
PB-233 045 

PROVING THAT COMPUTER PROGRAMS 
TERMINATE CLEANLY 

Richard L. Sites 

Stanford University 
Stanford, California 

May 1974 

DISTRIIIJTED BY: 



. . 
IIILIOGIAPHIC DATA t'· R .. port No. I~ PB 233 045 SHII!T S'XAN-CS-74-418 

4, T ttl~ and Subt it l~ 1 J. Jl.ef'ort Datl' 

PROVING T.iAT C(lm}TER I .~'OGRAMS TERMINATE CLEANLY Mav llfi'4 

'· 
7. A .. hor(a) e. Perfaraiaa Orsaai .. cioe Rept, 

Richard L. Sites No, STAN-CS-74-418 
9. Perfor111ia!- Oraaaizarion Na- aad Addtras 

Stan ord University 
10. Project/Task/Work Unit No. 

Computer Science Department 
Stanford, California 94305 

11. Coarracr/GraM No. 

12. Spoaaorina OraaaintiOD ~- and Addrrn 13. Type ol Rrpac at Period 

IBM Corporation 
Covered 

Thomas J. Watson Research Center 
technical, Ma,y 1974 

P.o. Box 218 14. 

vn .. ,•~-~ u .. i ah+.a TIT...., vn .. lc Hl'iQB 
IS. Suppll'-ntary Noru 

16. Abstracts 
A system of techniques is pre:;ented for proving mechanically that a computer 

program terminates cleanly. In this paper, clean termination means that the 
program has no infi ite loops and no semantic errors - no undefined variables, 
no subscripts out of range, no overflows on a given computer, etc. 'nle techniques 
are discussed in terms of programs expressed as flow charts, and they have wide 
applicatior. to high-level languages. 

The work described here complements work done on program correctness, differing 
particularly by not requiring a description of the correctness properties of a 
program and by treating the running of progr~s on machines with finite-range 
arithmetic • 

. 17. K~y Words and Doc..-nt Aaalyais. 17• O..suiptors 

1'71a. ldentil i~r• /Open-Eaded T ~na• 

Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 
U S Department of Commerce 

17c. COSAT! Fil'ld/Gtoup Sprlnlfjeld VA 22151 

11. Anilabilit) State•ear lt~ Secwiry Claa• (Tiils 

approved for public release; distribution Re~), .t.<:.c.n:n:n 

unUm:'.. ted. 

P' ,_, .. NTI .. I f"CV. J .. 7ill 0 • 

1:.0 ~uraty ca ... (This 

Pa~~~~~ .... , u.c.IFIEn 

THIS POR~ MAY BE REPRODUCED 
I 

121. No. nl p_,.,. 

rYil_ 
rn~7s--



{)ed i cut. i:.m 

This thesis is dedicated to a certain place in u co~ pasture 

behind the Stan ford campus; a Hill without whC()I this the:;is would 

never have been written. May all schools have the foresight t:.> 

preserve such places for the loct souls who will need them. 

Hichard L. Site:: 

Dedicated January 11, 1973 

: :: 



AcknowledSftents 

The bingle most tmportant factor in the completion of this thesi~ 

has been Don Kn~tb's Willingness to read and extensively annotate 

early drafts of this and related papers. He has been such an outstanding 

thesis advisor for me that I could enjoy doing another thesis 

under him, Jl;st so I could learn how to be a good thesis advisor myself. 

I also am gratef'u.l for the support of Bob Floyd and Ben Wegbreit on 

my reading c'nvnit•;ee. 

Financial assistance for the most difficult year of my thesis 

work was provided by the Fanriie and John Hertz Foundation, and was 

offered :or subsequent years in spite of my progress reports; I thank 

the '-'oundation for its long-range view and particularly for alleviating 

Jne of the stresses of c~pleting a taesis. I also thank Hewlett-Fackard, 

Inc. for its indirect support during the final year of this work. 

The i.J-evious work of others whan I drew upon for technical SU'ppcrt 

1 s a.cmowledged in rei'P.r.!nces throughout the text. 

,Tim Dult.-wy, Don Knuth, John Walters, Alyll.is Winkler, and represen­

tnti ves of the Fannie and John Hertz Foundation provided continuing 

moral <>trpport. I thank them all. 

Fi.ually, heartfelt thanks to Susan Hloebe watts, whose encouragement 

st.n.rted my pursuit of a. Hl·D· in the firct place. May she find similar 

enccrura..~ement. 

i.v 



Table of Contents 

Chapter o. Intr~uction . . . • . 

Chapter l. Flow Graph Processing 

Chapter 2. Generation of Semantic Error Assertions 

Chapter ). Generation of Loop Termination Assertions 

Chapter 4. Proofs •• 

Chapter ) . Related Literature 

Chapter (). Extensions and Related Topics 

Chapter 7. Conclusion 

Appendix f.. Examples . 

King's F~amp1es l-9 

McCarthy's 91 Function 

A~pendix B. Node Visiting Algorithm f'rom Chapter 4 • 

BibliOrjro.phy 

Index and !!otation 

v 

1 

1 

17 

23 

121 

131 

132 



Note to the reader 

I have tried to structure this thesis so that it ca.n be read at 

many different levels of detail. You have already passed the first 

level, the title. I have tried to write the introductory chapter so 

that yJU can ~ee what the rest of the thesis is and is n0~ about and 

how this W,lrk i~ different fr::m others. Hopefully, aft.er reading the 

introduction, you will have enough information to rrecide whether to 

read the rect. At the third level of detail, e::..ch chapter begins with 

u ~ummary of itc content. If your interests are very specific, th~s 

.;t::m.l.d all~w y::JU to skip the bulk of some chapters. The chapter 

~urnmariec end with the ;;ymbol ·~ • The fourth level is Appendix A. 

All of the example::: in it should be rea.dable if you have reaci just the 

chapter summarier. The rest, of the thesis is at t.he firth le...-e.L of 

deta}l. For yet more detail, read a~l the references, ~references, 

etc. ~Proof ~f termination of the last step is left to you.) 

For a quick readinc, I woulC. suggest the following order: 

Chapter , Example 1 in Appendix A, all the chapter sunnaries, then 

r;xarnple L> in Appendix A· For reference purposes, on pages 1)8-139 

there is an index, and ~n pa.gt~::: l.f-68 there is a. sumrrary of the points 

covered in the Appendix A ext~ples. 

vi 



Chapter o. Introduction 

This thesis discus':;es techniques for proving that a ccm:plter 

program terminates cleanly -- that it always terminates and cioes so 

without eneour.tering any s~antic errors -- overflows, out-of-range 

subscripts, etc. Ir. contrast with others' work an rigorous proofs of 

program correctnesu, this work only tangentially examines what a 

program doE's; the emphaPis is on proving that whatever it does, 

a program always t.;;.nninates normally. 

Pro.J:f a:f clean termination is not an end in itself. Rather, it 

is a w~.ll-de:fined subgoal in convincing oneself that a program works 

reliably. P:l~pving that a program does not "blow up" in the middle 

does not in wty way say that the program correctly produces usefUl 

result~; it j-.1st says that whatever the program does, it will eventually 

c;xne tc a normal end. For a large class of programs, it is usefUl to 

run a set of test cases to demonstrate that the program goes through 

its intended notions for at least those test cases, then to try to 

pr?ve that the program terminates cleanly in order to discover anaaalies 

that the test cases missed. The proof will pick up problems like: 

( 1) Degenerate cases of sane data structure which the program did 

not anticipate and which result in, say, the use of a zero 

subscript in an array whose lega1 bounda are 1:100 • 

(2) Degenerat•~ cases where sane loop exits before iterating at all, 

leaving some variables undefined (never assigned to) cm exit. 

(5) A programner' s assumption that, say, N is always positive, when 

in fact there is not an explicit test for this, and the prosnm 

loops indE!finitely if N = 0 • 

1 



t'hapl..e!' o. Tnl,·oduction 

(4) Use of uninitialized variables, which could make the program 

non-deterministic. 

( 5) Calculations on o. small ( ~,;ay !()-bit) machine which could easily 

prod•lce integer overflows a11d hence invalid results. 

For some :r-rograms. this process is not very useful. For example, 

in :::. matrix. in·;~rsi0n l'outine almost every arithmetic operation could 

p:-o'.i' ~"' ..... ·.:v~rflow 0r underflow, so the attempted proof of clean 

t..:r.nina. ion ·.vi :.1 fail miserably, fla,~ing almost every statement as 

a possiblo: place for an unclean tennination. 

For other programs, proof of clean termination may actually be an 

~">·.,' in itself, as in certain real-t:iJr:e programs or ::>perating :oystem 

subsy~tems, where it may be all right for the program (or subsystem) 

t::; .:i ve wrong n.nswers ::Jccasionally, but it would be disastrous if 

the pro1:rta.m ~::>t in an infinite loop and impacted the operation of the 

r€:st of the systeM. 

Proof of clean termination is a valuable tool because it is a 

well-defined problem which lends itself to being done almost entirely 

mechanically, with very little help from a u£er. Unli1<:e rigorous 

pr:::nf:.; ::>f correctness, which require the usP.r to supply a ce.refully­

constructed set of as~ertians about the program's behavior, proofs of 

clean termination can use mechanically generated assertions: based 

on each operator in the program, it 1~ possible to synthesize a Get or 

asGertions about s~,antic errorG, and based on some flow analysis of 

the program, it is possible to synthesize a set of assertions stating 

that each loop teminates. Attempting to prove these assertions then 

usually has the effect or finding that same of them aren't true and 



Chapter o. lntroductloa 

hence suggesting to the user bugs to be fixed or an appropriate set 

of restrictions for the program• a data. The user can then eit~er chAnge 

the program, or &dd tests to the program to detect data that .:an 't be 

handled (and if' detected, retum a clean indication or message), or run 

the program as it stands, knowing that it will blow up in a possibly 

obscure way for SCIIIe sets of inputs. 

In contrast to work on algoritbn correctness, the system described 

here deals explicitly 'With programs which tail because of finite-range 

arithmetic. In this regard, see London's certification of' the 

algorithm TREESORT3 (London l97'0b ], in which he states " ..• it is 

possible and appropriate to certify algorithms with a. proof of 

correctness. This certification would b·~ in addition to, or in many 

cases inste&d of, the usual certification [by testing]", and Sites's 

certification of the ;program TREESORT) [Sites 1974 ]1 in which he notes 

that the :Program can fail to sort large arrays because of an overflow 

in the subscript calculations, in ~pite of London's proof' of' correctness. 

The same issue is pointed out in London's reply to Redish (Redish 1971j. 

As minicomputers and microcomputers with small word lengths proliferate, 

the restrictions of finite-range ar1tl:lnetic will become more important. 

In contrast to work on partial correctness, the system described 

here deals explicitly with proof of termination. In this regard, see 

King's proof of partial correctness of a simple division program 

( Kinf 1969 ] , and the same Example 2 1n Appendix A of this tb as is, in 

which it iS noted that King'S proof' Of :parti&.l correctness includes 

the case of division by zero, for which the program loopa indefinite~. 

At this point, I will 8UIIIII&l'ize the major lilllitationa and reBUl.ts 

of the work described in subsequent chapters. 



Chapter 0. Ir.t roducti on 

Limitations: 

(l) There is no ccmputer implementation of the tecbniq'4es. 

(2) Calculations with floating-point numbers are not h&ndled, 

although Chapter (, includes sc·"''e disr...1ssion of the problems th~t would 

be involved. 

(5) Recursion and asynchronous events are not handled. 

( 4) Th~: system in hct rtquires a. minimal amount of program 

annotation to be ::;upplied by t:1e user -- descriptions of the bounds 

of arrays passed t? pr:)cedures, and descriptions of the intended 

structuring of linked lists and trees. 

Re::ults: 

(1) The analysi~ 8f a program is based on an algorithm for the 

forward prYpaGation Jf information while visiting the nodes of a 

progrM:' s flow .:raph in a fixed ordt'r. The last time a node is visited, 

all the asrertions assJCiated with it are either proved, disproved, or 

~he theorem prover give~ up. Proved assertions need not concern the 

user, disprQved ar.sertion~ represent definit~ bugs or hidden restric­

tions, and the remaining assertions represent possible problems on 

which the user should focus hiu attention. 

r2) A second result is a set of techniques for untangling loops 

and eliding tests, an extension of the interval analysis and compiler 

optimization techniques of Cocke, Allen, et ~· [Allen 1970] [Allen and 

Cocke l'J72 l. The technique for finding paths alone which a. test ca.n 

be elided is important in the automatic synthesis ?f lexicoeTapoic 

orderinv,s for proving termination of complex loops. 

(5) Techniques e.re presented for proving the termination of 

some loops which do n::>t lend themselve::; to mapping into monotonically 



Chapter 0. Introduction 

decreasing sequences, such as some search-for-equality loops and 

circularly-linked-list loops. 

( 4) Procedures, parameters (both name and value), read statements, 

and arrays are all explicitly treated. 

( 5) Specific pro~ams which ha.ve been proved to terminate cleanly 

include TREESORT3 [Floyd 1964] (London 1970bj {Sites 1974]; SEOCT, 

an algorithm for finding medians [Floyd and Rivest 1973] (Sites 1974]; 

an iterative version of McCarthy's 91 function [Manna~~· 1972]; 

and s~e of King's examples {King 19($) (see Examples l-9 in 

Appendix A) . Hand simul-:~otion of these proof techniques uncovered a 

hidden restriction in TREESORT3 and a simple bug in Knuth • s 

Algo:!'i thm 2. 3. 3A {Knuth 197}b] • Preliminary vork on this thesis 

included hand simulation of some of the techniques on a wide variety 

of programs: a list reversal routine, a symbol t .. ble search routine, 

Knuth's program for Dijkstra• s inversion problem [Knuth 1973a], 

a noating-point calculatioo [Fritsch et al. 1973], a bash aearch 

routine (Brent 1973], and a list move routine {Reingold 1973). 

In brief, proof :lf clean tennination is a mechanical process, 

requiring little effort fran the bum&n user, which can do much of the 

tedious work of examining a program's behavior in all possible degenerate 

cases, for all possible sets of input data, and either report to the user 

an assurance that the program is free of an important class of errors, 

or report pieces of the program or sets of inputs which may fail. This 

process can be applied to programs for which we have no yay of even 

expressing vha.t it means for the program to be rigorou.ab "correct". 

5 



Chapter o. Introduction 

lUGS lUNNY Ill, H•l••••l &· ....... 

6 

IT' \M:l.JL.D TAKE .zo ....,.., A vua 
'R) WOIU< IT'~ 

~-, 



Chapter ~. Flow Graph ProCessing 

This chav\er discusses preliminary modifications to the flow graph 

of' a program to make its loop structure more tractable. Tbe modifications 

cons is;; of putting all ~oops in leading teat fonn and inserting a 

"loo'fhead" nod~ at the beginning of each loop. Copies ma.y be made of' 

scme nodes in t!le flow graiJh, either because of' node splitting during 

interval analysio1 {Allen and Cocke 1972] 1 OI' because of' pe:nnuting 

the nodes in a loop to bring an exit test to the front of the loop. 

The nodes in the modHicd flow graP1 are then ordered so that when 

a n~de is encountered in subsequent processing, all of its 

prmiecessors (and any loops containir.3 them but not the current node) 

... ill have already been processed. 

For programs which have alre8(\y' been put in while format (perhaps -
~.lsinr; techniques described. in [Ashcroft and Manna 1972]), the processing 

described in this chapter can be skipped, except tor the insertion 

of "loophead" nodes and ordering the nodes. 

In this paper, we sha.ll viev all programs as tl.ov gra}hs cODaisting 

or nodes and directed arcs. our flow graphs have seven kinds of nodes: 

binary test, assignment, START, HALT, PRa::EDURE1 RmJRlf1 and CALL. 

The last three aren't strictly necessary, but they make the discussion 

of subroutines easier. All high-level flow-of-control constructs are 

mapped into tests and assignments. Thus, Algol (:() FOR loops are mapped 

into leading tests and explicit assignments to the control variable, 

Fortran DO loops are mapped into :f'ollov1.ng tests, and CASE atat•ets 

are mapped into a series of testa (inctead o:f' a single multiple-exit 

7 



Chapter 1. Flow Gra]lbs 

test). An eighth kind of node, the LOOlHEAD node, will be d1acu .. ecl 

a little later. 

We sh&ll assume that, in forming the flow gra:ph, any necessary 

variable renaming b&s beer, done so that all names are unique and ve 

do not have to deal with scope rules. Bloc1ul and scope rules would 

have to be handled in a more complicated way if the system described. 

here were to be redesigned. to analyze recursive procedures. For our 

purposes, input/output statements could be modeled in the flaw gra}il 

with assignments to/from the variables read or written. Canpllcated 

input/ output semantics can be modeled with assignments to auxiliary 

variables representing, for example, device position. 

The nodes in our flow gra:phs are connected. by directed arcs. Test 

nodes have two arcs leaving them (exit arcs); HALT and BE'l'UBR nodes 

have no exit arcs; all other nodes have one exit arc. STARr and 

PROCEDURE nodes have no entry arcs; all other nodes have one or aore 

entry arcs. 

A complete flow graph for a program and its sub-proeedurea conaiata 

of a set of disjoint graJils, one for each procedure or main progra.. 

The graph :for the main program contains exact4 one STARl' and one HALT 

node; the gra}bs :for the sub-procedures each contain <llle Pli>CEWRE 

&.nd one RETURN node. The limitation to a single RE'l'UIIf node 11 

somewhat arbitrary, but allows us to describe one set ot exit conditiaa. 

for a procedure, instead ot describing a ditterent set ot coaditiaa. 

for each RE'l'Um. 

We accept general :flow grapbs of the type descr1beo. above u 

input; but to f'ind, analyze, and eventue.J.:Qr prove the tena1Dat1011 ot 

the loops in a progrl.llll, we need to modity the inPlt tlow gra:pb to 

8 



Chapter l. Flow Grapba 

put it in a more constrained toi'!D. The apera.tiona described belov 

are to be perfonned on ea.ch of the d.isjoint gra}lba, representing one 

prvcedure each • 

First, we perform interval ana.lyais with node splitting [Allen 1970] 

[ Al.len and Cocke 1972], [Cocke and Schwartz 1970], which forces each 

loop in the graph to have exactly one entry node, so that we can analyze 

the manipulations within a loop in terms of unique initial entry 

condition£. A graph with multiple-entry loops, such as the one in 

Figure 1.1 is changed into a reducible graph by~ splitting, which 

makes copies of sane of the nodes ot a graph so that the new graph 

ha.~ fewer multiple-entry loops. Node splittillt1 would change the gra);il 

in Figure 1.1 to that in Figure 1.2. 

Arcs which go from a node within an interval to the interval head 

node are called latchback ~; they represent branches ba.ck to the 

beeinning of a loop. In any interval which has l.atchback arcs and 

whose interval head is not already a loopbead node, we now replace the 

interval head node, A , with a pair ot nodes: a LOOHfEAD node and A • 

We reroute A's original entry arcs to the LOOlHEAD node, add an arc 

frcxn the I.OOHIEAD to A , and leave all of A's exit arcs intact, as 

in Figure 1..3. The IOOHIEAD node serves to identify the 3 (begirming) 

of a loop and provides us a convenient place to attach loop termination 

assertions. 

