PB-233 045

PROVING THAT COMPUTER PROGRAMS
TERMINATE CLEANLY

Richard L. Sites

Stanford University
Stanford, California

May 1974

BIBLIOGRAPHIC DATA |- Report No. 2
SHEETY STAN=-CS-Th-1418

PB 233 045

4. Title and Subticle 5. Repont Date
PROVING T{AT COMPUTER I OGRAMS TERMINATE CLEANLY Mey 1974
6.

|7. Author(s)
9

[] getioming Organization Rep.
O

-CS-T4-418

. Performing Orgsnization Name and Address
Stani‘ord University

Computer Science Department
Stanford, California 943095

10. Pioject/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsocing Organization Name and Address

IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218

13. Type of Report & Period
Covered

technical, May 1974

['8

18, Supplementary Notes

V6. Abstracts

applicatior to high-level languages.

arithmetic.

A system of techniques is presented for proving mechanically that a computer
program terminates cleanly., In this paper, clean termination means that the
program has no infi ite loops and no semantic errors - no undefined variables,
no subscripts out of range, no overflows on a given computer, etc. The techniques
are discussed in terms of programs expressed as flow charts, and they have wide

The work described here complements work done on program correctness, differing
particularly by not requiring a description of the correctness properties of a
program and by treating the running of programs on machines with finite-range

T7. Kcy Words and Document Apalysis. (/e Descriptors

7% Wentifiers /Open-Ended Terms

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
17¢. COSAT! Field/Group Springfield VA 22151

8. Availability Statement

approved for public release; distribution
unlim’ted.

9. Security Class (This
Report)

urity s 18

Page
UncrassiFiED

p———
FORM NTI1S-39 (REV. 3-72)

21 Nc. o Pages

75—

THIS FORM MAY BE REPRODUCED

USCCMM-DC 14982-P72

Dedication

This thesis ic dedicated to a certain place in a cow pasture
behind the Stanford campus; & Hill without whom this thesis would
never have been written. May all schools have the foresight to

preserve such places for the lost souls who will need them.

Richard L. Sitec
Dedicated January 11, 1973

Acknowledgments

The single most important factor in the completion of this thesis
has been Don Knuth's willingness to read and extensively annotate
early drafts of this and related papers. He has been such an outstanding
thesle advisor for me that I could enjoy doing mnother thesis
under him, Jjust so I could learn how to be a good thesis advisor myself.
I aiso am grateful for the support of Bob Floyd and Ben Wegbreit on
my reading ccmmitiee.

Financial assistance for the most difficult year of my thesis
work was provided by the Fannie and John Hertz Foundation, and was
offered Tor subsequent years in spite of my progress reports; I thank
the Ysundation for its long-range view and particularly for alleviating
one of the stresses of completing a taesis. I also thank Hewlett-Packard,
Inc. for its indirect support during the final year of this work.

The previous work of others wham I drew upon for technical suppcrt
is acknowledged in reterances throughout the text.

Jim Dulev, Don Knuth, John Walters, Phyllis Winkler, and represen-
tatives of the Fannie and John Hertz Foundation provided continuing
moral support. 1 thank them all.

Finally, heartfelt thanks to Susan Phoebe Watts, whose encouragement
started my pursuit of & Fh.D. in the firct place. May che find similar

encouragement .

iv

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter 7.

Appendix A.

Arpendix B.

Bibliography

5.

.

Table of Contents

Introduction
Fiow Graph Processing
Generation of Semantic Error Assertions
Generation of Loop Termination Assertions
Proofs

Related Literature

Extensions and Related Topics
Conclusion . « « o« + o . .

Examples

King's Examples 1-9
McCarthy's 91 Function

Node Visiting Algorithm from Chapter L .

Index and Notation

17
23
29

Note to the reader

1 have tried to structure this thesis so that it can be read at
many different levels of detajl. You have already passed the first
level, the title. I have tried to write the introductory chapter so
that you can see what the rest of the thesic is and is nc¢t about and
how this work is different fram others. Hopefully, after reading the
introduction, you will have enough information to decide whether to
read the rect. At the third level of detail, each chapter begins with
a summary of its content. ITf your interests are very specific, this
anould allow you to skip the bulk of some chapters. The chapter
curmaries end with the symbol & . The fourth level is Appendix A.
41l of the examplec in it should be readable if you have read just the
chapter summaricc. The rest of the thesis is at the fifth leveyr of
detail. For yet more detail, read a.l the references, 35315 references,
etc. /Proof of termination of the last step 1s left to you.)

For a guick reading, I would suggest the following order:

Chapter ", Example 1 in Appendix. A, all the chapter surmaries, then
kxample 1) in Appendix A. For reference purposes, On pages 138-139
snere is an index, and on pague (£-68 there is a sumrary of the points

covered in the Appendix A examples.

vi

Chapter O. Introduction

This thesis discusses techniques for proving that a computer
Program terminates cleanly -- that it always terminates and does so
without encourtering any semantic errors -- overflows, out-of-range
subscripts, ete. 1In contrast with others' work on rigorous proofs of
program correctness, this work only tangentially examines what a
program does; the empharis is on proving that whatever it does,

a program always terminates normally. ®

Proof of clean termination is not an end in itself. Rather, it
is u well-defined subgoal in convincing oneself that a program works
reljably. Pz‘;pving that a program does not "blov up" in the middle
does not in any way say that the program correctly produces useful
results; it just says that whatever the program does, it will eventually
come tc a normal end. For a large class of programs, it is useful to
run & set of test cases to demonstrate that the program goes through
its intended notions for at least those test cases, then to try to
pProve that the program terminates cleanly in order to discover anomalies

that the test cases missed. The proof will pick up problems like:

(1) Degenerate cases of same data structure which the progran did
not anticipate and which result in, say, the use of a zero
subscript in an array whose legal bounds are 1:100 .

(2) Degenerate cases where some loop exits before iterating at all,
leaving some variables undefined (never assigned to) on exit.

(3) A programner's assumption that, say, N 1is always positive, when
in fact there is not an explicit test for this, and the program
loops indefinitely if N =0 .

1

Chapuer 0. Introduction

(4) Use of uninitialized variables, which could make the program
non-deterministic.
(5) Calculations on & small (say 16-bit) machine which could easily

produce integer overflows and nence invalid results.

For some programs. this process is not very useful. For example,
in 2 matrix inversion routine almost every arithmetic operation could
prodv..e .. 2verflow or underflow, so the attempted proof of clean
tereina.ion Wwill fail miserabily, flagzging almost every statement as
a possible place for an unclean termination.

For other programs, proof of clean termination may actually be an
e.! in itself, as in certain real-time programs or operating system
subsyctems, where it may be all right for the program (or subsystem)
to rive wrong answers occasionally, but it would be disastrous if
the program got in an infinite loop and impacted the operation of the
rest of the system.

Proof of clean termination is a valuable tool because it is a
well-defined problem which lends itself to being done almost entirely
mechanically, with very little help from a ucer. Unlike rigorous
proofs of correctness, which require the user to supply a cerefully-
constructed cet of acsertions about the program's behavior, proofs of
clean termination can use mechanically generated assertions: based
on each operator in the program, it ic possible to synthesize a set of
assertions about semantic errors, and based on some flow analysis of
the program, it is possible to synthesize a set of assertions stating

that each loop terminates. Attempting to prove these assertions then

usually has the effect of finding that some of them aren't true and

Al

Chapter 0. 1introduection

hence suggesting to the user bugs to be fixed or an appropriate set

of restrictions for the program's data. The user can then either change
the program, or add tests to the program to detect data that can't be
handled (and if detected, return a clean indication or message), Or run
the program as it stands, knowing that it will blow up in a poesibly
obscure way for some sets of inputs.

In contrast to work on algorithm correctness, the system described
here deals expiicitly with programs which fail because of finite-range
arithmetic. In this regard, see London's certification of the
algorithm TREESORT3 {London 1970b], in which he states "... it is
possible and appropriste to certify algorithms with a proof of
correctness. This certification would be in addition to, or in many
cases instead of, the usual certification [by testing]", and Sites's
certification of the program TREESORT> [Sites 1974], in vhich he notes
that the program can fail to sort large arrays because of an overflow
in the subscript calculations, in spite of London's proof of correctness.
The same issue is pointed out in London's reply to Redish (Redish 1971].
As minicomputers and microcomputers with small word lengths proliferate,
the restrictions of finite-range arithmetic will become more important.

in contrast to work on partial correctness, the system described
here deals explicitly with proof of termination. 1In this regard, see
King's proof of partial correctness of a simple division program
[King 1969], and the same Example 2 in Appendix A of this thesis, in
which it ie noted that King's proof of partial correctness includes
the case of division by zero, for which the program loops indefinitely.

At this point, I will summarize the major limitations and results

of the work described in subsequent chapters.

>

Chapter 0. Introduction

Limitations:

(1) There is no computer implementation of the techniqvués.

(2) calculations with floating-point numbers are not; handled,
although Chapter ¢ includes scme discassion of the Froblems that would
be involved.

(3) Recursion and asynchronous events are not handled.

{4) The system in fact requires a minimal amount of program
annotation to be supplied by the user -- descriptions of the bounds
of arrays passed t» procedures, and descriptions of the intended

structuring of linked lists and trees.

Results:

{1) The analysic of a program is based on an algorithm for the
forward propagation of information while visiting the nodes of a
program's flow ,raph in a fixed order. The last time a node is visited,
all the ascertions ascociated with it are either proved, disproved, or
the theorem prover gives up. Proved assertions need not concern the
user, disproved acsertions represent definite bugs or hidden restric-
tions, and the remaining assertions represent possible problems on
which the user tshould focus hi. attention.

2) A second result is a set of techniques for untangling loops
and eliding tests, an extension of the interval analysis and compller
optimization techniques of Cocke, Allen, et al. {Allen 1970] [Allen and
Cocke 19721. The technique for finding paths along which a test can
be elided is important in the automatic synthesis >f lexicographic
orderings for proving temmination cof complex loops.

(%) Techniques are presented for proving the temination of

some loops which do not lend themselves to mapping into monotonically

Chapter O. Introduction

decreasing sequences, such as some search-for-equality loops and
circularly-linked-list loops.

() Procedures, parameters (both name and value), read statements,
and arrays are all explicitly treated.

(5) Specific programs which have been proved to terminate cleanly
include TREESORT3 [Fioyd 1964] [London 1970bj [Sites 1974]; SELECT,
an algorithm for finding medians [Floyd and Rivest 19737 [Sites 1974};
an iterative version of McCarthy's 91 function [Manna et al. 1a721];
and some of King's examples {King 1969] (see Examples 1-0 in
Appendix A). Hand simulation of these proof techniques uncovered a
hidden restriction in TREESORT3 and a simple bug in Knuth's
Algorithm 2.%.2A [Knuth 1975b]. Preliminary work on this thesis
jneluded hand simulation of some of the techniques on a wide variety
of programs: & list reversal routine, a symbol tuble search routine,
Knuth's program for Dijkstra's inversion problem {Xnuth 1973a],

a floating-point calculation [Fritsch et al. 1973>], a hash cearch
routine [Brent 1973), and a list move routine [Reingold 19731.

In brief, proof of clean termination is a mechanical process,
requiring little effort from the human user, vhich can do much of the
tedious work of examining a program's betavior in all possible degenerate
cases, for all possible sete of input data, and either report to the user
an assurance that the program is free of an important class of errors,
or report pieces of the program or sets of inputs which may fail. This
process can be applied to programs for which we have no way of even

expressing what it means for the program to be rigorously "correct”.

Chapter O. Introduction

SUGS BUNNY

1. 1.

- w

Chapter 1. Flow Graph Processing

1g chap:er discusses preliminary modifications to the flow graph
of a program to make its loop structure more tractable. The modifications
consis: of putting all loops in leading test form and inserting a
"loophead" node at the beginning of each loop. Coples may be made of
same nodes in the flow graph, either because of node splitting during
interval analysis {Allen and Cocke 1972], or because of permuting
the nodes in a loop to bring an exit test to the front of the loop.
The nodes in the modiffied flow graph are then ordered so that when
a node is encountered in subsequent processing, all of its
predecessors (and any loops containirz them but not the current node)
will have already been processed.

For programs which have already been put in while format (perhaps
using techniques described in [Ashcroft and Manna 1972]), the rrocessing
deseribed in this chapter can be skipped, except for the ingsertion
of "loopheed"” nodes and ordering the nodes. ®

In this paper, we shall view all programs as flow graphs consisting
of nodes and directed arcs. Our flow graphs have seven kinds of nodes:
binary test, assignment, START, HALT, PROCEDURE, RETURN, and CALL.

The last three aren't strictly necessary, but they make the discussion
of subroutines easier. All high-level flow-of-comtrol constructs are
mapped into tests and assignments. Thus, Algol 60 FOR loops are mapped
intc leadinyg tests and explicit assignments to the control variable,
Fortran DO loops are mapped into following tests, and CASE statements

are mapped into a series of tests (inctead of a single multiple-exit

Chapter 1. Flow Graphs

test). An eighth kind of node, the LOOFHEAD node, will be discussed
a little later.

We shall assume that, in forming the flow graph, any necessary
variable renaming has been done so that all names are unique and we
do not have to deal with scope rules. Blocks and scope rules would
have to be handled in a more complicated way if the system described
here were to be redesigned to analyze recursive procedures. For our
purposes, input/output statements could be modeled in the flow grarh
with assignments to/from the variables read or written. Complicated
input/ocutput semantics can be modeled with assignments to auxiliary
variables representing, for example, device position.

The nodes in our flow graphs are connected by directed arcs. Test
nodes have two arcs leaving them (exit arcs); HALT and RETURN nodes
have no exit arcs; all other nodes have one exit arc. START and
PROCEDURE nodes have no entry arcs; all other nodes have cne or more
entry arcs.

A complete flow graph for a program and its sub-procedures consists
of a set of disjoint graphs, one for each procedure or main program.
The graph for the main program contains exactly one START and one HALT
node; the graphs for the sub-procedures each contain one PROCEDURE
and one RETURN node. The limitation to a single RETURK node is
somewhat arbitrary, but allows us to deseribe one set of exit conditions
for a procedure, instead of describing a different set of conditiomns
for each RETURN.

We accept general flow graphs of the type describea above as
input; but to find, analyze, and eventually prove the termination of

the loops in a program, we need to modify the input flow graph to

Chapter 1. Flow Graphs

put it in a more constrained form. The operations described below
are to be performed on each of the disjoint graphs, representing one
procedure each.

First, we perform interval analysis with node splitting [Allen 1970]
[Allen and Cocke 1972], [Cocke and Schwartz 1970], which forces each
loop in the graph to have exactly one ertry node, so that we can analyze
the manipulations within a loop in terms of unique initial entry
conditione. A graph with multiple-entry loops, such ag the one in
Figure 1.1 is changed into a reducible graph by node splitting, which
makes copies of some of the nodes of a graph so that the new graph
has fewer multiple-entry loops. Node splitting would change the graph
in Figure 1.1 to that in Figure 1.2.

Arcs which go from a node within an interval to the interval head

node are called latchback arcs; they represent branches back to the

beginning of & loop. In any interval which has latchback arcs and
whose interval head is not already a loophead node, we now replace the
interval head node, A , with a pair of nodes: a LOOPHEAD node and A .
We reroute A's original entry arcs to the LOOPEAD node, add an arc
from the LOOPHEAD to A , and leave all of A's exit arcs intact, as
in Figure 1.3. The LOOFHEAD node serves to identify the top (beginning)
of a loop and provides us & canvenient place to attach loop termination
assertions.

In analyzing a loop, we are interested both in its branches back

to the top of the loop (its latchback arcs) and in its loop exit arcs,

vhich cannot lead back to the LOOPHEAD node (without going through

the LOOPHEAD node of a containing loop). We are ihterested in the loop

Chapter 1. Flow Graphs

Figure 1.1. An irreducible graph, with rectangles showing its
partition into intervals. The loop BC has multiple
entry nodes, making its analysis difficult.

n

Chapter 1. Flow Graphs

Figure 1.2. Node split version of the graph in Pigure 1.1, in which
the loop BC now has a single entry node, C .

Chapter 1. Flow Graphs

Figure 1.3a. A flow graph Figure 1.3b. The same fluw
with its two intervals graph after inserting
indicated by dashed LOOFHEAD nodes.

lines.

Chapter 1. Flow Graphs

exit arcs because one way of proving that the loop terminates is to
prove that an exit arc must eventually be taken as the program executes.

We may find that two or more loops in a program have a common
beginning node and interval analysis indicated only a single loop,
as in Figure l.ka. To detect and clear up this situation, we in
general need to modify each loop so that every path around the loop
goes through an exit test (a test node which has a loop exit arc
ieaving it). We make a separate, contained, loop out of any paths
which do not exit directly, as in Figure 1l.4b. More formally, if
breaking one arc leaving a TEST node breaks the only path from that
node which eventually latches back to the top of the loop, then the
other arc leaving the TEST node is a loop exit arc and that TEST node
is an exit test. [Also see Appendix A, Example 10.]

