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CONCEPTUAL MEMORY 

ABSTRACT 

Humans perform vast quantities of spontaneous, subconscious computation in order to 

understand even the simplest natural language utterances. The computation is principally 

meaning-based, with syntax and traditional semantics playing insignificant roles. This thesis 

supports this conjecture by synthesis of a theory and computer program which account for many 

aspects of language behavior in humans. It is a theory of language and memory. 

Since the theory and program deal with language in the domain of conceptual meaning, they 

are independent of language form and of any specific language. Input to the memory has the 

form of analyzed conceptual dependency graphs which represent the underlying meaning of 

language utterances. Output from the memory is also in the form of meaning graphs which have 

been produced by the active (inferential) memory processes which dissect, transform, extend and 

. recombine the input graphs in ways which are dependent upon the meaning context in which 

they were perceived. 

A memory formalism for the computer model is first developed as a basis for examining the 

inferential processes by which comprehension Occurs. Then, the notion of inference space is 

presented, and sixteen classes of conceptual inference and their implementation in the 

computer model are examined, emphasizing the contribution of each class to the total problem of 

understanding. Among the sixteen inference classes are: causative/resultative inferences (those 

which explain and predict cause and effect relationships relative to the memory's model of the 

world), motivational inferences (those which infer the probable intentions of actors), enabling 

inferences (those which predictively fill out the circumstances which were likely to have obtained 

at the time of an action), action prediction inferences (those which make guesses about what a 

person might be expected to do in some situation), knowledge propagation inferences (those 

which predict what knowledge is available to a person, based on what the memory already 

knows or can infer he knows), normative inferences (those which assess the "normality" of a 

given piece of information), and state duration inferences (those which predict the probable 

duration of specific states in the world). All inferences are probabilistic, and "backup" is 

deemphasized as a programming tool. 



The idea of points of contact of information structures in inference space is explored. A 

point of contact occurs when an inferred unit of meaning from one starting point within one 

utterance's meaning graph either confirms (matches) or contradicts an inferred unit of meaning 

from another point within the graph, or from within the graph of another utterance. The quantity 

and quality of points of contact serve as the primary definition of understanding, since such 

po.ints provide an effective measure of the memory's ability to relate and fill in information. 

Inter actions between the inference processes and (1) word sense promotion (how meaning 

context influences the language analyzer's choice of lexical senses of words during the pars.;), 

and (2) the processes of reference (how memory pointers to tokens of real world entiti~s are 

established) are examined. In particular, an important inference-reference "relaxation cycle" is 

identified and solved. 

The theory forms a basis for a computationally effective and comprehensive theory of 

language understanding by conceptual inference. Numerous computer examples are included to 

illustrate key points. Most issues are approached from both psychological and computational 

points of view, and the thesis is intended to be comprehensible to people with a limited 

background in computers and symbolic computation. 

(Thesis committee: Profs. Roger Schank (advisor), Ken Colby, and Jerry Feldman, Computer 

Science Dept., Stanford University) 
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"I KNOW YOU BELIEVE YOU UNDERSTAND WHAT YOU THINK I SAID, BUT 
AM NOT SURE YOU REALIZE THAT WHAT YOU HEARD IS NOT WHAT 
MEANT." 

part 
t3 < t2 < tl LTM ~----- YOU 

I 
oJ, 

MLOC 
/ \ 0 

c, t1 1----+ III < ... "'> SPEAK +---- "W" 
YOU <===:> MBUILD +----1 III I 

/ \ I +---- X +-----+ I II t1 I I 
III III I 
III t2 \ / oJ, 0 
I I I I <=E=====> MTRANS +---- X 
III t1 t 
I I I t2 10 1----+ 
I I I< •••••••••••••• ··E.E~> MLOC 1 ___ 1 part 
I I Itt 1+---- CP +------
\ / I I par t 
MLOC I L TM +------

t I 
I par t & 

LTM ~----- YOU I part 
I LTM +------

YOU I I 
/\ t1 ,j, ,j, 

tl I I < ••••••••• ~5.> MLOC 
\/ 

MBUILO 0 
t I <--=> SPEAK <--- "W" 
I I \ 

------- t3 0 III 
t I <===> CONC +---------- III 
I I I \ III 

~ I I I YOU <===> MTRANS +---- Z 
Y .. Z +------t III t t par t 
t III I 10 1---+ CP +------ YOU 
I t2 0 II I_I 
I I < ••• > SPEAK +0--- "W" I 1+---
+ I 
t2 0 I 0 

YOU <---:> MTRANS +---- Y YOU < ••• > LISTEN-TO +---- "Z" 
t t part 
I 10 1----+ CP +------ YOU 

II I_I 
I 1+----
I 

t2 0 
YOU < ••• > LISTEN-TO+---- "W" 

If you are baffled by this modest conceptual graph, read on, 
read on. But do not despair ... for now there is a computer 
program which is also baffled by it! 
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1.1 

CHAPTER 1 

INTRODUCTION 

ESSENCE 

This thesis describes a computer program which exhibits a primitive capacity to think. 

The basic unit of input to the program is the conceptual graph. A conceptual graph is a 

cluster of computer symbols linked together in structured patterns to represent the thoughts 

underlying natural language sentences. The natures of the symbols and connecting links allow the 

graph to capture the underlying meaning of the sentence in a way which is not dependent upon 

the way the thought was phrased in language, or even upon which language was used to 

communicate it. The program is therefore designed to function in a pure meaning environment. It 

assumes the existence of two other programs: a conceptual analyzer [R2], which can transform 

sentences of a language into these language-free conceptual patterns, and a conceptual 

generator [Gl], which can transform conceptual patterns into sentences of a language. 80th 

these programs interact with the memory during their tasks. Although both companion programs 

must deal with the specifics of a particular language, all inter-program communication occurs 

through meaning patterns. 

The program has one central reflex response, conceptual inference, which is activated by 

incoming conceptual patterns. From each pattern, this reflex generates many new, meaning­

related patterns which represent predictions about facets of the larger situation of which the 

input pattern might have been a part. That is, the program assumes that what it perceives is 

always only a very small part of a much larger pattern, and it is motivated to discover as much 

of the larger pattern as possible, and to relate what it discovers to other patterns it already 

knows. To determine points at which one pattern jOins with another pattern is its single most 

important goal. 

As subgoals of this task, the program tries to determine why actions were performed, what 

an action might have caused, what must have been true in order for the action to have occurred 

in the first place. If a person is in state X, what might he desire as a result of being in that state? 



If a person desires Y, what might he do to achieve Y? The program will make predictions about 

what is likely to happen next, and can rea~ize when its predictions match subsequent incoming 

patterns. It makes assumptions about what other people know, based on what it already knows 

they know. It can detect when one pattern of meaning conflicts with another one, and it can 

combine similar patterns which have come from two different sources. By combining them, it 

opens new pathways between other information patterns. If there are gaps in the incoming 

meaning patterns, it tries to fill them in. Based on the larger patterns in which they occur, it can 

make decisions about who and what the smaller patterns are referencing, even though these 

things might be undecidable from examining the smaller patterns separately. 

The program can get along with less than perfect data. When it cannot locate information it 

needs, it can make assumptions about that information, based on patterns of what is normal and 

expectable. It can guess how long certain states and actions in the world last, and use those 

guesses in its predictions. It is sensitive to time factors in all patterns. 

Taken all together, the processes in the program define a theory of understanding which is 

related to language, yet independent from it. This theory will be called Conceptual Memory. 

1.2 CHALLENGE 

In recent years, the stored-program computer has posed some of the greatest challenges 

ever to man's ingenuity to synthesize and analyze. One such challenge is to discover a starting 

combination of ones and zeroes in a computer's memory, and a set of stored programs which 

manipulate them, which will allow the computer to use and comprehend natural language in the 

same way humans do. 

I have therefore posed the following general question as the starting point for this 

research: 

What does the brain of a human language user do with the 
information communicated to it via natural language? How can a 
computer be made to do the same things? 
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1.3 PERSPECTIVE 

Most of us take for granted our ability to use and understand the language of our culture. 

Because of this, it is quite natural to assume that language comes equally readily to computers. 

This assumption was eagerly made by natural language researchers in the early 50's. But their 

enthusiasm was quickly dampened: their efforts were stymied on two fronts. 

First, computer hardware was in its infancy. It was so new, slow and unpredictable in fact, 

that even if someone had discovered some computationally effective general principle of 

language and intelligence, he might never have had the opportunity to confirm it! Also, there was 

a certain diverting fascination with getting anything to work on the new equipment. This 

instilled a kind of euphoria known only to those who have written a computer program and 

watched it automatically carry out their own thoughts right in front of their eyes. Perhaps 

because of this it was thought that the main step had been taken in just getting the computer to 

do something -- that the rest would follow easily. That proved to be incorrect. 

Second, even though the field of Linguistics had been around for quite some time, when 

researchers attempted to encode language in the ones and zeroes of the hulking watt-eaters, a 

new crop of problems -- a new level of unanticipated detail and intricacy -- arose. For the first 

time, everything had to be made totally explicit. Whereas corners could easily be cut in a "paper" 

theory of language in order to get at some of the deeper issues, in a computationally effective 

theory, the burden of proof ultimately rests upon the computer's performance. Any cut corners 

were reflected, to the chagrin of many a researcher, as direct idiocy in his mechanical prodigy. 

And it was more than engineering details; it was an absence of theory. In short, it was quickly 

discovered how little was actually known about language. 

At the crest of this first wave of excitement was the vision of automatic machine translation 

of one language into another. It initially looked as though translation could be achieved by 

extremely simple and local transformations on words. Because of this, most of the main issues 

which came into focus were related to the maintenance and use of dictionaries in the computer: 

storing words and word senses, organizing large vocabularies, devising faster and faster lookup 

techniques, cross-referencing entries (synonymy, antonymy), and so on. Just off the main stream 

of automatic translation were endeavors in word frequency analysis, automatic keyword 
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compilation, and the like. It was the era of a new form of computation: symbolic transformation 

and manipulation of natural language vocabulary words. 

Notably missing in these first efforts were any serious attempts to revamp and incorporate 

traditional ideas about grammar and syntax. Then in the 60's, perhaps revitalized by Noam 

Chomsky's new approach to syntax which appeared in 1957, the field experienced a rush on 

syntax. It was the next logical step to take, and interest in it was all the more heightened and 

sustained by the emerging need for more sophisticated artificial (programming) languages. The 

new issues became those of how to represent a grammar as precise syntactic structures within a 

computer, how to make them flexible and extendable, and above all, how to use them to analyze 

(parse) sentences of the language into syntactic structures. This latter issue gave rise to 

innumerable theories of syntax, and to theories of how best to parse. Better and better 

syntactic analyzers were written, and a precious wealth of discovery was made. But computers 

still could not understand language, even though they could now babble prolifically in 

meaningless -- but grammatically impeccable -- sentences, and could chastise with flashing lights 

and ringing bells all those who spoke to them ungrammatically. Basically, researchers had beaten 

the dead horse, and he still would not rise. 

Relative to the goal of getting a computer to understand natural language, the shortcomings 

of syntactic parsing were threefold. First, it was far too precise: although it would work in the 

laboratory on carefully selected sentences, the smallest deviation (something a human would 

scarcely notice) from what the grammar prescribed would invariably cause the system to fail. 

Second -- and it is surprising that so many researchers deluded themselves so long on this -­

correct syntactic analysis is inseparable from the individual meanings of each word in the 

language. To classify one word as a noun, another as a verb, indeed led to a parse capability, but 

the parse which resulted was at best just an analysis of form rather than meaning. At its worst, 

the parse was even an incorrect analysis of form, because of "peculiar meanings" of certain 

words. Third, and most important, even if a correct syntactic analysis could be guaranteed, what 

was it good for, relative to understanding? It is not at all taxing to find very ordinary sentences 

whose syntactic form is not of much use in predicting their meaning: 
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ohn's refrigerator was running. 
ohn's horse was running. 
ohn's candidate was running. 
ohn's nylon shirt was running. 

John's specialty was running. 
John's nose was running. 

(concentrate on the picture each elicits in each case). Because of this, and because the goal of 

syntactic parsing was to render an analysis ofIorm, understandably little thought was given to 

this question of the utility of syntactic analysis to understanding. It finally came to be generally 

accepted that, no matter how clever one was, syntax was simply the wrong way to begin an 

understanding system. 

Researchers had at that point come to grips with one of the key realizations about 

language: that syntax and meaning are thoroughly intertwined, and that syntax -- regardless of 

how elaborate a role it plays -- should serve only as a means to an end: to discover the 

underlying meaning of each sentence. This realization marked the beginning of the third 

generation of language researchers, the "good guys". The new issues became how to represent 

meaning (Schank [S4] was among the first good guys here), and how to be diplomatic and 

charitable in the merger of syntax and semantics in the programs designed to extract meaning 

from sentences (Winograd [W5] was among the first here). At last, the veneer of pure syntax 

was being sanded away, and the underlying issues of language and cognition were beginning to 

be recognized as one and the same. 

In 1971 Terry Winograd's Procedures as a Representation for Data in a Computer Program 

for Understanding Natural Language served to coalesce and further this undercurrent which 

had been around for several years prior to his program. Winograd showed how syntax, 

semantics, and a model of the world all fit together in a way which permitted a computer to 

converse with a human in a limited domain, and to perform simple manipulations of the world 

model. The system exhibited a noteworthy use of information from all three levels -- syntax, 

meaning, world model -- in its task. 

The broad significance of Winograd's program was in the way i.t arrived at the underlying 

meaning of each sentence. It was chiefly a theory of .how knowledge from several independent 

sources can be applied to predict meaning from form. Less attention was paid to the problem of 
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what to do with the meaning once it had been obtained. (In particular, the goals were to answer 

questions about the model, to manipulate the model, and to explain and justify its actions in this 

regard). In this theory of Conceptual Memory, the emphasis is reversed: I have been less 

interested in how the underlying meaning of each sentence is extracted, and mOre interested in 

the problem of what to do with the meaning after it has been extracted. I am interested in the 

effects of each sentence's underlying meaning within a memory: how the information in each 

sentence logically flows through various cognitive processes, and how it interacts with the 

meanings of other sentences and with a model of the world. In short, how does the content of 

language utterances interface with our ability to think? 

1.4 GENERAL GOALS 

What does a person do with the information content of natural language, anyway? -- what 

does it mean to understand, beyond the stage of syntactic or even meaning analysis of 

sentences? These are tough questions -- things we cannot answer by direct analysis of our 

brains because they concern abstractions whose relation to the brain's physical properties are 

extremely complex. One of the goals has been just to identify some of the questions! 

We can all explain the how and why of our ability to comprehend language on a case-by­

case basis: "Oh yes, I understood that because I knew that ..... , or "You must be talking about 

John, because ...... Because of this, everything I will discuss is "what everyone already knows 

anyway" -- to study language is to study everything, because everything can be described and 

assigned meaning by language; it is the most powerful means of representing knowledge that 

exists. Language and knowledge simply cannot be separated. In this sense, any theory developed 

will address issues which are second nature to us all. Unlike a theory of high-energy physics, it 

will be a "theory of the familiar." 

But I am not interested per se in the case-by-case analyses at which we are all so facile. 

Rather, the real challenge lies in discovering -- either by synthesis of an artificial system, or by 

analysis of a natural one -- the underlying logical (as opposed to physical) organization which 

accounts for in this case-by-case ability to comprehend. The moment one makes a conjecture 

about the nature of the underlying organization, the character of the theory abruptly changes 

from familiar to esoteric: although we are certain of why we concluded X in situation Y, we can 
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only guess at the general mechanism in our brain which underlied the ability to conclude X in 

situation Y, W in a similar situation Z, and so on. It is both difficult to discover these general 

mechanisms by introspection, and difficult to comprehend their scope once they have been 

discovered. 

The general goal of this theory is to make many guesses about underlying higher-level 

logical functions of the brain, to synthesize them into a unified theory of understanding, then to 

implement them in computationally effective algorithms which can be carried out by a computer 

program. 

The goal is to develop a computationally effective model of the 
logical flow of information in the brain of a natural language 
user. This model should predict and explain the ways in which 
information communicated to him by language is dissected, 
transformed, rearranged. extended, and recombined in novel 
patterns which are influenced by the situation in which he 
perceives that information. 

I will not be concerned so much with a model of the physics of the brain -- neurons, 

charges, electrical wavefronts, and the like, or with a model of the physical organization of the 

brain -- short term memory, long term memory, engrams, recall, forgetting, and the like -- as 

with the abstract flow of information and with the information structures which must exist to 

realize aspects of the processing. 

1.5 TENETS 

I want to ask questions about some of the deeper cognitive processes in humans. One tenet 

is that these processes are independent from language and culture. It is of course important to 

distinguish the processes from the data the processes manipulate. The data will obviously be 

highly language and culture-specific. 

In order to deal at this language and culture-free level, (a) there must exist an effective 

method of representing information in a form which is language- and culture-free, and (b) care 

must be taken that the processes defined and synthesized are truly language- and culture-free: 

any process must be able to function entirely in this pure meaning environment which is 

buffered from language form, and independent of specific knowledge. 
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To illustrate what it means to buffer the memory processes from the form of the language 

from which they derive their data, return to the examples of "running". All of these have the 

same syntactic form, which might be analyzed as follows in a phrase-structure grammar: 

<sentence> 

~ ----<noun phrase> <verb phrase> 

/ ~ /' ~ 
<modifier> <noun> <prog> <verb> 

I I 
JOHN'S X WAS RUNNING 

However, each has a thoroughly different underlying meaning -- each produces a completely 

different picture when we hear it. To capture the meaning is, in a sense, to represent the 

structure of the picture. If we view language this way, these sentences about running come out 

as follows: 

John's refrigerator was running. an appliance was functioning normally 

John's horse was running. an animal was propelling itself rapidly by moving its legs 

John's candidate was running. another person who lies in an unspecified relation to 
John was performing actions intended to result in his attaining some office 

John's nylon shirt was running. an article of clothing was falling apart 

John's specialty was running. ,John's ability to propel himself rapidly by moving his 
legs was more highly developed than most of ~is other athletic abilities 

John's nose was running. fluid was being unintentionally expelled from a body organ 

And not only can similar language forms convey completely different meanings, completely 

different forms can communicate similar meanings. Instead of saying John's specialty was running, 

we might say "John was a specialist at running." The comprehender gets the same message from 

both. And this phenomenon is limited only by our ability to obfuscate and distort the issue in 

tedious language forms: 

1. Indeed, the quantity of faith held by myself in 
the structural integrity of my' motorcycle is as 
abundant as the number of 'I'''s in that honorable 
southern state in which my great Aunt Jessica was 
conceived. 

2. I trust my bike. 
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So I assume that what the memory receives as input is as independent from language as the 

state of the art of language analysis will allow. There will of course be much interaction 

between a good analyzer and the memory which I will not cover. These assumptions afford a 

starting point from which to examine some language-related cognitive processes independently 

of any particular language. We will also examine, to a lesser extent, how these processes relate 

(in language-free ways) back to the processes which perform meaning analyses of sentences in a 

language. 

1.6 SPECIFIC GOALS 

The use of language presupposes that both speaker and comprehender have access to 

roughly the same storehouse of knowledge. There must be some common frame of reference. 

Because of this, no language utterance is ever any more than a very lean allusion to the very 

rich situation it describes. My specific goal has been to identify how a person who hears a lean 

utterance expands it in his mind into the rich underlying circumstances surrounding it, and then 

how he discovers how aspects in this expanded situation relate to aspects of other expanded 

situations. To discover these interrelationships between the situation described by one utterance 

and the situation described by another utterance will serve as my general definition of 

comprehension. 

The specific goal is to identify classes of conceptual inferences which contribute to this 

automatic expansion. Sub-goals are to define memory structures which are the medium for these 

expansions, and to determine how information gets into these structures so that expansion can 

occur. Also, I want to examine how memory structures knit together when regions of one larger 

pattern abut with those of another. 

To do these things, the memory will be making guesses about things of which it isn't certain, 

modeling other people's knowledge, making predictions about people's motivations and possible 

future actions, guessing how long certain situations in the world last, imagining what must have 

been true for someone to perform an action he is said to have performed, making guesses about 

missing information, inferring what caused what and why, predicting who is being talked about if 

it could be more than one person, and so on. 
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In addition to conceptual inferences and their control structure in the program, problems of 

reference, and an important reference-inference relaxation cycle will be identified and solved. 

1.6.1 THEMES 

The following unordered list of themes is presented here as a montage of what is to come. 

It is intended only to communicate the general flavor of the research by keywords. 

Inference molecules and spontaneous expansion in inference space 

The inference evaluator. confirmation. contradiction. and structure merging 

Knowledge propagation inferences. motivational inferences. action 

prediction inferences 

Occurrence sets. conceptual bonds. reasons and offspring 

Implicit concept and token activation. word sense promotions 

The Conceptual Dependency representation formalism 

Internalization. identification and extraction of subpropositions for 

inference 

Causative and resultative inferences. and causal chain expansion 

Descriptive sets and identification of referents 

Enablement inferences. function inferences. intervention inferences and 

enablement prediction inferences 

Time atoms. fuzzy durations. state duration inferences. and time 

maintenance 

Assumptions about normality in the world. normality molecules and 

normative inferences 

Inference multiplexing by theoretical type 

Feature inferences. situation inferences. utterance·intention inferences 

Reference·inference relaxation processing 

Specifier molecules. and the filling.in of missing conceptual information 
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1.7 THE PROGRAM AND SOME ASSUMPTIONS IT MAKES 

The program which implements this theory of Conceptual Memory is called MEMORY. It is 

written in the programming language MLlSP, which was developed by David Smith [S 13] at the 

Stanford Artificial Intelligence Laboratory for the PDPI0 computer. The program occupies 

approximately 50,000 36-bit computer words when it is run with its starting data file of world 

knowledge (approximately 300 memory structures and 50-60 program modules which contain 

specific world knowledge in program form). It assumes the existence of two other programs 

which implement a theory of conceptual analysis and a theory of conceptual generation. The 

three programs, when run together, occupy approximately 90,000 36-bit computer words. 

1.7.1 THE CONCEPTUAL ANALYZER, BRIEFLY 

The conceptual analyzer (for English) was designed and is under current development by 

Chris Riesbeck [R2]. It relies as much as possible upon meaning. Syntax, where essential, is 

incorporated in the same feature / request control structure as all other information about words 

and their meanings. Because of this emphasis on meaning, the input language string need not be 

syntactically well-formed; the only requirement is that it be conceptually meaningful. 

"Feature / request" means the following: each new word which is encountered in the 

analyzer's left-right scan of the utterance is treated as a unit of meaning which exerts an 

influence in two ways. First, it can contribute its conceptual features to a queue. Second, it can 

cause requests -- skeleton conceptual graphs which underlie the word -- to be set up. Requests 

represent the active, goal-directed processes which attempt to combine the features on the 

queue. At any given time, each unfilled slot in a request constitutes a goal to be satisfied. In this 

sense, the analysis can be called top-down. But since the requests are initiated in the first place 

by the words of the sentence, the process can also be called bottom-up. 

The dictionary entries for word senses which reference simple concepts, like John, cake, 

bicycle are simple sets of conceptual features which characterize the concept. For words which 

are underlied by entire complex structures (most verbs, for instance), the dictionary entries are 

the skeleton conceptual templates which become the requests during the parse. The dictionary 

currently consists of 300-400 words, of which perhaps 100 are verbs. 
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In chapter 3, we will see the computer form of a conceptual graph which is the output from 

the analyzer, and the input to MEMORY. 

1.7.2 THE CONCEPTUAL GENERATOR, BRIEFL V 

The conceptual generator (also for English) was designed and is under current development 

by Neil. Goldman [G1]. It is logically a two-step process. The first step carries a deep conceptual 

graph into a semantic network of English words. The second step carries this network into a 

grammatical English string by means of an Augmented Finite State Transition Network approach 

described by Simmons [511]. The program which implements the second step is in fact an 

adaptation and extension of Simmon's program. 

In order to construct the net, the generator examines the conceptual graph's general 

structure, and on this basis selects One of 20-30 binary discrimination nets. The conceptual 

graph is then filtered through this net, which performs tests, lying in three general categories, 

on the graph's structure and contents. Tests in the first category inquire about the identity and 

conceptual features of objects in the graph. Tests in the second category ask whether an entire 

substructure could be expressed by some particular language construction. The third category 

involves general queries to the memory to ascertain time relations, and the existence of 

particular contexts which would allow the generator to select more compact or appropriate 

words than would be possible outside that context. 

At the terminal nodes of the network are lexical verb senses with which are associated case 

frameworks. The filtering process therefore serves to select the central verb for the main graph, 

and nested subgraphs. A case framework specifies what cases are required for the verb, where 

they may be found in the conceptual graph, and what the correspondence between the verb's 

conceptual and syntactic cases is. This correspondence is then used to construct the semantic 

net. 

1.7.3 WHERE THE MEMORV FITS, ALL THINGS CONSIDERED 

The following block diagram is intended to help put the memory in perspective, as a 

component of a larger picture. 
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A o 
---+ ~---------LANGUAGE ---+ ANAL MEMORY 
---+ ~--------- iiiiE=5zaiESI1i> 

B C 

HIGHER LEVEL GOALS 
(MODEL OF CONVERSATION, ETC.) 

A -- analyzed conceptual graphs which the analyzer "hears" 

B -- answers to analyzer-initiated questions such as: 

"Who is this John I'm hearing about likely to be, 
and does he have an unusual occupation?" 

GEN 

"Clarify the relationship underlying 'John's yard'" 
"Is there an animate concept which the word 'dog' could reference?" 
"What is the most likely meaning of 'bank' in the current context?" 

C -- memory structures to be expressed in language 

D -- answers to generator-initiated questions such as: 

"Was time C0082 before time C1178?" 
"Could John's doing X cause Mary harm?", 

E -- goal-specific directions and queries to memory such as: 

"We might have a guilt pattern emerging; 
start emphasizing John Smith's reasons for acting." 

"Could John's saying X to Bill have hurt Bill' feelings?" 
"Believe what John says implicitly." 

F -- suggestions and tips about interesting events in the memory such as: 

---+ 
---+ LANGUAGE 
---+ 

"What Bill just said to Mary probably hurt her feelings. Want to intervene?" 
"John has done several things which might indicate he no longer loves Rita. 

Call up a special program to analyze further." 
"Bill might be getting ready to go to the store. 

Want to ask him to get anything?" 
"I've inferred that Mary wants the chair moved; want to respond?" 

Figure I-I. The inevitable block diagram. 

. .' :' : ", . ; :;:. . , 

The nature of the information which flows over paths E and F is merely conjecture. 
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Furthermore, as chapters 5 and 6 will illustrate, there is anything but a well-defined boundary 

between the memory and "higher level" and goal-oriented processes, such as dialog and 

bargaining models, or the model which might drive an information-seeking robot. The existence 

of the "higher-level-goal" box in Fig. 1-1 serves only to emphasize that the processing I will 

propose is not all-emcompassing, and that any specific application of my theory must be driven 

by a set of goals which function "on top of" (or, more precisely, "within") the memory. 

We will be exploring the "lower-upper class" of cognition. 

1.7.4 OVERVIEW OF THE PROGRAM'S OPERATION 

To give you a large-scale idea of things, I will describe here the overall behavior of the 

program as it runs in response to one utterance. 

The language anaiyzer (Riesbeck [R2]) is requested by MEMORY to "listen" for an utterance 

(it does not have to be either complete or syntactically correct) to be typed at its keyboard. An 

example of an utterance is: 

(MARY KISSED JOHN BECAUSE HE HIT BILL) 

When an utterance is sensed, it is analyzed by the conceptual analyzer into a conceptual 

graph which is the meaning representation for that utterance (don't analyze it yet, just enjoy): 

o 
JOHN <===> PROPEL ~--- X? 

/ \ l' 
I~I--~ BILL 

~-- JOHN 

val 
X? <aBE> PHYSCONT ~---- BILL 

14 

MARY <===> DO 
/ \ 

val 
LIPS <ee5> PHYSCONT ~---- JOHN 

l' I part 

MAAY 
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During and after the construction of the meaning graph, all references in the graph to 

objects and concepts in the world are established as best as possible by the memory. This 

process will, for instance, replace the symbol "JOHN" with a pointer to an entity in the memory 

which represents some particular John, about whom much may be known. Also, as this 

referencing occurs, the graph is dissected into its components and these components are linked 

in to the memory's network of other knowledge. Interesting facets of the graph are identified, 

and become the starting points for expanding (by making conceptual inferences) the situation to 

which the utterance alludes. 

Next, MEMORY assumes that the thought was communicated for a reason, and that it conveys 

interesting information which it does not directly contain, and which depends on the context in 

which the utterance has occurred. It begins generating conceptual inferences as a routine 

response in order to see how the information conveyed by the utterance relates to other 

knowledge in its memory. This is spontaneous -- a reaction to each new input, rather than upon 

external demand; in a sense, then, the memory generates its own goals. 

As each new inference is generated, an evaluation function is applied to it. The evaluator 

attempts to relate the new inference to existing knowledge in the hope of discovering interesting 

relations with other information structures in the memory. One important result of this is the 

merging of two structures into one, thereby establishing a new pathway between previously 

unrelated information. 

After interesting interactions of the new conceptual inferences from each utterance have 

been discovered, the memory makes numerous responses. This theory does not extend into the 

domain of deciding what is appropriate' to say. MEMORY therefore proposes everything of 

interest which results from the utterance, f?rming a list of conceptual graphs to be expressed by 

the conceptual generator. 

The generator (Goldman [G1]) is capable of transforming a meaning graph into natural 

language utterances in some target language. In this process, MEMORY is consulted often to 

determine if suitable conceptual information exists to allow the use of a particular word of the 

language to express some part of the meaning graph, and to assist the generator in constructing 

the appropriate tense framework from conceptual time structures in the memory. 
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The memory is therefore not yet a conversationalist: what you get by running the program 

is a rambling, stream-of-consciousness monologue. The analyzer and generator with which it 

works both are designed for English. 

1.7.5 COMPUTATIONAL ISSUES 

The current program simulates several dozen rather involved processes. When it is turned 

loose in full gear, it requires annoying amounts of computer time (5 minutes is typical) for 

responses to each utterance. This is partly because of blatant programming inefficiencies; but it 

is mostly because of the theory. Thus, the memory has rarely been run in "all-at-once" mode. 

Instead, features can be turned on and off for purposes of demonstrating their effectiveness, and 

how they interrelate. I am convinced that all processes are consistent, cooperative, and 

coordinatable, even though the all-at-once mode more often than not blows up because of one or 

more program bugs! To find one can take the better part of a day, and I have not recently had 

the luxury of such quantities of time. 

These things neither disappoint nor discourage me. If they disappoint you, consider what we 

are trying to model: a highly parallel associative network of billions of active nodes, where each 

node itself might realize a function which would take many seconds to model on today's 

computers! 

If we can identify what is useful, and sketch out how to do it, we can then worry about 

time, parallelism, and programming oversights. We must pass our theories through finer and finer 

sieves. While the boulders still intimidate us, we must preserve our sanity by this attitude long 

enough to get to the sand! (Whew!) 

1 .7.6 EXAMPLES 

The following examples are actual computer output, and illustrate th current level of the 

program's ability. By "actual computer output" I mean that the memory can accept and generate 

the underlying meaning graphs associated with each example (and others which follow similar 

patterns). Since the conceptual analyzer and generator were developed independently, they had 

slightly different vocabularies and abilities. In cases where they were not adequate, I have 
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doctored the input and output. That is, sometimes I gave the memory a hand-analyzed meaning 

graph which would normally be constructed from an English utterance by the analyzer, and 

somEtimes I either expressed by hand the meaning graphs which were produced by the memory, 

or touched up the generator's output. 

Also, as will be seen in chapters 5 and 6, the memory will generally produce many more 

responses than would normally be seen externally if a more sophisticated model of conversation 

were coordinating things. This abundance of potential responses is a crucial aspect of the 

theory; but until there is a model of conversation, it means that I have to select the responses 

for illustration manually. 

(SIMPLE EXPANSION BY INFERENCE) 

INPUT: John told Mary that Bill wants a book. 

RESPONSES: John believes that Bill wants a book. 
Mary now knows that Bill wants a book. 
Bill wants a book. 
Bill wants to come to possess a book. 
Bill probably wants to read a book. 
Bill might want to know the concepts contained 

in the book. 
A book about what? 
Bill might get himself a book. 
John might give Bill a book. 
Mary might give Bill a book. 
John may want Mary to give Bill a book. 
John and Mary may have been together recently. 

(DIALOGUE) 

(STORY) 

INPUT: John went to the drugstore. 
RESPONSE: What did he want to buy? 
INPUT: He wants some aspirin. 
RESPONSE: Is he sick? 
INPUT: No. His wife is sick. 
RESPONSE: I thought John was single. Oh, wait a minute. 

You must mean John Smith, not John Jones. 

INPUT: John hit Mary. 
INPUT: Mary's mother took Mary to the hospital. 
INPUT: Mary's mother called John's mother. 
INPUT: John'S mother spanked John. 

INPUT: Why did John's mother spank John? 
RESPONSE: Because she was angry at him. 
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She was angry at him because he hit Mary. 

INPUT: Why did Mary go to the hospital? 
RESPONSE: Because she was hurt. 

John hit her. 

INPUT: Why did John hit Mary? 
RESPONSE: He was probably mad at her because 

she did something to him. 

(REFERENCE-INFERENCE INTERACTION) 

(a) INPUT: John was mad at Bill. 
He kicked him. 

(b) 

INPUT: 
INPUT: Who kicked who? 

RESPONSE: John kicked Bill. 

INPUT: 
INPUT: 
INPUT: 

Andy Rieger is a baby. 
Andy Jones is an adult. 
Andy's diaper is wet. 

INPUT: Whose diaper is wet? 
RESPONSE: Andy Rieger's diaper is wet. 

(FEA TURE. NORMATIVE, AND ENABLING INFERENCES) 

(a) INPUT: Phighdough barked at a policeman. 

INPUT: What is Phighdough? 
RESPONSE: Phighdough is probably a dog. 

(b) INPUT: Mary was sunbathing yesterday. 

INPUT: Where was Mary yesterday. 
RESPONSE: Mary was probably at the beach yesterday. 

(c) INPUT: I saw John yesterday. 
RESPONSE: I thought John was in France. 

(CONTRADICTION DETECTION) 

INPUT: John said he kiJled himself. 
RESPONSE: Dead people can't talk. 

(INFERENCE USING NORMALITY INFORMATION) 

INPUT: Does Mary own a book? 
RESPONSE: Probably, people normally own books. 

(CONTEXT EFFECTS ON INTERPRETATION) 
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(a) 

(b) 

INPUT: 
INPUT: 
INPUT: 

Mary was feeling extremely despondant. 
John saw she had a knife. 
He asked her for the knife. 

INPUT: Why did John want the knife? 
RESPONSE: Probably so Mary can't use it to hurt herself. 

INPUT: 
INPUT: 

Johl1 wanted to eat a steak. 
John asked Mary for the knife. 

INPUT: Why did John want the knife. 
RESPONSE: He probably wants to cut the steak with it. 

(c) INPUT: John was furious at Bi1l. 
INPUT: John asked Mary for a knife. 

INPUT: Why did John want the knife? 
RESPONSE: Perhaps to hurt Bill. 

(CAUSAL CHAIN EXPANSION) 

INPUT: Bill took Mary's book away from her. 
INPUT: Mary kissed John because he hit Bill. 

RESPONSE: John hit Bill. 
This caused Bill to become hurt. 
This caused Mary to be pleased because she felt 

a negative emotion toward Bill at the time. 
Mary's pleasure was caused by John's action. 
This caused Mary to feel a positive emotion 

toward John. 
This caused Mary to kiss John. 

1.7.7 ABOUT THE COMPUTER EXAMPLES 

I have tried to illustrate by computer example many of the theoretical points The examples 

were generated over a period of several months as the program was still developing (as I hope it 

will continue to develop). For this reason, you may notice differences in trace format, or in small 

details of the processing from example to example. Also, it more often than not happened that, to 

illustrate one smaller point, it was necessary to shut off other features of the system which 

were not relevant to the demonstration, or to edit their traces out of the example after it had 

been generated. This was the only space-wise practical thing to do, but it makes it hard to 

absorb the gestalt of the system's operation. I have made efforts not to isolate anyone example 

too severely from the rest of the system. 
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All examples are unretouched computer trace output, modulo shuffling the output around so 

that it would fit readably in the left column of the page. I have tried to indicate by ellipses those 

points at which trace output was edited out, but make no claims as to the thoroughness of this 

convention. The documentation in the right column was added by hand after the tracing. 

1.8 WHAT THIS IS: COMMENTS 

Part of the task in synthesizing a theory of cognition and language is to define problems 

whose solution will be theoretically meaningful. This is not the case in many other language­

related endeavors. For example, the problem of transforming (parsing) sentences of a particular 

language into some underlying structure is "well-defined" in the sense that at least the general 

goal can be concisely described. The inverse process of transforming underlying structures into 

acceptable language strings is a similarly well-defined task. Indeed, there are many ill-defined 

subgoals in the solution of such problems, and the problems are no less difficult because there is 

a general goal. Nevertheless, the goal provides a standard by which the relative success of the 

solution can be measured, and it is fairly straightforward to realize failures and deficiencies, 

pinpoint their cause, then patch them up or extend the deficient processes. 

There is no one identifiable goal for a language-independent model of cognition. What does 

it mean "to understand", and how do we know when we have a program which does it? How do 

we know when to be happy and when to be disappointed with our understanding program's 

behavior. What do we do to make it better when we're disappointed? This thesis is the result of 

asking these sorts of questions. 

I have COme to believe that all research involving language and human memory must of 

necessity lie on the "lunatic fringe" of many established disciplines: linguistics, computer science, 

cognitive psychology, and philosophy foremost among them. And each issue in a comprehensive 

theory of language and intelligence will require justification, or at least reconciliation, with the 

existing, generally insightful dogma of each discipline. 

If we look far enough back, there seems to be no aspect of language or intelligence which 

has not been explored or pondered at some time or another by more capable men than ourselves 

-- experts in their fields. But their discoveries and insights are only the pieces of the puzzle 

which must be fit together. 
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Today's ideas about language and intelligence must be measured 
by how we)) they re-partition. connect and extend things which 
have been known a long time. 

And they must do so at a very explicit level so that a computer can learn them. 

So in this thesis I have tried to identify and coordinate many ideas about language and 

intelligence in a computationally effective way. I do not pretend to be a master of any of the 

four areas above; I do claim to be a craftsman with some fresh ideas about what underlies 

language, and how to put it into a computer. To cover anyone of the issues I have chosen to 

address in the thoroughness any particular discipline would demand would subvert my immediate 

goals. We can sweep up the shop later. Let's build something first! 

