
•

•

•

•

•

•

•

•

•

•

ANALYSIS OF AS SOC IAT IVE RETRIEVAL ALGORITHMS

BY

Ronald Linn Rivest

STAN-CS-7 4-415
MAY 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

(

BIBLIOGRAPHIC DATA
SHEET

4. Title and Subtitle

11. Report No.
L STAN-CS-74-415 3. Recipient's Accession No.

5. Report Date
May 1974 ANALYSIS OF ASSOCIATIVE RETRIEVAL ALGORITHMS

6.
7. Author(s)

Ronald Linn Rivest
9. Performing Organization Name and Address Stanford University

Computer Science Dept.
Stanford, California 94305

12. Sponsoring Organization N arne and Address
National Science Foundation
1800 G Street, N.W.
Washington, D. C. 20550

15. Supplementary Notes

16. Abstracts

8. Performing Organization Rept.
NosTAI~-CS-74-415

10. Project/Task/Work Unit No.

11. Contract/Grant No.
NSF GJ -33l-70X
13. Type of Report & Period Covered

Technical, May 1974
14.

This thesis examines various methods of performing associative searching of a random-access file. An abstract model of the retrieval process is used to evaluate the different techniques. For partial-match queries, both generalized hash-coding and trie algorithms are analyzed. An exact lower bound is derived for the required average number of buckets examined by hash-coding algorithms, and the optimal hash functions are precisely characterized. A new class of combinatorial designs, called associative block designs, is introduced which have excellent worst-case behavior as well as optimal average retrieval time when employed as hash functions. Tries are found to be about as efficient as the optimal hash functions on the average. In general, the time required to answer a partial match query is found to decrease approximately exponentially with the amount of information specified in the query. The efficiency gains achievable through storing records in several locations arealso
17. Key Words and Document Analysis. 17a. Descriptors examined. For answering best-match queries, a hash-coding algorithm due to Elias based on error correcting codes is shown to be optimal.

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group
18. Availability Statement

Reproduced by
NATIONAL TECHNICAL

INFORMATION SERVICE
U S Department of Commerce

Springfield VA 22151

Approved for public release; distribution
f

19 •. Security Class (This Report) unlimited. UNCLASSIFIED
20. Security Class (This Page

UNCLASSIFIED I' FORM NTIS·35 (REV. 3-72)

THIS FORM MAY BE REPRODUCED

21. No. of Pages
lll

22. Price
Lf. 5D-f. <f~

USCOMM DC 14952-P72

INSTRUCTIONS FOR COMPLETING' FORM' NTfs-35 (10-70) (Bibliographic Data Sheet based on COSATI

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government,

PB-'180 600).

1. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing

organization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples

FASEB-NS-87 and FAA-RD-68-09.

2. Leave blank.

3. Recipient's Accession Number •. Reserved for use by each report recipient.

4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, and be displayed promi­

nently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared 10 more

than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.

S. Report Date. Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected

(e.g., date of issue, date of approval, date of preparation.

6. Performing Organization Code. Leave blank.

7. Author(s). Give name(s) in conventional order (e.g., John R. Doe, or }.Robert Doe). List author's affiliation if it differs

from the performing organization.

8. Performing Organization Report Number. Insert if performing organization wishes to assign this number.

9. Performing Organization Name and Address. Give name, street, city, state, and zip code. List no more than two levels of

an organizational hierarchy. Display the name of the organization exactly as it should appear in Government indexes such

as USGRDR-1.

10. Project/Task/Work Unit Number. Use the project, task and work unit numbers under which the report was prepared.

11. Contract/Grant Number. Insert contract or grant number under which report was prepared.

12. Sponsoring Agency Name and Address. Include zip code.

13. Type of Report and Period Covered. Indicate interim, final, etc., and, if applicable, dates covered.

14. Sponsoring Agency Code. Leave blank.

15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with

Translation of ... Preseqted at conference of ... To be published in. . . Supersedes . . . Supplements ...

16. Abstract. Include a brief (200 words or less) factual summary of the most significant information contained in the report.

If the report contains a significant bibliography or literature survey, mention it here.

11. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the

proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used

as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators, etc. Use

open-ended terms written in descriptor form for those sub jeers for which no descriptor exist.s.

(c). COSATI Field/Group. Field and Group assignments are to be taken from the 1965 COSATI Subject Category List.

Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will be the specific

discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary

Field/Group assignments that will follow the primary posting(s).

18. Distribution Statement. Denote releasability to the public or limitation for reasons other than security for· example "Re­

lease unlimited". Cite any availability to the public, with address and price.

19 & 20. Security Classification. Do not submit classified reports to the National Technical

21. Number of Pages. Insert the total number of pages, including this one and unnumbered pages, but excluding distribution

list, if any.

22. Price. Insert the price set by the National Technical Information Service or the Government Printing Office, if known.

FORM NTIS·35 IREV. 3·72)

USCOMM·DC 14952-P72

ANALYSIS OF ASSOCIATIVE RETRIEVAL ALGORITHMS

by

Ronald Linn Rivest

Abstract

This thesis examines various methods of performing associative

searches of a random-access file. An abstract model of the retrieval

process is used to evaluate the different techniques.

For partial-match queries, both generalized hash-coding and trie

algorithms are analyzed. An exact lower bound is derived for the

required average number of buckets examined by hash-coding algorithms,

and the optimal hash functions are precisely characterized. A new

class of combinatorial designs, called associative block designs, is

introduced which have excellent worst-case behavior as well as optimal

average retrieval time when employed as hash functions. Tries are

f'ound to be about as efficient as the optimal hash functions on the

average. In general, the time required to answer a partial match

query is found to decrease approximately exponentially with the amount

of information specified in the query. The efficiency gains achievable

through storing records in several locations are also examined.

For answering best-match queries, a hash-coding algorithm due

to Elias based on error-correcting codes is shown to be optimal.

This work was supported by the National Science Foundation under grant
GJ-33l-70X.

(

QUOT ATJQNS

Oh where, oh where, has my little dog gone?

Oh where, oh where can he be?

With his tail cut short, and his ears cut long,

Oh where, Oh where can he be?

[Nursery rhyme]

You must look where it is not, as well as where it is.

[Gnomologia - Adages and Proverbs.

by T. Fuller (1 732)]

ia..,.

}·,

fl

LA_B_L _E ___ Qf __ Q_Q_N_J __ E __ ~

SECTION PAGE

1 INTRODUCTION 1
~

1. 1 ATTRIBUTES, RECORDS, AND FILES 4

1.2 QUERIES 5

8 1. 2. 1 INTERSECTION QUERIES 5

1. 2. 2 BEST -MATCH QUERIES 8

1. 2. 3 QUERY TYPES TO BE CONSIDERED 8

e 1.3 COMPLEXITY MEASURES 9

1.4 RESULTS TO BE PRESENTED 1 1

2
~

HISTORICAL BACKGROUND
...

"13

2. 1 ORIGINS IN HARDWARE DESIGN 13

2.2 EXACT MATCH ALGORITHMS 14

~ 2.3 SINGLE -KEY SEARCH ALGORITHMS 16

2.4 PARTIAL-MATCH SEARCH ALGORITHMS 17

3 HASHING ALGORITHMS FOR PARTIAL MATCH QUERIES 22
~

ii

3. 1 CONSIOERA TION OF THE AVERAGE SEARCH TIME 25 t;

3. 1. 1 THE OPTIMAL SHAPE OF A BUCKET FOR BINARY

RECORDS 26

3. 1. 2 THE OPTIMAL SHAPE OF A BUCKET FOR
fi

GENERAL RECORDS 39

3. 1. 3 NUMBER OF BUCKETS EXAMINED 41
fJ

3. 1. 4 A SAMPLE APPLICATION 44

3. 2 ANALYSIS OF WORST -CASE SEARCH TIME 48

3. 2. 1 FORMAL DEFINITION OF ABO'S 51
E;

3. 2. 2 CHARACTERISTICS OF ABO'S 52

3. 2. 3 CONSTRUCTION THEOREMS FOR ABO'S 54

3. 2. 4 ANALYSIS OF ABO SEARCH TIMES 61 fi

3. 2. 5 IRREGULAR ABO'S 65

3. 2. 6 CONCLUSIONS ON ABO'S . 66

3.3 BENEFITS OF STORAGE REDUNDANCY 68 f·

4 TRIE ALGORITHMS FOR PARTIAL MATCH QUERIES 71

4. 1 DEFINITION OF TRIES 71
~:.,

4. 2 ALGORITHM FOR SEARCHING TRIES 74

4.3 UPPER BOUND ON THE SEARCH TIME 76

4.4 LOWER BOUND ON SEARCH TIME 77 e,,
'

iii

/:"

~ 5 HASHING ALGORITHMS FOR BEST -MATCH QUERIES 81

5. 1 THE ALGORITHM 82

5. 2 A SAMPLE APPLICATION 84

5.3 ANALYSIS OF ASYMPTOTIC RUNNING TIME 88

5.4 OPTIMAL BUCKET SHAPES 88

6 APPENDIX - NOT A TION 93

7 REFERENCES 96

iv

(

-------- ---

TITLE PAGE
~

Table of values for :>-.(x) and :>-.t(x) 30

Graph of A(50,w,t) versus t for w=5, 25, and· 50 43

Graph of cx:(h) versus w 46

Graph of cx:(h,t) versus t 47

A Hash Function 49

~ A perfect matching on R4 50

Buckets examined per query bit given 50

An A80(8,7) 55

~ An ABO(16, 13) 56

Permissable values of (k,w) 57

An AB0(8,6) 58
~

Rows of an ABO(16,9) 60

Performance of an AB0(8,6) 61

Behavior of the AB0(16,9) 64
~~

An "irregular" (3,2) design 65

Behavior of the previous design 65

An "irregular" (4,2) design 66

v

·,.

Behavior of the irregular (4,2) design 66
(~·

A full trie 73

The corresponding compact trie 74
F·

Plot of ~(h) versus p 87

vi

CHAI?IERJ

INJBQQJ.J_GI!QN

In this thesis we examine algorithms for "associatively" searching a direct­

access file to determine their optimal form and achievable efficiency. This

chapter presents an abstract model of the file and query specifications, and we

analyze the search algorithms within this framework. Chapter 2 discusses the

historical development of the "associative search" problem, and reviews

previously published search algorithms. Chapters 3 and 4 examine partial-match

search algorithms, and chapter 5 studies a best-match search algorithm.

An information retrieval system must consist of at least the following parts:

(i) a collection of information, called a til~. An individual unit of this

collection is usually called a r:_e~cm:J. If records may be added to or deleted from

the file (that is, the file may be !J.RQ_at!:!.9), the file is said to be ~y..ruunl~, otherwise

it is said to be s!atic.

(ii) a storage or recording procedure by which to represent the file (in the

abstract) on some physical medium for future reference. This operation we call

the encoding of the file. The encoded version of the file must of course be

distinguishable from the encoded versions of other files. The medium used is

1

ent-irely arbitrary: for example, punched or printed cards, ferromagnetic cores,

magnetic tape or disk, holograms or knotted ropes. There are clearly many

possible encoding functions, even for a given storage medium. To choose the

best one for an application is called the enc_Q..d)_ng or d_&t_a ~trJ.!~LL!.re problem.

(iii) a method by which to access and read (or decode) the encoded file.

The access method depends only on the storage medium used, while the encoding

function determines what interpretation should be given to the accessed data.

The encoded version of the file will in general consist of the encodings of its

constituent records, together with the encoding of some auxiliary information. If

(the encoded version of) any particular item of information can be independently

accessed with (approximately) unit cost, we say the file is stored on a direct­

access storage device. · Card files and magnetic disks are thus direct-access,

whereas magnetic tapes are not. The access cost usually consists of two

independent quantities: the physi~al. a~c~s-~ time needed to move a reading head

or some other mechanical unit into position, and the tr~n~mi~~iOJl time required to

actually read the desired data. The transmission time is proportional to the

amount of information read, while the physical access time usually depends on the

relative location of the last item of information read. Devices such as core

memory have zero physical access time.

2

(

8

(iv) a user of the system. This person t:S assumed to have one or more

queries (information requests) for the system. The r_~spon_se to a query is

assumed to be a subset of the file - that is, the user expects some portion of the

records of the file to be retrieved and presented to him. If the user presents his

queries one at a time in an interactive fashion, we say that the retrieval system is

being used on-line, otherwise we say that it is being used in batch mode. In this

thesis we shall only consider on-line systems.

(v) a search algorithm. This is a procedure for accessing and reading part

of the encoded file in order to produce a response to a user's query. It is of

course dependent, but not entirely, on the choice of storage medium and encoding

function. This algorithm may be performed either by a computer or some

individual who can access the file (such as a librarian).

The above broad outline of an information retrieval system needs to be

fleshed out with more detail in order to make precise the problem to be studied.

We now present some formal definitions required for the r~st o1 this 'thesis.

These details restrict the model's generality somewhat, although it remains a good

approximation to a large class of practical situations.

3

.. ·

A r~corq R is defined to be an ordered k-tuple (q,r2,· .. ,rk) of values (that

is, each record contains exactly k ~~y_s, or §!lr:i_b.Ul!t~). We will assume that the

j-th key can have at most vj values, for some" finite vj, 2svj<oo, so that

o~rj<vj for 1 ~j~k and any record R. For simplicity we shall usually assume that

all the vj's are equal to a particular value v. In addition, we will usually consider

only the case v = 2, since any other record type can easily be encoded as a

binary string. Binary records are thus in a certain sense the most general case.

In this situation each record is a binary string (or word) of length k. Let R =

{R 1, R2, ... } denote the set of all valid records, so that IRI = v1v2 .. •Vk· We

also reserve the notation Rk for the set of all binary words of length k. A file F

is defined to be any nonempty subset of R. We shall consistently use the letter

n to denote IFI, the number of records in the file being considered.

These conventions are not the most general possible. For example, in the

model proposed by Hsiao and Harary [Hs70], a record is defined to be an arbitrary

collection of (attribute, value) pairs rather than a complete list of values for a

predetermined set of attributes. A study of the complexity of associative

retrieval in this more general setting, however, would certainly require many

additional assumptions about the file characteristics.

4

t]

1. 2. QUERIES

Let Q denote the set of queries the information retrieval system is

designed to handle. For a given file F, the proper response to a query Qi E Q is

denoted by Qi(F) and is assumed to be a (perhaps null) subset of the records in

F.

The following sections give a framework within which to categorize query

types, and describe the particular query types to be considered in this thesis.

1. 2. 1. INTERSECTION QUERIE_S.

The most common query type is certainly the intE!rsec;ti_on que]y, which is

named after the defining characteristic of its response: a record in the file F is

to be retrieved if and only if it is also in a predetermined subset Qi(R) of R ,

so that

(1)

The notation here is consistent since if F==R then (1) implies Qj(F) == Qi(R).