In analyzing the effects of loops (described in Chapter L), we
may find it convenient to permute the nodes inside each loop (Figure 1.5)
so that all the exit tests are at the tcp of the loop, thus making it
easier to consider the degenerate case of zero iterations. If a loop
has multiple exit tests, this modification is not always possible, so
the best we can do is permute the loop so that ome of the exit tests
is at the top. [See Appendix A, Examples L, 7, and 10.]

One final step in the preliminary processing of the flow graphs
is to order the nodes so that when we later examine them one at a time
tco gather information and prove accertions, all of the appropriate
predececsor nodes will have been already examined. We use the following

rules to order the nodes:

1>

Chapter 1. Flow Graphs

Loophead 1

Loophead 1

latchback
arc s
| .
| L./
la::g:ack loop exit °
' | arc
Figure l.la. A single loop Figure 1.4b. The same graph
as seen by interval after forcing each path
analysis. The interval around a loop to go through
is indicated by dashed an exit test. The two
lines and may contain termination issues of getting
more nodes below E . to node C and getting to

node E are separated now
into two different loops,
indicated by their loophead
nodes and by dotted lines.
Note that, in contrast to
intervals, node E and its
successors are not in the
loope. [See also Appendix A,
Example 10.]}

Chapter 1. TFlow Graphs

exit

Flgure 1.5a. A loop without Figure 1.5b. The same loop
leading exit tests. permuted so that the exit
test is at the top.

(1)
(2)

(h)

Chapter 1. Flow Graphs

Reduce each loop in the program to a single node.

Topologically sort [Knuth 1973b, p. 258] the nodes in the reduced
graph, using the directed arcs as the ordering.

For each node in the reduced graph which represents a loop,
topologically sort the nodes within the loop, ignoring all
latchback arcs, then insert these nodes in the main topological
ordering as a single group, sé that all the nodes in the loop
precede any nodes which followed the loop in the reduced ordering.

Apply Step 7 until all loops have been expanded.

A discussion ol this ordering and its properties appears in

[Earnest et al. 1972].

16

Chapter 2. Generation of Semantic Error Assertions

This chapter discusses the generation of assertions which state
that "no semantic error occurs 1f the following node is executed".
This is a very local, operator-driven process. These assertions are
attached to each of the entry ares for the node, as in Floyd's original
description of the inductive assertion technique [Floyd 1967].
Semantic errors occur whenever an operation gives an undefined result,
as specified in the language definition or in a set of implementation
restrictions for a particular compiler/computer combination. The
examples are given in terms of Algol 60 programs rumning on a machine
which gives undefined results for underflow/overflow, assigment or
any other use of uninitialized values, subscripts out of range, etc.
The machine is also assumed to perform mathematically correct
comparisons of, say, 1 and j even when J-i would overflow/underflow.
Machines (such as the CDC 6600) which violate this last assumption
are discussed below, and in [Sites 197k].

Assertion generation for value parameters is straightforward,
but name parameters are handled strictly according to the copy rule,
making a separate copy of a procedure for each call.

The symbols Imin and I max °ore introduced as notations for
the smallest and largest representable integers on the target machine.

The symbol @ is introduced to denote the undefined value.
®

After forming a modified flow graph, as described in Chapter 1,
we attach to its arcs various assertions stating that the operations

in each node are well-defined. For each node in the flow graph, we

17

Chapter 2. Semantic Errors

mechanically form a set of assertions describing restrictions on the
program variables which must be true upon entry to the node in order
for each operation in the node to produce well-defined results. We
then attach this set of assertions to each of the entry arcs for that
node.

In most of the examples which follow, we shall assume that
programs are written in Algol €0 and are run on a compiler/computer

system which has the following implementation restrictions.

1. No real numbers.

2. Integer overflow. The binary operations i+j , 1i-3, ixj .,
and i+j, give the mathematically correct resuit if and only
if 1 and J have defined values and the reegult is in the range

I. to I inclusive; otherwise the result is undefined.
min max

Division by zero produces a result outside of the range Imin

to I . It is assumed that I <0 and I >0 . As
m max

max in

an example, for the PDP-8 with 12-bit 2's complement integer

arithmetic, Inin = -2048 , Tex = +20h7 .

A program can be analyzed using only symbolic values for
I. and I » in which case we may be able to state maximum
min max
and minimum values for them, respectively, drawn froam the values
of the smallest and largest integer constants in the program.
Alternately, a program can be analyzed with only lnose bounds
on Imin and Ima.x ,» such as Imin
This will save some work in checking tiat the small integer

< =100 , I >1000 .

constants often encountered in programs are within the representable

range. Alternately, the exact values of Imin and I axX for some

18

Chapter 2. Semantic Errors

varticular machine can be supplied, in order to auswer the
gquestion, "Will tlis program generate any overflows when run on
this particular machine?" Most of the examples below assume

I, S-1000 and I >1000 .

3. Representable constants. All integer constants must be in the

renge Imin to Ima.x inclusive.

4. No use of uninitialized variables, including simple assigmments.
No right-hand-side expression is allowed to use an uninitialized
variable. 1In particular, the operation i :=j will assign the
value of J to 1 if and only if J has a defined value;
otherwise a semantic error occurs. It is possible to write
programs which violate this restriction and still give meaningful
results, but more often a vioclation of this condition indicates

an error which is best caught as soon as possible.

Algol 60 semantics for local variables starting out undefined at
the beginning of a block are modelled by putting into the flow graph,
at the start of each block, special assignments of the undefins=d
value, @ , to each local variable. The program proper is not allowed

to use O .

5. Meathematically correct camparison. The relations i <J, 1<j,
i>Jj, 1>3, 1#£3, 1=]J produce the proper value true
or false, even in cases where j-i would produce an overflow.

For a machine which does not have this property, such as the
CDC 6600, programs must be transformed 4so that every comparison
is done as a subtraction and a sign test. All such subtractions

vwill then be checked for overflow in the normal way. Two

19

Chapter 2. Semantic Errors

representations of zero are allowed if tle implementation gives

identical results for each.

These restrictions are in addition to those specified in the
Alzol 60 Report [Naur 1963], such as requiring each subscript to be
within the declared bounds of an array.

The examples presented here do not directly address the 1ssues of
a program executing in a given amount of memory or a given amount of
time. The only guarantees about space and time are that both require-
ments are finite: the memory required is finite because no recursion
is allowed, and because the bounds for individual arrays are limited

by I and Ima.x $ the time required is finite if 211 loops are

min

proved to temminate.

Typical assertions generated are:

Node Asgertion generated
Af1] :=j+k J;éwAk,éwAImin53+k51mA
14w A Ay<ica, - (A, and A are

the lower and upper bounds for the array A .)

1 < 3+ 1AW A GEOAT <5< AL, <
j+551m. (Since Imin is assumed to be <O,

the condition I, <5 is clearly true.)

in

i:= JFw.

Ali] s=A[i 1+l 1AwA A, <1 <AL A Alil Ao A I4n <
1<T e A Tpyn SAILRL < Toax M 1 FwA
Al S1<A - {The last two terms come from

the left-hand A[i] .)

Chapter 2. Semantic Errors

Standard technjjues can be used 10 sinplify the assertions,
including removing terms which are clearly true, removing duplicats.
terns, and removing terms which are implied by other terms

(1<5 A 1<8A1412 reducesto 1 <5). One way to
remove redundant terms mechanically from a set T of n tems
ic to eliminate any term for which the theorem

{T-ti} >ty

is true. ({T -ti} represents the set of all terms except ti .)

In most cases, the generation of semantic error assertions is
quite straightforward, but some complications arise in handling
procedure calls. Arguments passed to value parameters are treated
like the right-hand side of an assignment statement at the oint of
call, i.e., the argument expression must be well-defined whken evaluated
betf'ore the call. 1In contrast, procedures with name paramevers must
be handled strictly according to the copy rule, makingz a unique copy
of the procedure for each call and logically substituting the body of
the procedure for the CALL node. This use of the copy rule is one way to
reflect properly the side effects which can result from tricky use of
name parameters, but is alsc a reason that we do not handle recursion.

Procedures with array arguments have the problem that the
procedure does not specify the legal lower and upper bounds for
subscripts. Either of two strategies can be adopted for generating
and proving assertions about subscripts for such arrays: symbolic
names like Al and Au can be used in all the assertions, and the
proof techniques can try to push back to the entry point of the

Procedure any assertions (restrictions) which must be true on entry

Chapter 2. Semantic Errors

in order to avoid subscript range errors; alternately, the programmer
can supply an extra statement to the proof system, describing the bounds
for each such array. If the programmer has definite assumptioms about
array bounds in his mind, it is better to state them to the proof
system. Not doing so forces the system to try to synthesize equivalent

information, a much harder process.

Chapter 3. Generation of Loop Termination Assertions

This chapter describes the generation of assertions which are true
if and only if the loops in a progran terminate after a finite number of
iterations. For many practical cases, the assertions generated lend
themselves to direct proof. For loops which have obscure reasons for
termination, the assertions have equally obscure reasons for being true
{of course, in general, proving loop termination is theoretically
unsolvable; we shall not solve the halting problem here). For many
loops which do not terminate, the corresponding assertions can be
proven definitely false and the user alerted to the bug, perhaps with a
counterexample.

The basic form of the assertions generated is, "There exists a k
such that on the k-th iteration of the loop, one of the exit arcs
will be taken." For many loops involving monotonic expressions in
their exit tests, or simple searches, or movement through a linked

list, these assertions are easy to prove. ®

Loop termination assertions are harder to generate than semantic
error assertions because the goal is much more abstract. For semantic
errors, the assertions generated are a strailghtforward function of the
scurce language definition and compiler/camputer implementation
restrictions. For loop termination, however, synthesizing an appropriate
assertion may well be harder than proving it true.

Generation of termination assertions can be "driven" by a variety
of goals. One technique is to insert a counter in each loop and asszert
that the count is bounded; however, such a statement doemn't lend
itsel? to direct proof -- having a counter doesn't give any insight

into its behavior. Another technique is to require all loops to

Chapter 3. Loop Termination

be ‘P‘QE loops or D_.g loops in which the astep and limit are evaluated
exactly once and the iteration variable cannot be changed inside the
loop; such loops teorminate by definition (if a zero step is prevented).

In between these extremes, vwe need to find a strategy for
generating asserticns which are related to the intended reasons for
loop termination that the programmer had in his mind when he wrote the
loop. Without searching for these reasons, we will have a hard time
mechanically proving the termination of subtle loops whose temmination
properties may be perfectly clear to a human. In unannotated programs,
the best evidence we have for the intended termination of loops is
in their exit tests. For a given loop to terminate, cone of its exit
tests eventually must be satisfied (i.e., branch to a loop exit arc).
Often the tests themselves present the reason for loop termination,
while sumetimes the preceding logic (which gets the values of the
variablef{s) in the test) embodies the reason for temination.

For example, in a loop such as:

while £ <r do
if p(2) then £ :=1+1
else r:=r-1

where p 1ls an unspecified predicate, the exiti test ! < r provides
us with the proper driving goal: prove r-f 1is monctonically
decreasing. If we try to prove that the loop terminates because
either t or r 1is monotonic, we will fail; tie relevant monotonic
expression Involves both r and ! and appears only in the exit test.

As a second example, consider the loop:

ok

Chapter 3. [Loop Termination

comment this program is a subset of an example in [Ashcroft and
Manna 1972];

4F 5(x) then
x :=c(x)
else begin
X :=f(x);
t :-false

end

end

else begin
x 1= lx)3

t := false
cnd

end.

 Here, the exit test of t offers no direct enlightenment, but as we
shall see in Chapter L, the flow graph for this loop will be mechanically
modifed by test elision so that the manipulations of t are ignored,

the assignments t :=false are immediately followed by branches out of
the loop, and the assigmment x:=c(x) 1s immediately followed by a

branch to the test if g(x) ... as in this modified program:

25

Cnapter 3. Loop Termination

loop: if q(x) then

begin
x:=b(x);
if s(x) then

begin

x:=c(x);

goto loop
end

else begin
1= £(x);
goto exit
end

end

else begin
x :=g(x);
goto exit

end
exit:
Thus q(x) and s(b(x)) become exit tests, and we are now more
directly confronting the reasons for the loop’'s termination.

For loops with leading tests, such as those we tried to form by the
manipulations described in Chapter 1, it is straightforward to generate
an assertlon that there exists a k > 1 such that on the k-th
iteration of the loop, an exit arc will be taken. For the original
while t ... loop above, the assertion would be:

* >1 s.t. ~tk

where the subscript k indicates "the value of the variable at the
beginning of the k-th iteration," i.e., the value of a variable at the
LOOFHEAD node, before any rnodes inside the loop have been executed the
k-th time. The termination assertion for the modified loop above

would be:

26

Chapter 3. Loop Termination

dk > 1 s.t. ~q(x) v ola(x) A~a(b(x))] .
Note that we describe the exit test &{x) in terms .of X,

the value cf x at the top of the loop, as modified by the assignrent
% :=b(x) . In general, a multiple-exit loop may have exit tests which
are preceded by enough computation that the values of the variables in
the exit test cannot be described in termms of the values at the top of
the loop. In this case, we will have to abandon the top-of-the-loop
bindings and state an assertion like:

dk > 1 s.t. ~q(xk) Vv~ s(x})

where the primed x signifies the value of Xx upon entry to the
tect node s(x) , in the middle of the k-th iteration of the loop.
All we are really doing is delaying the analysis of the behavior of
x}'(until we actually try to prove the assertion true. This is
appropriate, since we may find that the stronger theorem

Ik >1 s.t. ~q(xk)

is true, or we may find that the flow graph for the loop (and hence
the termination assertion) is campletely changed during the information-
gathering and proving process described in Chapter 4. [A simple
multiple-exit locp is in Appendix A, Example b.]

while assertions such as those above can be mechanically
generated from any loop, it is in general an unsolvable problem to
prove that the assertions are true. However, a small variety of
techniques based on monotonic expressions, finite sets, and searches
can prove the termination of most loops encountered ip practical

programs. Also, this strategy of genmerating a k... assertion

Chapter 3. 1loop Termination

sometimes allows a proof system to stat: that a loop definitely never
terminates. If the final 1 :=i+l were left out of the loop:

vhile A[i] >0 do
begin

i:=i+1

end
and no other statements inside the loop changed the value of i or
A[i] , then the loop termination assertion,

Ik >1 s.t. Adi]l <o

could te shown to be invariant over k , and the quantifier dropped:
Ali] <o
If this assertion is true, the loop terminates irmediately; 1f it is
false, the loop never terminates.
The next chapter discusses proofs of the mechanically generated
semantic error and loop termination assertions. You may want to

review Appendix A, Example 1, at this point.

~O

Chapter 4. Proofs

This chapter is the heart of the thesis; it describes an algorithm
for examining the nodes of a flow graph in forward topological order
(detailed in Chapter 1), and at each node {1) trying to prove all lts
entry assertions, (2) performing extra processing for 100OPBEAD and
TEST nodes, and (3) developing the given injormation for its exit
arcs (to be used in subsequent proofs). In trying to prove an assertion,
there can be five answers: a) true; Db) false; c) maybe, but more
information will be known later; d) maybe, but a refinement of the
given information is available; e) or juet plain maybe. In the last
case, the user will have to decide if the program contains a bug or if
the proof system just isn't powerful enough.

When & LOOPMEAD node is encountered, & first pass is made through
all of the nodes in the loop gathering recurrence relations about how
the values of the variables at the beginning of the ktlst iteration
are related to values at the beginning of the k-th iteration. Then an
induction routine tries o describe the set of values each variable
takes on during all iterations. Finally, a second pass 1s made through
the loop, proving assertions and processing nodes in the normal way.
When a TEST node is encountered,. an attempt is made to elide the test:
to prove that along some entry path(s), the test is either always true
or always false. If such a path is found, then it is separated fram
other paths [perhaps causing node splitting), and re-routed around
the test. The topology of the flow graph is then re-analyzed. This
sometimes has the effect of mechanically synthesizing an appropriste
lexinographic ordering on & pair of variables, when 2 single loop is
changed into a pair of nested loops.

29

Chapter L.1. Proofs

After the entry assertions and the node itself have been processed,
the new given information for the exit arcs is synthesized. This
synthesis involves merging the entry given information, the entry
assertions, and the results of tests, then modifying this information
to reflect any assignments inside the node.

There is no backtracking in the node processing algorithm, but
some nodes are visited more than once: a) Since two passes are made
through each loop, & node inside a nest of n loops will be visited 2"
times, although only n+l of these visits will do any work. b) If a
test is elided, the graph is re-analyzed and re-processed from the
beginning of the outermost loop containing that test.