In analYzing a loop, we are interested both in ita branches back 

to the top of the loop (its latchba.ck arcs) and in its loop~ !:!£!• 

which cannot lead back to the IOOJHEAD node (without go:lr,g through 

the I..OOHIEAD node of a captaining loop). We are interested in the loop 

9 



Cb&pter 1. Flaw Grapba 

Figure 1.1. An irreducible grapb, with rectangles shoving its 

partition into intervals. The loop :a: has multiple 

entry nodes, mak1ng its analysis dU'f'icult. 

11\ 



Chapter 1. Flow Gra.pha 

Figure 1.2. Node split version of the graph in Figure 1.1, in which 

-che loop :OC nov h.a8 a single entry node, C • 

ll 



Chapter 1. :Flow Gralits 

I 
I 

_j 

Figure 1 •. ~a. A flow gra.}il 

with its two interval~ 

indicated by dashed 

lines. 

Figure 1. 3b. The same f'l.~;w 

graph after 1nsertin6 

LOOlHEAD nodes • 



Chapter 1. Flow Gra]ila 

ait arcs becauae one way of proving that the loop te:rain&tel il to 

prove that an exit arc IIIU&t event~ be taken u the progra executes. 

We may find that two or more loope in a program have a ca~~~on 

beginning node and interval analysis indicated only a single loop, 

as in Fi~e l.4a. To detect and cleu up this situation, we in 

general need to mod.if'y eac!l loop so that every path around the loop 

goes through an exit ~est (a test node which has a loop exit arc 

J.eaving it). We make a separate, containerl, loop out ot any paths 

which do not exit directly, as in Figure L4b. More formally, it 

breaking one arc leaving a TEST node breaks the on1y path f'rom that 

aode which ~ventua.lly latches back to the top of the loop, then the 

other arc :.eaving the TF.ST node is a loop exit arc and that TEST node 

is an exit test. [ Al.Bo see Appendix A, Excple 10. ] 

In anaJ.yz ing the effects of loop~ (described in Chapter 4), ve 

may find it convenient to permute the nodt.s !.nside each loop (Figure 1.5) 

so that all the exit tests are at the tt·p of the loop, thus making it 

easier to consider the degenerate case of zero iterations. If a loop 

has multiple exit tests, this modification is not always possible, so 

the best ve can do is permute the loop so that one of the exit tests 

is at the top. [See Appendix A, Exaltlples 4, 7, and 10.] 

One final step in the preliminary processing ot the t'low graphs 

is to order the nodes so that when ve later examine them one at a time 

t~ gather information and prove b~:ertions, all or the appropriate 

predececsor nodes vill have been already examined. We use the following 

rules to order the nodes: 

13 



Chapter 1. Flow Graphs 

r -- -l lr--

f I 
I I 
I I 
I 
I 

., 
arcs 

latchback 
arc 

loop exit 
arc 

Pi~e l.4a. A single loop 

as seen by interval 

analysis. The interval 

is indicated by dashed 

lines and may contain 

more nodes below E . 

.... . . . . . . . . . . . . . . 

. . . . . . . . . . . 

latch­.,. __ back 

arc 

Figure 1.4b. The same graph 

after forcing each path 

arowld a loop to go through 

an exit test • The two 

termination issues of getting 

to node C and getting to 

node E are- separated now 

into two different loops, 

indicated by their loophead 

nodes and by dot ted lines • 

Note that, in contrast to 

intervals, node E and its 

successors are not in the 

loops. [See also Appendix A, 

Example 10. ] 



Chapter 1. Flow Grapba 

Figure 1. 5a. A loop without 
leading exit tests. 

Figure 1. 5b. i'be same loop 
penruted. so that the exit 

test is at the top. 



Chapter l. Flow Grapba 

(1) Reduce each loop in the program to a single node. 

(2) Topologically sort [Knuth 1973b, p. 258] the nodes in the reduced 

graP1, using the directed arcs as the ordering. 

( 3) For each node in the reduced graph which represents a loop, 

topologically sort the nodes within the loop, ignoring all 

latchback arcs, then insert these nodes in the main topological 

ordering as a single group, so that all the nodes in the loop 

precede any nodes which followed the loop in the reduced ordering. 

(4) Apply Step ~ until all loops have been expanded. 

A discussion or this ordering and its properties appears in 

[Earnest et al. 1972]. 

16 



Chapter 2. Generation of Semantic Error Assertions 

This chapter diseuaaes the generation of assertions which state 

that "no semantic error occurs if the following node is executed". 

This is a very local., operato!"-driven process. These assertions are 

attached to each of the entr.r ares for the node, as in Floyd's original 

description of the inductive assertion teclmique [Floyd 1967]. 

semantic errors occur whenever an operation gives an undet1ned result, 

as specified in the language definition or in a set of implementation 

restrictions for a particular compiler/computer combination. The 

ex'll!lPles are given in terms of Algol 6o programs running on a machine 

which gives undefined results for underflow/overflow, assignment or 

any other use of uninitialized values, subscripts aut of range, etc. 

The machine is also assumed to perform mathematically correct 

canparisons of, say, i and j even vhen j-i would overflow/underflow. 

Machines (such as the COC 6600) which violate this last assumption 

are discussed below, and in [Sites 1974]. 

Assertion generation for value parameters is straigbttorward, 

but name parameters are handled strictly according to the copy rule, 

making a separate copy of a procedure for each call. 

The symbols I in and I are introduced as notations for m max 

the smallest and largest representable integers on the target machine. 

The symbol w is introduced to denote the undefined value. 

After forming a modified flow gra:ph, as described in Chapter 1, 

we attach to its arcs various assertions stating that the operations 

in each node are well-defined. For each node in the nov gra:ph, ve 

17 



Chapter 2. Semantic Errors 

mechanically fo~ a set of assertions describing restrictions on the 

program variables which must be true upon entry to the node in order 

for each operation in the node to produce well-defined results. We 

then attach this set of assertions to each o:f the entry arcs for that 

node. 

In most of the examples which follow, we shall assume that 

programs are written in Algol fJJ and are run on a compiler/computer 

system which has the following implementation restrictions. 

1. No real ntunbers. 

2. Integer overflow. The binary operations i+j , i-j , i x j , 

and i .;- j , give the mathematically correct result if and only 

if i and j have defined values and the result is in the range 

Imin to Imax inclusive; otherwise the result is undefined. 

Division by zero produces a result outside of the range Imin 

to Imax . It is assumed that !min < 0 

an example, for the PDP-8 with 12-bit 2' s 

arithmetic, I = -2048 , min I = +2047 max 

and I > o As 
max 

canplement integer 

A program can be analyzed using only symbolic values for 

I . and I , in which case we may be able to state maximum mJ.n max 

and minimum value;; :for them, respectively, drawn fran the values 

of the smallest and largest integer constants in the program. 

Alternately, a program can be analyzed with only loose bounds 

on and I , such as ms.x: I in < -1!)()0 , m -
I >1000. max-

This will save sme work in checking that the small integer 

constant:s oi'ten encountered in programs are within the representable 

range. Alternately, the exact values of Imin and !max :for some 

18 



Chapter 2. S.uttie Errore 

1J&.rlieular machine can be supplied, 1D order to ausver the 

queation, "Will t:t;is program generate any overflows When 1'Wl on 

this :particular machine?" Moat of the examplea bel.ov &ellmle 

r in < ·1000 and I > 1000 • m - max-

3. Repreaenta.bl.e constants. All. integer constants lllUBt be in the 

range I 
1 

to I inclusive. 
m n max 

4. No use of uninitialized varia.bles, including simple aas1gm1ents. 

No right-hand·side expression is all011ed to use an uninitia.llzed 

variable. In particular, the operation 1 :=j will assign the 

value of j to i if and on:cy if j has a defined value; 

otherwise a semantic error occurs. It is possible to write 

programs which violate this restriction and still give meaningful 

results, but. more often a violation of this condition indicate, 

an error which is best caught a.a soon aa possible. 

Algol (fJ semantics for local varia.bles starting out undefined at 

the beginning of a block are modelled by p~tting into the now graph, 

at the start of each block, special assignments of the Wldefin!!d 

value, rn , to each local. variable. The program proper is not allowed 

to use m . 

5. Mathanatic~ correct canpa.rison. The rela.tions i < j , 1 5 j , 

i '> j , i ~ j , 1 ; j , i = j produce the proper value true 

or ~, even in cases where j -1 wou.l.d produce an overflow. 

For a machine which does not have this property, such as the 

CDC 66oo, programs must be transforaed so that every COIIIplU'ison 

is don~ a.s a subtraction and a sign test. All such subtractions 

will then be cbP.Cked for overflow in the nol.'ll&l way. TWo 

l9 



Chapter 2. Semantic ErrOrs 

representations of zero are allowed if tlie illlpleentation gives 

identical results for each. 

These restrictions are in addition to those specified in the 

Algol 00 Report [Naur 1963] 1 such as requiring each subscript to be 

within the declared bounds of an array. 

The examples presented here do not directly address the issues of 

a program executing in a given amount of memory or a given amount of 

time. The only guarantees about space and time are that both require-

ments are finite: the memory required is finite because no recursion 

is allowed, and because the bounds for individual arrays are limited 

by Imin BJ'ld Imax ; the time required is finite if all loops are 

proved to terminate. 

Typical assertions generated are: 

Node 

A(i} := j+k 

i < j+5 

i : = j 

Mil ::.A[ i ]+1 

Assertion generated 

j /= OJ 1\ k f w 1\ I in < j+ k < I 1\ m- -max 

the lower a.nd upper bounds for the array A • ) 

i f OJ " j f w " Imin S 5 S Imax " Imin S 

j+5 < I . (Since I-~- is assumed to be < 0 1 
- III&X ~· 

the condition I in < 5 is clear]¥ true.) 
m -

i /= w 1\ A I. S i $ Au 1\ A[ i] /= w 1\ Imin ~ 

1 S Imax A Imin S A[i]+l $ Imax 1\ i /= w 1\ 

A1 
$ i ~ J\_ • (The last two terms cane f'ran 

the left-hand A[i) .) 

20 



Chapter 2. Semantic Errorl 

Standard techni:tues can be used to silllplity the assertions, 

including removing terms which are clearly true, rmoving duplicat'. 

tems, and removing terms which are implied by other tems 

(1 < j 1\ 1 < 8 1\ i /- 12 red.uces to 1 < 5 ) . One way to 

remove redundant terms mecha.nica.ll.y fran a set T of n terms 

i~ to eliminate any term for which the theorem 

is true. ( {T-ti} represents the set of all terms except ti .) 

In most cases, the generation of semantic error assertions is 

quit-e straightforward, but some complicatioos arise in handling 

procedure calls. Arguments passed to ~ parameters are treated 

like the right-ha.n..i side of an assignment statEIDent at the I-Oint of 

call, i.e., the argument eXJ)ression must be well-defined when evaluated. 

before the call. In contrast, procedures with .!!!!!!!! paramm;ers lllUSt 

be handled strictly according to the copy rule, mak-.i ~ a unique copy 

of the procedure for each call and logicaJ.:cy IUbstituting the b~ of 

the procedure for the CALL node. This use of the copy rule is one way to 

reflect properly the side effects which can result :f'rom tricky use of 

name parameters, but is also a reason that we do not handle recursion. 

Procedures w1 th array arguments have the problem that the 

procedure does not speci ~ the legal lower and upper bounds for 

subscripts. Ei tber of two strategies can be adopted for generating 

and proving assertions about subscripts for such arrays: symbolic 

names like A
1 

and A can be used. in all the assertions, and the u 

proof techniques can try to push back to the entry point of the 

procedure any assertions (restrictions) which must be true on entry 



Chapter 2. Smantic Errors 

in order to avoid subscript range errors; alternate~, the prog~~~~~~er 

can supply an extra statement to the proof ayatem, describing the bounds 

for each such arr~. If the progrUIIler baa definite assunrptiCila about 

array bounds in his mind, 1 t is better to state them to the proof 

systEJil. Hot doing so forces the system to try to synthesize equivalent 

information, a much harder proce~s. 



Chapter 3. Generation of Loop Temination Asaertions 

This chapter des<.ribea tht> generation of assertiCXll which are true 

if and only if the loops in a J-rognu:~. teminate after a finite number of 

iterations. For IDtUlY practical cases, the assertions generated lend 

themselves to direct proof. For loops which have obacure reasons for 

tennination, the assertions have equally obscure reasons for being true 

(of course, in general, proving loop temination is theoretic&l.ly 

WlSolvable; we shall not solve the halting problem here) • For many 

loops which do not tenninate, the corresponding assertions can be 

proven definitely false and the user e.l.ertec'l to the bug, perhapa with a 

counterexample. 

The basic fom of the assertions generated is, "There exists a k 

such that on the k-th iteration of the loop, ooe of the exit arcs 

·.rill be taken.'' For ma.ny loops involVing monotonic expression!! 1n 

their exit tests, or simple searches, or mov•ent through a linked 

list, these assertions are .asy to prove. 

Loop tenninati -m assertions are harder to generate than semantic 

error assertions be.!ause the goal is much more abstract. For semantic 

errors, the assertions generated are a straightforward function of the 

source language definiticm and canpiler/ca~~puter iapl•entation 

restricticms. For loop temination, however, synth•iziDg &n J.ppropriate 

assertion may well be harder than proVing it true. 

Generation of te:nnination usertions can be "driven" by a variety 

::>f goals. One technique is to insert a counter in each loop and assert 

that the count is bounded; however, such a stat•ent doean•t lend 

1 tself to direct proof -- having a counter doesn't g1 ve any inaigbt 

into ita behavior. Another technique is to require all 1oopa to 



Chapter '· Loop Tel'llin&t1oo 

be FOR loopa or DO loapa in which the step and limit are evaluated - -
exactly ooce and the iteration variable cannot be changed inside the 

loop; t>UCh loops terminate by definition (if a zero step 18 prevented) • 

In between these extremes, we need to find a strategy tor 

generating asserL1~ns which are related to the intended reasons for 

loop termination that the progrBIIII!er bad in his mind when he wrote the 

loop. Without searching for these reasons, we will have a hard time 

mechanically proving the termination of subtle loops whose termination 

properties may be perfectJ.¥ clear to a human. In unannotated programs, 

the best evidence we have for the intended. termination of 100})& is 

in their exit tests. Fo::- :~. given loop to terminate, one of its exit 

tests eventually must be satisfied (i.e., branch to a loop exit arc). 

Orten the "!:.eats themselves present the reason for loop termination, 

while s:xnetimes the preceding logic (which eets the values of th~ 

variable ( s) in the test) embodies the reason for tenninatiCCl· 

For example, in a loop such as: 

~l<r~ 

if p(l) then l := l+l 

else r := r-1 

where p is an unspecified. predicate, the exit test t < r provides 

us with the proper driving goa.l: prove r-t is monotonically 

decreasing. If we try to prove that the loop terminates because 

either t or r is monotonic, we will fail; tile relevant monotonic 

expression inV?lves both r and t and appears only in the exit test. 

As a second example, consider the loop: 



Chapter -'· Loop 'l'el'll1nat1on 

COIIII'lent this program is a subset ot an example in l.Aahcrott and 

Manna lg72] ; 

t : = tru~; 

while t do 

begin 

if q(x) then 

begin 

x :=b(x); 

if s(x) ~ 

x :=c(x) 

else beg~ 

x:=f(x); 

t :=false 

end 

end 

~begin 

x := ::;(x); 

end. 

Here, the exit test of t orfers no direct enlightenment, but as we 

:;hall see in Chapter 4, the f'low graph for this loop will be meehanical.ly 

modifed by test elision so that the manipulations or t are ignored, 

the assignr.tents t :;;: false are immediately followed by branches out of 

the loop, and th~ a.ssi~ent x : = c ( x) is immediately followed by a 

branch to the test if q(x) • . . as in this modified program: 

25 



Cuapter 3. Loop Temin&tion 

loop: if q(x) ~ 

begin 

exit: 

x :=b(x); 

!! s(x) then 

begin 

x:=c(x); 

e;oto 1oop 

end 

else begin 

x:=f(x); 

goto exit 

end 

end 

~begin 

x:=g(x); 

goto exit 

end 

Thus q(x) and s(b(x)) become exit tests, and we are now more 

directl.y confronting the reasons for the loop's te11111nat1on. 

For loops with leading tests, such as those we tried to form by tbe 

m~iv~tions described in Chapter 1, it is straightforward to generate 

an assertion that there exists a k > 1 such that on the k-th 

iteration of the loop, an exit arc will be taken. For the original. 

~t loop above, the assertion would be: 

3.k > 1 s 0 t . - tk 

where the subscript k indicates "the value of tbe var1&b1e at the 

begiMing of the k-th iteration," i.e., the value of a var1&b1e at tbe 

LOOHmAD node, before any r.odes inside the loop have been executed the 

k-th time. The tenninaticm assertion for the modified loop above 

wou1d be: 

26 



Chapter ~. Loop Temin&tion 

4k > 1 s.t. ""q(~) v [q(~) "- a(b("Jt))) 

Note that we describe the exit test s(x) in terms or ~ 1 

the value of x at the top of the loop, as modified by the auignr.tent 

-.<. : = b(x) . In general, a multiple-exit loop may have exit teat.& t-thieh 

are preceded by enough computatioo that the values of the variables in 

the exit test cannot be described in tenna of the values at the top of 

the loop. In this case, we will have to abandon the top-of-the-loop 

bindines and st:A.te an assertion like: 

.:ik > 1 s.t. ""q(~) v,., s(xk) 

where the primed x. signifies the value of x upon entry to the 

te~t node s(x) , in the middle of the k-th iteration of the loop. 

All we are really doing is delaying the analysis of the behavior of 

xk until we actually try to prove the assertion true. This is 

awropri:J.te, sine~ we may find that the stronger theorEm 

3k>l s.t. -q(~~ 

is true, or we may find thRt the flow graph f'or the loop (and hence 

the termination assertion) is C31lpletely changed during the 1nfom.ation­

£athering and proving process described in Chapter 4. [A s~le 

multiple-exit loop is in Appendix A, Example 4.] 

While assertions such as those above can be mechanically 

generated fran any loop, it is in general an unsolvable problem to 

prove that the assertions are true. However, a am&ll variety of 

techniques based on monotonic expressions, finite sets, and searches 

can prove the tennina.tion of most loops encoontered in practical 

programs. Also, this strategy of generating a lk... usertion 



Chapter 3. Loop Termination 

sanetimes allows a proof' system to stat l that a loop definitely never 

tenninates. If the final i :=i+l were left out of' the loop: 

while A[ i) > 0 ~ 

~in 

i::i+l 

end 

and no other stR.tanents inside the loop changed the .-a.lue of i or 

A[i] , then the loop termination assertion, 

could l'e shown to be invariant over k , :and the qua."lti:f'ier dropped: 

A(i] < 0 

If this assertion is true, the loop terminates inmediately; if' it is 

false, the loop never terminates. 

The next chapter discusses proofs of the mechanically generated 

semantic error and loop te:nnination assertions. You may want to 

review Appendix A, Example 1, at this point. 



ChApter 4. Proofs 

This chapter is the heart of the thesis; it describes an algorithm 

for ex&llliniDS the nodes of a flow gra]Jb in forward topological order 

(detailed in Chapter 1), and at each node (l) trying to prove all its 

entry assertions, (2) perfonning extra processing for 1001HEAD and 

TEST nodes, and (:~) developing the given info:nnation for its exit 

arc:; (to be used in subsequent proofs). In trying to prove an assertion, 

there can be five answers: a) true; b) false; c) maybe, but more 

infonnation will be known later; d) maybe, but a refinement of the 

given info:nnation is available; e) or ,:luet plain maybe. In the last 

case, the user will have to decide if the :Program contains a bug or if 

the proof system just isn't powerf\11 enough. 