The sets Qi(R) completely characterize the functions Qi(F) for any file F by

the ubove intersection formula. Intersection queries enjoy the property that

whether some record REF is in Qi(F) does not depend upon the rest of the file

(that is, upon F-{R}), so that no "global" dependencies are involved. The class

5

of intersection queries contains many important subclasses which we present in a

hierarchy of increasing generality:

(1) Exact match queries: Each Qi(R) contains just a single record of R .

An exact match query thus asks whether a specific record is present in

F.

(2) Single-key queries: Qi(R) contains all records having a particular vaiCJe for

.. ~· a specified attribute. For example, consider the query defined by

(2)

(3) Partial match queries: A "partial match query Oi with t keys specified"

(for some t :s k) is represented by a record RER with k-t keys

replaced by the special symbol "*" (meaning "unspecified"). If Oi = (qi 1,

qi2' ... , qik) then for t values of j. we have O:squ<vj and for the other

values of j we have qu="*"· The set Qi(R) is the set of all records

agreeing with Oi in the specified positions. Thus,

(3)

A sample application might be a cross-word puzzle dictionary,, where a

typical query could require finding all words of the form "B*T**R" (that

is: BATHER, BATTER, BETTER, BETTOR, BITTER, BOTHER, BUTLER,

BUTTER). We shall use Qt throughout to denote the set of all partial

match queries with t keys specified.

6

E_

(4) Range queries: These are the same as partial match queries except that a

range of desired values rather than just a single value may be specified

for each attribute. For example, consider the query defined by

Q(R) = { RER I (1 srp;3) 1\ (1 ::; r2 ::; 4) } (4)

(5) Best-match queries with r_estrlcl~d qjstan_~~: These require that a

distance function d be defined on R . Query Qi will specify a record

Rc. and a distance Ai , and have ·
I

(5)

Query Oi requests all records within distance "i of the record Rc. to be
I

retrieved. The distance function d(R,R') is usually defined to be the

number of attri.bute positions for which R and R' have different

values; this is the Hamming distance metric.

(6) Boolean queries: These are defined by Boolean functions of the

attributes. For example, consider the query Q defined by

Q(R) = { RER I ((q = 0) v (r2 = 1)) 1\ (r3 cJ 3)} (6)

The class of Boolean queries is identical to the class of intersection

queries, since one can construct a Boolean function which is true only for

records in some given subset Oi(R) of R (the ~harq_~le_ris_t~ fi.,Jn~tiq_n of

7

Note that each intersection query requires tQ.tC!t rElc_all, that is, ~!'Elt:Y record

in F meeting the specification must be retrieved. Many practical applications

have limitations on the number of records to be retrieved, so as not to burden the

user with too much information if he has specified a query too loosely.
•'

1. 2. 2. BEST -MATCH QUERIES.

A different query type is the pure PEt$t-maJch ql.J~ry. A pure best-match

query Q; requests the retrieval of all the nearest neighbors in F of the record

Ri E R using the Hamming distance metric d over R. Performing a pure best-

match search is equivalent to decoding the input word R into one or more of the

"code words" in F, using a maximum likelihood decoding rule (see Peterson

[Pe 72]). Thus we have

Qi(F) ::: {REF I -,(3R' EF)(d(R' ,Ri)<d(R,Ri)) } (7)

1. 2. 3. QUERY TYPES TO BE CONSIDERED.

In this thesis we shall only consider partial-match and best-match queries.

The justification for this choice is that these query types are quite common yet

have not been "solved" in the sense of having known optimal search algorithms to

answer them. In addition, these query types are the ones usually considered as

the paradigms of "associative" queries. The simpler intersection query types

8

f;

~!

~)

f,

' ~)

~I

f-,

seem to already have adequate algorithms for handling them. The more general

situation where it is desired to handle any intersection query can be easily shown

to require searching the entire file in almost all cases, if the file is encoded in a

reasonably efficient manner. (Besides, it takes an average of IRI bits to specify
~

which intersection query one is interested in, so that it would generally take

longer to specify the query than to read the entire file!) A practical retrieval

system must therefore be based on a restricted set of query types or detailed

knowledge of the query statistics.

1. 3. CQMPLEXI.TY MEASUR~S

The difficulty of performing a particular task on a computer is usually

measured in terms of the amount of time required. We shall measure the

difficulty of performing an associative search by the amount of time it takes to

perform that search.

Our measure is the "on-line" measure, that is, how much time it takes to

answer a single query. This is the appropriate measure for interactive retrieval

systems, where it is desired to minimize the user's waiting time. Many

information retrieval systems can of course handle queries more efficiently in an

"off-line" manner - that is, they can accumulate a number of queries until it

9

~·

\

becomes efficient to make a pass through the entire file answering all the queries

at once, perhaps after having sorted the queries. The practicality of designing a

retrieval system to operate "on-lint:!" thus depends on the relative efficiency with

which a single query can be answered. That is thus the study of this thesis.

When a file is stored on a secondary storage device such as a magnetic

disk unit; the time taken to search for a particular set of items can be measured

in terms of (i) the number of distinct accesses, or read commands, issued, and (ii)

the amount of data transmitted from secondary storage to main storage. For most

of our modeling we shall consider only the number of accesses. Thus, for the

generalizations of hash-coding schemes discussed in §3, we count only the number

of buckets accessed to answer the query.

Several measures are explicitly rl.Qt considered here. The amount of

storage space used to represent the file is not considered, except in §3. 3 to

show that using extra storage space may reduce the time taken to answer the

query. The time required to update a particular file structure is also not

considered - this can always be kept quite small for the data structures

examined.

10

~)

f/

tr'

1. 4. RESULTS_ TO BE PRESENTED

A brief exposition of the historical development of the subject is presented

1n §2.

In §3 generalized hash functions are- studied as a means for answering

partial match queries. A lower bound on their achievable performance is proved,

and the class of optimal hash functions is precisely characterized. A new class of

combinatorial designs, called associative block designs, is then introduced. When

interpreted as hash functions, associative block designs are found to have

excellent worst-case behavior while maintaining optimum average retrieval times.

We also examine a method for utilizing storage redundancy (that is, we examine

the achievable efficiency gains obtainable from storing each record in more than

one place).

In §4 we study tries as a means for responding to partial match queries.

"Tries" (plural of "trie") are a particular kind of tree in which bra~ching decisions

are made only according to the specific record being inserted or searched for, and

not according to the results of comparisons between that record and others in the

tree. Their average pe~formance turns out to be nearly the same as the optimal

hash functions of §3.

11

The results of §3 and §4 seem to support the following.

Co'njecture: There is a positive constant c such that for all positive

integers n, k, and t the average time required by any algorithm to answer a single

partial match query Q E Qt must be at least

c n<k-t)/k,

where the average is taken over all queries Q E Qt and all files F of n k-bit

records which are represented efficiently on a direct-access storage device.

<That is, no more than snk bits of storage are used, for some small constant s.)
i!o:>

In §5 we again consider hash functions, this time as a means for answering

best-match rather than partial-match queries. An algorithm due to Elias is proved

to be optimal.

12

GHAPTF;R~

f:HSTQRICAL. __ B_AC_KGRQJJ_N_Q

2. 1. QRJGINS JN _HARDWARF; __ DESJG.N

The class of associative search problems was first discussed by people

interested in building associative memory g~_y_ic~!;!. According to Slade [SI64] the

first associative memory design was proposed by Dudley Buck in 1955. Many

other designs soon appeared in the literature (see Slade & MacMahon [SI57] or

Kiseda [Ki61]). These memories could perform arbitrary partial match searches,

as well as searching for the maximum or minimum record stored, or finding all

records between specified limits (interpreting a record as a number in radix v

notation.)

The hoped-for technological breakthrough allowing large associative

memories to be built cheaply has not (yet) occurred, however. Small associative

memories (on the order of 10 words) have found applications - most notably in

"paging boxes" for virtual memory systems (see [De70]). The only large

associative processor available commercially is the STARAN S, introduced by

13

Goodyear Aerospace Corp. in 1971 [Ru72]. This $500,000 system has 512

256-bit words of associative memory (as well as 24K of random accl;lss core

memory). An associative search for a partial match query takes 150 nanoseconds

per bit specified. STARAN is cost-effective only for applications demanding very

high data rate processing in real time - such as air traffic controlling. Minker

[Mi 72] has written an excellent survey of the development of associative

processors up to the appearance of ST ARAN.

2. 2. EXACT MATCH ALGORITI:lMS

New algorithms for performing searches on a conventional computer with

random-access memory were also being rapidly discovered at the same time.

The first problem studied (since it is an extremely important practical problem)

was the problem of searching for an exact match in a file of single-key records.

Binary searching of an ordered file was first proposed by Mauchly [Ma46]. The

use of binary trees for searching was invented in the early 1950's acc:;ording to

[Kn72], with published algorithms appearing around 1960 (see for example

Windley [Wi60] - there were also many others).

Tries were first described about the same time by Rene de Ia Briandais

[de59]. These are similar to binary trees, except that the i-th key or bit of a

14

El

E,

I!)

E-:>

(

record R is used to make the i-th branching decision, instead of using a

comparision between all of R and the record associated with the current tree

node (treating them as binary numbers). Tries are roughly as efficient as binary

trees for exact-match searches. We shall examine trie algorithms in chapter 4

for performing partial match searches.

Hash-coding (invented by Luhn around 1953 according to Knuth [Kn 72,

vol. 3]) seems to provide the best solution for many applications. . Given b

storage locations (with b ~ n) in which to store the records of the file, a b_ash

fundi on h: R { 1, 2, ... ,b} is used to compute the address h(Ri) of the storage

location at which to store each record Rj. The function h is chosen to be a

suitably "random" function of the input - the goal is to have each record of the

file assigned to a distinct storage location. Unfortunately this is nearly impossible

to achieve (consider generalizations of the "birthday phenomenon" as in Knuth

[Kn72,§6. 4]), so a method must be used to handle "collisions" (two records

hashing to the same address). Perhaps the simplest solution (separate chaining)

maintains b distinct lists, or bucke_ts. A record Ri is stored in bucket 8· J

(where 1 'C: j ~ b) iff h(Ri) = j. Each bucket can now store an arbitrary number

of records, so collisions are no longer a problem. To determine if an arbitrary

record Ri(R is in the file one need merely examine the contents of bucket ·

15

Bh(Rj) to see if it is present there. Since the expected number of records

present in each bucket is small, very little work need be done. Chaining can be

implemented easily with simple linear linked list techniques (see [i<n72,§6. 4]).

2. 3. SINGLE-KEY SEARCH ALGORITHMS

The next problem to be considered was that of single-key retrieval for

records having more than one key (that is, k > 1). This is often called the

problem of "retrieval on secondary keys". L. R. Johnson [Jo61] proposed the

use of k distinct hash functions hj and k sets of buckets sij - for 1 ~ i s k

and 1 ::; j ::; b . Record Rm is stored in k buckets - bucket Bih·(r ·) for
r mr

1 s i ::; k . This is an efficient solution, although storage and updating time will

grow with k. Prywes and Gray suggested a similar solution - called Multilist - in

which each attribute-value is assigned a unique bucket through the USE;! of indices .
(search trees) instead of hash functions to compute bucket addresses (see [Gr59],

[Pr63]). Davis and Lin [Da65] describe another variant in which list techniques

arc replaced by compact storage of the record addresses relevant to each

bucket. The above class of methods are often called iflv~rted li~t techniques

since a separate list is maintained of all the records having a particular attribute

value, thus mapping attribute to records·rather than the reverse as in an ordinary

file.

16

~I

2. 4. PARTIAL-MATCH SEARCH_~LGORLIHMS

Inverted list techniques, while adequate for single-key retrieval of multiple

key records, do not work well for partial match queries unless t, the number of

keys specified in the query, is small. This is because the response to a query is

the intersection of t · buckets of the inverted list system. Thus the amount of

work required to perform this intersection gr.QW~ with the number of keys given,

while the expected number of records satisfying the query ~-ec:rea$e~1 One would

expect a "reasonable" algorithm to do an amount of work that decreases with

E(IQi(F)j), the expected size of the answer. One might even hope for an amount

of work proportional to the number of records in the answer. Unfortunately, no

such "linear" algorithms have been discovered that do not use exorbitant amounts

of storage. The algorithms presented in chapters 3 and 4, while non-linear, easily

outperform inverted list techniques. These algorithms do an amount of work that

decreases approximately exponentially with t, the number of bits specified ·i':l the

query. When t=O, the whole file must of course be searched, and when t=k unit

work must be done. In between, log(work) decreases linearly with t.

J. A. Feldman's and P. D. Rovner's system LEAP [Fe69] allows complete

generality in specifying a partial match query. LEAP handles only 3-key records,

however, so that there are ut most eight query types. This is not as restrictive

17

as might seem at first, since any kind of data can in fact be expressed as a

collection of "triples": (attributename, objectname, value). While arbitrary

Boolean queries are easily programmed, the theoretical retrieval efficiency is

equivalent to an inverted list system.

Several authors have published algorithms for the partial match problem

different from the inverted list technique. One approach is to create a very large

number of tiny buckets so that the response to each query can always be

constructed as the union of some of the buckets, instead of an intersection.

Wong and Chiang [Wo71] discuss this approach in detail. Note, however, that the

requisite number of buckets is at least IRI if the system must handle ·all partial

match queries (since exuct match queries are a subset of the partial match

queries)! Having such a large number of buckets (most of them empty if n<<IRI ,

as is usual) is not practical. A large number of authors (C. T. Abraham, S. P.

Ghosh, D. K. Ray-Chaudhuri, G. G. Koch, David K. Chow, and R. C. Bose - see

references for titles and dates) have therefore considered the case where t is·

not allowed to exceed some fixed small value t' (for example, t' = 3). It is easy

to see that the number of buckets required is now at most

t' C(k,t') (max v1) • (8)

18

~)

~)

(Here C(k,t') denotes the binomial coefficient "k choose t' ".) This is achieved by

reserving a bucket for the response to each query with the maximal number t'

of keys given; the response to other queries is then the union of existing

buckets. Note that each record is now stored in C(k,t') buckets, however! The

papers referred to show how to reduce the number of buckets used and record

redundancy somewhat, by the clever use of combinatorial designs, but another

approach is really needed to escape combinatorial explosion.

The first efficient solution to an associative retrieval problem is described

by Richard A. Gustafson in his Ph. D. thesis [Gu69,Gu71]. Gustafson assumes

that each record Ri is an t.m_Qrd~r.ed list {q 1 li2•· .. } of at most k' attribute

values (these might be keywords, where the records represent documents). Let

w be chosen so that C(w,k') is a reasonable number of buckets to have in the

system, and let a hash function h map attribute values into the range { 1, 2, ... ,

w}. Each bucket is associated with a unique w-bit word having exactly k'
!

ones in it, and each record R is stored in the bucket associated with the word ·

having ones in positions h(q), h(r2), ... , h(rk'). (If these are not all distinct

positions, extra ones are added randomly until there there are exactly k' ones.)

