8 records on the average. 

The Golay code is capable of correcting all patterns of up to three errors, so that 

the minimum distance between codewords is 7. 

To derive the average time needed to answer a best-match query, proceed 

as follows. Let p be the probability that a particular record is in F (here p = 

215;223 = . 00390625), and let oc(h) be the expected number of buckets 

examined. Then 

oc(h) == l:Osis
3 

C(23, i) 2-11 l:Osj:; 23 pe(j) nb(i,j) ( 1 07) 

where pe(j) is the probabiljty that the nearest record to a "typical" query is at 

distance j. This is an average, taking as separate cases the distance i of the 

query from the center of its bucket. That is 

!i'j pe(j) == (1-p)V(23,j-1) (1 _ (1-p)C(23, j)), (108) 

where V(k,j) is the volume of a sphere with radius j in binary k-space, that is, 

V(k,j) = I:
0 

. .C(k,i) . 
SIS) (109) 

The quantity nb(i,j) in ( 1 07) denotes the average number of buckets that need 

to be examined t-o find all words within distance j of R for a typical word RER 

where the distance from R to the nearest code-word is i. The values of nb(i,j) 
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for O:sis3 and Osjs23 were determined with a computer program. Figure 21 

plots oc(h) versus p. For our application (p = 215/223), we see that no more than 

37 buckets need be examined on the average. 
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5. 3. ANAL'(SIS OF ASYMPT_QTIC_ RlJNNlNG_JIMI:; 

How well does the above algorithm perform? The expected number of 

records examined will be at most p C(k,m+A), where m is the distance from the 

query to the nearest re~ord in F, and ~ is the common radius of the buckets. 

For m+::\ small in relation to k, this will be a negligible fraction of the file. 

To consider the asymptotic performance, let k ..,. oo and w ~ oo proportional 

to k. This corresponds to the case where p, the file density, remains fixed. 

Then it is well-known that there are codes such that the minimum distance of 

these codes will increase in proportion to k. The fraction of the file examined is 

at most C(k,m+~)2-k. This fraction goes to zero as k goes to infinity, since the 

expected value of m goes to (1-p) and~ remains a fixed fraction of k. 

5. 4. OPTIMAL BUCKET SHAPES 

The above algorithm has been previously published, as noted before. The 

following theorem demonstrates its optimality. 

Theorem 9. For answering best-match queries from a file of binary 

records, oc:(h) is minimized over all balanced hash functions h having a given 

number b of buckets if each bucket is shaped like a "sphere" -- that is, if each 

88 

. \ 

~-· 



.·~ 

bucket B/Rk) consists of a center point (record) R' j and all records within a 

distance >.. of R' j· 

Proof: Since we are considering balanced b-bucket hash functions, oc:(h) will be 

minimized if each individual bucket of size 2k/b has a minimal probability of being 

examined, over all buckets· of the same size. A bucket must be examined if it 

contains any records as close to the input record as the closest record found 

previously in the search. There are 2k possible input queries. For a given 

query, there is a probability of (1-p) V(k,d-1) that the nearest record to the input 

query will be at a distance of at least d. For a given bucket 8 let S(8,d) be the 

set of records in Hk which are at distance d from the nearest record in 8(Rk)· 

The chance that 8 must be examined is then: 

-¥(8) =d f 2-k ~ IS(B d)l ( 1-p) V(k,d-1) . e O:::d:::k ' ( 11 0) 

since if the query is in S(8,d), 8 is only examined if the sphere of radius d-1 

around the query contains no records in F. This sum is minimized by making the 

values of jS(8,d)l as small as possible for small values of d, since (1-p) V(k,d-1) 

is a decreasing function of d. In fact, if we are given two buckets 8 and 8', then 

-¥(8) will be less than '¥(8') if and only if the vector (jS(B,O)I,IS(8,1 )1, ... , IS(B,k)l) 

is lexicographically less than the corresponding vector for 8', since 

-¥(8') - -¥(8) = 2-k ~O$i$k(jS(B' ,i)I-IS(B,i)l)(l-p)V(k,i-1). (111) 

Assume that jS(B,i)I=IS<B' ,i)j for Osi<j, and that jS(B,j)j<jS(8' ,j)j. Since 
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IS<B' ,j)I-IS(B,j)l = :E .. k (IS(B,i)I-IS(B' ,i)l) , 
J<t::; 

( 112) 

we have 

it(B') - it(B) = 2-k :E. . k(jS(B' ,i)I-IS(B,i)j)(l-p) V(k,i-1) (113) 
J::; I :S 

~ 2-k (IS(B' ,j)I-IS(B,j)j)((l-p)V(k,j-1)_(1-p)V(k,j)) (114) 

~ 0 (115) 

For two buckets of the same size, B will be examined less frequently than 8' if 

IS(B, 1 )I is less than IS(B' ,1 )I. Note that IS(B,l )I is the discrete analog of the 

surface area of a region 8, so that what we are about to show is that a sphere 

has minimal surface area. 