The notation " —€ " is introduced tc specify an initial subset of

an ordered set. [See Appendix B for a summary of the procedure for

processing nodes. } ®

Given a modified flow graph with assertions attached, as described
in Chapters 1-3, we will now process the nodes one at a time, proving
v assertions and developing information for the proofs at later nodes.
Starting with the graph for the outermmost procedure, we examine each node

in topological order, performing the following operations on it as we go.

1. Prove Assertions

First, we try to prove the assertions on the entry arc(s). If
the node is a IOOPMEAD .iode, we temporarily ignore the assertions on
the latchback arc(s), and just treat the initial entry arc(s). Each
arc has attached to it two sets of information: the given information
developed on exit from the predecessor node, and the assertions to be

proved. (The given information for START and PROCEDURE nodes is null.)

20

Chapter 4.1. Pruofs

We simply call a theorem prover for each assertion on an arc, asking it
to prove

glven o assertions .
The possible ansgwers true, false, and maybe are explained in detail

below:

a) If the answer is true, then we mark the assertion true and

never bother proving it again.

b) If the answer is false, then the program contains a definite
error. At this point, we can state to the user that the assertiom
was false and go on, but we can often be more helpful than that.
Firet, the theorem prover may have supplied a counterexample, a set
of values for program variables which make the assertion false. In
this case, we tell the user the counterexample. Second, a false
assertion may be an indication of an error much earlier in the program,
§0 it would be helpful (but entirely optional) for us to "push back"
the assertion as far as possible toward the start of the program. In
moving such false assertions toward the start of the program, we may
find related assertions moved to a common point from many different
nodes of the program. In this case, we can give a single error message,
instead of "discovering" the same bug in, say, three different places.
To the extent that this merging of related or identical false assertions
is successful, we also guide the user to the most appropriate place in
the program to fix the error. If an assertion is false on the very
first iteration of a loop, then we may be able to move it outside of the
loop entirely, thus directly indicating an error in loop initialization,
not (necessarily) in the inductive properties of the loop. ([See
Appendix A, Examples 1 and 2.] Any false assertions which are pushed

31

Chapter L.1. Proofs

all the way back to a START or PROCEDURE node represent entry
restrictions for the whole routine, and should be both documented

and explicitly tested. Thus, although this movemen®’ of false assertions
is not logically required, it enables our system to encourage a
programming style which includes explicit, executable tests for all
entry conditions, perhaps coupled with the printing of a user's error
message and the returning of an "undefined »ver the given inputs" value
for the result of a function. Alternately, we may encourage & style
which e*ends the meaning of a procedure to include all possible inputs,
thus removing the restrictions. 1In either case, the user is encouraged
to make his program more reliable without his engaging in a tedlous and

often incamplete analysis of degenerate cases.

¢) If the answer from the theorem prover is maybe, but we are on
the first, information-gathering pass around a loop (using dummy bindings
of variables), then we simply reserve judgment until the second pass.
It would be possible to attempt no theorem proving at all durlng the
first pass through a loop, but that has the general effect of delaying
the discovery of information and lemmas which are useful in analycing
the loop. 8o, &5 & somewhat arbitrary choice, we try proving all
assertions on the first pass through a loop, d.roppiﬁg ,";hose for which

we are successful, and trying again on the second pass for the others.

d) If the answer from the theorem prover is maybe, but the given
information has come from a merging of severaul different paths and is
marked "a possibly useful refinement of this information is available”,
then we can break the proof down into several cases, for different

paths leading to the node being processed. A "refinement" mark is

32

Chapter 4.1. Proofs

A B A B
i>9 i>1 i>9 i>1n
c C c!
i>9 1>9 i>1
(Refinement)
D D D!
1>9 i29 i>n
{Refinement) H
|
if10 14 10D,
TN
4
i =10 ifg1C
E ¥
E F
Figure L.la. At node C, the Figure 4.1b. Because the
two relautlons about 1 are refinement is useful at
merged by taking the one the tegt, nodes C and D
implied by both, the weaker: have been split to
(1>11) > (1 >9) and separate the two paths.
(1>9) 2 ((1>9 . The dotted arrow indicates
the subsequent elision of
the test.

Figure 4.1. Example of node splitting to separate paths associated
with a useful refinement of given information.

Chapter 4.2. Proofs

created wher two arcs in the flow graph merge and they contain different
given information, as described in detail later in this chapter. If a
refinement of the given information exists, and we can prove the
assertion in question conclusively true or false for some of the cases
in the refinemert, then we make separate paths for those cases in the
flow graph, possibly meking copies of some nodes, as shown in

Figure 4.1. [Also see Appendix A, Examples 8 and 10.]

e) If the answer from the theorem prover is maybe, then either
the program contains an error or our proof system isn't good enough

to discover that the theorem is in fact true.

We have covered the five cases involved in proving assertions on

entry arcs. We now look at the processing of the node itself.

?a. LOOPHEAD Nodes

If we are examining a LOOFHEAD n:de, then we have Just
reached the beginning of a loop. To prove the various assertions
inside the loop, we need to synthesirze the ranges of possible values
that all variables can take on in the body of the loop. Essentially,
if we can describe the complete set of values that a variable takes on
at the loophead node, be it the first iteration or the k-th, then we are
in a good position to prove all of the assertions inside the loop which
depend on this set of values.

Our method for discovering the ranges of variables in a loop is
to take one pass through the nodes in the loop symbolically developing
the value of each variable after one iteration of the loop in terms of

the value of all variables at the beginning of that iteration. For

3k

Chapter 4.2. Proofs

example, starting with the symbolic bindings (2) in Figure k.2, ome

pass through the loop body gives the following recurrence relations:

(3) i < 20 A
1!&1 = 1k+11 A
ey = dtt o7
"1 T "k

W2 then feed these induction relations and the set of initial entry
relations (1) to an induction routine, which synthesizes the camplete
set of values that each variable takes on at the loophead node. The

synthesized sets of values for i , j , and n at the LODOPHEAD node

would then be:

(%) i, #w A 1) <A
<3 oA
n = io'l ’
where i,) represents the value of 1 at the READ statement. Note

that it is wrong to deduce that
i < 111

at the LOOBEAD node. This is only true after going around the loop
one or more times, but is not true on the filrst iteration if the value
read in for i 1is, say, 347 . As discussed later in this chapter,
the relations for 1 and j would actually be marked "a refinement
exists", so that the two cases of first iteration and subsequent ones
could be distinguished later if necessary. The detalls of the loop

induction routine will be discussed later in this chapter.

35

Chapter 4.2. Proofs

{1) entry relations
ifwaA
J =0 A
n =4i-1

(3) recurrence

(2) symbolic bindings relations

1k+l =1

Iyl = Iy

nk_'_l=n

(4) synthesized %
range of values

Figure L.2. Sample loop for showing loop induction information.

Chapter L.2. Proofs

After the initial pass around the loop and call of the induction
routine, we attach the synthesized relationships and set of variable
values to the exit arc of the LOOFHEAD node as given information for
subsequent nodes. We than take a second pess around the loop,
processing nodes and proving assertions in the normal way, proving
the assertions on the latchback arcs just before processing nodes
which topologically follow the loop. [For examples of loop processing,

see Appendix A, Examples 1, 7, 9, and 10.]

2b. TEST Nodes

Tf the node we are examining is a TEST node, then we try to elide
the test. We check to see if ihe test is always true or always false
along some incoming path by meking assertions out of the test and its
negation and trying to prove ti:ese assertions. Our normmal refinement
and path-separating mechanism described above will then separate out
any incoming path for which the test can be elided. If 50, Wwe re-route
that path to the appropriate true or false exit node. This re-routing
may change the structure of the loops in the program, either creating
new loops [example below and Appendix A, Example 8] or destroying an
existing loop [Appendix A, Example 10], so we must re-analyze the
ctructure of the program, as described in Chapter 1. Actually, we
only need to re-analyze starting with the outermost loop containing
the re-routed are. After the re-structuring, we start over at that
outermmost loop, gathering information and proving assertions. This
elision of redundant tests is an important tool for separating

loop-termination issues. For example, in the program:

Chapter L4.2. Proofs

while p £ A do
if info(q) > info (p) then q :=1ink(q)
else p :=1ink(p);

sametimes we make progress toward the end of the 1list P , and sometimes
we don't. We can see in the flow diagram, Figure 4.3, that after
setting g :=1link(q) , the test p £ A is always true since p 1is

unchanged, so we can elide it, giving the program:

while p £ A do

begin
while info(q) > info(p) do
:=1link(q);
P :=link(p)
d;

In this modified program, the two loop termination issues are
separated: 1t is now fairly easy to prove that the outer loop
terminates (if the inner loop dces and assuming that we have an
appropriate model of single-linked lists), and the inner loop may

or may not terminate, depending on what else we know about q,

info(q) , and info(p) . In some sense, the effect of our creating
two nested loops 1s to synthesize an appropriate lexicographic ordering

on (p,q) pairs.

Chapter ..2. Proofs

¥
info(q) > info(p)

P :=link(p)

[a:=1ink(q)

— |

Figure 4.5. An example of eliding a test and thus changing one

loop to two nested loops, separating the termination

issues, and synthesizing a lexicographic ordering
on p and q .

39

Chapter L4.3. Proofs

3. Develop Given Information for Exit Arcs

Before leaving a node and going on to process the next one, we
must attach the appropriate given information to all of the node's
exit arcs. We synthesize this by merging the given information from
the node's entry arcs, adding the assertions on those arcs (the
assertions must be true or the program will termminate uncleanly at
that node and never traverse the exit arcs), and modifying everything
to reflect any assigmments within the node. Also, if the node is a
TEST node, we add the tested condition and its negation to the true
and false exit arcs respectively.

Simple as the preceding paragraph may sound, there are scme
very camplicated issues involved in this step. The first complication
arises when a node has multiple entry arcs with different given
information, as in Figure L.4. We could simply use the disjunction
of the two cases for the exit arec:

(1210 Am=1) v (1>11 A mn=0)
but this has the drawback that all proofs based on this information
will have to consider two separate cases. Since we would be creating
multiple cases whenever two ur more arcs merge in the program, we
can be faced with 2" cases after n merges, a8 in Figure L.5,
vwhere the given information on the exit arc for C includes

[((AAd1=2Am=L) Vv (~AA1=1Am=1)] A

((BAi' =3Am =9AJ=5) v (~BAJ=TAL"=iAM =m)] .
This is an unwieldy premise for proving a later assertion like
i* >0 ,
where the only relevant information is that

i'*'=1,2, 0or 3

ko

Chapter L.3. Proofs

given:

1i>10 Am=1

Figure "W.h. Merging of different given information.

'8]

Chapter 4.3. Proofs

mi=9

Ca
L}
-3

Ji=5

Figure L.5. Cascaded merges can result in ag many &s four different
cases to consider at node C .

42

Chapter 4.3. Proofs

Often, it 1s unnecessary to keep track of the interplay between
1, 3, m, the test in node A , and the test in node B ; it can
be sufficient just to remember

(1<4<3) A (m=2b40r9) A (J=50rT)
on exit from node C .

We would like to avolid disjuncts as much as possible,

mimicking the human trait of finding useful lemmas which cover all
cases simultaneously. Yet we also don't want to lose any inter-
relationships (such as p = 12) if they are in fact required in a
later proof. One strategy is to record a set of weak relations
which are true on all arcs being merged, and to mark that a refinement
of these relations exist, i.e., that by going back to the point of
merging, the exact disjunction can be formed if necessary. We try to
use the weak, disjunct-free relations to prove subsequent assertions,
and only if the stronger, more exact information is needed do we
construet it. In the example of Figure 4.4, we would synthesize

{(1 >19) A (0<m<1)] (Refinement)
as the given information for the exit arc. In the example of Figure L.5

we would attach
[(L<1<2) A (m=1,% or9) A (j =50r7)] (Refinement)

to the exit arc at C .

We can develop weak relations fram the following rules:

(1) Assume that information from n arcs numtered 1 to n is
being merged, that the information on each arc is a set of
conjuncts, C, = {Ryy ARy ARgy ... ARy] and that we want

to protuce a set of conjuncts.

W3

Chapter 4.3. Proofs

(2) For each conjunct A on each of the n arcs, add A to the
result set if that clause is implied by the information on j
each arc, i.e., ir

¥1i<ic<n CiDA .

(3) Form disjuncts of clauses which occur on different arcs, but
which contain the same set of variables (like j <k v J>k+t2),
but avoid forming cross-product disjuncts of clauses with no

variables in ccmmon (like i =1 v n =54).

(L) As a special case of (3), change expressions like
fn=4 vn=1+1 v n = 1+2) to (1 <n <i+2) . Change

expressions like (i =n v 1 >n) to (4 >n) .

The above rules are by no means "optimal", but they offer a useful
heuristic for what information to keep around and what information to
reconstruct only if needed to prove a particular assertion. [Por use
of these heuristics, see Appendix A, Examples 3 and 6.]

The crucial issue here is to make the system appropriately
goal-driven: to develop high-payoff relations always, but generally
not to synthesize any complex relations until the goal of proving a
specific assertion demands the creation of those complex relations.
Thus, we do not make all possible deductions from a set of relations
(like deducing that 1 <k from i <j A j <k), but instead we
wait until some goal or driving force makes a particular deduction
relevent (for instance, we may have to prove the assertion i 4k).

One of the beneficial side effects of rule (2) above is that it

provides a driving force for discovering loop invariants: for each

4 ‘

Chapter L.3. Proofs

relation on an initial entry arc of a LOOFHEAD node, we will try to
prove that that relation is implied by tne information on the
latchback arcs. 1If the implication holds, then we have discovered
4 relation which is true on all iterations of the loop, as shown in
Figure L.6.

After merging information from multiple eitry arcs, we add all of
the assertions on the entry arcs to the given information we are
building. We cannot cleanly exit the current node if an ascertion is
false, so all assertions will be true if we in fact reach an exit arc
during an actual execution.

We have now formed a set of given information that needs to be
transformed to reflect any assignments inside the node being processed,
then attached to all the exit arcs. We will call the untransformed
information G , and its transformation G' . For scalar essigmments,

i := expression ,
the recording of the new equality

i - expression
in ¢' 1is straightforward. However, for assignments to aggregates,
such as to elements of an array or fields of a node in a 1list structure,
we have to investigate the possibility of aliases: assignments to
A[i] can change A[j] if 1 can equal Jj . So if the node we are
processing contains an assignment

Ali] :=x ,
we must look at G and for every subscript, s , of A in a relation R,
we try to prove that either s =1 or s f i , based on the information

in G . If s =1, then we reflect the assigmment A[s] := x , and add

k5

Chapter L.3. Proofs

(1) given: 1 4

(2) given: 1

= (3) given: 14 =341

(4) synthesized by
rule (2) on
p. bl

given: 1 £

Figure 4.6. Synthesis of loop invariants. When we try to merge
the information labeled (1) and (3), we find that
147 = #1 D i £33, so by rule 2 on page bh, we add
the relation i £ j to the set of information (L) which
is true on all iterations of the loop.

thapter L4.3. Yroofs

the appropriate R' (which may be just the empty clause) to G' .
If 8 £ i, then the s-th element of the array is unchanged, so
we copy R to G' unchanged. If we don't have enough information

to prove uny relationship between s and i , then we add to G' :
(s f1 AR v (s=1AR) .

We can avoid this disjunct if RO R' or R' DR, by adding only
the weaker relation (R' or R respectively) to G' , marked of

course "refinement exists". We could also use the weaker disjunct
RV R' (Refinement)

ignoring the interaction between i , s , R and R' . Alternately,
we could drop the relation involving A[s] entirely and add nothing
to G' . [See Appendix A, Example 6.]

After transforming G to G' to reflect the assigmments in the
node, we attach G' to each of the node's exit arcs. If the node is
& TEST node, we also add the test expression or its negation to the
given informetion on the appropriate exit arc. This campletes the

processing at a node, so we can now move on to the next node.

W7

Chapter L.L. Proofs

L. Details of Loop Induction.

On the first, information-gathering pass around a loop, we try
to generate a set of recurrence relations, expressing the value of each
variable at the beginning of the ktl-st iteration of the loop in
terms of the values of all variables at the beginning of the k-th
iteration. We do this by inserting & set of dummy given information
on the exit arc for the LOOPMEAD r..cde, a set of equalities of the

fom:

k+l k

for each variable v in the program. We then process the nodes in
the loop in exactly the way described above, proving assertions, merging
information, and, most importantly, changing the Vierl expressions
to reflect ascignments. The only difference between the first and
sceond passes through a loop is the given information attached to the
LOOPEAD exit arc, and a flag which says "don't worry if some assertions
cannot be proved on the first pass".

At the end of the first pass, we call the loop induction routine
with two sets of information: (1) the initial condition of
the program's variables upon entry to a loop, and (2) the
recurrence rela%ions between the values of all variables
at the beginning of the k-th iteration of a loop and their values at
the beginning of the ktl-st iteration. The loop induction routine
has the responsibility for synthesizing a description of the range of
values taken on by each variable within the loop.