A query specifying attributes a1, a2, ... , at (with t:sk') need only examine the

C(w-t,k' -t) buckets associated with words having ones in positions h(al), h(a2),

19

... , Nat)· The amount of work thus decreases rapidly with t . Note that the

response to the query is not formed merely by taking the union of the relevant

buckets, since records not satisfying the query may also be stored in these

buckets. We are guaranteed, however, that all the relevant records are stored in

the examined buckets. In essence Gustafson reduces the number of record types

by creating w attribute classes, a record being filed according to which attribute

classes describe it. His method has the following desirable properties:

(a) each record is stored in only one bucket (so updating is easy), and

(b) the expected amount of work required to answer a query decreases

approximately exponentially with the number of attributes specified.

His definition of a record differs from the one used here, however, so that the

allowable queries in his system correspond to a proper subset of our partial

match queries - those having no zeros specified. (Convert each of his records

into a very long bitstring having ones in exactly k' places - each bit position

corresponding to a permissible keyword in the system.)

Terry Welch, in his Ph. D. thesis [We71], studies the achievable

performance of file structures which include directories. His main result is that

the size of the directory is the critical component of such systems. He briefly

considers directoryless files, for which he derives a lower bound on the required

20

~)

~)

~)

average time to perform a partial match search with hash-coding methods that is

much smaller than the precise answer given in §3. He also presents Elias'

algorithm for handling best-match queries without proof of optimality.

21

~··

~)

~)

~)

')

QHAE.T~Ii -~

HASHING_ALGQRliHMS IO_B _p ART18LM_A TCH__Ql,J_E:_~_I_E..S

The problem is: given a universe R of possible records, and a number b
of lists (buckets) desired in a filing scheme, construct a good hash function h: R
~ {1, 2, ... , b} so that partial match queries can be answered efficiently (either
on the average or in the worst case). A record R E F is stored in bucket Bj iff

h(R):::j, with collisions handled by separate chaining. In a notation analogous to
that used for the responses to intersection queries, we define

B/R,h) = {RtR I h(R)=j},
(9)

Bj(F,h) = Bj(R,h) n F, for any F ~ R. (10)

When a particular hash function h is understood from context, we shall usually
omit it from the argument list of Bj' The set Bj(R,h) we call the ext~mi, and

B/F,h) the ~-QIJjents, of bucket j. This notation is consistent sihce (1 0) is an

identity when F = R. We shall often denote the extent Bj(R) of a bucket by
the notation Bj , when no confusion can arise. The sets B!J . · .. , Bb form a
partition of R since they are disjoint sets whose union is R. A hash function is
said to be balanced if IBjl = IRI/b for 1 jb. To answer a query Qi E Q , the
contents of the buckets whose indices range over

h(Q;) =def { j I (Bj n Q;(R)) -# null }

22

(11)

-~

i '~ ,, ,,
I

or equivalently,

(12)

must be examined to find the response to Oi (that is, Oi(F)). Here we make the

natural extension of h onto the domain Q.

Here we present the basic retrieval algorithm:

comment SEAf~CH finds the response to query QEQ, given that the file FsR is
~I

stored in the buckets 81, ... ,Bb, using the hash function h.

begin integer i; record ~

for each i E h(Q) do

for each R E Bi(F ,h) do

if R E Qi(R) then print(R);

end SEARCH;

The difficulty of computing the set h(Q) depends very much on the nature

of the hash function h. It is conceivable that for some pseudo-random hash-

functions it is more time-consuming to determine whether jEh(Q) than it is to

read Bj(F) from the secondary storage device! (For some hash functions the

relation (12) is the only way to compute h(Q) .) Such hash functions are of course

23

useless, since one would always skip the computation of h(Q) and read the entire

file in order to answer a query.· We will restrict our attention to hash functions

h for which the time. required to compute h(Q) is always negligible in

comparison with the time required to read the required bucket contents.

We shall use the following notation for the average and worst case costs of

using various hash functions to answer a partial match query with t keys

specified:

(13)

(14)

These are the average and worst-case number of buckets 'examined by_ SEARCH

to answer a query Q E Qt as a function of the hash function h used. If the
.r,

setond argument is omitted from the function oc:, we assume that the average is

taken over all queries in Q:

oc:(h) ""def (~QEQ lh(Q)I) I IQI. (15)

We shall also use the following notation for the best possible cost of any

hash function:

A(k,w,t,v) =def minh o<:(h,t) (16)

where h ranges over all balanced hash functions mapping R -+ { 1, ... ,b }. This is

the minimum possible average number of buckets examined by SEARCH to answer

24

a partial match query QEQt, over all balanced hash functions h. We assume that

the file contains k-key records, and that b = 2w buckets are used. All the v;'s

are assumed to be equal to the v given, with the convention that if v is omitted,

v = 2 is assumed.

Note that the number of buckets examined in either case does not depend

at all upon the particular file F being searched, but only upon the particular

hash function h being used.

For some applications it is easy to construct an efficient hash function. For

example, suppose we wish to construct a "crossword puzzle" dictionary for six-

letter English words. Let b = 212 be the number of buckets used. Given a

word (for example, "SEARCH") we can construct a 12-blt bucket address by

forming the concatenation

h("SEARCH")=g("S") g("E") g("A") g("R") g(''C") g("H") (17)

of six two-bit values; here g is an auxiliary hash function mapping the alphabet

into two-bit values. For a query with t letters given we have

"'(h,t) = ;.J(h,t) = 212-2t. {18)

This approach is clearly feasible as long as b ~ 2k , since one or more bits of the

25

bucket address can be assodated with each attribute position. A similar

technique has been proposed by M. Arisawa [Ar71] in which the i-th key

determines, via an auxiliary hash function, the residue class of the bucket address

modulo the i-th prime (see also [Ni 72]).

3. 1. 1. THE OPTIMAL SHAPE OF A BUCKETEOR_ BINARY __ RECORDS.

When k > w, where b == 2w , it is not immediately clear what should be'

done. Terry Welch in [We 71] suggests, but does not prove, that extracting the

first w keys of each record for a bucket address may be optimal. His

conjecture is correct for binary records; in this section we give a proof of this

fact.

We will say that two buckets B and 8' have the same "shape" if there

exists a permutation of the bit positions, followed by the complementation of bits

in certain positions, which transforms every record of 8 into a record of 8'. In

other words, 8 and 8' have the same shape if there is an automorphism of R

which carries 8 into 8' .

We introduce the notation 41(8) to denote the number of queries in Q

which examine a bucket 8. · More precisely,

<P(8) =def I{ Q (Q I Q(R) n B ~null }I . (19)

Let n(s,k) denote the minimum possible number of queries in Q which examine

26

any bucket 8 with an s element extent chosen from the r·ecord space Rk· More

precisely,

~(s,k) =def min9 <t(8), (20)

where the minimum is taken over all s-element subsets E1 of Rk· Let ~(s,k) c: oo

if s > 2k, and let ~(l ,0)= 1, ~(0,0)=0. The characteristics of an s-element

bucket 8 chosen from Rk which achieves the minimum t(B) = Tl'(s,k) will be

those of an optimal bucket. We will investigate individual s-element buckets to

find what characteristics they must have in order be optimal. Then we may

construct an optimal balanced hash function by selecting b optimal buckets which

cover Rk (if possible), since

.x:(h) = < ~QiEQ lh(Q;)I) I IQI

= (number of pairs 8j,Oi such that 8jnO;~~) I IQI

= < ~l:>j:>b t(BJ}) /IQI

~ b ~<IRkl/b,k)/IQI (21)

We require that the hash function be balanced in order to avoid the

degenerate solution having all the records in a single bucket (costing one bucket

per search). If we also counted the cost of reading each record, by arguments of

symmetry we would find a balanced hash function to be optimal, once the

27

~)

(

expected cost of reading a bucket becomes commensurate with accessing it.

Furthermore, the physical constraints imposed by a particular storage device, such

as magnetic core, sometimes make a balanced hash function the only reasonable

model.

th~orem J. Let s = 2u for some integer u, 1 s u s k, and let 8 be an

s-element subset of Rk· Then t(B) = Tl'(s,k) if and only if B is a "subcube" of

Rk; that is, if and only if 8 is a cartesian product

(22)

where each D; is a nonempty subset of {0,1}.

Pro_of: Let T(s,k) denote the s-subset of Rk consisting of those records

which have binary value less than s when interpreted as binary numbers. In ··

other words, T(s,k) consists of the s "tiniest" k-bit numbers (for those who like

mnemonics). We will first prove that T(s,k) is an optimal bucket for ~ny s, not

just s a power of two. This will imply the "if" part of our the.orem~ .since . T(s;k)

is a subcube of Rk whenever s is a power of two. We will then examine the

proof a little more closely to derive the "only if" part of the theorem.

We first need to derive c~>(T(s,k)). We will do this by defining an auxiliary

function >,(x), then proving that c~>(T(s,k))=>-(x) if x is the record in T(s,k) with

largest binary value. (The binary value of x will of course be s-1.) Define A

by ·the following recurrence relations:

28

:x(null) = 1,

:x(Ox) = 2 :x(x), and

:x(1 x) = 2 :x(1lxl) + ;>.,(x).

(23)

(24)

(25)

Here we treat ;>.,'s argument as a §\r.ing of O's and 1 's, and define ;>.. in terms of

shorter strings. We denote the length of x by lxl, so that the notation 1lxl

represents a string of lxl 1 's. The notation Ox (or lx) stands for the

concatenation of 0 (or 1) and the string x. Let <x> denote the binary value of

the string x.

Lemma. t<T(s,k)) = ;>.,(x) if x is the record in T(s,k) with the largest binary

value.

Proof: By induction on lxl = k. It is clearly true for k = 1, since ;>.,(0) = 2

and ;x(1) = 3 are correct. It is true for x = Ox' by (24) since all of the records

in T<s,k) will have a 0 in first position. Thus any query which examines
• •, I

T(s,k-1) = T(<x' >+ 1 ,lx' D may be preceded by either a "0" or a "*.".to obtain a

query which examines T(s,k). On the other hand, if x = 1 x' then T(s,k)

contains two different kinds of records: 2k·l will begin with a zero and finish up

in all possible ways, and the remaining s - 2k-l will begin with a· 1 and finish

up identically to the records in T(s-2k-l,k-1) = T(<x'>+1,k-1). The first term of

(25) thus counts all queries beginning with a "0" or a "*", while the second term

counts all queries beginni'ng with a "1 ". This completes the proof of the lemma.

29

E-)

~ The rightmost column of the following table gives the value of :>-(x) for

some small strings x. (The rest of the table shall be used later.)

@ I At (X) I >.(X)

-~-- _ J t_ =0 ______ t-----~--~--j ______
null I 1 I 1

Ol 1 1 I 2
1 I 1 2 I 3

oo I 1 2 1 I 4 ~ 01 I 1 3 2 I 6
10 I . 1 4 3 I 8
11 I 1 4 4 I 9

ooo I 1 3 3 1 I 8
001 I 1 4 5 2 I 12
010 I 1 5 7 3 I 16 ~
011 I 1 5 8 4 I 18
100 I 1 6 10 5 I 22
101 I 1 6 11 6 I 24
11 o I 1 6 12 7 I 26
111 I 1 6 12 7 I 27

~

Figure 1. Table of values for :>..(x) and 1-t(x)

We must now show that :>..(x) = n(s,k) (again, assuming that x is the record

of T(s,k) with largest binary value). To do this, we must first prove the

recurrence

n(s,k) =min [n(max(fo,f1),k-1) + n(fo,k-1) + n(ft,k-1)], (26)

where the minimum is taken over all pairs of nonnegative integers fo, f1 such that

fo + f 1 = s. Suppose a bucket 8 containing s records has fo records which

30

'\

begin with a zero and f1 records which begin with a 1. Then 7t(fo,k) + 1t(f1,k)

is the number of queries which examine 8 which begin with a digit. The number

of queries which examine 8 which begin with a "*" is clearly at least

7t(max(fo,fl),k). Furthermore, it can be held to this VEIIue by requiring that the

number of distinct k-1 tuples ocurring in positions 2 thrc>ugh k of the records of 8

be held to this number. Thus, if fo>f1 and ly E B (for some string y, IYI=k-1),

we would require that Oy ~ B as well. This proves (26).

We will need the following two lemmas.

Lemma.

>-(xl) :=: 3 >-(x), for any string x of O's and l's. . (27)

Proof: If ll(x) = <t(T(s,k)), then t~(xl) = <t(T(2s,k+l)). For each query q

counted in ~(T(s,k)), the queries qO, ql and q* are counted in ~(T(2s,k+l)), since

x ~ T(s,k) implies that xO and xl are both in T(2s,k+l).

Let p(x) denote 2j, where j is the number of zeros in the string x.

Lem_ma.

>-(x) - >-(x - 1) = p(x), for any string x of O's and 1 's, <x> ~ 0. (28)

Here x - 1 denotes the string y of length lxl such that <y> = <x> - 1.

Pro9f: By induction on lxl. By inspection of Figure' (1) it is true for lxl s 3.

For larger values of lxl· it will be true from the inductive hypothesis and the

31

(

definition of >-. when x and x - 1 begin with the same digit. The exceptional

case occurs when x = 1 ok-1, x - 1 = 0 1 k-1. But here we have

>,(x)- >,(x-1) == (2. 3k-l + 2k-l)- 2. 3k-1 = 2k-l,

since :A(Ok-1) = 2k-l. This proves the lemma.

To prove >-(x) = n(s,k), it now suffices by (26) to prove that

>-(x) ::: 2 :A(y) + >-.(z),

(29)

(30)

for any pairs of strings y, z such that IYI = lzl = lxl - 1, <y> + <z> + 1 = <x>,

und <y> _, <z>, since >-.(0) = n(l,l) = 2 and t-0) = T{(2,1) = 3. The. proof is by

induction on lxl ,~ k, although it goes from the right end of x to the left, instead of

the other way around.

The proof of (30) now proceeds by a four-part case analysis, depending on

the right-most digits of y and z. It will also be an inductive proof, so we

assume that (30) holds for all strings x' shorter than the current x. The last

three cases will have two subparts as we reduce (30) in two different ways using

the lemmas. In each case at least one of the two reductions must be true.

Case l : y=y' 1, z=z' I, and x=x' 1.

Here (30) is implied directly by the inductive hypothesis, since it is

equivalent in this case to:

3 >-(x') :; 6 >-.(y') + 3 >-.(z'),
(31)

with <x'> = <y'> + <z'> + 1, andy'~ z'.