Consider the mapping· Rk ~ Rk-1• obtained by dropping the first bit of 

each record in Rk· The set of records in B may be divided into two subsets 

according to their first bit. Dropping the first bit, we get two subsets Bo, s1 of 

Rk-1 corresponding to the set Bin Rk. Using IS<Bo,l)l and I~(Bt,l)l to denote 

the surface area of the sets Bo and 81 in Rk-1• we have the relationships: 

IBI = IBol. + IB 11, and (116) 

IS(B,l)l == IS<B0,1)1 + IS<B 1,l)l 

( 11 7) 

The problem of selecting the optimal set 8 from R is thus reduced to the problem 

of selecting the proper sets Bo and 81 from Rk-1· 
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Consider a given bucket 8' (or rather, its corresponding sets 8' 0 and 8' 1 

in nk-1 ). Let us "deform" this bucket into a new bucket 8 by making 8o and 8 1 

be sets of the same size as 8' 0 and 8' 1 but which are spheres centered at the 

origin of Rk-1· We will show that 

15(8,1 )I s 15(8' ,1 )I, (118) 

using an inductive proof on the dimension k; thus I5(Bo,1)1 and 15(81,1)1 can be 

assumed to be minimal over all buckets in Rk-1 of the same sizes. 

We may assume that IBol ~ IB1I without loss of generality. Thus the last 

term of ( 11 7) will be zero since 81 !: 8o. It is now clear that 15(8,1 )j is minimal 

over buckets B such that l8ol=l8o' I and I81I=IBI'I, since any decrease in the 

term l8o - (81 u 5(81,1))1 could only come at the expense of a corresponding 

increase in the term j5(81,1)j. That is, either l8o - (81 U 5(81,1))1 is zero (in 

which case 15(8,1)1 is obviously minimal) or else 81 u 5(8}11) c: 8o. In the latter 

case there will exist several choices for 81 which will minimise 5(8,1) (in fact, any 

81 will do which maintains 81 u 5(8 }11) c: 8o), one of which is a sphere. 

Thus a sphere will have minimal surface area of any bucket of size IB' I, 
s1nce a sequence of the above deformations using each of the k bit positions in 

turn will transform any bucket 8' into a sphere. Although other shapes may also 

have minimal surface area, the sphere will also have the minimal expected chance 
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of being examined, since B u 5(8,1) is also a sphere when 8 is, so that the vector 

(jS(B,l )I, 15(8,2)1, ... , I5(B,k)l) is lexicographically minimal by induction on the index 

j of the S(B,j)'s . 

Q. E. D. 
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CHAPTER 6 

APPENDIX - NOJA TION 

The following notation is used consistently throughout: 

SYMBOL MEANING 

A(k,w,t) The minimal number of buckets examined to answer a query 

with t bits given out of k, with b = 2w buckets in the system. 

b Number of buckets used in a hash-coding scheme. 

C(m,n) The binomial coefficient "m choose n". 

E(x) The expected value of the variable x. 

The current file. 

h A hash function mapping R ~ {1,2, ... b}. 

iff "if and only if" 

k The number of keys in a record. 

n The number of records in the file F. 

Q The universe of legal queries. 

Q A query in Q. 

Qi A query in Q, Qt:' a function mapping subsets F of R into 

subsets of F (that is, Qj(F) is the respgn_~~ to query Qi, given 

F). 
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R 

R 

R· I 

r .. 
I J 

v· J 

v 

V(k,i) 

w 

lXI 

rx1 

LXJ 

X· A· I I 

X<< y 

oc( h) 

The set of all partial match queries having exactly t keys 

given. 

The universe of legal records. 

The set of all binary words of length k. 

A record of R. 

The i-th record of the file F. 

The j-th key of record Ri. 

The number of keys specified in a partial match query. 

The number of values the j-th key of a record can have. 

The common value of all the vj's, if it exists. 

The number of points in binary k-space within distance i of the 

origin. 

The value log2(b). 

The cardinality of the set X. 

The least integer greater than or equal to x. 

The greatest integer less than or equal to x. 

The cartesian product of sets Ai. 

The value of x is "very much less" than the value of y. 

The average number of buckets examined by SEARCH when ~! 

using hash function h to answer a parth~l match query Q E Q. 
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o.::(h,t) The average number of buckets examined by SEARCH when 

using hash function h to answer a partial match query Q E Qt. 

;3(h,t) The worst case number of buckets examined by SEARCH when 

using hash h to answer a partial match query Q E Qt. 

q,(B) The number of queries in Q which examine bucket B. 

The number of queries in Qt which examine bucket B. 

I 
I 
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