In general, it is an unsolvable problem to state the exact set of

values that a variable takes on within a loop, since deciding whether

Chapter L.k, Proofs

the set of values for t is {true] or {true,false] in
t :=true;

whiletgz

is equivalent to solving the halting problem. However, there are a
few useful special cases which are applicahlg to a large number of
practical programs.

The discussion below will be in terms of variables which take on
integer values, although many of the ideas can be extended to
character values, list pointers, and perhaps floating-point numbers.
As shown in Figure L.7, we will focus on a variable v , with initial
value v. on entry to the loop, with the recurrence relation

0

Viep = F(v (vhere v represents all the program variables and F

k+ k)
is an arbitrary function), and with perhaps a set of relations

between v and constants or other program variables.

Case 1. Invariant.
If the recurrence relation is vk+l = vk » then v ig invariant
inside the loop, so its value there is Vo -
Case 2. Monotonic relationships.
If either vk’lka or vk+l X

relations, then v 1is either monotonically nondecreasing or nonincreasing

< v, 1s implied by the recurrence
inside the loop. For simplicity, we assume the first case. The
possible values of v therefore are a subset of the infinite set

[vo, Votls Vot2, ...} . 1If the recurrence relations also include an

inequality like Viebl < x , where x 18 invariant in the loop, then
we can bound the infinite set:

v C {vo, Vytls Vot2s ooy X}

ka

Chapter 4.4. Proofe

(1) initial value: v = v

(o |

(2) dwmmy bindings: ————————y

Vel = Yk
¢— (3) recurrence relations:
v = F(v,)
(4) synthesized set of ——-f kel - k
values within loop: [vk Rv, or c}
v=27

{v}wl R v, or c}

Figure 4.7. Model for loop induction on variable v .

Chapter L.b. Proofs

Ir Vel = VitC s where ¢ is a positive constant, then

v C {vo, Vo*es vytee, ««+] and v is strictly increasing. If v
1s increasing uniformly and bounded by x (invariant), them v
takes on all of the values in a set:

v = {vo, Votes .- ¥}

where y is the largest element of the set that satisfies the bound x .
If the bound on v 18 v £ x instead of v < x , then the
analysis is more complicated. Given

v C [vo, Votes Votee ...}

and
v ix ,
then the values v takes on are bounded by x if and only if x 1is
an element of the set:

i.e., v = [vo, Votes votae, <. e x}

1” X € {Vo, VO*’C, VC+2C .n-} .

Otherwige the restriction v £ x 18 meaningless and can be thrown
away. Note that x can fail to be in the set either because X=vy
is not a multiple of ¢ , or because x < Yo *
gas_ez. Searching.

The last case above is perhaps better viewed as a search, not
as a bound: v takes on varlous values in a set, while searching for
v =x . We encounter a more general kind of search when v is a
subscripted reference:

v C [A[io], A[:lo+c], A[:lo+2c] eee}
and v £ x .

In thie case, the set is finite if and only if the search is satisfied,

il.e.,

51

Chapter L.k. Proofs

X [A[iO], A[:lo+c], Aligree] ...}
or equivalently,

Hne{io, 15%¢s igtee ...} s8.t. A[n] =x

Some search loops terminate on a forced match, as in:

Almax] :=x; i :=1;
while A[1] £ x do 1 :=1+1;

In our analysis of such a loop, the initial conditions include:
i=1
A[max] =X

and the recurrence relations include:

i = 1,41
1 7 Mg
Aeer =
AL] £ x

Combining these, we attach the following given information to the exit
arc for the LOOBEAD node:

x 1s invariant in the loop

A (the whole array) is invariant

Almax] - x

i-¢ {1,2,3...7 .
(The notation —¢ means "takes on each of the values in a subset
consisting of the first n elements of the ordered set, for some
n>1 .") With no other driving goal, this is the end of our analysis.
Howcever, when we try to prove the loop termination assertion,

Tk21 st AlL)=x

52

Chapter 4L.4. Proofs

we first remove the subscripts Xk on the invariant variables:

Ik > s.t. A[:lk]=x ’

then we look at the initial entry given informetion and find that
Almax] = x ,
Following the reasoning above,
Almax] ¢ {a[1], Al2], A[3], ...}
if maxe {1, 2, 3, ...}
Since max 1s alsc invariant in the loop, we may push this relation
outside the loop as an initial entry condition:
- the search loop terminates if max > 1
[For other search loops, see Appendix A, Example 1, and the program

SELECT in [Sites 197M].]

In summary, we have discussed a disciplined way of gathering
information for proving assertions attached to a flow graph, including
ideas for eliding tests, merging information into useful lemmas, and

proving the temination of search loops.

53

Chapter 5. Related Literature

Highlights of related literature include Floyd's original paper
on Inductive assertions [Floyd 1967); theses by James King (King 1969],
Susan Gerhart (Gerhart 1972)], and L. Peter Deutsch [Deutsch 1973); surveys
by Bernard Elspas [Elspas et al. 1972b], and Ralph London [London 1972];
the comprehensive, but now somewhat out of date bibliography of Ralph
London {London 1970a]; and the camplete conference proceedings from
the Symposium on Semantics of Algorithmic Languages (see [Hoare 1971b)),
and from the Las Cruces conference on Proving Assertions about Programs

(see [Manna et al. 1972]).
®

Since the publication «f Floyd's original paper or the inductive
ascertion method {Floyd 19671, many people have worked on mechanizing
the creation and proof of verification conditions, given as input an
annotated flow chart of the program.

James King built a program verifier [King 1969] which would accept
simple Algol-like programs as input and produce proofs of their
correctness with respect to a set of inductive assertions supplied by
the user. The assertions are specified by ASSERT statements at
appropriate points in the program. There must be enough assertions
supplied to brea“ all paths around loops, and more than the minimum
number of such assertions may be useful for helping the verifier to
distinguish the different cases involved in multiple paths around a
loop. King's system can synthesize an input assertion if none is
supplied, essentially stating "these input conditions are necessary
for the other assertions to be true.” King's work was the original

inspiration for the present thesis.

ch

Chapter 5. Related Literature

Susan Gerhart described a system for verifying AFL programs
{Gerhart 1972], in which the user supplied inductive assertions as
comments. Since APL can express vector operations without explicit
loops, the proofs were much shorter than for equivalent Algol-like
Programs. The system is capable of synthesizing and proving same
assertions from the known semantics of APL operations such as asserting
that the left operand of some operator must be a scalar, then proving
that that will always be true because the left operand is in turn the
result of some other operator which always returns a scalar value.

This parallels our interest here in proving that a program containe no
semantic errors. Gerhart also suggests a broader view of verification,
including various forms of semantic checking of programs in lieu of
debugging. She introduces the tem formal debugging, which means
obtaining information about,; & program from the structure or semantics of
a program without executing it. Again, this parallels our interest here
in giving a user feedback on the inherent intermal self-consistency

or inconsistency of a program.

Peter Deutsch built an interactive program verifier [Deutsch 1973),
which in some sense represents a second generation of verifiers. Tt !
accepts input in a form quite similar to King's, but uses more
sophisticated proof techniques to do all of King's examples, plus
same harder ones. Richard Waldinger and Karl Levitt discuss a similarly-
ambitious proof system running at SRI [Waldinger and Levitt 1973].

The emphacis of both systems is to extend the coordination between
theorem provers and the kinds of theorems which occur when verifying

programs .

55

Chapter 5. Related Literature

All four of the above systems bypass the problem of proving
that programs terminate. Donald Good also did a related thesis [Good 1970].

Various issues of theorem prover heuristics and refinements are
discussed in [Wegbreit 19741, [Elspas et al. 19728, b), [London 15721,
and [Smith 1972). Smith refers to the problem that "... we cannot
prove correctness of programs in the mathematical sense as suggest.ed
by McCarthy, more due to our inability to state what we are trying to
prove than to our inability to find actual proof methods."

Hoare describes the development of an axiomatic approsch to
troving correctness of programs, with successive extensions to include
programs with function calls and programs with jumps [Hoare 1969, 1971b]
(Clint and Hoare 1972]. It is instructive to compare the various
proofs of the correctness of the program FIND [Hoare 1961] found in
[Hoare 1971a], {Waldinger snd Levitt 1973], [Deutsch 1973], and
{1garashi et al. 1973].

Manna has explored the formal basis for induction on recursive
program sche.ata, using first and second order predicate calculus
[Manna 1969). An excellent survey of the various kinds of induction
can be found in [Manna et al. 1972]. In [Manna and Pnueli 19731,
total correctness of a program (i.e., proof of termination and correctness
with respect to the acssertions) is discussed, but only in terms
of well-founded monotonic sequences supplied by a human user. Manna's
1969 article alsc discusses total correctness. Total correctness is
also mentioned in [Burstall 1970}, but his proof of termination for
a program to calculate 2" fails to state the necessary restriction

that n >0 .

cl

Chapter 6. Extensions and Related Topics

This chapter discusses extensions of the techniques presented to
cover a larger class of programs and to increase the proportion of
successful proofs. Also, these techniques are related to issues in
language design, to optimizing compilers, and to the current

controversy about GO TO statements.

Extensions

The major extension of the work described here would of course
be an implementation. Mechines are much better than reading committees
and referees at keeping one honest. Many of the parsing, flow graph
manipulation, and theorem proving pieces of such a system exist, but
it remains to pull them all together and build a coherent whole. It is
important in such a system to build in heuristics, tuning, and biases
to make decisions similar to those of a human about what information
end lemmes in & program are important. For instance, in Example 7 of
Appendix A (bubble sort), it takes a camplicated deduction about the
crdering of elements in the array to prove that eventually no inter-
changes are required and that the program therefore terminates. However,
in a somewhat similar program, keeping track of the possible relationships
between elements of an array might be wasted effort which does not
contribute at all to the proof of some assertion.

A second major extemsion would be the inclusion of pointers, lists,
and trees ag data objects.

The system could also be extended to allow the user to state sape
extra assertions that he would like proved along with all the
synthesized ones. These extra assertions could be merely to provide
useful lenmas to the theorem prover, but they alsc could be used to

describe the data structure that the program operates on, and to ask

=

Chapter 6. Extensions

the system to prove that that data structure is preserved 1y the
program under all possible circumstances. Extra assertions could
also be used to describe simple consistency checks on the intermediate
data or results of a program. While preserving consistency checks is
only a small step toward a program's being certified "totally correct”,
such checks are often easy to state and have a high payoff in detecting
simple errors.

One particularly useful check is to prove that for some set
(array, linked list, tree, etc.), no elements of that set are "lost"
during the execution of the program. For instance, in a sorting program,
it is useful to prove that the output is a permutation of the input.

An alternate way to state this, which may te easier to prove, is that
all of the elements of the input set are elements of the output set.

If the set is an array being sorted in place, them it is only
necessary to prove the local condition that whenever an element of

the array is destroyed, by assigment to it, a copy of that element
must exist either somewhere else in the array or in another program
variable. 1If the cteady state is that all elements are somewhere in
the array, then the proof system would only have to keep track of those
(typically) one or two variables which contain coples of elements
being manipulated, and to detect the point in the program when the
steady state 1s reached again. In keeping track of copies of array
elements, it would be necessary to re-assign the "unknown" value

to all local variables upon leaving a block, to reflect the possibility
of "losing"” an element exactly at block exit. A similar technique
could be used in programs which manipulate list structures, asking

the sysiem to prove that no node in an input structure is lost by

58

Chapter 6. Extensions

ending up with nothing pointing to it. With a model of the steady
state of the structure, the proof system must keep track of the few
link flelds and pointer variables which do not match the model midway
in the execution of a valid change to the data structure. For such
Programs, it is necessary for the user to use a declaratiomm-like
language to describe the intended steady state of his data structure.
Some of the concepts in [Dahl and Hoare 1972) might be useful in defining
such a language.

The system can also be extended to include programs which
operate on floating-point numbers. Although this is a difficuilt area,
sufficient tools are becoming available to treat floating-point
computations very precisely. For example, [Malcolm and Palmer 197h]
treat an algorithm for solving tridiagonal equations in terms of
coamputer arithmetic instead of real mmmber arithmetic. [Good and
London 1970] give Algol procedures for interval arithmetic desagned
to use camputer arithmetic and prove that they work. [Hull et al. 1972]
combines Floyd assertions with backward error analysis. [Yche 1970]
discusses floating-point arithmetic, using case analysis and assertions.

In the system presented, there are weak areas which need more
refinement and sophistication. These areas include “he rules to be
applied during loop induction, the rules to be applied when merging
given information, and the rules for deciding to move a false assertion
to an earlier place in the program. Extending the current system to

recursive programs may not be easy.

29

Chapter 6. Extensions

Language Design
As Gerhart has pointed out in her thesis [Gerhart 1972], one of

the difficulties in mechanically analyzing a program is to model the
effect of a loop on a set of data. For example, it is hard to

mechanically deduce from

i:=1;
loop: A[i] :=0;
i :=1+13

if + <n then goto loop;

that

Afll =0 and V2<t<n, Alt] =0
(The programmer may well have either “Ynovn" or assumed that n >1,
put the proof system has to entertain other possibilities.) It is
much easier to mechanically deduce what happens in the APL statement

A = np0O ,
where, among other things, it is not possible for some of the elements
of A to be left undefined. From considerations such as the above,
it is easy to conclude that, to the extent that a language can express
operations without explicit loops, it will be easier to prove properties
about programs in that language.

As part of our proposed style of explicitly stating all of the
restrictions on the inputs of a program, it would be useful for a
langusge to have an assert statement. The form of the stetement
could be:

assert boolean expression

and its meaning would be:

if boolean expression then comment OK;

else terminate uncleanly

Chapter 6. Extensions

Such a construct was added to the Stanford Algol W compiler by

Ed Satterthwaite in 1970 [Sites 1972, p. 49]. The statement could
either compile into executable code or not, depending on the user's
choice of faster execution versus camplete checking, but in either
case, the proof system can assume that the expression is true, and
prove that the program terminates cleanly with respect to the stated
assumptions. Perhaps most importantly, the statement serves as
documentation embedded in the source code of the program, so that
anyone reading the program immediately knows the assumptions which

need to be satisfied for correct operation.

Optimizing Compilers

Most of the techniques presented here attempt to gather the same
kind of information about a program that an optimizing campiler does.
While optimizing compilers often generate code which executes quickly
and which completely ignores run-time error checking, it is possible
to have both fast execution and careful error checking. For instance,
the compiler can logically generate subscript bounds checking code
for every array access, then use techniques like those presented here
to prove that many of the tests are unnecessary, either because the
subscript expression is inherently in range (perhaps gemerated by a
containing for loop), or because the same expression is used in an
earlier reference and need be checked cnly once.

In a language like AFL, the same idea can be used to prove that
the interpreter need not bother with some conformability checks, and
can perhaps be used to prove that the shape, size, and type of
variables used in some statements are static enough that the statements

could be complled instead of interpreted.

61

Chapter 6. .ixtensions

Another issue which occurs in optimizing compilers is safety, the
question of whether a calculation can be moved to a less-frequently
executed place without introducing semantic errors which would not
have occurred in the original location. The classic example is:

£ % 4 0 then
y:=1/x;
in which some external consideration suggests moving the calculation
of 1/x to a place in front of the test. This move is unsafe if x
could equal zero at the new place. The information gathered by the
system described here to prove that 1/x does not produce a semantic
error is exactly the information needed by an optimizing compiler to

decide if the movement of 1/x 1is safe.

The GOTO Controversy

One of the classic examples to support the argument that eliminating

g0 to's can introduce redundant computation is this search loop fram
[Knuth and Floyd 1971]:

for i := 1 step 1 untiln do

if Al1) = x then go to found;
notfound: n := i; A[i] := x; B[i] := 03
found: B[i] := B[1]+1;

which can be modified to:

i:=1;
while 1 <n and A[] £ x do
1 := itl;
if 1 > n then
begin n := 1; A[1] := x; B[1] := 0 end;
B{i] := B[1]+1;

Lnapuer o. Extansions

vwhich has a redundant test i >n Just below the loop. The teat
elision technique described in Chapter 4 will eliminate the redundant
test, as shown in Figure 6.1, thus making the g0 to -less form just

ag efficient as the g0 to form (admittedly, requiring a smarter
compiler).

63

Luapver o. mavens1ons

i:=1

Bii] :=B{1]+1

Figure 6.1. Test elicion makes this goto ~less search loop
potentially as efficient as its Eoto form.

Chapter 7. Conclusion

It is my hope that eventually a system will be built which
will be better than a human programmer at taking an unknown
program and discovering what it does and how it can fail. Perhaps
the ideas in this thesis will form a small piece of the foundation

of that system.

"T would rather write programs
to help me write programs than
write programs."