When a LOOHIEAD node is encoontered, a first pe.ss is made through 

all of the nodes in the loop gathering recurrence relations &.bout how 

the values of the variables at the beginning of the ~l st iteration 

are relAted to values at the beginning of the k-th iteration. Then an 

induction routine tries to describe the set of values each variable 

takes on during !:!! iterations. Finally, a second pe.as is made through 

the loop, proving asse1~ions and processing nodes in the normal way. 

When a TEST node i~ encountered, an attempt is made to elide the test: 

to prove thAt along sane entry pa.tb(s), the test is either always true 

or always false. If such a path is found, then it is separated t'ran 

other paths (perhaps causing node splitting), and re-routed around 

the test. The topology of the flow graph is then re-analyzed. This 

sanetimes has the effect of mechanica.l.ly synthesizing an appropriate 

l.exi-:ographic ordering on a pair of variables, when a single loop is 

changed into a pair of nested loops • 

29 



Chapter 4.1. Proof's 

Af'ter the entry assertions and the node itself' have been processed, 

the new given information for the exit arcs is synthesized. This 

synthesis involves merging the entry given information, the entry 

assertions, and the results of tests, then modifying this information 

to reflect any assignments inside the node. 

There is no backtracking in the node processing algorithm, but 

some nodes are visited more than once: a.) Since two passes are made 

n through each loop, a node inside a nest of n loops will be Visited 2 

times, although only n+l of these Visits will do any work. b) If a 

test is elided, the graph is re-analyzed and re-processed from the 

beginning of the outermost loop containing that test. 

The notation " ~E " is introduced. to specify an initial subset of 

an ordered set. [See Appendix B for a SllJIID1&1'Y of the procedure for 

proc~ssing nodes.] 

Given a modified flow graph with assertions attached, as described 

in Chapter~ 1-3, we will now process the nodes one at a time, proving 

asse1tions and developing information for the proofs at later nodes. 

Starting with the gra1m for the outermost procedure, we examine each node 

in topological order, performins the following operations on it as we go. 

1. Prove Assertions 

First, we try to prove the assertions on the entry arc(s). If 

the node is a LOOP.iEAD •.ode, we temporarily ignore the assertions on 

the latchba.ck arc ( s) , and just treat the initial entry arc ( s) • Each 

a.rc has attached to it two sets of information: the given information 

developed on exit from the predecessor node, and the assertions to be 

proved. (The given information for STARr and PROCEDURE nodes is null.) 

30 



Chapter 4 .1. Prcota 

We simply call a theoraa prover tor each aaaertion on an arc, &ak1..'1g it 

to prove 

given ~ assertions . 

The possible answers ~~ false, and ~ are explained in detail 

below: 

a) If the answer is ~~ then we mark the assertion true and 

never bother proving it again. 

b) If' the answer is ~~ then the program contains a. definite 

error. At this point, we can state to the user that the assertion 

was false and go on, but we can o:f'ten be more help:f'ul than that. 

Fir£t, the theorem prover may have supplied a counterexample, a set 

of values for program variables which make the assertion false. In 

this case, we tell the user the counterexampJ.e. Second, a f'allle 

assertion may be an indication of M error much earlier in the program, 

so it voul.d be helpf'ul (but entirel¥ optional) for us to "pu.sh back" 

the assertion as far a~ possible toward the start of the program. In 

moving such false assertions toward the start of the program, we may 

find related a.asertions moved to a c011111on point fran many different 

nodes of the program. In this case, we can give a. single error message, 

instead of "discovering" the same bug in, say, three different places. 

To the extent that this merging of related or identical f'abe uaertions 

ic success:f'ul, we also guide the wser to the most appropriate place in 

the program to fix the error. If an assertion is f'allle on the very 

first iteration of a. loop, then we ma.y be able to move it outside of tbe 

loop entirel¥, thus directly indicating an error iD loop initialization, 

not (necessarily) in the inductive properties of the loop. [See 

Appendix A, Examples 1 and 2. ) Any fa1se assertions which are pw1hed 

31 



Cbapter 4.1. Proof a 

all the way ba.ck to a START or PROCEDURE node represent entry 

restrictions for the whole routine, and should be both documented 

and explicitly tested. Thus, although this movemen4;. of false assertions 

is not logically required, it ~ables our system to encourage a 

programming style which includes explicit, executable tests for all 

entry conditions, perhaps coupled With the printing of a user's error 

message and the returnlng of an "undefined 'Wer the given inputs" value 

for the result of a function. Aiternately, we may encourage a style 

which t:~ends the meaning of a procedure to include all possible inputs, 

thus removing tht restrictions. In either case, the user is encouraged 

to make his program more reliable without his engaging in a. tedious a.nd 

often incomplete a.nalysic of degenerate cases. 

c) If the answer fran the theorem prover is maybe, but we are on 

the first, information-gathering pass around a loop (using dummy bindin~s 

of variables), then we simply reserve judgment until the second pass. 

It would be possible to attempt no theorem proving at all during the 

first pass through a loop, but that has the general effect of delaying 

the discovery of information and lenmas which are useful in ~~ing 

the loop. So, as a sanewhat arbitrary choice, we try proving all 

assertions on the first pass through a loop, dropping ~hose for which 

we are successful, and trying again on the second pass for the others. 

d) If the answer from the theors prover is maybe, but the given 

information has come fran a merging of sever1:1.l different pat~ and is 

marked "a possibly useful refinement of this infonnation is available", 

then we can break the proof down into se"leral cases, for different 

paths leading to the node being processed. A "refinement" mark is 

32 



Chapter 4 .1. Proofs 

1~9 1 > ll 

1~9 
(Refinement) 

1~9 
(Refinement) 

Figure 4 .la. At node C, the 

tvo rel&.tions about 1 are 

merged by taking the one 

implied by both, the weaker: 

(1 ~ ll) :J (1 ~ 9) and 

(i ~ 9) ~ (1 ~ 9) • 

1~9 

1~9 

1~9 

1 > ll 

i > 11 

i /- lC 

Figure 4.lb. BeCause the 

refinement is uaefu.l at 

the test, nodes C and D 

have been spl.i t to 

separate the tvo paths. 

The dotted a.rrow indicates 

the subsequent elision o~ 

the teat. 

Figure 4.1. Example of node splittin& to separate paths aasociated 

with a. usetu.l refinement of given in:l'o:nnation. 

"'"' 



Chapter 4 . 2. Proofs 

created wber. two a.rcs in the flow graJtl merge and they contain different 

gjven informa.tion, as described in detail later in this chapter. If a 

refinement of the given lnformati;:m exints, and we can prove the 

assertion in question conclusively true or false for some of the cas~s 

in the refinemer.t, then we make separatP. paths for those cases in the 

flow gr&.ph, :possibly making copies o£' l':OOie ~odes, as shown in 

Figure 4 .1. [ AJ.so see Appendix A, Examples 8 a.nd 10. ] 

e) If the answer from the theorem prover is maybe, ~.:hen e:i..ther 

the program contains an error or our proof system isn't go~d enough 

to discover that the theorem is in fact true. 

We have covered the five cases involved in proving assertions on 

entry arcs. We now look at the processing of the node itself. 

2a.. WOFHEAD !Jades 

If we are examining a LOOHIEAD n·:·ie, then we have just 

reached the beginning of a loop. To prove the various assertions 

inside the loop, we need to synthesi?e the ranges of possible values 

that all variables can take on in the body of the loop. Essentia~, 

if w~ can describe the complete set of values that a variable takes on 

at the loophead node, be it the first iteration or the k-th, then we are 

in a good positi~n to prove all of the assertions inside the loop which 

depend on this set of valut!s. 

OUr method for discovering the ranges of variables in a loop is 

to take one pass through the nodes in the loop symbolically developing 

the value of each variable af'ter one iteration of the loop in tenns of 

the value of all variables at the beginning of that iteration. For 

34 



Chapter 4.2. Proota 

example, starting with the symbolic bindings (2) in Figure 4.2, one 

pass throug)l the loop body gives the following recurrence relations: 

()) i.k < 100 1\ 

ik+l = ik+ll 1\ 

jk+l jk+l 1\ 

n.k+l nk 

w~ then feed these induction relations and the set of initial entry 

relations (l) to an induction routine, which synthesizes the complete 

set of' values that ea.ch variable takes on at the lOO}lhead node. The 

synthesized sets of values for i , j 1 and n at the L:>OlHEAD node 

would then be: 

( 4) 

where i
1
) represents the value ol' 1 at the READ statement. Note 

that it is wrong to deduce that 

i < lll 

at the LOOHIEAD node. This is only true arter going around the loop 

one nr more times, but is not t::u.e on the first iteration if the value 

ren.d in for i is, sa:.r, ;~7 . As discussed later in this chapter, 

the relatione for i and j would actually be marked "a retineaent 

exi~ts", so that the two cases of first iteration and .ubsequent ones 

could be distinguished later if n~essary. The details of the loop 

induction routine will be discussed later in this chapter. 

:35 



(1) entry relations 

ifW/\ 

j = 0 1\ 

n = i-1 

(2) symbolic bindings 

1k+l = 1k 

jk+l = jk 

nk+l = nk 

(4) synthesized 
range of values 

~hapter 4.2. Proot• 

.,_ __ (3) recurrence 
relAtions 

Figure 4. 2. Sample loop for shoving loop induction infol"lllltion. 



Chapter 4.2. Pl·oo:f's 

At'ter the initial pass around the loop and call of the induction 

routine, we attach the synthesized relationships and set of variable 

values to the exit arc of the LOOHIEAD node as gl ven information for 

subsequent nodes. We than take a. second pass arOWld the loop, 

processine nodes and proving assertions in the normal way, proving 

the assertions on the latchba.ck arcs just before processing nodes 

which topologically follow the loop. [For examples of loop processing, 

s~e Appendix A, Examples 1, 7, 91 and 10.] 

2b. TEST Nodes 

Tf the node we are examining is a TEST node, then we try to elide 

the test. We check to see if 1-he test is always true or always false 

along sane incaning path by making assertions out of the test a.nd its 

negation and tryine to prove ti~ese assertions. OUr normal refinement 

and path-separating mechanism described above ~11 then separate out 

any inc~ing path for which the test can be elided. If so, we re-route 

that path to the appropriate ~ or false exit node. This re-routing 

may change the structure of the loops in the program, eith<!r creating 

new l:>ops [example below and Appendix A, Exampl.e 8) or destroying an 

exi:::ting loop [A~endix A, Kxample 10], so we must re-analyze the 

c:tructure of the program, as describri in Chapter 1. Actual.l.y, we 

only need to re-analyze starting with the oute:m.ost l.oop containing 

the re-routed arc. A:rter the re-structuring, we start over at that 

autenno~;;t loop, gathering information and proving assertions. This 

elision of redundant tests is an important tool for separating 

loop-termination issues. For example, in the program: 

37 



Chapter 4.2. Proote 

!!!El:! p I A do 
1t1nfo(q) >into (p) tbenq:=link(q) 

else p := link(p); 

sanetimes we make progress tovard the end of the list p , and sanetimea 

we d.on 1 t. We can see in the flow diagram, Figure 4.3, that after 

setting q := link(q) , the test p l!t. is alvaya true since p is 

unchanged, so we can elide it, giving the program: 

~p~lt.~ 
begin 

while info(q) > info(p) ~ 

q := llnk(q); 
p := link(p) 

end; 

In this modified program, the two loop termination issues are 

separated: it is now fairly easy to prove that the outer loop 

terminates (if the inner loop dc·es and &18\aiDg that we have an 

appropriate model of sL"lgle-llnked lists), and the inner loop may 

or may not tenninate, depending on what else we know about q 1 

info(q) , and int'o(p) . In sane sense, the effect of our creating 

two nested loops is to synthesize an appropriate lexicographic ordering 

on (p,q) pairs. 



Chapter J •• 2. Proofs 

r'igure 4. 3. An example of eliding a test and thus changing one 
loop to two nested loops, separating tbe termination 
issues, and synthesizing a lexicographic ordering 
on p and q • 

39 



Chapter 4. 3. Proota 

3. Develop Given ~1tbrmation tor Exit Arcs 

Before leaVing a node and goiq on to proceaa the next cme, we 

must attach the appt-opriate given 1nto:rmati011 to &l.l. ot the node' a 

exit arcs. We synthesize this by merginl the pven 1nforu.tiOD trom 

the node's entry area, adding the assertion• on those area (the 

assertions must be true or the program v1ll terminate lDlClean}¥ at 

t~t node and never traverse the exit ares) 1 and modif'ying eveeythiDg 

to reflect any assignments within the node. Also, it the node is a 

TEST node, we add tbe tested condition and its negation to the !!:!!.! 
and !!!!,! exit ares respectively. 

Simple as the preceding pa.ragralil may sound, there are aaae 

very canplicated. issues involved in this step. Tb~ first compllcation 

ariSes when a node has lllUltiple entry arcs with dirterent given 

information, as in Figure 4.4. We could simply uae the disjuncticm 

of the two cases for the exit arc: 

( 1 ,? 10 II m = 1) V ( 1 ,? 11 A m • 0) 

but this has the drawback that all proofs based on this 1ntomation 

will have to consider two separate cases. Since we would be creating 

multiple cases whenever two vl more arcs merge 1n the- program, we 

can be faced. with 2n cases af'ter n merges, as in Figure 4.5, 

where the given infonnaticm on the exit arc tor C incl.udes 

[(A 1\ i =' 2 1\ m = 4) V {"" A A i .. 1 A 111 = 1)) A 

[(B A i' = 3 Am' = 9 !\ j = 5) V (-B A j = 7 A i' • i Am' = m)) • 

This is an unwiel.d\Y premise for proving a later assertion like 

i' _2:0 1 

where the only relevant intbru.t ion 11 that 

1' = 1 , 2 , or 3 

4o 



Chapter 4.~. Proota 

given: given: 
i > 10 11. m = 1 i>ll 11. m=O 

? ----..... 

Figure 1•.4. Merging of different _6i \"tm information. 



Chapter a..3. 

1::1 

m:=l 

?---.. 

1 :• 2 

m.:-4 

Figure 4. 5. Cascaded merges can result 1n aa m.a.ny as four ditferent 

cuea to conaider at node C • 

42 



Chapter ~.3. Proof a 

Otten, it is unnecessary to keep track of the interplay between 

1 , j , m , the teat in node A , and the test in node B ; it can 

be sufficient just to remember 

(1 ~ i ~ }) " (111 = 1, 4, or 9) " (j == 5 or 7} 

on exit from node C . 

We would like to avoid disjuncts as much as :possible, 

mimicking the human trait of finding usefUl lemmas which cover all 

cases simultaneously. Yet we also don't want to lose an:t inter­

relationships (such as m = i 2 ) if they are in fact required in a 

later proof. One strategy is to record a set of weak relations 

which are true on all arcs being merged, and to mark that a refinement 

of these relations exist, i.e., that by going back to the point of 

merging, the exact disjunction can be formed if necessary. We try to 

use the weak, disjunct-free relations to prove subsequent assertions, 

and only if the stronger, more exact information is needed do we 

construct it. In the example of Figure 4.4, we would synthesize 

[ ( i ? D) " ( 0 S m :5 1) 1 (Refinement) 

as the given information for the exit arc. In the example of Figure 4.5 

we would attach 

[ ( 1 ~ i. :5 ~) 1\ ( m 1, }j, or 9) 1\ ( j = 5 or I) ] (Refinsent) 

to the exit arc at C . 

We can develop weak relations tram the fo1low1ng rules: 

( 1) Assume that infonnatior. from. n area nUIIlt.ered 1 to n is 

bei.ng merged, that the information on each are is a set of 

con.juncts, c1 = {R11 " R21 1\ R31 ••• " 1\i} and that we want 

to p1 O'tuce a set of conjuncts. 



Ch11.pter 4.3. Proofs 

(2) For each conjunct A on each of the n arcs, add A to the 

result set if that clauu is implied by the information on 

each arc, i.e., if 

V 1 < i < n ci ~A 

(3) Fo:nn disjuncts of clauses which occur on different P.rCs, but 

which contain the same set of variables (like j ~ k v j > k+2 ) , 

but avoid forming cross-product disjuncts of clauses with no 

variables in common (like i = 1 v n = 4 ) • 

(4) As a special case of (3) 1 change expressiona like 

(n "' i v n = i+l v n = i+2) to (1 ~ n 5 i+2) • Change 

expressions like (i = n v i > n) to (i ~ n) • 

The above rules are by no means "optim&l", but they offer a usef'ul. 

heuristic for what information to keep around and what information to 

reconstruct only U' needed to prove a particular assertion. [For use 

of these heuristics, see Appendix A, Exupl.es 3 and 6.] 

The crucial issue here is to make the syst• appropriately 

goal-driven: to develop high-payoff relations always, but generally 

not to synthesize any complex relations until the goal ot proving a 

specU'1c assertion demands the creation of those complex relations. 

Thus, we do not make all possible deductions from a set ot' relations 

(like deducing that i < k f'rom i < j A J < k ) , but instead we 

wait until some goal or driving force makes a particular deduction 

relevant (for instance, we may have to prove the assertion 1 f. k ) . 

One of the benertci&l side effects of rule (2) above 11 that it 

provides a driving force for discovering loop invariants: tor each 



Ct:.apter 4.3. Proofs 

relation on an initial entry arc of a IOOHIEAD node, we will try to 

prove that that relation is implied by tile information on the 

latchback arcs. If the implication holds, then we have discovered 

a relation which is true on all iterations of the loop, as shown in 

Figure 4.6. 

After merging information from multiple a<try arcs, we add all of 

the assertions on the entry arcs to the glven information we are 

building. We cannot cleanly exit the current node if an assertion is 

false, so all asserti8ns will be true if we in fact reach an exit arc 

during an actual execution. 

We have now formed a set or given infonnation that needs to be 

transformed to reflect any assignments inside the node being processed, 

then attached to all the exit arcs. We will call the untransfo:rmed 

information G , and its transformation G' • For scalar ~ssignments, 

i := expYession , 

the recording of' the new equality 

i - expression 

in G' is straightf'orward. However, for assignments to aggregates, 

such l:l.s to elements of an array or fields of a node in a list structure, 

we have to investigate the possibility of aliases: assignments to 

A[ 1] can change A[ j ] if i can equal j . So if' the node we are 

processing contJ~.ins an assignment 

A( i] := X 

we must look at G and for every subscript, s , of A in a relation R , 

we try to prove that either s "" i or s f- i , baaed on the information 

in G . If s = i , then we reflect the assignment A[s] := x , and add 



(1) given: i i J 

(2) given: ik+l = ik 

(4) synthesized by 
rule (2) on 
p. 44: 
given: i f. j 

Cb&pter ~. 3. Proof1 

..,.__ (.3) given: ik+l = j+l 

Figure 4.6. Synthesis of loop invariants. When we try to merge 
the information labeled (1) and (.3) 1 we find tbat 
ik+l = j+l ::> i /:: j , so by rule 2 on page ~4, ve add 
the relation i /:: j to the set of into:nu.tion (4) which 
is true on all iterations ot the loop. 