32

Case 2: y=y' 0, z==z' 1, and x=x' 0. _

Here we reduce (30) to the two inequalities:

3 !-(x'-1) + 2 p(x') ~ 6 1-(y'-1) + 4 p(y') + 3 :>-(z'), and

3 ;;.,(x') - p(x') 5 6 ;;.,(y') - 2 p(y') + 3 :>-(z').

(32)

(33)

Since <x' -1 > = <y' -1 > + <z' > + 1 and <x' > = <y' > + <z' > + 1 , we may

reduce these two equalities using the inductive hypothesis to the statements

p(x') 5 2 p(y') and p(x') ~ 2 p(y'), at least one of which must be true.

Case 3: y=y' 1, zo.=z' 0, and x=x' 0. __

In this case we get (30) reducing to:

3 \(x' -1) + 2p(x') ~ 6 ;;.,(y') + 3 :>-(z' -1) + 2 p(z'), and

3 \(x') - p(x') ~ 3 \(y') + 3 !-(z') - p(z').

(34)

(35)

Using the inductive hypothesis we get that (34) and (35) are equivalent to

p(x') ~; p(z') and p(x') ~ p(z'), at least one of which must be true. There is the

exceptional case when <z'>=O, where (34) is sufficient (if we define !-(z'-1) to

be zero), since x' -1 ~Oy' and p(z')~p(x').

Case 4: y=y' 0, z=-=z' 0, and x = x' 1. _

In this case (30) can be reduced to the two inequalities:

3 ;;.,(x') ~ 6 \(y')- 2 p(y') + 3 !-(z'-1) + 2 p(z'), and (36)

3 1-(x') ~ 6 1-(y' -1) + 4 p(y') + 3 \(z') + p(z'). (37)

33

Since <x'> = <y'> + <z'-1> + 1 = <y'-1> + <z'> + 1, we invoke the inductive

hypothesis twice to obtain p(y') s p(z') and p(y') ~ p(z')/4. These can not

both hold simultaneously so one of these reductions will suffice to prove (30) in

this case. This argument must be amended to consider two exceptional

conditions: when <z'>=O, so that 3 >-(z'-1) is undefined in (36), and when y':r.z'

so that the condition y' -1 ~z' does not hold for the inductive hypothesis used on

(37). In the first condition we have Oy' =x', and that (30) is equivalent to

3 >-(x') s 6).(y') - 2p(y') + 2p(z'). (38)

The other exception to this argument occurs when <y' >=<z' >;o!O, so that the

inductive hypothesis can not be invoked to reduce (37). Here though we have

p(y')=p(z'), so the proof follows from (36).

This completes the proof of the "if" portion of the theorem, since for any

bucket B such that IBI=s,· we will have 41(8) = 4'(T(s,k)) if B has the same "shape"

as T(s,k).

The "only if" part of the theorem shall again be proved by an induction on

lxl=k, using the previous analysis as a foundation. What needs to be proved is

that if s is a power of two then (30) will hold with equality only if y = z. Here

we have s = 2u, so that x = ok-u 1 u. It is clear that equality does obtain when

y = z. It needs then to be shown that (30) holds with equality only when y = z.

This is equivalent to

34

(39)

for all i, 1::; i::: 2u- L 1. This reduces directly to

(40)

It is in fact easier to prove the general statement:

>-(x) < >-(y) + ;._(z), (41)

for lxl~lyl=lzl=k, <y> + <z> + 1 = <x>, and <y> > <z>. We shall prove this by an

induction on k. If x==Ox', then y==Oy' and z==Oz', so that the theorem follows

directly from (24). Similarly, if x==lx' and y==ly' then we may turn both of these

initial 1 's into O's and lose an equal amount from each side of (41). The remaining

case is when x= 1 x', y=Oy', and z=Oz'. Divide y and z into two pieces each so

<x' > as a consequence. This can be done in such a fashion that the k-bit

representations of Yl• Y2• z1, and z2 all begin with a 0. (There. is a triv.ial

exceptional case when <y> = <z> = 0.)

Then we can derive

(42)

>-(x') (43)

>.(x) < >-(y) + >-(z), immediately. (44)

This proves the "only if" portion of the theorem.

35

Our theorem implies the following corollary.

CqroU_ary: For binary records, the hashing function which extracts w of the

key-bits to use as a bucket-address, where w = log2(b), minimizes the expected

number of buckets examined over all balanced hash functions, assuming that each

partial match query is equally likely.

Note that there may be other optimal hash functions with respect to the

expected search time. In fact, we shall examine others in the following sections.

The preceding theorem gives a good characterization of the bucket shapes

which will minimize ~(8), the number of queries in Q which will examine B. We

shall next prove that the same shapes are optimal when the queries are

restricted to Qt, for some t, Ostsk. The "only if" portion of the preceding

theorem shall not again be proved, however.

Let ~t(B), and T(t(s,k) denote the functions ~ and T((s,k) restricted to

counting queries in Qt rather than Q. The following theorem makes the relevant

assertion.

Theorem 2. . Let s = 2u for some u, 1 s u :s k, and let 8 be an s­

element subset of Rk· Then ~t(B) = T(t(s,k) if 8 is a "subcube" of Rk; that is,

if 8 is a cartesian product

B = 01 X 02 X ...)(ok (45)

where each Oi is a nonempty subset of {0,1 }.

36

Proof: This proof is almost identical to the preceding one, so only the

changes necessary shall be indicated.

Let l..t(x) be defined b'y the recurrence relations (here lxl=k):

"o(x) =def 1' for all x. (46)

l..t(null) =def 0, for t~l. (47)

l..t(OX) =def l..tO k) + "t-1 (x), for tH and all x .. (48)

1..t(1 x) =def l..t(lk) + "t-10k) + "t-l(x), for t~1 and all x. (49)

The values of >-.t(x) for some small values of t and x are displayed in the table.

The following lemma we state without proof, as it is essentially identical to the

proof of the corresponding lemma of the preceding theorem.

Lemma. <~>t<T<s,k))=>-t<x) if x is the record in T(s,k) with largest binary

value.

Again, the following identity can be proved in a manner similar to the proof

of its corresponding identity in the preceding theorem.

(50)

where the minimum is taken over all pairs of nonnegative integers fo, f 1 such that

t0 + t 1 = s.

To prove that >-.t(x) = Tlt(s,k), where x is the lc:trgest record in T(s,k), by

(50) it is only necessary to show that

(51)

37

~\

€-;

~)

~)

where lyl=lzl=lxl-l=k-1, <y'-> + <z> + 1 = <x>, and <y> > <z>, since ::\t(x)=-n(s,k)

for x=O and x=l. This proof will again use induction on lxl, proceeding from the

right end of x to the left. The following two lemmas will be used instead of the

corresponding lemmas of the last theorem.

Lemma.

(52)

Proof_; For each query q counted in ::\t-1 (x)=tt-1 (T(s,k)), we have queries

qO and q1 counted in >-t(x1)=41t(T(2s,k+l)). In addition, for each query q counted

in).t(X)=tt<T<s,k)) we have the query q* also in !..t(xl).

Let p(x,t) denote the value C(j,jxj-t), where j is the number of zeros in the

string x. Then the following lemma can be easily proved by induction on k (proof

omitted here);

Lemma.

. (53)

The rest of the proof follows the same four-part cas·e analysis as the proof

of the Theorem 1. It shall be omitted here as there it is merely a variation on

the preceding analysis, using At for A and p(x,t) for p(x).

This theorem can not be proved in the "only if" direction for all t, since it is

not true for the cases t =0 or t =k.

Q. E. D.

38

3. 1. 2. THE OPTIMAL SHAPE OF_ A BUCKET FOR GENERAL RECORDS.

It turns out that binary records are in fact the most difficult case to

analyze. In this section we derive the optimal bucket shape for nonbinary

records. Let

R ~def xl . k {0, ... , vi-1}
SIS

(54)

be the record space under consideration, where vl s v2 s • • • s vk, and let

n(s,{vl, ... , vk}) be the minimum possible number of queries in Q which examine

a bucket 8 consisting of s records chosen from R. Corresponding to (26) we have

the definition:

+:EO . n(f,·,{v2, ... ' vk})] st<vl
(55)

where the minimum is taken over all sets of nonnegative integers to, ... , fvl-1

such that 2:
0

. fi ~ s.
st<vl ~.

Here we can perform the analysis by passing to the continuous case. The

analog of (55) would then be:

(56)

where the infimum is taken over all nonnegative functions f(x) such that

Jovl f(x)dx=s. If we let n'(s,null)=l for O<ssl, n'(s,null)=oo for s>l, and

n' (s,nuii)=O otherwise then (56) turns out to have the solution:

39

~!

~I

- --- - ~~--~~-

= 0 if s=O,

= oo if v 1 • • • vk < s. (57)

The function n:' is obviously a lower bound for rc The optimal function f(x)

is then a step function which is equal to s/s' for Osx:>s' and 0 otherwise, where

s' ==def min(v l•s 1 /k). This proves the following theorem.

Theorem 3. If R == Xl:sisk {O, ... ,v;-1} then ~(B)=n(s,{vl, ... ,vk}) if

(58)

where each Di £ {0, ... , vi-1}, fltsisk IDil =sand there is an integer z,

_ 2 :s z :s maxi vi, such that for all i, 1 :s i s k, we have IDjl s z ar'~ ·furthermore,

IDil < z implies IDJI = vi·

The theorem says then that our crossword-puzzle hashing scheme of §3. 1

is in fact optimal, as long as the function g divides the alphabet into four exactly

equal pieces. (This is not possible for a 26-letter alphabet, but we conjecture

that four nearly equal pieces are optimal in this case.)

40

3. 1. 3. NUMBER OF BUCKETS_EXAMINED.

What then is the behavior of such an optimal hashing scheme for the

"classic" case of retrieving k-bit words for partial match queries with t bits

given? Let w =def log2(b) (and assume this is integral), and let our optimal

bucket system use (say) the first w bits of a record as the bucket address. We

then have

A(k,w,t) = C(k,t)-1 2: O::; i::;t C(w,i) C(k-w,t-i) 2w-i

= b C(k,t)-1 :EOsist C(w,i) C(k-w,t-i) 2-i (59)

The number of buckets examined satisfies the following inequality, for all b = 2w

(with k ~ w), and all t, 0 :s t :s k :

A(k,w,t) ~ bl-t/k (60)

This inequality is a special case of a well-known mean value theorem [Ha59:Thm

86], which says

fe··
2:0 . t q; .p(x;) ~ q,(Eo . tqi x;), :SI :5 :SI:S

(61)

for any positive numbers qi which sum· to one and any continuous convex

function .p(X). Here we have ~·

Xj == i, (62)

q; = C(k,t)-1 C(w,i) C(k-w,t-i), and (63)

~·
.p(x) = 2-x. (64)

~~
41

(.

The inequ<:~lity (60) will be strict unless k = w, in which case equality holds.

Fip,urc 1 graphs (60) for k = 50 and w == 5, 25, and 50. The value A(k,w,t)

is <:1n achievable lower bound on the performance of a balanced hashing scheme

for binary records. Note that performance similar to Gustafson's is obtained, i.e.
<j-_ =-

each record is stored only once, but search time decreases approximately

exponentially with the number of bits given in the query.

Theorem 1 adequately characterizes the optimal "shape" of a single bucket,

but does not tell us what the best number of buckets is. This question can be

unswered by using an accurate model of the particular storage device used.

42

J:
u
!':

'"
0

6
f-

" Jl
0 w

0:
0 <
z :J

" "' '" z
0 :J "' z z

"' 2 <1

"
...
u

<{ w
I <to
u

lJl

" 0
0:
u

'

~--

1

I
i
I

I
f

l

,......
.0 ..._
,..... ...
~

,.!G
'-'

~
.0

bO
0

o.o

-0.1

. ;. o.a.

.. -o.1
: ~ ! .

: ~ o.Lf

.o.s

.o."

:~-0·7

I.
I

·i

I

~--- J-

- ~ .

i

I
I

-~~T---- ----- ~-~-- -~ ..
:L i-

1
!
I
I
i
·1-------
I . .

I

i ...
i

'

''! ..

'

·-T·:·
.. · ;:·

!.'

··-- ___:. __ _i..:__.

..
j''

I,
~: .

.!:·:

"I I.
·i f "!

1 ::-:r·
. ! .

I•·"'" ••• ,I·

k = 50,

5

OS

.::,:

· ...
···--- -------- -·- ·--...

''1'

. .,
i
I

D.fl 0.'1 1.0

. i

.,
' .. ,

,j
t/k

- : ! - ~. ~ ••

:~,_..:==· ::::r.::::::-~:.::::.::::~:: :~:;-;--::~t::;r::;:;_-i: .. ~! :;-::+:, .:i ::~·: .• ·~j
' • .- • I ' ~
I•· '••

Figure 2. Graph of A(50,w,t) versus t for w=5, 25, and 50

. ·:1 ::' :'L ~f::::::!:""'t:.:::-.u-c::+.::::t:;:.:.';.:::::.:::?f:':: ::!::T2: .. •: :t·· ·:: ::-:~~t': :::-:::1: ::F:'F"-=-=F'r:-:-r: ::·::

· r···~~ ~. · · • 1 .·~ :~- ~;~J.~F } •.• :dt~-••·• ii(:••~•r - j•~2~YW~LL~ • ·
43

·' ·<
:I
!
!

' I
-!
i
l

:!

I
I
L E·

~:

r

3. 1. 4. A SAMPLE APPLICATION.

Let us consider a particular application in detail, in order to illustrate the ·

preceding sections and to show how one would proceed to select the proper

number of buckets for a hashing scheme.

Suppose we have a file of n = 220 1 00-byte records, each having k .=

32 one-bit keys, which we wish to store on an IBM 2314 disk storage device.

Let us determine the optimal number, b , of equal-sized buckets for this device,

assuming that all partial match queries are equally likely to occur. Let b = 2w,

for some w, 1 :;;w:;;32, and let a record be stored in the bucket whose address is

the first w of the one-bit keys. If i of the first w bits are specified in a

query, then only 2w-i buckets need to be examined to answer the query. The

time required to access these buckets is composed of three parts: head access

time, rotational delay, and data transfer time. The head access time is at most

the minimum of 75 milliseconds per bucket, or 25 milliseconds ·per cylinder

required to store the entire file (1440 records can be stored per cylinder), since

each seek is at most 75 ms., but the time to access an adjacent cylinder is only

25 ms. The rotational delay is 12. 5 milliseconds per bucket accessed. The

data transfer time will be . 32051 n 2-i milliseconds on the average (where i is

defined as above). Let ca(i,w,n) be the time required to access 2w-i buckets,

as computed using the above information. Thus we have:

44

f;
(65)

The expected time to answer a query with t bits given is then:

o<:(h,t) = I:
0

. C(w,i) C(k-w,t-i) C(k,t(1 c8(i,w,n).
:S:I:5W

(66)

The average time to answer any partial match query is then

o<:(h) = I;O:::t:::k C(k,t) 2t 3-k o<:(h,t) . (67)

Figure 3 shows o<:(h) plotted against w. The optimal value of w is seen to be

13 , with an average response time of 5. 123 sees. This compares very

favorably with the 336 sees. required to read the Emtire file if it is stored

compactly. Figure 4 gives o<:(h,t) plotted against t , for w = 8, 13, and 20, and

for O:::t:o:k.