1.9 RELA TED WORK 

In writing this thesis, my goal was to start out fresh, developing a theory of language 

understanding as I saw it, and Conceptual Memory is the result. The research here has by no 

means been conducted in a vacuum. One is influenced in many subtle and not so subtle ways by 

reading the literature of his field, and this certainly applies to me as much as to anyone. In 

particular, I am indebted to the following people: Roger Schank [54,55], Terry Winograd [W5], 

Ross Quillian [Q2], Gordon Bower [B4,A5], John Anderson [A5J, Ken Colby [C3], David Rumelhart 

[R4], Peter Lindsay [R3J, Don Norman [N5,R3], Robert Abelson [Al], Joe Becker [Bl], L. A. Zadeh 

[21], Yorick Wilks [W3], and (to a lesser degree since much of my research occurred concurrently 

with his), Eugene Charniak [Cl]. The works of each of these people stand out in my mind as 

important influences on my thinking. 

However, the issues with which we are all dealing are so broad, and the goals so ill-defined 

at this stage, that there is little ground for direct comparison of what I have done with what they 

have done. In my view, this thesis represents a new approach to language processing and 

understanding. Thus, rather than review individual works, I will assume the reader has a 

"cultural" knowledge of previous work in the field of language understanding by computer. Those 

completely unfamiliar with the field are directed to the reference list at the end of the thesis. I 

believe, however, that most will find the thesis fairly well self-contained. 
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1.10 READING THIS MONSTER 

This thesis is longer than I wanted it to be. In many places it is overwritten, and there is for 

the most part too much cross-referencing. For these things, I apologize. In retrospect, I suppose 

they happened because of my enthusiasm for discovering and demonstrating how one process 

interrelated to all the rest. As I discovered something, it tended to become immortalized far too 

quickly in writing, and this made for a non-compact expression of the ideas. And perhaps I tried 

to point out too many relationships which are either too obvious, or too obscure, to make them 

worthwhile. Therefore, as you read things for the first time, you are likely to be better off 

simply ignoring all cross-references. If you stick it out, the story unfolds in my conception of a 

logical order. 

You can read at several levels of generality. If you have a couple of hours and just want to 

develop a general feeling for what I'm getting at, look in the table of contents and read those 

sections marked with two asterisks. If you want to absorb enough to argue with my ideas, read 

everything with one or two asterisks. If you are a masochist, read it all. My advisors and I did, 

and it didn't kill us. 

Chapters 5 and 6 are important -- they are the heart of the thesis -- but they are long and 

tiring to read if you try to take them all at once. My suggestion is to read sections 5.1 - 5.3, look 

at the brief description of the classes of conceptual inference given in section 5.3, them jump 

right into the One which looks most interesting. Because they were basically written 

independently over a period of time (and not in the order presented), they should perhaps be 

read with with the same abandonment of organization. Don't forget to read chapter 8; it ties 

many ideas together. 

The chapters are broken down as follows! 

Chapter 1, Introduction 

Chapter 2, Representation: The Approach to Meaning The representation of meaning is 

discussed. The chapter is mainly an overview of Schank et al.'s theory of Conceptual 

Dependency, which is the theoretical formalism which allows us to get at issues of 

meaning comprehension. 

Chapter 3, Representation: The Conceptual Memory Another level of representation issues 

22 



arises when the relatively passive meaning graphs described in Chapter 2 must 

represented in the more active networks .of "conceptual memory. The data structures 

which represent concepts, tokens, actions, states, times, strengths of belief, and so forth 

are developed. 

Chapter 4, Getting Conceptual Graphs into the Memory: Reference, Word Sense 

Promotion, Internalization The processing which transforms the meaning graphs given 

the memory by the language analyzer into structures in the memory network is 

described. This includes how tokens of things in the world are identified from their 

language references, how the memory might interact with the language analyzer 

(affecting how it perceives incoming language), and how memory structures representing 

the information in an utterance come into existence. This chapter leads up to the point of 

conceptual inference. 

Chapters 5, 6: Conceptual Inferencing: A Subconscious Stratum of Cognition These two 

chapters present the core of this theory of language comprehension. The notions of 

conceptual inferences and a multi-dimensional inference space are presented. 16 classes 

of inference are described. How they fit into the theory and how they have been 

implemented in the program are described. 

Chapter 7, The Inference Control Structure, The Structure Merger, and Other Aspects of 

the Program The program processes which coordinate the functioning of the variOUS 

kinds of conceptual inferences are described. How the program relates newly-inferred 

information to existing information, and what it does when relations are discovered, are 

described. 

Chapter 8, Inferences Applied to Reference Establishment and Time Relations How the 

program realizes a very important theoretical interaction between the processes which 

identify tokens from language descriptions and the processes which generate new 

information from old by conceptual inferences is described. This chapter ties together 

many of the ideas of the previous chapters. 

Chapter 9, Conclusions, Future Work 
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CHAPTER 2 

REPRESENT A TION: THE APPROACH TO MEANING 

This theory of conceptual memory involves information representation issues at four distinct 

levels: a theory and formalism for representing the meaning content of a natural language 

utterance in context, and a theory and formalism for representing (and processing) information in 

a conceptual memory. These four levels are highly interrelated. This chapter and the next 

describe and relate them. 

2.1 CONCERNING REPRESENTATIONAL FORMALISMS 

Many of the ideas of conceptual processing to be presented in chapters 4-8, particularly 

those of chapters 5 and 6 concerning inference, can be viewed, at some level of abstraction, as 

existing independently from any particular scheme for representing knowledge. That is, much of 

this theory of conceptual memory describes and predicts the flow of information -- what needs 

to be done, and when -- and the reasons for this flow independently from details of substance 

and form of the information itself. Since they could exist independently from an effective 

formalism (one for which there is hope of implementation On a computer), we might call these 

ideas about memory and reasoning "meta" ideas. They will map out the crucial features of the 

theory. However, the realization of those features is left to a particular formalism which 

implements the theory, and the interaction between theory and formalism can be crucial: the 

formalism can determine the "tone" of the theory and influence its substance by uncovering new 

problems as it solves the ones already prescribed by the theory. Casting the ideas of the 

theory in an explicit formalism also helps delimit what is and is not possible, and what is and is 

not desirable in the theory. 

Examples of these platitudes occurred frequently during the evolution of the memory. 

Looking back, it is difficult to sort out and reconstruct the subtle interplay between ideas and 

implementation. One good example concerns the development of function inferences (section 6.1). 

There, we will see a point at which the theory prescribes selecting between two alternate 

courses based on a very ephemeral test: "is there some unusual relation between person X and 

physical object Y?" Framing this question in the formalism of a particular theory forces us to 
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address the question: "what are effective test procedures which will discover such a relation?" 

The solution of this problem in the memory formalism pointed out a fairly general, effective 

notion of what it means for a relation to be "unusual", and this augments the theory of 

conceptual memory by uncovering a set of more specific and effective tests. These tests, now 

part of the theory, have become generalizable to other formalisms. 

The moral is that, although a theory and a representational formalism can exist 

independently, their relationship can and should be a developmentally symbiotic one. 

2.2 CONCEPTUAL DEPENDENCY: AN OVERVIEW 

The representational theory and formalism adopted for this theory of conceptual memory is 

called Conceptual Dependency. Conceptual Dependency (CD), developed by Roger Schank et al. 

[S4,S6,S7,S8,G2], is a theory for representing the underlying meaning of natural language 

utterances, and is based upon two general precepts: 

1. It is independent from language form; utterances in two languages which 
communicate the same tliought are represented by the same structure in CD. 
Likewise, within a given language, utterances which communicate the same 
thought are represented by a unique meaning structure (a graph) in CD, 
regardless of differences in their form (what particular words and syntax were 
used). 

2. It is a reductionist theory. It defines a small set of primitives, which, connected in 
various graph configurations by a small set of links, have the potential for 
representing any thought a human might have or communicate. The notions of 
actions, states and causality constitute the central core of CD's expressive power. 
The primitives and links are intended to bear psychological reality, and the intent 
of the theory is to extract the meaning content of utterances in the same ways 
and to the same units as we might expect humans do. There are many possibilities 
for experimental verification of the individual primitives and links, and of the 
theory in general. 

The description of CD which follows is a description of that theory as it has been adapted 

and extended for the purposes of this thesis. There are no large differences between the goals 

and premises of "standard" Conceptual Dependency and those about to be described. Many of 

the variances concern small issues and the rest are extensions or elaborations of the basic 

theory. [S4,S6] give an overview of the "standard" theory. 

.', 
The description will not cover the processes by which a language is effectively mapped 

onto this formalism. There is a computer program which can analyze English sentences at the 
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level of complexity of most of the examples I will use. The theory of analysis and a description of 

this program can be found in [R2]. 

Conceptual Dependency consists of six components: a set of action primitives, a set of 

primitive states, a number of psychological and physical scales, an open-ended set of primitive 

concepts, a set of conceptual links, and a set of rules which specify the well-formedness of 

combinations these entities. Rather than state the rules formally, I will instead develop an 

intuitive feeling for the well-formedness of combinations of the other five types of objects. A 

well-formed combination of these objects is called a conceptual graph. 

2.2.1 ACTION PRIMITIVES 

The memory uses 11 action primitives (ACTs). What is an action primitive, and where do 

they come from? The ACTs arose by collective introspection, with an eye kept to (1) their 

psychological reality, (2) their descriptive efficacy in the conceptual domain, and (3) their 

viability as the atomic units for effective computer procedures. Never in the development of the 

primitives, was one of these three considerations allowed to overshadow the others completely. 

In addition, since the goal was to be able to represent a broad spectrum of common daily 

discourse -- to talk about people, what they do and talk about daily -- rather than some esoteric 

or more technical discipline, the primitive ACTs are actions that people do. In fact, one of the 

rules of primitive ACTs is that only humans (or their personification by machines and natural 

forces) can serve as actors. Books don't "fly" across rooms; they are propelled by a person, 

machine or natural force. 

2.2.1.1 CONCEPTUAL CASES 

Each ACT governs a conceptual case framework, which consists of from 2 to 4 nuclear cases 

and several incidental cases. A conceptual case may be thought of as a slot, a placeholder, into 

which some concept or other conceptual graph fits. All conceptual cases, whether nuclear or 

incidental, are obligatory; that is, a conceptual graph involving an ACT is not well-formed unless 

the contents of all its slots have been filled as well as possible. This frequently amounts to filling 

some cases with "dummies" because, at the'time the conceptual graph is constructed, the identity 

of a case filler may be unknown and not predictable. Specifying such "missing cases" as best it 
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can in the contextual environment in which it occurs is one task of a conceptual memory. 

Although I will frequently write conceptual actions without specifying all the cases, this is for 

convenience only. 

Nuclear and incidental cases are distinguished on the basis of their "intimacy" with the ACT 

which governs them. Cases without which the ACT could not exist even as an abstracted or 

idealized event in the world are nuclear. For instance, the ACT GRASP simply cannot stand for an 

event without its nuclear ACTOR and OBJECT cases. Someone must grasp something. The ACT, 

together with its nuclear cases, is in some sense that which is "imagine able in the mind's eye" 

independently from its other features of time, location, instrumentality, and so on, even though 

we know that for a real action to exist, it must also have these attributes. These attributes which 

are nonessential to the "inherent mechanics" of the ACT are the incidental cases. It should be 

emphasized that the term "incidental" does not imply that these cases bear only incidental 

significance in subsequent analysis by the memory. We will see in fact that the inforrr.;:ion 

communicated by incidental cases is sometimes more significant than the nuclear ... ,cion itself. 

This distinction between nuclear and incidental cases is not made ir 'standard" CD. However 

it is quite useful here, since it bears directly on the data structur-:-s which store actions in the 

memory. Fig. 2-1 defines the conceptual cases and indicate~ their CD graph notation. In the table, 

"A" stands for an ACT, "X" indicates where the case filler is attached. Case links are members of 

the larger set of dependency links, soon to be described. 
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NAME SYMBOL DESCRIPTION 

The "main link", denoting the actor-
ACTOR X <===> A relation. The actor case fi I ler must be 

animate. 

0 The conceptual object of an action. All 
OBJECT A ~---- X primitive ACTs except MBUILD govern a 

conceptual object. 

RI--~ Xt The donor (Xf) and recipient (Xt) of an 
RECIPIENT A ~-- action involving the abstract transfer 
( to-from) ~-- Xf of an ent i ty. 

DI--~ Xt The beginning (Xf) and end (X t) points 
DIRECTIVE A ~-- of an action which changes an entity's 
{ to-from} ~-- Xf mental or physical location. 

I The action (X) by which another act i on 
INSTRUMENT A ~---- X (A) occurs. X further specifies A, and 

must always be an action. 

X AI I time aspects (X) are noted above the 
TIME <===> A main actor-action I ink. Section 2.2.18 

describes the various aspects in CD. 

L The phys i ca I I oca t i on 0 f an ac t i on. 
LOCATION A ~--- X Any physical object can be a location 

in this context. 

Figure 2·1. The conceptual cases. 

2.2.1.2 SCOPE OF THE ACTION PRIMITIVES 

Before describing the ACTs, a short aside is in order. The action primitives about to be 

described are not intended to account for all of language. This does not mean that, when 

pressed, an expert could not render some approximation to just about anything by using only 

these action primitives; judging from experience, he probably could. But that is not the issue. 

The real issue concerns not the primitives themselves, but rather what they mean to the system, 

how they are combined, and what they predict and explain concerning language processing in 

humans. We must again take care to distinguish the specifics of the CD formalism from its theory. 
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The choice of particular action primitives and their resulting descriptive potential constitute the 

formalism. Their adequacy, saliency, or even correctness is always subject to question; hence, 

they are always subject to revision. This is not disturbing, since the real substance of the theory 

as an approach to language understanding transcends the particular choices of primitives, and, 

although there has certainly been the same kind of developmental relation between the formalism 

and theory of CD as between the formalism and theory of memory, the particulars of the 

formalism, as with the memory, are malleable. 

This is merely a caveat, not an- apology for the specific primitives posited by CD theory. In 

fact, after a while, one gains an intuitive feeling of their adequacy, correctness and tremendous 

descriptive power in the domain of humans' day to day interactions and discourse. This domain is 

small enough to explore in depth and work with; yet it is large enough to be interesting, because 

it touches most of the real issues of language. These primitives constitute a powerful core from 

which we might expand. 

2.2.2 THE PRIMITIVE ACTS 

In this description of the 11 primitive ACTs, the following "typed" objects will be used: 

P a person (something capable of acting, possibly personified) 
CON any non-atomic conceptual graph (a complete conceptual ization, 

as opposed to a simple concept) 
X a physical object (a person can be a physical object) 
L a location (any person or physical object can be a location) 
M a "mental" location (explained later) 
B a bodypart 

(?) will denote that, although the case is present, its content is unknown; (??) will denote a query. 

[ach ACT will be defined by (a) describing in English its conceptual meaning, (b) specifying 

its "skeleton" conceptual template of nuclear cases, and (c) illustrating a typical usage. Recall that 

the incidental cases exist for every ACT; they are simply not shown here. Although the 

representation of time will ~e described later, we will need the symbol for "past time" in some of 

the following examples. This is simply a lip" situated over the actor-action main dependency link. 
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ATRANS 
o 

P <---> ATRANS ~--- X 
t 

I~I--'" P 
~-- P 

The "abstract" transfer of possession of an object 
from one p,erson to another. This ACT accounts for 
verbs of '.giving" and "taking", and underlies 
al I verbs which have as a feature this abstract 
notion of change of possession. It is important to 
note that ATRANS generally leads by inference to 
a change of possession, but this change is not 
properly a part of the ACT itself (eg. "John gave 
Marya book, but she refused it.") 

EXAMPLE: "John gave Marya book." 
p 0 

JOHN <=z=> ATRANS ~--- BOOK 
t 

PTRANS 
o 

P <._c> PTRANS .... --- X 
t 

I~I--'" L 
.... -- L 

I~I--'" MARY 
.... -- JOHN 

The "physical" transfer of an object from one 
location in space to another. PTRANS under I ies 
verbs of "~oing" (the object is a person)~ "handing" 
or "moving (an object), etc. Although PTNANS and 
ATRANS are inde~endent, PTRANS is frequently the 
instrumental ACT for an ATRANS. Notice PTRANS 
governs the directive case, whereas ATRANS governs 
the recipient case. Just as with ATRANS, PTRANS 
does not guarantee that X ends up at the location 
specified in the directive case (e~. "John went to 
the store, but he got sidetracked. l. That X ends up 
at the location toward which the PTRANS occurred is, 
however, a highly probable inference. 

EXAMPLE: "John went to the store" 
p 0 

JOHN <---> PTRANS ~--- JOHN 
l' 

I~I--'" STORE 
<---,L(?) 
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MTRANS 
o 

P <===> MTRANS ~--- CON 
l' 

I~I--~ M 
~-- M 

The movement of "mental".objects from one "mental 
location" to another. MTRANS underl ies many verbs 
of thought (cognitive functions) and communication. 
Examples of verbs whose central idea is MTRANS are: 
"tel/", "remember", "recal/", etc. MTRANS actions 
involving more than one person frequently have 
SPEAK as the instrumental ACT. MTRANS actions which 
involve only mental locations within one individual 
have no instrumental ity in Conceptual Dependency. 
Although the ACT of MTRANSing does strongly imply 
that the mental object starts existing in the mental 
location to which the transfer occurs, the ACT 
of MTRANSing does not guarantee this in itself 
("John told Mary he was going to the store, but she 
wasn't listening.") 

EXAMPLE: "John told Pete he went to the store." 

MBUILD 

--~ CON 
R 

P <===> MBUILD ~--
~-- CON 

~-- CON 

p 0 
JOHN <_.a> MTRANS ~--- C 

l' par t 

1
0 I--~ CP ~----- PETE 
_ part 

~-- CP ~----- JOHN 

(where C is the graph in the PTRANS example 
and CP is a person's "conscious processor") 

The synthesis of a new mental object from one or 
more old ones. This ACT underl ies many verbs of 
thinkin~, problem-solving, deciding, reasoning, etc. 
The recipient case symbolizes that the new CON (the 
topmost one) "receives" its existence from the CONs 
represented beneath it. These are the thoughts which 
played a part in the synthesis, and are frequently 
unspecified by language and not surmiseable. 
Although MBUILD instrumental ity is ~eneral Iy 
uninteresting in the CD framework, It is always 
either a CONe or some form of MTRANS, usua I I y to P's 
CP (conscious processor). 

EXAMPLE: "How did Mary figure out that John went to the store?" 

p R I--~ C MARY <===> MBUILO ~--
~-- CON (71) 

(where C is the graph in the PTRANS example) 
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CONC 

o 
P <===> CONC ~--- CON 

The "conceptualizing" of ,a mental object. CONC 
indicates that CON is the focus of the active 
thou~ht process in P, and under I ies verbs I ike 
"notice" "be conscious of", "be aware of", 
"realizer" etc. it is distinguished theoretically 
from CON simpl~ having mental location 
CP in that it Impl ies the spontaneous existence 
of CON in P's conscious processor; whereas MLOC(CP) 
impl ies that an MTRANS caused CON s existence in 
P's conscious processor (hence that CON did not 
arise spontaneously). 

EXAMPLE: "8i I I was aware of John's going to the store." 

ATTEND 

o 
P <===> ATTEND ~--- S 

p 0 
BILL <E==> CONC ~--- C 

(where C is the graph in the PTRANS example) 

The "attending" of a person to one of his sense 
organs. ATTEND under I ies verbs of perceiving, 
sensing, etc., and normally does not stand alone, 
but rather is the instrumental ACT by which a CONC 
occurs. The sense organs are: EYE (look at), EAR 
(listen to), NOSE (smel I), SKIN (feel), TONGUE 
(taste), and are implicitly part of P. 

EXAMPLE: "John saw Mary giving Bi I I a coat." 

p 0 
JOHN <===> CONC ~--- C 

l' 

I I 
p 0 

JOHN <:::c=-=> ATTEND ~--- EYE 

(where C is the graph for Mary ATRANSing a 
coat from herse I f to B i 1,1) 
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SPEAK 

o 
P <===> SPEAK ~--- U 

The uttering of sounds. W is the sound string 
(word sequence). SPEAK under I ies verbs of speaking, 
saying, conversing, yel I ing, etc., and rarely stands 
alone. Instead, it is normally the instrumental ACT 
for an MTRANS between P and another individual. 

EXAMPLE: "John ve~bal Iy informed Bi I I of his departure." 

INGEST 
o 

P <===> INGEST (---- X 
l' 

I~I---+ B 
(--- B 

JOHN <===> 

part 
~-----

part 
~-----

SPEAK (---- U{?) 

BILL 

JOHN 

(where C is JOHN's PTRANSing from wherever 
he and Bi I I are to somewhere else, and 
where it can be predicted that U is 
something I ike "I am going", or "Bye") 

The act of moving an object, X, into or out of an 
internal bodypart. INGEST is distinguished from 
forms of PTRANS because the movement is effected by 
natural and internal bodi Iy functions rather than by 
explicit "external" actions in the world. INGEST 
underlies a very diverse class of verbs, examples of 
which are: "breathe", "eat", "cry", "sweat", 
"swallow", "belch", etc. The directionality of the 
ACT determines whether the action is inherently an 
"ingest", "expel" or internal movement of an object 
or fluid. BodYBarts commonly referenced by INGEsT 
are STOMACH, LNG, MOUTH, NOSE, EYE. 

EXAMPLE: "John expectorated on the sidewalk." 

p 0 
JOHN <=-=> INGEST (---- FLUID 

l' 
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PROPEL 

o 
P <=s=> PROPEL +---- X 

l' 

I~I--'" L 
+--- L 

The appl ication of a mechanical force (in a 
certain direction) to an object. This ACT under I ies 
verbs of throwing, hitting, pushing, pull ing, etc. 
The instrumental action for PROPEL Is either another 
PROPEL, a MOVE or a GRASP-MOVE-UNGRASP 

EXAMPLE: "John pushed the box into the bathroom." 

MOVE 

o 
P <=z=> MOVE +---- B 

t 

I~I--'" L 
+--- L 

p 0 
JOHN <=EC> PROPEL ... --- BOX 

l' 
I~I--'" BATHROOM 

+--- L{?) 

The movement of a bodypart. As with INGEST, this 
ACT is distinguished from forms of PTRANS because 
it arises from an internal body capabi I ity and 
has no causal involvement with the outside world. 
MOVE is typically found as the instrumental action 
for PTRANS and PROPEL, and is essential to verbs 
such as "hand to", "touch", "kick", "nod", etc. 
It has no instrumental case for the purposes of CD 
analysis. 

EXAMPLE: "John punted the footbal I." 

GRASP 

o 
P <~-.> GRASP +---- X 

p 0 
JOHN <===> PROPEL f---- FOOTBALL 

t t 

I~I:~: 
U?) 

I part 
FOOT 4------ JOHN 

p 0 
JOHN <:'111=> MOVE +---- FOOT 

t 
I~I--'" FOOTBALL 

4--- U?) 

The grasping of an object by the hand. GRASP 
underlies verbs such as "pick up", "clutch", "grab", 
"let go of", and frequently appears as an 
instrumental action (ih conjunction with MOVE) of 
PROPEL. The action of ungrasping is a GRASP which 
ceases. 

EXAMPLE: "John let go of the apple." 

tf=p 0 
JOHN < .... > GRASP 4---- APPLE 
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2.2.2.1 THE DUMMY DO 

In addition to these 11 specific actions, CD utilizes a "dummy" action to stand for some 

unknown action, that is, an action which must must exist, but whose exact nature is not explicit. 

This place-holder is denoted "DO", and takes only an actor: 

EXAMPLE: "John caused Mary to leave the party." 

JOHN 

MARY 

P 
<===> 00 

/ \ 

III 
p o 

PTRANS +---- MARY 
l' 

I~I--" U?) 
+--- PARTY 

(the triple-barred arrow between the dummy DO and the PTRANS being the CD causal link, to be 

explained shortly). 

In the memory, actions are stored by structures of the forms 

(ACT ACTOR OBJECT) 
(ACT ACTOR OBJECT FROM TO) 

2.2.3 PICTURE PRODUCERS 

In this description of the primitive ACTs, I have made implicit use of all sorts of entities in 

the world: JOHN, BOOK, STORE, FLUID, etc. These are clearly representatives of an open-ended 

set of real world ideas and concepts. Since, when we hear the name of one we are immediately 

able to conjure up an "abstract" or "idealized" image, objects in this open-ended set are called 

picture producers (PP's) in CD terminology. PPs bear a close correspondence with dictionary 

lUord senses, in that two vastly different concepts may happen to have the same name in a 

language. Where there is ambiguity, we should technically write PP's with a subscript to clarify 

which "picture" we are trying to elicit by the word. 

One other point deserves mention here. For the purposes of CD representation, it is 
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adequate and desirable to stop at the "picture" stage. That is, if conceptual representation were 

the final goal, it would suffice to represent, say, the concept "John" as the PP "JOHNl" (a male 

human whose name is John), without knowing which John in the real world is the target of the 

reference. However, this determination of real references is a very important task for a 

conceptual memory, and can sometimes be crucial to a conceptual analyzer's ability to construct 

the best possible conceptual graph in context. (For example, "John's pitch was foul" should come 

out one way if the analyzer knows the John being referenced is a roofer, whereas a completely 

different conceptual graph should result if John is a door-to-door salesman!) This task of 

determining the referent of PPs in context is discussed principally in chapters 4 and 8. 

2.2.4 MENT AL LOCATIONS 

Certain of the primitive ACTs and states make reference to "mental locations". CD's 

expressive power regarding verbs of thought and communication is couched (together with the 

primitive mental ACTs) upon three abstract mental locations in humans: the "conscious processor" 

(CP), "immediate memory" (1M), and "long-term memory" (L TM). In addition, any information­

bearing entitity may be personified as a mental location. (This includes books, computers, meters, 

etc. Thus, for instance, to read a book, one MTRANSes the information whose mental location is 

the book to his CP.) 

The notions of CP, 1M and LTM drag along with them such an entourage of psychological 

overtones that I will not attempt to justify them as psychological realities. In fact, this is not 

their purpose in CO; in CD they exist simply as intuitive abstractions which provide expressive 

power and latitude when used with the primitive mental actions. The CP is where ideation takes 

place-- the focus of thought, the locale of one's conscious awareness. 1M is what "surrounds" the 

CP, representing knowledge which has recently been active or which has been associatively 

"drawn in to peripheral consciousness" by the activity in the CPo (Section 4.3 will suggest how an 

effective definition of this idea can be framed.) The L TM is the inactive storehouse of knowledge 

which may be drawn into the CP or 1M. By convention, existence of a conceptualization in L TM 

means that that conceptualization is believed; existence in the CP implies that the 

conceptualization is being "thought about". 

The following two examples suggest the potential expressiveness of these mental 

abstractions: 
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"John can't remember," 

(John is unable to transfer 
something

j 
C, from his LTM 

to his CP 

"John bel ieves that Bi II has a ball." 

~c 0 
JOHN <===> MTRANS ~--- C(?) 

BALL 
/ \ 

l' par t 

1
0 I--~ CP ~----- JOHN _ part 

~-- LTM ~----- JOHN 

III <En> MLOC 
\ / 
POSS 

val 
~----

part 
LTM ~----- JOHN 

l' 

Ivai 

B LL 

(where the two-headed, three-barred arrow is the attributive link, about to be described). 

2.2.5 STATES AND ATTRIBUTION 

In opening, I mentioned that the three notions most fundamental to the Conceptual 

Dependency theory are actions, states and causality. The primitive ACTs have been discussed, 

and the CD notion of causality will be e)(amined shortly. We are interested here in the notions of 

states, st atechanges and statechange scales. 

A state (sometimes called an attribution or conceptual feature, depending on what is being 

focused upon) is represented in CD by the attributive link, <eee>. The interpretation of X <el!!l!!> 

Y is that "X has the property, or is in the state of Y". Since states frequently are relations 

involving at least two PPs, the conceptual value link, 

val 
X <5E5> P ~---- Y 

frequently occurs to denote the "value" of X along the "dimension" P -- X's value with respect to 

relation P. For instance, to represent "John has a red book" (or "A red book is possessed by 

John"), we write 
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val 
BOOK <EIi=> POSS ~---- JOHN 

t 

1 val 
BOOK <!!!!:> COLOR ~---- RED 

that is, "a book (such that the book has color, and that color is red) is possessed by someone, 

and that someone is John". (The two-headed, single-barred arrow is the "REL" link, defined in 

section 2.2.7.1.) To say that John is at the store, we write 

val 
JOHN <Eli:> LOC ~---- STORE 

and to say that John is depressed, we write 

val 
JOHN <.liE> JOY ~---- -N 

which is "John is at some negative value on his JOY scale". To say that John is angry at Mary, 

guilty with respect to Bill, we write 

val 
JOHN <5EE> MFEEL ~---- ANGER 

t 
I~I---+ MARY 

~-- JOHN 

val 
JOHN <555> MFEEL ~---- GUILT 

t 

I~I---+ BILL 
~-- JOHN 

respectively. That is, "John is feeling an emotion, this emotion is (anger/guilt), and it is directed 

toward (Mary/Bill)." The recipient link is the same one used as a case for ATRANS, but here it is 

not properly called a case. The last two examples relate to emotional scales which will be 

described shortly. 

These few examples characterize the notions of states and attributions in CD. Although the 

number of states required to describe the world is quite large, the following handful of state 

predicates listed below (in their memory format) are, empirically, the workhorses of CD. This list 

does not include scale-related states, since these are discussed in the next section. 
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(WANT P X) 
(POSS X P) 
(LOC X U 
H"lLOC X U 
(MFEEL PI E P2) 
(BE X) 
(J NVOLV X V) 

some state, statechange or act i on, X, is des i red by P 
an object, X, is in the possession of person P 
an object, X, has some physical location, L 
a conceptual ization, X, has some mental location, L 
PI feels emotion, E, toward P2 
an object exists in the world 
concept X is involved in some way in conceptual ization Y 

It should be pointed out that the use of the state predicate WANT represents a deviation 

from "standard" CD theory. In CD, "P wants X" is represented by a structure of the form lip 

believes that X's occurrence or existence would cause P to increase in joy." Since, as we will 

see, the notion of WANT is so fundamental to conceptual memory processes, this state has been 

made primitive. For communication with the language analyzer and generator (which use the 

strict CD pattern), the memory intercepts and re-synthesizes this WANT pattern at the interfaces 

with these programs. 

Time and duration are obligatorily associated with all states, although these associations are 

not called cases, since this term refers to actions. Locations are never associated directly with 

states; in order to express a thought such as "John was sick in Peoria", we write the state of 

being sick with starting and ending times t 1 and t2, such that the interval t I-t2 overlaps with the 

interval during which John was located in Peoria. That is, what this really means is "John was 

sick while he was in Peoria": one state (sickness) existed during the time of another state's 

(location) existence. Although it is possible to represent the location of actions in the same way, 

it is more convenient to use the notion of a location case for actions. (Since actions can usually 

be viewed as instantaneous, there are no ambiguous overlappings of intervals.) 

2.2.6 STATE SCALES AND STATECHANGES 

Some actions in the world cause new, discrete states to come into existence; an example of 

this is the new location achieved by an object which has been PTRANSed away from its former 

location. These are the states I have just discussed. However, there are many other states which 

are in some sense continuous. Two examples of reference to continuous states are seen in the 

sentences: 

1. Bob heated the stick by putting it into the fire. 

2. Mary cheered John up. 

39 



(1) involves the notion of statechange along the temperature continuum, or scale, (2) along a 

psychological continuum, the "joy" scale. In CD, such a change along a continuous state scale is 

denoted by the statechange link, which relates a PP, X, to values on the scale, S: 

1

--.. Vt 
X <iI .. , S 

+--- Vf 
(STATECHANGE X S Vf Vt) 

In the memory this construction is represented by the STATECHANGE predicate illustrated to the 

right. By use of this conceptual link, and the notion of state scales, the two sentences above can 

be represented, respectively, by the graphs: 

BOB 
P 

<===> 
/ \ 

o 
PTRANS +---- STICK 

l' 
I~I---+ FIRE 

+--- L<?) 

p 1-------+ X+d STICK <5-=-=- TEMP 
+------- X 

MARY 

and 

JOHN 

respectively. (Again, the single-headed, triple-barred link denotes the CD causal relation -­

section 2.2.8). 

The interrelationship between pOints on psychological and physical scales and statechanges 

along those scales should be clear: to say that John is happy is to predicate that John lies at 

some positive point on the JOY scale; to say that John became happy is to say that he underwent 

a statechange to some positive value on the JOY scale. Points along psychological scales, and 

other scales for which there is no obvious metric (absolute temperature, for example, has an 

obvious metric) are defined as integers lying between -10 and 10. Roughly speaking, negative 

values are "undesirable", positive ones "desirable"; positive changes are good, negative ones bad. 

Thus, some scales have a negative orientation: to become more angry is to undergo a negative 

change on the ANGER scale. Some of the more common CD scales (shown with their orientations) 

are: 
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JOY 
ANGER 
FEAR 
GUILT 
PSTATE 
HEALTH 
AWARE 
BENEFIT 
RELSIZE 

positive 
negative 
negative 
negative 
positive 
positive 
positive 
positive 
positive 

Much research concerning the exact interdependencies among scales, remains to be done, 

particularly for the psychological ones. Clearly, they are not independent, but the nature of their 

interdependence remains to be made explicit. 

In order to relate conceptual state scales to language, the conceptual analyzer has 

"standard" mappings from words and constructions in the onto points along the scales. For 

instance, "John is happy" becomes "John is at point +2 on the JOY scale"; "John infuriated Pete" 

involves "Pete changed state to -4 on the ANGER scale", and so on. This kind of 

oversimplification makes possible the efficient and effective analysis into, and generation out of 

CD, and it is adequate for these purposes. However, the assignment of a specific point on a scale 

to some language construction is more often than not ludicrous, and somewhat arbitrary for 

capturing the real meaning of an utterance in context. To avoid these problems, the memory 

acknowledges scales' inherent fuzziness by transforming statechanges into one of four 

"statechange" predicates: POSCHANGE, NEGCHANGE, BIGPOSCHANGE, BIGNEGCHANGE, based on 

the absolute numbers predicted by the analyzer. As with WANT, these forms are transformed at 

the interfaces with the analyzer and generator to make the memory compatible with these 

processess. Occasionally, fuzziness is not an issue, as in 

John was euphoric. ---~ (JOY JOHN +10) 

Pete died. ---~ (STATECHANGE PETE HEALTH X? -10) 

so that absolute points are sometimes useful. 

In summary, the statechange- and scale-related notions to which the memory is sensitive 

(expressed in memory notation) are: 
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(STATECHANGE PP SCALE V-FROM V-TO) 
(POSCHANGE PP SCALE) 
(NEGCHANGE PP SCALE) 
(BIGPOSCHANGE PP SCALE) 
(BIGNEGCHANGE PP SCALE) 
«sea I e> PP VALUE) (a po i nt on a sea I e) 

2.2.7 ADJECTIVES AND RELATIVE CLAUSES 

The underlying conceptual representations for "true adjectives" and most relative clauses in 

surface language are the same: both make use of the CD REL link (~--+), which denotes 

additional conceptual attribution: conceptual features which are peripherally communicated about 

objects in an utterance. By "true adjective" I mean that the adjective really predicates a 

conceptual feature about the object, rather than simply having adjectival form in the sentence. 

Often, sentential adjectives have no relation with conceptual adjectives, as in the sentence "Mary 

gave John a bad beating." Here, although "bad" is sententially an adjective modifying "beating", it 

conceptually predicates the intensity of a hitting action, and hence is conceptually adverbial 

rather than adjectival. 

2.2.7.1 THE REL LINK 

The REL link associates a PP with a complete conceptualization in which that P P occurs. 

The interpretation of this association is that the PP has the additional conceptual feature denoted 

by the conceptualization. Thus, to represent "John ate a yellow appl,e.", we write 

JOHN 

APPLE 
/ \ 

IN¥EST ~-~- APPLE ~---~ I I I 
1

0 I--~ STOMACH \ / 
__ COLOR 

~-- MOUTH t 
I val 

YELLOW 

And to represent a relative clause attribution such as "I took the book from the man who was at 

the store.", we write 
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p 
<"'==> 

o 
ATRANS +---- BOOK 

t ONE I R i --~ I / \ 

-- +--- O~E +------~ I I Ip 
I \ / + LOC 

ONE <~==> SEX t 
t ! val 

vall ST RE 
M LE 

Notice that, in general, more than one additional attribute can be associated with a PP. 

2.2.8 CAUSALITY 

Causality is a deep and many-faceted notion. This section will simply describe the types of 

causality used in CD, and show how they are used to achieve broad expressibility, without 

arguing for their correctness or adequacy. 

In representing causality as it is used in language, we are not concerned with "correctness". 

That is, causality, as a language user employs it, is not necessarily the "real" causality in the 

world. For instance, we may assert that two physical events are causally related, even though, 

within a particular model of the world, there may by no explicable causal relation between them. 

Hence, language assertions of causality can exist independently from their reality within a world 

model. This difference defines one interesting task for a memory: one subprocess of 

understanding is to reconcile causal relations communicated by language with causal relations in 

the memory's world model. This issue is addressed in section 5.5. 

There is, in addition, the deeper issue of whether or not the notion of causality expressed 

in language should be represented in the same way as the notion of causality which explains 

cause and effect relations in the world model which deals with language. Hopefully, from the 

standpoint of a language-understanding program, these two uses of causality can be thought of 

as referencing the same underlying notion: what may be "real world" causality in one person's 

model may either be reduceable to smaller units, or inexplicable in another's. That is, if we view 

the causality expressed in language as directly reflecting some alien model of the world, then we 
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MARY 

can view language causality and model causality as one and the same. Still, some record of what 

is internal to the model and what enters \da language must be kept, for the memory must be 

capable of distinguishing what it holds to be true from what it has perceived via language. 

2.2.8.1 THE CONCEPTUAL CAUSAL LINK 

Causality in CD is denoted by the causal link, <us. To assert that "X caused Y", we write 

X 

/ \ 

III 
y 

the interpretation being: X and Y both occurred, and Y occurred because X occurred. Thus, to 

represent "Mary made John happy by giving him a present.", and "Bill's drinking angered Jill", we 

write, respectively: 

P 
<===> 

/ \ 

o 
ATRANS ~--- PRESENT 

l' 

I~I---+ JOHN 
~-- MARY 

BILL P 
<===> 

/ \ 

o 
INGEST ~--- LIQUOR 

l' 
I~I---+ STOMACH 

~-- MOUTH 

p 1-------+ X+Cl JOHN <UE= JOY 
~------ X 

p 1--------+ x-a JILL <==== ANGER 
f-------- X 

In addition to serving in this explicit capacity, the causal relation is frequently implicit in the 

underlying CD representation of individual words. Examples of this are with the verb "buy", as in 

"Bill bought a car from John", and "dislike", as in "Mary disliked the candy", which are 

represented, respectively, as: 
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BILL 

JOHN 

P 
<=======> 

/ \ 

\ I 
P 

<=======> 

o 
ATRANS ~--- MONEY 

l' 
I~I--~ JOHN 

+--- BILL 

o 
ATRANS +---- CAR 

l' 
I~I--~ BILL 

+--- JOHN 

MARY 
P 

<===> 
/ \ 

o 
INGEST ~--- CANDY 

l' 
I~I--~ STOMACH 

+--- MOUTH 

p I------~ x-a MARY <==== JOY 
+------- X 

(double, or mutual, causality underlies many two-party verbs like "buy" and "sell"). 