46 



r:bapter 4.3. l'l'oota 

the appropriate R' (which may be just the empty clause) to G' • 

If s f i , then the s-th element of the array is unchanged, so 

we copy R to G' unchanged. If Wf: dotl't have enough information 

to prove rmy relationship between s and i , then we add to G' : 

( s f. i 1\ R) v ( s = i 1\ R') 

We can avoid this disjunct if R :::> R' or R' :::> R , by adding only 

the ..,eaker relation (R' or R respectively) to G' , marked of 

course "refinement exists". We could also use the wf!&ker disjunct 

R '.J R' (Refinement) 

ignoring the interaction between i , s , R 

we could drop the relation involving A[s] 

to G' . [See Appendix A, Example 6.] 

and R' • Alternately, 

entirely and add nothing 

Arter transforming G to G' to reflect the assignments in the 

node, we attach G' to each of the node's exit area. If the node is 

a TEST node, we also add the test expression or ita negation to the 

given information on the appropriat~ exit arc. This CCIIIpletes the 

processing a.t a. node, so we can now move on to the next node. 

47 



(:hapter ~ .4. Proofs 

4. Details of Loop Induction. 

On the first, infonnation-gathering pass &rOWld a loop, woa try 

to generate a set of recurrence relations, expressing the value of each 

variable at the beginning of the k+-1-st iteration of the loop in 

tenns of the values of all variables at the beginning of the k-th 

iteration. We do this by inserting a set of dUI!lJIIy giv·en information 

on the exit &.rc for the LOOHIEAD r . .:.de, a set of eq\i.B.lities of the 

fonn: 

vk+l = vk 

for each variable v in the program. We then process the nodes in 

the loop in exactly the way described above, proving assertions, merging 

in:formation, and, most importantly, changing the vk+l expressions 

to reflect asr;;ignments. The onl,..v difference between the first and 

s~:cond pas:.;et; through a loop is the given information attache~. to the 

LOOHIEAD exit arc, a.nd a flag which says "don't worry if some assertions 

cannot be proved on the first pass". 

At the end o:f the first pass, we call the loop induction routine 

with two sets of information: (1) the initial condition of 

the program's variables upon entr,y to a loop, and (2) the 

recurrence reln~ions between the values of all variables 

at the beginning of the k-th iteration of a loop and their values at 

the beginning of the k+l-st iteration. The loop induction routine 

has the responsibility for synthesizing a description of tbe range of 

v~lues taken on by each variable within the loop. 

In general, it is a.n unsolvable problem to state tbP. exact set of 

values that a variable takes on within a loop, since deciding whether 

48 



Chapter 4.4. Proofs 

the set of values tor t 11 {tnae) or {tru.e1!!:!e) in 

t :=true; -
while t do --. . . . ' 

is equivalent to solving the halting problem. However, there are a 

few usefUl ~ial cases which are applicable to a large number of 

practical programs. 

The discussion below vill be in te:r:ms ot variables which take on 

integer values, although many of the ideas can be extended to 

character values, list pointers, and perbape floating-point numbers. 

As shown in Pigure 4.7, we will focus on a variable v , with initial 

value v
0 

on entry to the loop, with the recurrence relation 

(where v represents all the~ variables and F 

is an arbitrary f'unction) 1 and with perhaps a set of relations 

between v and constants or other program variables. 

Case 1. Invariant. 

If the recurrence relation is vk+l = vk 1 then v il invariant 

inside t.he loop, so its value there is v
0 

. 

Case 2. Monotonic relationshipe. 

If either vk+l ~ vk or vk+l :5 vk is implied by tbe recurrence 

relations, then v is either monotonically nondecreasing or nonincreasing 

inside the loop. For simplicity, we a&S\Uile the first case. The 

possible values of v therefore are a subset of the infinite set 

{ v0, v0+1, v
0

+21 ••• ) • If the recurrence relations also include an 

inequality like vk+l :5 x 1 where x is invariant in the loop, then 

we can bOWld the infinite set: 



Chapter 4. 4. Proof's 

(1) initial value: v = v0 ---e 

(2) d.UIIIIIy bindings: ____ __. 

vk+l = vk 

( 4) synthesized set of ___ .... 
values within loop: 

v = ? 

(3) recurrence relations: 

vk+l = F(vk) 

(vk R vk or c} 

(vk+l R vk or c} 

Figure 4.7. Model for loop induction on variable v. 



Chapter 4.4. Proofs 

If vlrtl = vk+c 1 where c is a positive canatant, then 

v c {v
0

, v0+c, v
0
+2c, ••• ) and v is strictly increuins. It v 

ia increasing unifo~ and bounded by x (invartut), then v 

taltea 011 all ot the values in a set: 

v • {vo, vo+c, ... :r) 

where y ia the largest element of the set tb,a.t satisfies the bound x • 

If the bound on v is v I= x instead of v :S x , then the 

an~sis is more complicated. Given 

v c {vo, vo+c, vo ... 2c .•• } 
and 

V /: X , 

then the va.l.ufts v takes em are bounded by x if and c:m.ly if x is 

an element of the set: 

i.e., v = (vo, vo+c, vo+2c, ... x) 

iff X ( (v
0 , v0+c, v0+2C • • •1 

Othervise the restricticm v 1: x is meaningless ud can be thrown 

away. Note that x can :tail to be in the set either becauae x-v0 

is not a multiple of c 1 or bec&U8e x < v0 • 

Case 3. Searching. 

The last case abo·re is perhaps better viewed aa a search, not 

as a bound: v takes on various values in a set, while searching tor 

v .; x • We encotmter a more general kind of search when v is a 

subscripted reference: 

v c {A[i0 ], A(i0+c], A[i0+2c) ••• ) 

and v/-x 

In this case, the set is finite if and ~ if the .. arch is aatistied, 

i.e., 

51 



Chapter 4. 4. Proofs 

or equivalently, 

Sane search loops tenninate on a forced match, as in: 

A[max] :=x; i :=1; 

while A[i] I x do i := i+l; 

In our analysis of such a loop, the initial. conditions include: 

i = 1 

A[max] = x 

and the recurrence relations include: 

i . +1 
k+l l.k 

Combining these, we attach the fol.lowing given info:nnation to the exit 

arc :for the LOOHIF..AD nodP: 

x is invariant in the loop 

A (the whole array) is invariant 

A[max] .c x 

i ... E {1, 2, 3, • • •} 

(The notation - E means "takes on each of the values in a subset 

con~lsting of the first n elements of the ordered set, for some 

n ::? 1 . '') With n~ other dri vinB goal, this is the end of our analysis. 

However, when we try to prove the loop tennination assertion, 

52 



Ch&})ter 4.4. Proota 

we first remove the subscript a k on the invariant variables: 

3k > a.t. A[ik) =X , 

then we look at the initial entry given inf'omation and find that 

A[J!l&X] = X , 

Following the reasoning above, 

A[u:ax) £ (A[l~, A[2], A[3], ••• ] 

if' max£ {1, 2, 3, ... } 

Since max is alsc• invariant in the loop, we may push this relation 

outside the loop as an initial entry condition: 

the search loop terminates if' max > 1 

[For other search loops, see Appendix A, Example 1, and the program 

SEIET in [Siter~ 1971t].] 

In summary, we have discussed a disciplined way ot gathering 

inrormation ror proving assertions attached to a flow grapb, including 

ideas for eliding tests, merging inrormation into usefUl lemmas, and 

proving the tennination of search loopa. 



Chapter 5. Related Literature 

Highlights of related literature include Floyd's original paper 

on !nductive assertions [Floyd 1967]; theses by James King [K::.ng 1969], 

Susan Gerhart [Gerhart lg(2 ], and L. Peter Deutsch [Deutsch 1973); surveys 

by Bernard Elspas [ Elspas et al. 1972b], and Ralph London [London 1972) ; 

the c~prehensive, but now somewhat out of date bibliogra~ of Ra1}il 

London [London 1970a]; and the canplete conference proceedings from 

the Symposium on Semantics of Algorithmic La.ne;aa.ges (see [Hoare 197lb]), 

and fran the Las cruces conference on Proving Assertions about Programs 

(see [Manna et al. 1972]). 

Since the publication c.f Fl~yd' s original paper or the inductive 

asrertion method [Floyd 1967], many people have worked on mechanizing 

the creation and proof of verification conditions, siven as input an 

annotated fl~w chart of the program. 

JBJI1es King built !1. program verifier [King 1969) which would accept 

simple Algol-like programs as input and produce proofs of their 

correctness with respect to a set of inductive assertions supplied by 

the user. The assertions are specified by ASSERT statements at 

appropriate points in the program. There must be enoogh assertions 

s1tpplied to brea": all paths around loops, and. more than the minimum 

number of such assertions may be useful for helping the verifier to 

distinguish the different cases involved in multiple paths around a 

1 oop. King's systs can synthesize an input assertion if none is 

supplied, essentially stating "these input conditions are necessary 

for the other assertions to be true." King's work was the original. 

inspiration for the present thesis. 



Chapter 5· Related Literature 

Susan Gerhart described a syat• for verityins APL programs 

[Gerhart 1972], 1n which the uaer supplied 1Dductl ve usertiOils as 

ccmnents. Since APL can express vector operations without explicit 

loops, the proofs were lllUCh shorter than for equivalent J.l.sol-llke 

programs. The system is capable of synthesizing and proving saae 

assertions from the known semantics of APL operations such as asserting 

that the le:rt operand of sane operator must be a scalar, then proving 

that that will always be true because the lett operand ls 1n turn the 

re:.:ult of some other operator which always returns a scal&r value. 

This parallels our interest here 1n proving tbat a progr1111 contains no 

semantic errors. Gerhart also suggests a broader view of verification, 

including varicus forms of semantic checking of programs in lieu of 

debugging. She introduces the term formal. debugging, which means 

obtaining info:nnation about a program fran the structure or semantics of 

a program without executing it. Again, this parallel.s our intereFt here 

in giving a user feedback on the inherent internal. self-consistency 

or inconsistency of a program. 

Peter Deutsch built an interactive program verifier [Deu.tsch 1973 ]1 

which in s:m~e sense represents a second generation of verif'lers. It 

accepts input in a fonn quite simil.&r to King's, but uses more 

sophisticated proof teclmiques to do all of King's exampl.es, plus 

sane harder ones. Richard Waldinger and Karl Levitt discuss a silllilarly· 

ambttious proof system running at SRI [W'a.J.dinser and Levitt 1973]. 

The anphacis of both systems is to extenc\ the coordination between 

theorem provers and the kinds of theorems '.ihich occur when veritying 

programs. 

55 

.. 



Chapter 5. Related Literature 

All four of the above syst•s bypass the problem of proving 

that programs tennina.te. Donald Good also did a related thesis [Good 1970]. 

Various issues of theorem prover heuristics and refinements are 

discussed in [Wegbreit 1974], [Elspas ~ ~· l972a, b], [London 1972], 

and [ Smith 1972] . Smith refers to the problEm that " • • . we cannot 

prove correctness of programs in the mathematical sense as suggested 

by McCarthy, more ~e to our inability to state what we are trying to 

prove than to our inability to find actual proof methods." 

Hoare describes the developnent of an a.xianatic approach to 

proving correctness 0f programs, with successive extensions to include 

programs with function calls and programs with jumps [Hoare 19691 lgj'lb) 

[Clint and Hoare lg?'2]. It is instructive to canpu-e the va.rious 

proofs of the correctness of the program FniD [Hoare 1961] found in 

[Hoare 197la], (Waldinger end Levitt 197}], [Deutsch 197!1], and 

(Igarashi et ~· 1973]. 

Manna has exp1or~d the formal basis for induction on recursive 

program sche"ata, using first and second order predicate calculus 

[r~anna 1969]. An excellent survey of the various kinds of induction 

can be fOWld in (Manna et al. 1<]72}. In (Manna and .Pnueli 197:3 ], 

total correctness of a program ( 1. e., proof of tE:rmination and correctness 

with respect to the azsertions) is discussed, but only in terms 

of well-founded monotonic sequences supplied by a human user. Mann~' • 

1CJ69 article also discusses total correctness. Total correctness is 

also mentioned in [Burstall 1970], but his proof of termination for 

a program to calculate 2n fails to state the necess&.ry restriction 

that n 2 0 



Chapter 6. Extenaions and Related Topica 

This chapter discusses extensions or the techniques presented to 

cover a larger class of progriUilB and to increase the proportion of 

successf'ul proofs. Al.so, these techniq"'es &l'e related to issues in 

language design, to optimizing caapiler.:~, and to the current 

controversy about GO TO statements. 

Extensions 

The major extension of the work described here wou.ld of course 

be an implementation. ME.chines are much better than reading CCIIIIIIittees 

and referees at keeping one honest. Many of the parsing, now graph 

manipulation, and theorem proving pieces of such a system exist, but 

it remains to :p11ll them all together and build a coherent whole. It is 

important 1n such a system to bui1d. in heuristics, tuning, and biases 

to make decisions similar to those of a human about what information 

and lemmE..s in a program &:'e important. Fo:r instance, in Example 1 of 

Appendix A (bubble sort), it takes a canplicated deduction about the 

:crdering of elements in the array to prove that eventual.ly no inter­

changes are required and that the program therefore tenainates. However, 

in a somewhat similar program, keeping track of the possible rel&tiooships 

between elements of an array might be wasted ef'f'o:rt which does not 

contribute at all to the proof of some asserttoo. 

A second major extension wOilld be the inclusion of pointers, lists, 

and trees as data objects. 

The system could also be ~ended to allow the user to state acme 

extra assertions that he would like proved along with all the 

synthesized ones. These extra assertions could be merely to provide 

useful le~D~~~as to the theorem prover, but they also could be used to 

describe the data structure that the prosrut operate• oo, and to ask 



Chapter 6. Extensions 

the system to prove that that data structure 1a preserved 1-y the 

program 'Wlder all possible circumstances. Extra assertions could 

also be used to describe simple consistency checks on the intemecliate 

data or results of a program. While preserving consistency checka is 

only a small step bward a pro@l'8111' s being certified. "totally correct", 

such checks are of'ten easy to state and have a high payoff in detecting 

simple errors. 

One particularly useful check is to prove that for some set 

(array, linked list, tree, etc.), no elEments of that set are "lost" 

during the execution of the program. For instance, in a sorting program, 

it is useful. to prove that the outp.1t is a pe:nnutation of the input. 

An alternate way to state this, which may te easier to prove, is that 

all. of the dements of the input set are elements of the output set. 

If the set is an array being sorted in place, then it is only 

necessary to prove the local conditioo that whenever an elanent of 

the array is destroyed, by assignment to it, a copy or that element 

must exist either somewhere else in the array or in another program 

variable. If the t:teady state is that all elanents are saaewhere in 

the array, then the proof systan would only have to keep track of those 

(typically) one or two variables which contain cot'ies of elements 

being manipulated, and to detect the point in the program 'When the 

steady state is reached again. In keeping track of copies of array 

elements, it would be necessary to re-assign the "unknown" value c.o 

to all local variables upon leaving a block, to reflect the possibility 

of "losing" an element exactly at block exit. A. similar technique 

could be used in programs which m&nip.llate list structures, aski.ng 

the system to prove that no node in an input structure is lost by 



endins up With nothing pointing to it. With a model of the steady 

state of the structure, the proof ayataa mu.t keep track or the rev 

link f'! elda and pointer variables which do not match the model midv&y 

in the execution of a valid change to the data structure. For such 

programs1 it is necessary for the user to use a declaration-like 

language to describe the intended steady state of his data structure. 

Scme of the concepts in [Dahl and Hoare 1972] might be useful in defining 

such a langu.a.ge. 

The system can also be extended to include programs which 

operate on floating-point numbers. Although this is a difficult area, 

.:ufficient tools are becaning available to treat f'loatins-point 

computations very precisely. For example, [Malcolm and Palmer 1974] 

treat an algorithm for solving tridiagonal equations in terms of 

cccnputer a.rithmetit: instead of real number aritl:aetic. [Good nnd 

London 1~0] give Algol procedures for interval arithmetic dengned 

to use ccapater arithmetic and prove that they work. [HUll et !:!· 1~2) 
canbines Floyd assertions with backward error analysis. [Yohe 1970) 

discusses floating-point arithmetic, usi~ case analysis and assertions. 

In the system presented, there are weak area~J which need more 

refinement a.nd sophistication. These areas include ·'.he rules to be 

applied during loop induction, the rules to be applied when merging 

given information, and the rules for deciding to move a false assertion 

to a.n earlier place in the program. Extendi.Dg the current syatflll to 

recursive programs may not be easy. 

59 



c•pter 6. ExtenaiCifta 

Language Design 

As Gerhart has pointed out in her tbeaia [ Gerba.rt lgT2 ]1 one of 

the difficulties in mechanically analyzing a ~gram is to model the 

effect of a loop on a set of data. For ex111ple 1 it is hard to 

mechanically deduce fran 

that 

i :::: 1; 

loop: A[i] :=0; 

i := i+l; 

if i ~ n ~ goto loop; 

All} "' 0 and V 2 ~ 1 S n , A[ 1} = 0 

(The programmer may well have either "lmol~" or assumed that n ~ 1 1 

but the proof systan has to entertain other possibilities.) It is 

much easier to mechanically deduce what happens in the APL statement 

A - n pO 

where, among other things, it is not possible for some of the elemE:nts 

or A to be le:rt undefined. From considerations such as the above, 

it is easy to conclude that, to the extent that a language can express 

operations without explicit loops, it will be easier to prove properties 

about pro~_~rarns in that language. 

As part of our proposed style of explicitly stating all of the 

restrictions on the inputs of a program, it would be usefUl for a 

language to have an acsert statement. The form of the statement 

could be: 

assert boolean expression 

and its meaning would be: 

if boolean expression then comment OK; 

else teminate uncleanly 

6o 



Chapter 6. btsaiona 

SUch a conatruct vu added to the stantord. Algol w ccapi1er by 

Ed Satterthwaite 1n 1970 [Sites 1972, p. 491. The at&tement coul.cl 

either compile into executable code or not, depending on the user• a 

choice of faster execution versus ccaplete checkiftl, but in either 

case, the proof aystem can usume that the expreslion is true, and 

prove that the program tenainates cleanly with respect to the stated 

assumptions. Perhaps most importantly, the statement serves as 

documentation embedded 1n the source code of the program, so that 

anyone reading the program immediately knows the assumptions Which 

need to be satisfied for correct operation. 

Optimizing Compilers 

Most of the techniques presented here attempt to gather the same 

kind of information about a progrlllll that an optimizing ccapiler does. 

While optimizing compilers often generate code Which executes quic~ 

and which completely ignores run-time error chec.king, 1 t is possible 

to have both fast execution and careful error checking. For irultance, 

the c001piler can logically generate subscript bounds checking code 

for every array access, then use techniques like those presented here 

to prove that many of the tests are unnecessary, either because the 

subscript expression is inherently in range {perhaps generated by a 

contain~ for loop), or because the same expression is used 1n an -
earlier reference and need be checked on.l¥ once. 

In a. lang~Jage like APL, the same idea can be used to prove that 

the interpreter need not bother with some cooformability checks, and 

can perhaps be used to prove that the sbape, aize, and type of 

variables used. in sane statements are static enough that the statEments 

could be compiled instead of interpreted. 

61 



Chapter 6. &tension a 

Another issue whi~h occurs in opt~izing compilers is safety, the 

question of whether a calculation can b~ moved to a less-frequently 

executed :place without introducing semantic errors which ·.rould not 

have occurred in the original location. The classic example is: 

if x ; 0 then - --
y :== 1/x; 

in which some external consideration suggests moving the calculation 

of 1/x to a place in front of the test. This move is unsafe if x 

c::>uld equal zero at the new place. The information gathered by the 

system described here to prove that 1/x does not produce a semantic 

error is exactly the infomation needed by an optimizing compiler to 

decide if the movement of 1/x is safe. 