€->

45

E-;

100

2

sec.
1

--

:
..

5_ ~---t----~---t----t-c--+---+--+--+"---'--+----'+.::..__,-c-t-'--·-' "- ~--· _- 1---~---,--- ----+---- -- -- --.,-------,- -~----,' -------- --c,--,-, ,---.----- --- ---- ----,..,_.. --: . --,---. - __________ , -------4

I . ~-----3-f--',_:---" ... ___ :__ -,-; --. --!---:--_-:--. -+-'--- i-,-,0 -,-;--,-t-·-, --,-,--'-_-i,--c---CC _____ -+---'------'--,-:..,.--. .,.--f----'---' ~: ---:--:----·+ _ ---
. _/ -~- t~,_;:'-'--'-'-='-l-J-:4-L;:.. =o-- ·-- . . -~ r------

! ~ Figure 3. Graph of cc:(h) versus w = ---,---::-L~_:
.

0

x~r=- t.~~ ~±:-=~~~ ~E~:::: ~d=.F=>t±f~l:f:~ :::t:?~i~ ~~L;l ·t:2:=i::c E:'~!::- :i=r:-r-t ~-~
w

10 46

!....__. -f~! - -:. !_ J~ +- ~ -~~-~-~-4 --L .__,__.

H--1..:~~ ~i-=d ~-tor:_;_ -+-tlr:·--H-=-... 1- ~~· ~-; · · rt1+ t-d- 1 n-t-1 1-f-t-rt"tlt-- ·1 i--j-r I HI
20 30

'

0
0
II)

II)

<t

,_

4_

0 30

3. 2. ANALYSIS OF WORST ~CASE; SEAB_G_I:i_TIM~

The hashing functions of the previous section, while providing good average

response time to a query with t keys given, tend to have disastrous worst-case

behavior. The entire file may be searched if none of the keys given are used by

the hash function to compute the bucket address. We will show how the worst-

case performance can be made to approach the optimal expected time of the

previous section by using either more complicated hash functions, or by using

some storage redundancy.

First, let us consider the non-redundant case - that is, each record will be

stored in a single bucket: Section 3. 3 will consider the storage redundancy case.

Our hash function

h: R -+ { 1, 2, ... , b } (68)

must now depend on all_ of the keys of a record, so that each key specified

contributes approximately equally to decreasing the search tin:te. T~is is. simple
. '

when k::: rlog2(b)1 , so we shall assume that k> rlog2(b)1 from now on. We shall

furthermore assume for simplicity that each record is a k-bit word (that is,

vi = 2 for 1 :::i!>k).

There is one other assumption we shall make: that the buckets are shaped

the same as in the optimal average search time case - that is, each bucket will

48

contain IRI/b records which agree in w = log2(b) bits and vary in the other k-

w bits. Each bucket is thus a Boolean sub-cube of dimension k-w of R. The

justification for this assumption is that this minimizes the average retrieval time,

which is of course a lower bound on the worst-case time. We have no proof,

however, that these bucket shapes are optimal in the worst-case hash function.

The reader may be wondering if we aren't studying exactly the same hash

functions as before, where we extract w bits to use as a bucket address.

Indeed, these are still candidates for the best worst-case hash function, but there

are others. Consider the hash function of Figure 5, with k = 4 and b = 8.

1
2

bucket 3
address 4

5
6
7
8

_1_2_ ---~---4 ___ +- bit position
0 0 * 0
1 0 0 *
* 1 0 0
1 * 1 0
1 1 * 1
0 1 1 *
* 0 1 1
0 * 0 1

Figure 5. A Hash Function
::;

Here one row is given for each bucket describing the records that can be

stored there (where"*" is a "don't care" character, as before). Thus h(OllO) =

6 and h<lll 0) = 4. It is simple to verify that each record is assigned a unique

bucket by h . This function was first pointed out to me by Donald E. Knuth, and

can be interpreted as a perfect matching on the Boolean 4-cube (see Figure 6).

49

F'

8:-.!

Figure 6. A perfect matching on R4

How well does this hash-function perform? The symmetry of this design

decreases the amount of work done in the worst case. For example, any query

with 2 bits specified need only examine 3 buckets (e. g. query "hO*" requires

only buckets 2, 3, and 5). Figure 7 gives the relevant statistics for each case ..

L._l_0_1 ___ 2_3_4
f.l(h, t) . I 8 5 3 2 1
r A< 4, 3, t) 1 I 8 5 3 2 1

Figure 7. Buckets examined per query bit given

This is clearly as good as one can hope to do, since the worst-case time

must be at least as big as A(4,3,t).

50
·~

3. 2. 1. fORMAL DEfiNITION QE_~.BO~S.

Let us call a hash function presented in tabular form as above an

"associative block design with parameters k and w" (where b = 2w), or an

"ABD(k,w)" for short. More precisely, an ABD(k,w) will be such a hash function

that is "uniform"with respect to each key.

Definition: An ABD(k,W) is a table with b = 2w rows and k columns with entries

over {0, 1, *}such that

(i) each row contains exactly w digits and k - w *'s,

(ii) given any two rows, there exists at least one column in which the two

rows contain differing d!glls, and

(iii) each column contains the same number b·(k-w)/k of *'s.

Condition (ii) guarantees that distinct buckets are dis,ioint, while condition (i)

ensures that each bucket is of the same size. Each record will be associated

with a unique bucket since the disjoint buckets contain a total of 2k records~

Condition (iii) restricts ABD~s to hash functions having at least some uniformity

with respect to how each individual bit· affects the buckE~t address computations.

This ensures that an ABO will have minimal worst-case search time for queries

with one bit specified (that is, t = 1). Since each row of the ABO represents a

bucket which is actually a subcube of Rk by condition (i), an ABO is guaranteed to

have minimal average search time as well.

51

[

E

'I

The construction of ABO's of arbitrary size is a difficult combinatorial design

problem, comparable to the construction of balanced incomplete block designs (see

[Co52]). In fact, an ABO will be a group-divisible incomplete block design of 2k

objects (one object type for each digit type of each column) each replicated

w b j 2 k times in b blocks of size w, where there are k groups (the

columns) with two objects in each group, and where two objects of the same

group never occur together in the same block, if there is a number A2 such that

each pair of objects of differing groups appear in exactly A2 blocks together

(see [Bo52]). This requirement is an additional constraint, which may exclude

many valid ABO's. In addition, not every group-divisible incomplete block design

of the proper type will be an ABO, since the definition of a group-divisible

incomplete block design does not guarantee that condition (ii) above will be met.

Thus the question of the existence of ABO's of arbitrary size does not seem to be

answered by any previous results of combinatorial design theory.

3. 2. 2. CH~RACTERISTIC_S OF_ASD~S..

The following lemmas give some additional details on the characteristics of

ABO's.

Lemma 1. There must be an equal number of O's and 1 's in each column of an

ABO.

52

Proof: There are an equal number of vectors in Rk having a 0 in a given column
I

as there are having a 1 Furthermore, each row with * in that column

contributes an equal number of each type. Finally, then:! are an equal number of

*'s in each row so a digit in a column always contributes exactly 2k-w vectors

of that type.

Corollary. The value of bw/2k must be integral (this is the number of O's or 1 's in

each column).

Lemma 2. The number of rows having u bits in common with any given record,

for 0 ~ u $ w, is exactly C(w,u).

Proof: Let zu be the number of rows having u bits in common with the given

record. We must have

zu = C(k,u) - :E
0

zv C(k-w,u-v)
sv<u

(69)

to cover all the vectors in Rk having exactly u bits in common with the given

record. This equation is satisfied, uniquely by induction em u, by

zu = C(w,u). (70)

In particular, this lemma tells us how many rows there are having exactly u zeroes

(or u ones).

53

f

I~

3. 2. 3. CONSTRUCTION THEOREMSFOR ABO'S.

The following theorem, due to Ronald Graham, establishes the existence of

an infinite class of simple ABO's.

Theorem 4. An ABO(2m,2m-1) exists for all m ~ 2.

Proof:

We shall use an extended notation for an ABO, using the symbol "-" in

addition to the usual symbols of "0", "1 ", and "*"· A row having s "-"'s will

represent 2s actual rows of the ABO, obtained by independently replacing each

"-" of the row with a "0" or a "1".

The construction consists of two parts:

(i) The first rn+l rows have "-"'sin positions m+2 through k = 2m. The

i-th of these rows has a "*" in position i. The other positions are filled

in with digits in such a fashion as to satisfy condition (ii) of the definition

of an ABO. This is easy to do; the rotations of the string * 1 om-1.

will work, for example.

(ii) The remaining rows are divided into k-m-1 pairs. The rows of the i-th

pair have "-"'s in positions m+2 through k except for a "*" in

position m+ 1 +i. The first m+ ~ positions are filled in with digits in a

manner consistent with the definition of an ABO; this is simple to do.

54

It is easy to verify that this yields an ABD(2m,2m-1).

Q. E. D.

To illustrate the above construction, here is an A80(8,7) constructed by

Graham's method (that is, this is the construction for rn = 3):

* 1 0 0 - - - -
0 * 1 0
0 0 * 1 - - - -
1 0 0 *
0 0 0 0 * - - -
0101*---
0111-*
1010-*
1011--*-
1101--*-
1110---*
1 1 1 1 - - - *

Figure 8. An ABD(8,7)

This general idea, of dividing the columns into two groups and filling in each

part seperately, can be carried a little further; the following figure gives an

A80(16, 13), also discovered by Graham.

55

f.•.

~)

tOOOI**--------­
*0101--**------­
* 0 111 ----* * -----
1 * 000------:t: * ---
1 * 0 1 0-------:.·4 *-
1 * 0 11 * ---------*
01*00-**--------
01*01---**------
11 * 0 1 -----* * ----
001*0-------**--
101*0---------**
111*0**---------
0001*--**-------
0101*----** ____ _
0111*------** __ _
00000--------***
l 1111--------***

Figure 9. An AB0(16, 13)

The designs of Theorem 4 are not useful hash functions, however, with the

possible exception of the A80(4,3), since the ratio k/w of key bits to bucket

address bits approaches 1 as the designs get larger. What is really desired is a

way to construct large designs with fewer buckets. The following theorem gives

a basic upper bound on the ratio k/w achievable for a given k (':hat is, given a

number of keys, it gives a lower bound on the number of buckets required for an

ABD(k,w) to be possible).

Theorem 5.

(71)

56

Proof: Between each pair of rows of an ABO there must be at least one column in

which they contain differing digits. There must be at least C(b,2) such row-row-

column differences. On the other hand, there are only wb/2k O's and 1 's per

column. Thus we must have

k (wb/2k)2 ~ C(b,2) (72)

which directly yields our theorem.

Q. E. D.

As a consequence of the above theorem and lemma 2 of §3. 2. 2, we can

tabulate the nontrivial pairs (k,w) for which ABD(k,w)'s may exist, for small k. fi

k Permi ssabl e values __ oL _w, __ wlk __
4 3
8 4, 5, 6, 7

10 5 ~)

12 6, 9
14 7
16 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
18 6, 9, 12, 15
20 10, 15

EJ

Figure 10. Permissable values of (k,w)

One can also show, by an extension of theorem ~;,that an ABD(8,4) is also

impossible.

The following theorern gives a basic way of creating larger ABO's from

smaller ones.

57

f

:~

Theorem 6. (Concaten8tion) It is possible to construct an AElD(k+k' ,w+w')

from an ABD<k,w) and an ABD(k' ,w'), if k/w = k' fw'.

Proof: Form the set of all 2w+w' rows of length k+k' obtained by concatenating

each row of the second design onto the end of each row of the firs·: design. It is

easy to see that this is an ABD(k+k' ,w+w').

Q.E.D.

Thus we can form an ABD(8,6) or an ABD(12,9) from the design of Figure

5 Figure 11 gives the A80(8,6) so constructed.

12345678
11 OOi 000!0
21 OO; 01 00:;:
31 OO:tOt 100
4j 00:!: 01:!: 10
51 00:~:011* 1
61 00t001 h
71 OO:t:0~.011
81 OOt: OOt 01
9j 1 OO:r. OO:r. 0

1 01 1 00:~ 1 OO:r.
1 11 1 OO:i: :i: 1 00
1 21 1 00:;: 1 * 1 0
131 100:~:1lt1
l 41 1 OOr. 01 h
151 100:~::~011
161 100.f0*01

12345678
1 71 * 1 0000* 0
181 * 100100:!:
1 91 * 1 OO:t: 1 00
201 * 1 001 * 1 0
211 d001 h 1
221 * lOOOll:t:
231 * 100:r.011
241 * 1000:f01
251 h1000:r.O
261 hl0100*
271 h10:~:100
281 1:1: lOh 10
291 1* 1011* 1
301 h 1001 h
311 h 1 0:~ 0 11
321 h 100*01

Figure 11. An A80(8,6)

331
341
351
361
371
381
391
401
411
421
431
441
451
461
471
481

12345678
1 h 100:t:O
1 h 11 00*
1 h h 100
11*11*10
lh11h1
lh1011*
lhl*Oll
11 * 1 0* 01
011*00*0
01 h 100*
011 * * 100.
01l*h10
011*lh1
011:1:01 h
01h*011
011 * 0* 01

12345678
491 * 011 00* 0
501 * 0111 00*
511 *01 h 100
521 *0111:1:10
531 * 0 1111 * 1
54 *011 01 h
55 *01 hOll
56 * 011 0* 01
57 0*01 00*0
58 0* 011 00*

· · 59 ... ·a* o 1 * 1 oo :
.·sor· o*01hlo

6 li, 0* 0 1 1 h 1
621 0*01011*
631 0*01*011
641 0*010*01

Theorem 6 does not allow us to increase the achie'rable record

58

length/bucket address length (k/w). One might suspect that 4/3 is perhaps an

upper bound for k/w. The following theorem shows that arbitrarily large. ratios

are possible.

Theorem 7. (Insertion) It is possible to construct an ABD(kk' ,ww') from an

ABD(k,w) and an ABD(k' ,w').