2.2.8.2 CONDITIONAL CAUSALiTY 

The simple causal link expresses the causal relation between events which actually 

occurred. But language makes frequent use of probable or conditional causality for expressing 

the potential for causal relationship between two events. In CD, conditional causality is denoted 

by a causal link with a "c" beside it. Thus, to represent "Mary likes to read newspapers", and 

"John could please Mary by killing the snail.", we write 

co 0 
MARY <===> MTRANS +---- CONCEPTS 

/ \ l' par t 
c I~I--~ CP ~----- MARY 

~-- NEWSPAPER 

I
------~ X+CJ 

MARY <&:iiii= JOY 
+------- X 

c 

f I------~ X+O MARY <iiU= JOY 
~------ X 

(the "infinity" mark over ,the MTRANS main link denotes timelessness, "f" marks future time.) 

Simple and conditional causality form the central core of CD's ability to represent causality. 

However, there are many potential combinations of these two forms with negation and capability 

markers on the events they relate, and on the causal links themselves. Although it is possible to 

enumerate all such forms, many issues concerning their exact meanings and effective mapping 

procedures from language onto them remain to be researched. 
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The notions of simple and conditional causality are represented in the memory by the 

structures: 

(CAUSE X Yl 

{CANCAUSE X Yl 

meaning "X causes Y" and "X could cause Y", respectively. Much more will be said about the uses 

to which these predicates are put in chapters 5 and 6. Much of the memory's knowledge of 

causality in the world is stored in the form of programs rather than in passive structures which 

make explicit use of these predicates. The relationship between these predicates and the 

programs which implicitly store causal knowledge will become clearer in subsequent chapters. 

2.2.9 INSTRUMENTALITY 

The conceptual instrumentality of an action is the specific means by which the action 

occurs. Although it is difficult to define and often hard to distinguish from causality, conceptual 

instrumentality is nevertheless quite different from the more common notion of linguistic 

instrumentality. Whereas linguistic instrumentals are syntax forms, frequently signalled by "by", 

and usually associated with some surface verb, conceptual instrumentality can be communicated 

in countless ways, and always serves to further the description of an underlying action, X, by 

making explicit (via another action, Y) the means by which X occurred. In a sense, then, the 

instrumental ACT, Y, makes the main ACT, X, more specific, even though there is no intrinsic 

heirarchy of specificity among the primitive ACTs. 

At a very abstract level, one could argue that conceptual instrumentality is only a fiction. 

Indeed, if a representation were "utterly primitive", that is, it described the world solely in terms 

of the "real" physical primitives of atomic particles and their laws of causality, perhaps there 

would be no need for instrumentality. Everything would be described "as it was", and this 

description would be devoid of any bias or interpretation. However, the moment we impose an 

interpretation on some combination or sequence of these utterly primitive events, such as "that 

sequence of sound-production was an act of communication" (MTRANS), we abstract the situation 

out of the domain of utter primitives to a higher-level interpretation of what happened. It is 

higher-level because it then characterizes a very complex event by an "off-the-shelf" higher-
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level pattern, and tantamount to this pattern classification is the loss of information. There must 

therefore be some means in this higher-level system for selectively adding back some of the 

information that was lost in the process of interpreting. This is the job of an instrumental. 

This information loss occurs in the CD representation, since its "primitives" are actually very 

high-level abstractions. The instrumental case allows us to replace lost information in the 

abstracted interpretation by saying, for example, "that was an MTRANS action, and furthermore, 

it occurred by acoustic means, namely, a SPEAK". Here, the SPEAK puts back information which 

was lost in the process of classifying the action as an MTRANS. 

Conceptual instrumentality is usually distil'\guishable from causality on the basis of 

"microtimes". An instrumental act.ion is always contemporaneous with its main action, whereas 

two actions which are causally-related usually occur sequentially. This is not a universal truth, 

but rather a rule of thumb. If the actions occur at the same time, and one further describes the 

other, there is probably an instrumental relationship. Otherwise, the relation is probably causal in 

nature. 

To illustrate, contrast "John communicated his hunger to Bill by eating a lizard" with "John 

drove Bill away by eating a lizard". The first is under lied by a true instrumental relation, 

whereas the second illustrates a causal relation: 

JOHN 
p 

<===> 

JOHN 

0 
MTRANS +---- H 

t 

P 
<===> 

t part 

I~I--~ CP +------ BILL 
part 

JOHN +--- CP +------

o 
INGEST +---- LIZARD 

t 
I~I--~ STOMACH 

+--- MOUTH 

(where H stands for the graph "John is hungry") 

JOHN P 
<===> 

/ \ 

BILL P 
<===> 

o 
INGEST +---- LIZARD 

t 
I~I--~ STOMACH 

+--- MOUTH 

o 
PTRANS +---- BILL 

t 
I~I--~ L (?) 

+--- JOHN 

Also, within any framework of specific actions and states, there is another obvious rule for 

distinguishing causality from instrumentality. For verbs which· are underlied in the theory by a 

state or statechange (rather than an action), actions which might appear to carry instrumental 
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modification are in reality carrying causal information about the underlying state: states and 

statechanges simply have no instrumentality! They occur by causality. For example, "John 

pleased Mary by singing" relates "sing" with "please" causally, because conceptually, "to please 

someone" is not an action at all, but rather is underlied by a "do-cause-statechange" on a 

psychological scale. Since "to please" is not underlied by a primitive action, it cannot have 

instrumental specification. 

In CD, the link 

+0----

is used to denote that X occurs by instrumentality Y. In the memory, this is stored as (INST X V). 

Instrumental actions, viewed as information-bearing subpropositions, constitute an important 

source of information from which to generate inferences. Also, by predicting (filling in) 

unspecified instrumentality, important lines of inferencing can result which would not otherwise 

occur from an input. 

2.2.10 TIME 

The time aspects of a conceptualization are noted above its "main link". Although, strictly 

speaking, only actions and states can have time aspects, the time of an entire causal structure is 

commonly associated with the causal relation itself, rather than the events it relates. The 

interpretation of this notation is that the causing action occurred at the specified time, and the 

caused conceptualization occurred immediately thereafter. 

It is possible to represent the following time aspects in CD: ("NOW" refers to the time of 

utterance, CON refers to the conceptualization to which the time modifications are attached) 

NULL (no time marking) CON is occurring NOW 

p CON occurred or was in progress at some (indeterminate) time before NOW 

f CON will occur or be in progress at some (indeterminate) time after NOW 

t'"'x CON occurred or was in progress at time x 

ts-x CON started at time x 

tf=x CON finished at time x 

00 (timeless) CON is a time-independent statement of fact 
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Explicit relations among the times in a graph are noted separately from the graph. Notice 

that durations are specifiable by their endpoints, which can be represented by TS and TF. Thus, 

for example, to represent "X occurred while V", we assign X a time, t, such that t is greater than 

V's starting time and less than V's ending time. 

Neither CD nor the memory deal with more complicated time considerations such as 

frequency; this and other more complex time aspects require more research. However, the time 

aspects listed above seem (empirically) to account for a fairly large portion of time predications 

in ordinary language, and permit us to do interesting things. Furthermore, the feeling is that 

there is a very small number of these higher level time relations like frequency, pseudo­

continuous states (ie. where a state is continuous, except for several "discontinuities"), and so on. 

If this is the case, the main burden is not on the representation, but rather lies in what an 

intelligent program does with that representation. 

Section 3.6 describes how time information is stored in memory, pursuing some of the 

details of how time concepts are created and stored, and how deictic time references like 

"yesterday" and "last year" are handled. 

2.2.11 INTERROGA TIVES 

Interrogatives are denoted by a question mark (a) associated with some conceptual link, or 

(b) in the place where a PP would normally occur. The first form denotes a yes-no question 

about the validity of the conceptual link, whereas the second form denotes a request for some 

unknown information. Thus, to represent "Does John love Mary?" and "Who does John love?", we 

write, respectively, 

? val val 
JOHN <!lBE> MFEEL .---- LOVE JOHN <!ilEE> MFEEL .---- LOVE 

l' l' 
I~I---+ MARY 

.--- JOHN 
IR 1---+ ? 
- .--- JOHN 
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2.2.12 CAPABILITY AND NEGATION 

The ability of an actor to perform an action is denoted in CD by a "c" situated over the main 

actor-action link of a conceptualization. The lack of ability is denoted by a ".....,c" symbol. In the 

memory, these modifications assume the role of "main conceptualization" by the forms (CAN X) 

and (CANNOT X), X being sOme action. The respective interpretations are that the actor does or 

does not have the ability to perform the action, X. The reasons for his ability or inability are 

represented as the causes of the CAN or CANNOT proposition. 

S 
/ \ 

III 
e 

P <===> A 

that is, state S enables actor P to perform action A. 

Negation is denoted in CD by a "slash" through a state, action or causal link. The 

interpretation of a negated causal is that two events occurred, but they bore no causal relation 

to each other. A negated conditional causal indicates that one event is incapable of directly 

causing another event. 

It should again be pointed out that the CD coverage of capability and negation, taken in 

various combinations with causation, is in need of considerable elaboration. However, what there 

is of these notions enables us to get on with sOme interesting issues of language: 

CAPABILITY PRIMITIVES 
CAUSAL PRIMITIVES 

NEGATION PRIMITIVES 
<===> BE 

/ \ 

III 
e,ts 

WE <===> MBUILD ~--
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2.3 CONCLUSION 

Conceptual Dependency is a modest but solid foundatiQ,n upon which to develop a 

comprehensive, language-free theory of language. It allows us to represent the underlying 

meaning of utterances in a way which is independent from the form of the language string which 

communicates those utterances. This has a very appealing practical value because it allows 

cognition to be framed in a theory which is independent from any particular language: the 

memory will function equally well in Chinese and Swahili, assuming suitable conceptual analyzers 

and generators exist. 

But more important, by employing a conceptually primitive meaning representation, we 

remove one very tenacious level of complexity from each utterance before the memory begins its 

analyses. This leaves the theory and program of conceptual memory free to get more directly to 

the deeper issues of cognition. 
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CHAPTER 3 

REPRESENT A TION: THE CONCEPTUAL MEMORY 

The storage in a memory of conceptual graphs and the objects they reference introduces 

theoretical dimensions of representation which are not addressed by CD theory. Most of the new 

issues concern effective organization, referenceability, the ability to distinguish tokens of 

concepts, and inferenceability -- in short, all those things which integrate the "passive" 

conceptual graphs into a more "dynamic" format. These considerations constitute part of the 

interface between language and memory, and comprise a separate theory of their own. This 

chapter addresses issues of representation which arise at and beyond this language-memory 

juncture, and the next chapter describes the interface more from the standpoint of how the 

information is processed. 

3.1 WHAT NEEDS REPRESENTING IN MEMORY 

In order to discover how to represent world knowledge in a conceptual memory, we first 

ask what needs to be represented. There is a clear need for being able to represent conceptual 

dependency graphs in conceptual memory. But there are other many other requirements which 

are logical extensions from CD into the domain of memory. The principal ones are the following: 

1. concepts and tokens Of concepts, like "John", "John's hat", "love", "the man who was here 
yesterday", "person" 

2. events (actions and states), like "John gave Marya book" and "Bill is depressed" 

3. features of concepts and tokens, like "John is a person", "the hat is red" and "the car is owned 
by Mary", "a butcher is a person who cuts meat for a living" 

4. features (conceptual modifiers) of actions and states, like "John saw Mary AT THE BEACH" and 
"John was here YESTE~DAY Ai 5PM" 

5. conceptual patterns, like "books are normally used for reading" and "John is generally at work 
on Tuesday morning" and "Mary likes red books". These comprise a knowledge of what is 
normal in the world. 

6. time information, like "John was at the store for three hours", "Bill washed the car while Mary 
mowed the lawn", "before John came .. , " 
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7. dynamic processes, for example inferences such as "if a person hits another, then he was 
probably mad at him" and "if a person wants an object, he is likely to go somewhere to 
acquire that object" 

The first six categories are represented by "passive" data structures and will be discussed 

in this chapter. The last category represents an extremely large and important class of data 

structures which can be executed as LISP programs. These constitute the main core of the theory 

of information processing within the memory, and are the subjects of chapters 5, 6, and 7. 

3.2 DESIGN CRITERIA 

The first six categories suggest the need for two distinct types of entities to represent 

"passive" (non-procedural) knowledge of the world: (1) objects, and (2) relations among objects. 

Before we try to define data structures for these entities, it will be useful to put into focus some 

desirable attributes of any memory. There are six important principles to which we would like 

the conceptual memory to conform: 

referellceability It should be possible to distinguish abstract concepts from instances of those 

concepts, and it should be possible to accomodate arbitrarily many instances of any 

concept. Every concept and instance of a concept which could conceivably be referenced 

from language (either by name, or by a description of its conceptual features) should be 

directly referenceable in the memory. Identical objects and notions in the world should be 

represented by the same entity in the memory. 

flexibility It should be possible to store arbitrarily many conceptual features of an entity. 

There should be as few structural constraints as possible, and the conceptual features 

themselves should be separable, discrete and individually reference able. It should be 

possible to store features of relations as well as features of simple objects. The 

introduction or learning of new features should be easy and should not upset the existing 

feature structure of an entity. It should be simple to create and link new entities into the 

memory, and to merge two entities together when the need arises. 

homogeneity There should be as few "local" structural anomalies in the data structures as 

possible. Everything should in theory be representable within the same paradigm, even if 

some things are, in practice, stored in other ways for computational efficiency on a 
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computer. It should be easy to add to entities new fields, tags, etc. which would extend or 

improve the control structure of the memory as the theory evolves. 

retrievabiJity The memory should be a connected and fully inverted structure. We must first 

learn how to retrieve and manipulate information to which there is perfect access before 

attempting to model a less perfect memory. The memory should accomodate associative 

searches through propositional information, as well as associative retrieval of that 

information. It should be possible and convenient to locate an entity from a description of . 
its conceptual features, and, conversely, to locate the entire feature set of an entity from 

the entity itself. All associations (links) should be reference able and accessible entities 

which can eventually accomodate "degrading" functions associated with imperfect retrieval 

and forgetting. Information should not be "distributed", but rather centralized around the 

entities it describes. 

independence from language There should be no reliance upon the words of any particular 

language. The names (if any) of an object should simply be conceptual features. 

psychological validity The memory should conform to at least introspectively available evidence 

about how people seem to store and use information as it relates to language. There 

should be no strict requirement at first that the memory be an accurate analytical model of 

experimental psychological data, however. 

The memory I will describe fulfills all these criteria for the most part. How it meets the last 

four criteria will become evident. However, the notion of referenceability is one of considerable 

theoretical importance, and deserves elaboration. 

3.2.1 REPRESENTING KNOWLEDGE: PROBLEMS OF TOTAL REFERENCEABILlTV 

In devising data structures for storing conceptualizations in memory, one criterion seems to 

be far more significant than others. This one cOncerns reference ability: that every component 

detail of information associated with each conceptualization should be identifiable and 

referenceable as a discrete unit. That is, if people can talk about some part or aspect of a 

conceptualization, then that part must in sOme sense be separable from the conceptualization. 

What this seems to indicate is that all information must be reduced to very basic units, which can 

then be stored discretely and interrelated to form the larger thoughts. A very useful test for 
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discovering what is psychologically a basic unit of information is what I will call the ''fact that" 

test. 

Consider the sentence "Yesterday, Farmer John surrepticiously gave Marya turkey for tax 

writeoff purposes." Among others, it is certainly possible to reference all the following 

information units within this conceptualization: 

L The fact that it was JOHN who ¥ave Mary the turke~ ••• 
2. The fact that it was a TURKEY hat John ~ave Mary ••• 
3. The fact that John gav-e the turkey SURRE TICIOUSCY ••• 
4. The fact that it was MARY to whom John gave the turkey ••• 
5. The fact that it was YESTERDAY that John gave Mar~ the turkey ••• 
6. The fact that it was TAX CONSIDERATIONS which CAU ED John ••• 

Each restatement causes an important shift in emphasis which we should be able to capture. If 

we were to store the larger composite information units (actions and states) in some large, rigid 

vector notation such as 

«action> <actor> <object> <time> <location> <cause> <manner> <instrument> ••• ) 

many of these smaller units would not be reference able independently from the rest in the same 

way the entire vector is externally referenceable as a unit. They would be "buried"; their 

relation to the composite information-bearer would be implicit in their position in the vector, 

rather than explicit. Aside from the undesirable local anomaly in representation which would be 

required to reference "the fact that X is in position Y of vector Z", to store relations in long, 

comprehensive positional vectors presupposes we have decided upon all the slots. How could 

we ever be certain that, say, 27 slots could account for every aspect of any conceivable event, 

relative to varying contexts! 

In addition, we will see in the next chapters how all the various aspects of a conceptually 

complex sentence must be able to stand alone in order to contribute independently to the 

processes of inferencing. For example, in suitable contexts, the fact that it was yesterday that 

farmer John gave Mary the turkey could overshadow all the other information conveyed by that 

sentence. 

I conclude that a fixed vector representation lacks generality and is undesirable: (1) it is 
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unrealistic to believe that anyone fixed vector notation would be flexible enough to account for 

all possible conceptual forms, (2) that information in the vector becomes isolated and not directly 

accessible for references. 

It should be clear that using even "typed" associative links around a central event or state 

node as in Fig. 3-1 does not fully solve the problem of independent referenceability, although it 

exhibits the desirable looseness and flexibility of attaching features and aspects to an entity in 

the memory. 

(tax writeoffl 

MARY --..... tau,. 
recipient ~ f~ __ c __ ~~~TURKEY 

:lonor ./ {*)~object 

FARMER JOHN ~( j time~ 
. manner YESTERDAY 

SURREPTICIOUSLY 

Figure 3·1. 

The problem with referenceability still exists here because the links themselves are not 

reference able as objects in the system: they serve in a higher capacity as relations. That is, a 

link is both an association and an implicit information-bearing relation: it predicates not only the 

existence of a relationship between two entities, it also specifies the substance of that 

relationship. It would be better to separate the notion of a link as a simple, untyped association 

(which is truly unreferenceable) from the notion of a link as an information-bearing relation 

(which can be referenced). This distinction is shown in Fig. 3-2 (the more desirable scheme is 

shown to the right). Although this distinction may seem quite esoteric, and have the appearance 

of splitting hairs, it is in fact a very important distinction. 
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dual-purpose 
(typeless and 
substant i vel 

John's book John's book 

BOOK BOOK 

1 poss 

JOHN 

t -- ----typeless link 

(POSS * *) - - - - substanti ve link 

~ A •• - .. type I ess link 
JOHN 

Figure 3·2. Separating typeJess links from substantive links. 

Thus, rather than represent all actions by some closed vector notation such as or even in 

some more general link scheme in which links serve the double purpose of denoting both an 

untyped association and an implicit relationship, I have tended to store all referenceable relations 

as separate units which are then associated with the units they r~late, and with the larger 

information unit of which they are a part, by type less associative links. Fig. 3-3 illustrates this 

technique for the Farmer John example. In the ,diagram, pound signs stand for referenceable units 

in the memory. 
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"Farmer John surrepticiously gave Mary 
a turkey yesterday for tax writeoff purposes." 

I=:I ! (the turkey) 

1 =:1 (OBJECT * *) 

I=:I 
\=:1 

others know event) 

JOHN) 
I =:1 (ACTOR * JOHN) 

,? 
(the structure representing Farmer 
Farmer John's desire that 

I] ~ MARY) 

(TIME * C1) 

John's 
to money to IRS) 

Figure 3-3. 

In Fig. 3-3, Cl is some time token representing a point during "yesterday", RTO and RFROM 

representing the donor and recipient cases for ATRANS, respectively. 

This results in a system which contains two basic types of objects: concept objects (this 

includes events and states), and information-bearing objects (those objects which relate concept 

objects and other information-bearing objects). That the information-bearing objects in the 

diagram are in fact "psychologica"y primitive" (in the sense we desire) can be verified by trying 

to apply the "the fact that" test to a few them. 

While this characterizes the general philosophy for storing conceptual links in referenceable 

ways, as might be expected, reducing everything to this level is both cumbersome and inefficient 

in the realities of today's programming techniques. Furthermore, such "purity" is not necessary 

for the solution of many interesting problems of conceptual processing. As I describe the data 
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structures, deviations from the prescriptions of this section in the implemented program will be 

evident. Section 3.4.4 will summarize them. 

3.3 CONCEPTS AND TOKENS 

The smallest units in a conceptual memory are CONCEPTS and 
TOKENS. What are these notions, how should they be represented, 
and how should they be organized? 

"Simple" objects were discussed as components of the Conceptual Dependency system of 

representation. There, the simple objects are "picture-producers" (PPs). A PP like "John" can 

produce a mental picture of a person named John, a PP "book" can cause the hearer to imagine a 

bound pile of paper which bears information, and sO on. Recall, however, that there is no simple 

one-one correspondence between the words of a language and the PP's the language is capable 

of referencing. 

In the memory, simple objects are concepts and tokens. These entities symbolically represent 

real objects and ideas in the world. What is their relation to PP's? Just as there is a lack of one­

one correspondence between words and PPs, there is in general no one-one correspondence 

between PP's and objects in conceptual memory. A PP is an abstraction which stands for an 

entity with a certain set of features. But a potentially infinite number of real objects in the world 

can be categorized as instances of each PP. 

For instance, the PP "JOHN" stands for any entity, X, which satisfies the abstract conceptual 

topology: 

X is a person 
X's name is "John" 
X is of sex type male 

However, there are many entities in the world which satisfy this topology: John Smith (the guy 

who lives down the road), John Smith (the butcher across town), John ("Ding Dong") Jones, the 

guy who ran for mayor last year, and so on. There must therefore be the potential for 

representing all these different Johns in the memory. There, any X which stands for the person 

John Smith in the real world. is an example of a token of the class concept, "person". I will often 

refer to class concepts as simply concepts. 
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What should the X which represents, say John Smith, the guy who lives down the road, look 

like in the memory? Since it stands for a single enti·ty about which many unique facts may be 

known, and which is unique itself, we want a unique entity in the memory to represent it. I have 

called the LISP construction which embodies this entity a superatom. A super atom is a discrete 

object to which we may point when referencing the entity for which it stands. But, in the 

absence of any defining conceptual information, a super atom is no more than a place-holder. That 

is, a super atom to which no information is attached is simply "something" if we must reference it 

by language. In the program, super atoms are just LISP atoms which arise via the LISP sequential 

symbol generator. Because of this, a super atom will often appear externally in the examples as 
; .. 

something like "C3749". 

All conceptual information about an entity is associated with that entity's super atom in the 

memory. This association is via the property called the occurrence set ("ASET" for historical 

reasons) of the entity. The occurrence set is a set of pOinters to all conceptual information in the 

memory in which the super atom is involved. (The form of conceptual information in the memory is 

the topic of the next section. Suffice it to say here that every piece of information in the 

memory is also identifiable by a unique super atom.) This entity/occurrence set association can be 

viewed from two perspectives: it can be thought of either as the defining set of features for the 

entity ("feature" here meaning any conceptual information known about the entity), or as a set of 

pointers to all other points in the memory where the entity occurs. There is of course no 

material difference between these characterizations. 

The occurrence set for a concept is therefore a catalog of 
everything known about that concept; it is a bundle of conceptual 
features. The superatom IS the concept, but the occurrence set 
defines its essence. 
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1:1 
(COLOR 

I] J // 
(ATRANS * * * *) 

. * (POSS * *) 
* ~ 

Figure 3·4. The relationship of a superatom, SA, to its occurrence 
set, as, and to its conceptuaJ features. 

Fig. 3-4 schematically illustrates this data structure for simple objects in the memory. 

Stored in this kind of structure, our friend John Smith, the butcher who lives down the street, 

and who, among other things, possesses a car, loves Mary Jones, and was at the grocery at 5pm 

yesterday, is represented by the superatom, say C0431, and occurrence set illustrated in Fig. 3-

5. The specific super atoms there were of course arbitrarily chosen for the purposes of 

illustr at ion. 

C0431 

ASET: C3726 
C0213 
C9771 
C7823 
C3254 
C0003 
C6541 
C2188 
C7437 

C3726: (ISA C0431 #PERSON) 
C0213: (NAME C0431 JOHN) 
C9771: (SEX C0431 #MALE) 
C7823: (SURNAME C0431 SMITH) 
C3254: <RESIDENCE C0431 C5613} (C5613 is where he lives) 
C0003: (POSS C0823 C0431) (C0823 is a car) 
C6541: (MFEEL C0431 #LOVE C0e17) (C0017 is Mary) 
C2188: (LOC C0431 C1792) (C1792 is the grocery) 
C7437: (PROFESSION C0431 #BUTCHER) 

Figure 3·5. Part of the occurrence set for some John Smith 
the memory might know. . 
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Not shown in Fig. 3-5, the time of C2188 was furthermore 5pm yesterday: 

(TIME C2188 C3214) 

where C3214 is a time token representing this time. Also, C5613 is at a location which is "down 

the street": 

(LOC C5613 C2819) 

where C2819 is whatever this location actually happens to be. ("Down the street" is not a 

conceptual relation, but rather is simply one way of expressing John's location relative to our 

own.) 

It should be clear that this superatom-occurrence set structure is fully-inverted. That is, it 

is possible both to locate an entity from any conceptual information which involves that entity, 

and to retrieve all conceptual information about an entity starting from the entity itself. 

Furthermore, all "links" are (a) untyped and (b) explicit. They are untyped because links merely 

serve to tie together an entity with its defining conceptual information. The substance of that 

information does not exist in the link, but in the conceptual information it points to. Links are 

explicit because each link is an identifiable object in an occurrence set. 

3.3.1 COMMENTS ON NOTATION 

I have been using, and will make further use of the notation: 

# <Ietter>+ <digit>* 

that is, a "pound sign", followed by a word, possibly followed by some digits. (#JOHN3, #LOVE, 

#PERSON). This notation stands for a super atom in MEMORY, and is no different from super atoms 

looking like "C1373". As we have seen, a super atom does nothing more than give us a way to 

point at collection of conceptual features. This notation just allows us to identify some concept 

or token when we need to talk about it without enumerating its feature set every time. Thus, the 

form of the symbol _JOHN1 is not a concern of any memory process, and might just as well be 

stored and accessed in the memory as, say, C4893, a concept among whose features might be 

found: 
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(NAME C4893 "JOHN") 
(SURNAME C4893 "SMITH") 
(ISA C4893 #PERSON) 
(POSS C3825 C4893) 

(where C3825 is, say, a token of a car). Often, when illustrating memory structures graphically, I 

will write a pound sign to stand for some superatom, then enumerate a set of features which 

describes it. But bear in mind that, although I am listing the defining conceptual information 

explicitly, all that is stored with the concept in memory is a set of pointers to other superatoms 

at which such information about the entity is stored. 

3.3.2 THE LOGICAL ORGANIZATION: TWO IMPORTANT RELATIONS 

The previous chapter characterized the nature of useful predicates in the conceptual 

domain. However, two relations are more important than most because they bear directly (a) on 

the logical organization of the memory, and (b) on a significant aspect of the memory-language 

interface. These are NAME and ISA, which relate an entity to language, and to the rest of the 

memory's internal taxonomy of concepts, respectively. 

3.3.2.1 "NAME" 

Any concept or token can have a NAME feature. NAME is the principal means of interface 

between internal concepts and tokens and the words of one (or more) language, and a concept 

or token need not have any NAME, or it may have one, or many. Conversely, objects in the 

memory which are NAMEs of concepts and tokens may serve to name more than one concept or 

token (senses of a word, instances of class concepts). 

In a "pure" system, names would be #WORD concepts whose conceptual values are the 

strings of letters (or more correctly, morphemes) which comprise the word. We have no use for 

this level of detail of information, so the structure has been "cauterized" at 'a slightly higher 

level: the second argument of the NAME predicate simply points to an "ordinary" atom, which is 

like a super atom except that its LISP print name is significant. Had names been specified "to the 

edge of the model", the type of construction shown in Fig. 3-6 would have arisen. 
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(NAME * *) 

! ~ ~VALUE # J 0 H N) 
(ISA # *) 

#JOHN 

'# 
(the token representing 
a person named John) 

," (NAME # *) 

,;,,, ) , , 
(the concept of a word) 

# 
(ISA # 
(VALUE # 

Figure 3-6. 

To illustrate how a word concept in the memory relates to its senses (concepts) and, 

further, to tokens of concepts, consider the NAME structures which might surround the atom 

"BILL". Fig. 3-7 depicts how word concept "BILL"'s occurrence set might look in memory. 

# "BILL" 

(NAME *~tI 
(NAME 

(NAME 

(NAME 

* #) 
{ I SA tI tlPERSON} 
(SURNAME tI JONES) 

~--:-:-:--------- ... 
~) ~ ~ISA tI tlPERSON) * -:#:-) -----~ (SURNAME tI "SMITH") 

\ 

# 

tI 

(ISA # tlBODYPART) 
(PART tI tlBIRD> 

(ISA tI tlMONEYCONCEPTJ 

Figure 3-7. 

A very fundamental reliance on some sort of recency criterion (as well as the processes of 

infererce), is required to keep track of the most likely senses of words at any given time. [R2] 

discusses the notion of word sense promotion in considerably more detail. 
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3.3.2.2 "ISA" 

The conceptual predicate ISA relates tokens to the abstract concepts (which are in turn just 

super atoms with bundles of conceptual features) of which they are instances, and also relates 

abstract concepts (like "person", "guilt") heirarchically. A concept or token can have no more 

than one ISA feature. The interpretation of (lSA X Y) is that, in addition to all the features on X's 

occurrence set (besides the ISA relation), X also has all the features of on V's occurrence set. In 

Fig. 3-5 for instance, this means that C0431 has, in addition to those features explicitly on its 

occurrence set (C3726 ... ), the multitude of implicit conceptual features associated with the 

superatom #PERSON, since C0431 is an instance of a person. Likewise, #PERSON has in addition 

to its occurrence set all features of #ANIMAL, which is its superset, and so on. (A common, but 

fairly trivial example of this concerns NAMEs of tokens. More often than not, there will be no 

NAME associated with a token: its NAME is normally stored as a feature of the idealized concept 

of which it is an instance. Hence, in order to express a given token in language, the memory must 

frequently ascend one or more levels until a name is found. Then it must locate some distinctive 

features of the token to distinguish it from other tokens of the same concept. It can then use 

those features, expressed by relative clauses and adjectives in the sentential expression. An 

example would be: "the red ball which John had ... ".) In general, all processes in the memory 

which ask "does X have conceptual feature Y?" must be prepared to ascend X's ISA set sequence 

in search for feature Y. 

When X is "almost a Y", except for feature Z ("an ostrich is a a bird, except that it can't 

fly"), we write (ISA X Y) and (LACKS X Z), Z being a pointer to the conceptual feature of Y which 

is not a feature of X. Thus, the "total feature set" for an entity, X, consists of everything on X's 

occurrence set, everything on V's occurrence set, where (lSA X V), and so on, except for those 

features for which a LACKS relation exists. 

I should say more about intent of the ISA relation in this theory. We want to take special 

care not to "overspecify" one concept by heirarchicallY (ISA) associating it with too-specific 

another concept. The ISA relation should be reserved for associations between a token and its 

"least biased" classification. For instance, to characterize John, the butcher, by (ISA #JOHN 

#BUTCHER) would be an overspecification, since it places a special focus, or interpretation, on 

John which is not of general utility or interest. Rather, John always ISA #PERSON, and if he 
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happens to cut meat for a living, we should write something like (PROFESSION #JOHN X), where 

the X points to the bundle of features which define the essence of a butcher. The point is, John's 

profession is only a very small characterization of a man who might also happen to be a father, a 

good golfer, a rabid political right-winger, and so on. To characterize him as anyone of these is 

to i"troduce a bias which could make it hard to interpret him differently in different 

circumstances. 

Also, classifications which overspecify tend to oversimplify. That is, we call John a rabid 

right-winger because of the things he does and says; but we might also call our friend Bill a 

right-winger, even though he does and says completely different things from John. To say that 

(lSA #JOHN #RIGHT -WINGER) and (iSA #BILL #RIGHT -WINGER) is to predicate that they both have 

the features of this abstract class. Yet there may be have nothing at all in common in the details 

of what they do. On the other hand, they are both #PERSONs whose individual actions and beliefs 

can be contrasted on a one-one basis. Although the same label might evolve for both in our 

model, they are still complex people who can be interpreted quite differently outside the political 

.domain. 

3.3.3 STRUCTURAL PROPERTIES OF CONCEPTS AND TOKENS 

It would seem that there are certain aspects of concepts, tokens and information-bearing 

units in a human language user's memory over which he has no direct control. These are things 

which are more closely related to the mechanisms of the brain than to the data the brain stores. 

By attaching to a superatom other properties besides its occurrence set, it is possible to 

associate aribitrarily much information (of other types than conceptual) with each entity in the 

memory. Although the occurrence set defines all of an entity's conceptual features in the 

memory, other properties are useful for associating certain other information with super atoms 

for other memory functions "above" the conceptual data structures. 

The "recency of activation" of an entity (reference to it, either by language directly or by 

some internal thought process) is an example of a property which would seem to be more 

related to a mechanism than to the substance of the entity itself. It would seem proper to view 

aspects such as this as part of the brain's "wetware": they are part of its unconscious control 

structure rather than part of the information this structure stores and operates upon. 
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Of course, no one yet knows exactly what the processes of the control structure are, much 

less which of them can be though of as involving "tags" on entities in memory. Nevertheless, use 

has been found for three structural properties which are related to language understanding: 

1. RECENCY 
2. TOUCHED 
3. SEARCHTAG 

These are stored as LISP properties of super atoms. 

RECENCY keeps a record of the time each concept or token was last legitimately accessed 

by the reference mechanism. "Legitimate" means that an explicit decision was made that the 

concept or token was the referent of some language construction ("John Smith", "the dog with 

three legs", "love", "the second time we were in the meadow", etc.), rather than simply "passing 

over" the entity while searching for another one. 8y use of this tag, many potential problems of 

ambiguous reference can be avoided or solved. As we will see, the reference mechanism prefers 

the most recently accessed candidate for a reference in cases where there is a significant 

difference in recencies among the candidates, or where inference fails to solve the problem. 

RECENCY plays the same role for references to events ("the time we were in King City"). 

TOUCHED is also a recency tag, but records the time an object was last "touched" Or drawn 

into, the processing by internal processes (inferencing), as opposed to having been referenced 

directly from language. We will see later how implicit references of this sort can be vital to 

understanding. As that section will illustrate, the set of objects in MEMORY with recent RECENCY 

and TOUCHED tags captures the Conceptual Dependency notion of immediate memory. 

SEARCHT AG is of less theoretical utility than the other two tags. It simply provides a 

foothold for associative searches through MEMORY. 

3.3.3.1 TWO STRUCTURAL PROPERTIES RELATED TO THE CONCEPTUAL ANALYZER AND GENERATOR 

Two additional properties, XFORM and CASES, are associated with concepts which are 

conceptual predicates (for example, ATRANS, MFEEL, POSCHANGE, ISA, NAME) in memory. 

For a predicate concept, P, XFORM stores the Conceptual Dependency structural template 

which will express (in CD, not language!) memory structures which use P. This is purely a 
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transformation of form; it is the beginning of the memory-generator interface which allows any 

information-bearing structure in the memory to be assembled into a Conceptual Dependency 

graph for expression in language. Several examples of the XFORM property are shown in Fig. 3-

8. 

*ATRANS* «ACTOR Xl <=> (*ATRANS*) OBJECT X2 FROM X3 TO X4)} 

«ACTOR Xl <5> (*CLASS* VAL X2)}} ISA 
CAUSE 

BIGPOSCHANGE 

WANT 

«CON Xl <5 X2)} 

«ACTOR Xl <5>F X2 <=>T X2) INC (4}) 

:: EXPRESS WANT 
«CON «CaN X2 <liC «ACTOR Xl <=>F (*JOY*) <::>T (*JOY*)) 
I NC ( 2 ) T I ME ( T1 ) ) } ) 
<5> (*MLOC* VAL (*LTM* PART Xl REF (*THE*}}») 
«ACTOR Xl <5> (*HEALTH* VAL X2}}) 

Figure 3·8. XFORM templates. 

In the templates of Fig. 3-8, Xi is interpreted as argument t in the memory bond notation, 5 

indicates that a special function is to be applied to the template after it has been instantiated to 

perform special details of the transformation which are not conveniently notated in the passive 

template. (In the WANT template, for instance, this amounts to correct location of the times which 

are internal to the template.) 

CASES stores a similar, structural transformation template at the analyzer-memory interface, 

and is a property only of primiticve ACTs. For ACT A, CASES stores the list of the nuclear 

conceptual cases for A, in the order in which they appear in memory bonds. For example, the 

A TRANS CASES property is (ACTOR OBJECT FROM TO), and the CASES property for GRASP is 

(ACTOR OBJECT). Section 4.5 describes how this information is used by the process which 

converts analyzed conceptual graphs into internal memory structures. 

3.3.3.2 THREE OTHER INFERENCE-RELATED PROPERTIES OF CONCEPTUAL PREDICATES 

There has been no discussion yet of the inference mechanism and other active processes in 

the memory. However, it should be noted here that the organization of inferences hinges about 

conceptual predicates, and this involves the potential association of three LISP program modules 
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with each conceptual predicate. These associations occur via three structural properties of 

predicates' super atoms: "IPROG" for inference molecules, '''SPROG'' for specifier molecules, and 

"NPROG" for normality molecules. These will be defined later. 

3.4 STORING CONCEPTUAL INFORMATION 

,. 

How should conceptual propositions be stored and organized? How 
should they interface with concepts and tokens? 

The story is, of course, not yet complete: I have yet to describe how relations among 

ob jects (conceptual information) are stored. Not much more than the structure for concepts and 

tokens is required, for we can view a unit of conceptual information as an object in the system in 

much the same way as we view a concept or token. That is, any information (a feature, action, 

state, etc.) can itself have an arbitrary number of conceptual "features": time aspects, who knows 

about it, what caused it, what it caused, what its location was and so forth. Viewing units of 

information as objects is convenient also from the standpoint of language, since all but the 

simplest utterances involve nested conceptualizations: one or more "sub"-conceptualizations can 

be referenced by the main one. From this standpoint, a feature of each sub-conceptualization is 

that it occurred in the context of the main conceptualization. 

The main difference between information-bearing objects and simple objects concerning 

storage requirements is the obvious one: in addition to serving as a place-holder, with which 

arbitrarily many conceptual features can be associated via its occurrence set, an information­

bearing entity must carry some intrinsic information. 

3.4.1 BONDS 

Conceptualizations are therefore stored as super atoms, replete with occurrence set and the 

RECENCY, TOUCHED and SEARCHTAG properties described for concepts and tokens. Their 

information content, a bond, is associated with their superatom under the LISP property 

"BONDVALUE". 