65

Appendix A. Examples

This appendix contains ten examples worked out in various levels
of detail: King's nine examples, and McCarthy's 91 function. Two
other examples appear in [Sites 197h]: FlM's TREESORT3, and
Rivest's SELECT (a linear-time median-finder). To my knowledge,
SELFCT hes not been examined formally before. Proofs of partial or
total correctness of the other programs can be found in the following
Teferences: King's examples [King 1969], [Deutsch 1973]; the 91
function [Manne et al. 1972].

As 4 reference aid, the outline below summarizes the issues

discussed in each example.

Example 1. Multiplication.

First and second passes through a loop.

Sequ-nce of four stages of loop given information.

Termination of search for y = 0 .

Infinite loups vs. overflow detection.

Pushing invariant assertion out of loop, false assertion toward
front of program.

Example 2. Division

Proof of partial correctness vs. proof of clean terminatjion.

Distinction between first iteration given information and
subsequent iterations.

Pushing invariant assertion out of loop.

Correlation between usage of two variables in proving that

overflow can't occur.
Example . Exponentiation.

Integer divicion model.
Loop termination for absolute value approaching zero.
Merging given Information and forming refinement.

66

Appendix A. Examples

Example 4. Primality.

Multiple exit tests.
Overflow assertion actually proved.
Termination proof unrelated to what program does.

Example 5. Zeroing.
Arrays, subscript bounds.
Union of sets and " —¢ " notation used in careful description
of values of i .

Example 6. Maximum.

Alias problem for arrays.

Forward vs. backward analysis.

Lemma discovery during merging of given information.
Proof of no overflow only on second pass through loop.

Example 7. Bubble Sort.

Failure to prove termination.
Permutation for leading tests.
Two nested loops.

Example 8. Multiplication via increment/decrement.

Use of refinement of merged informatiom.
Test elision forces ncde splitting.

Re-analysis of loop structure mares two parallel loops.
Mechanical removal of invariant test from loop.

Example 3. Selection Sort.

Termination proof unrelated to what program does.
Two nested loops, with successively more useful given information
on four passes through inner loop.

67

Appendix A. Examples

Example 10. The 91 Function.

Transformation of single interval into two nested loops.

Permutation for leading tests.

Two nested loops, with successively more useful given information
on four passes througb inner loop.

Use of refinement of merged information.

Test elision removes an inner loop.

Partial correctness plus proof of clean termination gives total
correctneas.

Example 1: King's Example 1. Multiplication.

This example is worked ocut in complete detail, to give a cohesive,
concrete example of the whole process discussed in Chapters 1-L.
Subsequent examples will only pick out highlights. All of the first
nine examples are modifications of the nine examples in King's thesis.
The modifications consist of assigning the undefined value w t5 all
variables at the beginning of a program, and inserting READ statements
for those variables which are essentially input parameters. Also, the
inductive assertions which King supplied are stripped out.

Figures Al.1 through Al.7 are selr-explanatory. The commentary

picks up again after Figure Al.T.

Example 1. Maltiplication

Y:=b

Figure Al.l1. Input flow graph for program to calculate x =a¥b
by successive additions. Nothing else is supplied
by the human user.

70

Example 1. Multiplication

Figure Al.2. Interval analysis of flowgraph Al.l. The nodes are
labeled for reference.

T1

Example 1. Multiplication

D>

x,y,a,b =

Read a,bd

Figure Al.3. The graph of Figure Al.2 after insertion of the LOOPHEAD
node and identification of the loop exit are fram node F to node I.
All loop exit arcs will be shown with double lines. Every path
around the loop goes through an exit test (node F) and all exit
tests are just after the LOOPHEAD node. Topological sorting of the
nodes ylelds the following order for subsequent processing: A-E,
LOOMMEAD 41, F-I. This graph represents all the modifications
described in Chapter 1.

Exsmple 1. Mualtiplication

Node Operatorj Assertion
A. START \L - --
B. X,y,a,b :=W i= -
C. Read a,b Read -
D. x:=0 o= -
E. y:= 1= b Aw
LOOFHEAD #1 - -
F. y 4O ¢ Yi®
G. X:=x+a + XpWAAFOAT, <x+a<T o
H. y:=y-1 - YHDA ImmSy-lslmax

Figure Al.4. Generation of semantic error assertions. Assertions
for small constants (0 fw, 1< Imx) are ignored.

Loop I Exit test I Assertion

#1 ' y£O |3k31 s.t. y, =0

Figire Al.5. Generation of loop termination assertiom.

>

assert b fw

assert Ik > 1 s.t. yk=o —

assert y fo

Figure Al.6.

Example 1. Multiplication

X,y,a,b ='w—|

E y:=b

LOOPHEAD #1

Fassert X AWA a fwA

Tnin S

masIm

assert y fw A

Tnin S

V-1 < Toax

Flow graph Al.3 with semantic error and loop temination
assertions attached. If all of these assertions are
proved true, then the program always terminates cleanly.
We will in fact find that there is nothing to prevent
the overflow in node G, and that the loop wan't terminate
1f b is negative. We will thus synthesize King's input
assertion that b > 0 . This graph represents all the
processing described in Chapters 1 -3,

T4

Example 1. Multiplication

Assertions to

" "
Node Input "given" info Prove

Output "given" info

B: x,y,8,b =W - -- X=WAYy=DA

a=-WA b=w

C: Read a,b X=WAyYy=mDA -- X=WAY=WA
a=WwAb=w afwAdiw

(Semantics of Read

say that a and b
are defined, there-
fore between I win

and Imax » but
nothing else.)

D: x:=0 X=WAYy=WA -- xX=0A y=wWA
afwAbfw afwAbfw

E: y:=b X=0AYy=0A b fw x=0AYy=b A
afwAbfw True. afWA DD

LOOPHEAD: #1 X=0AYy=bA - First pass thru

loop: Attach
afwA bl the following
symbolic info

to exit arc of
LOOBHEAD node:

Xpey = X A

A

Yk
&k/\

b1 = Pk

o
-
]

Figure Al.7. Proof processing of nodes A -E , and first pass thru
loop # 1, nodes F-H .

75

Example 1. Multiplication

Assertions to

" * " L
Node Input "given" info Prove Output "given" info
F: yfO Xy =% A 3k >1 s.t. y = 0 | True arc:
Yh.,l’yk/‘ y*w ‘k"'l‘xk’\
8,1 = & A Neither proven Yoy = Ve A
_ Test elision: = A
blc*-l - bk Try to prove S
that y =0 b, =b A
or y£0 on k+l k
some incoming ¥y FO
path, but no
luck. False arc: same,
except last tem
G: Xz=xta | X =X A XD A 8 fOA X1 = ¥t 8 A
Yper = Y A Tpin S %8 A o1 = Vi A
Bre1 = % A w8 < Tpax e " %% A
bk‘_1 = bk A None proven blec-l = bk A
v £ O Y kO
Hi yasy-l | %y = % ey A YAOA Ly < o1 = %o A
Yie1 = ¥k * ¥-1 = Tpax Vor =t A
81 = 8 A Last part, Gee1 = o A
= y-l 5 I »
bk"l bk A max bk"‘l - bk A
yk f 0 is true. yk * 0
Figure Al.7 (continued). Proof processing of nodes A-E , and

first pass through loop # 1 , nodes F-H .

76

Example 1. Multiplication

After the first pass through the loop with the symbolic variables

x X, etc., we have developed a set of recurrence relations

k+1 ’
for the values of all variables at the beginning of the k+l -st
iteration of the loop in terms of their values at the beginning of
the k-th iteration. From these recurrence relations on the latchback
arc, and the initial entry conditions on the arc from node E to the
LOORIEAD node, we now must synthesize expressions for the values of
all variables during all iterations of the loop, as shown in

Figure Al.8.

Arveem—pe —— - Sa—— . Rt ———— e

1) x=0 A 3) X1 = Kt 8y A

y=>b A kal'yk'l’\
A =
Ao e = B A
bfw LOORHEAD #1 by = b A
- ¥ F O
2) Xy = A L) x-~¢ {0, Ota, O*2a, ...}
Ve = ¢ A y =€ {b, b-1,b-2, ...}
Ae1 T B A afwA
Pez T Pk b A
$ a,b invariant

Figure Al.8. Loop induction, using all facts except y, FO to
detect variables invariant within the loop and to
synthesize infinite sets which encompass the sats
of values for x and y . The notation —¢ means
"for some n > 1 , takes on each of the "alues in the
subset consisting of the firct n elements of the
ordered set".

78

Example 1. Multiplication

If the exit test for the loop were

¥y >0
instead cf

YFO ,
then we could easily conclude at this point that

0<y<b
inside the loop. But, given the comparison for exactly zero, we must
work a little harder to synthesize a range of values for y inside
the loop.

If Oc¢ {b, b-1, b-2, ...} (i.e., b >0), then the set of
values y takes on is finite and bounded by zero:

vy = {b,b-1,b-2, ..., 0} ,
where the equality sign means that y must necessarily take on the
value of each and every member of the set exactly once.

If 04 {b, b-1,b-2, ...} (i.e., b <0), then the set of
values y takes on is essentially infinite. 1In reality, the set of
values for y 1is bounded by Imin » but we discover this fact by
assigning y the infinite set, then failing to prove that underflow
never occurs in the statement

yi=y=-1 .

In our induction processing we try to decide if the values of Y
are a finjte or infinite set by examining the initial value of b and
asking if b >0 (i.e., if O« {b, b-1, b-2, .«-}). We find no
answer to this questicn, only the information that b FW. Sowe
give up; Mowing nothing else about b > the best we can say about Yy
iz that

y =-¢ {b, b-1,b-2, ...} .

79

t—a as MWL VL PG YL

With the ranges of values synthesized in Figure Al1.8, we proceed
to take a second pass through all the nodes of the loop, using the
ranges to prove assertions and to develop new given information on
subsequent arcs. The first assertion we try to prove is the loop
termination assertion:

Tk>1 sty =0

Now the groundwork of the above discussion about synthesizing the
range of values of y becomes useful: we discovered above that y
will take on the value zero iff b >0 , s0 the loop termination
assertion is equivalent to asserting that, on the exit arc of the
LOOMEAD node,
b >0

Since b is invariant in the loop, we can push this assertion back to
the initial entry arc of the ~o0p, and then as far back as the Read
node, as in Fipure £..9. Figure A1.10 details the remaining proofs,
during the second pass through the loop, plus any subsequent nodes.

The camplete process leaves us with two unproved assertions:

b >0 before node D

+ .
and Imin < xta < Imax before node ¢

If the user can guarantee that these two agsertions are always true,
then the program terminates cleanly. If the user cannot guarantee
that these agsertions are always true, then they descridbe the only
two waeys in which the program can "blow up" during execution:

if b <9, then loop #1 never terminates

i +
and if Imin >x+ta or x+ta >1I > then an overflow oceurs at

node G .
The user is assured that there is no other wty (such as an overflow

in node H) for the program to blow up.
80

(4) assert » >0

(%) assert

(1) assert ¥k >1

s.t.

(2) assert © >0

Figure Al.
(1)
(2)

(L)

L&

B

X,y,8,b 1=

Read a,b

]
x:=0

o
y:=b

b >0

y, = ©

9. Steps in synthesizing the input assertion b >0 .
Original .ocop termination assertionm, generated from exit test.

Equivalent loop termination assertion, generated from analysis
of the set of values y takes on inside the loop.

Ascertion moved back, outside of the loop, because it is
invariant in the loop and must therefore be true on entry.

Assertion moved back as far as possible, in this case, to
the exit arc of the Read statement. Note that this is the
best place for the user to jnsert an executable test that
the value read for b 1is in fact non-negative.

81

Example 1.

Multiplication

Assertions to

Node Input "given" info Prove Output "given" info ‘
LOOPHEAD #1 -- .- Second pass thru
loop: Attach ;
synthesized !
"given" info:
x -¢ {0,0+8,0+2a,...} 7
y={b,b‘l,b'2,--D,0} A
afw A b >0
Fi:y #O x~¢ {0,0+2,0+28,...} A [y £ ® true True exit: ;
vy ={b,b-1,b-2,...,0} A] Test elision: x-¢ {0,2,28,...] A
a.;éw Ab>0 ¥y =0 maybe y={b,b-1,b-2,...,1} Al
yfo maybe B.fw/\bzo A

G: X :=x+a

x—¢ {0,8,28,...} A
y={b,b-1,b-2,...,1} A
afwAb>0

x =€ {a,2a,38,...} A
v = {byb-1,b-2,...,1} A
nfwAD>O0

XEFWA afwA

Imin <
x+ta <1

First two are
true, and
last one is
maybe

yFEW A

Im.’Ln <yl

Both are true

False exit:
x-¢ {0,8,28,...1 A
y=0A
afwAb>C

X—¢ {8,28,38,...] A
y = {b,b~-1,b-2,...,1} A
afwADb>0

x—~¢ {(a,28,%8,...} A
y = {b-1,b-2,b-3,...,0}
afwAbv>0 :

Figure A.J..10.

82

Proof processing of second pass through loop, nodes

F-H .

Example 2. King's Example 2. Division.
This example exposes same of the complications in actually proving
a loop termination assertion when same input assumptions which were in
the programer's mind are not stated, and hence need to be synthesized
by the proof mechanism. King assumed the restrictions that a >0 A b >0
and then proved that the program is partially correct in generating the
proper quotient and remainder, but he failed to note that the program
never terminates if b = 0 . To confront this termination issue
directly, we state no assumptions about a and b , and see what
restrictions can be automatically synthesized. (If, however, we used
King's restrictiong, our system would still complain about the b =0
case.) The starting point for this and most subs-quent examples is the
modified flow graph of the program annotated with assertions (Figure A2.1).
In this and all subsequent examples, we will ignore the "undefined
variable" assertions, since their proofs are all essentially trivial.
After processing nodes A-D and taking a first pass through

the loop, we have gathered the following information for the loop

induction.
Initial entry: qQq=0ATS=28
Recurrence relations: a1 T8y A bk-o-l = bk A
Gl = Y N Tiey T TP A
T 2 P

From this information, it is straightforward to synthesize the ranges:

a invariant

b invariant
q=-c{"1L,2...}

r -¢{a, a-b, a-2b, ...}

>0 .

r >b or, equivalently, Tipy >

k

85

assert 3k>1

s.t. rk <b

Figure A2.1.

Exemple 2. Division

DT>

=]

q,T,8,b:=w |

a,b

A

Mechanically annotated, modified flow graph for
King's Example 2. Since we are working with little
or no human asslstance, King's assumptions that

& >0 and b >0 are not supplied. The crux of

this example is to synthesize appropriate restrictions
on & and b .

84

We now want to prove the loop termination assertion:

ik >1 s.t. rk<bk s
or, since b is invariant in the lcop,

Ik >1 s.t. rk<b .

The assertion is not always true (e.g. if a =2 and b = -1),
and none of the techniques discussed in Chapter 4 will help synthesize
appropriate restrictions on a8 and b which would make the assertion
true. So the proof system would simply give up and direct the human
user Lo supply appropriate restrictions on a and b .

There is, however, a useful heuristic for an automatic procl system
to use: separate the case of zero iterations of the loop from the case

of one or more iterations. To prove that r, <b , we can try to prove

k
that either ry < b or that r is strictly monotonically decreasing.
Cnly by explicitly considering r, asa special case can we pick up
all the degenerate situations which result in zero executions in the
100p.
Since rl = a , the condition
a<hb

gquerantecs that the loop terminates (by never executing at all).

In the general case, r is monotonically decreasing if

k+1l k
From the recurrence relation rk+l = rk-—b , we have
rk-b < r,
or
-b <0
or
0<b

85

Example 2. Division

Thus, we find that the loop terminates iff

(a <b) v (0<D) .
Since this relation is invariant inside the loor and must therefore
be true on entry, we can push it outside the loop and then back to the
READ node.

Examining the overflow assertions for node F , we find that the
first of these, Imi.n < g+l , is clearly true, because adding a
positive constant can never create a sum which is too negative. The
second, gqtl < Ima.x ,» cannot be proved, and must be tossed back to
the user with a "maybe". As described, our systen cannot make any
correlation between q and r , such as: q wi!’ be incremented as
many times a8 r is decremented, s0o gq camot ﬁl fact overflow,
if the loop terminates at all. TFor & slightly different loop with
r :=x+b instead of r := r~t in node F , the values a = Imax 3
b = -1 would result in q overflowing. So any attempt at correlating
the overflow possibilities of one expression with the number of times
another expression is executed must consider such factors as size
of increment and total range covered by each expression.

The assigmment r := r-b in node F cannot overflow if b >0

because
b>0 or-b < Im_x

b>0 AT>bDOT-b>0>T

The same assignment cannot overflow if a < b because it is never
executed.
The flow graph in Figure A2.2 represents the final r«sult of our

analysis.

86

assert

(a <b) v (0 <b)
E—Lq

Figure A2.2.