The GOTO Controversy 

One of the cl&a'lic examples to support the argument that eliminating 

~ !.2,' s can introduce redundant computation is this search loop :fran 

[ Knuth an1 Floyd 1971] : 

for i := 1 step 1 until n do 

if A[ i] = x then ~ to found; 

notfound: n := 1; A[i] := x; B[i] := o; 
found: B[ i] := B[ i ]+1; 

which can be modified to: 

i :., 1; 

while 1 $ n and A[i] ; x do 

i := i+l; 

if i > n then 

begin n := 1; A[i] := x; B[i] := 0 end; 
B [ i ] : = B ( 1 ]+ 1; 



which bas a redundant test i > n just be.l.ow the loop. The test 

elision technique described in Chapter 4 will eliminate the redundant 

test, as shown in Figure 6.1, thus maldng the £~-leas f'om just 

as efficient as the .E.~ form (admitt~, requiring a am&Tt.er 

ccmpiler). 



Figure 6.1. Test eli~ion makes this ~oto -less search loop 

potentially as efficient as its ~oto form. 



Chapter 7. Concluaion 

It is rJtY hope that eventually a system will be built Which 

will be better than a human progrUDer at taking an unknown 

program &nd discovering what it does and how it can fail. Perhaps 

the ideas in this thesis will form a small piece ot the foundation 

of that system. 

"I would rather write programs 

to help me write programs than 

vri te programs • " 



Appendix A. 

rhis appendix contains ten examples worked out in various levels 

of detail: King's nine examples, and McCarthy's 91 f\mction. Two 

other examples appear in [Sites 1974): Floyd's TREESOR1'3, and 

Rivest' c SEUX:T (a linear-time median-finder). To my knowledge, 

SELF£T has not been examined formally before. Proofs of partial or 

total correctness cf the other programs can be found in the following 

=eferences: King's examples [King 1969] 1 [Deutsch 1973]; the 91 

function [Manna et a.l. 1972]. 

As u reference aid, the outline beiow summarizes the issues 

discussed in each example. 

Example 1. Multiplication. 

Fir~t and second passes through a loop. 
Sequ·mce of four stages of loop given informatiOil· 
Termination of search for y = 0 . 
Infinite lovps vs. overflow detection. 
Pushing invariant assertion out of loop, false assertion toward 

rront of program. 

Examplt 2. Division 

Proof ,,f partial correctness vs. proof of clean termination. 
Distinction between first iteration given information and 

subsequent i '.:;erations. 

~1ahlng invariant assertion out of loop. 
Correlation between usage of two variables in proving tbat 

overflow Cl\ll' t occur. 

Example ;. Exponentiation. 

Integer divirion model. 
Loop termination for absolute value approaching zero. 
Merging given information and fanning refinement. 

66 



Appendix A. ~leE 

Example 4. Pr:1mal1 ty . 

MIUtiple exit teats. 

OVerflow asaerticm actu&J.l¥ proved. 

Termination proof unrelated to vbat program does. 

Example 5 • Zeroing. 

Arr~s, subscript bounds. 

Union of sets and " ... E " notation used 1n careful description 
of val~ea of i . 

Example 6. Maximum. 

Alias problem for arrays. 

Forward vs. backward analysis. 

Lemma discovery during merging of given information. 
Proof of no overflow only on secc:md pu11 through loop. 

Example 7. Bubble Sort . 

Failure to prove termination. 

Permutation for leading tests. 

Two nested loopa. 

Example 8. Multiplication via inerement/decr•mt. 

Use of refinement of merged info:nu.tic:m. 
Test elision forces node splittin8. 

Re-ana.lys is of loop structure mai:es two parallel 100p11. 
Mechanical removal of invariant test f'l'Ca loop. 

Example 9. Selection Sort. 

Termination proof' unrelated to what program does. 
Two nested loops, with successively more uaef'ul given inf'ol"'ll&tion 

on four passes through inner loop. 

67 



AppP.ndix A. Examples 

Example 10. The 91 Function. 

1'rans:fonnat1on of single interval into two nested loops. 
Pennutation :for leading tests. 
Two nested loops, with successive]¥ more useful given 1nto:naa.t1<n 

on four passes through inner loop. 
Use of refinement of merged in:fonnation. 
Test elision removes an inner loop. 
Partial correctness plus proof of clean termination gives total 

correctness. 

68 



Example 1: King's Example 1. Multiplication. 

This example is worked out in canplete detail, to give a cohesive, 

concrete example of the whole process discUJiaed in Chapters l- 4. 

Subsequent examples will only pick out highlights. A1l of the first 

nine examples are modifications of the nine examples in King's thesis. 

The modifications consist of' assigning the undefined value w t:> all 

variables at the beginning of a program, and inserting READ stattments 

for those variables which are essentially input parameters. Also, the 

inductive assertions which King supplied are stripped out. 

Figures ALl through Al.7 are selr-expl.anatory. The ca1111entary 

picks up again afte~ Figure Al.7. 



!Daple 1. *l.t1pl1catiaa 

Figure Al..l. Inpu.t flow graph tor progr11111. to calculAte x = a"" b 

by successive additions. Nothing elae is supplied 

by the human user. 

70 



Example 1. Multiplication 

r 
I 
I 

L 

I 

--

--, 
I 
I 

_I 
--

---

l 
I 
I 
I 

I 

J 

Figure Al.2. Interva.l analysis of flovgraph Al..l. The Dode• are 

labeled for reference. 

71 



~le 1. 

r 
I 
I 

I 

--, 
I 
I 

I 
I 
I 

___ _j 

Figure Al.3. The graph of Figure Al.2 af'ter insertion of the LOOHIEAD 

node and identification of the loop exit arc f'rcm node F to node I. 

AJ.l loop exit arcs will be shown with double lines. Every path 

around the loop goes through an exit test (node F) and all exit 

tests are just after the WOPHEAD node. Topologica1 sorting ot the 

nodes yields the following order tor subsequent processing: A-E1 

LOOPHEAD fl, F-I. This gra:pb represents all the aoditic&tiCIIUI 

described in Chapter 1. 



Exaple 1. ..Utipllcation 

Node Operator Assertion 

A. START 

B· x,y,a,b :zm := 

c. Read a,b Read 

n. X :'"'0 := 

E. y :=b := b/:Ul 

IOOJHEAD fl 

F. y /: 0 /: y/:w 

Q. x := x+a + x ;w 1\ a f.w ,... r.ain < x+e. < I 
- - max 

.-
H. y :=y-1 YfW 1\ Imin < y-1 <I 

- - max 

·-.-

Figure A1.4. Generation of semantic error assertions. Assertions 

for small constants (0 I= w 1 l ~ Imax) are ignored. 

Exit test Assertion 

fl gk>l a.t. Yk•O 

Fig-~re AL5. Generation of loop terminati~ assertion. 



BxMple 1. ~tlpl.icatiOD 

assert 8k > 1 s.t. yk =0 ----t 

assert y ! w -------~ 

assert x f.w 1\ a f. w 1\ 

Imln ~ 

:rta <I - max 

..,_ __ +assert y f.w 1\ 

Iain ~ 

y-1 ~ Imax 

Figure A1.6. Flow gra:Jil A1.3 with semantic error and loop temination 
assertions attached. If all of these assertions are 
proved true, then the l'l'OQrUI always teminatea cleanl\Y. 
We will in fact find that there is nothblg to preveot 
the overflow in node G1 and that the loop von' t tel'ldnate 
if b is negative. We will thus S)'nthesize JtiDs'a in}Rlt 
assertion that b ~ 0 . This graph represent• all the 
:proceuing described in Chapters 1 - 3. 



Node 

B: x,y,a,b = w 

C: Read a,b 

D: x:=G 

E: y : = b 

IJJO HIEAD· # 1 

Example 1. MUltiplicatioa 

Input "given" in~o 

--

X =(I) 1\ y =W 1\ 

a. =ID 1\ b =w 

X =(I) 1\ y =<J.l 1\ 

af.w/\bf.w 

X=O/\y=Wfl. 

8.fWAbfW 

X=O/\y:b/\ 

a/:wA bi:w 

A88ertiona 
Prove 

--

--

--

b/:w 

True. 

to OU.tpJt "given" info 

X =U> 1\ y :(I) 1\ 

a =W 1\ b =Ul 

X=W/\y=W/\ 

a !=w 1\ b !=w 
(Semantics of Read 
say that a and b 
are defined, there-
fore between 1m in 
and !max , but 

nothing else.) 

X=O/\y=W/\ 

a.!=wl\ bfw 

X=O/\y=b/\ 

a!=w/\ bi:w 

First pass thru 
loop: Atta.ch 
the following 
symbolic into 
to exit arc of 
IDOlHEAD node: 

~1 = xk " 

yk+l "'yk " 

~l = ~ 1\ 

bk+l .. bk 

Figure Al..7. Proof processing of nodes A- E , and first pus thru 

loop I 1, nodes F - H • 

75 



ExUiple 1. Multiplicatioo 

Bode 

F: y~O 

Input "given" int'o 

~1 .. ~" 

l'J.t+l • yk 1\ 

~1"' ~" 

bk+l = bk 

G: x := x+a. ~l :::: xk. " 

yk+l = yk " 

~1 = ~ " 

bk+l "' bk " 

Yk I o 

H: y : = y-1 ~ 1 = ~ + ~ 1\ 

ykt-1 z yk " 

~l-: ~ 1\ 

bk+l = bk " 

Yk. I o 

Assertions to 
Prove 

~k ~ l •• t. yk • 0 

y~(JJ 

Neither proven 

Test elision: 
Try to prove 
that y = 0 
or y ; 0 on 
sane incaung 
path, but no 
luck. 

I in < x+a. 1\ 
m -

x+a ~ Imo.x 

Hone proven. 

yfwA Imin~ 

y-l $ Imax 

L&st part, 

y-1. ~ Imax , 

is true. 

Outp~t "given" info 

rrue are: 

'kt-l .. 8g 1\ 

bk+l = bk 1\ 

Y1r I o 
False arc: same, 

except l.ut term 
is yk • 0 • 

xk+1 a xk + "k 1\ 

ylt+1 = yk 1\ 

~1 .. ~ 1\ 

~1 ""~+-x 1\ 

yk+1 s yk ·l " 

~1; ~" 

Figure Al. 7 (continued) • Proof processing of nodes A - E , and 

:first 11&88 through loop f l , nodes F • H • 



Example 1. MUltiplication 

After the t'irst pus through the loop Yith tbe symbolic variables 

xk+ 
1 

, xk , etc., we have developed a set or recurrence relAtione 

tor the values of all variables at the beginning of the kH -st 

iteration of the loop in terms of their values at the beginning of 

the k -th iteration. Fran these recurrence relations on the latchback 

arc, and the initial entry conditions on the arc from node E to the 

LOORfEAD node, we now must synthesize expressions for the values or 

all variables during all iterations or the loop, as shown in 

Figure Al. 8. 

77 



1) X "' 0 1\ 

y = b " 

2) xktl = ~ " 

yk+l = yk " 

~+1 = ~ " 

b~:. = bk 

-~r-- -.. ..-·---r------

--- 3) ~1 .. ~+ak" 
y~l - yk-l " 

~1 = ~" 

b~l = bk " 

yk i 0 

4) x .... c (o, O+a, 0+2a, .•. } 

y -o I {b, b-1, b-2, .•• ) 

af=wA 

b I= ().) " 

a, b invariant 

Figure AJ..B. Loo}l induction, using all facts except yk f. 0 to 

detect variables invariant within the lOOJl and to 

synthesize infinite sets which encompass the cats 

of values for x and y • The notation .... E means 

"for sane n ~ 1 , takes on each of t.he '.''8.lues in the 

subset consisting o~ the firrt n element.s of t.he 

ordered set". 



Example 1. Multiplication 

If the exit test for the loop were 

y > 0 

instead cf 

y f 0 

then we could easily conclude at this point that 

0$Y$b 

inside the loop. But, given the comparison for exactly zero, we must 

work a little harder to synthesize a range of values for y inside 

the loop. 

If 0 ( {b, b-1, b-2, ..• J (i.e., b ~ 0 ), then the Jet of 

values y takes on is finite and bounded by zero: 

y = {b, b-1, b-2, .. . , o} , 

Where the equality sign means that y must necessarily take on the 

value of each and every member of the set exactly once. 

rr o I {b, b-1. b-2, ... J (i.e., b < o ), then the set of 

valucf y takes on is essentially infinite. In reality, the set of 

values for y is bounded by Imin , but we discover this fact by 

assigning y the infinite set, then failing to prove that \Ulderflow 

never occurs in the statement 

y :=y-1 

In our induction }lrocessing we try to decide if the values of y 

are a finite or infinite set by examining the initial value of b and 

asking if b ? 0 (i.e., if 0 r (b, b-1, b-2, ... ) ) • We find no 

answer to 1.;hi.s questicn, only the information that b /: co • So we 

~ive up; knoWing nothing else about b , the best we can say about y 

i~ that 

y ~ E {b, b-1, b-2, ... } 

79 



-r-- ..... 

With the ranges or values synthesized in Figure AJ..8, we proceed 

to take a second pass through all the nodes of the loop, using the 

ranges to prove assertions and to develop new given information on 

subsequent arcs. The first assertion we try to prove is the loop 

termination assertion: 

3:k>l s.t. y = 0 k 

Now the groundwork of the above discussion about synthesizing the 

range of values of' y becomes usef\11.: we discovered above that y 

will take on the value zero iff b > 0 , so the loop termination 

assertion is equivalent to asserting that, on the exit arc of the 

I.OOFHEAD node, 

b > 0 

Since b is invariant in the loop, we can push this assertion back to 

the initial entry arc of thP. ~uop, and then as tar back as the Read 

node, as in Figure 1.:...9. Figure A' .• lO details the remaining proofs, 

during the f:econd pass through the loop, plus any subsequent nodes. 

The complete process leaves us with two unproved assertions: 

b > 0 before node D 

and I < x+a < I min - max: before node G 

If the user NUl guarantee that these two ::J.ssertions are always true, 

then the program te:nninates cleanly. If the user cannot guarantee 

that these assertions are always true, then they describe the only 

two ways in which the progrrl.r.'l can "blow up" during execution: 

if b < n , then loop fl never terminates 

and if or x+a > I , then an overflow occurs at max 
node G 

The user is assured that there is no other wr.y (such as an overflow 

in node H ) f'or the program to blow up. 

8o 



(5) assert b > 0 --------4 
LOO mEAD fl 

( 1) assert 3k > 1 -------4 
s.t. 

(2) assert b 

y = 0 
k 

F'igure Al.9. Steps in synthesizing the input assertion b > 0 • 

( l) Original .... oop temination assertion, generated f'ra!1 exit teet. 

(2) Equivalent loop termination assertion, generated fran analysis 

or the set of values y takes on inside the loop. 

(3) As~ertion moved back, outside of the loop, because it is 

invariant in the loop and must therefore be true on ent~·. 

(4) Assertion moved back as far as possible, in this case, to 

the exit a.rc of the Read statement. Note thAt this is the 

best place for the user to insert an executable test that 

the value read for b is in fact non-negative. 

81 



Node 

LOOHIEAD #1 

F: y /= 0 

G: x :=x+a 

H: y :=y-1 

Figure A. J.. 10 . 

Exulple 1. Multiplication 

Input "given" info 

x .... E (o, O+a, Ot2a, ... ) A 

y = (b,b-l,b-2, ..• ,o} "' 

a/=WAb?O 

x- £ { 0, a, 2a, ... } A 

y={b,b-l,b-2, ... ,1}"' 

ajwAb>O 

x- £ (a,2a,3a., ... J A 

~i=(b,b-l,b-2, ... ,1)"' 

·~ f.m" b _?0 

Aasertions to 
Prove 

y /: w true 

Test elision: 

y =0 maybe 

y ;o maybe 

x/:mf\ a/:w" 

1min ~ 
x+a <I - max 

First two are 
true, and 
last one is 
ma.ybe 

y/:mf\ 

I in < y-1 m -
Both are true 

Outptt "given" info 

Second pass thru 
loop: Attach 
synthesized 
"given" info: 

x- £ {O,O+a,0+-2a, ... ) 1: 
y={b,b-l,b-2, ... ,0}"' 

a /:w A b > 0 

True exit: 

x ... , {o,a,2a, ... } A 

y = (b,b-l,b-2, ••• ,1} " 

&fWAb?_O 

False exit: 

x--& (o,a,2a, ... ) A 

y = 0 " 

a /=w A b >0 

x-, {a,2a,3a, ... ) A 

y = {b,b-l,b-2, •.• ,1}" 

aJ:wAb~O 

x-e (a,2a,)a, ... } 1\ 

y = {b-1,b-2,b-3, ••. ,o} 

a/:Wf\b?:O ' 

Proof processing of second pass throl.li;h loop, nodes F- H . 

82 



Ex&mple 2. King' s Example 2. Di vidcm. 

This example exposes sane or the carzplicaticms in actually proving 

a loop tel'1!1inat1on assertion when sane input assumptions which were in 

the programmer's mind are not stated, and hence need to be synthesized 

by the proo:f mechanism. King asstuned the restrictions that a ~ 0 " b > 0 

and then proved that the 'Program is partially correct in generating the 

prope!" quotient and remainder, but he :failed to note that the program 

never terminates if b = 0 • To conf"ront this te:nninatioo iSsue 

directly, we state no assumptions about a and b , and see what 

restrictions can be autmatically synthesized. (I:f, however, we used 

King's restrictions, our system would still complain about the b = 0 

case.) The starting point for this and most subs~uent examples is the 

modified flow graph or the program annotated with assertions (Figure A2.1). 

In this and all subsequent examples, we will ignore the "lUldefined 

variable" assertions, since their proofs are all essentially trivial. 

Arter processing nodes A - D and taking a :first pass through 

the loop, we have r,a.thered the following info:nnation for the loop 

induction. 

Ini t ia.l e."ltry: 

Recurrence relations: ~+1 '\. " bk+-1 = bk " 

qk+l qk " rk+l = rk- bk " 

rk ~ bk 

Frc-m ·;;his in:fonnatlon, it is straightforward. to synthesize the ranges: 

a invariant 

b invariant 

q -£ {'l,l,~, ... } 

r - c {a, a-b, a-2b, ... } 

r k .2: b or, equivalently, 



assert :ii k >1 

s .t. rk < bk 

Figure A2 .1. 

Exaple 2. Divieion 

assert I in < q+l < I 1\ 
m - - max 

I in< r-b <I m - - max 
r := r-b 

Mechanicall¥ annotated, mod.1f'1ed f'lov grapb f'or 

King's Example 2. Since we are working with little 

or no human assistance, King's assumptions that 

a ? 0 and b ? 0 are not supplied. The crux of 

this example is to synthesize appropriate restrictions 

onaandb. 

84 



We now want to prove the loop tennin&tion as~:~ertion: 

or, Since b is invariant in the loop, 

3k >1 s.t. rk <b 

The assertion is not always true (e.g. if a = 2 and b = -1 ), 

and none of the techniques discussed in Chapter 4 will help synthesize 

appropriate restrictions on a and b which would make the assertion 

true. So the proof system would simply ~ive up and direct the human 

user to supply appropriate restrictions on a and b . 

There is, however, a usef\11 heuristic for an autanatic proo~ sy&tem 

to use: separate the case of zero iterations of the loop from the case 

of Jne or more iterations. To prove that rk < b , we can try to prove 

that either r 1 < b or that r :s strictly monotonically decreasing. 

Only by explicitly c~nsidering r 1 as a special case can we pick up 

all the degenerate situations which result in zero executions in the 

l-oop. 