Bonds are positional lists which relate other conceptualizations, concepts and tokens. The 

first member of a bond list is always the conceptual predicate (action, state, causal, etc.) . 
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Predicates are simply concepts which bear special meaning to the processes which operate on 

them, and are stored just as any other concept. In the current implementation their Occurrence 

set typically consists of just an ISA relation such as (lSA *MTRANS* #ACTIONPRED). Bonds which 

represent actions consist of the nuclear cases of the action, always in the order ACTOR, OBJECT, 

FROM, TO. State and causal relations are stored in the obvious ways as illustrated throughout the 

previous chapter. 

As an illustration of bonds, consider the utterance "John believes that Bill sold his car". The 

left of Fig. 3-9 shows the internal memory structure which would result from this utterance, the 

right illustrates the structure graphically. Time aspects have been omitted, and the super atom 

numbers were of course chosen arbitrarily. 

C3784 
BONOVALUE: (MLOC C3765 Ceel8) 
ASET: nu II 

C3765 
BONOVALUE: (OUALCAUSE C3766 C3767) 
ASET: (C3764) 

C3766 
BONOVALUE: (ATRANS C0021 C7641 Ce021 Ce027) 
ASET: (C3765) 

C3767 
BONOVALUE: (ATRANS Ce027 C5321 C0027 C0021) 
ASET: (C3765) 

Figure 3-9. 

(MLOC * ~ 
~ ~ISA # #LTM) r (PART # *) 