START

q,r,8,b :=w]

Read a,b

assert g+l < Ima.x

Final result of analysis of flow graph in Figure A2.1:
the loop terminates iff the restriction on a and b

is true after the Read ; the system is not powerful
enough to prove that q will never overflow. Note

that the synthesized restriction (a < b) v (0 <b)
allows some cases (such as a negative and b positive)
that King's assumption (a >0) A (b >0) does not
allow, and that our restriction excludes the infinite
loop case (a >0) A (b =0 .,

3

Example 5. King's Example 3. Exponentiation.

In this example, the two interesting issues are tae treatment
of division in y :=y+2, and the merging of information from the
conditional assignment gz ;= z%*x .

In the analysis of integer division, we will use these axioms:

Ip+al <Ipl for Jqg/>1 and pfo
Ip+4a] = |p for gl =1 or (|g|> 1 and p =0)
Ip + af] = undefined for q =0 .

Figure A3.1 shows the flow graph for this example with all the
non-trivial assertions attached. As usual, the overflow assertions,
Imin < expression < Ima.x » cannot be proved, and hence they represent
definite problems for the user to consider.

The induction for the value of y at the LOOPHEAD node uses
the initial value information

Y :=Db
ard the recurrence relation
yk+l:yk+2Ayka .
From y £0 and [2| >1, we can use the first axiom to conclude
that
enl < il
and hence that y is a subset of the range -b to b :

y < |, ‘ib““l""r ‘bI}

To prove the loop termination assertion,

4k >1 s.t. yk=0,

we can use the fact that the absolute value of Y 1is strictly

monctonically decreasing, and hence will eventually equal zero. Thus,

88 ‘ i

assert Tk > 1
s.t. Yy = 0

o

X;¥,2,8,b :=W

E .

X:=a

y:=b
z:=1

assert
*x <
Tpgn S2%x < I

Figure A3.l.

assert

*
Iminfx x<T

Tlow graph for King's third example, with all mechanically
generated assertions except those of the form v f o,
for any variable v . We can prove that the loop terminates,

tut cannot prove the absence of overflows in nodes G
and H .

Example 3. Exponentiation

we can prove that for all values of a and b, positive, zero, or
negative, the loop terminates. Of course, if b 1is negative, the
program doesn't campute ab , but our proof of clean termination
(if no overflows occur) can be combined with King's proof of
correctness under the restriction that b >0 ‘o prove the total
correctness of this program. ’

A second issue in the analysis of this program is the merging
of information required at node H . On the first pass through
the loop, the given information on the two entry arcs for node H
includes

- . P = - . - *
arc F -H: 2141 zk arc G-H: 'z.k+1 2y xk

As discussed in Chapter 4, this information is merged to form the
disjunct

Zpr = 2 V Pl T 2, * %X, (Refinement),

ignorin; the interaction between Yy mod 2 and z , but marking the
disjunct "refinement exists”, so that if necessary in a subsequent
proof, the complete interaction can be reconstructed:

((yk mod 2) =1 A Zey = zk*vk) v ((yk mod 2) A1 A Ziy1 = zk)
In this particular example, information about 2z is not needed tc
prove clean termination. If we were just interested in loop termination,
all variables which have no effect on branching could be stripped cut

of the program early in its analysis.

Example 4. King's Example 4. Primality.

In this example, we encounter multiple exit tests and a proof of
no overflow based on the fact that a defined variable has a
representable value. Also, the proof of termination has absolutely
nothing to do with what the program does.

The loop induction information for 1 includes the initial value

i=2

and the recurrence relation

Ly = 141

so the values of i are an initial subset of {2,3,4,...} , and are
strictly monotonically increasing.
To prove the loop termination assertion,
Tk >1 s.t. (ikzak) " ((:|.k <"k) A (akmod i, =0)) ,
we try the simpler clause first. We find that a is invariant in the
loop and that i 1is strictly increasing, so

i, >e

will eventually be true and we have proved the loop termination without
examining the second clause. Note that the loop terminates even if
ac<2.

For the overflow assertion, we need to prove that

(i<a Aafgwaamdifo) D (i+151m) .

Since a # w means that a has some representable value,

I

min S & S L., » it follows that

(1 <a A aglmx) = (1+1_<_551m) = (1+151m)

91

Example L. Primality

assert 3k >1
B.t. (ikzak) v }
(ik<ak A
akmod ik=0)

— A8 8T
Tnin S 1 < Tpay

Figure Ak.1. Flow graph for King's fourth example, with only the
non-trivial assertions attached. There are two loop
exit arcs, so we have a camplex loop termination
assertion (whose first clause is true). The overflow

asgsertion I <i+t1 <1 1s true because
min - -~ “max

in
(1 <a) > (11 <s8) D (:|.+151m) » since whatever

value 15 stored in a 18 representable, and hence

a.SIw.

Example 5. King's Example 5. Zerolng.

Arrays are introduced in this example, presenting same new
complications in describing the intended range of value subscripts,
and in symthesizing an appropriate deseription of the values
stored in the array.

As indicated by the annctations c¢n the flow graph, Figure AS5.1,
the bounds for the array A must be supplied. In some program.ing
languages (like Fortran), declarations of bounds are required for
all arrays. For such languages, it is easy to insert the needed
annotation mechanically. In other programming languages (1like
Algol €0), declarations of bounds are not required for arrays which
are parameters of subprograms. For such languages, the human user
must supply ‘he needed annotation. In either case, the semantic
acsertion routir.e then uses these bounds to create subscript range
assertions, like 1 <1 < n, -

The loop induction step uses the following information:
jnitial values: A =W (the whole array)

i=1

recurrence relations: ik+1 ikﬂ.

S i

Aealdd =0
VA . A1) = A1)

ikSn

k

fFrom thie information, we can deduce that:

9>

Example 5. Zerolng

DECLARE A[1l : no]

assert 3k >1

s.t. ik >n

a.ssertl_<_i_<_no

assert
Tagn S 1*1 < Tpay

HALT

Figure A5.1. Flow graph for King's Example 5, a program to zero
out an array. The declaration of A is an annotation
added by the user, signifying that the valid bounds
on A are 1 to no,vhere n, is the value read
in for n . Thie binding of n, is to allow for the
possibility that the value of n changes during
execution.

Example 5. Zeroing

n is invariant

i-¢{1,2,3...] A i <n+l
80 i ={11u(2,3,4,...,n1}

vhere the second set is empty if n <O

Yte{l,2,3,...,n} , AL} =0
The deduction about n 1s straightforward. The deductions about i
need some careful attention to detail: the i —e¢ ... notation
implies that the actual set of values for i contains at least one
element. Now, if n <0 , the set {1,2,3,...,n*1l] can be strictly
construed a8 the empty set, so to properly reflect the fact that 1
always has its initial value at the LOOPHEAD node, we adopt the union
of sets notation. The set {2,3%,4,...,n1] reflects all the
subsequent values of 1 , it is properly empty if n <O {and hence
the loop is never traversed), and n+l is in fact an element of the
set {2,3,4,...}] if n >1 . (If the step size for i were not one,
but ¢ , we would heve to entertain the third possibility that nt+l
ic not in the set {1, 14c, 142¢, ...} at all.)

In subsequent processing, we can eagily prove the loop termination

assertion,

¥k >1 s.t. ik>n

since i 1is strictly increasing. The subscript range assertion,

1<i<n,

is true because n is invariant, hence equal to n,, 1 <1 <ntl

at the IOOMHEAD, and 1 <4i <n on the true branch from node E .

The overflow assertion,

I

+
minsilslmax

95

Example 5. Zeroing

camnot be proved, and the program in fact generates an overflow if

n= Im.x . The user is asked if this velue of n is possible.

Example 6. King's Example 6. Maximum.

This program to find the largest element of an array by successive
interchanges shows how the recurrence relations express an interchange
as a simultaneous assignment to two elements of the array, how aliases
are handled, and how lemmas can be discovered. The flow graph for the
program igs in Figure A6.1.

In Figure A6.2, we show the given information gathered on the first
pass through the loop. Most of this processing is straightforward, but
there are some couplications after node I . In reflecting the
assignment A[i-1)] := x , we must check for aliases (as explained in
Chapter &) to see if that assignment changes an element of A that we
also know under some other name in our set of given information. In this
example, Ak+1[ik] is referred to in the given information on the entry
arc for node I , s0 we try to prove the two theorems

ik = 1k-1

and ik # ik-l
If the first is true, then Ak+l[1k] is an alias for Aht-l[ik']']
and both would be equal to x on exit fram node I . If the second
is true, then the assignment to A]c+l[ik_1] cannot affect the value
of A)ﬂ»l[ik] , 80 there is no alias problem. Tn the current examxple,
of course, ik £ ik-l » 80 there is no alias problem. In the more
meneral case of successive assigmments to A[l] and A[jJ] , we try to
prove that either i, =j, or 1, # 3 + If we cannot prove either

theorem, then we must allow for both possibilities:

(4, = 3 A A LT = Ak.,,lldk]) v (1, # Jg N Agqliy) = ola value).

Example 6. Maximum

E‘

Assume A f w,
O0<n

All:n

Bk

asgert Ik >1

s.t. ik > nk

0l

agsert

Ly <3-1

l1<i-1<n

< Tnax

1<ig<ny

assert

I

min S 31 < Tpay

Figure A6.1. Flow graph for King's Example 6, with explicit assumptions
about A and n innodes C and D , and with an annotation

describing the subscript bounds for A .

assertions are shown.

Only the significant

Example 6. Maximum

given:
leer =
Tke1 T
A =
k+1 glven:
X, - [=] A A l1,-1] > A (1]
i <0 — Plus others above.
given:
Kep = Aliy]
H _l plus others above.
Ali] := 4[1-1)
given:
ik+l } ik iven:
Mee1 = Py ¢ (4,1 = A[4.-1]
Are1t] = Aldy-
Rvr = A L plus others above.
el T % I
Afi1-1] := x
ik < nk
Aliy-1] < Ak[i‘r.] given:
. Loy = I
glven: nm: rllk [1,-1]
° N am i = i -1
i =1 J Ak"'l k Ak k
k+1 k D N = =
et ry oy bt 31y < ML
Aa[ty) = A L8] or A L4,-1] o i;l :Hl“] " hlt
n
A1l = A l3,-1] or A (4] k =Pk
Ve, -1 A (0] = A1) Aglig=1l > Al4,]
X4y = X OF Ak[;lk]
L, smy

el 3l] < A 4,

Figure A€.2. Gathering of given information on the first pass through
the body of the loop. All deductions are straightforward, except
for the last merged one on the arc leading to node J ’

A}c+1[ik'l] < A'Hl[ik] . The text explains the derivation of this
lemma. The dummy node just before J was inserted for clarity of
expression.

Exsmple 6. Maxisum

We may then weaken this expression to avoid the cross-product terms
relating 1 to A :

Akrl“k] = X4y OF Ahl["k]=°ld value (Refinement) .
If it later becomes necessary to use the exact relationship, it can
be reconstructed.

Jim King discusses the alias issue on pages 77-82 of his thesis
(King 1969], and again on peges 132-14%0. In the latter section, he
discusses the problem of wurking backwards through a program,
generating expressions for all possibilities of subscript aliasing.
A series of four assignments can easily generate an exprescion
containing 16 different cases.

The problem with working backward through a program is that,

for a sequence like

i:= j+2;
A[i] := 3;
AlJ] := by

there is no information about the relationship between 1 and j
when the assignment to A[i] is processed. Thus, King must generate
an expression like

(1 =j A Ali) 1is changed by both assigmments) v

(1 #3 A Al1] is changed only by the first) ,
and later try to decide which case applies. By working forward, our
system has seen the assignment

1:=j+2
before processing the array assigments, so emough information is
available for the theorem prover to be called to answer the alias

question:

Example 6. Maximum

(1=32) > (1 £3) 2 (AMl4] =3 A Al3) =b) .

There are two problems in working forward. (1) 7The process is
not goal-directed; in contrast to working backward, there is no
definite assertion or verification condition to be proved, so it is
possible either to discerd crucial information or to retain useless
verblage. (2) The information required to prove theorems such as
i £ 31 inside a locop may depend on assignments near the bottom of the
loop, making it impossible to prove the theorem on a single forward
pass.

The techniques presented in Chapter I try to mitigate these two
problems by (1) using a set of heuristics to merge information into
"useful” lemmas, while still retaining access to the unmerged (refinement)
information in case it is crucial to a later proof, and (2) processing
loops in two pasces, where sometimes an alias theorem can be proved on
the first pass becaus2 it is true independently of subsequent assignments,
and sometimes an alias theorem can be proved only on the second pass,
after ranges of valuec for program variables and the invariant
relationships between them have been determined.

After that somewhat lengthy discussion, we return to our example
and the merging of given information at the dummy node in Figure a6.2.
The left arc includes the information:

Ak[ik-l] < A.k(ik] and

Avr = K

The right arc includes the information
Ak[ik—ll > Ak[ik] and
Aqliy-l] = Ad4] and
Aaalde) = A1l

101

Exsmple 6. Maximm

In merging this information, we try to find an expression which is
implied by the informatian on both arcs. We start with the expressions
that already attached to the incoming arcs, trying unsuccessfully to
prove that:
right arc info O left arc info
or left arc info O right arc info .

This strategy works in merging, say, 1 at the dummy node,

el =
but fails to produce any common information about A . If there 1s
no common information in the relationshipe between the ¢ld values
(subscript k) of variables, perhaps there is some cammon relationship
between the new values (subscript k+l); perhaps the whole point of
the separate paths which are now merging was to create some useful
relationship between the new values of variables.

To discover useful lemmas about the relationship between the new
values of A , we modify any old relationships on each path to reflect

the assignments on that path, giving
A1) < Ayl ’
on the left arc, since A, = A, On that arc, and giving
Agraliy] > Ay [3,-1]
on the right arc, since Ak+l[1.k] = Ak[:l.k-l] and Abl[:lk-l] = Ak[ik] .
We again try to find an expression which is implied by the

information on both arcs:

left arc info D right are info

Loy A1) SALGILT P A, T4] > Ay, (11

Example 6. Maximum

The strictly greater than relation is not the weaker, 8o we try to
prove:

right arc info O left arc info

B A > A -] o A 1A < A
Thie implication is true, so we have Just discovered the lemma we

are seeking: the inequality

Aenllm1] < Ay, [4,]

is true on both arcs, so we attach it as part of the merged information
on the entry arc to node J .

In our current example, this mechanically synthesized lemma ir
not needed to prove any of the assertions in the program, but a
simiiar process is crucial in the loop termination proofs in SELECT
[Sites 1974]. In fact, all the assertion Proofs on the second pass
through the loop in our current example are straightforward. The
1loop terminates because i 1is monotonically increasing. The
subtraction i-1 does not overflow because i >2, a fact which
we could not know on the first pass through the loop, since it depends
not only on the initialization at node D » but also on the assigmment
at node J . The subscripts are all in range, and the assignment
at node J may in fact overflow. Note that the human user could
remove the overflow problem by including in node C the agssumption

(restriction) that Ny <

103

Example 7. King's Example 7. Bubble Sort.

This is the first example in which we cannot prove that the
program terminates. It is also the first example in which we bhave
two nested loops. Following the process in Chapter 1, we do the
interval analysis of the flow graph, find the loops, and then try
to put them in leading test form. Figure AT.1l shows the flow graph
before this last transformation; the inner loop is in leading test
form, but the outer is not. Figure A7.2 shows the change in structure
required to put the outer lool\a in leading test form also. Then it is
easy to synthesize the loop termination conditions:

d >1 s.t. j' =0 for loop #1,

ik > 1 s.t. ik>n for loops #2 and #2'.

k
Loops 2 and 2' are essentially the same as Example 6, and terminate
for the same reason -- 1 1is monotonically increasing. The rest

of this discussion therefore centers on the behavior of J . Since
loops 2 and 2' are identical, we shall concentrate on the nested

pair, 1 and 2. The reader cen fill in the details of the degenerate
case of an initially completely sorted array, vhemn loop 2' exits

with j = 0 and hence loop 1 never iterates.

Figure A7.3 shows the detalls of the multiple passes over the
nested loops to find out the range of values for J during all
possible iterations. The assigmment to J in node D turns the
outer loop induction into & degenerate case: J 1 does not depend
at all on g ? 5° the second outer pass contributes no new information
after node D . Eventually however, m.a~ f£ind that the range of values

for j atnode J is O or 1, and that there are no reasons

104

that J must sometimes equal 1 . Therefore, we cannot prove that
the outer loop terminates. The human user vill have to look at this
loop and convince himself that the loop does in fact terminate
(because humans "lmow" that eventually no interchanges will take
place and therefore the assigment at node H will not be executed).
It is possible in this example to split up the inner loop 8o
that if the interchange never takes place, the inner loop exits
directly to node K , but that turns out not to help us prove loop
termination, because we still camnot prove that eventually no

interchange will occur.