Since r = a , the condition 
1 

a<b 

~~rantee~ that the loop terminates (by never executing at all). 

In the general case, r is monotonically decreasing if 

f·':rJm the recurrence relation rk-b , we have 

or 

-b < () 

or 

0 < b 



Exlllple 2. D1vil:lcla 

Thus, we find that the loop terminates itt 

(a <b) V (0 <b) 

Since this relation is invariant inside the loor and must therefore 

be true on entry, we can push it outside the loop and then back to the 

READ node. 

Examining the overflow assertions for node F 1 we find that the 

first. cf these, I in < q+l , is clearly true, because adding a. 
m -

posi"...ive constant can never create a sum which is too negative. The 

second, q+l ~ Imax: , cannot be proved, and 111U8t be tossed back to 

the user with a "maybe". As described, OW" systsn cannot make any 

correlation between q and r 1 such as: q wE:1• be incremented as 

many times a.s r is decremented, so q cannot in fact overflow, 

if the loop terminates at all. For a slightly different loop with 

r : = ri-b instead of r • - r -b in node F , the values a = Imax: , 

b -1 would result in q overflowing. So any attempt at correlating 

the overflow possibilities of one expression with the number of times 

another expression is executed must consider such factors as size 

ot increment and total range covered by each expression. 

The assigment r .- r-b in node F cannot overflow if b > 0 

because 

b > 0 :::> r-b < Imax: 

b > 0 1\ r ? b ::> r-b ? 0 > ~ir. 

The same assignment cannot overflow if a < b because it iS never 

executed. 

The flow graph in Figure A2. 2 represents the final r' ·sult of our 

analysis. 

86 



assert 
(a< b) 

Figure A2.2. Final result of analysis of flow graph in Figure A2.1: 
the loop terminates iff the restriction an a and b 
is true after the Read ; the system is not powerf'Ul 
enough to prove that q will never overflow. Note 
that the synthesized restriction (a <b) v (0 <b) 
allows some cases {such as a negative and b positive) 
that King's assumption (a? 0) A (b ~0) does not 
allow, and that our restriction excludes the infinite 
loop case (a ? o) A (b ~ n) • 

f1"( 



Example ~. King's Example ~. Exponentiation. 

In this example .. the two interesting issues are t.1.e treatment 

of division in y := y-;- 2 , and the merging of information fran the 

conditional assignment z : = z * x • 

In the analysis of integer division, we will use these axiOIIUl: 

IP + qj < IPI 
IP + q I = IPI 

for I q I > 1 and p I= 0 

ror 1 q I a 1 or c I q I > 1 and P = o > 
IP + qj undefined for q = 0 

Figure A3.1 shows the i'low graph i'or this example with all the 

non-trivial asserticns attached. As usual, the overflow assertions, 

I . < expression < I , cannot be proved, and hence they represent ::tJ.n - - max 

definite problems for the user to consider. 

The induction for the value of y at the LOOFHEAD node uses 

the initial value information 

y := b 

ar.d the recurrence rela.tion 

Frcm y k I= o and 121 > 1 , we can use the first a.xian to conclude 

that 

and hence that y is a subset of the range -b to b 

To pr:..we the l.Jop termination ussertion, 

3k >1 s.t. yk =0, 

w~ can use the fact that the absolute value of y is strictly 

m~motonically decreasing, and hence will eventually equal zero. Thus, 

88 



assert :a k > 1 ------t 
s.t. yk = 0 

~---+---assert 

assert 
I •- < z *x <I 

ll.u• - - lii&X 

r
1 

<x*x<I mn- -max ~-----+--assert 

Iin<x*x<J 
m - - max 

Figure A3 .1. :'low graph for King's third example, with all mechanically 

generated assertions except those of the form v f. Q) , 

for any variable v . We can prove that the loop terminates, 

tut cannot prove the absence of overflows in nodes G 

and H • 



Example 3. EXpOnentiation 

we ca.n :prove that for all values of a and b , positive, zero, or 

negative, the loop terminates. or course, if b is negative, the 

b 
:program doe.::n't canpute a , but our proof' of clean termination 

(if no overflows occur) can be canbined with King's proof of 

correctness under the restriction that b >0 to prove the total 

correctness of this program. 

A second issue in the analysis of this program is the merging 

or infonna.tion required at node H . On the :first pass through 

the loop, the given infonnation on the two entry arcs for node H 

includes 

arc F- H: arc G - H : zk+ 1 "' zk * ~ 

As discussed in Chapter 4, this information is merged to form the 

disjunct 

(Refinement), 

ignorin,; the interaction between y mod 2 and z , but marking the 

O.isjunct "refinE!Ilent exists", so that if necessary in a subsequent 

proof, the can:plete interaction can be reconstructed: 

In this particular example, information about z is not needed t" 

prove clean tenni.nation. If we were just interested in loop termination, 

all variables which have no effect on branching could be stripped out 

of the program early in its analysis. 



Exuap!e ~. King's Exulpl.e ~. PriJaall ty. 

In this example, we encounter 111Ult1ple exit tests and a proof of 

no overflow baaed on the fact that a defined variable has a 

representable value. Also, the proof of te:naination bas absolutely 

nnthing to do with what the program does. 

The .loop induction :a.nformation for i includes the initial valne 

i = 2 

and tlJe r~urrence relation 

so the values of i are an initial subset of {2,3,~, ... }, and are 

strictly monotonically increasing. 

To prove the loop termination assertion, 

we try the simpler clause first. We find that a is invariant in the 

.loop and that i is str1ct4 increasing, so 

will eventually be true and we have proved the loop termination without 

examining the second clause. Note that the loop terminates even if 

a< 2 . 

For the overflow assertion, we need to prove that 

(1 < a 1\ a ~ aJ 1\ a IIOd 1 f 0) :;, {:!.+1 ~ :r.z> 
Since a /: w means that a has saae representable va.lue, 

I min :S a ~ Imax , it follows that 

(1 < a 1\ a <I ) ::> (1+1 <a <I ) ::> (1+1 <I ) 
- max - - max - max 

91 



Exaaple 4. PriJI&li ty 

assert l k > 1 

s.t. (1k ~ ~) v __ "'"""" 

(ik < ~ " 

~mod ik = 0) 

, ___ ...... __ uaert 

\tin ~ 1+ 1 ~ Imax 

Figure A4.L Flow gra}il for King's rourth example, with ~the 

non-trivial aasert1ona attached. There are two loop 

exit area, so we have a ccmplex loop te:na1Dat1on 

assertion (whose first cl.auae is true). The overtlaw 

assertion I in < 1+1 <I is true because 
m - - max 

(1 <a) :;:, (i+l <a) :;:, (1+1 <I ) 1 :since wbatever 
- - max 

value is stored 1n a is representable, &ad hcce 

a< I . 
- Jll&X 



Example 5. King' a Example 5. Zeroing. 

Arrays are introduced 1n this exam:ple, presenting saae new 

Callplications in describ:i.Dg tbe intended range of wlue subacripts, 

and in synthesizing a.n a:ppropriate description of the va.lues 

stored 1n the array • 

As indicated by the annotatioos en the now graJlb, Figure A5.l, 

the bounds f'or the array A 111\lst be supplied. In some -progrur"lng 

languages (like Fortran), declarations of bounds are required for 

all arrays. For such languages, it is easy to insert the needed 

annotation mechanically. In other progr8DIIling languages (like 

Algol 6o), declarations of' bounds a.re not required for arra:ys which 

are parameters or ~ubprogrwns. For such languages, the human user 

must supp4 ·.,.;-,e needed annotation. In elther case, the semantic 

a::sertion routir.e then uses these bounds to create subscript range 

assertions, like 1 ~ 1 S n0 · 

'l'he loop inductior. step uses the foll.OY1ng information: 

initial values: A ~ w (the whole ~) 

i = l 

recurrence relations: ik+l == ik-+1 

nk+l = nk 

~l[ik] = 0 

Yt J: ik , ~1(!} =~(I] 
1k S nk 

Fran this info:nnation, we can deduce that: 

93 



a.ssert a k > 1 

s.t. il:t > nk 

ExMp1e 5. Zeroing 

assert 

Illlin $ i + 1 $ Imax 

Figure A5.1. Hcnr graph for King's Example 5, a. progr811l to zero 

out an array. The declaration of' A is an annotation 

added by the user, sisnif'ying that the valid bounds 

on A are 1 to f1> , vbere ~ is the value read 

in for n • This binding of n0 
is to allow for the 

possibility that the value of' n changes during 

execution. 



Example 5· zeroing 

n is invariant 

i ... , (1,2,~ ... } "' 1 < n+l 

1:10 i = (11 u {2,3,4, ... ,n+l} 

where the second set is empty if' n < 0 

Yl E (1,2,3, •.• ,n) , A(l] = 0 

The deduction about n is straightforward. The d.eductions about i 

need sane caref'.1l attention to detail: the i -' • . . notation 

implies that the actual set of values for 1 contains at least one 

element. Now, if n < 0 , the set {1,2,3, .•. ,n+l} can be s·trictly 

construed as the empty set, so to proper~ reflect the tact that i 

always has its initial value at the IOOHiEAD node, we ado~ the union 

of sets notation. The set {2,3,4, .•• ,n+l) reflects all the 

subsequent values of i , it is proper~ empty if n < 0 (and hence 

the loop is ne·rer traversed), and n+l is in fact s.n element of the 

set {2,3,4, ... J if n > l. (If the step size for 1 were not one, 

but c , we would have to entertain the third po~:.sibility that n+l 

i:.; not in the set \1, l+c, 1+2c, .•. ] at all.) 

In subsequent processing, we can eaai~ prove the loop tel'mination 

assertion, 

~ k > 1 s . t. ik > n 

since i is strict~ increasing. The subscript range assert:!.OJ.'\, 

l~i~llo 

is true because n i6 invariant, hence equal to no , 1 < 1 < n+l 

at the IOOHiEAD, and 1 < 1 < n on the tru.e branch f'raa node E • 

The overflow assertion, 

Imin :5 i+ 1 :5 Imax 

95 



Exampl.• 5. ZeroiDs 

cannot be proved, 8114 the program in fact geaerate• an overnow it 

n • Imax • The uaer 11 uked. i:f" thil ve.lue ot n 11 possible. 



Example 6. King' a Example 6. Maximum. 

This program to find the largest element of an array by succesiSive 

interchanges shows how the recurrence relations express an interchange 

as a simultaneous assignnent to two elelllenta of the array, how aliases 

are handled, and how leuaas can be discovered. The tlav graph for the 

program is in Figure A6 .1. 

In Figure A6.2, we show the given infomation gathered on the first 

pass through the loop. Most of this processing is straightforward, but 

there are sc:me c::.,liJlications arter node I • In reflecting the 

assignment A[i-1) :• x 1 we must check for aliases (as explained :l.n 

Chapter 4) to see if that assignment changes an element of A tbat we 

also know under some other name in our set of given information. In this 

eX8111ple, ~+ 1 ( i k] is referred to in the given information on the entry 

arc for node 1 , so we try to prove the two theorems 

ik = ik-1 

and ik I ik -1 

If the first is true, then ~1[ik] is an alias for ~1[ik-1] 

and both would be equal to x on exit fran node I • If the second 

is true, then the assignment to ~1[1k-l] cannot affect the value 

of ~1[ik] , so there is no alias problEIIl. In the current example, 

of' course, ik I ik -1 , so there is no alias problt!lll. In the more 

~eneral case of successive assignments to A[i} and A[j] , we try to 

prove that either ik = jk or ik 1: jk . If we cannot prove either 

theorem, then we must allow for both possibilities: 



ExMrple 6. M&xma 

1 s 1-1 ::! n0 

lSi Silo 

t-----~--------+---- ass~ 
Im.in S i+l S Imax 

Figure A6.1. Flow graph tor KiDs' • Example 6., with explicit uauaptiCD& 
about A and n in nodes C and D , and with an umotatiOil 
describing the wbscript 'bolm~ tor A • ~ the •isniticurt 
aa•ertiCDS -.zoe shown. 



Example 6. Ma.xlaum 

given: 
ik+1 = ik 

nk+l = nk 

Ak+l = Ak 

xk+l = xk 

ik S nk 

~-----given: 
'\[ik·l] > 'Klik] 
plus others above • 

..,.... ____ given: 

~+1 = ~[ik] 
plus others above. 

A[i] := .!.[1-1) 

given: --------6 
1k+l = ik 

~+l = 0 k 

~+1 = ~ 
xk+l = xk 

ik S nk 

..... ----given: 
~l[ik] = ~[ik-1] 
plus others above. 

~[ik-1] s ~[ik] ~~------given: 

given:-----==--~ 
1k+l = 1k 

nk+l = ~ 

~1[ik] = ~[ik] or ~[1k-l] 
~+l[ik·l] = Ak[ik·l] or ~[ik] 
Yl f i, i-1 ~1[l] =~(I] 
xk+ 1 = xk or ~ [ ik] 

ik S ni 
'\+1[~·1] ~ Akt"l[ik] 

ik+l = ik 

'\.+1 = nk 

~l[ik] = ~[ik·l] 
~l[ik·l] = ~1 = ~[~] 
Yf ~ i, i-1 ~1[1] =~[I] 

ik .:S nk 

'\[ik·1] > ~[ik] 

Figure A6.2. Gathering of given information on the first pass through 
the body of the loop. All deducticns are straightforward, except 
for the last merged one on the arc leading to node J , 
Ak+ 1[ik·l] S ~1[ik] . The text explains the derivation of this 
lEJilllla, The d'WIIIJy node just before J wu inserted for clarity ot 
expression. 



We ~ then weaken this expression to avoid the cross-product terata 

relating i to A 

It it later becomes necessary to use the exact relationabip, it can 

be reconstructed. 

Jim King discusses the a.l1as Usue an ~es 77-82 of his thesis 

[King 1969 ], and again on pa6es 132-llto. In the latter sectiOD, he 

discusses the problan of working backwards through a prognun, 

generating expreasions tor all possibilities of subscript aliasing. 

A series of tour assignments can eui~ generate an expresdon 

containing 16 different cases. 

The problem with working backward through a program is th&t, 

for a sequence like 

1 := j+2; 

A[i] := 3; 
A[j] := 4; 

there is no information about the relationship between 1 and j 

when the assignment to A[i) is proceaaed. Thus, King lllUSt generate 

an expression like 

(i = j 1\ A[i] is changed by both assigQaenta) v 
( i /: j 1\ A[ 1] is cbansecl only by the first) 

and later try to decide which cue applies. By working forwa:rd, our 

systs bas seen the assignment 

1 := j+2 

before proceasing the array aasigJDents, so enough information is 

available tor the theor• prover to be called to IUlSVer the alias 

queatiOil: 

100 



Exaple 6. Max:lmulll 

(i = j+2) ::> (1 f j) ::l (A[i] = ~ 1\ A[j] "' 4) 

There are two problss in working forward. (1) 'l'he process is 

not goal-directed; in contrast to working backward, there is no 

definite aRsertion or verification condition to be proved, so it is 

possible either to discard crucial information or to retain useless 

verbiage. (2) The infonnation required to prove theorems such as 

i I J inside a lo;)p may depend on assigrwents near the bott.om of the 

loop, making it impossible to prove the theorem on a single forward 

pa.ss. 

The teclmiques presented in Chapter 4 try to mitigate these two 

problE5lls by (1) using a set of heuristics to merge information into 

"u:::e:t'ul'' lemmas, whil.e still retaining access to the w:unerged (refinement) 

infonnation in case it is crucial to a later proof, and (2) processing 

loops in two pas~es, where sometimes an alias theorem can be proved on 

the first pass becau~~ it is true inde:pendentlJ of subsequent assignments, 

and sometimes an alias theorem can be proved only on the second pass, 

a:rter rar.[res of va.luec. for program variables and the invariant 

relationships between them have been determined. 

Arter that somewhat lengthy disc·u£>sion, we return to our example 

and the merging of given information at the dummy node in Figure A6.2. 

The let't arc includes the information: 

Al<. [ ik·l] s ~( ik J and 

~+~ cc ~ 

The right ::a.rc includes the information 

Ak[ik·l) > ~[ik) 

~l[ik·l) = ~[ik) 

~l[ik) = ~[ik-1) 

and 

and 

101 



Eaaple 6. Mn~ 

In urgins thia intomat1on, ve tey to f':l.nd an exprellicn which ia 

implied by the intoru.ticm on both,area. We lt&rt V1th the expresaiona 

that a.J.r~ attached to the inc~ arcs, trying unaucce11tu:l.q to 

prove that: 

right arc info ::::l lett arc into 

or lett arc info ::::l right arc into . 

This strategy '.iorks in merging, sa:y, ik+l = ik a.t the duiiD;y node, 

but f'ai1s to produce any c011111on information about A • It there is 

no carnon infonaation in the relationships between the old values 

(subscript k ) of variables, perhaps there is saae CCIIDO!l relationship 

between the new values ( subscript k+ l ) ; perhaps the whole point of 

the separate paths which are now merging was to create scme usetul. 

relationship between the new values of variablea. 

To discover usef\U. lSDU about the relationship between the new 

values of A , we modify any old relationships on each path to reflect 

the usigllnents on that pe.th, givi.ns 

~l{ik-l] 5 '\...l[ik] 

on the lett arc, since ~l • "'t an tbat arc, and givi.Dc 

~l[~] > "tt+l[ik-1 ) 

on the right arc, since ~1[~] ... -'k[~-11 and ~1[ik-1] "'~[~] • 

We again try to find an expressi~ which is 1Jilpl.1ed by the 

information on both arcs: 

le1"1i arc iDf'o ::::l right arc info 

102 



EXIIlple 6. Maximum 

The strictl:y greater than relation 18 not the weaker, so we try to 

prove: 

right arc info ~ lett arc info 

i.e., 

This implication is true, so we have just discovered the lenna we 

are seeking: the inequality 

'\... 1 [ ik -1] ~ '\... 1 [ ik 1 

is true on both arcs, so we attach it as part of the merged information 

on the entry arc to node J • 

In our current example, this mechanically synthesized lemma iF 

not needed to prove any of the assertions in the program, but a 

simE.ar process is crucial in the loop termination proofs in SEUrT 

[Sites 1974]. In fact, all the assertion proofs on the second pass 

through the loop in our current example are straightforward. Tbe 

loop terminates because i is monotonic~ increasing. The 

subtraction i-1 does not overnov because i ~ 2 , a fact which 

we could not know on the first pus through the loop, since it depends 

not onl:y on the initialization at node D , but also on the a.ssigllllent 

at node J • The subscripts are all in range, and the a.ssigrlnent 

at node J may in fact overflow. Note that the human uaer cculd 

remove the overflCN problem by including in node C the &aSl.lllption 

(restriction) that n0 < Imax · 

103 



!!cample 1· King' • F.nlllple 1 . Bubble Sort • 

This iB the tirat example in which we cannot prove that the 

program terminates. It 11 also the first example in which ve have 

two nested loops. Following the process in Chapter 11 we do the 

interval analysis of the flow graph, find the loops, and then try 

to put them in leading test form. Figure A7-l shows the flow gra~ 

before thi~ last transformation; the inner loop is in leading test 

fonn, but the outer is not. Figure A7.2 abows tbe change in structure 

required to put the outer loop in leading test form also. Then it is 

easy to synthesize the loop termination conditions: 

3J ~ l s.t. jl = 0 

3:k > 1 " • t . ik > nk 

for loop fl, 

for loops f2 and f2 • • 

Loops 2 and 2' are essentially tbe same as Example 6, and terminate 

for the same reason -- i is monotonica.lJ¥ increasing. The rest 

of this discussion therefore centers on the behavior or j . Since 

loops 2 and 2' are identical, we shall concentrate on the nested 

pair, 1 and 2. The reader can fill in the details of the degenerate 

case of an initially completely sorted array, when loop 2' exits 

with j = 0 and hence loop 1 never iterates. 