(OUALCAUSE * *) ~ 

~X~(IS~ # #PERSON) r- ;) (NAME # JOHN) 
(ATRANS * * * *) 
~~~{ATRANS * * * *) 

~U3A # #CAR) ~ ~~ 
(POSS #~) ~ # c . 
~ (JSA # #PERSON) 

(NAME # BILU 

In Fig. 3-9, C0021 is the token which represents the LTM (long-term memory) of the John 

who believes this, C0021 is Bill, C0027 is the (unspecified) person to whom Bill sold his car, 

C7641 is the car and C5321 is the money which was exchanged for it. 

Information-bearing super atoms (those which store bonds) also have the structural 

properties RECENCY, TOUCHED and SEARCHTAG. But in addition to these, they require some 

additional structural properties. For instance, does the memory believe C3765 in Fig. 3-9? This 

leads us to two notions about bonds which do not exist for concepts and tokens. 
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3.4.2 STRUCTURAL INFORMATION ASSOCIATED WITH BONDS: CONTEXTUAL TRUTH 

What informat.ion the memory is capable of representing and what it actually believes at any 

given time are quite different issues. There must an effective and efficient means of 

distinguishing them. Otherwise, for example, we could tell it that John believes Bill sold his car, 

then ask it whether Bill sold his car and receive an unmitigated affirmative response, even 

though the car may not in fact have been sold. (Of course, the memory could decide to believe 

this also, as well it might, but this is not the issue here.) Even more absurdly, we could tell it 

"John couldn't go home", then ask it whether John went home. Finding the structure (PTRANS 

JOHN JOHN L HOME), a simple-minded memory would blithely reply "Yes", doing so simply because 

it had not paid attention to the surrounding structure, in this case, (CANNOT (PTRANS ... »! 
"Surrounding structure" here means the conceptualization's occurrence set. 

The problem, then, is keeping a record (or at least being able to reconstruct one) of what 

the memory holds to be true. It would clearly be possible for the memory, by applying special 

heuristics to enough surrounding structure, to decide of a unit, X, whether or not X is held to be 

true. For instance, even though it is possible to find a (PTRANS JOHN JOHN L HOME) bond, if it 

occurs in some mitigating environment such as (CANNOT (PTRANS ... » then it is certainly not to 

be believed, except in that environment. This is an obvious, but important observation, and I will 

call it the principle of contextual truth. This principle says that the information in the bond of an 

information-bearing superatom cannot be assumed to bear truth of its own. Rather, is true only 

in th.e context of its entire occurrence set. Furthermore, there exist effective procedures which 

can decide whether an information unit is believed on the basis of its occurrence set. 

In practice, to have to make such decisions too frequently would be timewise-unwieldy. One 

of the lowest level functions of the memory is to locate units of information which are true in the 

memory's model. There would be no time for higher level functions if, each time MEMORY located 

information, it had to decide again whether or not it was believed. More important, this would 

seem to be totally counterintuitive to the way people seem to store information. Some level of 

automatic assessment of the believability of each new information unit as it is stored would seem 

to be the rule rather than the exception in human language users. Even information whose truth 

has not yet been decided is at least "tagged" as such. (There is one important exception to this, 

and it concerns time. In particular, the temporal truth of an uncompleted state or protracted 
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action is subject to reevaluation each time its truth is important to an inference or other process. 

This is necessary since many states come to an end after "fuzzy", but predictable, periods of 

time, and is discussed in section 6.8 as a form of inference.) 

3.4.2.1 THE PROPERTIES "TRUTH" AND "STRENGTH" 

To give this principle of contextual truth some tangible and efficient realization in MEMORY, 

two additional properties are associated with each superatom which stores a bond: TRUTH and 

STRENGTH. The former stores the value TRUE or FALSE and indicates whether the bond (in the 

context of its occurrence set) bears any truth in the model, or whether it is simply a non-truth­

bearing part of a larger structure. At any time then, only those bonds bearing a TRUTH=TRUE 

constitute what the memory itself believes (to some degree or another). As we will see, one 

byproduct of inferencing is to change TRUTH and STRENGTH markers, so that, if John says he 

believes something and the memory's characterization of John is that he is trustworthy and not 

given to hallucinations, the memory can start believing John's belief too simply by tagging it as 

true. 

STRENGTH indicates the approximate degree to which a bond which is believed; hence, 

TRUTH and STRENGTH are not independent. The strength is a real number in the interval 0 to 1. 

By convention, a strength of X below 0.5 means that there is reason to believe that X is pOSSible, 

but not likely. (For some predicates, this can often be interpreted to mean that X's negation is 

believed to be likely.) Inference molecules propagate strengths from antecedants to the inference 

they generate by individual heuristics within each inference in the molecule. In the current 

model, the propagation occurs by simple multiplicative factors. 

The whole notion of strength is a fuzzy one: the numbers themselves mean very little. 

Instead, their significance manifests itself in the effects the numbers have on the inference 

process: as long as their effects are appropriate, the numbers themselves are inconsequential. 

This is a point where representation and the process which operates on it are truly inseparable. 

The two conceptualizations, Cl and C2, below illustrate this quite poignantly: even though Cl and 

C2 below may both have the same low strength of 0.10, the interpretation of the strength 

relative to the substance of each conceptualization makes one quite significant, the other much 

less so: 
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Cl: Mary's husband is cheating on her. 

C2: John wants to buy the car. 

Although its likelihood is the same as C2's, in Cl, even the suspicion of such dastardly behaviour 

is quite significant. C2 has much less flare: it's just not very likely that John wants to buy the 

car, and that's that. 

It should be reiterated here that, beyond this convention of low strengths, problems of 

negation have not been explored in any depth in the memory. 

3.4.3 PRESERVING CONNECTIVITY IN INFERENCE SPACE: "REASONS" AND "OFFSPRING" 

People not only can solve problems, they are aware of, and can describe how they solve 

them. A restatement of this phenomenon is to say that a person is (subconsciously) capable of 

preserving information about why he believes each piece of information in his memory. By doing 

this, everthing has an explicit internal justification: an implicit dependence relation with the 

antecedants from which it arose. This information can be used not only to answer questions like 

"What makes you believe that?", but it also provides a means of predicting and propagating the 

effects of altering the truth or strength of some information in the memory: if information X 

played a part in generating Y, and X's credibility falls under serious doubt, then so might V's. In 

addition, in sections 5.6 and 6.6, it will be shown how REASONS and OFFSPRING are essential to 

at least two very vital classes of conceptual inference. 

In the memory this means that, in addition to conceptual connectivity among information 

through bonds and occurrence sets, some sort of connectivity in inference space is essential. 

That is, whenever X is inferred from Yl, ... ,Yn, we should make this dependence explicit. To 

implement this, two other structural properties are associated with every information-bearing 

superatom in MEMORY; "REASON"s and "OFFSPRING". 

These two properties are inverses of each another. The REASONS property for information­

bearing superatom, X, is a list of other information-bearing super atoms in the memory which 

some inference molecule used in order to generate X, its inference. A null reason list for X 

means simply that X is believed: there are no reaSOns for the belief. In a more formal system, we 

might call this an axiom. 
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The property OFFSPRING for X is a list of other information-bearing super atoms in memory 

whose existence in some way relies on X. It is in a sense the inverse of REASONs. While every 

bond with TRUTH-TRUE must, by convention, have a REASONs list, the OFFSPRING property is of 

course not a requirement. 

Inference molecules, which are the fairly complex LISP programs which make inferences, are 

responsible for supplying a REASONS list to the inference monitor along with each inference as it 

is generated. The following scenerios illustrate typical usages of the REASON list: 

John has just asked Bill for the New York Times on the table. MEMORY infers that it is 

likely that John wants to read it. This inference is generated, and the reason list 

consists of the following three units of information: (1) the NY Times is a newspaper, 

(2) a newspaper is printed material, and (3) the normal function of printed material is 

that it be read. Section 6.1 illustrates a similar example and includes a computer 

example 

Mary hated John. Bill hit John. The memory infers that it could be likely at that point 

that Mary feels a liking for Bill. This inference is generated, and its reasons are (1) 

Mary feels a negative emotion toward John, (2) John suffered a negative change, (3) it 

was by Bill's action that John's negative change occurred. 

3.4.3.1 REASONS AND OFFSPRING VS. CONCEPTUAL CAUSALITY 

REASONS and OFFSPRING should not be confused with the CAUSE relation. The CAUSE 

relation is part of the data which the memory stores, has access to, manipulates, and uses to 

generate inferences. A CAUSE relation is stored in a bond, and hence can have REASONs and 

OFFSPRING. Section 5.5 discusses how and why causal relations are maintained by CAUSE bonds 

in bond-occurrence set framework. REASONS and OFFSPRING relate to the supervisory 

functioning of the memory. 

3.4.4 DEVIATIONS FROM THE "PURE" REPRESENTATION 

It should be clear that the theory of representation as proposed in section 3.2 has served 
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as the guiding doctrine, if not dogma, of the implemented program. That is, with only a few 

exceptions (motivated by the pragmatics of implementing a large system), every information­

bearer which is potentially referenceable from language is indeed referenceable as a discrete 

object in the memory. The noteworthy exceptions are threefold, and we have seen two of them: 

First, conceptualizations are stored in the form of positional lists which only implicitly 

specify the case relation of the concepts to the action or state predicate. Hence, it is not 

possible to reference information units like "the fact that X is the actor of action Y" or "the fact 

that Xis the recipient in action y". This type of unreferenceability is, however, restricted to a 

very small, well-defined, domain: namely the nuclear case relations for actions and the "nuclear" 

arguments of states relations. 

Second, there are certain counts, tags and relationships maintained for conceptualizations 

which are unreferenceable as units in the system. The rationale for such a auxiliary constructs 

should be clear. Although these features could be framed in the main data structure, it is more 

intuitively correct to keep them separate. 

The third main exception will become evident when we discuss the nature of inference, 

specifier, and normality molecules and atoms in chapters 5-7 (these store the active inference 

processes in memory): while these objects are discrete entities, referenceable as entire units, 

their internal components (their conceptual contents) are not individually referenceable. Section 

7.3.4 discusses this problem and a potential solution to it. 

Each of these exceptions could have a direct representation in a "pure" system in which we 

had the luxury of unlimited amounts of storage. The fact is, the amount of space consumed to 

make these units of information referenceable is simply not justifiable in terms of the number of 

new capabilities they enable. Although certain basic processing assumptions have been based on 

these "impure" forms, their conversion to operate on pure forms is easily imagineable. 
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3.5 SUMMARY OF MEMORY DATA STRUCTURES 

We are now in a position to formulate concise structural definitions for the memory 

structures I have been describing. 

DEF: A "concept", C, is a LISP atom which has the property ASET (occurrence set) and 

which does not have the property BONDVALUE. A "token" is a concept, X, such 

that there is no relation (iSA Y X) in the memory. 

The value associated with the property ASET of C is a list of superatoms which store bonds 

{,3l, ••• ,,3n} such that C occurs in ~ i, i .. l, ... ,n, and only in those bonds in the memory. 

DEF: An information bearing unit, U, is a LISP atom which has the properties ASET and 

BONDVALUE. 

The ASET is the same as for concepts. The value associated with the property BONDVALUE of U 

is a list of atoms (other concepts and bonds) of the form (P Xl X2 ••• Xn), where P is some 

predicate and Xl , ••• ,Xn are its conceptual arguments (nuclear cases for primitive action 

predicates). 

In addition, information-bearing super atoms in the memory have the following auxiliary 

properties: RECENCY, TOUCHED, SEARCHTAG, TRUTH, STRENGTH, REASONS and OFFSPRING. 

Concept and token superatoms have only the first three. Also, each concept which is a 

conceptual predicate in the memory has five additional properties: CASES (ACTs only) which 

specifies the case mapping from graph slots internal bond positions XFORM which is a template 

specifying the Conceptual Dependency structure which will express in CD format any memory 

structure which involves that predicate, and IPROG, SPROG, NPROG, which store inference-related 

LISP program modules associated with that conceptual predicate. 

. 3.6 REPRESENTING AND STORING TIME 

How should time information be represented in conceptual 
memory? What time entities and relations are needed? 

There are three general approaches to the problem of how to represent and manipulate 
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time in a model: (1) ignore it, (2) make it an implicit part of the control structure (say, by 

partitioning memory on the basis of time, or by carrying along "states of the world"), or (3) make 

time an explicit aspect of all data, representing it in the same general structures as everything 

else. I have chosen the third approach because it appears to be potentially the most general. , 

Any model whose main goal is to cope with natural language and what that language 

communicates must be prepared to deal in considerable detail with time. This includes keeping 

track of times of events and states, maintaining relationships between the times of events and 

states,· and supplying proof procedures to interrelate the various time predicates of the model, 

and sensitizing to time aspects all conceptual inferences for which time is a critical dimension. 

Furthermore, it is an important realization that much of what we would term our "knowledge of 

normality in the world" bears heavily on the maintenance of time relations in the system. We will 

later see a type of conceptual inference which is wholly concerned with the maintenance of time 

relations in the memory. It is the purpose of this section to describe the philosophy of the 

memory's sensitivity to time from the standpoint of representation. This involves describing what 

time predicates and relations there are, and how they are used in the mOdel. 

While the memory is not strictly an analytica! psychological model, I have emphasized that a 

reflection of psychological intuition in the model is highly desirable. For some limited tasks, it 

might be adequate to maintain a "state of the world" type data base where every unit of 

information in the memory, and only those units, is viewed as true at the present time. But this is 

simply not the total picture of the way people (successfully) deal with time. The major 

inadequacy in a model which handles time this way is that once information about the modeled 

world becomes false or is superceded by a newer piece of information, the old information is 

forever lost. In a model for which there is a well-defined task to be accomplished, and this task is 

sensitive only to the current state of the world (say, a factual question-answering system, or a 

model of traffic flow) this approach works nicely. The problem of understanding the conceptual 

content of natural language utterances is not such a simple domain. There must be ways to 

distinguish past, present and future not only because they are commonly refelected in language, 

but because most inferences are sensitive, in varying degrees, to time. Also, when the memory 

needs to communicate with the outside world via the conceptual generator, it must be able to 

express detailed tense information. This information must somehow be deriveable from time 

structures in the memory. 
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At the other end of the spectrum from "state of the world" models is the approach whose 

, tenet is the following: remember everything. That is, propositions should not be thrown away 

simply because they become out of date or irrelevant. This is not to say that a real (human) 

memory does, or should remember everything. There are important psychological, and above all 

practical, arguments against such a claim. However, the criteria for removing a proposition from 

memory are quite a bit more complex than simple truth or falsity at a given time of the WOt itl, 

is not my intent to discuss in any depth the problem of forgetting. Becker [B1] has some 
'" 

interesting ideas on this subject. 

I have taken this alternative approach by having the model remember everything. A 

forgetting function is viewed simply as an addition to the system at a higher level. To claim that 

the lack of forgetting or retrieval-degrading functions has any bearing on the algorithms which 

maintain time is ludicrous: there must still be processes which are capable of working on 

whatever information is available: in particular, perfect information. 

. 3.6.1 TIME TOKENS AND RELATIONS: THE REQUIREMENTS 

So much for the philosophy; What do we need to do the job? There must clearly be time 

tokens and time relations. A time token represents either a point on the model's absolute time 

scale, or a duration on this scale. (In the current model, this scale is the number of milliseconds 

the LISP core image has run. It would more appropriately be the number of seconds since some 

starting date.) A time point is simply a token, X, whose occurrence set contains an (lSA X #TIME), 

and probably some .other time relations which I will describe. A time duration is a concept, X, 

whose occurrence set contains an (ISA X #DURATION) and a specification of its length, N, in scale 

units: (TVAL X N). 

To illustrate what kinds of time relations the memory must record, let's examine an 

extremely simple story. Consider the following two-liner: 

John had a book. 

He gave the book to EI len. 

Assume the time of utterance of the first line is #NOW, that is, the present. For the purposes of 
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illustration, I will use #NOW as though it were a point in time -- a time token. In reality, each time 

the conceptual analyzer completes a conceptual graph and sends it to MEMORY, a special function 

is evaluated which creates a new time token with which it then associates the current numerical 

value of the model's clock. For LISP reasons, this number is stored as a structural feature of the 

token under the property TVAL instead of simply adding another conceptual property (VALUE X 

<number» to the time token, X's, occurrence set. By creating a time token which uniquely 

identifies the time of utterance, all other time references in the utterance have a concrete and 

uhique. pivot. 

In this story, the first sentence predicates that it was true at some point in the past of 

#NOW that John possessed a book. The conceptual graph MEMORY receives from the analyzer 

has the form shown in Fig. 3-10. 

«ACTOR (BOOK) <=> (POSS) VAL (JOHN)) TIME (TIMe!)) 

TIMee: NOW 
T I Me!: (BEFORE T I Mee NI Ll 

Figure 3·10. "John had a book." 

The memory will create a POSS bond to stand for the state, a token to r.epresent the point 

in time at which the state is being predicated to be true, then will add all known relations about 

this time point to its token's occurrence set. In this case, the only known relation is that it was 

before another time token -- the one created .to represent #NOW, the time of utterance. Since 

time is a conceptual requirement for any event or state which occurs in the world, by 

convention, any proposition in MEMORY stored with no time predications is a timeless statement 

-- a belief about the world which is invariant with time. 

The internal structure which results from the analyzed descriptive form is depicted in Fig. 

3-11. 
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~(POSS * *) 
(TIME * *) l ~ 1lSA # #PERSON) 

, \# (NAME # JOHN) 

# (ISA # #BOOK) 
<I SA # #T I ME) 
<BEFORE # *) 

~ # 
( I SA # #T I ME) 
(TVAL # N) 

N is the numerical "now" on MEMORY's internal time scale. 

Figure 3-11. "John had a book", internalJy. 

The second line of the story is analyzed into the following descriptive unit: 

«ACTOR (JOHN) <-> (ATRANS) OBJECT (BOOK REF (THE» FROM (JOHN) TO (ELLEN» 
TIME (TIMalJ) 

TIMae: NOW 
T I Mal: <BEFORE T I Maa NI l) 

Assume the references to the correct book and John are found, and that this information 

has been processed into internal form in the same way the first line was. Also assume that, 

among others, three inferences subsequently made are (1) that John in fact had the book at the 

time he gave it, (2) that after he gave it, he no longer had it, but rather (3) Mary started having 

it. These three new facts (the second sentence, and two inferences which arise from it) augment 

the existing structure as shown in Fig. 3-12. Notice that the information communicated by the 

first sentence remains. 
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3.6.4 TIME EXAMPLE 

The following example will serve to tie together these simple ideas about time: "Ethel had a 

knife for several hours yesterday before she gave it to John." This sentence results in the 

structure shown in Fig. 3-13. Again, only enough occurrence set to distinguish each token is 

shown there. 

r 
(TS * *) ---------------------~ 

*~ * \p2J # 
(ISA # #TIMEl 
<BEFORE # *) #~ 

~i 
~ (JSA tI tlPERSON) 

# {NAME # #ETHELl 
(l SA # #KNI FE) 

(ATRANS * * 

~ 
# 

USA # #TIMEl 
(TVAL tI Ml 

(J SA # tiT! ME) 
(TVAL # N) 

---. .. ~'" # 
( I SA # #PERSON) 
(NAME # JOHN) 

M, N are the absolute times delimiting yesterday, a duration. 

Figure 3·13. 

3.7 COMMENTS ABOUT THE MEMORY 

It is probably accurate to say that this memory is a paltry fraction of what will ultimately be 

required comprehend and use language. And, although it satisfies the six criteria laid out in 

section 3.2, these criteria are merely the ones which seem important today, relative to specific 

tasks of understanding language, especially with regard to conceptual inference. I have had to 

ignore many important issues, and to idealize and simplify many others just to get started. But 

the memory structures I have defined appear to be simple enough to accomodate most any 

future extensions: some sort of homogeneity indeed has been achieved. All that would seem to 

be required for new information forms are the conventions for their storage. 
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For instance, there are well-defined places to store structural information and "real" 

information. If, as an example, the notion of negation is found to be more fundamental than most 

notions, it can be elevated to the structural level, where its presence can exert mOre direct 

influence on the memory's control structure. If direct word-word or concept-concept free­

associations (as contrasted with only associations through conceptual information) are found to 

be vital to understanding (as undoubtedly they will), there are obvious ways of implementing 

them in the memory. If "reasoning by analogy" is to be pursued, there are also some obvious 

ways to approach it in a graph memory such as this. 

It has not been a primary objective of this research to implement efficient associative 

retrieval algorithms. Rather, the emphasis has been more on issues of logical organization and 

flow of information in response to language. All these lofty goals are assumed to be underlied 

by efficient retrieval algorithms. Of course, the problem has not been ignored completely, since 

the program does function (if somewhat inefficiently), and the data structures described were 

designed with timewise-efficient associative retrieval in mind (at the expense of storage 

requirements). Furthermore, some retrieval functions are discussed as part of the theory. 

Section 4.3 discusses some uses of associative searches through conceptual information, and 

chapter 7 covers a few more points about retrieval. 

3.7.1 PARTITIONING THE MEMORY 

It should be made clear that I have chosen not to partition the memory artificially into 

functionally separate units (say, CP, 1M, LTM). Again, lam not primarily concerned with modeling 

the hardware of the brain, but rather its topology from the standpoint of the logical flow of 

information within it. This is not to say that to discover the phYSical flow as well would not be 

interesting and useful. But to do so would, for instance, draw us into issues of what enters and 

leaves CP, why and when. Answers to questions of this type would certainly augment the theory 

nicely, and would give insights about how to limit searches. But much can be done without 

partitions, and as we will see in the next chapter, RECENCY and TOUCHED provide a rudimentary 

form of logical partitioning. 
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3.8 HOW IT ALL HANGS TOGETHER: 
AN EXAMPLE OF AN INTERNALIZED CONCEPTUALIZATION 

I will conclude this chapter with an example of an utterance which is relatively complex with 

respect to this theory. I will show (1) how CD represents it, (2) what the resulting memory 

structure will look like (in schematic graph form), (3) what the LISP representation of the CD 

graph which MEMORY receives from a conceptual analyzer looks like, and (4) the final memory 

structure in a "virgin" memory. 

The example is: 

Mary didn't give Bill the red book which Pete had given her 
because Bill had aggravated her by choking her friend John." 

The conceptual dependency graph which represents this utterance is shown in Fig. 3-14. 
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JOHN 
/ \ 

B}~L J9~N .---. tlJ val 

tl I I <=ESEEEEEj=,======== ~~ FRIEND +----- :::: 

\/ \/ ~_D __ I--~ INSIDE +----- JOHN 
GRASP INGEST ~ 

t t +--- NOSE +----- JOHN 
par t I 0 lO par t 

JOHN----~NECK A R 

MARY <!EE=I~-_~_ ANGER(X+2) 
~ ANGER (X) 

/ \ 

.1 !R--I::: 
MARY <===J'===> ATRANS +----

BILL 

MARY BOOK 
/ \ 

B~OK +----~ III 

! CdLbR +-~~~- REO 

t5 0 

t5 < tl < t2 < t3 < t4 < "NOW" 

PETE <=======> ATRANS +---- BOOK 
l' 

I~I:~: ::~: 
Figure 3·14. 

(The REL link in Fig. 3-14 specifing that John and Mary are friends is in fact repeated at 

each occurrence of "JOHN" in the graph. However, the analyzer creates just one object for this 

John who is Mary's friend, then uses pointers to this object in the LISP version so that anywhere 

the PP "JOHN" appears above, it is in fact just a pointer to this one object. Similar remarks apply 

to all PPs which occur at more than one point in the graph: PPs which have the same name in 

this graph are guaranteed to have EQ LISP pOinters in the computer analysis.) 

This analyzed meaning graph will ultimately map onto the memory structure whose pictorial 

graph representation is shown below. In general, only small portions of each token's occurrence 

set are evident in the graph. 
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~(CANNOT *) 

!TIME • ~~SA C2 "TIME) 1 ~NGEST 
<BEFORE C2 cy 

C1 
( USA C1 ttAIR) 

(CAUSE * *) 

I \Gr 

* * (* cf 
USA C3 ttINSIDE) 
(PART C3 *) 

(TIME * *) 
(CAUSE * *) } USA C5 ttNECK) 

\ 

C6 / (PART C5 *) 

~ 
(lSA C6 ttTIME) L--
<BEFORE C6 C2) 

(TIME * *) 
) NEGCHANGE 

C8~ C9 

C4 
(I SA C4 ttNOSE) (P:2) 
C7 
(ISA C7 ttPERSON) 
(NAME C7 II JOHN ") 
(FRIEND C7 *) 

(! SA C8 ttTI ME) 
(BEFORE C8 C11) 

(l SA C9 ttPERSON) 
(NAME C9 II BILL II ) 

(CAUSE * *) 
L 

~ (NOT *) 

(TIME * *) 
C11~ 
USA Cll ttTIME) 
(BEFORE C11 ttNOW) 

(TIME * *) (ISA C12 ttBOOK) ~
C12 

~ (COLOR C12 tiRED) 
C13~. (ATRANS * C12 * *) 
(I SA C13 tlTI ME) \} 
(BEFORE C13 C6) " ~ 

C14 
(ISA C14 tlPERSON) 
(NAME C14 "PETE") 

Here, the BEFORE time relations have been specified by atom names rather than pointers 

simply because connecting them would render the illustration illegible. Recall that each 

proposition as well as each concept is stored as a super atom and, as such, can be referenced by 

arbitrarily many other propositions. Also recall that all links are two-way: they have been 
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drawn one-way for clarity in the graph. It is important to remember also that the #<NAME> 

entities in the gr2lph are also pointers to other concepts which are no more than sets of 

conceptual features. The names used merely serve to identify those sets for the sake of 

illustration. 

H ow this graph is internalized, and hawaii the information it contains is extracted are the 

essence of the next chapter. The following is the actual computer structure in which this example 

results. 

The following sequence shows the LISP form of the meaning graph which the memory 

receives from a conceptual analyzer. Section 5.5 describes the syntax conventions for 

representing CD graphs in LISP S-expressions. This particular input to MEMORY is a retouched 

and augmented output of Riesbeck's conceptual analyzer. 

MARY DIDNT GIVE BILL THE RED BOOK 
WHICH PETE HAD GIVEN MARY BECAUSE 
BILL HAD AGGRAVATED MARY BY CHOKING 
MARYS FRIEND JOHN 

LEGEND OF ROLES 

This is the input sentence as the conceptual 
analyzer receives it. Below is the conceptual 
analysis which the analyzer sends MEMORY. 

CON takes an entire conceptual ization 
ACTOR the actor of an action 
<=> the ACT of the conceptual ization 
OBJECT the conceptual object 
PART a modifier asserting a part-of relationship 
VAL the value of some concept with respect to the predicate which VAL modifies 
<=> the attributive relation, taking as rolefiller some relation 
<= the causal relationship. Causal forms are represented as (CON X <= Y). 
~ the REL dependency, used to specify concepts further (takes a complete CON) 
REF the nature of the determiner used with a concept 
TO the directive or recipient "to" case for certain actions 
FROM the directive or recipient from case for certain actions 
TIME a modifier for complete conceptualizations 
MODE a modifier for complete conceptualizations~ taking as rol Ifi Iler a I ist of 

modes. E~amples of modes are *CANNOT*, *NEu*, *CAN*. 
INC the incremental amount by which a statechange occurred. 
A the conjnction of two complete conceptual izations 

( (CON 
«CON 

({CON 
{(ACTOR (BILl) 

<=> 
(*GRASP*) 
OBJECT 
(NECK PART 
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f\ 

(JOHN .. 
((ACTOR (JOHN) 

<E> 
(FRIEND VAL (MARY}}}}}}) 

TIME 
<TIM01)} 

<is 
((ACTOR (JOHN .. ((ACTOR (JOHN) <s> (FRIEND VAL (MARY»») 

<=> 
(*INGEST*) 
OBJECT 
(*AIR* REF (*A*)) 
FROM 
(NOSE PART 

{JOHN .. 
{(ACTOR (JOHN) 

TO 
(*INSIOE* PART 

(JOHN .. 

<II> 
(FRIEND VAL (MARY)}}») 

({ACTOR {JOHN} 
<s> 
{FRIEND VAL (MARY}»»» 

( (CON 
«ACTOR (MARY) <=>F (*ANGER*) <E> T (*ANGER*)) 
TIME 
<T I M03} 
INC 
(-2) } 

<II 
«(ACTOR (MARY) 

<=> 
(*ATRANS*) 
OBJECT 
{BOOK .. 

«ACTOR (BOOK REF (*THE*)) 
<is> 
(COLOR VAL (RED))}) .. 

«ACTOR (PETE) 

FROM 
(MARY) 
TO 
(BILl) } 

<=> 
(*ATRANS*) 
OBJECT 
(BOOK REF (*THE*» 

FROM 
(PETE) 
TO 
(MARY) ) 

TIME 
(TIM0S)} } 
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TIME 
(TI Me4) 

MODE 
( (*NEG*) ) ) ) ) ) ) 

TIMee: «VAL T-e)) 
TIMe1: «BEFORE TIM02 X)) 
TIM02: «BEFORE TIM03 Xl 1 
TIMe3: «BEFORE TIM04 Xl 1 
TIMe4: «(BEFORE TIMee X)) 
TIMes: «BEFORE TlMe1 X)) 

Having received this as input, MEMORY integrates it into its data structures. Below is an 

intermediate structure which has undergone some transformations of form and which contains 

references to real world tokens in MEMORY. 

( (ANDX 
( (CAUSE 

«CAUSE «*GRASP* (#BILLl) (Ceee4)) 
(TIME (Ceee7))) 

«CANNOT «*INGEST* (Ceeell (Cee16) (Cee18) (Cee2ll) 
(TIME (Ceee8))))))) 

«NEGCHANGE (#MARY1) (#ANGERT) 
(TIME (C0e03))))) 

({CAUSE «NEGC"HANGE (#MARY1) WANGER)) 
(TIME (C0ee9))) 

«NOT «*ATRA'NS* (#MARYlJ (C01326) (#MARY1) (#BILLll) 
(TIME (CI313113))))))))) 

MEMORY then completes the "internalization" of this input structure by creating bonds and 

superatoms to represent its various components. At the end of this internalization, the structure 

is represented by superatom C0044. We ask MEMORY to dump itself at this point. 

C131344 

Cee131: NIL 

ASET: 
Cee33: (*INGEST* # C13e16 C13e18 C13(21) 
Ce1323: (PART Ce1321 #) 
Cl3e213: (PART Ceel8 #) 
C13ee6: (PART Ce004 #) 
cee03: (FRIEND # #MARY1) 
C13l3e2: (NAME # JOHN) 

C0044 is the superatom under which the 
entire input structure has been stored. 
Having internal ized the input, we now 
request MEMORY to dump its contents. 
The input was received with MEMORY in a 
"virgin" state, so only this structure 
is present in MEMORY (along, of course, 
with the approximately 21313 virgin structures. 

C0001 is the concept which represents 
the per son named "John" in the i npu t. 
MEMORY was purposefully initial ized with 
two people named John to force the creation 
of this new token. Chapter 8 describes how 
MEMORY wi I I return to this token after 
inferencing in an attempt to decide which 
of the two candidate "John" concepts Ceeel 
references. 
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RECENCY: 8955 

-----------------------------------
C80e2: (NAME ceeel JOHN) 

ceee3: (FRIEND ceeel #MARY1) 

ceee4: NIL 

ASET: 
C0f331: (*GRASP* #BILLl #) 
ceee5: (PART # Ceeel) 
ceee5: (ISA # #NECK) 

RECENCY: 8915 

-----------------------------------
ceee5: (ISA ceee4 #NECK) 

ceee5: (PART ceee4 ceeell 

ceee?: NIL 

ASET: 
cee32: (TIME cee31 #) 
C8e25: (BEFORE cee24 #) 
cee15: (BEFORE # Ceee8) 

RECENCY: 8933 

-----------------------------------
ceee8: NIL, 

ASET: 
cee34: (TIME cee33 #) 
cee15: (BEFORE ceee? #) 
cee14: (BEFORE # Ceee9) 

RECENCY: 8983 " 

-----------------------------------
ceee9: NIL 

ASET: 
cee38: (TIME Cee3? #) 
cee14: (BEFORE ceee8 #) 
ce013: (BEFORE # Cee10) 

RECENCY: 9118 

cee1e: NIL 

ASET: 
cee41: (TIME cee4e #) 
cee13: (BEFORE ceee9 #) 
cee12: (BEFORE # Ceel1) 

RECENCY: 9183 
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ceee2 is the information that the name of 
ceeen is" John 11 • 

cee03 is the information that Ceeel is a 
friend of Mary. MEMORY was initial ized to 
know of only one Mary, Pete and Bi II to 
demonstrate how unambiguous references are 
processed. 

Ceee4 is Ceee1's (John's)' neck which Bi I I 
grasped. 

ceee5 is the information that Ceee5 is a 
neck. 

ceeeG is the information that Ceee5 is a 
par t 0 f Ceeel. 

ceee? is the time at which action Cee31 
occurred. Cee31 is Bi II's grasping of John's 
neck. Notice that its relative position 
on the time scale is recorded in Cee25 and 
Cee15. 

ceee8 is the time of John's inabi lity to 
ingest air, Cee33. 

ceees is the time of Mary's becoming angry 
at B i I I, Cee37. 

ceele is the time at which Mary's ~iving 
the book to Bi I I did not occur. This 
non-event is structure Cee4e. 

90e11 is the time of utterance of the input 



ceell: NIL 

ASET: 
C0012: (BEFORE cee1e #) 

RECENCY: 73GG, TVAL: 8833 

cee12: (BEFORE cee1e Cee11) 

ce013: (BEFORE ceees Ceele) 

cee14: (BEFORE ceee8 ceees) 

cee1S: (BEFORE ceee7 Ceee8) 

Cee1G: NIL 

ASET: 
cee33: {*INGEST* ceeel # cee18 Cee21l 
cee17: (ISA # #AIR) 

RECENCY: 896G 

cee17: USA Cee1G #AIR) 

Cef118: NIL 

ASET: 
ce033: (*INGEST* ceeel CeelG # C0e21) 
C0020: (PART # C000l) 
cee19: (ISA # #NOSE) 

RECENCY: 8983 

cee19: {ISA cee18 #NOSE} 

cee20: (PART cee18 Ceee1) 

ce021: NIL 

ASET: 
cee33: (*INGEST* ceeel Cee1G cee18 #) 
cee23: {PART # Ceee1} 
cee22: (ISA # #INSIOE) 

RECENCY: 8983 

cee22: (ISA cee21 #INSIOE) 

cee23: (PART cee21 ceeell 
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structure. Notice that the system clock has 
been recorded as its TVAL. 

cee12, ce013, Cee14 and Cee1S are the 
relational information among the various 
times alluded to by this input. 

Cee1G is the air which John could not 
ingest. It makes sense to create this 
non-entity: MEMORY might encounter an 
input I ike "John couldn't breathe, but 
the air was poisonous anyway." 

cee17 is the information that CeelS is a 
token of some air. 

cee18 is Ceeel's nose. 

cee1s is the information that Cee18 is 
a nose. 

ceeze is the information that Cee18 is 
par t 0 f Ceeel (John). 

cee2l is Ceeel's insides. 

cee22 is the information that Ce02l is 
an "inside". 

cee23 is the information that Cee2l is 
~ar t 0 f Ceeel (John). 



-----------------------------------
C0024: NIL 

ASET: 
Cee29: (TIME Cee28 #) 
Cee25: (BEFORE # Ceee7) 

RECENCY: 82ee 

-----------------------------------
ce025: (BEFORE Cee24 Ceee7) 

-----------~-----------------------
cee26: NIL 

ASET: 
Cee4e: (*ATRANS* #MARY1 # #MARY1 

#BILL1) 
Cee3e: (COLOR # #REO) 
C0028: (*ATRANS* #PETE1 # #PETE1 

#MARY1l 
Cee27: (ISA # #BOOKl 

RECENCY: 9183 

-----------------------------------
ce027: (ISA Cee26 #BOOK) 

-----------------------------------
cee28: (*ATRANS* #PETE1 Cee26 #PETE1 

#MARY1) 

ASET: 
Cee29: (TIME # Cee24) 

-----------------------------------
cee29: (TIME Cee28 Cee24) 

-----------------------------------
cee3e: (COLOR Cee26 #REO) 

-------------------------------~---
cee31: (*GRASP* #BILL1 Ceee4) 

ASET: 
Cee36: (CAUSE # Cee35) 
Cee32: (TIME # Cee07) 

cee32: (TIME cee31 Ceee7) 

cee33: (*INGEST* ceeel cee16 cee18 
Cee21) 

ASET: 
cee35: (CANNOT #) 
cee34: (TIME # Ceee8) 

------------------------------~----
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C0024 is the time at which Pete gave the 
book to Mary. 

cee25 is the information that the time 
of Pete's giving Mar~ the book was before 
Ce007, the time of BI II's grasping JOhn's 
neck. 

C0026 is the red book which Pete gave to 
Mary, and which Mary did not give to Bi I I. 
(C0e4e is modified by a NOT). 

C0027 is the information that C0026 is a 
token of a book. 

ce028 is Pete's giving of the book to Mary 
at time Cee24. 

C0e29 is the information that Pete's giving 
the book to Mary occurred at time CeeZ4. 

C0e3e is the information that the book is 
red. 

C0e31 is Bi II's grasping of John's neck (in 
the choke action}. Notice that it caused 
C0035, John's inabi I ity to ingest air. 

ce032 is the information that Bi II's 
grasping action occurred at time Caae7. 

ce033 is the ingesting action which John 
(Ceee1) was unable to perform at time Ceee8. 
Notice its CANNOT modification, Cea35. 

9ge34 is the inlormation that the time 



cee34: (TIME Cee33 Ceee8) 

cee35: (CANNOT Ce033) 

ASET: 
Cee36: (CAUSE Ce031 #) 

cee36: (CAUSE Ce031 C0035) 

ASET: 
Ce038: (CAUSE # C0037) 

C0037: (NEGCHANGE #MARY1 #ANGER) 

ASET: 
C0043: (CAUSE # Cee42) 
C0039: (CAUSE Cee35 #) 
C0B38: (TIME # CBBOS) 

CBe38: (TIME Cee37 CeeOS) 

C0039: (CAUSE Cee35 C0037) 

ASET: 
C0044: (ANDX # C0043) 

C0040: (*ATRANS* #MARY1 C0025 #MARYl 
#BILLl) 

ASET: 
Ce042: (NOT #) 
C0041: (TIME # C0010) 

C0041: (TIME C0040 Cae1a) 

C0042: (NOT C0040) 

ASET: 
ce043: (CAUSE ce037 #) 

C0043: (CAUSE C0037 C0042) 

ASET: 
cee44: (ANDX C0039 #) 

ce044: (ANDX C0039 C0043) 

#BILLl: NIL 
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of John's inabi I ity to ingest air was Ceee8. 

ce035 is the information that John's 
ingesting action was unable to occur. 
Not i ce that it was caused by Ce031, B i I I' s 
grasping action. 

C0035 is the information that Bi II's grasping 
caused John's inability to ingest air. 
Notice that C0035 in turn caused COe37, 
Mary's incipient anger (aggravation). 

C0037 is Mary's increase in anger which 
was caused by C0036, and which in turn 
caused C0042, Mary's not giving Bi I I the 
book. 

CB038 is the informati6n that Mary's 
increase in anger occurred at time Ceee9. 

C0039 is the information that Mar~'s 
increase in anger was caused by BI I I's 
choking of John. 

C0040 is the giving of the book to Bi I I 
which Mary didn't perform at time Cee1e. 

C0e41 is the infomation that the time of 
Mary's unwi I I ingness to give Bi II the book 
was C0~n0. 

C0042 is the information that Mary's giving 
action did not occur. 

C0043 is the information that Mary's anger 
caused he not to give Bi I I the book. 

C0B44 is the information that two events 
occurred. C0044 constitutes the complete 
input structure. 

Finally, we have a look at Mar~, Bi I I and 
B~te as they exist after this Input. Innnn 



ASET: 
cee4e: (*ATRANS* #MARY1 ce026 

#MARY1 In 
ce031: (*GRASP* # C0004) 
Ieee8: (ISA # #PERSON) 
Ieee7: (NAME # BILLl 

RECENCY: 9183 

-----------------------------------
#MARY1: NIL 

ASET: 
cee4e: (*ATRANS* # C0026 # #BILL1) 
cee37: (NEGCHANGE # #ANGER) 
ceeZ8: (*ATRANS* #PETE1 cee26 

#PETE1 #) 
ceee3: (FRIEND cee~H #) 
leee4: (ISA # #PERSON) 
le0e3: (NAME # MARY) 

RECENCY: 9183 

#PETE1: NIL 

ASET: 
C00Z8 (*ATRANS* # C0026 # #MARY1) 
leZ0Z (ISA # #PERSON) 
10ze1 (NAME # PETE) 

RECENCY: 6833 

structures are in general those which were 
present in the virgin system. 
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CHAPTER 4 

GETTING CONCEPTUAL GRAPHS INTO THE MEMORY: 
REFERENCE, WORD SENSE PROMOTIONS, INTERNALIZATION 

In the last chapter, I discussed the main issues of representation for a conceptual memory. 

We turn now to more process-oriented issues: how does the meaning graph become a memory 

structure, and what effects does this have on the memory. There is again a multitude of issues 

here, and I have addressed those which seem to be most typical of the kinds of processing at 

this language-memory interface. The general issue is how the analyzed conceptual graph is 

transformed into internal memory structures. Within this main topic, we will cover the following 

five areas: 

1. the identification of concepts and tokens from sets of conceptual features 

2. the creation of temporary tokens for those tokens and concepts which cannot be 
identified 

3. the activation of concepts and tokens, and the memory's interaction with the 
conceptual analyzer in this regard 

4. the creation of bonds to store all the sUb-conceptualizations contained in the 
conceptual graph. This includes the mapping of time references and deictic time 
concepts onto concrete time tokens. 

5. the extraction of subpropositions from the graph to form the initial set of structures 
from which conceptual inferencing will begin 

4.1 REFERENCING CONCEPTS AND TOKENS FROM LANGUAGE: 
DESCRIPTIVE SETS 

The words which appear in an utterance are gone by the time the 
memory begins processing. All that remains is conceptual 
information. What does the conceptual information which 
identifies a concept or token look like? 

Since most of the original words of an utterance are gone from the conceptual graph which 

is the product of the conceptual analyzer, it is a meaningful question to ask what becomes of the 

words, and how the memory uses what it gets to identify or create concepts and their tokens 

before other other processing begins. This section describes this interface. 
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For words in the sentence which might reference concepts or their tokens, the analyzer's 

job is first to choose the correct lexical sense of the word, or make a best guess based on its 

conceptual context. This identifies a conceptual PP ("picture producer"). This mapping of a word 

onto a PP (sense choice) makes available all conceptual knowledge about that PP. For example, 

when the word "John" is mapped onto the PP which is a male human with name "John", the 

conceptual features: 

( r SA tI tlPERSON) 
(SEX tI tlMALE) 
(NAME tI JOHN) 

stored with this PP become available. The "poundsign" is used to denote the object being 

described. These conceptual features become the kernel of the language-referenced concept's 

descriptive set. 

A descriptive set is an unordered list of conceptual features which 
describe some concept or token (or perhaps many concepts or 
tokens). 

Any other conceptual information about this object the analyzer can glean from the 

sentence augments this kernel. Such information typically comes from sentential adjectives and 

relative clauses which correspond to individual pieces of conceptual information. 

For the PP, "the big red dog who ate the bird", the descriptive set shown in Fig. 4-1 would 

arise. Note there that I have written some internal memory concepts (#DOG for instance). The 

process of reference identification is recursive, so that they too have previously been 

referenced by other descriptive sets. Had these been shown in Fig. 4-1, #DOG, for instance, 

would be replaced by the descriptive set { (lSA # #ANIMAL) (NAME # DOG) }. 
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X: { (ISA X #OOGI 
(COLOR X #REOI 
(RELSIZE X #LARGE) 
( Y: (INGEST X 

{ (ISA # #BIROI (REF # *THE*) } 
{ (ISA # #MOUTH) } 
{ (ISA # #STOMACH) 

(TIME Y { (ISA # #TIME) (BEFORE # #NOW) } } 

Figure 4·1. Descriptive set for "The big red dog who ate the bird". 

Notice in Fig. 4-1 that the fourth member of X's descriptive set (the INGEST feature) has a 

time modification. In general, any descriptive set element can have its own additional modification. 

This is the general form of a descriptive set member; the first members (ISA, COLOR, RELSIZE) are 

simple cases (they have no nested modifiers). Since, empirically, language rarely ventures beyond 

these two levels of nesting in this respect, the program is equipped to deal with only this 

secondary level of modification. 

Fig. 4-2 shows the general form of a descriptive set which can be processed by the 

memory. 

{ ( <feature> <modifier> ... <modifier> ) 

. 
{ <feature> <modifier> ••• <modifier> 

Figure 4·2. Syntax of a descriptive set. 

4.1.1 MULTIPLE OCCURRENCES OF A CONCEPT IN A GRAPH 

The conceptual analyzer guarantees that, for two PPs Or conceptualizations which (based on 

the analyzer's linguistic knowledge) reference the same real world concept or event, not only 

will their descriptive sets be identical, but they will be LISP "EQ" in the graph. That is, all 

occurrences of them in the graph will point to the same physical descriptive set. Thus, in the 
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JOHN 

conceptualization "John gave Bill the apple" (Fig. 4-3, left), although "John" occurs in the 

conceptual graph twice, in reality, each occurrence is a pointer which references the same 

descriptive set (Fig. 4-3, right). This equality is also preserved for entire subconceptualizations 

which reference the same state or action. 

P 
<===> 

o 
ATRANS ~--- APPLE 

l' 
I~I:--~ SILL 

~-- JOHN 

/

(the apple's 
descriptive set) 

p 0 

*\<===> ATR~I~SI~_~~_--**~ (the descriptive 
~ setforSill) 

{(ISA II IIPERSON») 
(NAME II IIJOHN)} 

Figure 4·3. "EQ;' LISP pointers to identical references within a graph. 

During the internalization process, the memory maintains a list, !REFLlST, of pOinters to all 

descriptive sets and subconceptualizations which have been processed (identified with internal 

memory units) up to that point in the internalization process. Before each new descriptive set or 

subconceptualization is processed, its membership on !REFLIST is first checked, and if it is found, 

the associated memory structure which resulted from previous references to it is used with no 

further processing. 

4.1.2 WHEN REFERENT IDENTIFICATION IS PERFORMED 

The descriptive set is the unit which memory receives from the analyzer for each concept 

and token referenced in an utterance. In theory, the memory may be called either during or 

after the conceptual analysis to attempt an identification of the token or concept referenced by 

some descriptive set. The former case typically will occur when the analyzer can predict that it 

would be useful to the analysis to have more specifiC knowledge about the concept. If the 

referent can be identified at that time, its entire occurrence set (everything known about it) will 

become available to the analyzer, and this newly accessible knowledge can subsequently 

influence the interpretation of the utterance or of future utterances. "John's pitch was foul" is 

such an example. In this utterance knowing more about John could solve the ambiguity of "pitch". 
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Although this form of analyzer-memory interaction remains to be exploited in the current 
implementation, the nature of the interaction is stra.ightforward: the analyzer passes the memory 
a reference request in the form of a descriptive set (all the features collected about an entity so 
far), and the memory returns with one most likely referent, or a list of candidates if more than 
one referent is likely. Normally, because of the RECENCY heuristic I will describe, there will be 
only one. Notice that this is one place at which the solution of anaphoric references logically fits 
in the processing sequence, although much research remains to be done in this area. 

!n the case where the analyzer can get along with only PP's, rather than fully-identified 
memory concepts and tokens which have actually been identified, referents are not identified 
during the analysis. Rather, the entire graph is constructed, then passed along to the memory. 
This is the nature of the current analyzer-memory interface. 

The process of reference establishment therefore occurs as part of the larger task of 
getting the analyzed graph -- which consists of descriptive sets connected by conceptual links -­
into memory structures suitable for conceptual inferencing. I have called this process 
integration. In the next section, we will cover the first two tasks of the five listed at the 
beginning of the chapter. 

4.2 THE REFERENCE MECHANISM: 
SEARCHING FOR REFERENTS OF DESCRIPTIVE SETS 

How are concepts and tokens actually identified from a descriptive set? What happens when a descriptive set identifies more than one concept or token? 

The process which identifies memory concepts and tokens from descriptive sets is called 
the reference mechanism, Or just the "referencer". FOr descriptive set, D, its task is to discover to 
which of the memory's large number of concepts (and still larger number of tokens) D refers, so 
that occurrences of the descriptive set in the conceptual structure can be replaced by internal 
memory pOinters to its referent. To do this is to gain access to occurrence set of some internal 
token Or concept (all its conceptual features), and this access is crucial to the process of 
inferencing which we are leading up to. 
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4.2.1 ORDERING THE DESCRIPTIVE SET 

The first step for the referencer is to reorder 0, using a very simple "reference 

significance" heuristic. Before describing it, let's see why the ordering of the set has any 

significance in the first place. Consider the reference "Henry Kissinger, who is in Peking, ... ". 

Suppose the descriptive set is given to the referencer with the order shown in Fig. 4-4, and 

suppose the memory knows Dr. Kissinger (has a token for him), but didn't happen to know he is 

in Peking. If the memory were first to search for an X, such that X is in Peking, Kissinger would 

not be- in the set thus located. Yet it is patently obvious to a human language user that this new 

information is indeed new, and that the name of X alone serves as a positive identification. In 

other words, new information has been communicated via a descriptive set, and we don't want 

this in general to disrupt the identification of an otherwise obvious reference. Computers are 

dumb, so we have to help out; this is the goal of this reordering. 

(LOC X #PEKING) 
(ISA # #PERSON) reference attempt 
(NAME # #HENRYl ===================> 
(SURNAME # KISSINGER) 
(1 SA # #MALE) 

"SORRY, I DON'T KNOW ANYONE 
IN PEKING BY THIS NAME!" 

Figure 4-4. A dumb reference mechanism. 

The ordering is simply a heuristic measure upon which all system predicates are rated 

according to their nominal usefulness to reference establishment. For example, NAME, SURNAME, 

SEX, and ISA all have very high values because they are very powerful and concise units of 

information from which to identify referents, while ACT and STATE predicates (such as the LOe 

in this example) have lesser values. This ordering will force the search to look first at those 

conceptual features which are usually very critical to the correct identification of a referent. 

It should be clear that this ordering is not necessarily from most-specific to least-specific. 

Rather, it is designed to increase the odds that the intersection search which we will describe 

shortly will not fail simply because the descriptive set contains some obscure or new feature 

which would eliminate the correct referent, C, from the search because that relatively 

insignificant feature was not previously known about C. 

Hence, for the decriptive set above, we would like the reordering shown in Fig. 4-5. 
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(SURNAME # KISSINGER) (NAME # HENRY) reference attempt (SEX # #MALE) =================z=> (I SA # PERSON) 
(LOC # #PEKI NG) 

"AH YES, MY GOOD FRIEND HENRY. DIDN'T KNOW HE WAS IN PEKING, THOUGH." 

Figure 4·5. The same dumb referencer, working with a reordered descriptive set. 

Thus, if the memory hadn't previously known that Kissinger was in Peking, the LOC element 
of the descriptive set would not interfere in the identification of Kissinger. 

Also, it should be pointed out that this reordering does not buy any theoretical power. It is 
merely a guess about what is likely to be the optimal order in which to perform the intersection 
search which locates referents. It also aids in deciding when a descriptive set describes some 
token or concept "closely enough" to match, and when to augment the matched entity's 
occurrence set with those descriptive features of lesser importance which were not successfully 
used in the identification. As we will see, when the intersection search can unambiguously locate 
a referent from this reordered descriptive set before the set is exhausted; descriptive features in 
the remainder of the set stand a chance of conveying new information about the identified 
referent. As such they should be checked, and if they are new, they can provide One sOurce from 
which to generate conceptual inferences. 

4.2.2 THE INTERSECTION SEARCH 

The intersection search is straightforward, and occurs as follows. Starting with the first 
feature in the reordered descriptive set, D', the memory locates all entities in the memory which 
satisfy this feature. These entities are placed on a list as the remaining candidates. Each 
candidate is then tested for the second feature in the descriptive set, and those which survive 
become the remaining candidates. This process continues until one of the following occurs: 

1. D' has been exhausted 

2. exactly one candidate remains 

3. the next feature in D' would cause the candidate set to become null 