105

Example 7. Bubble Sort

i,d,x =W
[c] *
Assume DECLARE A{1l:n]
Afw,n>0
LOOPEAD 41
]
i:=2
Jj:=0
LOOPHEAD $2
E i<n
F T
Inner 1 F
exit a.:cOP A[1-1] > A[4])
F T
J EG: x :=A[1-1]
JFo ‘ Al1-1] :=A[1)
F T All) :=x
Outer loop
exit arc
>
X
HALT

Figure A7.1. Flovw graph for King's bubble sort. We will permute the
nodes so that the loop exit node for the outer loop, J, 18 just
after the LOOFHEAD #1 node. We will not be able to prove that the
outer loop terminates, since its temmination depends on no further
interchanges taking place in the inner loop.

1NA

Example 7.

Figure A7.2a.
the nested loope in

Structure of

Figure AT7.1. The outer
loop is not in leading
teat fomm, so we permute
the nodes inside the loop
uncil 1t ig, as described
in Chapter 1.

Bubble Sort

Figure A7.2b.
the nermuted nested loops
from Figure A7.2a. We
have mede coples of the
initial assigmments to

i and j , and of the
entire imner loop.

S8tructure of

Fxample 7.

1. given: (from loop 21)
J=0or1

LOORHEAD #1
2. given: (1st outer
loop pass) J,., =J,

9. given: (2nd outer
loop pass) j=0O or 1

assert E2 > 1 s.t.

3y =0
t 1T
F

Bubble

3. given: (lst outer
loop pass)

“ D \ Jpep =0
i
L. 11. given: (1st and| | 0. given: (2nd cuter
3rd passes) f loop pass) j =0
dpe1 T g
“« 13. given: (2nd and
. 12. given:
uth passes) LOOPHEAD #2 5
3-0or1 (1st and 3rd
pesses)
= or
assert 4k > 1 ‘ ‘?Hl Jk
’ E Jjey =1
: B T
’ Al1-1] >A[1]
&. given: (1st outer ﬂ F T
loop pass)
J =0or 1l x:=A[1-1
2+1 [l~[,i] T. given:
Al1-1] :=A[1] (2nd pass)
15. given: (2nd outer A1) := jo.,=0o0r1
loop pass) J = O 1
or 1
given:
(kth pass)
J=0or1l
n |
Figure A.7.32. Details of gathering information about J « We take

two passes through the outer loop, first looking (continued next page)

108

Figure A7.> (continued)

at the symbolic values Jl+1 and .1‘ . On this first pass
through the ocuter loop, we take two passes over the inner loop,
first with 'jk+1 to find out that it can remain the aame or
becames 1 , and second with ‘11+1 = 0 as the initial value.
After the first ocuter pass, we find that j = 0 or 1 for all
iterations of the outer loop. During the second pass through
the outer loop, we again traverse the inner loop twice (passes

3 and 4). Pass 3 is exactly identical to pass 1 and can clearly
be implemented to take advantage of this; pass 4 uses J = 0 as
the initial value, instead of the symbolic induction variable
’:j"l from the outer pass 1. In this example, passes 2 and b
are identi:al, but only because of the assigment to j in
node D . In general, pass 2 would have found less specific
information.

Example 8. King's Example 8. Multiplication via increment/decrement .
In this example, we use a refinement of some merged information
to restructure a loop into two simpler loops. This particular
restructuring turns out to be a classical program optimization
transformation of taking invariant tests out of loops.
The three loops in this example (Figure A8.1) all have the
identical structure, so we will just consider the stripped-down
version in Figure A8.2. As that loop is written, it either counts
x down to zero if x 1is positive, or counts it up to zero if x is
negative. It may be a good heuristic to say that if a loop termination
test is a comparison for exactly zero, then look at the absolute value
of the expression involved. Such a heuristic would allow us to prove
that |xl is monotonically decreasing and hence that the loop will
teminate. However, by doing some node splitting to accesse a
refinement of the merged information about x at the loophead node,
we can restructure the progrum, &s in Figures A8.3 and A8.L, into
two loops, one for x positive, and one for x negative, then easily
prove that each iocop terminates, without using the absolute value

heuristic.

110

Example 8. Multiplication

A START

B
E ‘,b,y’tb :‘O

yi=y-1
xb :=xb+l

yi=y+l | yi=y-1
xb :=xb-1

xb :=xb~1

Figure AB.1. Flow graph of King's Example 8, which has three loops
with identical structure and identical temminati-n problems. We

will break each loop into two; ome to count a positive variable
down to zerc, and cme to count & negative variable up to zero.

m

paaniple ©. Multiplication

A
START
[2]
Xi=W
[}
Read x
given: x £ w
IQ0PHEAD
gliven: Xeel = X,
x=0
given: x4 = X A T 3 glven: x4 =Xy A
1 <0
Xy kO . *x
E x>0 al
F T _glven: xlwl‘xk A
G F X > 0
xf#l : :=|__]x-l ~~given: x, =x -1 A
m X, >0

given: xk+l = xkﬂ. A

xk<0

Figure A8.2. Ess~ntial structure of the loops in Figure A8.l1, with
glven informulion from tkhe first analysis pass attached. In
merging the value information xhl = xk-l and Xyl ™ xk+1 at
the LOOPHEAD node, We find only that x, . # x, - In looking
for common relationships between the new (subscript k+l) values
of x , we find on one arc that 1k+1->-° , and on the other
Xl <0 . The only common thing implied by these two expressions
is that x, . # w . Thus, the range for x that we use on the
second pass through the loop is

x fw (Refinament) .

Figure A8.3. First step in restructuring loop in Figure A8.2 is
to try to elide tests along some paths by rroving that they
are always true or always false on that path. The test at
node D 418 inconclusive along all paths, so we cannot elide
it. The test at node E » however, is always trvs along the
rath F-D-E, so we split out that path, making a copy of
node D in the process, and then elide the test as shown by
the dotted line. Similarly, the test at node E is always
false along the path G -D ~E s 80 we split out that path
(making another copy of D) and elide the test. We must now
re-analyse the loop structure of the program, starting at
the LOOPHEAD node.

13

Example 8. Multiplication

Q
jé_]..

E x :=x+1 E i=Xx=1

LOOPHEAD #2 LOOFHEAD $1
P> |
T F T F

@ X t=xtl E X :1=x-1

Figure AB.L. The loop in Figure A8.3 after re-analysing the loop
structure and permuting the loops so that they have leading
tests (thus forcing copies of nodes G and F). It is now
fairly easy to prove that each loop terminates, without resorting
to any arguments about absolute value. Note also that a careful
programmer could have written the original program in this
two-loop form, in order to avoid the redundant test of x >0
inside the loop.

1L

Example 9. King's Example 9. Selection Sort.

In this example (Figure A9.1), th-ere is very little overlap
between the information gathered to prove that the program terminates
cleanly and the information gathered by King to (attempt to) prove that
the program correctly sorts an arrasy. The two nested loops have the same
structure ceen in earlier examples and it is easy to prove that they
terminate, that all the variables are defined on use, and that no overflows
occur because we anticipated the problem and assumed that the size of
the array is less than Ima.x . The only difficully is proving that the
subscripts are in range in nodes H and X , so we will examine the
information gathered about i1 , J , k, and n more closely. To
avoid confusion in the notation, p and q are used as iteration
subscripts in the recurrence relations for loop #1 and loop #2
respectively.

Figure A9.2 shows the first few steps in collecting information
about i, 3, k, and n : symbolic names (subscript p amnd p+l)
are used to develop recurrence relations ebout how the values of
variebles change once arcund the loop. In the midst of this first
pass outer loop processing, two passes are made through the inner
loop, as shown in Figure A9.3. The results of A9.3 are passed as
given information to node K in the first outer loop pass. This
nested processing allowe us to discover, for example, that n is
invariant in the inner loop, and hence to discover a little later
that n is invariant in the outer loop.

After the first pass through the outer loop, we use the recurrence

relations gathered (attached after node L) and the initial values

15

sKmmple Y. Belection Sort

1=1, j=w, k=0 , nfw
to synthesize a range of values for each variable at the LOOFHMEAD $1
node during all iterations of the outer loop:

n is invariant and n 4 @

1 ={1}u{2,3...,n)

J=Ww or Jo>n

k=w or kxc{,2,...,n} .

We then take a second pass through the outer loop, using these
ranges to prove assertions. At nodes F and X, it is now clear
that 1 12 in the proper subscript range: 1<1 <n . When we
encounter the inner loop, we use the new initial value information
(a8 it stands on exit from node F) with the old inner recurrence
relations (subscripts q and g¢+1) to synthesize a tighter set of
ranges for variables inside the inner loop. In this example, the
ranges attached to the exit arc of the LOORIEAD §2 node are:

n is invariant and n £

i=1{1,2,...,n-1}

J = {141, 1+2, ..., n+1}

kc {1, 4+1, ..., n}
Following the test in node G , we can prove that j 18 in the proper
subscript range innodes H and I : 1<Jj<n. On this third
pass through LOOP #2, we can alsc prove that j = ntl om exit to
node K . On previous passes, we did not know anything about the
relationship between J and n , 80 we had to allow for an initial
cagse like j = 342 and n = 12, in which we could only state that

J >n on exit, not that J = ntl . However, now we know that the

16

maximum initial value of j 418 n , hence the inner loop always

iterates at least once and j = m*1 on exit. (Note that our analysis

system would actually use the fact that j <n initially at

LOOFHFAD #2 to elide the test in node G for the first iteration of

the loop, forcing a complete copy of the nodes in the loop to be
used to reflect the unconditional first iteration. We will ignore
this complication.)
Following the third pass through ILOOP $#2 , we arrive at node

with the following given information:

nfto

i=1{1,2,...,n-1)

J = ntl

kc {i, 1+1, ..., n} .
Thie is sufficient to prove that the subscripts i and k are
alvays in the proper range (1 <i<n, 1<k <n) at node X .

We have thus proved, through a somewhat tedious process, that all

subscripts are ir range in this program, during all iterations of both

the inner and outer loops.

17

Ak Comar
E 1,3, kx:=w]
)

Assume

O<no<IM_x

All:n,] Fwo

x:=A[J)
k:=}

Alx] :=A[1)
A1) :=x

Figure A9.1. Flow graph for King's last example. We will only consider
the proofs of the three assertions shown, since the other proofs are
similar to those in earlier examples. To prove clean terminationm,
we need never consider vhat is happening to A, i.e., that it is
being sorted.

LOOFHEAD #1
2 i :
) 8 Ien1=1 A glven:
i =1 < A
ooy = ———4 w17 " ey
= Ak = A
A Ipr1=3p A Fp = ¥p
Pl p n_.,=n
n_..=n ptl p
Pl P
L) given:
1 = [1}U{2,3,---'n] .A
n is invariant A
[j=wv j>n) A i=3+1
(k=w v kc {1,2,...,n}) :=A[1) ’given:
= i <n_ A
g 11*1 11)’]\. pk nP i
=1 1 A =
Iprp =ipt i A e T Ap A
n =N
LOOP #2 PP
- given:
i = < A
E Alk] :=A[1) Jrl 1P X 1P nP
= >n_ A
A[’-] = kp*lC%i i+ n } A
prl P 0P
"1 = T
3) given:)
exit 1ptl=1p+l A 1P<np A
Jp+1>n A
kpuc {1P,1P+1,...,np] A
up“:L = np

Figure A9.2. Gathering of given information for i,J3,k,and n on
first pases through outer loop. The processing of the inner LOOP 2
on this first pass is detailed in Figure A9.3. The induction step
between the first pass and the second pass through the outer loop
determines the synthesized information labeled L) . KNote that J
doee not have & particularly useful value at the LOOPHEAD #1 node;
it 48 the assignment in node F that is important.

19

1) initial

: =1 A <
given 11”:l :p " 1p np/\
=31 +
e
= A
pt1 :lp npu >np
LOOFHEAD ¢2
2) given: 1q+l=iq A
dge1 =3 A
k =k
qtl g A G I <n
n =n - - glven: above plus
g+l g T 5 <n
Q-9
I x <aly)
given: a“.ove plus . given: :bOZeAp.'[LBLs]
> —
*q Aq[Jq] I q q'Yq
x:=A[J]
k=]
glven: above plus
g+l = Iq
J
given: j >n Ji=g+1 3) given: 1 - LA
= 5 +1
exit Jq+1 Jq A
kq+1 = kq or
nq+l = nq A
<
Jq S8y

Figure A9.7. Gathering of given information for i, j, k, and n in
inner loop, during first pass through outer loop. The recurrence
relations attached after node J show that i and n are invariant
in the loop, that j 4s monotonically increasing, and that k 1is
some subset of the values that j takes on. Combining these
recurrence relations with the initial input conditions from the first
pass through the outer loop, we find that, at the LOOPRIEAD #2 node:

,‘ = A =

)ipHL ip ip<npAnp+1 np/\
Ipe1 = {1p+1, 142, ..y np+1} A
K1 € {1p, 141, 0000)

120

Example 10. The 91 Function.

The program we consider is a derivative of the recursive 91 functionm.
The iterative version we deal with requires most of the graph transfor-
mations deseribed in Chapter 1 and most of the merged information
mechanisms described in Chapter 4 for the successful proof of its
termination.

Ac stated in [Manna et. al. 1972, pp. 32 and 43], the 91 function

is
F(x) <= if x > 100 then x-10 else F(F(x+11)) .

This function returns x-10 if x > 100 and 91 otherwise. The
initial form we use comes from a mechanical transformation of the
recursive definition intv an iterative ome using an explicit stack. The
stack index is k , and the only content of the stack is how many calls
of F are still to be done, s0 k A jtself is used as this counter.

We shall concentrate on proving that the loops in this program
terminate, and shall ignore the other issues, such as overflow. The
reader may wish to convince himself that i does not overflow, and
that k might.

Figure A10.1 gives the initial, user-supplied flow graph. Using
the methods described in Chapter 1, this graph is transformed into the
one in Figure A10.2. The first loop in this graph terminates because
i is monotonically increasing, and hence will eventually exceed 100 .
The figure shows the given information available on initial entrance
to the major loop, LOOP #2.

Using p and q as the iteration subscripts in loops §2 and #5
respectively, we find on the first pass through I100P $2 , that we

enter the LOOPHEAD $#5 node with:

121

Example 10. 91 Function

START

1’k =W

{1:=4-10

Figure A]lO.1. Flow graph of the 91 function before any of the
Chapter 1 graph manipulations have been performed. We will
make the loof E-I-E into an inner loop with exit to F,
then make the loop E-F-G-H-E into an outer loop with

exit to J . We will then permute the nodes of the outer loop
80 that it has a leading exit test.

assert dg

given:
12101 {1:=0+11 |
k:=ktl
given: ;_

i>91 A k>0

assert dp
s.t. k
P

assert 3q
s.t. 1q

Figure A10.2. Structure of the flow graph in Figure A10.1 after
separating the loops and putting them in leading test form. The
loop temination assertions are shown, along with the initial
entry conditions for LOOP #2 .

123

i =1 Ak =kl Ak >0 .

ptl p L p P
The subsequent induction step for LOOP #> is shown in Figure Al0.3.
We then apply our knowledge that

i >i Ak zk-ll\kp>0

Pl = 'p Pl = p

tonodes E and I on a second pass through LOOP 3 , and then exit
to node F , carrying the information:

i >1 Ak 2k -1 Ak >0 A i
- =P P

o 1 > 101

P+l
Passing through node ¥ , we find that:

ptl

11 24,710 A 40 >91 A Kk

ptl Pl P+l
The induction step for the outer loop (LOOP #2) is shown in

>k -1 A k.0
- P p

Figure Al0.h. We discover there that 1 >91 at the ILOOPHEAD $2
node during all iterations of the outer loop. With this tighter
information about 1 , we start a third pass through LOOP 43 by
re-doing the loop induction, as shown in Figure A10.5. We discover
that 1 > 91 at the LOORIEAD #3 node. We combine this information
with the test 1§ > 101 to find that on entry to node I ’

91 <1 <100 A k>0 ,
and hence after node I , that

102 <1 <111 A k>1 .
This tight restriction on i during all but the first iteration of
LOOP ¢3 allows us to elide the test 1 > 101 and in fact get rid of
LOOP $#3 entirely, as shown in Figures A10.6 and Al0.7.

On exit from node I 1in this newly-structured graph, we know

that k > 1, 50 we can merge this with the k >0 on the arc from
E to F to get

k >0 (Refinement)

124

initial
glven: given:
ip+1 =i A iqﬂ_ = 1q+1_1 A
= -1 = +
kpol kp A kq+1 kqll\
X >0 i <100
P q =
syntheiszed
+__given:
1y = {1P, 1541, 1A
kp*l = {kp-l, kp’ kp+1, e} A
k. >1

Figure A10.3. Induction step in IONOP $3 . Since we are within
the first pass through ILOOP #2 , we are developing ranges for
the outer loop induction variables. Since we know nothing at
this point about ip , ve cannot say that 1% Pl <111 inside
IOOP #5 ; even though that is true when coming around the loop,
it may not be true on initial entry.