Figure A7.3 shows the details of the multiple passes over the 

nested loops to find out the range of' values for .1 during all 

possible iterations. The e.saigllnent to j in node D turns the 

outer loop induction into a degenerate case: jl+l does not depend 

at all on j 
1 

, so the second outer pass contributes no nev information 

after node D Eventually however, we find that the range or values 

for j at node J is o or 1 , and that the.-e are no reaa<Xla 

104 



that j IINit scaet11lea equal l • 'l'beretore, we cannot prove t»t 

the outer loop tentin&tel. The lulu! u.er rill bave to look at this 

loop Ul4 convince biaael.t tbat the loop does in tact teftliD&te 

(bec&UIIe h1a&na "mow" that event~ no intercblmges rill take 

place and therefore the usigsaet at node H rill not be executed). 

It is possible in this example to split up the inner loop ao 

that it the intercb&nge never takes place, the inner loop exits 

direct~ to node K , but tb&t tums out not to help us prove loop 

termina.tion, becauae we still camlO't prove tb&t eventual.ly no 

interchange wUl. occur. 



Example 7 • Bubble Sort 

DR:LARE A[ l:n] 
A w, n > 0 

Outer loop 
exit arc --~~ 

Figure A7 .1. Flow graph for King's bubble sort. We will permute the 
nodes so that the loop exit node for the outer loop, J , u just 
after the I.OOHIEAD fl node. We will not be able to prove tbat the 
outer loop te11111nates, since its tel'lliDation depencl8 on no turther 
interchanges taking place in the inner loop. 



zx-pl.e 7. Bubble Sort 

J :=0 

Figurf! A 7 . 2&.. Structure of Figure A7 .2b. Structure ot 
the nested loop8 in 

Fit,ure A7. 1. The outer 
loop is not in leading 

teat r~~, so we ~te 
tbe nocle:s inside the loop 
un.-il it is, u described 
in Chapter l. 

the ~ed nested loop8 

h'all Figure A7 .2a. We 

bave -.de copies of the 

initial uai.,.-,tl to 
1 8114 J , Ul4 of the 
eatire imer loop. 



F.xwnple 7 • BUbble Sort 

1. given: (tram loop 2') 
j=Oorl 

2. given: ( lat outer 
loop pass) j l+ 1 = j 1--.. 

9· given: (2nd outer 
loo}l pass) j = 0 or 1 

assert :H > 1 s.t. __ ,. 
J, = 0 -

4. 11. given: (1st and 
3rd passes) 
jk+l = jk 

• , . 13 . given: (2nd and 
1-Ith passes) 
.i=Oorl 

8. given: (1st outer-+--tl 
loop pass) 
j l+l = 0 or 1 

15. given: (2nd outer 
loop pass) j = 0 _ .... __ 
or 1 

given: (1st outer 
loop pass) 
jl+l = 0 

given: (2nd outer 
loop :pass) j = o 

5· 12. giv-m: 
(1st and 3rd 
passes) 
jk+l "' jk or 

jk+l = 1 

given: 
(2nd pass) 
jl+l =0 or 1 

given: 
(4th pass) 
j =0 or 1 

Figure A-7 .3. Details of gathering information about j . We take 
two passes through the outer loop, first looking {continued next page) 

108 



Figure A7 .~ (cont:I.Dued) 

11t the symbolic values j t+ 1 aDd j 
1 

• OD th1B first pus 
through the outer loop, ve t&ke tvo passes over the imler loop, 

first with jk+l to find out that it cu rt~D&in the ••e or 
becanes l , and second With j J+l .. 0 u the initial va1ue. 
Arter the first outer pus, ve find that j "' 0 or l tar all 

iteratiODs of the outer loop. During the second pus throuab 
the outer loop, we again traverse the i.Dner loop tWice (passes 
3 and 4). Pass 3 is exactly identical to pass 1 and can clearly 
be i.JDJUsented. to take advantage of this; pass 4 uses j • 0 as 
the initial value, instead of the a,mbollc induction variable 
'j l+l trom the outer pass 1. In this example, paasea 2 and ~ 
are identi-~al, but ooly because of the assignment to j in 
node D • ·:.:n general, pus 2 would bave tO\Uld leas specific 
intorm&tion. 

109 



Exa!aple B. King's Example 8. Multiplication via iner~ent/decr~ent. 

In this example, we uae a refinement of' sane merged inf'omation 

to restructure a loop into two simpler loopa. This particular 

restructuring turns out to be a classical program optimization 

transformation of taking invariant tests out of' lo~. 

The three loops in this example (Figure A8.1) all have the 

identical structure, so we will just consider the stripped-down 

version in Figure A8 .2. As that loop is written, it either counts 

x down to zero if x is positive, or counts it up to zero if x is 

negative. It may be a good heuristic to say that if a loop tt:rminat1on 

test is a canparison for exactly zero, then look at the absolute value 

of the expression involved. such a heuristic would allow us to prove 

that I xl is monotonically decreasing and hence that the loop Will 

te:nnine.te. Ho-oiever, by doing some node splitting to access a 

re:finEment of the merged information about x at the loophead node, 

we ce.n restructure the program, as in Figures A8.3 and A8.4, into 

two loops, one for x positive, and one :f'or x negative, then easily 

prove that each loop terminates, without using the ablolute value 

heuristic. 

110 



Exaapl.e 8. le.lltipllcation 

Figure A8.1. Flow gra}il. of King' a Example 8, which baa three loope 

with identical structure U1d identical temin&ti-m probl_.. We 

Will break each J.oop into tvo; oa.e to caunt a poaitive vari&ble 

down to zero, and CDe to cQIWlt a nesative va.riable up to zero. 

Ul 



J:>Aanp.Le o. MUltiplication 

given: ~ 1 = Xk 1\ -~11--~--. 

~ 1-0 

given: ~1 =Xk 1\ 

~ <0 

given: ~1 ... ~" 
~ >0 

given: '1tt-1 =~-1" 

~ >0 

gi.ven: ~1 :aXk+1 1\ 

~ <0 

Figure A8.2. Ess--ntia.l structure of the 1oopa in Figure .AB.l, with 

given infonn~~oLion fran the first ~sis pass &ttacbed. In 

merging the value info:r:wation xkt1 = ~-1 and ~l • ~+l a.t 

the LOOHIF.AD node, we find only tlat "k.+ 1 /- ~ • In looking 

for commcm relationships between the new (subscript lrt-1 ) values 

of x , we find on one arc th&t ~ 1 .?! 0 1 and 011 the other 

xk+-l 5 0 • The only COirlllon thing 1JDplled by theae two expressions 

is that xk+l I w • Thus, the range for x tb&t we use on the 

second pass through the loop is 

x I U> (Ref'inanent) . 

112 



Figure A8.3. First step in restructuring loop in Figure A8.2 is 
to try to elide tests along some paths by proving that they 
are always true or always false on that path. The test at 
node D is inconclusive alc.ag all paths, so we cannot elide 
it. The test at node E 1 however, is always tru.a along the 
:path F - D - E 1 so ve split ou.t that :path, making a copy of 
node D in the process, and then elide the t"ls;t as shown by 
the dotted line. Silllilarly, the test at node E is always 
f'al.ae along the path G - D - E 1 so we split out that path 
(making another copy of D ) and. elide the test. We must now 
re-an~se the loop structure ot the program, starting at 
the LOOJHEAD node. 



Examp1e 8. ltUt1pl1cat1Cil 

Figure A8.4. The loo:p in Figure A8.3 a:rter re-a.nalysing the loop 

structure and :pennuting the loops so that they have leading 

tests (thus forcing copies of nodes G and F ) • It is nov 

fairly easy to :prove that each loop terminates, without resorting 

to any arguments about absolute value. Note also that a care:f'u.l. 

progr81111ler could hAve written the original. program in this 

two-loop form, 1n order to avoid the redundant test of x > 0 

inside the loop. 

114 



Example 2· King's Example 9· Selection Sort. 

In this example (Figure A9.1), there is very little overlap 

between the information gathered to prove that the prosriUil terminates 

cleanly and the information gathered by King to (attempt to) prt:We that 

the program correctly sorts an array. The two nested loops have the same 

structure seen in earlier examples and it is easy to prove that they 

terminate, that all the variables are defined on use, and that no overflows 

occur because we anticipated the problsn and assumed that the size of 

the array is less than I . The only difficulty is proving tbat the 
max 

subscripts are in range in nodes H and K , so we will examine the 

information gathered about i , j , k , and n more closely. To 

avoid confusion in the notation, p and q are used as iteration 

subscripts in the recurrence relations for loop fl and loop f2 

respectively. 

Figure A9 .2 shows the first few steps in collecting information 

about i , j , k , and n : symbolic names (subscript p and pt-1 ) 

are used to develop recurrence relations about haw the values of 

variables change once around the loop. In the midat of this f'irat 

pass outer loop processing, two passes are made through the inner 

loop, as shown in Figure A9·~. The results of A9.3 are passw as 

given information to node K in the first outer loop pa.as. This 

nested processing al.l.ows us to discover, for example, that n 1a 

invariant 1n the inner loop, and hence to discover a little lAter 

that n is invariant in the outer loop. 

Af'ter the first pass through the CAtter loop, we use the recurrence 

relations gathered (attached atter node L ) and the initial V&lues 

115 



i•l I j•C.O I k•C.O I nj.C.O 

to synthesize a range of V&lues for each vviable at the IOOHmAD fl 

node durinl all iteration• ot the outer loop: 

D il invariant aDd n j. C.0 

i • {1} U {2,3, ••• ,n] 

j=m or j>n 

k .... t» or k c {1,2, ••• ,n} 

We then take a second pus throush the outer loop, using these 

ranges to prove assertions. At nodes lo' and K 1 it is nov clear 

that i is 1n the proper subscript range: 1 S i S n • When we 

enc01mter the inner loop, we use the new initial value intol'lll&tion 

(as it stands on exit f'raa node F ) with the old inner recurrence 

relations (subscripts q and q+l ) to synthesize a tighter set of 

ranges for variables inside the inner loop. In this exaple, the 

ranges attached to the exit arc ot the IDOHIEAD f2 node are: 

n is invariant and n /= (.I) 

i = {1,2, ••• ,n-l} 

J = {1+1, 1+2, ••• , ntl} 

k c {i, i+l, ..• , n} 

Following the teat in node G 1 ve em prove tb&t j is in the proper 

subscript range in nodes H and I : 1 :5 j :5 n . On this third 

pass throusb WOP 12, ve can also prove that j • n+l oo exit to 

node K • On previous }l&8ses, we did not know anything &boat the 

relationship between j and n 1 so ve bad to allow tor an initial 

case like j = 342 IUld n = 12 , in which ve could 0114 state that 

J > n oo exit, not tb&t J • n+l • However, now ve mow that the 

116 



maxiDNia initial value ot j ia n , hcce the inner loop &l.n¥• 

iterates at least once and J "' n+l on exit. (Bate that our analyaia 

system would actually use the tact tbat j ~ n initially at 

IOOHI:t:AD #2 to elide the test in node G for the first iteration of 

the loop, forcing a ca11plete copy ot the nodes in the loop to be 

used to renect the WlCondition&l tirst iteration. We will ignore 

this complication.) 

Following the third pass through lOOP #2 , we arrive at node K 

with the following given information: 

nf=ru 
i = {1,2, •.. ,n-l} 

j = n+l 

k c {i, 1+11 ••• , n] 

This is sufficient to prove that the subscripts i IIDd k are 

always in the proper range ( 1 ~ 1 ~ n , 1 ~ k ~ n) at node K • 

we ha.ve thus proved, through a somewhat tedious process, that all 

subscripts a.re irt range in this program, during all iterations of both 

the inner and outer loops. 

117 



A[ l:n0 l I w 

e.ssert 

&SI'!I::rt 

j := i+l 
X:== A[ i] 

k :• i 

~---~~~ aasert 
l~j~n0 

Figure A9.1. Flow graph for King's last example. We will only eonlider 

the proof's of the three assertions shown, since the other proof's are 

similar to those in earlier examples. To prove el.-a temiaaticm, 

we need never conaider What 11 b&ppening to A , i.e., that it 1• 

being sorted. 

ll8 



1) given: 
i "'1 1\ j ==W 1\ 

k =w" n !=w 

2} given: 

ipt-1 = 1p " 
jpt1 = jp " ____ .. 

kpt-1 =kp" 

npt-1 = np 

4) given: 
i = [l}U{2,3, ... ,n) l\ 
n i.s invaria.nt 1\ 

( j =W v j >n) 1\ 
(k =W V kC {1,2, .•• ,n}) 

exit 

given: 
ipt-1 •ip 1\ ip <np " 

jp+1 "'jp " kpt-1 = kp " 

np+l =np 

given: 
ip+l = ip f\ ip <np f\ 

jp+l = ip+l " kp+l = ip " 

np+l =np 

;) given: 
1 1 

= 1 -tl 1\ i <n t\ 
p+ p p p 

jp+l >np" 
k~1 c {i ,1 +1, ••• ,n } 1\ 
r· P P P 

np+l = np 

Figure A9.2. Gathering of given info:nnation tor i , j , k , and n on 

first p~.sa through outer loop. The processing of the inner lOOP f2 

on this first pass is detailed in Figure A9.3· The induction step 

between the first pass and the second pass through the outer loop 

determines the synthesized info:rm&tion labeled 4) • Note that j 

does not hAve a. pa.rticul.arly usefUl value at the IOOHIEAD fl node; 

1 t is the a.ssignment in node F tb&t 11 important. 

119 



2) given: iq+l = iq 1\ 

jq+l: jk 1\ 

kq+l = kq 1\ 

nq+l =nq 

given: a~,o-re plus 
X >A [j ) q q q 

given: j > n ---~• 

exit 

given: above pl.us 
xq ~ Aq[jq] 

Figure A9. 3. Ga.thering of given into:naa.tion tor 1 1 j 1 k 1 :md n in 
inner loop, during first pass through outer loop. The recurrence 
relations attached af'ter node J show that 1 a.nd n are invariant 
in the loop, that j is monotonical..ly increasing, and that k is 
some subset of the values that j takes on. Cc:mbining theae 
recurrence relations with the initial input conditiona traa the 1'1rst 
pass through the outer loop, we find that, at the IOOFHEAD f2 node: 

4) 1p+ 1 = 1p A ip < np 1\ npt 1 = np 1\ 

j...w-1 = {1 +1, 1 +21 •• • , n +1] " .r· p p p 
k_..1 c {i , 1 +1, •• • , n ] .r· p p p 

120 



Example 10. The 91 ~ction. 

The progr8111 we consider is a derivative ot the recursive 91 tunction. 

The iterative version we deal with requires moat of the graph transfor­

mations described in Chapter 1 and most of the merged into:rmation 

mechanisms described in Chapter 4 for the successfUl proof of 1 ts 

termination. 

As stated 1n [Manna et. al. l!J72, pp. 32 and 43 ], the 91 f\mctim 

is 

F(x) <= if x > 100 then x-10 ~ F(F(x+ll)} 

This f'unction returns x-10 if x > 100 and 91 otherwise. The 

initial form we use canes fran a mechanical transformation of the 

recursive definition intu an iterative: one using an explicit stack. The 

stack index is k , and the on~ content of the stack is haw many calls 

of F are still to be done, so k itself is u.ed as this counter. 

We shall concentrate on proving that the loops in this program 

teminate, and shall ignore the other issues, such aa overflow. The 

reader may wish to convince himaelf that i does not overfloW, and 

that k might . 

Figure AlO.l gives the initi&l, Wier-supplied floW grapb. Using 

the methods described in Chapter 11 this graph is tranafOftled into the 

one in Figure Al0.2. The first loop iD this graph tel'llliD&tea becau.e 

i is monotonically increasins, and hence will eventUAJ.4 exceed lOO • 

The figure shows the given intomation available on initial entrance 

to the major loop, lOOP f2. 

Using p and q as the iteration subscripts in loopa f2 ud f' 

respectively, we find on the n.rst pe.as through lOOP f2 1 tbat we 

enter the IOOBIEAD f., node with: 

121 



F.xample 10. 91 Function 

Figure AlO.l. Flow graph or the 91 function berore any or tbe 
Chapter 1 graph manipulations have been perfol'llled. We will 
mak.e the loop E- I-E into an inner loop with exit to F 1 

then make the loop E- F- G- H-E into an outer loop with 
exit to J • We will then permute the nodes of the outer loop 
so that it bas a leading exit test. 

122 



assert ~q ~ 1 s.t. 

given: 
i ~ 101,... k ~ 0 

given: 
i ~ 91 " k > 0 

assert 3'p > 1 
s.t. k <o­p-

k :=k+l 

k :=k+l 

Figure Al0.2. Structure of the nov graph in Figure A10.1 after 
separating the loops and putting them in leading test f'om. The 
loop termination assertions are shown, alODg with the initial 
entry conditions for LOOP 12 . 

123 



ip+l = ip " kp+l = kp-1 " kp > 0 

The subsequent induction step for LOOP f3 is shown in Figure Al0.3. 

We then apply our knowledge that 

ip+l > i " kp+l > k -1 " k > 0 - p - p p 

to nodes E and I on a second pass through lOOP f3 , and then exit 

to node F , carrying the information: 

ip+l ~ ip " kp+l .2! kp-1 1\ kp > 0 " ip+l .2! 101 

Passing through node It' , we find that : 

ip+l .2! ip -10 " ip+J. ? 91 " kp+l ~ kp -1 " kp ::" 0 

The induction step for the outer loop (WOP 12) is shown in 

Figure A10.4. We discover there that i ? 91 at the WOHIEAD f2 
node during all: iterations of the outer loop. With this t:l.~ter 

information abou~ i , we start a third pass through LOOP #3 by 

re-doing the loop induction, as shown in Figure AlO. 5. We discover 

that 1 ? 91 at the IOOHIEAD f3 node. We combine this information 

with the test i > 101 to find that on entry to node I , 

91 ~ 1 =5 100 " k > 0 ' 

and hence after node I , that 

102 < 1 < 111 " k > 1 

This tight restriction on i during all but the first iteration of 

LOOP f3 allows us to elide the test 1 ? 101 and in fact get rid of 

LOOP #3 entirely, as shown in Figures Al0.6 and A10.7. 

On exit fran node I in this newly-structured graph, we know 

that k ? 1 , so we can merge this with the k > 0 on the arc f'rom 

E to F to get 

k > 0 (Refinement) 

124 



initial 
given: 

11*1 = ip " 

k.pt-1 = kp -1 " 

k > 0 p 

given: 
i 1 = 1 +11 " q+ q 

kq+1 = kq +1 " 
1 < 100 q-

syntheiszed 
..,. ___ given: 

ip+l = 
kp+l = 
k > 1 p-

{1 , 1 + ll, ... } " p p 
{k -1, k , k + 1, ••• } " p p p 

Figure Al0.3. Induction step in :WOP #3 • Since we are within 

the first pass through IOOP #2 , ve are developing ranges tor 

the outer loop induction variables. Since ve know nothing at 

tf.is point about ip , we cannot say that ip+ 1 ~ 1ll inside 

LOOP #5 ; even though that is true when ccming around the loop, 

it may not be true on init1al entry. 