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In a large, information-rich memory, such as that of a language user, at least one object will be 

found on most occasions. 

In the memory, if exactly one is found, it is assumed to be the referent. It augments !REFLIST 

and will replace occurrences of the descriptive set in the graph. When more than one object is 

found in the intersection, each one is examined for RECENCY, which stores the value of the 

system clock at the time a successful reference to that object was last established. If this 

information breaks -the tie, the most recent object is selected. Otherwise, each candid~:e's 

TOUCHED property is examined. Recall that TOUCHED is like recency, except thp~ it records 

implicit references to a concept or token which have been drawn out bY' other memory 

processes rather than by language directly. If one of the candidates has a more recent TOUCHED 

value than the rest, it is selected. We will see later how TOUCHED can be of extreme significance 

to this process. 

If the intersection search begins to locate a candidate set, but some feature on the 

descriptive set would cause the next intersection to rule out all candidates, the search is 

suspended. The remaining features which have not yet played a part are then scanned, keeping a 

tally of how many are satisfied by each candidate. If one candidate satisfies more features than 

the other candidates, it is chosen, and the features it did not satisfy are assumed to be new. For 

a candidate, C, to "satisfy" a feature simply means that C possesses that feature exactly. 

However, I would eventually like to make this notion of "satisfy" looser. 

If no one candidate can be selected over the others, no decision is made at that time. More 

will be said about this later. 

4.2.3 ADDITIONAL HEURISTICS -- AND PROBLEMS 

It might be pointed out that, in addition to information explicitly contained in the descriptive 

set, there are other heuristics which the memory could use in selecting a referent. Among them 

is the hearer's modeling of the speaker. For instance, if John refers to Bill while speaking to Sue, 

Sue (and the memory, should it also hear John) may usefully assume that this Bill lies in the 

intersection of Sue's and John's acquaintences. That is, the descriptive set can be augmented by 

this modeling information: 
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II: { (NAME II BILl) 
( I SA II #PERSON) 
(ACQUAINTED 1/ I/SUE) 
(ACQUAINTED 1/ #JOHN) 

However, this type of modeling is not presently performed. 

Besides this absence of modeling, there are many other subtle problems with this process 
of intersection searches for referents. The basic one is deciding which features of the 

descriptive set to ignore (selectively) in case the intersection of all of them turns out to be nul/. 
The problem is: which combination of features is likely to be useful when all features together 
yield a null intersection? To make this process more intelligent than it currently is, some fairly 
subtle heuristics will be needed to avoid the combinatorics of features taken N at a time. This is 
one point at which more theory remai.ns to be developed for descriptive sets and the 
identification process. 

However, in practice, the algorithm I have described will be successful enough of the time 
so that this is not a major issue in the total picture of the memory. We might conjecture that the 
reason for this is that speakers tend to include in descriptive sets exactly what they feel is most 
important to the hearer's correct and expedient identification of the entities being referenced (in 
the context in which they are referenced). This is an important facet of how the speaker models 
the hearer. How he chooses to identify X when speaking to PI can be entirely different from how 
he chooses to identify X when speaking to P2, and these choices are based on his models of 
what he believes PI and P2 know about X. As we will see in the following chapters, some types 
of conceptual inference rely On a rather crude ability to model other people's knowledge, but 
nOne of these involve quite so subtle a problem as this. 

4.2.4 HANDLING UNIDENTIFIED REFERENCES 

When the reference search algorithm 

(a) fails to locate any candidates for the referent of a descriptive set, D, or 
(b) locates several candidates, but none can be selected over the rest, 

the referencer creates a new token, T, to represent this unidentified referent of D. In case (a), D 
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becomes T's starting occurrence set. That is, the memory doesn't yet know what it has, but it is 

willing to go along with it at this point. In addition T is recorded on the list !REFNOTFOUND to 

note this reference failure. 

Quite often, conceptual inferences will arise which will contribute new features to T's 

occurrence set, and these new features will be of use in determining the referent after the 

inference mechanism has finished. In other cases, the referent simply will never be determined: a 

new concept or token has in fact been introduced, or an existing one has been referenced in 

such an obscure way that the reference is impossible to establish. These cases (members of 

!REFNOTFOUND) provide one source from which the memory can generate questions at a later 

time. 

An example of case (a) above (no candidates can be located) is: 

John ate a green frob 

where the memory would be incapable of locating something whose NAME is "frob", the concept 

of which this green object is a token. It would therefore create a new concept as shown in Fig. 

4-6. Having done so, it could then create a token of this new concept which is green and which 

John ate. 

(INGEST #JOHN * * *) 

\ " '" ~ ~NAME # FROB) 

(JSA # *) 
(COLOR # #GREEN) 

Figure 4·6. 

4.2.4.1 WHEN SEVERAL CANDIDATES ARE LOCATED 

In case (b) above -- when several candidates for the referent are located -- a temporary 

token, T, is also created. It is then associated with its candidate set: 

{ <new token> <candidate> <candidate> ••• <candidate> 
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and this association is added to a special list, !REFDECISION, which will be used later after 
inferencing. 

In other words. the choice of referent is deferred for the time being. 

The hope is that, by generating new information about T during the process of inferencing, 
new features of T will be turned up which can either narrow the candidate set or choose one 
candidate unambiguously. Since chapter 8 is devoted to this reference-inference interaction, I 
will not go into it here. 

This new T which stands for one of the candidates receives as its beginning occurrence set 
all those conceptual features which lie in the intersection of the features of all its candidates. 
This will be at least the descriptive set, 0, from which the candidates were determined in the 
first place, but it may also include other features which are common to all the candidates. By 
locating these common features and associating them with the temporary token, T, the chances 
for making important inferences involving T increases, since many inferences will be dependent 
upon T's partial conceptual features. 

Fig. 4-7 illustrates this ability to defer reference decisions until inferences have had a 
chance to contribute new information. The example shows a simple case involving two candidates 
for some person named "John". 
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DESCRIPTIVE SET: { (NAME tI tlJOHNl USA tI PERSON) (SEX tI MALE) 1 

MEMORY CANDIDATES: 

THE TEMPORARY TOKEN: 

# 
( I SA tI #PERSON) 
(NAME # JOHN) 
(ACQUAINTED # tlBILL23) 
(SURNAME tI SMITH) 
(AGE tI 25) 
(PROFESSION tI tlPlUMBER) 
(POSS tI C12(3) 
(SEX # tlMALE) 

tI 
( I SA # #PERSON) 
(NAME # JOHN) 
(SEX # #MALE) 
(AGE tI 25) 
(ACQUAINTED # #BILL23) 

tI 
{ I SA tI tlPERSON} 
(AGE tI 25) 
(MFEEL tI tlPOSEMOTION tlMARY17) 
(SEX tI tlMALE) 
(NAME Ii JOHN). 
(ACQUAINTED tI tlBILL23) 
(SURNAME tI JONES) 

the temporary token's 
starting occurrence set 
consists of al I features 
shared by the candidates 

Figure 4-7. Deferring reference decisions. 

4.2.5 REFERENCE SIGNALS AND THE SPECIAL PREDICATE "REF" 

How are references to tokens of a concept distinguished from 

references to the concept itself? That is, what conceptual 

information from the analyzer signals these different cases, and 

how does the memory use this information to locate or create 

concepts or their tokens? 

The descriptive set of a concept or token which is gathered from an utterance by the 

conceptual analyzer typically consists of a (NAME X Y) feature, perhaps a (REF X Z), and usually 

two or three other conceptual features of X which were either explicitly found in the utterance 

or inferred by the analyzer, using language-specific knowledge, knowledge about conceptual 

case restrictions, and so forth. It is the reference-finder's task, given this set of propositions, (a) 

to arrive at the best possible identification of the concept at that point, (b) to note whether any 

decision was made in doing so, or (c) to note that the concept was not identified and 

consequently had to be created from the conceptual propositions given. This section describes 

the effects of the predicate REF on this process. 

REF is a special kind of conceptual predicate: the information it conveys about a concept is 

107 



in the form of a signal, which indicates the kind of processing the reference-finder should 
perform in order to locate the object described by the descriptive set. In the current program, 
there are three forms of this REFerence signal: *A*, *THE*, and null (REF is absent). The effects 
of these three reference signals are of considerable significance to the manner in which the 
referencer treats the rest of the descriptive set in which the REF occurs. We will consider each 
of these three signals individually. 

sam pIe: John gave Marya book about whales. 

sam pIe: Bill bought some spoiled milk. 

Consider the analyzed graph component which references "a book about whales" in the first 
sample. This will have the form shown in Fig. 4-8, namely, "a book in which are located concepts 
which involve the concept whale". This form directs the memory to create a token of the concept 
which is identifiable by the feature (NAME # BOOK), together with other conceptual features of 
this PP, BOOK, which are stored on its property list, and which distinguish it from the PP's to 
which other senses of the word "book" refer. For the PP BOOK, suppose this feature set consists 
of just one of her feature: (ISA # *,PRINTEDMA HER). 

Figure 4·8. A REF *A* signaled descriptive set. 

The memory must therefore first identify the referent of this concept, C, from the 
descriptive set: 

{ {NAME # BOOK} (ISA # #PRINTEOMATTER) I 

before it can be concerned with the particular token of this concept which is being referenced. 
As we have seen, C will either be uniquely located, or a temporary ~oncept will be created to 

. represent it. In this example, #BOOK will be located. 
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Having identified C as #800K, the memory must then create a new token, T, of this concept. 

Since an indeterminate reference is nominally a signal that a new token is about to be 

introduced, nO intersection search to locate an existing token should be performed. Rather the 

token should simply be created and accepted as new. The T thus created will serve as the 

referent and will (correctly) never wind up on the list !REFNOTFOUND. 

In this example, the descriptive set which defines T(C) will be the remainder of the original 

descriptive set, plus an (lSA # C) to indicate the concept of which this token is an instance. Since 

C will be #800K, the token's defining descriptive set will be 

{ USA # #BOOK) (MLOC X #) ) 

where X stands for the token which represents these concepts about whales. This token will 

have been recursively created by the same mechanism described here. T will soon thereafter 

receive the additional occurrence set member (ATRANS #JOHN T #JOHN #MARY) during the 

internalizing process described in section 4.5. After the complete reference and internalization 

process, the resulting memory structure for this reference will be that shown in Fig. 4-9. 

the result of the 
inefinite REF *A* 

~# 

# 
(ISA # #PRINTEDMATTER) 
(NAME Ii BOOK) 

II 
(lSA # *)._----~ (ISA II IICONCEPTS) 

(INVDLV * II) 
(MLOC * #) 

~::V*"'-. 
( I SA II IIPERSON) 
(NAME II JOHN) 

# 
( I SA II IIPERSON) 
(NAME II MARY} ... 

~ Ii 
(l SA Ii liANI MAll 
(NAME Ii WHALE) 

Figure 4-9. The book about whales which John gave Mary. 
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4.2.5.2 REF *THE* 

sam pie: Mary has the book about whales. 

sample: The nurses were nice. 

The reference signal *THE* conveys much the same information as *A*. That is, a token of a 
concept is the object of the reference. However, instead of creating this token, the memory is 
signaled to locate it: the definite reference in general presupposes the hearer to be able to 
identify some existing token with a recent RECENCY or TOUCHED tag. REF *A* on the other hand 
signals the introduction of what the speaker believes to be a new token to the hearer. This may 
not always turn out to be the case, and, although memory's response to REF *A* is always to 
create a new token, this token may later be identified with some existing token by the inference 
evaluation function described in section 7.5. 

In case the reference mechanism cannot find the specific token referenced by this 
determinate descriptive set, a new token is created, and added to the special list, !REFNOTFOUND, 
to record that the referencer is concerned about its failure. Its presence on this list can later 
serve to frame a question of the form "What X?" 

4.2.5.3 NULL REF 

sam pJe: Books have pages. 

sampJe: Mary likes milk. 

Null reference is signaled by the absence of a REF predicate. Null reference indicates that 
the concept itself described by the descriptive set is to be the referent. Creation of new 
concepts which are unrecognized and decisions when the referent is ambiguous are performed 
as with REF *A* and *THE*. The identification of people by their names falls into this category: 
Bill refers to some concept which ISA #PERSON, and whose NAME is BILL, not to a token of 
something which ISA #PERSON and whose NAME is BILL. 

4.2.5.4 A SUMMARY OF REFERENCE SIGNALS 

These three forms of reference signal cover most forms of declarative or imperative 
utterances. However, for references within interrogative utterances, the REF signal *A* requires 
a different interpretation. In this case, the concept to which it refers is assumed to be implicitly 
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existentially quantified. For instance, "Does Mary have a book?" means "Is there an X in Mary's 

possession such that (ISA X #800K). In this context, no token should be created. Rather the 

descriptive set should serve as a template to a pattern-matcher or proof procedure. This is not 

true for *THE* occurring in an interrogative form ("Does Mary have the book?"), since it still 

implied that some book exists, and that the hearer is supposed to know which it is. Hence, 

answering a question about it requires that it first be located by the referencer. 

The memory's responses to these reference signals are still quite primitive. There are many 

counterexamples which form smaller theoretical classes of reference signals, and they are often 

quite interesting. Examples are: 

A clock is a time-keeping instrument. 

T he sky is blue. 

I play the piano. 

But to process REF information in all its various subtle forms has not been a goal here. I want 

only enough capability at this time to permit the memory to get On with the other issues of 

reference and inferencing. However, a little mOre can be said concerning when the memory 

should be satisfied that it has enough information to "feel comfortable" that some newly­

introduced token has been characterized enough. 

4.2.6 A SPECIAL REFERENCE HEURISTIC INVOLVING REF *THE* SIGNALS 

Under what circumstances does a human language user ask for mOre information about new 

tokens (of old concepts) which have been introduced to him via language, and, in particular, 

tokens which are introduced by the definite reference signal, *THE*? That is, even though the 

conventional way to introduce a new token is via a REF *A* signal, new tokens are frequently 

introduced by a definite reference. How is the memory to recognize when it "understands" the 

new reference, even though it has never heard it before? The answer to this question is very 

relevant to the processing involved in reference establishment in the memory, because without 

some heuristics, the memory would always be preoccupied with building up its store of 

knowledge about new tokens. What is the criterion by which a language user decides whether or 

not the new reference has been sufficiently described? 

To illustrate this problem, consider the following two examples: 
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1a. Mary wants the clock. 

2a. The man told me the way home. 

Having heard either of these two utterances (in no particular contexts), a human language user 
could reasonably be expected to ask "What clock?", or "What man?" However, hearing either: 

lb. Mary wants the clock which John gave Fred. 
2b. The man I met in the candy store told me the way home. 

the same language user would most likely not ask for more information about the clock, or the 
man. Why do (lb) and (2b) satisfy him, while (la) and (2a) do not? 

The heuristic which allows a language user to "be happy with what he's given" seems to be 
a very general one, independent of the particular feature topology of specific tokens. For if we 
examine enough cases where an additional attribution seems to satisfy the curiosity of the 
hearer, we must come to a very general conclusion: apparently, almost any additional attribution 
about a definitely referenced token will appease a language user's curiosity about its identity! 

However, there seems to be one important proviso: the attribution must be one which could 
legitimately have been used alone to introduce the concept via a REF *M signal. In these 
examples, the tokens "man" and "clock" are implicitly being introduced by the additional 
attribution. To illustrate attributions which do not satisfy this constraint, consider the references 
to a clock and a man in the utterances: 

1c. Mary wants the electric clock. ---~ A clock is electric. (What clock??) 
2c. The man with a mustache showed me the way home. ---~ 

A man has a mustache. (What man??) 

Even with these additional attributions, our language user will still probably want to know more 
about the clock and the man because neither of these would satisfy this proviso: it is simply not 
possible to introduce either the man by saying "a man has a mustache", or the clock by "a clock 
is electric". On the other hand, it is quite possible to introduce these tokens by the phrases "I 
met a man", or "John gave Fred a clock". 
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(Of course, if the clock is a member of a known set of clocks, and it is the only electric one 

in the set, the problem of judging when the token is adequately specified is non-existent. In that 

case, the referent could be found unambiguously, and the questions we are posing here would 

have no meaning, since no new token is actually being introduced.) 

The criterion by which the memory can judge whether or not any given attribution would 

adequately introduce a new token is thus the issue, and this criterion appears to be quite 

uninvolved. I will state it ,as the principle which solves this problem in the memory: 

Any additional attribution which establishes any kind of 

connection with another existing concept or token in the memory 

wilJ generally be sufficient identification of a new token which 

has been introduced by a REF *THE* signal. 

This answer turns out to be extremely simple. But this is precisely the type of problem 

which must first be solved before worrying about larger issues. 

4.3 MODELING IMMEDIATE MEMORY: 
IMPLICIT WORD AND CONCEPT ACTIVATION 

What does it mean to say that word X means Y "in the current context". That is, what is an 

effective definition of context as it relates to the choices made by the conceptual analyzer 

concerning the underlying meanings of words. More generally, how can the memory model the 

notion of an immediate memory which lies on the periphery of conscious thought, and how does 

this notion of immediate memory relate to "context" in the language sense. The answers to these 

questions will relate both to the analyzer's ability to choose the correct senses of words while 

analyzing, and to the memory's ability to establish references from descriptive sets. I have some 

tentative issues and solutions, and some ideas about others, and will present them in this section. 

4.3.1 ACTIVATING IMPLICITLY-REFERENCED CONCEPTS 

sample: John was run over by a truck. 
When he woke up the nurses were nice. 

sam pIe: It's nice not to have to put the cats out tonight. 

Do they know where it is? 
Yes. (explained below!) 

It is very common for speakers of natural language to leave much up to the (predictable) 
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imagination of the hearer. Realization of this is a recurring theme in this thesis, since much of the 
processing the memory engages in is designed to make explicit what is implicit (missing) 
conceptual information, and to elaborate upon what is already explicit. As I will try to show in 
this section, the ability to do this is often closely related to the process of establishing 
references. 

Variations on the first sample above illustrates the idea of an implicitly referenced concept 
(or token). If a human language user hears "The nurses were nice" in the absence of any 
particular context, he is likely to ask "What nurses?" That is, a REF *THE* signal has given him 
concern that he is not able to identify this referent which the speaker believes he should. On 
the other hand, if he hears the sequence "John went to the hospital. The nurses were nice."; he 
will probably not ask this question, even though there is still no explicit reference to nurses. It 
can be argued that this mechanism is not difficult to explain, and I will tentatively agree with this 
by attempting to explain it. Yet, as the two samples above show, implicit references can be 
established by far more involved processes than even this hints at. There seems to be an 
extremely powerful reference-inference interaction which underlies this kind of ability in a 
human language user. What kind of mechanism can account for this phenomenon? Whatever it is, I 
want the memory to do it too! I will call it implicit concept activation. 

4.3.1.1 FREE ASSOCIATION AMONG WORDS 

Our first conjecture might be that a system of free association between words of the 
language underlies this ability. By this explanation, hearing the word "hospital" activates the 
word concept HOSPITAL, and this activation automatically spreads a "charge" to its logical 
neighbors in this free association network, "setting" them for potential future reference. There is 
much compelling evidence that this is a real mechanism. But is it adequate for this relatively high­
level language mechanism which seems to underlie our ability to cope with reference tasks as 
complicated as the two samples above? 

I will argue that it is not, and for the following reason: although it is undeniably a real 
mechanism of human memory, simple free association among words is too unrestricted a 
phenomenon to explain most references of at the level of these two sentences. A human 
language user's brain simply does not resound with all the thousands of potential free 
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associations from HOSPITAL each time he hears the word. In the first sample, the mechanism is 

quite a bit more dependent upon the meaning content of the rest of the utterance in which 

"hospital" occurs. Contrast the first sample above with the following utterance: 

In the dark of the night, John had wal lowed through the 

mud to the north wal I of the abandoned animal hospital. 

If the memory were to hear next: "The nurses were nice", and fail to ask "What nurses?", 

something would indeed be strange! This sentence simply does not establish a context in which 

we might expect to hear about nurses, even though it obviously contains the word "hospital". 

4.3.1.2 ASSOCIATION AMONG CONCEPTS THROUGH CONCEPTUAL STRUCTURES 

A second conjecture which takes this failure into account goes as follows. There is still a 

type of free-association, except that, rather than spreading through word associations, it spreads 

through conceptual features of the internal concepts which the words reference (occurrence set 

members). In this scheme, the set of features of the particular hospital which has been 

referenced are assumed to have some sort of ordering from "most salient" to "least salient". Each 

time this particular hospital is referenced, the N most salient features would automatically be 

activated, and they in turn would activate other concepts they involved conceptually. This 

activation would proceed several levels away from the original concept. 

This is a very attractive mechanism for the memory. It could be the basis of an effective 

definition of context (and perhaps even for such exotic phenomena as "iconic memory"). It would 

seem to have great potential for helping the conceptual analyzer choose senses of words in a 

contextually sensitive way. I will try to focus this issue a little more in the next section, but make 

no pretenses about having a solution or theory yet. 

But for the process of reference, even this type of associative activation through 

conceptual structures seems to be too broad a process. In particular, what the "most salient" 

features are is in fact quite often governed by the meaning of the utterance in which the 

reference to "hospital" occurs, and to the surrounding context in general, in the same way 

relevant word associations are governed by meaning. For example, if we are talking about the 

construction of a new hospital building, we are not at all baffled by the reference "The 
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cornerstone was cracked", whereas in this context, "the nurses" is actually quite distant. On the 
other hand, if we are talking about John's surgery, a reference to the hospital building's 
cornerstone would be equally obscure. 

4.3.1.3 ASSOCIATION AMONG CONCEPTS THROUGH INFERENCE STRUCTURES 

Because of this recurring failure to be sensitive to the surrounding meaning, I will make a 
third and final conjecture: 

The activation which implicitly tags other concepts as having 
potential relevance to the "current context" spreads via the agent of conceptual inference. That is, implicit references are those 
concepts and tokens which are "touched" by meaning graphs which arise as conceptual inferences from the utterance in a particular 
situation. 

Until we explore the various types of conceptual inferences, this conjecture may seem 
vague. But it indeed gives the appearance of providing just the kind of restraining influence we 
need on this associative mechanism. The number of implicitly activated concepts and tokens will 
still in general be quite large, but they will have been filtered through a process which is 
inherently sensitive to the subtleties of the meaning content of each utterance in a particular 
situation. 

And, as we will see, the implementation of this idea comes essentially free of cost, since the 
generation of conceptual inferences is a reflex response in the memory, and has many other 
goals besides this one. Although the memory is not yet large enough to gain a good insight into 
the ramifications of this approach, it appears to represent just the right tradeoff between too 
little and too much associative spreading of implicit references. 

We can summarize this mechanism as a three step process: 

1. Each new input triggers a relatively large number of spontaneous conceptual 
inferences 

2. This new set of inferences "touches" new concepts which are conceptually part of 
the larger situation to which the utterance refers. This causes these concepts to 
be specially marked as having an implicit recency. I have called this implicit 
recency TOUCHED, and the marker is the value of the system clock at the time the 
conceptual inference which caused the concept to be touched was generated. 
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3. The reference mechanism recognizes these specially marked concepts as having 

been drawn out as part of some situation, and prefers them over other unmarked 

ones. Also, definite references to a concept which has been touched become 

understandable, because they then have points of contact with existing memory 

concepts. 

4.3.1.4 EXAMPLES 

In the first sample above ("John was run over by a truck. When he woke up the nurses 

were nice."), the explanation of this mechanism goes as follows: having heard that John 

underwent a serious negative change in PSTATE, the inference arises that he may have been 

taken to a hospital, for the purposes of undergoing a positive change in PSTATE. Part of the 

algorithm by which this occurs is to be put in bed, and worked on by doctors and nurses. Notice 

that this is already quite a bit removed from the hospital's masonry cornerstone on the north 

corner of the building. Via these kinds of inferences, an implicit reference to some nurses (the 

ones which might be working on John because he might be hurt and in a hospital) has been 

made. 

In this example, it may sound as though we have been forced into tracing through a quite 

tenuous line of inferences to arrive at this activation. This is perhaps partly the case. But some 

fairly strong arguments will be presented to support the claim that human language users 

perform a very large amount of often "tedious" processing from many different facets of the 

meaning content of each natural language utterance they hear. And although I am perhaps 

proposing that the memory has to go "too far" in a forward, predictive, direction in this example, 

it nevertheless seems to be that much of a language user's reasoning indeed "works forward" 

into hypotheses about surrounding situations, or what might happen next. 

This idea requires much more research, and perhaps we must make the reference 

mechanism a little smarter to "meet this implicit activation mechanism half way". But the 

problems seem only to cOncern the quantity (depth) of inference, not the quality of this 

inference activation mechanism. In this example, the crucial step was made by an inference which 

drew the concept #HOSPITAL into the situation in a contextually meaningful way, namely, that it 

is where John went because he was hurt. 
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The process described there also relates to one important form of interaction between the 
conceptual analyzer and the memory as it concerns the context sensitive construction of an 
underlying meaning graph of an utterance. I will conclude this section with the promised 
explanation of the second sample at the beginning of this section: 

It's nice not to have to put the cats out tonight. Do they know where it is? 
Yes. 

Linda said the first line of the sample to Chuck one evening: she was communicating to him 
that she believed (a) that the cats didn't have to be put out, and (b) that it was nice that this 
was the case. The reason for (b) was obvious to Chuck. However, in order to understand (a), he 
had to ask himself "why is this the case?" To answer this was to answer the question "why do 
we put the cats out at night?" The answer was that if we didn't, it would lead to an undesired 
gift on the living room rug the next morning. Therefore, since it was no longer necessary to put 
them out, Chuck concluded that Linda had done something that would allow them to remain inside 
without messing things up. This reminded him that Linda had said she was planning to buy a litter 
box that morning. The inference was made that she in fact had, and that it was now in the 
house. Chuck was then able to ask what would have been a most obscure question without this 
ability of both participants to draw out implied references. They both knew immediately that the 
referent of "it" was the new litter box, and Linda was able to answer the question. It is hard to 
envision how we could account for something like this without some very powerful inference­
reference interaction through "touched" concepts in the memory. 

4.3.2 TWO MEMORY TASKS RELATED TO IMPLICIT CONCEPT ACTIVATION AND THE ANALYZER 

At this point, I will describe two other processes which are;'logically part of the analyzer­
memory interface, but which are ancillary to the main concerns of the memory. Neither has been 
implemented in any generality yet, but both relate to this idea of implicit concept activation I 
have been discussing. I want merely to point them Out as useful and realistic memory tasks 
which ar~: attendant problems of both conceptual analysis by the analyzer and reference 
establishment by the memory. 
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There should of course be numerous points of interaction between the analyzer and 

memory, perhaps even to the point where they blend into one process. The two I have chosen 

to discuss here are felt to be "typical" of the kinds of things which should eventually break this 

traditional analyzer-memory barrier. The first concerns the memory's role in helping the 

analyzer to select senses of words in a way which is sensitive to the context in which those 

words are used. No such interaction has actually been implemented in the current program, 

although the memory I am proposing offers a natural domain in which it could occur, and for this 

reason, I want to mention it. I have no general solution yet, and you are referred to [R2J for 

more ideas related to this subject. 

The second interaction concerns the kind of processing which discovers the underlying 

relation between two concepts which have been associated with each other sententially. 

Although the interaction of this process with the analyzer has not been implemented this is an 

actual capability of the memory as it exists now. 

4.3.2.1 IMPLICIT CONCEPT ACTIVATION AND WORD SENSE PROMOTION 

Consider the following four examples: 

(la) John asked Mary which piece of fruit she wanted. 

Mary picked the apple. 

(lb) Mary cl imbed the apple tree. 
Mary picked the apple. 

(2a) John was in a meadow. 
The grass smel led good. 

{2b} John was looking forward to getting high. 
The grass smel led good. 

Notice that the conceptual forms underlying "pick" are totally different in (1 a) and (1 b). Likewise, 

the PPs to which "grass" refers are also quite different in (2a) and (2b). Yet when a human 

language user hears any of these four sequences, he is usually capable of what appears to be an 

instantaneous choice of the correct sense of "piCk" in the first example Or "grass" in the second. 

How is this possible? The mechanism which underlies this ability is often called word sense 

promotion. 
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One of the tenets of a conceptual analyzer is that the analysis it performs be sensitive at 
all points to as much "context" as possible. The hope is that by doing this, most backtracking 
(undoing of wrong decisions) can be avoided, and what backtracking does occur will occur only 
because there is a genuine conceptual ambiguity. This appears to be the way people successfully 
analyze natural language. To understand how a human language user avoids backup is to gain a 
very important insight into the interaction of language and memory. In the above samples, 
avoidance of backup is synonymous with this automatic selection of the correct sense of "pick" 
and "grass" at the time of analysis. One would hope that the conceptual analyzer could exhibit a 
similar lack of confusion. We want here to examine two ways the memory could interact with the 
analyzer's choice of word senses. 

There seem to be two related versions of this process of word sense promotion: one which 
relies chiefly upon implicit concept activation by inference, and another which seems to require 
an additional pattern-matching ability. Examples (2a) and (2b) appear to be explainable in terms 
of implicit concept activation: in (2b), the inference immediately arises that John WANTs to get 
high, and there is a class of conceptual inference specifically designed to predict a person's 
future actions on the basis of his current wants. In this case, that he may plan to ingest some 
sort of psychoactive drug is a very strong prediction. By generating these inferences, the 
concept "psychoactive drug" is implicitly touched by the inference process, and this activation 
can explain how the correct sense of "grass" could be chosen by a conceptual analyzer which is 
sensitive to the TOUCHED and RECENCY properties of memory concepts. Section 6.5 describes 
another type of conceptual inference which would draw out the desired concept for "grass" in 
(2a). 

Notice though that, regardless of which sense of "grass" is intended, it will nevertheless be 
a simple PP -- all senses of "grass" are underlied by simple concepts, rather than complex 
conceptual structures. This is not the case in examples (1 a) and (1 b): both senses of the verb 
"pick" reference relatively complex underlying conceptual structures. Because of this, even 
though it might be quite possible to predict conceptually what Mary is likely to do next after the 
first utterance of (1 a), or why she is climbing the apple tree in (1b), it is not clear how these 
inferred structures should exert an effect through this rather simple mechanism of implicit 
concept activation. That is, because "pick" is represented by a structural pattern of conceptual 
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information rather than by a simple concept, there must be some way of recognizing this pattern 

at some point as a prediction of what words might be anticipated next. This requirement sounds 

very much like the process of generation from conceptual structures back onto the words of a 

language. ([Gl] gives a comprehensive account of the problem of generating language utterances 

from conceptual structures.) 

I will describe two alternative approaches to this problem of choosing one word sense over 

another on the basis of inferred information patterns in the memory. The first stems directly 

from this observation of similarity between the process of word sense promotion and generation 

of language from conceptual structures. 

THE PROTO-SENTENCE APPROACH 

Suppose we had a very fast and independent computer which ran concurrently with other 

memory processes. Its sole job would be the following: each time the memory generated a new 

conceptual inference, this program would generate from it an entity which was almost an 

expression of it in the language. It would not go all the way back to language, but instead would 

stop short, at the point just before lexical realizates for concepts in the conceptual structure 

were chosen. We might call this a "proto-sentence", because all that would be missing would be 

the particular choices of words which would express the language-expressible concepts which this 

partial generator has assembled into a proto-sentence of the language. For example, any of the 

words "pick", "decide", "choose", "select", could be realizates of the underlying conceptual ACT in 

the second sentence of example (1a) above. 

By this conjecture, the explanation for our ability to expect the sense of "pick" as the one 

involving a reaching and grasping action goes as follows. The analyzer analyzes the first 

utterance "Mary climbed the apple tree". It passes the analyzed graph to the memory, where 

conceptual inferences arise from it. Among these are predictions about why Mary wants to be up 

in the tree. related infe·rence classes). One prediction which arises is that she might desire to 

have an apple, and that she might be expected to perform this reaching-grasping (MOVE-GRASP) 

action because this could result in her having the apple. Along with all the other conceptual 

inferences the memory might generate from this utterance, this predictive inference (section 6.5), 

would be seen by the partial generator, which would map it into a a proto-sentence of language-
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expressible concepts each of which could be expressible by a number of actual words. When in 

fact some word is subsequently perceived which could have expressed one of the concepts in this 

proto-sentence, it is preferred by the analyzer over others. Fig. 4-10 illustrates this analyzer­

memory-generator tripartite interaction. 
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Figure 4-10. Mapping inferences back into proto-sentences, activating many word senses. 

This approach is aesthetically very attractive, because it knits together completely the 

operations of the conceptual analyzer, memory and generator in a pleasing way. Of course, it 

would require a tremendous amount of computation. On the other hand, it is conceivable that 

such an interaction actually occurs in human language users: we frequently find ourselves 

"subvocalizing" in language that which we are thinking about conceptually. Quite often in fact, we 

122 



even catch ourselves "thinking" in well-formed language strings! It is not at all unreasonable to 

hypothesize that, hearing "Mary climbed the apple tree", we not only infer conceptually what she 

is up to, but that we also subconsCiously put this inference (and others) back into proto­

sentences which are strings of concepts, each of which could be expressed by a small set of 

words. As I have shown, this could be a powerful explanation of our ability instantaneously to 

understand word senses in subsequent utterances. 

THE CONTEXT -TESTING APPROACH 

The second method by which the analyzer could be made sensitive to context in its choice 

of word senses is a more passive "on-demand-only" approach. In this approach, each sense of 

each word would have associated with it a package of memory-query tests. As each word whose 

lexical sense cannot be chosen on the basis of linguistic cues and expectancies is scanned, each 

test package associated with each sense would be executed. Each test would be a question 

asking whether certain conceptual patterns exist at that time in the memory. The conceptual 

patterns are precisely those memory structures which have been perceived before that time, and 

those which have arisen from them as conceptual inferences. Rather than a constant "sub­

vocalization" of memory patterns as they arise, this approach would be more goal-directed 

because each sense of each word in the analyzer's vocabulary has specific tests which tell when 

that word sense, viewed as a unit of meaning, might be relevant. Since these tests inquire about 

the meaning environment in which each word occurs, by performing enough of them, it would 

seem possible to make the analyzer very wise indeed about choosing the correct sense of each 

word at each point in the analysis. 

In our example, the tests associated with the two senses of "pick", PICKl (to select, decide, 

choose) and PICK2 (to reach, grasp and pull, to pluck), might go as follows. (I am assuming that 

the analyzer has at least been able to decide that the "piCk" is underlied conceptually by an 

action.) PICK l's tests look for a pattern of the form "has the actor, P, been requested to 

communicate to another person which of several alternative future states of the world would 

cause him the most pleasure?" If so, choose PICKl as the probable sense. Otherwise, "does P 

desire a physical object which is currently attached to some larger object?" If so, then PICK2 is a 

likely candidate for the meaning of pick. In reality, a good analyzer would have to ask many 

more questions than these. But the idea of a "sense test package" should be clear. 
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This approach perhaps seems easier to implement, and far more frugal with the precious 

computation time of today's computers. It is a realistic approach, particularly since our conceptual 

formalism allows the prescribed test packages to be very concise. This approach, however, lacks 

the elegance of the first one which knits together the operations of the analyzer, memory and 

generator in a mechanically independent, yet logically very dependent way. 

I simply do not know enough yet to decide between these two approaches. As with most 

other issues in natural language, the answer will probably not be of the all-or-none variety. 

Instead, it will probably prove useful, and be psychologically accurate, to employ both in some 

harmonious combination. Regardless of how word senses are ultimately made sensitive to 

context, I have a fairly specific and workable definition of context, and will conclude by 

summarizing it: 

In the memory "context" is the set of all conceptual structures 
which have either been perceived directly. or have been generated 
through inference processes. This includes all concepts and tokens 
involved in (TOUCHED by) these structures. 

4.3.2.2 RELATION PATHFINDING: ANOTHER SOURCE OF IMPLICIT CONCEPT ACTIVATION 

sample: Mary's car is broken. 
The car which Mary owns ... 

sample: The duck's bill is orange. 
The bill which is a bodypart of the duck ... 

sample: John's grass needs mowing. 
The grass which is part of the yard 

sample: 

sample: 

on which the house which John is renting is located ... 

John was dressed as a lion for the masquerade party. 
He wa~ged his tail on the way out the door. 
The tail which is part of the costume which John 
is wearing ... 

John and Mary were painting John's chairs. 
Mary's chair was red, John's green. 
The chair which Mary was painting ... 

We have been exploring the processes by which analyzed graphs and their components 

become structures in the memory. Another process which most language users take for granted 

when comprehending language is the process which infers the underlying conceptual relation 

between two concepts or tokens when some type of unspecified association between them is 

predicated sententially. Strictly speaking, the prediction the memory makes about the nature of 
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such relations is a form of conceptual inference which overlaps both the linguistic and conceptual 

domains. However, since it is more properly a subtask of constructing the original meaning graph 

for an utterance, rather than of comprehending an already-constructed meaning graph, I have 

chosen to discuss it here rather than in chapters 5 and 6: one of the main contributions of this 

process to comprehension is the implicit concept activation which arises from it. I have called this 

task relation pathfinding. 

The task of relation pathfinding is the following: given two concepts or tokens which have 

been predicated by an utterance to bear some relationship to one another, discover the 

underlying conceptual relationship. Examples of this task are shown in Fig. 4-11. 

John's hand 
glass factory 

Andy's diaper 
8 i I I' scar 
Mary's lawn 

-----~ the hand which is PART of John's body 
-----~ a factory whose normal FUNCTION is to 

DO CAUSE glass exist 
-----~ the diaper which is LOCated on Andy's body 
-----~ the car which is OWNed by 8i I I 
-----~ the lawn which is PART of the property 

on which is LOCated the house which Mary 
OWNs. 

Figure 4-11. Underlying conceptual relations referenced by concept pairs in language. 

This problem of determining the relation between two concepts has been dealt with in 

considerable detail by Sylvia Weber Russell [R5). She has described effective procedures which 

attempt to combine semantic features of two nouns in permissible ways. To do this, she makes 

use of an abstract semantic feature system. 

The memory accomplishes this same task by locating possible paths between the two 

concepts through conceptual information, both specific and in the form of simple patterns, rather 

than by a scheme of abstracted features. Much of this simple pattern knowledge is organized as 

the "normal function" of objects. For instance, the relationship between "glass" and "factory" in 

"glass factory" is ascertained by using an associative lookup to discover that the normal function 

of a factory is to produce a physical object. Since glass is a manufactured physical object, one 

possible relationship is "a factory which produces glass". Since a factory is also a physical 

location (a building), it might be that the composition of that building is being predicated by the 

noun pair. In this example, no path is found, since factories (in the memory's model) are not 
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constructed of glass. Concrete would, however, possibly result in an ambiguity. Resolution of 

this ambiguity is usually possible but involves language-specific information ("what is normally 

meant when 'factory' is modified by a manufactured product?"). 

All the samples above involve similar path-finding searches through conceptual propositions 

for their solution: a "hand" is found to co-occur with "person" in the conceptual proposition 

(PART #HAND #PERSON) and hence is interpreted as "a hand which is part of John". "Dress" is 

found to be an article of clothing (normally associated with a female), so "Mary's dress" receives 

the interpretation "the dress which Mary wears". "Bill's car" is similarly solved by discovering 

(NORMAL (OWN #CAR #PERSON)}. 

The path-finding technique which searches for a shortest-path connection between two 

concepts through conceptual structures in memory is a simple "expanding sphere" approach, in 

which the search expands simultaneously from the two points in the memory between which a 

path is desired. The search begins at each concept to be related, as shown in Fig. 4-12. It 

expands outward through the concept's occurrence sets, tagging structures (using the property 

SEARCHTAG) through which it passes until it encounters a tagged structure on a path from the 

other concept Or token. The search is initiated from both concepts simultaneously for reasons of 

efficiency: if each sphere is thought of as a volume in a multidimensional conceptual association 

space, then, because volume is proportional to the cube of the radius, two smaller spheres which 

meet in the middle will generally occupy far less volume than one larger one whose radius must 

traverse the full concept-concept distance. Less volume means that fewer unfruitful concepts and 

tokens are touched, making the search more efficient. 

If a path can be found, the set of propositions lying along this concept-to-concept path 

constitutes a possible relationship. For most problems of the nature described here, the path will 

normally be only a few structures long. 
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Figure 4-12. Relation pathfinding by expanding spheres through conceptual information. 

Notice that, at the time path-finding takes place, for a pair such as "John's hand", neither 

the conceptual referent of "John" nor even the sense of the word "hand" may oe known (the 

analyzer simply may not have collected enough descriptive or conceptual restrictions at that 

point). For this case, the path-finding algorithm must be slightly more generalized: it must keep 

track of N paths from possible senses of the first concept and M paths from the those of the 

other. In this way, solution of relations can also help the analyzer in its choice of word senses 

and referents. For example, for the pair "duck's bill", the pathfinder discovers a very short path 

through the conceptual proposition (PART #8IRD #8ILLl), #8ILLl being the bill which is part of 

birds as opposed to a person, a unit of money, ek However, by scanning through conceptual 

structures in an ever-changing memory, this could be overridden in the context established by 

the sentence "John's five dollar bill blew out of his hand in the park. A duck picked it up. The 

duck's bill ... " To override, the pathfinder would simply prefer structures with recent RECENCY 

and TOUCHED flags over other others along the path. The fourth and fifth samples above 

illustrate other such examples. 

The intersection search is not a novel technique (see [Q2] for instance). What is distinctive 
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about the technique is the nature of the data structures through which the search occurs: in the 

conceptual memory, concepts never point directly at other concepts, but are always related to 

one another through conceptual information. The major advantage of this approach is that 

Determining the relationship between two concepts by associative 
(pathfinding) searches through constantly changing conceptual 
structures permits this process to be fully context sensitive. 

By tracing out a path between the two concepts, other structures and concepts along the 

way will be TOUCHED, and can be implicitly activated. The third sample above illustrates this 

idea: suppose we hear "John's yard needed mowing. The house was in bad shape too." The 

average language user would rarely ask "What house?" in this situation. However, in the absence 

of the statement about the yard, he might well be expected to ask about the house. We again ask 

why this is, and seem to have a ready answer: the process of determining the relation between 

John and a yard has played a role in implicitly activating the concept for house. I cannot propose 

that it is solely responsible for this type of activation. There are undoubtedly other, more 

"iconic" associative mechanisms at work in the background which generate an image of a yard, 

house, bushes, sprinklers, and sO forth. However, relation pathfinding seems to be one important 

source of implicit concept activation. 

Let us now turn to another issue of the general process of internalization of new memory 

graphs. 

4.4 SUBPROPOSITIONS 

The average utterance is rich with information. That is, much 
more than the main thought is communicated. What are the 
sources in the meaning graph of this wealth of information? Why 
is it useful to extract? How is it used, once it is extracted? 

It is to the memory's advantage to recognize and extract all the sources of information 

within each graph in the hope that each bit will in some way contribute to the understanding of 

the entire conceptualization when conceptual inferences are later generated from it. This section 

will describe the notion of a conceptual information source by identifying three main sources 

within analyzed conceptual graphs. I will call any unit of information which can be extracted from 
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a conceptual graph a conceptual sUbproposition. The set of all subpropositions extracted from 

each conceptual graph will form the starting inference queue (a LISP list of memory structures, 

!SUBPROPS) from which conceptual inferences will be generated. 

A conceptual subproposition is any unit of information which is conveyed directly by a 

conceptualization. The average utterance contains many conceptual subpropositions which a 

human language user makes unconscious but heavy reliance upon. For descriptive purposes, we 

can classify subpropositions into three categories: 

1. explicit-focused, 
2. expl icit-peripheral 
3. imp Ii cit 

As we will see, both forms of explicit subpropositions are always complete conceptualizations, 

whereas implicit subpropositions correspond to single, isolated dependencies within the graph. 

4.4.1 ILLUSTRATIONS 

To illustrate these categories, consider the sentence: 

The engine of Mary's new car broke down whi Ie 
she was driving on the freeway late last night. 

The explicit-focused proposition is: "a car engine broke down". This is the "main reason" for the 