Proof: We will e;onstruct the larger ABO by independently replacing each digit of

the first ABO by a row from the second, and each "*" of the first ABD by a string

of k' ":r"'s. If the digit being replaced is a zero, we choose a .row from the top

half of the second ABO (that is, from the first 2w' -1 rows) to replace it. If the

digit being replaced is a one, we use a row from the bottom half of the second

ABO. (Actually, any division of the second ABO into two halves may be used.)

Each row of length k thus generates 2<w' -1)w rows of length kk' , so that

2ww' rows are generated altogether. Each such row has w(k' -w') + (k-w)k' =

kk' - ww' "*"'s. Each pair of rows generated will differ in at. least one. place,

since rows used to replace differing digits differ, or if the two rows were

generated from the same row of the first design, then one of the digits replaced

will have been replaced with different rows from the SE~cond design, which must

differ in at least one place. Finally, the number of "*"'s in each column is

= 2ww' (kk' - ww') I kk' . (74)

59

~~

~~

€J

Therefore this construction yields a valid ABO(kk' ,ww').

Q. E. D.

The above theorem allows us to form ABO's with arbitrarily large ratios

k/w. For example, we can now construct an ABO(16,9) or an J\80(64,27) (in

general, an ABO(4m,3m) for m~ 1) from the ABO(4,3) of Figure 5. The following

figure illustrates the rows generated for an AB0(16,9).

0*01

ABO(4, 3)

Figure 12.

...

rOWS ...;

00*000*0****00*0
00*000*0****100*
00*000*0*****100
00*000*0****1*10
00*0100*****00*0

II* I 00* 000* 0* * * *
11 * 1 00* 0* 1 00* * * *
1 h lOO*Oh 10****

00*0****00*011* 1
00*0****00*0011*
00*0****00*0*011

ABO(16, 9) rOW$

Rows of an ABO(16,9)

60

3. 2. 4. ANALYSIS OF A8D SEARCH _TIMES.

How well do these ABDs perform as hash functions for associative retrieval

of binary records? Let use derive the worst-case behe1vior of ABDs constructed

by concatenation and insertion.

Let us consider the concatenation of an ABD(k,w) with an ABD(k' ,w'). Let

(.1(g,t) and (.1(g' ,t) be the respective worst-case number of buckets examined in

each case for a query Q E Qb and let ;.1(h,t) be the same function for the

resultant ABO. Since g, g' and h are fixed, we are considering the associated

functions ;.1 as functions of t only. We can then easily derive

;.1(h,t) == maxu+v=-t ;3(g,u) ;3(g' ,v) , (75)

for O:dsk+k', usk, vsk'. For example, concatenating an ABD(4,3) with itself

yields an A80(8,6) with worst-case retrieval times:

_t

(.1(h' t)
r A(8, 6, t) 1

_ I o
I 64
I 64

1 ______ 2 ______ ~------~--5__ 6 ____ z. ____ s
40 25 1 6 1 0 6 4 2 1
40 25 15 9 6 4 2 1

Figure 13. Performance of an ABD(8,6)

Also shown are the values of rA<8,6,t)l, which is a lower bound for ;3(h,t). The

A80(R,6) is seen to do nearly as well as possible. The exact asymptotics for the

worst-cuse behavior of the repeated concatenation of an ABO with itself are

quite simple to figure out for given values of k and w. Suppose we concatenate

61

an ABD(k,w) with worst-case behavior ;.t(g,t) with itself m times, yielding an

ABO(mk,mw). Consider a partial match query Q E Qt. Let Yi be the number of

k column blocks which have exactly i specified bits, for Osisk, so that

and

L:o . k Yi = m,
:01:0:

We also have, of course, the condition that

Yi ~ 0 for Osisk.

The worst-case behavior ;.t(h,t) of the resultant ABD(mk,mw) is defined by

(76)

(77)

(78)

(79)

where the maximum is taken over all sets of integers YO, ... , Yk satisfying (77) -

(79). Let ;.1' (h,t) = log(;.1(h,t)) and ;.1' (g,t) = log(;.1(g,t)) for all t. Then (79)

becomes

;.1' (h,t) = max 2:
0

. k ;.1' (g,i) Yi,
::01$

(80)

transforming the above into a integer programming problem in k+l dimensional

spucc. Since we are considering the asymptotic behavior as m-+oo, the solution to

the corresponding linear programming problem, in which each Yi is replaced by the

corresponding fraction xi = Yi/m, will give us the asymptotic behavior. The

problem to be solved is thus:

maximize ;.1' (h,t) == LOsisk ,.1' (g,i) Xj, (81)

62

subject to:

LO , k Xj = 1,
S:IS:

ko . k i x; = tjm, and
S:IS:

xi ' 0 for Os:is:k.

..

(82)

(83)

(84)

We must have at least k-1 of the xj's equal to zero in the optimal solution, since

there are only k+3 constraints for this problem in k+l dimensions. Let xi and xj

be the two nonzero values, with i<j. lf t3' (g,t) is a concave function we have

i = Lt/mJ = j-1 (85)

and

t3' (h,t) = t3' (g,i)(i-t/m)/(i-j) + t3' (g,j)(j-t/m)/(j-i). {86)

This is the general solution. When t/m is a multiple of 1 /k, then only Xtk/m is

nonzero, and it is equal to one. This solution does not apply when t3' (g,t) is not

concave. (For example, the t3' (g,t) for our A80(4,3) is not quite concav~, since

{3(g,3)=2 is a little too large. This convexity is the cause of the discrepancies of

Fig. 13). One can show, by a combinatorial argument, that if {3(g,t)=A(k,w,t) for

0::: ts k, then {3(h,t)=A(mk,mw,t) for Os:h:mk as well. Thus concatenation of ABO's

can be expected to preserve near-optimal worst-case behavior.

The behavior of an ABO constructed by insertion is more difficult to work

out. It seems the worst case here occurs when the specified bits occur together

63

~)

~I

~I

in blocks corresponding to the digits of the first ABO used in the construction

(that is, the one whose digits were replaced). (I have no proof of this.) Figure

14 gives the worst-case behavior of an AB0(16,9) constructed by inserting the

ABO(4,3) of Figure 5 into itself, (computed using the assumption that the worst-

case behavior occurs with the queries having the specified bits occurring in

blocks)._ Shown below the worst-case behavior ,l.l(h,t) for the above design are

the values of A(16,9,t), which are a lower bound for the number of buckets that

must be examined in the worst case.

,f.l(h, t)
r A(16, 9, t) 1

J
,l.l(h' t)

r A(1 6, 9, t) 1

1._ - 2
368 272
368 263

~ -- . 4 ___ 5 -- - 6 z ---·-- a-­
ss 36

9
33
20

224 1 76 116 76
186 131 91 63 43 30

10'_~ 11 12 ____ _1_ 3 ____ l4 ---- 1_~ ______ _16_ __
24 16 8 5 3 2 1
14 9 6 4 3 2 1

Figure 14. Behavior of the ABO(16,9)

We see the the lower bound is nearly achieved, that is, the worst-case

behavior of this hashing· scheme approximates the average time. On the other

hand, it is quite likely that even better designs for an ABO(16,9) exist - the

rer;ular fashion in which this one was constructed probably degrades its worst-

case performance somewhat. An exhaustive search by computer for better

designs appears to be infeasible, so that a better construction method is needed.

64

(I was unable to determine whether an A80(8,5) exists or not, using one hour of

computer time and a sophisticated backtracking procedure.)

3. 2. 5. IRREGULAR ABO'S.

The difficulty of constructing ABO's leads one to attempt simpler, less

tightly constrained hash functions. Such CIQ hc;>c hash functions are easy to

construct for small values of k and w. For example, consider the case k = 3,

w = 2 (which does not satisfy the divisibility constraint of the corollary to Lemma

1, so that an A80(3,2) can not exist). The following "design" yields reasonably

good worst-case performance.

____ 1 ___ 2 ____ ~--
1 0 0 *
2 1 * 0
3 * 1 1
4 0 1 0

1 0 1

Figure 15. An "irregular" (3,2) design

Here bucket 4 contains both records 010 and 101. This hash function has worst-

case behavior:

t 1 0 _____ 1 ___ 2 ____ ~
,s(h , t) I 4 3 2 1

Figure 16. Behavior of the previous desigr1

65

~I

...)

'!-I

~I

~)

(

Concatenating this function with itself will yield larger "designs" having a k/w

ratio of 3/2 and having good worst-case retrieval times. Another "design"

yields the k/w ratio of 2:

I 1 2 3 4
1 I 0 0 * * 2 I * 1 * 0
3 I * 1 1 1

I 1 0 1 * 4 I * 1 0 1
I 1 0 0 *

Figure 17. An "irregular" (4,2) design

The above hash function has worst-case behavior:

t .. . l - . _0 . J -· 2 ... 3 _ _4
;:s(h, t) I 4 4 3 2 1

Figure 18. Behavior of the irregular (4,2) design

3. 2. 6. CONCLUSIONS ON ABO'S.

Associative block designs will have exactly the same average retrieval time

as those hash function discussed in section 3. 1, where w 'key-bits were

cxtt·Jcted to use us bucket oddress bits, since the buckets have the same shape.

But by appropriately permuting the entries in each row, we can drastically reduce

the worst-case time without affecting the average retrieval time. The recursive

or iterative nature of the ABO construction theorems lends itself to simple

66

implementation. In summary, we see that the worst-case performance of hashing
~~

schemes can be nearly minimized without increasing the average retrieval time or

the amount of storage used.

~)

..

67

.··~

3. 3. BENEfiTS OF STORAGE REDUNDANCY

The perhaps difficult problems involved in constructing an ABO for a

particular application can be circumvented if the user can afford a moderate

amount of storage redundancy to achieve good worst-case behavior. By

moderate I really mean moderate - the redundancy factor is not subject to

combinatorial explosion as in the designs of Ghosh et al. Furthermore, both the

worst-case and average behavior is even slightly improved over the designs of

§ 3. 1 and the ABO's of § 3. 2.

The technique is actually quite simple, and will be illustrated by an

example. Suppose we have a file of n = 220 1 00-bit records (that is, each

record consists of 100 one-bit keys). The method of the previous section would

have required the construction of an ABD(l OO,w), for w near 20 - a difficult

task. Let us instead simply create five (= 100/20) bucket systems, and let each

record be filed once in each system. Each bucket system will have 220

buckets. The first system will use the first 20 bits of each record as its bucket

address, the second bucket system will use the second 20 bits of the record, and

so on.

Now suppose we have a query Q E Qt. At least one of the five bucket

·systems will have at least rt/51 bits specified for its bucket address - so we can

68

use this bucket system to retrieve the desired records. The number of buckets

searched is no more than 22q-rt/51 at worst.

In general, if b = 2w is the number of buckets per bucket system, and we

have k-bit records to store (records with non-binary keys can of course always

be encoded into binary), we will establish m = k/w distinct bucket systems,

divide the record into m w-bit fields, and use each field as a bucket address in

one of the systems.

The worst-case behavior of this scheme follc>ws a strict geometric

inequality:

,l.f(h,t) s 2w-rwt/kl (87)

This surpasses even the best achievable gv~r_ag~ behavior of hash functions with

no storage redundancy, although not by very much. If haU of the bits are given in

a query (i.e. t = k/2), then only sqrt(b) = 2w/2 buckets at most need be

searched. The average behavior of this scheme is difficult to compute, but it ·

seems likely that it will approach the worst-case behavior, especially if w is

large.

The above idea, can be generalized further. lnstEtad of taking each of the

m subfields of the record and using it directly as an address, one can treat each

subfield as a record and use an ABD(k/m,w) or some other method (such as the

69

(

------- -------~

trie algorithm of §4) to calculate an address from each subfield. The efficiency of

this composite method will of course depend on the efficiency of the the methods

chosen for each sub-field.

70

CrtAPI~8_4

IBIE_ ALGORJJHMS_EOR _e.~RT_I_AL_MAICH_QUERlES

Theorem 1, which states that an optimal bucket shape for a hash table is a

subcube of R, suggests that another data structure. might be preferable to hash

tables. A trie also has the property that the set of records under consideration

at any point of the trie is a subcube of R, which is recursively split into smaller

subcubes at each level. Tries might thus behave like the best hash functions.

They have the advantage that the data is structured all the way down to the

terminal nodes (the records), in contrast with hash tables, where each bucket

merely contains an unordered list. In this section we will try to estimate the

average search time for a partial match query when the file F is maintained in

random-access storage as a trie.

4. 1. OEFINITION OF TRIES

"Tries" were first described by Rene de Ia Briandais [de59] and were

elaborated on by E. Fredkin in [Fr60] (see also [Kn72,§6. 3]).

Definition. A tri_e is a tree such that

(i) Records are its terminal (external) nodes.

71

<ii) Each internal node N specifies an attribute position j, such that attribute

has not been specified on any node on the path from the root of the trie to N.

In a standard trie the attribute position specified is always j, where j is the level

of the node N in the trie. Nonstandard tries were first introduced by G.

Gwehenberger [Gw68]. Each internal node is said to be g~so~iat~c;t with all of

the records of its corresponding subtrie, and

(iii) if node N specifies attribute j, then node N has vj subtries, one for

each possible value of attribute j. The records associated with node N are each

placed into the subtrie of N corresponding to their value for attribute j.

Two kinds of tries will be considered. A fy_U trie will have al-l records at

level k+ 1 (where the root is at level 1). Any subtr~e associated with zero

records will be a special null node at some level less than k+l. A ~9r:npac_t trie

will place the terminal node corresponding to a record at the uppermost level

possible. In other words, a compact trie has a terminal node whenever the

corresponding node in the full trie is associated with only one record, and all of·

the ancestors of the node in the full trie are associated with more than one

record. Figure 19 and 20 illustrate full and compact tries for the file of three-bit

records F = { 000, 100, 101, 111 }.

72

I bi t 1 I

= o I
I

I

\ = 1
\
\

I bit 2 I I bit 3 I

= o I
I

I

I bit 3 I

= 0 I \ = 1
I \

I \ -------

\ =1
\
\

= o I
I

I

NULL . I bi t 2 I

= o I
I

I

\ =1
\
\

\ = 1
\
\

I bit 2 I

1=0 \=1
I \

I \
I 000 I NULL. I 100 I NULL I 101 I I 111 I -------

Figure 1 9. A full trie

73

!,
I

I bi t 1 I

o I
I

I

I ooo I

= 0

I
I

\ = 1.
\
\

I bit 3 I

I \ = 1
\
\

------- ---------
I 100 I I bi t 2 I
------- ---------

= o I
I

I

I 101 I

Figure 20. The corresponding compact trie

4. 2. ALGORITHM FOR _SEARCf:liNG __ Iffif::_S

\ = 1
\
\

I 111 I

To perform an associativ~ search of a trie is quite simple. Given a partial

match query Q the search algorithm works as follows:

Associative Search of a Jrie

Step 1. Set pointer p to the root of the trie.