125

F'

:=1-10

initial
given:
1>91Ak>0

gliven:
>4 -10 A
11 2%

synthesized
given:
1>91 A k>0

k>0

Figure A10.4. 1Induction step in LOOP $2 . The fact that i >91
inside the loop will be crucial in our third-pass procescing of

LOOP 3 .
H
initiel
glven: given:
1>91 A k>0 iq+l=iq+lll\
k =k +1
L B
i1 <100
q -
synthesized
given:

1391 A k>0

1> 101

Figure A10.5. Loop induction for starting the third pass through
LOOP 43 . Now for the first time we know that 1 >91 at the
LOOPHEAD 45 node on all iterations of LOOP #3 .

126

given:

i>9
LOOPHEAD #3
given: '
i>an
i:=3+11 &_given:
Krehtl 102 <i<1l
F - - ‘_L—
i:=i-10§—~—
Figure Al0.6. Elision of the test 1 > 101 along the path E-I-E .

Cince 102 <1 when coming around the loop, the test of 1 > 101
is always true on the second iteration.

given:
i>n
k>0
LOOPHEAD $2
glven:
1>91Ak>0
given: 1:=t+11
101 <1 A k:=lktl
given:
k20 W2 <i<Mlak>1
i:=1-10
exit
Figure A10.7. ©New structure of LOOP $2 after elimination of

LOOP 4> . We now can elide the test of k on the path I -F-G .

127

on exit from node F , the refinement being that on ome path we know
the stronger condition k >1 . We can now attempt to elide the test
at node G , and find the attempt successful along the path I-F-G,
as shown in Figure Al0.8, vhere the node F has been copied. Figure Al0.9
shows the resulting nested loop structure, both of whose loops are easily
seen to terminate.

We have now proved that all tﬁe loops in the iterative program
for the 91 function terminate, by using only mechanical transformations
of the flow graph and some simple theorem proving. The iteretive
program and its mechanical transformation from the recursive form are
due to Donald Knuth, and have the property that if the itera%ive form
terminates, so does the recursive one.

Combining any of the standard proofs of partial correctness of
the 91 function with our proof of termination gives a proof of total
correctness, with the only exposure being that k may overflow (or in
the recursive form, the stack may overflow).

(1 don't know if it is just & fluke that the mechanical test
elision process was able to create an inner loop with k invariant,
but it was certainly quite suspenseful the fMrst time I wvorked all the
way through this example. originally, this was to be my example of

how the thesis techniques could fail to prove loop termination.]

128

given: k >0

given: k >0

given:
k>1

glven:
k>0

exit

Figure Al10.8. Elision of the test k >0 along one path. When the
structurz of this new flow graph is analysed, we will have a new
loop nested inside IOOP ¢2 . We have now made some significant
progress, because k 1s invariant inside this inner loop.

exit

Figure A10.9. Final structure of nested loops §2 and $. We cannot
cambine nodes I-F'-H into a single 1 :=3+1 , unless ve can
prove that no overflows occur. However, we do find the
recurrence relations in LOOP ¢4 :

s= +1 k =k
1er 2= 10" A Egn =Xy

Thus, LOOP #4 terminates because 1 is monotonically increasing.
Since k is invariant in IOOP $4 , we find in the re-analysis
of LOOP §2 that k = k_-1 , and hence that 1OOP §2 teminates

P+l P
because k is monotonically decreasing.

Appendix B. Node Visiting Algorithm from Chapter L.

procedure VISIT (firstnode, lastnode);
for n := firstnode to lestnode do
begin
1) for each i in INCOMINGARCS(n) do
PROVE (GIVEN(1) > ASSERTIONS(1));
2a) if NODE(n) = LOOPHEAD then
begin
GIVEN (EXITARC(n)) := DUMMY BINDINGS V., = Vi3
VISIT (FIRSTNODEINSIDELOOP(n), LASTNODEINSIDELOOP(n));
GIVEN (EXITARC(n)) := INDUCT (GIVEN (INITIALARCS(n)),
GIVEN (LATCHBACKARCS(n)))
end
else begin
2b) if NODE(n) = TEST then
for each i in INCOMINGARCS(n) do
begin
PROVE (GIVEN(i) D TESTEXPRESSION(n));
PROVE (GIVEN(i) O not TESTEXPRESSION(n))
if either is true then
elide the test and re-analyze the graph
end
3) g := MERGE (GIVEN(1i) for each i in INCOMINGARCS(n));
g := MERGE (g, ASSERTTONS(1) for each i in INCOMINGARCS(n));
gprime := REFLECTASSIGRMENTS(g);
if NODE(n) = TEST then
begin
GIVEN (TRUEEXIT(n)) := MERGE (gprime, TESTEXPRESSION(n));
GIVEN (FALSEEXTT(n)) := MERGE (gprime, not TESTEXPRESSION(n))
end
else
GIVEN (EXITARC(n)) := gprime
end

151

Bibliography
page
referenced

{Allen 1970] L, 9
Frances E. Allen, "A Basis for Program Optimization,"

IBM Research Report RC3138, T. J. Watson Research Center,
Yorktown Heights, N. Y., November 1970, pp. 3-6.

{Allen and Cocke 1972] e e e e e 4y, 7, 9
Frances E. Allen and John Cocke, "Graph-Theoretic Constructs
for Program Control Flow Analysis," IBM Research Report RC2923,

T. J. Watson Research Center, Yorktown Heights, K. Y., July 1972,
p. 23ff. .

{Ashcroft and Manna 1972] e e e e e e 7, 25
Edward Ashcroft and Zohar Manna, "The Translation c¢f 'Go To'
Programs to 'While' Programs,”" Information Procescing 71,
North-Holland Publishing Company, 1972, pp. 250-255.

{Brent 1973) 5
Richard P. Brent, "Reducing the Retrieval Time of Scatter
Storage Techniques," C.ACM 16, February 1973, pp. 105-109.

[Burstall 1970] 56
R. M. Burstall, "Formal Description of Program Structure and
Semantics in First Order Logic,"” Machine Intelligence 5,

Edinburgh University Press, 1970, pp. 79-98.

[Clint and Hoare 1972] e e e e e e 56
M. Clint and C. A. R. Hoare, "Program Proving: Jumps and
Functions," Acta Informatica 1, 1972, pp. 21k-22k.

[Cocke and Schwartz 1970) e e e e e . 9
John Cocke and Jacob T. Schwartz, "Programming Languages and
Their Compilers: Preliminary Notes," Courant Institute of
Mathematical Sciencee, New York University, N. Y., April 1970,
pp. Lh2<kél.

[Dahl and Hoare 1972] 59
Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Program
Structure,” in Structured Programming, Academic Press,

Nev York, 1972, pp. 175-220.

132

[Deutsch 1973) .« e+ « 54, 55 86, 66
L. Peter Deutsch, "An Interactive Program Verifier,"
Ph.D. Theeis, Computer Science Department, University of
California Berkeley, June 1973.
[Earpest et al. 1972] 16
C. P. Earnest, K. G. Balke, and J. Anderson, "Analysls of
Graphs by Ordering of Nodes," J.ACM 19, January 1972, pp- 25-42,
[Elspas et al. 1g72a] e e e e e 56
Bernard Elspas, M. W. Green, Karl N. Levitt, and
Richard J. Waldinger, "Research in Interactive Program-Proving
Techniques,” S.R.I., Menlo Park, Calif., May 1972.
(Elspas et al. 19720) 54 56
Bernard Elspas, Karl N. Levitt, Richard J. Waldinger, and
Abraham Waksman, "An Assessment of Techniques for Proving
Program Correctness," Computing Surveys 4, June 1972, pp- g7-147.
[Floyd 196k4] 5
Robert W. Floyd, "Algorithm 245 -- Treesort 3," C.ACM 7,
December 1964, p. 701.
[Floyd 1967 e e e e R i P
Robert W. Floyd, "Assigning Meanings to Programs,"” Proceedings
of a Symposium an Applied Mathematics, American Mathematical
Society 19, 1967, pp. 19-32.
[Floyd and Rivest 1973] e e e e e e 5
Robert W. Floyd and Ronald L. Rivest, "Bounds on the Expected
Time for Median Computation," Combinatorial Algorithms, edited
by Randell Rustin, Algorithms Press, 1973, pp. 69-76.
[Fritech et al. 19731 5
F. N. Fritsch, R. E. Shafer, and W. }. Crovley, "Algoritim LL>
-« Solution of the Transcendental Equation ve' = x "
C.ACM 16, February 1973, pp. 123-12k.
{Gerhart 1972] e e e v e .. Sk 55 60
Susan L. Gerhart, "Verification of APL Programs,” Ph.D. Thesis,
Carnegie-Mellon University, November 1972, 216 pp.

123

[Good 1970]
Donald I. Good, "Toward a Man-Machine System for Proving
Program Correctness,” Ph.D. Thesis, University of Wisconsin.
Also Computation Center Memo TSN-1l, University of Texas,
Austin, Texas, June 1970, 179 pp.

[Good and London 1970]
Donald I. Good and Ralrh L. London, "Computer Interval
Arithmetic: Definition and Proof of Correct Implementatiom,”
J.ACM 17, October 1970, pp. 603-612.

[Hoare 1961]
C. A. R. Hoare, "Algoritmm 65, FIND," C.ACM &, July 1961,
PP 321-322.

[{Hoare 1969]

C. A. R. Hoare, "An Axiomatic Basis for Camputer Programming,”
C.ACM 12, October 1969, pp. 576-580, 583.

{Hoare 1971a]
C. A. R. Hoare, "Proof of a Program: FIND," C.ACM 1k,
January 1971, pp. 39-LS.

[Hoare 1971b] e e e e s e e« .« 5k
C. A. R. Hoare, "Procedures and Parameters: An Axiomatic
Approach," Symposium on Semantics of Algorithmic Languages,
Springer-Verlag, 1971, pp. 102-116.

[Full et al. 1972] e e e e e e
T. E. Hull, W. H. Enright, and A. E. Sedgwick, "The Correctness
of Numerical Algorithms," Proceedings of an ACM Conference on
Proving Assertions About Programs, SIGPLAN Notices, January 1972,
Pp. 66-73. (Also SIGART Notices, January 1972.)

[Igarashi et al. 1973}] e e e e oo
Shigeru Igarashi, Ralph I.. London, and David C. Luckham,
"Automatic Verification of Programs I: A Logical Basis and
Implementation,” Computer Science Department Report CS 365,

AIM 200, Stanford University, May 1973, 55 pp.

13k

59

56

56

56

29

Bibliography

[King 1969) .« .. 3,5, 54 66, 100
James C. King, "A Program Verifier," Ph.D. Thesis, Carnegie-Mellon
University, National Technical Information Service, Springfield,
virginia 22151, #AD 6992k8, September 199, 255 pp.

[Knuth 1973a] 5
Donald E. Knuth, "A Review of 'Structured Programing',"

Computer Scilence Department Report CS371, (Clearinghouse #
FB 223572/A), Stanford University, June 1973, 25 pp-

[xXnuth 1973b) e e e e e e .. 5, 16
Donald E. Knuth, The Art of Computer Programming, Volume 1 -
Fundamental Algoritmms, Addison-Wesley, Reading, Mass., 1973.

[Knuth and Floyd 1971] e e e e e e e s 62
Donald E. Knuth and Robert W. Floyd, "Notes on Avoiding
'Go To' Statements,” Information Processing Letters 1, 1971,
pp. 23-31, 177.

[London 1970a) sk
Ralph L. London, "Bibliography on Proving the Correctness of
Computer Programs," Machine Intelligence 5, Edinburgh University
Press, 1970, pp. 569-580.

[London 1970b]) 3, 5
Ralph L. London, "Certification of Algorithm 2hsiM1}

Treesort 3: Proof of Algorithms -- A New Kind of Certificatiom,”
C.ACM 13, June 1970, pp. 371-373. (Also see [Redish 1971].)

[London 1972] e v e s e s e s - Sh, 56
Ralph L. Londom, "The Current State of Proving Programs
Correct,” Proceedings of ACM National Comferemce 27:1, ACM,

August 1972, pp. 39-ké.

(Malcolm and Palmer 197k] e e e e e e e 59
Michael Malcolm and John Palmer, "A Fast Method for Solving
a Class of Tridiagomnal Linear Systems," C.ACM 17, January 197k,
pp. 1k-17.

{Manna 19€9) e e e e e e 56
Zohar Manns, "The Correctness of Programs,” Journal of Computer
and System Sciences 3, May 1969, pp. 119-127.

135

(Manna et al. 1972] 5, 5k, 56, 66
Zohar Manna, Stephen Ness, and Jean Vuillemin, "Inductive
Methods of Proving Properties of Programs," Proceedings of an
ACM Conference on Proving Assertions About Programs, SIGFLAN
Notices, SIGART Notices, January 1972, pp. 27-50. (Las Cruces,
New Mexico, Conference.)

{Manna and Pnueli 1973)] . eo 56
Zohar Manna and Amir Pnueli, "Axiomatic Approach to Total
Correctness of Programs,'" Camputer Science Department Report
CS 382 (Clearinghouse #AD T67335), Stanford University,

July 1973, 25 pp.

[Naur 1963] 20
Peter Naur (Editor), "Revised Report on the Algorithmic
Language ALGOL 60," C.ACM 6, January 1963, pp. 1-23.

[Redish 1971} e e e e e . e 3
K. A. Redish, "Comment on London's Certification of
Algorithm 245," C.ACM 13, January 1970, pp. 50-51.

[Reingold 1973] e e e e e e e . 5
Edward M. Reingold, "A Nonrecursive List Moving Algoritim, "

C.ACM 16, May 1973, pp. 305-307.

[sites 1972] e e e e e e . 61
Richard L. Sites, "Algol W Reference Manual,"” Computer
Science Department Report CS 230 (Clearinghouse #FB 203601),
Stanford University, February 1972, 1Ll+ pp.

[Sites 197h] .+ 3 5 17, 53, 66, 103
Richard L. Sites, "Some Thoughts on Proving Clean Termination
of Programs,” Computer Science Department Report CS L17,

Stanford University, May 1974, approximately 60 pp.

{smith 1972) 56
J. Meredith Smith, "Proof and Validation of Program Correctness,"
The Computer Journal i5, pp- 130=-131.

[Waldinger and Levitt 1973] .«« . . 55
Richard J. Waldinger and Karl N. Levitt, "Reasoning About

Programs," ACM Symposium on Principles of Programming Languages,
ACM, October 1973, pp. 169-182.

136

A s vEL W LEAY

{Wegbreit 1974) e e e e e e e
Ben Wegbreit, "The Synthesis of Loop Predicates,”" C.ACM 1T,
February 1g97h, pp. 102-112.

[Yohe 1970]
J. M. Yohe, "Best Possible Floating-Point Arithmetic,”

Mathematics Research Center Summary Report No. 1054, University

of Wisconsin, March 1970.

157

56

59

Index

Aliases 45rt, 98ff
Arrays 4, 5, 20, 21, 22, L5, 93ff
Backward Analysis 100
Certification p)
Clean termination 1rt
Correctness 1, 3 5, 56
Correlations between variables 86
Counterexample 5 23, 31
Exit test 13, 24, 25, 26, 91
Forward analysis L, 29, 100, 101
Goal-driven 23, 2k, bh, 52
Goto 62
Halting problem 23, 27, 48, L9
Heuristics

Absolute value 110

Loop induction 59

loop termination 85

Merging given info 43, 59, 101

Permuting loops 13, 122

Pushing back assertions 31, 99
Interval Analysis 7, 95 12, 14
Language design 60

tchback arc 9
Leading tests 7, 13, 26, 27
Lemma formation W3frf, 101ff, 112
Lexicographic order 4, 29, 38
List processing 5, 38, 39, L9, 57, 58, 59
loop exit arc 9
Loop induction 29, 3ure, W8fL
Machine model 18
Memory bound 20
Merging given info 33, horr
Monotonic expression L, 2k, 27, 49, 110, 121

t;
(@]

Keated loops 30, lohfe

Node splitting 7, 9, 1, 29, 33, 34, 10ff
Ooptimizing compllers 61
Partial correctness 3, 83
Procedure calls 4 5, 7, 21, 20
Pushing back assertions 21, 31, 81
Recurrence relations 29, 35, 49
Recursion 4, 8, 20, 59
Refinement 29, 32, 33, 37, Wiff, 90, 110f¢
safety 62
Search loops 5 27, 51ff, 79ff
Small machines 2,3
Subscript bounds 20, 21, 22, 95ff
Termination, Proof of 3, 23£f, 56, 10L
Test elision L, 25, 29, 30, 3k, 37ff

creating new inner loop 38, 39, 129

creating new parallel loop 113, 11k

deleting inner loop 127
Time bound 20
Total correctness 56, 58, 90
Notation
® End of chapter summary. vi
) Undefined value. 17, 19
Inin Smallest representable

integer. 17, 18
Imax Largest representable
integer. 17, 18

~€ Non-empty initial subset
of an ordered get. 30, 52, 78, 95

139