conceptualization's existence, the major relation being communicated by the utterance. It will not 

necessarily always be the most interesting or important subproposition, however. 

4.4.1.1 EXPLICIT-PERIPHERAL INFORMATION 

In this utterance, some of the explicit-peripheral propositions are: 

1. the car is new 
2. the car is owned by Mary 
3. the time of the incident was late last night 
4. the location of the incident was on the freeway 
5. Mary was driving a car 

These are additional fads the speaker thought essential to the hearer's understanding of the 
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conceptualization. They are "peripheral" (dependent in the conceptual dependency sense), and 

for the purposes of the conceptual analyzer. However, they frequently convey the most 

interesting information in the conceptualization. 

4.4.1.2 IMPLICIT INFORMATION 

Some of the implicit propositions are: 

1. the en!il i ne is par t of the car 
2. a car IS owned 
3. Mary is an actor (she performed an action) 
4. the car was PTRANSed (i. e. it is moveab I e) 
5. the car, eng i ne and Mary were 

on the freeway (i.e. the actors and objects involved 
in an event have the event's location) 

Briefly, these are very low-level propositions which conform to conceptual case restrictions, and 

which must strictly adhere to both the analyzer's and memory's knowledge of what is normal in 

the world. These typically lie on the borderline between what was said and what the hearer 

nearly always infers from what he heard. Although these very low-level units of information are 

generally uninteresting relations between objects viewed as P p's, they can be very interesting 

when viewed as specifiC relations among specific tokens and concepts in the world. For instance, 

although it is a fairly dull statement that a car has an engine as a part, to say that Mary's car 

has an engine is quite a different thing, because we may have thought her car was resting, 

engineless, on concrete blocks in her back yard. To ignore this low level source of information 

might be to miss this apparent contradiction. Chapters 5 and 6 will give examples of how even 

this low level information can lead to very important discoveries. 

4.4.2 SOURCES 

At what point in the processing, and from what points in a conceptualization are these three 

classes of subpropositions extracted? We will now look at each of them. 

4.4.2.1 EXPLICIT FOCUSED SUB PROPOSITIONS 

In the sentence "Andy told Linda that Chuck went to McLean.", there are two explicit 

focused subpropositions: 
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(a) Chuck went to McLean 

(b) Andy told Linda (a) 

The eventual degree of strength to which the memory will believe these units of information is 

not a criterion for their being explicit focused subpropositions, although the memory is certainly 

interested in determining truth or falsity during inferencing. Conceptualization (b), being the main 

proposition of the thought, will automatically be examined, because it begins the inferencing for 

the entire graph. And, because it is nested in this top-level structure, conceptualization (a) will 

also be examined during inferencing. It's truth will always be dependent on its nesting in the 

main structure. Since the topmost structure will always be recognized as an explicit-focused 

information source, all other nested explicit-focused propositions will always be examined by the 

inferencer during the natural course of generating inferences from the larger structure in which 

they occur. Therefore, only the topmost explicit-focused structure is collected on !SU8PROPS, 

which forms the starting inference queue. 

4.4.2.2 IMPLICIT SUBPROPOSITIONS 

In the sentence "John ate the hotdog" there are the four implicit sub propositions shown in 

Fig. 4-13. Each of these comes about because of a single dependency in the graph, and each is 

potentially the beginning of an interesting line of inference. However, subpropositions at this 

very low level are not actually extracted and placed on the starting inference queue. Rather, 

they are implicitly recognized by the inference process (molecule) which will generate inferences 

from the conceptualization in which they are contained. 

In this example, conceptual inferences will arise that this #JOHN is an animal capable of 

INGESTing in the current context (for instance, he is alive and conscious at the time), that the 

object he ingested is INGESTable, and so forth. Typically, these inferences may have little ~ffect 

on the understanding of the utterance. But they must nevertheless be made, because they are 

part of the rather complex event to which this simple utterance refers. 8y making them, the 

memory will stand a heightened chance of enrichening the relations among the information which 

the utterance conveys. For example, they may uncover unusual situations, help the reference 

mechanism clear up references, .or generate more features of a newly-perceived concept or 

token. Furthermore, any contradictory information generated by conceptual inferences from 
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implicit subpropositions is potentially "serious", because it indicates that something unusual or 

incorrect has been perceived or inferred. 

JOHN 
P 

<===> 
o 

INGEST 4---- HOTDOG 
1-

I ~I ~-_ ... _ STOMACH 
~ MOUTH 

=====> 

1. John performed an ingest action. 
2. A hotdog was ingested. 
3. It was from a mouth that a hotdog 

was ingested. 
4. It was to a stomach that a hotdog 

was ingested. 

Figure 4-13. Implicit subpropositions. 

These low level inferences are also of extreme .importance in cases where a new concept 

has been introduced. By recognizing these implicit information sources, and by generating 

inferences from them, features of new concepts can be predicted. For instance, if the utterance 

is something like "John ate a delicious green frobifer", the memory can infer many important 

features of a frobifer which are not explicit in the utterance. While section 6.9.1 describes a 

class of inference (called feature inferences) devoted to this type of task, this is a pervasive 

task of all types of conceptual inferences. 

4.4.2.3 EXPLICIT PERIPHERAL SUB PROPOSITIONS 

There are two sources of this subproposition type: REL-link-conveyed information, and 

main-Iink-modifer-conveyed information. Among the latter are TIME, LOCATION and INSTRUMENT. 

As we saw, during reference establishment, memory concepts and their tokens are identified 

from analyzer-accumulated descriptive sets which are lists of conceptual features the analyzer 

extracts and predicts (using linguistic knowledge) from utterances. Within any particular 

descriptive set, there is likely to be one or more conceptualizations communicated via the REL 

link. Information communicated by this form provides candidates for explicit peripheral 

subpropositions. 

Consider the sentence "John's car is red." which has the conceptual analysis shown in Fig. 

4-14. The lower structure there is an example of a decsriptive set member which has been 

communicated via the REL link. It will be used as a descriptive set element during reference 

establishment to identify this particular #CAR which is being referenced. 
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val 
CAR <BSS> COLOR +----- RED 
l' 

1 val 
CAR <ese> POSS +----- JOHN 

Figure 4·14. 

At that time, one of three things can happen: 

1. SOme token of a #CAR is unambiguously located 

2. several #CAR tokens can be located from the descriptive set, in which case a new 
(possibly temporary) #CAR token is created 

3. no concept satisfies this descriptive set (a new, possibly temporary token is also 
created). 

For each REL-conveyed feature in the descriptive set, that feature either will or will not have 

played a role in the referent identification process. If it did playa role, then it must not be new 

information. Otherwise, it is likely to be a new feature from which potentially important 

conceptual inferences can arise. In this case, the feature, an explicit-peripher al subproposition, 

should be extracted for inference. 

Therefore, we should recognize the following principle: 

When some subpropositiol1 has been successful1y used by the 
reference mechanism toward the identification of some unique 
concept or token. or toward some candidate set. that conceptual 
information (and presumably its inferences) must already be 
known. It should therefore 110t be extracted for inferencing. 

Specifically, the hope is that new information may arise which can serve to identify some 

existing concept uniquely as the referent of the descriptive set in case the identification failed 

before inferencing. 

REL-communicated features constitute the first source of explicit peripheral 

subpropositions. Modifiers of the main conceptualization, such as TIME, TS, TF, LOC and INST, 

constitute the second source. For ACTs, these correspond to the incidental conceptual cases. 

These are collected on !SUBPROPS during the conversion process from analyzed graph to 

internal form (which is the topic of the next section). 
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Examples of where analysis of subpropositions arising from this source lead to interesting 

lines of inference are: 

1. John went to work at 3AM. (the TIME aspect makes this potentially 
more interesting than it might otherwise be) 

2. John woke up at 4PM. (TS, TF make this simi larllJ of more potential 
interest than it might otherwise be) 

3. John died on the moon. (the LOCation here is quite significant) 

4. John let Mary know by ta~~ing her on the shoulder. 
(here, 5T wi I I lead to potentially important 
inferences about John and Mary's spatial proximity) 

4.4.3 CONCEPTUAL ADVERBS 

Another example of how it can be important to begin lines of inference from many different 

starting points in each graph concerns "adverbial" modification of actions. For example, large 

number of inferences might be found to be applicable to an utterance such as "John walked 

down the corridor". But a new, additional level of inferences can also be applicable if instead we 

hear "John tiptoed down the corridor", where it is communicated not only that John performed 

(the same) underlying PTRANS action, he performed it in a certain manner. This additional 

information can be a most important independent information SOurce within the graph. By 

organizing inferences, which cope with this additional information, around the conceptual 

predicate of the adverbial modifier, say QUIETLY, as in (QUIETLY ACTOR ACTION), then the 

additional inferences can arise from this structure independently from the central core of 

inferences about ordinary PTRANSing actions. This makes for a cleaner logical organization of the 

conceptual inference network, but it demands that seemingly innocuous information sources such 

as adverbial modification be recognized as independent information sources from which special 

lines of inference can arise. 
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4.5 STORING THE NEW CONCEPTUAL GRAPHS 
IN MEMORY STRUCTURES 

How is the conceptual graph which is the product of the analyzer 
physicaJJy integrated into the memory.? 

I have so far described (a) the reference mechanism which locates and creates concepts and 

tokens which are the targets of descriptive sets collected from utterances, (b) the processes of 

implicit concept activation, and (c) the potential information sources within each conceptual 

graph. These are three important components of the larger task of transforming a conceptual 

graph into an internal memory structure. Let us now have a look at the general flow of 

processing which coordinates this transformation. 

The memory receives a meaning graph from the conceptual analyzer in a LISP S-expression 

whose form obeys the rough BNF description shown in Fig. 4-15, and Fig. 4-16 illustrates an 

example whose internalization we will follow. 

<MAINGRAPH> --... 
<GRAPH> -- ... 
<MAIN> --... 
<MLl ST> ---+ 
<ROLE> ---+ 
<ATOM> ---+ 
<TIMERELS> ---+ 
<RLl ST> ---+ 
<TREl> ---+ 

<GRAPH> <TIMERELS> 
( <MAIN> ) I ( <MAIN> <MLIST> ) 
( <MLI ST> ) I <A TOM> 
<ROLE> <GRAPH> 1 <ROLE> <GRAPH> <MLIST> 
ACTOR I OBJECT MOBJECT I TO I FROM I <=> I <5> I .•• 
JOHN I BALL I T Mel I ATRANS I MLOC ; LTM I ... 
<ATOM> : ( <RLI ST> ) I <ATOM> : (.fiLl ST> ) < TI MERELS> 
<TREL> I <TREL> <RLIST> 
( VAL <ATOM> ) I {BEFORE ,~. -;-ijM> <A TOM> 

Figure 4·15. The LISP form in which the memory receives conceptual graphs. 

MARY KNEW THAT JOHN'S FRIENO PETE HAD GIVEN JOHN A CAR. 

{{CON {{ACTOR {PETE ~ {{ACTOR (PETE) <5> (FRIEND VAL (JOHN»») 
<=> (ATRANS) OBJECT (CAR REF (*A*» FROM (PETE .•• ) TO (JOHN» 

TI ME (TI M{n ) ) 
<5> (MLOC VAL (LTM PART (MARY) REF (*THE*))) TIME (TIMe2» 

T I Mee: «VAL T -e) ) (T -0 is "now") 
TI Mel: ({BEFORE T I Me2 X)} 
TIMe2: «BEFORE TIMee X» 

the ellipsis stands for a repetition 
of the ~ I ink in the first 
occurrence of PETE in the graph 

Figure 4·16. An analyzed graph example. 
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The internalization is performed by a procedure called CONVERT. Basically CONVERT .is 

responsible for four things: 

1. transforming the conceptual input syntactically from the form shown in Fig. 4-16 to 
the internal memory form. This includes a few instances of limited pattern 
matching to change the conceptual contents into more convenient memory forms. 

2. creating new memory structures to store the new conceptualizations 

3. calling the reference mechanism to establish references in the course of (2) 

4. collecting all subpropositions on the list !SUBPROPS for subsequent inferencing 

4.5.1 CONCERNING THE REFERENTIAL IDENTITY OF ACTIONS AND STATES 

Before beginning the description of how the graph of Fig. 4-16 is internalized, it should be 

pointed out that the process of internalization makes no attempts to ascertain referents of 

actions and states. That is, if it internalizes "Pete gave John a car", it always creates a new 

structure to represent this action, even though the memory might in fact already know this from 

previous experience. In general, determining references to existing actions and states at this 

stage would be quite involved. Unlike references to concepts and tokens which must be 

established before inferencing can be of much use, unidentified references to past actions and 

states will generally (at worst) only duplicate knowledge the memory already has, and this 

duplication will be quickly detected by the inference evaluation procedure. 

Thus, the task of recognizing the referential identity of incoming action and state structures 

is not handled at CONVERT time: each conceptualization is stored under a new memory node 

which may later on be detected as the same as some existing structure, and subsequently 

merged into it. The merge process which can do this is described in section 7.6. 

4.5.2 THE EXAMPLE 

The internalization procedure, CONVERT, goes about its task recursively. In the example of 

Fig. 4-16, CONVERT first locates the main link of the topmost conceptualization. Finding <so> (an 

attribution), it then knows what other roles to expect to find in the conceptualization: namely the 

thing whose attribute is being given (ACTOR if it is a simple entity, CON otherwise), and a value, 

which is the rolefiller the role VAL which is nested within the <so> rolefiller. It then extracts the 
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MLOC (main predicate) from the <E> rolefiller position because, by convention, this is where the 

predicate is situated for all <E> forms (POSS, LOC, etc.) Next, it retrieves the two expected 

rolefillers, in this case «ACTOR (PETE) ... ) TIME (TIMOl» a'nd (LTM PART (MARY», and calls 

CONVERT on each. The results which are returned (pointers to memory structures) are then 

plugged into the template (MLOC X Y). A new superatom is generated, and this MLOC structure 

becomes its BONDVALUE. This topmost structure will have no beginning occurrence set. 

Having created a new structure, S, which stores this bond, CONVERT next examines the 

conceptual modifiers of the (X <E> (MLOC VAL (Y») main structure which has just been 

converted. In this case, it finds a TIME modification (the time at which MARY knew this), creates a 

new token (say C2316) to represent this time, TIM02, then associates C2316 with TIM02 and 

records this association on the list !TIMELIST. This association will be of use when the time 

relations in Fig. 4-16 are processed (to be described shortly). In addition, all modifiers of 

conceptualizations are placed on the starting inference list, !SUBPROPS. In this case, just this 

TIME structure is added. 

After the modifier list has been fully processed, CONVERT finally gives this top-level MLOC 

structure REASONS = TRUE, TRUTH = TRUE (it believes everything it hears), and RECENCY = the 

value of the system clock which was recorded at the time the graph's internalization was 

undertaken. Notice that since the memory is not currently designed to know (or care) who the 

speaker is, this MLOC structure is the topmost structure of the conceptualization, and it is true 

simply because "that's the way it is" (REASONS = TRUE). This of course ignores many important 

issues which I am not addressing here. But to record who said it is simply to embed it within one 

higher level structure of the form (MTRANS speaker X CP(speaker) CP(self)). 

A~ CONVERT exits at each level after having successfully converted some part of the input 

graph, it associates a pointer to the memory structure which was created with a pointer to the 

component of the graph which gave rise to that structure. It places this association on the list 

!REFLIST. Each time CONVERT is entered, before it begins processing it first checks to determine 

whether the subcomponent it is being called upon to process already exists on !REFLIST. If it is, 

this means that the analyzer had constructed EQ pointers and that the graph component is 

referrentially the same as the one already on !REFLIST. In this case, CONVERT does no further 

work, but simply returns the pointer to the associated memory structure created previously. 
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Having done all these things for this topmost MLOC structure, the task will be complete. But 

i must explain what happens during the two recursive calls CONVERT has made on itself to 

convert the CON and VAL rolefillers. 

Consider the simpler of the two first: the mental location of the MLOC structure, (L TM PART 

(MARY». CONVERT senses that this is a simple PP. It assumes that L TM is the NAME of some 

memory concept, and creates a simple descriptive set {(NAME # L TM)}. It then examines the 

property list of "LTM", which is the PP used by the conceptual analyzer, to locate any other 

conceptual features associated with this PP. In this case no other will be found. However, for a 

PP such as "JOHN", the additional conceptual features (ISA # #PERSON) and (SEX # #MALE) would 

be found. These features of the PP augment the descriptive set from which the concept is to be 

located. In this example, CONVERT then calls the reference-finding process, REFERENT, which in 

this case returns a pointer to the concept #L TM. 

CONVERT next goes about collecting the modification of this PP. In this case, it finds only 

PART (MARY) and REF (*THE*). These tell the referencer that the concept #LTM is not the object 

of the reference, but rather that some token of an #L TM is. It therefore constructs a descriptive 

set which will identify the particular token. In this case, the set will consist of an (ISA # #L TM) 

relation and a (PART # X) relation. To determine what X is, CONVERT is again called, this time 

pointing to the structure (MARY). Again CONVERT senses a PP, creates a descriptive set 

( (NAME II MARY) (SEX II IIFEMALE) (ISA II IIPERSON) J 

then calls REFERENT to locate this concept. The pOinter returned becomes the X in the PART 

relation and at that point, the following descriptive set exists for this token of an L TM which is 

being referenced: 

(

a pointer to the Mary which 
has just been located) 

{{ISA II tlLTM} (PART II *) 1 

Having constructed this, CONVERT again calls REFERENT to locate the token for this Mary's 

L TM. The pointer thus returned is returned by CONVERT, and becomes the last slot in the 

topmost MLOC bond. 
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Recall that REFERENT will record on !REFNOTFOUND all references for which no candidates 

can be found. Since this would be undesirable for·things like LTMs, bodyparts, or other low-level 

things like this to wind up on this list, there is a small number of heuristics in REFERENT to 

prevent this. Among them is: "when something which ISA bodypart, and which has a PART 

modification, cannot be found, just create it without noting it on !REFNOTFOUND." 

The second slot in this top MLOC structure which CONVERT recursively calls upon itself to 

convert is: 

{{ACTOR {PETE ~ {{ACTOR (PETE) <=> (FRIEND VAL (JOHN»») 
<=> (ATRANS) OBJECT (CAR REF (*A*» FROM (PETE ••• ) TO (JOHN» 

TI ME (TI Mel» 

Notice that this structure is itself an entire conceptualization, complete with TIME. The conversion 

process will hence be the same one which converted the MLOC structure. The first step is to 

determine the structural type of the conceptualization. In this case, an action is detected by the 

presence of the <=> main link. CONVERT thus knows to retrieve the <=> rolefiller, ATRANS, which 

is to become the predicate of the internal bond CONVERT is beginning to construct. 

CONVERT next retrieves ATRANS's CASE property, which happens to be: 

(ACTOR OBJECT TO FROM) 

For each element of this CASE list, CONVERT seeks a matching role in the conceptual graph. 

There is no assumption of ordering. As each is located, its rolefiller will be isolated, CONVERTed, 

and collected on the ATRANS bond under construction. In case a required case cannot be located 

for some reason or another, CONVERT creates a new token to stand for the missing case, and 

marks it as being unspecified by placing the structure (UNSPECIFIED #) on its occurrence set. 

More will be said later about what will happen to this sort of structure during the inference 

process which occurs after internalization. 

In this example, CONVERT will be called upon successively to convert the following graph 

components of the ATRANS action. 

1. (PETE ~ {(ACTOR (PETE) <=> (FRIEND VAL (JOHN»») 
2. (CAR REF (*A*}) 
3. {PETE ~ {{ACTOR (PETE) <E> {FRIEND VAL (JOHN}»» 
4. (JOHN) 
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2 and 4 will result in pointers to a token of a car, and to this person named John, respectively. 1 

and 3 are in fact pointers to the same physical LISP structure, one of which will be converted 

trivially by finding it on !REFLIST. I will describe how this (PETE ... (. .. )) component is converted 

the first time it is encountered. 

CONVERT again senses that a PP is being converted and begins constructing a descriptive 

set which will identify this Pete. On PETE's modifier list it detects a REL ( ... ) modifier. Since REL 

takes an entire conceptualization involving the concept it modifies, CONVERT again calls itself to 

process this conceptualization. It then substitutes "#" (symbolically -- there is no memory pointer 

yet) for occurrences of "PETE" in the converted result: 

{FRIENDS PETE #JDHN} --~ {FRIENDS # #JDHN} 

and adds this REL-communicated feature of Pete to the descriptive set. The final descriptive 

winds up as the following: 

{ (ISA # #PERSDN) (NAME # PETE) (SEX # #MALE) (FRIENDS # #JDHN) 1 

CONVERT then calls REFERENT to locate this entity. If the identification successfully locates 

a candidate set for this descriptive set, then all these features must have been used in the 

identification, and hence, already known about the candidates. However, if no candidate could be 

located, this REL-communicated information is added to the list !SUBPROPS, and will thus become 

one of the starting structures for inferencing. The hope is that this might lead to inferences 

which would help establish the referent later. 

CONVERT will then return a pointer to the entity for "Pete" thus located, and the ATRANS 

bond will be complete. Again, its modifications will be processed and will augment its super atom's 

occurrence set. Finally a pointer to this ATRANS structure will be returned to the MLOC level. 

Subconceptualizations, such as the ATRANS structure in this example, are not assigned any 

TRUTH or REASONS, nor are they placed on the starting inference queue. This is because they 

will be examined anyway in the course of examining the top-level structure, and since their truth 

depends upon the higher structure in which they occur, no assumptions can be made at this point 

in the processing. 
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this 

4.5.3 LINKING IN THE TIME RELATIONS 

As each new TIME, TS or TF modifier is encountered as part of each subconceptualization's 

modifier list, a new memory token is created to represent this time, and the time token which 

appears in the graph (eg. things like TIMee) is associated with this new memory time token. This 

association is then recorded on the list !TIMELIST. For the TIME associated with the MLOC in this 

example, this association would look like (TIM02 . C3781) if the newly-created memory time token 

were C3781. As each new time is encountered in the graph,its existence on this list is first 

checked, and if it is found, the associated time token is used in the creation of the TIME, TS or TF 

structure which modifies the action or state structure. This is to insure time cross-references 

within the graph are preserved by this mapping onto memory tokens. 

Although the syntax of analyzed conceptual graphs (Fig. 4-15) represents the time relation 

information as simply appended to the end of the graph, in fact, these relations are stored on the 

LISP property lists of the time atoms (like TIM00) in the graph. As each TIMnn atom is 

encountered for the first time, these relations are retrieved from its property list, and converted 

to memory structures themselves. These then become the occurrence set of TIMnn's associated 

memory token. Fig. 4-17 illustrates the time relationships in this graph as they will exist in the 

memory after internalization. 

TIMee: ((VAL T -0)) 
TIMe1: ((BEFORE TIMe2 Xl) 
TIMe2: ((BEFORE TIM0e Xl) 

* *) 
is (BEFORE 
\ .. 

.. ~# ~# 
(ISA # #TIME) 
(TVAL # 23789964) (J SA # #T I ME) 

(TIME * #l 
) 

(the MLOC structure) 

(l SA # #T I ME) 
(TIME * #) 

~ {the A TRANS 

Figure 4·17. The time tokens and their relations for the graph of Fig. 4·16. 

All deictic time references are denoted by VAL, as in 

TIMee: ((VAL T-e)) 
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Hence, as each VAL is sensed, a special procedure, associated under the property EVAL TIME on 

the property list of the deictic time concept, is called to convert the reference to an actual point 

on MEMORY's internal time scale. In this example, T -0 is the only deictic time reference, and it 

represents the time of utterance. The actual numeric value thus obtained is associated with the 

memory time token via property TVAL. 

4.6 A SUMMARY AND A PREVIEW 

At this point, the internalized form is represented by a pointer to a single memory 

structure, and there exists a list, !SUBPROPS, of starting inference structures. In this example, 

these are the main MLOC structure, its TIME modification, and the REL information relating Pete 

and John if this was not used in identifying Pete. All TIME references have been converted into 

internal time tokens, and the memory is ready at this point to begin conceptual inferencing, 

which is the purpose of it all. Fig. 4-18 summarizes this processing which occurs between the 

time a graph is received from the analyzer and the time inferencing begins. Fig. 4-18 also 

includes a sketch of the flow through the inference and rereferencing processes as a preview of 

what the next chapters will be covering. At this point, it might be informative to reexamine the 

computer representation example which appeared at the end of the previous chapter. 
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~I SOBPROPOSITION I EXTRACTION > 

1, 
INFERENCE EVALUATOR 
AND STRUCTURE MERGER 

f----------­
f----------­
f-----------

\ 

conceptual 
infeeence, /. 

<========= I RESPONSE GENERATOR I 

structures 
in memory 

... 

INFERENCE MECHANISM 

Figure 4-18. From utterance to conceptual inferencing to response. 
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CHAPTER 5 

CONCEPTUAL INFERENCING: 
A SUBCONSCIOUS STRATUM OF COGNITION 

In this chapter and the next, I will propose a partial theory of higher-level cognition which 

some might view as fairly radical in two respects. First, it prescribes quantities and qualities of 

computation which are not attainable (all at once, in reasonable amounts of time) on today's 

serial computers. This is a refreshing thought. It would be deeply disapPointing if something so 

complex as a human language user could be modeled by a PDP10 computer! The second respect 

is that it may be counter-intuitive at first glance. The purpose of this and the following chapters 

is to convince you that your intuition is fooling you. 

I will propose that this theory is a beginning step toward understanding one of the least­

well understood aspects of human intelligence as it concerns natural language comprehension. 

This aspect is the seeming ability of a language user /comprehender to pursue only the most 

relevant paths of reasoning -- to "home in" on the important aspects of what language conveys 

in particular contexts -- while "excluding" other paths which are less relevant because of 

context. There are two main alternative schools of thought concerning this and related problems 

(in the context of language understanding), and I will briefly describe them and contrast them 

with this theory. 

5.1 THE SPONTANEOUS SUBSTRATUM 

The proposed theory is this: that, in order to use and understand language, the brain of a 

human language user does a tremendous amount (by today's standards of machine computation) 

of "hidden" computation in what I will term inference space. Furthermore, it does this in reaction 

to every (language) stimulus to which it is attending and which conveys any interpretable meaning 

content. 

This reactive computation has several characteristics: 

'1. It is spontaneous and automatic. 

2. It is subconscious for the most part. It is not normally subject to direct introspection 
or conscious control. 

3. It is thought of as being performed by parallel, associative "firmware" in the brain. 
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4. It has little goal direction until certain criteria are met. Instead, its only "goal" is to 
increase the richness of interconnecting relations among information which has 
been communicated by language. 

We can view natural languge utterances to which the memory is attending as giving rise to 

points in this inference space. Just as buckshot peppers a country stopsign, the subpropositions 

extracted from an utterance for inferencing pepper this inference space. Were these points 

merely to "lie where they fell", we would have no more than a passive data receptacle: the 

points would remain discrete, separate and unconnected from the rest of the inference space. 

But there are many other points in the space which exist from previous experience, and these 

are highly interconnected. To "understand" is to establish relations between the new and the 

old. Giving a system motivation to understand corresponds in this scheme to building in some 

sort of. mechanism for spontaneously seeking out interesting relationships -- interesting points of 

cont act in the inference space. 

We may conceptualize this mechanism as one of "expanding spheres" in inference space. 

That is, rather than try to establish specific relations from the new buckshot points to previously 

existing points in the space, I am more interested in allowing the new points to blossom out in all 

directions in hopes of establishing many points of contact with other previously existing points 

in the space, which are simply information-bearing structures in the conceptual memory. Thus, 

the spheres expand simultaneously about the new points communicated by an utterance, and 

their horizons eventually contact horizons of other new points (the internal relationships of the 

utterance are being pieced together), and old points in the space (information in the utterance is 

making contact with existing knowledge). These points of contact constitute one source of 

"interesting events" in inference space, and I will have much more to say about them. 

What is the interpretation of an expanding sphere in the inference space? The process is 

simply the automatic reaction to a new unit of information: "where does this fit in with what I 

already know; what interesting points of contact does it make with other information?" It is a 

reconstitution and elaboration of the content-rich situation alluded to by content-lean utterances. 
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5.1.1 CONCEPTUAL INFERENCE: THE EXPANSION FORCE 

The force behind this expansion -- that process by which a sphere expands -- is conceptual 

inference. Since this expansion occurs at a very low level -- without conscious control -- there is 

no tangible goal-direction until an interesting point of contact is reached. But at that point, more 

conscious, goal-directed, computation can begin. The "dimensionality" of the inference space is 

finite, and we may think of each dimension as corresponding to a particular type, or class, of 

conceptual inference. The expanding spheres represent spontaneous exploratory inferences in 

every dimension of the space. 

This spontaneous mechanism is not a complete theory of language-related cognition; I am by 

no means proposing this as the only mechanism of understanding. Rather, the conjecture is that it 

constitutes a necessary and low-level stratum in the cognitive process, and it is this stratum 

which feeds other more goal-directed strata with potentially interesting tasks in particular 

contextual environments. 

As we will see, the theory entails an apparent degree of "wastefulness" at this level of 

cognition, since it is basically a "bottom-up" exploratory process which homes in on interesting 

events, setting up more "top-down" processes when such events occur. 

This theory addresses what can be called the "lower-upper level" of 
cognition: it is the low level underpinning of our ability to "think" 
via language. 

5.1.2 A BRIEF ILLUSTRATION 

To illustrate in a more concrete way what I want to be able to do in the conceptual memory, 

I will give a sketch of the kinds of spontaneous reasoning which, I propose, occurs in reaction to 

a simple utterance: 

John McCarthy went to Boston. 

We would want the memory's stream of consciousness analysis of this utterance would go 

something like this: "He went to Boston, eh? That means he was in Boston, and he probably 

wanted to be there. Why would he want to be there? Probably to do something which requires 
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his personal presence, like talking to some other high-up. Oh yes, he probably went to talk to 

someone like Minsky at MIT ... about grant money or new research proposals, or something like 

that. That's understandable. Of course, it could just be a vacation. How did he go? Probably by 

flying. That's ok, he has the means, and there's no air strike on. Wait a minute. I thought he was 

giving a talk here tomorrow. Either he'll be back then, or it's been called off, or something. 

Better find ouL .. " 

This is the sort of reasoning we ultimately want a fully attentive conceptual memory to be 

able to perform. Notice how many assumptions were made about what is normal and how, by 

making them, much other information was drawn into the analysis. All this information is the 

sphere in inference space which develops about the original utterance. Even though some of the 

assumptions made may have been incorrect, the sphere at least forms a framework within which 

many other valuable discoveries can be made. 

This theory is not concerned with pinning down one explanation, or with pursuing just one 

line of reasoning. Instead, the idea is to elaborate each utterance in as many directions as 

possible with the hope that some of the elaborated information fits together with, or contradicts 

other elaborations made previously. For instance, because we predicted his trip was by air, we 

implicitly predicted also that a significant amount of money was involved. This provided no 

conflict with Our knowledge of McCarthy. However, the utterance may have sounded peculiar 

about our utterly broke friend Bill who lives in the hills. "How did he get that kind of money?", 

"Why did he want to be in Boston.", etc. I hope to demonstrate that these points of contact with 

other knowledge are possible only when this kind of spontaneous expansion by conceptual 

inference occurs. 

5.1.3 ABOUT THE PSYCHOLOGY OF IT ALL 

Our task is to apply this notion of spontaneous expansion in inference space to the problem 

of understanding the meanings of language utterances in particular situations, or contexts. To an 

extent, then, we are modeling a human language user, or, more succinctly, a person! To 

understand how a person might use and understand language, we must ask questions about how 

he understands the world about him in general, what motivates him to act, what he knows, and so 

forth. This need to model people is realized in fairly overt ways by some of the types of 

conceptual inferences I will propose as primary dimensions of the inference space. 
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Some of the central classes of conceptual inference in the current theory implement a 

"naive psychology". That is, they are based upon a "layman's" view of cause, effect, motivation 

and intentionality. Although such a basis is defensable On purely philosophical grounds, I am not 

modeling the "deep psychology" of a person, and hence have no quarrel with those who would 

criticize certain of the conceptual inferences on this basis. Instead, I am interested in the efficacy 

with which a certain class of conceptual inference can account for a human language user's 

ability to understand utterance X in situation Y. By asking enough questions about enough X's 

and V's, I have arrived at a fairly compact set of conceptual inferences which seem to lie at the 

center of much language understanding. That they form a "naive psychology" is only of incidental 

significance to the theory, whose main goal is to explain language comprehension. 

We must first be able to account for the simpler activities of language understanding before 

we tackle those which require a deeper analysis. We must first develop an understanding of how 

to deal with the "rule" before we can approach "the exception". That is, there must first be 

some critical mass of knowledge about simple cases before we can expect to grasp the subtler 

issues of language comprehension. The hope is that the critical mass established by this 

embryonic theory can eventually be embedded within a larger, more comprehensive one without 

massive dismemberment. Thai is, although a naive psychology may indeed be ultimately 

inadequate, the hope is that it can be extended rather than discarded as new issues arise. 

5.1.4 THE FLYWHEEL EFFECT 

One very natural app'lication of a theory of conceptual memory of the sort I am proposing is 

to the comprehension of simple stories. We may view a story as a sequence of utterances 

(sentences) such that each utterance bears at least one relation to some other utterance of the 

story. Usually, the connections between anyone utterance and others in the story are quite 

rich. Normally, the entire reason for the existence of a line in a well-written story is that it 

relates to, and explains, other ideas in the story. Each line serves to enrich the connectivity of 

the information content of the story. 

Because it is the purpose of a story to create and preserve this richness of connectivity 

among its constituent information, we might view it as possessing a certain momentum at each 

point. That is, each thought in it tends both to explain some things, to raise questions about 
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others. There is a logical continuity, which the author helps the reader to focus upon by what he 

chooses to include and how he includes it, and this is an assumption the reader makes befn.·· • 

trying to comprehend a story. I will call this logical continuity and momentum the flywheel effect. 

The essence of story comprehension rests upon the reader's ability to stay in 

synchronization with this effect. This involves such things as understanding actors' motivations, 

recognizing cause/effect interrelationships, forming many "mini-hypotheses" (quite often only 

subconsciously) about what might happen next in a particular situation, then verifying them as 

the story unfolds. In other words, the comprehender expects every idea to fit in, and the implied 

task of fitting everything together is a universal goal of story comprehension. 

My conjecture is: 

The fundamentals of understanding a story are rooted in the 
spontaneous expansion in a "multi-dimensional" inference space of 
each new thought as it arrives. 

I pose this thought here simply to provide a similar, but more application-oriented, 

perspective on the nature of this phenomenon of spontaneous inferencing being proposed. How 

we can get a computer program to be able to stay in synch with this logical flywheel, will evolve 

as the various kinds of conceptual inference are presented. 

5.1.5 TWO OTHER APPROACHES TO UNDERSTANDING, BRIEFL V 

I have mentioned the existence of two significantly different approaches to understanding. 

These are the "inference-on-demand" approach and the "demon" approach, both of which 

acknowledge the importance of some sort of inference capability. The crucial differences concern 

when and for what purposes inferences should be made. 

The main precept of the inference-on-demand approach is that inferences are very costly, 

and should be made to satisfy only the very specific, intermediate goals of larger, goal-directed 

processes which know what is interesting to do in all sorts of contexts. That is, an inference is 

not something which arises spontaneously as a person comprehends an utterance, but rather is 

something to be called upon to answer a specific question fot which the answer is not 

immediately attainable from the "data base". This is characteristic of a question-answerer, Or 

theorem-prover, Or "planner" (in the MICROPLANNER sense [S14]). 
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The main inadequacy of this approach in so ill-defined a task as "understanding" is that 

there can in general be no de facto higher level goals until it has been discovered what comprise 

the potentially interesting aspects of a particular situation. That is, at this low level of higher 

cognition, there is no real sou.rce of demand for inference. Hence, although "inference on demand" 

systems are quite relevant to tasks such as sentence analysis and generation -- and to very 

specific aspects of understanding in a conceptual memory, once interesting tasks are uncovered 

-- they are not sufficient for the main purposes of a conceptual memory: to enrich all sorts of 

interconnections among information. 

Charniak's "demon" approach [C1] is another distinct theory of language comprehension, and 

it lies slightly closer to the one I am proposing than a pure inference On demand scheme. 

Basically, a demon is a process which can be activated by certain combinations of situations in 

the same sense that a conceptual inference is triggered by combinations of conceptual 

information. The idea is to spawn demons at each point in, say, a story. The demons will "lie in 

wait" until they detect that they are applicable to some later event or situation, at which time 

they become active, releasing their potential to influence the interpretation of the pattern which 

has activated them. In this way, a continuity is maintained between information which spawns 

demons and information whose interpretation is later affected by previously spawned demons. 

The demons come out of suspended animation when patterns with which they are equipped to 

deal are detected. 

The notion of a demon is a good one, and is probably necessary to good understanding 

systems. But demons are often guilty of "playing their cards too close to their faces." That is, 

since a demon's potency is stored only as a potential for influencing the later interpretations of 

conceptual information, the information it bears is not readily available to other language-related 

processes which could make their own idiosyncratic use of it to discover relations which were 

not the original intent of the demon, but which nevertheless depend in important ways upon the 

information it contains. 

Herein lies the fundamental difference between a demon and a conceptual inference. A 

demon contains only a potential for exerting an influence. Because of this, it is not of much use 

in drawing out -- in making explicit -- the implicit surrou.nding context of an utterance. From the 

standpoint of the conceptual analyzer alone, this is a very important function of a memory. 
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Rather than mask all this implicit information in the form of demons which mete out their services 

when they become "applicable", I have taken the approach that it is useful to draw it out as much 

probablistic information as possible at each point -- to lay all the cards on the table for 

everyone who might be able to use them to see. This makes all the more likely the discovery of 

interesting underlying relationships (which could not have been anticipated beforehand). 

There is another more pragmatic argument in favor of drawing things out explicitly, as 

opposed to bottling them up as potentials in the form of demons. It is this: the process of 

spawning a demon is essentially the same as generating a conceptual inference: in general, the 

same quantities of testing will be required to decide When a certain demon may be applicable -­

when it might be relevant to spawn. As long as the applicability tests are essentially the same, 

why not go ahead with the probabilistic inference at that point, thereby making explicit its 

potential effects (interactions) with subsequent inputs? Aside from the obviously rapid 

consumption of computer storage space, this requires negligible additional effort. DOing this has 

the same desirable net result as a demon-based scheme, and has the potential for making far 

richer connections among the information which is processed this way. 

5.2 WHAT IS A CONCEPTUAL INFERENCE? 

The heart of computer understanding of language is the expansion 
of conceptual structures in inference space, by the mechanism of 
conceptual inferences. What is a conceptual inference? 

When a language user hears 

and concludes: 

and responds: 

and asks: 

or 
and asks: 

Mary kissed John in front of Sue. 
Sue became extremely jealous. 

John sold his car. 
I didn't know John owned a car. 

Bill took an aspirin. 
What's wrong with him? 

Mary wants a book. 
A book about what? 
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what has gone on inside his head? Why should hearing one thing elicit a response about 

something else. What mechanisms are responsible for this? 

As I have proposed, this process is underlied by an inference reflex which spontaneously 

accesses beliefs and knowledge about the world in reaction to each unit of information in each 

conceptual input attended to. It is the purpose of this section to define this notion conceptual 

infaence and show how conceptual inferences organized in a conceptual inference network can 

behave in this manner. To begin, it will be useful to contrast the notion of a conceptual inference 

with more traditional notions of inference and logical deduction, with an emphasis on their quite 

different roles. 

.;. 

5.2.1 "CONCEPTUAL INFERENCES" VS. "LOGICAL DEDUCTIONS" 

In its broadest sense, a conceptual inference is simply a new piece of information which is 

generated from other pieces of information, which mayor may not prove to be true in the world 

which it models, and which is "believed" by the inferencer, not in a black and white sense, but 

rather to a "fuzzy" degree (say, a real number between 0 and 1, rather than TRUE-FALSE). 

Since the intent of inference-making is to "fill out" a situation which is alluded to by an utterance 

(or story line) in hopes of filling in missing information and tying pieces of information together 

to determine such things as feasibility, causality, and intentions of actors at that point, many of 

the conceptual inferences may turn out to be useless. That is, the process of generating 

conceptual inferences is inherently a computationally wasteful process, because its intent is to 

discover what is interesting in a particular context. 

A conceptual inference can be distinguished from the traditional notion of a logical 

deduction in a formal system in the following respects: 

(1) Inferences are a "reflex response" in a conceptual memory. That is, the main definition 

of" processing conceptual input" is the generation of conceptual inferences from it. 

This means that there is always a deep-rooted motivation to generate new information 

from old. In a more formal theorem-prover or question-answerer, deductions are 

performed only upon demand from some external process. Someone (something) else 

has already decided what is and what is not interesting or useful to do. Normally, the 
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uses to which formal deductions are put are highly directed in the sense that a well­

defined goal exists, and a path from some starting conditions (axioms) via 
" 

transformations (theorems) on these conditions to this goal is desired. In this 

application extreme care must be taken not to "wander off" this path too far. For this 

reason, a recurring issue in formal deductive systems concerns the problems of search 

space restricting heuristics. Conceptual inferences on the other hand have very little 

direction. They are generally made "to see what they can see". The "goal" of 

inferencing is rather amorphous: make an inference, then test to see whether it looks 

similar to, is identical to, or contradicts some other piece of information in the system. 

When one of these situations occurs, the memory can take special action in the form of 

discontinuing a line of inferencing, asking a question, revising old information, creating 

new causal relationships, or perhaps invoking some sort of higher level, goal-directed 

belief pattern which will begin imposing a special interpretation upon what it 

subsequently perceives. The problems of severely narrowing the search space in 

hopes of establishing a path to a goal exist, but are not nearly so acute as in a goal­

directed theorem prover: there is neither a "path" or a 'Igoal" until one of the 

situations described occurs. 

(2) An inference is not necessarily a logically valid deduction, and will quite often lead to 

apparent contradictions. This is in fact one facet of what it means to discover what is 

interesting about a particular utterance in a particular situation. But this means that 

the new information represented by the inference might not bear any formal logical 

relationship to those pieces of information from which it is generated. In order to 

understand language, we must model that horrendously illogical cognitive entity, the 

human language user -- both the processes he uses, and the substance of what those 

processes yield. 

(3) It makes little sense to talk about believing an inference in an all or none sense. Rather, 

we must talk about the degree to which a conceptually inferred information (or any 

information, for that matter) is likely to be true -- a measure of how strongly the 

inferring mechanism beleves it. It is imperative that the memory retain and propagate 

measures of the degree to which a piece of information is likely to be true. The 

153 



memory in which conceptual inferences occur must be designed with the idea that no 

information it contains is inviolably true, but rather that "everything is just a guess, 

and some guesses turn out to be better than others". 

5.2.2 THE CONCEPTUAL INFERENCE EVALUATION PROCESS: A PREVIEW 

Chapter 7 is devoted to the details of how the program generates and evaluates inferences, 

and how, mechanially, they link together to form new connections in inference space. However, 

as we cover the various classes of conceptual inference, it will be useful to have a vague notion 

of what happens to each inference after it arises. 

When a new inference is generated, one of three conditions can apply: 

(1) the new inference can match something else in MEMORY. When this happens, the new 

information is said to confirm the old. This is one of the most fundamental events in the 

understanding of more than one utterance (ie. a story), or in the understanding of 

relationships within one complex utterance. It gives rise to a merge event, which is one form 

of contact point in inference space. 

(2) the new inference contradicts (is incompatible with some old information. This means either 

that something is conceptually peculiar about the utterance or that the memory has made an 

incorrect decision about some referent or has generated a probabilistic inference which 

turns out to be unlikely. The ability to detect contradictions is another important aspect of 

understanding, and contradictions are another form of point contact in inference space. 

(3) the new inference can neither be determined to contradict nor confirm old knowledge. In this 

case, the new information is simply remembered, and is said to augment existing knowledge. 

However, this new information can have profound effects on other aspects of understanding 

(in particular, the identification of referents, and the determination of time relationships). 
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5.3 THE MAINSTREAM CONCEPTUAL INFERENCES 

What are the main dimensions of inference space. In other words, 
what general classes of inference are there, based on their utility to 
language comprehension? How does each contribute to 
understanding language utterances? 

Although all inferences have many characteristics in common, their utility in the flow of 

processing which expands structures in inference space is generally quite distinctive. Because of 

this, it is helpful both theoretically and programmatically to distinguish inferences by type. This 

classification can help clarify the usefulness of a particular inference and how each might be said 

to contribute to the overall goal of understanding. 

The main framework of the theory consists of the following 16 classes of conceptual 

inferences: 

1. specification inferences: what are the missing conceptual components in an 
incomplete graph likely to be? 

2. causative inferences: what were the likely causes of an action or state? 

3. resultative inferences: what are the likely results (effects on the world) of an 
action or state? 

4. motivational inferences: why did (or would) an actor want to perform an action? 
What were his intentions? 

5. enablement inferences: what states of the world must be (must have been) true in 
order for some action to occur? 

6. function inferences: why do people desire to possess objects? 

7. enablement-prediction inferences: if a person wants a particular state of the 
world to exist, is it because of some predictable action that state would enable? 