74

lfl

Step 2. If p points to a terminal node, print the associated record if it

satisfies Q and return.

Step 3. (Here p points to an internal node N specifying attribute j). If

attribute j is specified in the query, search the corresponding subtrie

of N, otherwise search all subtries of N. (These recursive searches

use this algorithm beginning at step 2).

What is the average running time of this algorithm? Let the time be the

average number of nodes (both internal and external) examined by the algorithm.

We shall use a slightly different assumption about the file, in order to make the

mathematics easier. Instead of letting our file F be a randomly chosen subset

of H of size exactly n, let us instead assume that each record R (R is chosen to

be in F independently with probability p = n/IRI. Thus E(IFI) = n, but F

may also have some other size. There will be no significant bias in our results
due to this change in assumption. The following notation denotes our cost

measure:

f(k,t) = the average number of nodes examined by the above algorithm

to answer a partial match query Q E Qt, where the file F

consists of (approximately) n distinct records, each having k

one-bit keys.

75

I~

I
I
i

I

I
!

There is an interesting optimization problem resulting from the use of

nonstandard tries. The problem is to select the attribute positions with which to

label each internal node in such a fashion as to minimize the expected number of

nodes e:><amined for any partial match query. The interesting point here is that it

will be the most unbalanced trie which will have the minimal search time, since

nodes deep in the trie are seldom examined. To actually determine the optimal

trie seems to be a difficult optimization problem, and we shall not remark upon it

further. In fact, we shall restrict our attention to standard tries.

4. 3. UPPER BOUND ON THE SEt\RCH_I!ME

The close relationship between tries and hash functions which extract bits

to use as a bucket address allows an upper bound on f(k,t) to be derived very

simply.

We first note that the probability ~t(N) that a particular node· N will be

examined is basically a function of the level I(N) of N in the trie:

<tt(N) = C(k,t)-1 ~O~d~t C(I(N)-l,i) C(k-I(N)+l,t-i) 2-i

= 2-I(N)+l A(k,I(N)-l,t). (88)

As noted above, since 4>t(N) decreases so rapidly with I(N), of all the n-node tries

it will be the most balanced tries which have the highest average retrieval time.

76

Thus we derive an upper bound for f(k,t) by only considering the most balanced

tries of n nodes. Thus it is very simple to derive the bound:

f(k,t) ::: 2:
1

. I () A(k,j,t), ::;;:::r og2 n 1 (89)

since there are 2j-1 nodes on each level j of the most balanced trie except

possibly the last. The dominant term in this sum will generally be the last one,

corresponding to the highest level. Thus we see that tries will not generally do

worse than the best hashing functions which use about n buckets. In the next

section we will see that they do not perform significantly better, either.

4. 4. LOWER BOUND ON SEARCH_ I_IM_I;

(j We shall here assume that the file is stored as a full trie and not a compact

trie. While a practical implementation would certainly use compact tries, we shall

examine the full trie case since the mathematics is a little simpler. Compact tries

are more efficient by a factor of at most

(90)

This approaches 1 in the limit if we keep p fixed and let n~oo. We shall

proceed with our analysis with the understanding that compact trees could be

more efficient by this amount.

We now prove our basic theorem for this section, which says that the

77

expected search time for a trie is bounded below by a exponentially decreasing

function of the amount of information specified in the query.

Theorem 8.

f(k,t) ~ n<k-t)/k = P(k-t)/k 2k-t (91)

Proof: The basic recurrence for f(k,t) is the following:

f(k,t) = 1 + (1-~k)(2 f(k-l,t)(k-t)/k + f(k-l,t-1) t/k), for k>l. (92)

Here we define

(93) .

to be the probability that F is empty. The value (k-t)/k is the probability that

the bit named at the root of the trie is not specified in the query, and t/k is the

probability that it is specified in the query. The 2 is in the first term because if

the bit named in the root is not specified in the query, then we have to search

both subtries, otherwise we only have to search one.

We will prove (91) by induction on k, using (92). The basic'inductive step.

we need to prove is therefore the following inequality.

p(k-t)/k 2k-t

~ 1 + 2k-t (1 - Ek)(((k-t)/k) p(k-t-1)/(k-1) ·~ t/k p(k-t)/(k-1)) (94)

If we prove (94), and also prove a basis for the induction, then (91} follows.

Defining z to be:

z =def p(k-t-1)/(k-1) ((k-t)/k + t/k pl /(k-1)) (95)

78

~·.

we then get that (94) is equivalent to:

1 ~ 2k-t (p(k-t)/k - (1 - Ek) z))

If we can show that

z ~ p(k-t)/k

then (96) reduces to showing that

1 ~ (k 2k-t p(k-t)/k .

(96)

(97)

(98)

So we will first prove (97), and then (98). Now (97) is equivalent to the

following.

p(k-t)/k :; (k-t)/k p(k-t-1)/(k-1) + t/k p(k-t)/(k-1). (99)

This is the same as

pt/k(k-1) $ (k-t)/k + tjk pl/(k-1) . (1 00)

But this is just an instance of a well-known mean-value theorem [Thm. 37,Ha59].

We shall now prove (98). This is equivalent to

1 ~ (k 2k P <2 pl/krt. (1 01)

Since Ek is independent of t we may set t=k if 2 pl/k < 1 to maximize the right

hand side, reducing (101) to a trivial statement. Otherwise we set t = 0.

Differentiating the resultant right-hand side with respect to p, we find that it

reaches a maximum at

PO= 1 I (2k + 1). (1 02)

79

But since 2 POl/k < 1 we only need to prove (101) for 2 p1/k = l, in which

case it is again trivial.

Therefore (91) is proved except for the basis for the induction. But for

k = 1, (91) reduces to

f(l ,0) ~ 2 p, (1 03)

and

f(l '1) ~ 1 . (104)

Equation (1 04) is certainly true, since the root node must always be examined.

Equation (103) requires computing the average work for a file of 1-bit records

for a query with no keys specified; There are four possible files: F={0,1},

F={O}, F={l}, and F={}~ which occur with probabilities p2, p(l-p), p(l-p), and

(1-p)2 respectively. The number of nodes examined in each of these cases is

3, 2, 2, and 1 respectively. Equation (1 03) thus reduces to proving the

following.

2 p $ 3 p2 + 2 p {1 - p) + 2 p (1 - p) + (1 - p)2 = 1 + 2p

Q. E. 0.

80

(1 05)

~ ..

~)

CHAPTER 5

HASHING ALGORITHMS fOR B_EST -MATCH QUERI_ES

The task of searching a file for all best matches to a query has probably

been more extensively studied than the the task of searching for all partial

matches, due to the fundamental nature of identification problems when only

partial and perhups incorrect attribute data is available. Finding the best-match

for a transmitted message is the crux of the decoding problem, for example.

Nevertheless, only very recently has significant theoretical progress been made on

this problem. As late as 1969 Marvin Minsky conjectured that

"Even for the best [algorithms], the speed-up value of large memory

redundancies is very small, and for large data sets with long word lengths

there are no practical alternatives to large searches that inspect large
I
I
i'

parts of the memory." [Mi69,p. 223]

We shall see that the situation is not that bad, and that best-match searches may
I

often be made extremely rapidly, requiring the examination of only the smallest

fraction of the file.

81

5. 1. THE ALGORITHM

The method is due originally to Peter Elias, according to [We 71], although

Burkhard has apparently independently discovered the idE1a more recently [Bu73].

The algorithm is a variant of the hash-coding scheme, with slightly different

hash functions. We shall therefore use the same notation as §3. We divide the

space R of records into b regions 81 (R,h), 82(R,h), ... , Bb(R,h) as before.

Given an input record Q for which we want to find the best-match, we hope to

limit our examination of the file to just a few buckets. To do this we need to find

an appropriate hash function.

Due to the nature of the problem, it seems likely that the buckets should

be "neighborhoods" or "spheres" of R rather than subcubes. This conjecture is

proved later on. One simple method of dividing R up into neighborhoods is to

choose a set of "reference" records R' = {R' 1• R' 2• ... , R' b}, and then to

associate one bucket with each reference record. A record is placed in the

bucket(s) corresponding to the nearest reference record(s) using the Hamming

distance metric d. Thus,

G/R) ==def { Rdt I (Ji,l :dsb)[(i;tj)A(d(R' j,R)<d(F~' j,R)]}.
. I

(1 06)

Note that a record may belong to more than one bucket under this scheme.

Clearly the reference records can be chosen in different ways. A large

82

~I

~·.·

~)

f

I~

amount of research going under the name of "cluster analysis" is directed at

choosing the reference records to be records of F near the centers of naturally

occurring "clusters" in F (for example, see [Ja71]). This method has the

advantage of being tailored to the particular file in question, but has difficulties in

terms of maintaining this structure while the file is being modified and in terms of

organizing the search, since it is hard to determine whether a given bucket needs

to be searched (that is, whether it could possibly contain a record closer to R

than the closest found so far in the search).

For the purposes of this discussion, we will assume that the file F is a

randomly chosen subset of size n of R. Thus it is unlikely to expect the records

of F to be nicely clustered in any way. How should the reference records be

chosen in this situation? One would suspect that they should be rather evenly

distributed throughout R.

For the case of binary records, R' can be easily chosen if b is a power of

two, so that b c= 2w, and there exists a perfect (k,w) error-correcting code, with

minimum distance 2 :.\ + 1. Then R' will be the set of codewords, and Bj(R) will

be the set of all k-bit words which would be interpreted under the decoding rule

to be R' j· (While it has been shown (see [Ti73]) that there are no unknown

perfect codes, 1n those cases where a perfect code does not exist one can do

nearly as well by using a quasi-perfect code [Pe72], or the best code available.)

83

To perform a best-match search, the following algorithm is performed.

Essentially the buckets are examined in order of increasing distance of their

centers from the query until all the closest records are found.

procedure SEARCH2({ 81, ... , Bb},h,Q,A);

comment SEARCH2 finds all records stored in buckets 81, ... , Bb which

are nearest to the record (query) Q.
The value " is the minimal value such that every record is within distance
>- of a reference record. ;

begin set W, W', Y; integer m, m', i, j;
m .:- oo; W ~ null; Y ~ { 1, 2, ... , b };
while Y ~ null do

begin
j ~ min { j I (j E Y) A (d(Rj,Q) = miniEY d(Ri,Q))};

if B/F) ~ null then

begin
m' ~ minREBj<F) d(R,Q);

W' ~ { R E Bj(F) I d(R,Q) = m' };

if rn' = m then W ~ W U W'
else if m' < m then

begin W ~ W'; m ~ m' end
end;

Y { i I d(Rj,Q) ~ m + :>. } n Y - { j }

end;
print(W, m)

end SEARCH2;

5. 2. A_ SAMPLE APPLICATION

Let us consider a particular application. Suppose we have a file of n=215

84

..)

23-bit words which we wish to organize for best-match searching. We can make

use of the Golay perfect (23,12) code (see [Pe72, §5. 2]) in our hash function.

We will thus have 4096 buckets, each containing about 8 records on the average.

The Golay code is capable of correcting all patterns of up to three errors, so that

the minimum distance between codewords is 7.

To derive the average time needed to answer a best-match query, proceed

as follows. Let p be the probability that a particular record is in F (here p =

215;223 = . 00390625), and let oc(h) be the expected number of buckets

examined. Then

oc(h) == l:Osis
3

C(23, i) 2-11 l:Osj:; 23 pe(j) nb(i,j) (1 07)

where pe(j) is the probabiljty that the nearest record to a "typical" query is at

distance j. This is an average, taking as separate cases the distance i of the

query from the center of its bucket. That is

!i'j pe(j) == (1-p)V(23,j-1) (1 _ (1-p)C(23, j)), (108)

where V(k,j) is the volume of a sphere with radius j in binary k-space, that is,

V(k,j) = I:
0

. .C(k,i) .
SIS) (109)

The quantity nb(i,j) in (1 07) denotes the average number of buckets that need

to be examined t-o find all words within distance j of R for a typical word RER

where the distance from R to the nearest code-word is i. The values of nb(i,j)

85

for O:sis3 and Osjs23 were determined with a computer program. Figure 21

plots oc(h) versus p. For our application (p = 215/223), we see that no more than

37 buckets need be examined on the average.

86

0< o:
<D,
<!>~
'It< .

~
z

uQ
i~
:r~ .-o
o:o
<(~

"X
o~ _,u
,J
-u

·::< >

~ " u

h
" ~

5 -.-. . ' if·· .. - i ·-- . - - l:::j ,_- . - .i.

-~-'···

Figure 21. Plot of cx:(h) versus p

0 87
p

5. 3. ANAL'(SIS OF ASYMPT_QTIC_ RlJNNlNG_JIMI:;

How well does the above algorithm perform? The expected number of

records examined will be at most p C(k,m+A), where m is the distance from the

query to the nearest re~ord in F, and ~ is the common radius of the buckets.

For m+::\ small in relation to k, this will be a negligible fraction of the file.

To consider the asymptotic performance, let k ..,. oo and w ~ oo proportional

to k. This corresponds to the case where p, the file density, remains fixed.

Then it is well-known that there are codes such that the minimum distance of

these codes will increase in proportion to k. The fraction of the file examined is

at most C(k,m+~)2-k. This fraction goes to zero as k goes to infinity, since the

expected value of m goes to (1-p) and~ remains a fixed fraction of k.

5. 4. OPTIMAL BUCKET SHAPES

The above algorithm has been previously published, as noted before. The

following theorem demonstrates its optimality.

Theorem 9. For answering best-match queries from a file of binary

records, oc:(h) is minimized over all balanced hash functions h having a given

number b of buckets if each bucket is shaped like a "sphere" -- that is, if each

88

. \

~-·

.·~

bucket B/Rk) consists of a center point (record) R' j and all records within a

distance >.. of R' j·

Proof: Since we are considering balanced b-bucket hash functions, oc:(h) will be

minimized if each individual bucket of size 2k/b has a minimal probability of being

examined, over all buckets· of the same size. A bucket must be examined if it

contains any records as close to the input record as the closest record found

previously in the search. There are 2k possible input queries. For a given

query, there is a probability of (1-p) V(k,d-1) that the nearest record to the input

query will be at a distance of at least d. For a given bucket 8 let S(8,d) be the

set of records in Hk which are at distance d from the nearest record in 8(Rk)·

The chance that 8 must be examined is then:

-¥(8) =d f 2-k ~ IS(B d)l (1-p) V(k,d-1) . e O:::d:::k ' (11 0)

since if the query is in S(8,d), 8 is only examined if the sphere of radius d-1

around the query contains no records in F. This sum is minimized by making the

values of jS(8,d)l as small as possible for small values of d, since (1-p) V(k,d-1)

is a decreasing function of d. In fact, if we are given two buckets 8 and 8', then

-¥(8) will be less than '¥(8') if and only if the vector (jS(B,O)I,IS(8,1)1, ... , IS(B,k)l)

is lexicographically less than the corresponding vector for 8', since

-¥(8') - -¥(8) = 2-k ~Oik(jS(B' ,i)I-IS(B,i)l)(l-p)V(k,i-1). (111)

Assume that jS(B,i)I=IS<B' ,i)j for Osi<j, and that jS(B,j)j<jS(8' ,j)j. Since

89

IS<B' ,j)I-IS(B,j)l = :E .. k (IS(B,i)I-IS(B' ,i)l) ,
J<t::;

(112)

we have

it(B') - it(B) = 2-k :E. . k(jS(B' ,i)I-IS(B,i)j)(l-p) V(k,i-1) (113)
J::; I :S

~ 2-k (IS(B' ,j)I-IS(B,j)j)((l-p)V(k,j-1)_(1-p)V(k,j)) (114)

~ 0 (115)

For two buckets of the same size, B will be examined less frequently than 8' if

IS(B, 1)I is less than IS(B' ,1)I. Note that IS(B,l)I is the discrete analog of the

surface area of a region 8, so that what we are about to show is that a sphere

has minimal surface area.