125 



initial 
given: 

i ~ 91 " k ~ 0 ----4 given: 
ipt-1 ~ ip -10 " 

ipt-1 ~ 91 " 

kpt-1 ~ l), -1 " 

\ ~1 

.... -------- synthesized 
given: 
i~91Ak>0 

Figure Al.0.4. Induction step in lOOP f2 . The tact that 1 ~ 91 
inside the loop will be cl'tl.cial in our third-pals processing of 
lOOP f3 · 

initial 
given: 

1 ~ 91 " 

synthesized 
... -------- given: 

1 ~ 91 " k > 0 

Figure Al.O. 5. Loop induction for starting the third pass tbrougb 
LOOP*' . Nov tor the first t:1Jne ve mow that 1 ~ 91 at the 
IOOHIEAD f3 node on .!:!! iterations of LOOP #3 . 

126 



given: 
i ? 91 

given: 
i ? 91 

Figure Al0.6. Elision of the test i ? 101 along the :path E- I-E . 
Since 102 ~ i when coming around the loop, the test of i ? 101 
is always true on the second iteration. 

given: i >91 ___ ..... 
k>l) 

given: 
101 < 1 " --lt----· 
k > 0 

exit 

given: ..-------+- 1 ? 91 " k ? 0 

Figure A10.7. New structure of lOOP f2 a:rter eUminat1on of 

lOOP •3 . We now can elide the teat of k on the :path I - F - G . 



on exit fl'all node F 11 the refint~aent being tbat on one path we lmow 

the stronger condition k ~ 1 • We CUl now att•pt to ellde the teet 

at node G , and find the att•pt aucceaa:t\11 along the path I - F - G 1 

as shown in Figure Al0.8, where the node F baa been copied. Fi.IUre A10.9 

shows the resulting nested loop structure, both of whose loops are easily 

seen to terminate. 

We have nov proved thAt all the loops in the iterative program 

for the 91 function terminate, by using ~ mecbanical transformation£ 

of the flow graph and scae simple theorem proving. The iterative 

program and ita mechanical transformation rran the recursive form a.re 

due to Donald Knuth, and have the property tba.t if the itera"'ive form 

terminates, so does the recursive one. 

Combining any of the standard proofs of partial correctness of 

the 91 1'\mction with our proof of t~rmination gives a proof of total 

correctness, with the ~ exposure being tbat k ~ overflow (or in 

the recursive form, the stack ma:y overflow). 

[I don't know if' it is just a fluke that th~' JD~b.t.nical teat 

elision process was able to create an inner loop with k invariant, 

but it was certain~ quite suspenset'ul the til'at time I liOrked all the 

way through this example. origi.n&lly, this vas to be my example of 

how the thesis tecblliques could h-11 to prove loop te:ra!Daticm.] 

128 



given: k > 0 

given: k > 0 

exit 

given: 
k>l. 

given: 
k > 0 

Figure Al.O • 8. Elision of the test k > 0 al.ong ane path. When the 

structura of this new f'l.ow graph is ~sed, we will have a. new 

loop nested inside lOOP ft2 • We have now made some signiticu.t 

progress, beca.uae k is invariant inside this ilmer l.oop. 



exit 

Figure Al0.9. Final structure of nested loops f2 and ..... We cannot 

canbine nodes I - F" - H into a single 1 : = 1+1 , U!Uess we can 

prove that no overflows oceur. However, we do N.nd the 

recurrence relations in lOOP +4 : 

iq+l := iq +1 " kq+l = kq 

Thus, lOOP f4 tel"'llin&tes because i is moootODic~ increasing. 

Since k is Invariant in lOOP t4 , we N.nd in the re~is 

of LOOP f2 that kpt-l = kp-1 , and hence that LOOP f2 terminates 

because k is monotonica.J.J.y decreasing. 



Appendix B. Node Viaiting AJ.«oritla t'raD Chapter 4. 

procedure VISIT (tirstnode, lutnocle); 

~ n : = tirstnode to J.tl stnode ~ 

begin 

1) .!£!: ~ i in me CMINGAR:: s (n) !!2 
Pk>VE (GI'mf(1) ~ ASSERTIOBS(i)); 

2a) if NODE(n) • IOOHIEAD then 

begin 

GIVEN (EXITAJC (n)) : = DU)Io1Y B:DIDlNGS VN+l = VN; 

VISIT ( FIRSTNODEINSIDEIIJOP(n), LASTNODEIJISIDEIOOP(n)); 

GIYm (EXITAIC(n)) := INW:T (GI\'m (IlflTIALAK:S(n)), 

end 

~begin 

Glvni (I.AmmACKAK:S(n))) 

2b) !f NODE(n) =TEST~ 

!£! ~ i in IlfCOMINGAICS (n) !!2 
begin 

PROVE (GI~(i) ::l TESTEXPRESSION(n)); 

PROVE (GI'ml(i) ~not TESTEXPRESSIC.(n)) 

g either is true~ 

elide the test and re-analyze the graph 

end 

3) g := MERGE (GIYm(i) :!2!_ each 1 1n ~<XIlf~S(n)}; 

end 

g :=MERGE (g, ASSERr1CfiS(1) f2!: ~ i in INCOM:rNGAICS(n)); 

gpri.Jn e : = REFI.!X:TASSICIIMDCTS (g) ; 

if NODE(n) = TEST :E!!!! 

~ 
GI'Im (Tli1EEXIT(n)) := MERlE {gpriae, 'liSTElCJ'IJIESICB(n)); 

GIVEN (FALSEEICIT(n)) :• MmJE (gprtae, ~ 'liB'rEXPBESSIC.(n)) 

end 

else 

GIYm (EXl'riJC(n)) :• gprime 

~ 

131 



BibliOSJ'&PlY 
page 

referenced 

[Allen lCJ70] 4, 9 
Frances E. All.en, "A Basis tor Program Optimization," 
11M Research Report R::31~, T. J. Wataon Reaearch Center, 
Yorktown Heights, N. Y ., Novembe!" 1970, pp. '-6. 

[Allen and c ocke 1g(2 1 • • • • 4, 7, 9 
Frances E. All.en and John Cocke, "Graph-Theoretic Constructs 
for Program Control Flow Analysis," IBM Research Re~rt R::3923, 
T. J. Watson Research Center, Yorktown Heights, N. Y., July 1g(21 

p. 28ff. 

[ Ashcrof't and Manna lg-{2] 1, 25 
Edward Ashcrof't and Zobar Manna, "The Translat1oo of 'Go To' 
Programs to 'While' Programs," Infonnation Procesl1ing 71, 
North-Holland PUblishing Ccapany, 1']72, PP• 250-255· 

[Brent 19731 • · • • · • 
Richard P. Brent, "Reducing the Retrieval Time of Scatter 
Storage Techniques," ~ 16, February 1g(3, pp. 105-109. 

5 

[Burstall lgfO] • . • • • . • • 56 
R. M. Burstall, "Fo:nnal Description of Program Structure and 
Semantics in First Order INgic," Machine Intellle;ence 5, 
Edinburgh University Press, lif70, pp. 79-98· 

[clint and Hoare 1972 ] 

M. Clint and C. A. R. Hoare, "Program Provin&: JwDpa aDd 
Functions," Acta Info:nnatica 1, 1CJ72, pp. 214-224. 

[Cocke and Schwartz. 1970] . . • • • 
Jobn Cocke and Jacob T. Schwartz, "~ Langl.lases and 
Their Caapilers: Prel:llll1.nary Notea," Courant Inatitute ot 
Mathflll&tical Sciences, .llew York University, lf, Y ., April 1770, 
pp. 442-461. 

[Dahl and Hoare 1972) 

Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Prosr­
Structure," 1n Stl'Uctured J?'OII'-1ng1 Acadai.e Press, 
New York, 1'}72, pp. 175-220. 

].}2 

9 

59 



[Deutaeh 197~] 54, 55, 56, 66 

L. Peter Deutsch, "An Interactive Progrul Verifier," 

Jb.D. Theai8, Canputer Science Departaent, University of 

Cal.if'omi& Berkeley 1 June lCJ73 • 

[Earneat et &1. 1972] 

C. F. Earnest, K. G. Balke, and J. Anderson, "Analysis or 

Graphs by Ordering or Nodes," ~ 19, January 1<]72, pp. 2.3-42. 

[ElSl)&B et e.l. 1972&) ..... . 

Bernard Elsps.s, M. w. Green, Karl N. Levitt, and 

Richard J. Waldinger, "Research in Interactive Program-Proving 

Techniques," S .R.I., Menlo Park, Calif., May 1<]72. 

[ Elspa.s et !:!.· 1972b 1 • · • • · 
Bernard Elspaa, Karl N. Levitt, Riebard J. Waldinger, and 

Abraham Waksman, "An Assessment of' Techniques for Provi.ng 

Program Correctness, •• Canputing SUrveys 4, June 1972, pp. <J1-l47. 

16 

[Floyd 1964) · · · · · · · · • 5 

Robert W. Floyd, ••AJ.goritta 245 -- Treesort 3, •• ~ 7, 

December 19611., p. 701. 

[Floyd 1967) 
Robert w. Floyd, "Assip;ning Meanings to Programs," Proceedings 

or a Symposium on Applied Mathematics, American Mathematical 

Society 19, 1967, PP• 19·32. 

{Floyd and Rivest 19731 

Robert W. Floyd and Rona.ld L. Rivest, ••Bounds co the Expected 

Time for Median Ccmp.ltation, n Ccmbinatorial Al§orithms, edited 

by Randell Rustin, Algorithms Press, 1973, pp. (1;)-76. 

5 

[Frit£ch et al. 1973] . • • . • . 5 

F. N . Fri tseh, R • E. Sh&fer 1 and W. }'. crowley 1 "Al&orl tbll 443 

-- 8olution of the Transcendental Equation 

~ 16, February 1973, pp. l23-l24. 

[Gerhart lg72} 

Susan L. Gerhart, "Verification ot APL Programs," Ph.D. Thesis, 

Carnegie-Mellon University, November 1972, 216 pp. 



(Good lgTO] 

Donald 1. Good, "Toward a. Mul-M&cbine System tor ProviDg 

Program Correctness," lb.D. Thesis, University of Wisconsin. 

Also Canputa.tion Center M•o TSN-11, Univerdty of Texas, 

Auatin, Texas, June lg(O, 179 pp. 

[GoOd and London 1970] . . . . . . • • • 

Donald r. Good a.nd Ralfb L. LOndon, "C0111p1ter Interval. 

Arithmetic: Definition and Proof ot Correct Iapl.ementation," 

~ 17, October 1970, pp. 6o}-612. 

[Hoare 1961] 

C. A. R. Hoare, 

pp. 321-322. 

[Hoare 1969] 

C. A. R. Hcmre, "An Axi:lll&tic Basis for Ccmpu.ter Prograaaing," 

C • .ACM 12, October 1969, pp. 576-580, 583. 

[Hoare 1gTla.) 

C. A. R. Hoare, "Proof of a Program: 

January 1971, pp. 39-45. 

[Hoare lg'( lb ) 

FIND,"~ 14, 

C. A. R. Hoare, "Procedures and Parameters: An A>.:icmatic 

Approach," Symposium on Semantics of Algoritblllic L!Dgu,ages, 

Springer-Verlag, 1971, pp. 102-116. 

59 

56 

[Full ~ !1· 1)172) • • • • • . • • • 59 

T. E. Hul.l, w. H. Enright, and A. E. Sedgwick, "The Correctness 

of N'UIIIerica.1 Algoritms," Proceedings of an ACM Conference on 

Proving Assertions About Pr?grams, SIGPLAR Botiees, Jeztuar,y 1972, 

pp. 66-73· (Also SIGART Botices, Janu&ey 1972.) 

[Igarashi ~ !!.· lg()) 

Shigeru Igarashi, Ralph J,. London, and David C • Luclcba, 

"Autanatic Verification of' Prognma I: A Logical Buia and 

Impl.C'IIentation," Canputer Science Departaent Report CS 365, 

AIM 200, St~ford University, May lg-(3, 53 pp. 



Bibllograpby 

[King 19691 . . . . ,, 5, 54, 66, 100 

JUtes C. King, "A P.rogram verifier," Pb.D. Thesh, Carnegie-Mellon 

University, National Technical Information Service, Brrinat1eld, 

Virginia. 22151, fAD 6<)9248, SeptEDber 19(,q, ~55 pp. 

[Knuth 1973&.] • . . . • 5 

Donald E. Knuth, "A Review of 'Structured Progrumtng'," 

Ccmpu.ter Science Department Report CS~71, (ClearinghOUBe t 

PB 223512/A), Stanford University, J'Wle lfJ7?J, 25 pp. 

[Knuth lg?3b) . • . . 5, 16 

Donald E. Knuth, The Art of Ccmp1ter Prograaning, Volume l -

FUndamental AJ.goritms, Addison-Wesley, Reading, Maaa., 197.3. 

[Knuth a.nd Floyd 1971] • • . • . . • . . 62 

Donald E. Knuth and Robert W. Floyd, "Notes on Avoiding 

'GO To' Statements," Information Processing Letters 11 lgfl, 

JlP• 2.3·31, 177. 

[London 1!170&] 

Ral'ph L. London, "Bibliogra~ on Provins the Correctnes& ot 

Computer Programs," Machine Intelligence 51 Edinburgb University 

Press, 1CJ70, pp. 569-580. 
[London 1970b l .3, 5 

Ralph L. London, "Certification of Algoritbll 2a.5[M1) 

Treesort .3: Proof of Algorittns -- A New .Kind of CertU'icaticm," 

£.:E.!:! 13, J\Ule 1970, pp • .371-.373. (Al.so see [Redish 1971].) 

(London 1972] • • • • • • • • • 54, 56 
Ralph L. Londoo, "The Current State of Proving Programs 

Correct," Proceedine;e of ACM Baticmal CODtereace 27:1, JCM, 

August 1972, P.P• 39-46. 

[Malcolm md Palmer 1974] 

Michael Malcolm and John Palmer, "A Fast Method for Solving 

a Class of Tridiagonal Linear Systems," £.:.!!£! 17, January 197a., 

P.P· 14-17. 

Zohar Manna, "The ~orrectness of Programs," Jouma.l of ccaeter 

and Systea Sciences }, May 1969, pp. 119-121· 

135 

59 



[Manna et .!! . 1972] 

Zobar Manna, SteJhen Ness, and Jean VU1lle1n, "Inductive 

Methods of Proving Propertie .. of Programs,'' Proceeding! of an 

ACM Ccmference on Prov'ing Assertions Abou.t ProB!'!!Is, SIGPLAN 

Notices, SIGART Notices, January 1972, pp. 27·50· (LU Cruces, 

New Mexico, Ccmference.) 

[Manna and Pnueli 1973] 

Zohar Manna and Amir Fnueli, "Axiauatic Approach to Total 

Correctness of Programs," Canp.1ter Science Department Report 

CS 382 (Clear1nghouse fAD 767335), Stanford University, 

July 1973, 25 PP· 

{Naur 1963] 

Peter Naur (Editor), "ReVised Report on the Algorithmic 

Language .Alr.,OL 6o," C • .ACM 6, January 1963, pp. 1·23. 

[Redish 1971] . • · · · 

K. A. Redish, "Canment on London's Certification of 

Algorithm 245," C • .ACM 131 January 1970, pp. 50·51. 

[Reingold 1973] 

Edward f4. Reingold, 

~ 1G, May 197 3, 

[Sites 1972] 

"A Nonrecursi ve List MOVing Algoritl'lll," 

pp. 305-307· 

Richard L. Sites, "Algol W Reference Manual," Computer 

Science Department Report CS 230 (Clea.ringhouse fPB 2036ol), 

Stanford University, February 1972, 141+ pp. 

20 

3 

5 

61 

[Sites 1974] •• 3, 5, 17, 53, 66, 103 

Richard L. Sites, "Some Thoughts on Proving Clean Temination 

of Programs," Canputer Science Department Report CS 417 1 

Stanford University, May 1974, approximat~ 6o pp. 

[ SIDi th 1972 } • • • • • • • • • 

J. Meredith Smith, "Proo:t and Validation of Program Correctness," 

The Computer Journal 15, pp. 130-1.31. 

[Waldinger and LeVitt 1973] 

Richard J. Waldinger and Karl N. Levitt, "Reasoning About 

Programs," ACM Symposium on Principles of Prosr-iftg L&nguages, 

ACM, October 1973, pp. 169-182. 

55 



(Wegbreit 197~) 

Ben Wegbreit, "The Synthesis ot Loop Predicates," ~ 17, 

Feb:ruary 1974, pp. 102-112. 

[Yobe 1970] 

J. M. Yohe, "Best Possible Floating-Point Aritbaetic," 

Mathematics Research Center Sualll&ry Report No. 1054, University 

or Wisconsin, March lCJ70. 

56 

59 



Aliases 

Arrays 

B&ckWa.rd Ana.lysis 

Certification 

Clean termination 

r orrectnes" 

Correlations between varia.ble~ 

CoW!terexample 

Exit test 

Forward analysis 

Goal-driven 

Goto 

Halting problem 

Heuristics 
Absolute value 

Loop induction 

Loop tennina.tion 

Merging given info 

Pennuting loops 

Pushing back assertions 

Interval Analysis 

Langua.ge design 

La.tchba.ck arc 

Lea.:ling tests 

Lemma fonna.tion 

Lexicographic order 

List processing 

Loop exit a.rc 

Loop induction 

Machine mod.el. 

Memory bound 

Merging given info 

Monotonic expression 

Index 

~51'1", 98rr 
4, 5, 20, 21, 22, 45. 93ff 

100 

~ 

lt'f 

l, 3, 5, 56 
86 
5, 23, 31 
13, 24, 25, 26, 91 

4, 29, 100, 101 

23, 24, w., 52 

62 

23, Z'{, 48, 49 

llO 

59 
85 

43, 59, 101 

13, 122 

31, 59 
7, g, 12, 14 

6o 

9 
1, 13, 26, Z7 

43ff, lOlf'f, ll2 

4, 29, 38 

5, 38, 39, ~9, 57, 58, 59 

9 
29, 34f'f, 48f'f 
18 

20 

33, 4orr 
4, 24, 27, 49, 110, 121 

138 



Nested l.oopa 

Node splitting 

Optimizing ccapilere 

Partial correctness 

Procedure calla 

PUshing back assertions 

Recurrence relations 

Recursiat 

Refinement 

Safety 

Search loops 

Small machines 

Subscript bounds 

'termination, Proof of 

Test elision 

creating new inner loop 

creating new parallel loop 

deleting inner loop 

Time bound 

Total correctness 

Notation 

® End or chapter SUDI&r'y. 

(L) Undefined value. 

1min 
Sm&Jle1t representable 
integer. 

!max Largeat representable 
integer. 

... E Non-empty initial subset 
of an ordered set. 

~~ ~0"-tf' 

1' 9, u, 29, 33, }4, llOtf 

61 
3, 83 
4, 5, 7, 21, 30 

21, 31, 8~ 

29, 35, 49 
4, 8, 20, 59 

29, 32, 33, 37, 43ff, go, 110~ 
62 

5, 27, 5ltf' J 79tt 
2, 3 

20, 21, 22, 93tr 

3, 23ft, 56, 1<>4 
4, 25, 29, 30, 34, '7f't 

38, 39, 129 
113, 114 

127 
20 

56, 58, 90 

vi 

17, 19 

17, 18 

17, 18 

30, 52, 78, 95 

139 