Consider the mapping· Rk ~ Rk-1• obtained by dropping the first bit of

each record in Rk· The set of records in B may be divided into two subsets

according to their first bit. Dropping the first bit, we get two subsets Bo, s1 of

Rk-1 corresponding to the set Bin Rk. Using IS<Bo,l)l and I~(Bt,l)l to denote

the surface area of the sets Bo and 81 in Rk-1• we have the relationships:

IBI = IBol. + IB 11, and (116)

IS(B,l)l == IS<B0,1)1 + IS<B 1,l)l

(11 7)

The problem of selecting the optimal set 8 from R is thus reduced to the problem

of selecting the proper sets Bo and 81 from Rk-1·

90

Consider a given bucket 8' (or rather, its corresponding sets 8' 0 and 8' 1

in nk-1). Let us "deform" this bucket into a new bucket 8 by making 8o and 8 1

be sets of the same size as 8' 0 and 8' 1 but which are spheres centered at the

origin of Rk-1· We will show that

15(8,1)I s 15(8' ,1)I, (118)

using an inductive proof on the dimension k; thus I5(Bo,1)1 and 15(81,1)1 can be

assumed to be minimal over all buckets in Rk-1 of the same sizes.

We may assume that IBol ~ IB1I without loss of generality. Thus the last

term of (11 7) will be zero since 81 !: 8o. It is now clear that 15(8,1)j is minimal

over buckets B such that l8ol=l8o' I and I81I=IBI'I, since any decrease in the

term l8o - (81 u 5(81,1))1 could only come at the expense of a corresponding

increase in the term j5(81,1)j. That is, either l8o - (81 U 5(81,1))1 is zero (in

which case 15(8,1)1 is obviously minimal) or else 81 u 5(8}11) c: 8o. In the latter

case there will exist several choices for 81 which will minimise 5(8,1) (in fact, any

81 will do which maintains 81 u 5(8 }11) c: 8o), one of which is a sphere.

Thus a sphere will have minimal surface area of any bucket of size IB' I,
s1nce a sequence of the above deformations using each of the k bit positions in

turn will transform any bucket 8' into a sphere. Although other shapes may also

have minimal surface area, the sphere will also have the minimal expected chance

91

of being examined, since B u 5(8,1) is also a sphere when 8 is, so that the vector

(jS(B,l)I, 15(8,2)1, ... , I5(B,k)l) is lexicographically minimal by induction on the index

j of the S(B,j)'s .

Q. E. D.

92

~J

I~

CHAPTER 6

APPENDIX - NOJA TION

The following notation is used consistently throughout:

SYMBOL MEANING

A(k,w,t) The minimal number of buckets examined to answer a query

with t bits given out of k, with b = 2w buckets in the system.

b Number of buckets used in a hash-coding scheme.

C(m,n) The binomial coefficient "m choose n".

E(x) The expected value of the variable x.

The current file.

h A hash function mapping R ~ {1,2, ... b}.

iff "if and only if"

k The number of keys in a record.

n The number of records in the file F.

Q The universe of legal queries.

Q A query in Q.

Qi A query in Q, Qt:' a function mapping subsets F of R into

subsets of F (that is, Qj(F) is the respgn_~~ to query Qi, given

F).

93

R

R

R· I

r ..
I J

v· J

v

V(k,i)

w

lXI

rx1

LXJ

X· A· I I

X<< y

oc(h)

The set of all partial match queries having exactly t keys

given.

The universe of legal records.

The set of all binary words of length k.

A record of R.

The i-th record of the file F.

The j-th key of record Ri.

The number of keys specified in a partial match query.

The number of values the j-th key of a record can have.

The common value of all the vj's, if it exists.

The number of points in binary k-space within distance i of the

origin.

The value log2(b).

The cardinality of the set X.

The least integer greater than or equal to x.

The greatest integer less than or equal to x.

The cartesian product of sets Ai.

The value of x is "very much less" than the value of y.

The average number of buckets examined by SEARCH when ~!

using hash function h to answer a parth~l match query Q E Q.

94

o.::(h,t) The average number of buckets examined by SEARCH when

using hash function h to answer a partial match query Q E Qt.

;3(h,t) The worst case number of buckets examined by SEARCH when

using hash h to answer a partial match query Q E Qt.

q,(B) The number of queries in Q which examine bucket B.

The number of queries in Qt which examine bucket B.

I
I

95

~I

CJ:iAI?I~B_l

R~f~~~NCES

[Ab68] Abraham, C. T., S. P. Ghosh, and D. K. Ray-Chaudhuri. File Organization

Schemes Based on Finite Geometries. Information and Control

12(February 1 968), 143-163.

[Ar71] Arisawa, Makoto. Residue Hash Method. J. Int. Proc. Soc. Japan

12(1971), 163-167.

[Bo52] Bose, R. C., and W. S. Connor. Combinatorial Properties of Group

Divisible Incomplete Block Designs. Ann. Math. Statist. 23(1952),

367-383.

[BoG 9a] Bose, R. C., C. T. Abraham, and S. P. Ghosh. File Organization of

Records with Multiple-Valued Attributes for Multi-attribute Queries.

Combinatorial Mathematics and its Applications. (1969) UNC Press.

277-297.

[BoG 9b] Bose, R. C. and Gary G. Koch. The Design of Combinatorial Information

Retrieval Systems for Files with Multiple-Valued Attributes. SIAM J.

Appl. Math. 17(Nov. 1969), 1203-1214.

[Bu73] Burkhard, W. A., and R. M. Keller. Some Approaches to Best-Match

File Searching. CACM 16(April 1973), 230-236.

96

I

i!
li
li
I!

[Ch69] Chow, David K. New Balanced-File Organization Schemes. Information

and Control 15(1969), 377-396.

[Co52] Connor, W. S. Jr. On the Structure of Balanced Incomplete Block

Designs. Ann. Math. Statist. 23(1952), 57-71.

[Da65] Davis, D. R. and A. D. Lin. Secondary Key Retrieval Using an IBM

7090-1301 System. CACM 8(April 1965), 243-246.

[de59] de Ia Briandais, Rene. Proc. Western Joint Computer Conference

1 5(1 95 9), 2 95- 2·98.

[De 70] Denning, Peter J. Virtual Memory. Computing Survefys 2(Sept. 1970),

153-189

[Fe69] Feldman, Jerome A. and Paul D. Rovner. An Algol-Based Associative

Language, CACM 12(August 1969), 439-449.

[Fe50] Feller, William. An Introduction to Probability Theory and its

Applications. Vol. 1. Wiley & Sons(1950).
•"

[Fi69] File Organization - Selected Papers from File 68 - 'An I. A. G.

Conference. (Occasional Publication :tt3. IFIP Administrative Data

Processing Group (lAG)) Swets & Zeitlinger N. V. (Amsterdam, 1969)

[Fr60] Fredkin, E. Trie Memory. CACM 3(1960), 490-500.

[Gh68] Ghosh, Sakti P. and C. T. Abraham. Application of Finite Geometry in

97

~;

File Organization for Records with Multiple-Valued Attributes. IBM

Journal of Research and Development 12(March 1968), 180-187 .

.[Gh69] Ghosh, Sakti P. Organization of Records with Unequal Multiple Valued

Attributes and Combinatorial Queries. of Order 2. Information Sciences

l(Oct. 1969), 363-380.

[Gh 71] Ghosh, Sakti P. File Organization: Consecutive Storage of Relevant

Records on a drum type storage. IBM Research Report RJ · 895(July

1971), 26 pp.

[Gh72] Ghosh, Sakti P. File Organization: The Consecutive Retrieval Property.

CACM 15(Sept. 1972), 802-808.

[Gr59] Gray, H. J. and N. S. Prywes. Outline for a Multi-list organized system.

Annual Meeting of the ACM. Paper 41. Cambridge, Mass. (1959) 7

pp.

[Gu69] Gustafson, Richard Alexander. A Randomized Combinatorial File Structure
..

for Storage and Retrieval Systems. Ph. D. Thesis. University Qf South

Carolina(1969), 92 pp.

(Gu 71 J Gustafson, Richard A. Elements of the Randomized Combinatorial File

Structure. Proc. of the Symposium on Int. Storage and Retrieval, ACM

SIGIR, Univ. of Maryland (April 1971), 163-174.

98

[Gw68] Gwehenberger, G. Anwendung e·iner binaren Verweiskettenmethode beim

Aufbau von Listen. Elektron. Rechenanl. 10 (1.968), 223-226.

[Ha59] Hardy, G. H., J. E. Littlewood, and G. Polya. Inequalities. Cambridge

University Press(1 959).

[Ha63] Hanan, M. and F. P. Palermo. An Application of Coding Theory to a File

Address Problem. IBM Journal of Research and Development ?(April

1963), 127-129.

[Hs70] Hsiao, David and Frank Harary. A Formal System for Information Retrieval

from Files. CACM 13 (February 1970), 67-73.

[Ja 71] Jardine N., and C. J. Rijsbergen. The Use of Hierarchic Clustering in

Information Retrieval. Info. Stor. Retr. 7(1971.), 217-240.

[Jo61] Johnson, L. R. An Indirect Chaining Method for Addressing on Secondary

Keys. CACM 4(May 1961), 218-222.

[Ki61] Kiseda, J. R., H. E. Peterson, W. E. Seelback, and M. Teig. A Magnetic

Associative Memory. IBM Journal of Research and Development

5(April 1961), 106-121.

[Kn71] Knott, Gary D. Hashing Functions and Hash Table Storage and Retrieval.

Stanford University Computer Science Department and National

Institutes of Health - Division of Computer Research and Technology.

(Draft copy: 1971). 96 pp.

99

~I

(~

[Kn72] Knuth, Donald E. The Art of Computer Programming 3(Sortlng and

Searching). Addison-Wesley (1972).

[Ko69] Koch, Gary G. A Class of Covers for Finite Projective Geometries which

are Related to the Design of Combinatorial Filing Systems. JCT

7(1 96 9), 215-220.

[Le69] Lefkowitz, David. File Structures for On-Line Systems. Spartan Books

(1969), 215 pp.

[Ma46] Mauchly, John. Theory and Techniques for the Design of Electronic

Digital Computers. (ed. by G. W. Patterson) 1(1946), 9. 7-9. 8;

3(1 946), 22. 8-22. 9.

[Ma68] Martin, Laurence D. A Model for File Structure Determination for Large

On-Line Files. File Organization: selected papers from File 68 - an I.

A. G. Conference. pp. 223-245.

[Mi69] Minsky, Marvin and Seymour Papert. Perceptrons: An Introduction to

Computational Geometry. The MIT Press. (Cambridge, Mass. 1969).

[Mi 71] Minker, Jack. An Overview of Associative or Content Addressable

Memory Systems and a KWIC Index to the Literature. Technical

Report TR-15 7. University of Maryland Computer Science Center.

(College Park, Md: June 1971), 140 pp.

100

[Mi 72] Minker, Jack. Associative Memories and Processors: A Description and

Appraisal. University of Maryland and Auerbach Corp. Technical

Report TR-195(July 1972), 70 pp.

[Ni 72] Nishihara, Seiichi, Shoichiro lshigaki, and Hiroshi Hagiwara. A Variant of

Residue Hashing Method of Associative Multiple-Attribute Data.

Report A-9. Data Processing Center Kyoto University. Kyoto, Japan.

(February 197~), 19 pp.

[Pe 72] Peterson, William W., and E. J. Weldon. Error-Correcting Codes. MIT

Press (1972).

[Pr63] Prywes, Noah S. and H. J. Gray. The Organization of a Multilist-Type

Associative Memory. IEEE Transactions on communication and

electronics 68(Sept. 1963), 488-492.

[Pr66] Prywes, Noah S. Man-Computer Problem Solving with Multilist. Proc.

IEEE 54(December 1966), 1788-1801.

[Ra68] Ray-Chaudhuri, D. K. Combinatorial Information Retrieval Systems for

Files. SIAM J. Appl. Math. 16(Sept. 1968), !373-992.

[Re69] Renyi, Alfred. Lectures on the Theory of Search. Institute of Statistics

Mimeo Series No. 600. 7, Dept. of Statistics, University of North

Carolina ar Chapel Hill. (May 1969), 80 pp.

101

f-

rj

[Ru72] Rudolph, Jack A. A Production Implementation of an Associative Array

Processor - STARAN. Proc. Fall Joint Comp. Conf. (1972), 229-241.

[Sc63] Schay, G. ,and N. Raver. A Method for Key-to-Address Transformation.

IBM Journal of Research and Development ?(April 1963), 121-126.

[SI57] Slade, A. E., and H. 0. McMahon. The Cryotron Catalog Memory System.

Proc. l 95 7 Eastern Joint Computer Conference 1 0(195 7), 115-120.

[SI64] Slade, A. E. A Discussion of Associative Memories from a Device Point of

View. American Documentation Institute 27th Annual Meeting, (1964).

[Ti 73] Tietavainen, Aimo. On the Non-existence of Perfect Codes over Finite

Fields. SIAM J. Appl. Math. 24(Jan. 1973), 88-96.

[Wi60] Windley, P. F. Trees, Forests, and Rearranging. Comp. J. 3(1960), 84-

88.

[Well] Welch, Terry A. Bounds on the Information Retrieval Efficiency of Static

File Structures. Project MAC Report MAC-TR-88. MIT(June 1971)

(Ph. D. Thesis) 163 pp.

[Wo 71] Wong, Eugene, and T. C. Chiang. Canonical Structure in Attribute Based

File Organization. CACM 14(September 1971), 593-597.

102

I

f.

I~

.. ,

, ...

•

•

•