8. missing enablement inferences: if a person cannot perform some action he 
desires, can it be explained by some missing prerequsite state of the world? 

9. intervention inferences: if an action in the world is causing (or will cause) 
undesired results, what might an actor do to prevent or curtail the action? 

10. action-prediction inferences: knowing a person's needs and desires, what actions 
is he likely perform to attain those desires? 

11. knowledge-propa~ation inferences: knowing that a person knows certain things, 
what other things can he also be predicted to know? 

12. normative inferences: relative to a knowledge of what is normal in the world, 
determine how strongly a piece of information should be believed in the 
absence of specific knowledge. 

13. state·duration inferences: approximately how long can some state or protracted 
action be predicted to last? 
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14. feature inference&: knowing some features of an entity, and the situations in which 
that entity occurs, what additional things can be predicted about that entity? 

15. situation inferences: what other information surrounding some familiar situation 
can be imagined (inferred)? 

16. utterance·inteilt inferences: what can be inferred from the way in which 
something was said? Why did the speaker say it? 

I have based most of the discussions of these various inference classes, and of the 

processes which implement them in the computer program, on very simple examples. The reasons 

for this are twofold: (1) it helps to abstract and isolate certain processes which might otherwise 

be obscured in more complex examples, and (2) the examples will, for the most part, be easily 

representable in the representational formalism and memory structures which have been 

described, and hence will illustrate the modest -- but actual-- capabilities of the computer 

program. However, having read about each inference class in the context of the simple examples, 

the reader is urged to attempt to apply that class to instances of "real world" language about 

him in order to develop a feeling for the potential powers and/or weaknesses of each type, and 

the processing which implements it. A bit more will be said about the relative scope of these 

inference classes at the end of chapter 6. 

5.3.1 AN IMPORTANT CAVEAT 

The computer program which implements most aspects of this theory exists and runs. 

However, from the discussions of the kinds of things it does, one should not be misled into 

believing that a truly vast system yet exists. Where some issue is discussed as though the 

implemented memory can currently handle thousands of cases, more often than not, it will in fact 

only cope with a handful of examples. But I am confident that this is a failure of data, not of 

process. As time passes, and the theory evolves, so will the data. It is too early at this point to 

spend too much time encoding tomes of specific knowledge about the real world. We are still 

fumbling with the more basic processes of language understanding. 

One final comment: I reemphasize that I will be discussing classes of inference: (1) how they 

are useful for understanding, (2) when they are applicable, (3) how they are achieved in the 

computer formalism and program. In a sense, then, rather than talk about speCific inferences, I 

will be examining the when, where, and why of doing things certain ways. By doing this, cubby-
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holes of processing will be established to which I can point and say "Yes, you're right, this 

particular case hasn't been discussed, but here is where it fits in the formalism and processing 

sequence." The rule of the game, therefore, is not to say "You can't do that", because what I 

describe can be and has been done, to varying degrees of success. Rather, you may say "That 

isn't quite right", or "You've oversimplified a very deep philosophical problem", or "This won't 

account for X", or, "Yes that's nice, but you'll never get it all to run at once on a PDP 1 0 

computer in reasonable times". If you play the game this way, you'll quite often be correct, and 

we can all laugh together! 

Let's now look at the inference classes. 

5.4 SPECIFICA TION INFERENCES: 
PREDICTING AND FILLING IN MISSING CONCEPTUAL INFORMATION 

sample: John picked up a rock. 
He hit Bill. 

sample: Bill was driving home from work. 
He hit John. 

sample: 

sample: 

John and Bill were alone on a desert island. 
Bill was tapped on the shoulder. 
It was probably John who tapped him. 

John bought a cake mix. 
It was likely a grocer with whom John traded 
money for the cake mix. 

sample: Where was John Tuesday evening? 
I don't know for sure. Probably at home. 

sample: Mary accidentally dropped a sledgehammer on Bill's toe. 
She apologized. 

Language tends to be as economical a means of communication as possible. And it is so 

deeply ensconsed in people's knowledge of what is normal in the world that it rarely is used to 

communicate the obvious. Instead, it serves to relate new combinations of information to others 

who have not directly experienced them. One consequence of this phenomenon is that the 

conceptual structures of utterances are quite often incomplete. That is, where the underlying 

conceptual representation of an utterance would predict the existence of an ACT case Or state 

argument, there was no actual reference to such information in the utterance. The speaker of an 

utterance simply assumes that the hearer is capable of "filling in the details" as part of his 

comprehension. 
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As we saw in chapter 2, there is a well defined set of conceptual cases for primitive 

actions, and equally well defined arguments for state relations. Furthermore, all action cases and 

state arguments are conceptually obligatory. Unlike syntactic cases, whose presence or absence 

is often optional and of little consequence, a conceptualization is simply incomplete without them. 

Without all the conceptual slots filled, the hearer of an utterance simply cannot fully imagine the 

entire situation to which the utterance alludes. This is intrinsic to the notion of "conceptual case". 

This section will demonstrate the importance of giving the memory this capability to make good 

contextual guesses about missing and unspecified information, and will describe how this 

capability has been implemented. 

5.4.1 WHY DO IT? 

We might well ask "If the hearer is capable of filling in the details in the first place, why 

should he bother to do it?" That is, what good comes from completing a meaning graph with 

"internally-generated" information which the hearer supplies himself? Can it possibly lead 

anywhere? The answer is an emphatic "Yes", for two reasons. First, how is the hearer to know 

whether or not he can in fact complete the meaning graph without trying! In cases where he 

cannot, a human language user frequently asks a question of the speaker. The commonness of 

question-asking based on missing information is testimonial that this process is a vital part of 

understanding. 

The second reason is less superficial: by applying his knowledge of normality to the task of 

filling in missing information, the hearer generates specific instances of that normative 

knowledge. These specifics can then interact with other knowledge in entirely different ways 

from instance to instance: the prediction of missing information can be the beginning of important 

lines of inference. Let us call the process which attempts to specify missing or incomplete 

information in a meaning graph speCification inference. 

5.4.2 DETECTION AND MARKING IN THE CONCEPTUAL ANALYZER 

To illustrate this process of specification consider the utterance "John hit Bill." In particular, 

imagine how the analyzer deals with it: John is recognized as the actor of a hitting action in 

which Bill is some sort of effected entity, possibly the conceptual object of the hitting action. 
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But the action of hitting is not conceptually primitive. Rather it consists of a PROPElling of an 

object, X, toward some goal, resulting in the physical contact of X and the goal. The conceptual 

template in the analyzer's dictionary which defines "hit" therefore predicts that the sentential 

object, ",Bill", is not really a conceptual object, but rather that he is the affected entity (the 

directional goal) of the propelling action in the hit template. The left graph in Fig. 5-1 depicts 

the state of the analysis after the analyzer has located and partially filled in this "hit" template. 

Y 

0 
lL o 

JOHN <===> PROPEL ~--- X JOHN <=====> PROPEL ~--- X 
l' l' 

X 

I \ l' I \ 

I~I:~: 
BILL 

p JOHN 
I I I~I--~ BILL 
± ~-- JOHN p 

val val 
<=====> PHYSCONT ~---- BILL X <=====> PHYSCONT ~---- BILL 

Figure 5·1. Missing information in the utterance "john hit Bill". 

The underlying ACT is PROPEL, which requires, as do all the primitive ACTs, certain 

conceptual cases obligatorily, and only those. For PROPEL, those cases are ACTOR, OBJECT, 

DIRECTIVE (TO and FROM) in addition to the ubiquitous TIME, LOCATION, and INSTRUMENT cases, 

which are requirements of all acts. But notice that the analyzer, by using its linguistic ability, 

has been able to supply only the ACTOR, D-TO, D-FROM and TIME (and this, only partially 

specified as some point before "now"). The three remaining cases, OBJECT, INST and LOCATION 

remain unspecified. In the terminology of the analyzer, this means that the requests which arose 

during the analysis to locate and attach these missing cases to the meaning graph are still 

pending at the end of the analysis (see [R2]). 

The analyzer therefore detects these and creates "dummy" cases and case fillers, and marks 

these missing entities by placing an (UNSPECIFIED _) in their descriptive sets. These 

UNSPECIFIED markers will thus become part of the occurrence set of each unspecified entity. 

In general, the descriptive set will consist of more than the UNSPECIFIED marker, since the 

analyzer is usually able to glean at least a few conceptual features about the unspecified entity 

(for instance, the sex of a person from linguistic pronominal clues, and so forth.) 
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5.4.3 THE SPECIFICATION PROCESS 

The meaning graph which the memory receives for "John hit Bill" is shown in the right of 

Fig. 5-1. During its processing in inference space, we want the memory to detect the X,Y and Z in 

Fig. 5-1 as unspecified, then consult its language-free world knowledge to make a "best guess" 

at these cases in whatever the current context of this utterance happens to be. 

The meaning graph is first internalized in the memory's data structures, and part of this 

internalization consists of isolating all the subpropositions which have been communicated by the 

utterance. For this graph, the subpropositions are those shown in Fig. 5-2. In Fig. 5-2 I have 

broken with the standard "pound-sign" notation for internal tokens and concepts in order to 

make things more readable. 

PI: (PROPEL JOHN X JOHN B I LU 
P2: (LOC PI YI 
P3: (.JNST PI ZI 
P4: {CAUSE PI PSI 
PS: (PHYSCONT X B I LU 
P6: !TIME P4 Tl 

T represents a time atom for which the relation {BEFORE T Tnowl exists, 
Tnow being the time atom which represents the moment of utterance. 

Figure 5·2. Subpropositions in "John hit Bill". 

5.4.3.1 DETECTING MISSING INFORMATION IN THE INFERENCE MONITOR 

Having been isolated, the memory structures PI-P6 will form the starting inference queue: 

the buckshot points in inference space. This means that each of PI-P6 will eventually come 

under the scrutiny of the inference monitor which will apply suitable inference molecules to 

them. This is the process by which inferences are generated to expand the points in the space 

into spheres: each structure in the starting inference queue will give rise to numerous 

inferences. These are appended to the end of the queue for later expansion, and will, in turn, 

give rise to other structures, and so on. 

As the inference monitor picks up the next structure, S, from this ever-expanding inference 

queue for inferencing, the monitor first scans the S's bond, looking for entities in it which are 

marked as UNSPECIFIED. That is, just before applying an inference molecule to S, the monitor 
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checks for any unspecified information in S. Since unspecified information has been tagged by 

the analyzer as UNSPECIFIED, this scan consists of searching for an (UNSPECIFIED Xi) on the 

occurrence set of each Xi in the bond, including the conceptual predicate which may itself be 

unspecified (a dummy DO). If no entity in the bond is found to be unspecified, the monitor 

proceeds to locate and apply the appropriate inference molecule to the structure. However, if 

one or more unspecified entities are found in the structure's bond, the inference monitor 

interrupts and applies a specifier molecule to S. 

In our hitting example, this type of interruption will occur for the structures representing 

P2, P3 and whichever of (Pl P5) is examined and successfully specified first by the inference 

monitor. This detection process is schematically illustrated in Fig. 5-3. 

STRUCTURE 
S UP FOR 
INFERENCE 

1 
YES 

DOES S 
CONTAIN 
ANY UN-
SPECIFIED l ENTITIES? 
--,---

APpLY 
SPECIFIER 
MOLECULE 

TO 5 

APpLy 
INFERENCE 

MOLECULE 
TO S 

THE INFERENCE MONITOR EXPANDS EACH 
STRUCTURE ON THE INFERENCE QUEUE IN TURN 

'" -------4 I" ... 
(* * * * * * * ** * * * * * * * v',/J ... \ ... 

... } ~ I NFERENCE QUEUE 

currently ----_~ 
up for inference {PROPEL * * * *) 

tI ~:=:::::::=:::::/:""---1 
( I SA tI #PERSON) 

\# 
{NAME # JOHN} 

( I SA # #PERSON) 
{NAME # BILL> 

# 
, .. , .. (UNSPECIFIED #) 

/' 

, , 
this entity is detected 
as unspecified, so before 
applying the PROPEL inference 
molecule to the PROPEL structure, 
the monitor first appl ies the 
PROPEL specifier molecule to it 

Figure 5·3. The process of detecting missing information. 
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5.4.4 SPECIFIER MOLECULES 

Specifier molecules are executable LISP program modules which are organized by 

conceptual predicates. When applied to a structure, S, whose predicate is P, the P specifier 

molecule is capable of predicting the most likely candidate (that is, supply a pointer to some 

other existing structure in the memory) for a missing unit of information, in 5, or, more modestly, 

at least helping toward this goal by predicting more conceptual features of the missing entity. 

The fidelity with which a specifier molecule does this task in a context-sensitive manner is simply 

a function of how sensitive it is to the dimensions which could affect its prediction. That is, the 

kinds of testing specifier molecules do in the process of specification must in general be very 

specific, relying on the whatever "local" heuristics are effective at accomplishing the 

specification, paying attention to its context. To illustrate just how local the heuristics must be 

from molecule to molecule, consider the following specification tasks: 

1. John drooled as he viewed the banana. 
He ate. 

2. Pete and Bi I I were alone on a desert 
island. Someone tapped Bi I I on the 
shoulder. 

3. Mary picked up the rock. She hit 
John. 

4. John was driving his car. He hit 
Mary. 

S. John bought a hammer. 

6. John was asleep. 

7. Mary went to work. 

8. John went to Paris. 

FILL IN THE BANANA AS THE CONCEPTUAL 
OBJECT OF EATING 

FILL IN PETE AS THE CONCEPTUAL ACTOR 
OF "MOVE" WHICH UNDERLIES "TAP" 

PREDICT THAT IT WAS THE ROCK WHICH 
WAS THE OBJECT OF MARY'S PROPELLING ACT 

PREDICT THE CAR AS THE OBJECT OF THE 
PROPEL 

II BUY II IS UNoERLI EO BY A DUAL A TRANS AC T. 
WHO IS THE OTHER ACTOR? 

WHAT IS THE LOCATION OF THIS COMMON 
STATE LIKELY TO BE IN THE ABSENCE OF 
OTHER EXPLICIT INFORMATION? 

WHAT IS THE TIME OF THIS COMMON ACTION 
LI KEL Y TO BE? 

PREDICT THE LIKELY INSTRUMENTAL! TY "FLY" 

The heuristics for these are all slightly different and peculiar to the individual situations. 

This is not to suggest that there are not common heuristics which are shared by many specifier 

molecules. Indeed, there are probably many such heuristics which remain to be discovered by 

examining enough specific cases. One case in point is the following heuristic whose general utility 

has become apparent: 
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Find an entity, X, which satisfies conceptual features {Yl, ... ,Yn}, 
and which has a recent RECENCY or TOUCHED tag. 

For instance, In the example "He ate" the INGEST specifier molecule will try to locate something 

which is INGESTable (which ISA #FOOD), and which has recently been referenced explicitly or 

implicitly. 

Since the specifier molecules are programs, they can easily reference such common 

heuristics via function calls to the processes which implement the common heuristics. But the 

knowledge required to perform any particular specification task is, more often than not, quite 

peculiar both to the conceptual predicate and to the features of the entities it relates. Thus, 

rather than discussing instances of specification inferences, I am more concerned with where 

they fit in the overall information flow within the memory, what they do, how they do it, and 

what they are good for. 

5.4.4.1 APPLYING SPECIFIER MOLECULES TO MEMORY STRUCTURES 

The mechanism by which the inference monitor locates and applies a specifier molecule is 

uncomplicated. Having detected as UNSPECIFIED some entity in the bond of the structure to which 

an inference molecule is about to be applied, the monitor interrupts. It retrieves the bond and 

creates a parallel vector, V, whose contents denote which elements of the bond are unspecified: 

a NIL is placed in positions of V w~ose counterpart entity in the bond is unspecified, and entities 

which are not unspecified represent themselves in V. Fig. 5-4 illustrates the V which is created 

for our hitting example. 

BONO: (PROPEL #JOHN1 C0137 #JOHN1 #BILL1) 
J. ! J , J, 

V: (PROPEL #JOHN1 NIL #JOHN1 #BILLH '. 

where C0137 is the entity which has been detected as unspecified. 

Figure 5·4. The specification request vector. 

The monitor then locates the PROPEL specifier molecule attached as the property SPROG of 

PROPEL's property list. This property stores a LISP PROGram whose calling arguments are the 

following: 
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UN a list containing (1) the superatom, S, which represents the structure which 
contains one or more UNSPECIFIED entities in its bond, and (2) time information: 
the TIME, TS and TF of the structure if they exist, and the rough time frame these 
(PAST, PRESENT, FUTURE) these time aspects represent: 

UN: (S TIME TS TF FRAME ) 

V the parallel vector with NILs indicating which entities of the bond require 
specification 

AC OB DF Dr the actual entities in the bond, bound individually as ACtor, OBject, 
OFrom and OTo. Which, and how many, of these there are of course are specific 
to the particular conceptual predicate. 

The monitor sets up these arguments, then applies the molecule to them. Since the molecule 

has complete information (it has access to the structure's surrounding environment and 

approximate time via UN, and the structure's bond is conveniently accessible through AC, OB, OT, 

OF), it can apply arbitrarily detailed heuristics to the specification task. 

5.4.4.2 INSIDE THE SPECIFIER MOLECULE 

Within the molecule are specifier atoms. Each atom is prepared to specify one unspecified 

entity in the bond, in a context-sensitive way. Each atom tests a particular "slot" in V for NIL to 

determine whether the slot it is prepared to specify requires specification. If its slot is not NIL, 

the atom does nothing. Otherwise, the atom applies its heuristics in an attempt to specify its slot. 

These heuristics will typically be sensitive to the structure's surrounding context, to the nature 

of the other entities in the bond and to partial features already known about the unspecified 

entity (for example, it is already known that C0137 in Fig. 5-4 must be a physical object). I will 

describe the heuristics used to specify the three missing cases in this PROPEL example shortly. 

Fig. 5-7 shows a very small specifier molecule used by the program. 

A specifier atom which is successful does two things: 

1. it creates or locates the concept which specifies the unspecified entity 

2. it replaces the NIL in V with a LISP dotted-pair which consists of (a) a pointer to this 
specifying entity, (b) and a list of REASONS which indicates why this entity was 
chosen. 

The finished product of the specifier molecule is a new version of V, hopefully with fewer NILs. 

This V is returned to the monitor, which rescans it to detect any dotted pairs representing 

successful specifications. Fig. 5-5 shows what this V looks like when some specification atom has 

been successful. 
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V: 

# 
( I SA # #PERSON) 
(NAME # JOHN) 

reasons for 
speci fying thi s 

----------+ V: 
(( 

{PROPEL * (* * *) * *) 

#~------t­
(l SA # #PERSON) 
{NAME # #BILU 

#. ' 
{whatever was spec1fied} 

Figure 5-5. 

5.4.5 MERGING THE NEW AND OLD ENTITIES 

For each unspecified entity which was successfully specified, there will exist two objects in 

memory representing the same thing (the old, unspecified one and the new, specified one). These 

two entities must be merged into one. To accomplish this, the monitor calls the merge process, 

IDENTIFY_MERGE, which is described in sections 7.6 and 8.1.2. The important results of this 

merge are (a) that all references to the previously unspecified object are replaced by 

references to the result of the merge process, and (b) that any information collected about the 

unspecified entity up to that point will be preserved and attached as features of the newly­

specified entity. To illustrate by a very simple example why this kind of conservation of existing 

features is important, consider the following sequence: "John picked up Pete's putty. He handed 

the warm round red mass to Mary." Under most circumstances, we would want these two entities 

which have been referenced by different descriptive sets to be identified as one and the same 

by the PTRANS specifier molecule. To identify is to merge the two tokens together, and do so 

with no loss of information. We would want the result of the IDENTIFY_MERGE process to have 

all the features of the two previously discrete tokens: that the entity (1) is a lump of putty, (2) 

is warm, (3) red, and (4) round, (5) is owned by Pete, and (6) was handed to Mary by John. The 

merge process is capable of doing this. 
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Notice that since all references to the old (unspecified) entity are replaced by references 

to the new one, in our hit example where the unspecified object appears in both PI and P5 of 

Fig. 5-2, the successful specification of whichever of (P 1 P5) is examined by the inference 

monitor first will obviate the need to perform specification on the other. That is, it will simply not 

be seen by the inference monitor again as an unspecified entity. 

5.4.5.1 THE PREDICATE "IDENTIFIES" 

One by-product of IDENTIFY_MERGE is the creation of a memory structure (IDENTIFIES X V), 

where X is the specifying object, Y is the previously-unspecified object. The REASONS returned 

by the specifier atom which specified Y as X constitute the REASONS list for this IDENTIFIES 

structure. Thus for instance, if we were to inquire of the memory "Why do you think the object 

John used to hit Bill was a rock?", it could respond "Because John was holding a rock at the 

time." This IDENTIFIES association and the attachment of REASONS to it are illustrated in Fig. 5-6. 

( j (JOHN) 

(PROPEL * * * *) 

\ \.....# 
# (the old, # 

unspecified 
ent i tid) 

<BILl) 

(the time at which 
the identification 
was made) 

Figure 5·6. The IDENTIFIES structure which stores 
the REASONS for the identification. 

After the merge, the monitor performs a small bookkeeping chore. The memory maintains a 

list, !MISSINGINFO, of entities which have been detected as unspecified and whose specification is 

pending. !MISSINGINFO is one source of things to react to after the inference processes cease: it 
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can be used to generate prompting questions about missing or incompletely specified entities 

which have been collected during the infe.rencing. To maintain this list, at each specification 

attempt, the inference monitor detects (during the scan of the specification vector, V, returned 

from the specifier mOlecule) which entities were successfully specified. Those which were are 

removed from !MISSINGINFO if they were on it, and those which the specifier molecule failed to . 
specify are added to it if not already there. 

After the merge, the specification process is complete. Hopefully, more features of the 

missing entities are now known. However, failures to specify will not preclude the application of 

an inference molecule to the structure; the inference will simply proceed, making the best use of 

whatever partial features are available. As a matter of fact, there is a potentially very important 

inference-specification interaction. The process of inferencing has the potential for uncovering 

new information about the unspecified entities, even based on only partial features of the 

objects. Because of this, the results of inferencing from structure S could be of use to the 

specifier molecule on a second-pass. That is, even though the specification failed on the first 

attempt, the process of inferencing may turn up new information which would allow the 

specification to succeed on a second or subsequent attempt. Since there are other reasons for 

subjecting all structures on the inference queue to more than one pass through the inference 

monitor, section 7.2 is devoted to a description of how this occurs in the program. 
\ 

5.4.6 SPECIFIER MOLECULE EXAMPLE 

We can now trace through this sequence as it specifies the missing object of the underlying 

PROPEL in the hit example. Fig. 5-7 shows a very simple specifier molecule with just the atom for 

specifying the object slot of PROPELs. There, Xl, X2, X3 are temporary local variables, SP is a 

simple service function which replaces a NIL by the specified result, C is a low-level retrieval 

function which locates a concept or token from a descriptive set (or creates one if none can be 

found), and F 1 is another retrieval function which locates a unit of information. 

The specifier atom shown in Fig. 5-7 is, of course, not an ultimately realistic one since it is 

not sensitive to a realistic quantity of contextual information. However, for the sake of 

illustration, I have made it sensitive to one important dimension: if the actor of the PROPEL has 

something in his hand at the time of the propelling, it is reasonable to infer that this was the 
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object he propelled. Otherwise, the atom will infer that it was simply the actor's hand which he 

propelled, since this is the "default" object for a person's PROPElling. 

(SPROG *PROPEL* (UN V AC DB OF DT) (Xl X2 X3) ( 
(COND ( (NULL (CADR V» 

This is a simpl ified specifier 
molecule containing just an object 
specifier atom. {NOLL (CADR V»~ is 

) 

(COND { (AND (SETQ Xl (e (@ISA @_ @#HAND) 

i§~tg ~~ f5to~~r~?~O)f- Xl») 
(SP V 2 X2 (LIST X3» 

) 
( T 

(SP V 2 Xl NIl) 

• (other spec if i er atoms go here) 

test for lack of object specificati 

If unspecified, the atom locates 
the hand of the actor, assigning 
it to Xl. I t then checks to 
see if an~thing is located in Xl. 
If someth I ng is found, it is bound 
to X2, and the LOC structure which 
expresses this information is 
bound to X3. If nothin~ is located 
in the actor's hand, his hand 
i tse I f {Xl} is inferred. The 
(LIST X3) in the first SP call 

<RETURN V) 
) ) 

is the list of REASONS (just one 
here) justifying the specification 
of the object the actor was holdinc 
as the object of the PROPEL. -

Figure 5-7. A very simple specifier molecule. 

5.4.7 SPECIFICATION-REFERENCE INTERACTION 

In its most general form, the specification of an entity can involve the full powers of the 

reference-finding mechanism. For instance, consider the following dialog excerpt: 

Bi I I: John bought some mi Ik a few minutes ago. 

Pete: That's funn~, I was at the grocery a few minutes 
ago and I didn't see him. 

Here, "bought" is underlied by a dual ATRANS (exchange of money for goods) in which one of the 

parties is unspecified. Pete, the hearer, is able to make the predictive specification that it was "a 

grocery store", using the knowledge that the object of one of the ATRANS's was a food. 

However, he clearly went on to determine which grocery store John probably went to; that is, he 

tentatively determined the rejeunt of the specifying entity, not just its class concept, 

#GROCERYSTORE. This also occurred in our PROPEL example, but it occurred implicitly there, 

since there is little referential ambiguity in locating the token which is someone's hand. 
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In general, then, the specification process must not only make explicit the concept involved 

(grocery store, hand, etc.), it must also predict which token of the concept is likely to be the one 

involved. I have included a computer example at the end of this section which illustrates the 

beginnings of this capability: there, an ATRANS atom will predict that a grocery store is involved 

as the unspecified entity, X, in a dual ATRANS action. However, which grocery store will not be 

ascertainable. The specifier atom therefore furthers the specification of X in the structure by 

specifying X as some grocery, Y: (lSA Y #GROCERYSTORE)j but the specifier atom leaves Y marked 

as unspecified when it fails to determine which grocery store. 

It should be clear that the process of specification is not an all-or-none endeavor. For 

instance, although the exact referent implied by a missing case may not be inferrable in the 

current context, it may nevertheless be possible to infer enough features of it to allow full 

comprehension of the utterance. The problem of knowing when enough features about a new 

token have been collected to call it "specified" can be an elusive one, and is of course ultimately 

dependent upon what needs to be known about the entity for some particular purpose. I have 

taken the shortcut approach in implementing the memory that information which requires 

specification should remain unspecified until the specification process results in the identification 

of an existing token or concept in the memory. 

5.4.8 OTHER EXAMPLES: TYPICAL SOURCES OF MISSING SPECIFICATION 

To simplify the discussion, I have ignored the two other missing entities in the example 

utterance "John hit Bill": its INSTrumentality and its LOCation. Of course, these subpropositions 

(P2 and P3 in Fig. 5-2) also will come up for inference, be detected to contain unspecified 

entities, and similarly undergo specification by the INST and LOC specifier molecules, 

respectively. The heuristics used in the LOC molecule are things like: "The location of an action 

can be determined from the locations of the objects involved in the action", or "Some specific 

actions and states have very specfic normal locations." An example of the former is "John was 

watching the elephants.", where, knowing at least that John was in the Bay Area, we might infer 

that this action occurred at whatever the location of Bay Area elephants happens to be, very 

likely the San Francisco Zoo. Examples of the latter are: "Mary played tennis.", where the 

location of the actions of tennis playing is nominally a tennis court, and "Bill was asleep.", where 

169 



the normal location of such a state is at home in bed. Clearly, heuristics of the latter sort should 

be applied only after the more specific tests of the former sort fail, since, for example, we might 

just have been told that Bill was on the subway. The "default" specification of missing 

information, therefore, must rely heavily upon assumptions about what is normal in the world, 

and in the memory I have chosen to embody these assumptions in specifier molecules. 

We will see in section 6.8 how the process of specification relates to a very important class 

of inference concerned with the maintenance of time relations. 

5.4.9 A SUMMARY OF SPECIFICATION INFERENCES' UTILITY AND OPERATION 

The importance of filling in missing and unspecified information as one goal of understanding 

utterances should be evident. We can summarize the potential contributions of a specification 

inference to the process of understanding an utterance by these five points: 

1. It can touch (draw out) implicitly referenced concepts and tokens 

and these can clarify future references which might otherwise be ambiguous, or 
unsolvable 

(a) John picked up the apple and the knife. He ate. It tasted terrible. 

(b) Bill wanted to buy a catcher's mit. 
The store was closed. 

2. It can generate questions for more information 

(a) John bought a new hal. 
Which store did he go to? 

(b) Bill was reading a book. 
What was the book about? . 

3. It can begin new and important lines of conceptual inference 

(a) John and Pete were alone On a desert island. 
John said that if anyone ever dropped a coconut on his head, he'd kill him. 
Next day, someone dropped a coconut on John's head. 

(b) John was reading the inscription on the Lunar plaque left by Apollo II. 
(Instrumentality is specified as ATTEND through EYE. This leads to . 
the inference that John is near what he is reading, namely that he is 
on the moon!) 

4. It can lead to the discovery of apparent contradictions 

(a) John was bound and gagged. 
He hit Mary. (Here, the instrumentality supplied as John's MOVEing 

his hand, and this will lead to an apparent contradiction 
with the conceptual content of the first line) 

5. It implements one aspect of the flywheel effect, 
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the logical momentum 
through which the information communicated by several utterances can be knit 
together. That is, each specification inference potentially leads to new points 
of contact in inference space. 

(a) John picked up a rock. 
He hit the door. 

(b) Mary was standing on the corner. 
Pete came over to say hi. (that is, he said hi to Mary) 

(c) Mary dropped the sledgehammer on Rita's fool. 
She apologized. 

In this example, we will see how the context in which a specification inference occurs can 

affect the substance of the specification. Normally, the hand of the actor is supplied as the 

missing object case in the conceptual template which underlies "hit". However, when the hitter 

has some other object in his hand just before the time of hitting, the PROPEL specifier molecule 

predicts that that object is more likely than his hand. At the end, the results of the 

IDENTIFY_MERGE process are shown. 

JOHN PICKED UP A ROCK 

((*GRASP* (#JOHN1) (C0017)) 
(TIME (C00l9))) 

C0022 

STARTING INFERENCE QUEUE: 
(IX 1. 0 C(022)) 

ABOUT TO APPLY ®GRASPI TO C0022 
C0022: (*GRASP* #JOHNI C00l7) 

INFERRING: (*LOC* C00l7 C0024) 
ALSO GENERATING: (TIME C0e27 C00l9) 

JOHN HIT MARY 

((CAUSE ((*PROPEL* (#JOHNlI (C0035) 
(#JOHNlI (#MARYlI) !TIME (C0038))) 
{(*PHYSCONT* (C0035) (#MA~Yl)) 
(TIME (C0038))))) 

To ill ustrate how context can affect the 
inferrin9 of unspecified or missing 
information, we use the fol lowing example: 
"John picked up a rock. He hit Mary." 
Here, MEMORY wi I I infer that it was the 
rock, rather than just John's fist, wh i ch 
came into contact with Mary. In the 
absence of the first line of this example, 
MEMORY infers that John simply used his 
hand. The second example wi I I be an example 
where default world knowledge is used to 
specify missing information. In this example 
al I other subpropositions have been suppressed. 

MEMORY spontaneously generates inferences. 

One inference from the first I ine is that 
a rock begins being in John's hand. 

Now MEMORY encounters the second thought. 

That is, John propel led some physical object 
(C0035) from himself to Mary, and this 
caused C0035 to be in physical contact with 
Mary. 
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C0043 

C0035: NIL 

ASET: 
C0041: (*PHYSCONh tI tlMARY1) 
C0039: (*PROPEL* tlJOHNl tI tlJOHNl 

tlMARY1) 
C0037: (UNSPECIFIED tI) 
C0035: (ISA tI C0033) 

RECENCY: 8783 

STARTING INFERENCE QUEUE: 
«X 1. 0 C(043)) 

UNSPECIFIED OBJECT(S) DETECTED 
IN C0038: (*PROPEL* tlJOHNl C0035 

tlJOHNl tlMARY1) 
SPECIFYING ... 
PURGING: (UNSPECIFIED C(035) 
PURGING: (ISA C0035 C0033) 
MERGING: 

C0017: C0017 
C0035: C0035 

C0017: NIL 

ASET: 
C0027: (*LOC* tI CBB24) 
C0022: (*GRASP* tlJOHN1 tI) 
C0018: (ISA tI tlROCK) 

RECENCY: 5383 

C0035: NIL 

ASET: 
C0041: (*PHYSCONT* tI tlMARY1) 
C0038: (*PROPEL* tlJOHN1 tI tlJOHN1 

tlMARYl) 
RECENCY: 8650 

*PROCEED 
SPECIFIED RESULT: 

(*PROPEL* tlJOHN1 C0B17 tlJOHN1 
tlMARY1) 
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CB043 is the structure representing this 
second i npu t. 

MEMORY is about to begin inferencing. 
We interrupt the pro9ram briefly to 
examine the token which represents the 
(unspecified) object which John propelled 
toward Mary. The lack of specification 
was denoted by the analyzer by the 
modification SPEC (*U*). 

CB033 is the abstract concept for a 
physical object. This is the only feature 
the analyzer could infer about C0035 using 
its lim i ted I i ngu i s tic know I edge 0 f "h it" . 

Control is given back to the program. 
Inferences are begun for this input. 

Eventually, a proposition containing this 
unspecified object becom~s the focus of 
the inferencer. At that 'point, the unspeci fied 
of specification is detected by the inference 
monitor. It cal Is the *PROPEL* specifier 
molecule, indicating that C0035 is to be 
specified if possible. The specifier molecule 
infers that the object was probably C0017, 
the rock, because It was in John's hand 
at the time. Having specified C0035 , MEMORY 
merges C0035 into C0017 (the rock), thus 
coalescing al I knowledge about the object 
into CB017. 

We again interrupt MEMORY to examine the 
C0017 and C0035 just before the merge. 

C0017 is the rock which John was holding. 
C0B24 is John's hand. C0027 was an inference 
which arose from the first line. 

C0035 is the unspecified object John 
brought into physical contact with Mary. 
Notice that the (UNSPECIFIED tI) has been 
removed before merging. Notice also that 
CB03S's ISA relation with tlPHYSOBJ has been 
purged, since CBe17 is already known to be 
a rock, which ISA tlPHYSOBJ. 

Control is returned to the program. The 
specified object now appears in al I structures 
which referenced its unspecified token, since 
the merge process replaces internal pointers. 
~ing been specified, this proposition 



C0017: NIL 

ASET: 
C0048: (*FORCECONT* # #MARY1) 
C0047: (IDENTIFIES # C0035) 
C0039: (*PROPEL* #JOHNI # #JOHNI 

ItMARYl ) 
C0041: (*PHYSCONT*.1t ItMARYl) 
C0027: (*LOC* It C0024) 
C0022: (*GRASP* ItJOHNl It) 
C0018: (lSA It ItROCK) 

RECENCY: 9650 

C0035: NIL 

ASET: 
C0047: (IDENTIFIES Ceel? #) 

SAVEDASET: 
(*PHYSCONT* # #MARYl) 
(*PROPEL* #JOHNI It ItJOHNl ItMARYl) 

RECENCY: NIL 

ce047: (IDENTIFIES C0017 C(035) 

RECENCY: 9650 
TRUTH: T, STRENGTH: e.95 
REASONS: 

ce039: (*PROPEL* #JOHNI Ceel? #JOHNI 
ItMARYl) 

C0027: (*LOC* C001? Ce024) 
ISEEN: NIL 

wi I I lead to other inferences via the normal 
inference molecule for *PROPEL*. 

At the end of inferencing, we reexamine 
C001?, the rock. Notice that the merger 
has left a record of MEMORY's decision to 
specify the unspecified physobj as this rock. 
This information is preserved In C0e47 which 
records this "identity relation" between 
Ceel? and Cee35. 

This is CBB35 after the merge. Notice its 
only occurrence set (ASET) member is this 
identity relation with C0e17. AI I other 
members of its ASET were de-activated 
(unl inked from the rest of MEMORY), and 
saved under the property SAVEDASET. 

This is the identity relation which the 
specification process created. Notice the 
preservation of MEMORY's reasoning: Cee38 
and C0027. In Engl ish: "The object C0035 must 
be the rock Ceel? because John propel led 
it, and he was holding Ceel? at the time." 
They are not visable, but there are of course 
time predications on both Cee27 and Cee38. 
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In this example, the missing second actor in the sentence "John bought some milk" is 

specified, using default knowledge in this case, as a grocery store (personified). Notice how the 

IDENTIFY_MERGE changes all references to the newly specified entity, and how "Milk is a food" is 

supplied as a reason for deciding upon "grocery store." 

JOHN BOUGHT SOME MILK 

«DUALCAUSE «*ATRANS* (#JOHN1) 
(C0028) (#JOHN1) (CBB38)) (TIME 

(C0033))) «*ATRANS* (C8838) 
TC(035) (C0030) (#JOHNll) 
<TIME (C0033))))) 

C8842 

STARTING INFERENCE QUEUE: 
«(X 1. 8 C8842)) 

UNSPECIFIED OBJECT(S) DETECTED IN 
C0040: (*ATRANS* C0030 C0036 C0038 

#JOHN1) 
SPECIFYING ... 
PURGING: (UNSPECIFIED C0830) 
PURGING: (ISA C0030 #PERSON) 
MERGING: 

CBB54: CBB54 
C0B30: C0B38 

(*BREAK* . HELLO) 

C0030: NIL 

ASET: 
CB040: (*ATRANS* # C8835 # #JOHN1) 
C8838: (*ATRANS* #JOHNl C8828 

#JOHN1 #) 
RECENCY: 7216 

C8854: NIL 

ASET: 
C8055: (UNSPECIFIED #) 
C8055: (ISA # #GROCERYSTORE) 

RECENCY: NIL 
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This example demonstrates how MEMORY's 
default knowled~e of normal ity is used 
to specify miSSing information. Here, 
John's buying mi Ik is represented as 
a double causal: John ~ives someone some 
money and that person In turn gives John 
some mi Ik. MEMORY's job is to predict 
who the missing person is. 

Again, other subpropositions have been 
suppressed for this example. 

I nferences are generated. Eventua I I y, that 
someone (C8838) ATRANSed John some mi Ik 
becomes the focus of the inferencer. At 
that point, C8838's lack of specificity is 
detected, and the *ATRANS* specifier molecule 
is called to fi II in the actor (and donor) 
in C0840. The specifier molecule sees that 
the object off the ATRANS is some food, so, 
in the absence of context, predicts that 
C0B3B is some grocery store. MEMORY is qui te 
content to personify such things as stores, 
although this is admittedly sloppy. C8054 
is the (new I y-crea ted) token represen t i ng 
the grocery store. It is about to be 
merged with C8B38. 

We interrupt MEMORY to see C0838 and C8854 
just before the merge. 

Notice that, even though MEMORY has speci fied 
C8030 as some grocery store, WHICH grocery 
star e i tis iss til I unknown. 

MEMORY proceeds with the merge. We again 
interrupt it to see the merged result, C8854. 

~e is the merge result. 



C0054: NIL 

ASET: 
C0e57: (IDENTIFIES # C0030i 
C0038: (*ATRANS* #JOHN1 C0028 

#JOHN1 #) 
ce13413: (*ATRANS* # C0035 # #JOHN1) 
C005G: (UNSPECIFIED #) 
C0055: (ISA # #GROCERYSTOREJ 

RECENCY: 7215 

-----------------------------------
C003e: NIL 

ASET: 
C0057: (I DENTI F I ES C0054 #) 

SAVEDASET: 
(*ATRANS* # C0035 # #JOHN1) 
(*ATRANS* #JOHN1 C0028 #JOHN1 #) 

RECENCY: NIL 

-----------------------------------
C0057: (IDENTIFIES C0054 C0030) 

RECENCY: 25G50 
TRUTH: T. STRENGTH: 1.0 
REASONS: 

C0040: (*ATRANS* C0054 C0035 C0054 
#JOHN1) 

C0e37: (ISA C0035 #MILK) 
10189: (ISA #MILK #FOOD) 

ISEEN: NIL 

*PROCEED 

SPECIFIED RESULT: 
(*ATRANS* C0e54 ce035 ceeS4 #JOHN1) 

UNSPECIFIED OBJECT(S) DETECTED IN 
C0e38: (*ATRANS* #JOHNl C0e28 #JOHNl 

C0054) 
SPECIFYING ... 
NO RESULTS 

APPLYING INF MOLECULE *ATRANS* TO 
cee38: (*ATRANS* #JOHN1 C0028 #JOHN1 

C0054) 

Here is the previousl~ unspecified ATRANSer 
of mi Ik to John. It has been unl inked from 
the rest of MEMORY. identified. and had its 
occurrence set saved. 

Here is the identity relation between the 
grocery store C0054 , and C003e. Notice 
the reasons MEMORY has recorded to justify 
this identity: that the ATRANS event occurred. 
and that its object was #MILK. which is 
#FOOD. 

MEMORY proceeds with inferencing. using 
this newly-specified object. 

Somewhat later, the 0·;,.;:;· ATRANS action 
reaches the inferp~_e monitor. This time 
it is detected ~;lat WHICH grocery store 
it was is sti:! unknown. However. since 
there is no :,ew information, no further 
speciflcdtion results. 

Inferencing proceeds 
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5.5 CAUSALITY 

Causality is perhaps the single most important notion to a conceptual memory, because it 

not only pervades language, but it is one very clear domain in which it is necessary to apply a 

detailed model of the world in order to comprehend. In chapter 2, we saw how causality and 

conditional causality are represented in the Conceptual Dependency framework. But, as we will 

see, there are many central tasks in the memory which are based upon conceptual causals, and 

these tasks are not immediately apparent from the issues of representing causality. Rather, they 

have to do with explaining causal relationships in terms of other world knowledge. 

Before describing the two inference classes most closely related to the notions of causality 

and conditional causality, it will be useful to examine the possible kinds of information that can 

be related in a meaningful way by the causal relations 

/ \ / \ 

III 
and 

Ille 

Two descriptive schemes are relevant to this purpose: 

1. a "syntax" of structurally allowable causal forms at the level of conceptual 
representation of an utterance, and 

2. a "syntax" of what can meaningfully be connected by causal relations, relative to a 
model of causality in the world 

The set defined by (2) will be a subset of that defined by (1). 

Why bother with the form of causals at all? The answer is an important one, because it 

concerns a crucial task of conceptual processing: the filling-in of an implied sequence of causal 

relationships where only one has been stated. Human language users do this when decoding the 

meaning of each utterance they perceive. Likewise, from the standpoint of generating language, 

people rarely make explicit the blow-by-blow details of the causality aspects of what they 

communicate, since they can safely assume the hearer will be able to fill in the missing pieces. 

When he cannot justify the communicated causal in terms of smaller cause-effect units in his 

model, the hearer stops and asks "how is that?" On the other hand, when he can explain the 

intervening causal steps, making them explicit will draw out and touch many other underlying 

concepts. 

176 



It is important to explain language causality in terms of model 
causality. To do this, it iss necessary to distinguish between 
causality as people use it in language, and causality which actually 
occurs in the world. 

5.5.1 CAUSALITY COMMUNICATED BY LANGUAGE AND CAUSAL t:rlAIN EXPANSION 

The memory receives a wide variety of causal relatio~ ... nips from the analyzer which the 

analyzer detects explicitly or infers from the concel"tual content of linguistic structures in 

sentences it hears. However, the analyze, is hearing people's versions of causality, and is thus 

compelled to produce a conceptual analysis using these versions. Unfortunately, the only 

guarantee on these causal relationships is that they obey the syntactic relationships permissible 

for causals in the representational formalism. That is these permissible forms occur conceptually 

in what people say, and thus must be analyzed by the conceptual analyzer. These are 

enumerated, with examples of each, in Fig. 5-8. 

(a) STATE 

(d) ACTION 
<= STATE 

<= ACTION 

(g) CAUSAL <= CAUSAL 

(b) STATE <= ACTI ON 

STATE (e) ACTION <= 

(h) CAUSAL <= STATE 

(c) STATE <= CAUSAL 

(f) ACTION <= CAUSAL 

(i) CAUSAL <= ACTION 

(a) "John wants to go because he is depressed." 
(b) "John went because he was happy." 
(c) "John kicked Bi II because he was mad," 
(d) "Mary cr i ed because Bill ate the cook i e. " 
(e) "Mary was hurt because John hi t her." 
(f) "John thre~J the ball because Bi II told him to." 
(g) "Mary kissed John because he hit Bill." 
(h) "John was aggravated because 8i I I and Mary swapped toys." 
(i) "Mary cried because John ki lied the plant." 

Figure 5·8. Representable causal forms. 

There is no guarantee, however, that the conceptual information conveyed by the stated 

causal makes any immediate sense, relative to the model's ability to explain causality in the world 

which it models. To emphasize the potential disparity between what can easily be represented by 

the conceptual analyzer, and what can easily be explained in terms of smaller cause-effect units 

in the model, consider the sentence 

John ki I led Mary by giving Bi I I a banana. 
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which is analyzed as follows: 

JOHN <===> 
/ \ 

p 

o 
ATRANS ~--­

l' 
BANANA 

BILL 

JOHN I~I:~~: 

MARY <====I-HEALTH~ -18 
~------- X 

Outside of very peculiar contexts, a human language user would certainly be hard-pressed 

to make sense of this. Although the conceptualization is syntactically correct according to the 

representational formalism, it makes no direct sense because the causal relation is being used to· 

stand for an entire sequence of unstated causal relations. To fill in this sequence of missing 

causals using world causality knowledge is a very important aspect of understanding. I will call it 

causal chain expansion. 

A less nonsensical example of causal chain expansion is illustrated by the utterance "Mary's 

tears flowed because she knew her lover John had drunk some pois:on", whose underlying 

meaning is represented by the graph shown in Fig. 5-9. 

MOUTH 

STOMACH 

MARY <===> 
l' 

1 
JOHN 
/\ 

val 
MFEEL ~---- LOVE 

l' 
I~I--~ JOHN 

~-- MARY 

val pi I <=====;:,::=::> MLOC +0---- LTM 

--~ID \I ---+ INGEST 
+0-- l' 

pol:oN 
p 

MARY <===> 
o 

INGEST ~--­
l' 

I~I:~: 
Figure 5-9. 
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The goal is to ingrain in the memory (a) the awareness to recognize that every causal must 

be reconciled with the memory's knowledge of causality, and (b) the ability to explain each 

causal, and recognize when it has and has not been explained. In this example, we would like an 

expansion similar to that shown in Fig. 5-10 to be achieved. In the banana example, we would like 

the memory to respond "How did that happen?" 

JOHN <===> 
/ \ 

(l) p 

o 
INGEST ~--- POISON 

t 
I~I--~ STOMACH 

~-- MOUTH 

val 
POISON <=5=> LOC ~---­ STOMACH 

/ \ 

(2) III p 

JOHN <==5==51:~~~~~~~: :-a 

part 
~----- JOHN 

<==5=5===5=> MLOC 
/ \ 

(3) Illp 

val 
~----

y-a 
MARY <=55===I-JOY-~ 

/ \ ~----- Y 

(4) III p 
o 

LTM 

MARY <===> INGEST ~--- FLUID 
t 

I~I--~ L 
~-- EYE 

Figure 5-10. 

5.5.1.1 "SHOULD", "OUGHT TO", ETC. AND CAUSAL CHAIN EXPANSION 

part 
~-----

One very common language source of underlying causality which requires expansion into 

MARY 

underlying causal chains involves the notions "should", "ought to", "better", "have to", and related 

concepts. One of two conceptual forms nearly always underlies these notions, and the central link 

in both is a causal. Consider the sentence "I think I should give Bill the bike" (Fig. 5-11). 
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o 0 <===> ATRANS +---- BIKE <=;1<=> ATRANS +--,-- BIKE 
I \ t I \ t 

I~I=~: BILL 
e,f ~ I~I:~: 

BILL 
c, f 

val 
<EEEEEEEE:> MLOC 

val 
+----- LTM 

t 
<!!iEEEEEEEE> MLOC +----- LTM 

part j part 

<nE91:~~~~~~~: x-a 
P(?) 

x 
Figure 5-11. 

The central issue of understanding these forms is to fill in one of the two paths which 

explains (a) why an action can lead to someone's benefit, or (b) why an inaction can lead to 

someone's detriment. Notice that a successful expansion of the causal involved in one of these 

two underlying meanings of "should" can help select which underlying meaning is most 

appropriate, based on a knowledge of causality in the world. It can also provide information 

t 

j 

which will allow a specifier molecule to fill in the missing recipient of the benefit, P (or the P who 

averts some sort of loss). 

These observations about causal chain expansion lead to the principle: 

Every incoming causal must be suspected of conveying an entire 
unstated causal chain. 

Section 5.5.4 describes how causal chain expansion occurs in the program. I will conclude 

this section with a "causal transition diagram" outlining the memory's "naive psychology" of cause 

and effect explanations in the world. Fig. 5-12 shows the types of causal transitions I would like 

the memory to adhere to in expanding causal chains relative to its model of the world. 
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1 
(1) 

+---------------+ 
I PSTATE I +---------------+ 

P-STATECHANGE =====----~ I M-STATE. I +---------------+ (2) M-STATECHANGE -------
t +---------------+ 

(3) (4) t 1 
__ tAcTloN-j ~----------- (S) 

+---t----+ (5) I 
(7) 

+---------------+ P ..... STATECHANGE 
I (8) +I----;~~~~l~~---+I 

I M-s9A~j~!~NGE I ~---------:~~~~~~~~~~~~~~~:-----
+---------------+ 

EXAMPLES: 
(1) "The sunshine Illel ted the ice." 
(2) "Mary is sad because John is dead." 
(3) "John's hitting Mary hurt her." 
(4) "Pete knows John is here because Bi II told him so." 
(S) "John hi t Bi II because he wanted him to be hurt." 
(S) "Mary wanted Bill to die because she was angry at him." 
(7) "Knowing that Bill hit John angered Mary." 
(8) "Mary went to the party because she was depressed." 

Figure 5-12. Causality in the memory. 

5.5.2 RESUL T ATIVE AND CAUSATIVE INFERENCES 

sample: 

sample: 

John hit Mary with a rock. 
Mary was hurt. 
John was probably trlad at Mary. 
Mary may have become mad at John. 

Mary gave John a car. 
Mary doesn't have the car anymore. 
John has the car. 

sample: John told Mary he saw Bill yesterday. 
Mary knows that John saw Bill yesterday. 

sample: Mary was supposed to help John Tuesday. 
She didn't do it. 
She felt guilty. 

If it can be said of anyone class of conceptual inference, the workhorses of understanding 
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by inferencing are those inferences which predict and explain cause and effect relations (a) 

within a single utterance and (b) among many utterances, or sentences in a story. Let us call 

those which predict the cause of some structure'in the memory causative inferences, those which 

predict the effects (results) of some memory structure, resultative inferences. Since they are, 

roughly speaking, "inverses" of each other, they will be described together in this section. 

The conclusion of the previous section is that people spend a major portion of "thought 

time" trying to explain, justify or predict the causes and effects of everything they perceive, 

from both linguistic and sensory stimuli. Watching the magician, we become quite disturbed when 

we cannot explain cause and effect. To know what causes states of the world to come about, 

what causes people to act, and what influence specific actions exert on the world lies at the 

heart of our ability to comprehend and use language. Because of this, resultative and causative 

inferences constitute two very strong "dimensions" in the spontaneous inference space. 

5.5.2.1 RESULTATIVE INFERENCES 

The problem of explaining cause and effect is the following: given a state or action which 

has occurred in the world, what CAUSEd it, and what did it in turn CAUSE in the partiCUlar 

context in which it existed or occurred? In general, there will be many factors which, considered 

together, explain the cause of something, or predict the effects it will have. Some cause-effect 

relations are quite simple, involving only one factor, whereas others are quite complex and 

involve large numbers of factors. For example, an extremely simple resultative inference which 

invariably arises with very high likelihood from a TRANS action is that the TRANSed entity begins 

existing at the location to which the TRANS occurred. Thus, if Mary gives Bill the book, Bill 

begins having the book and Mary ceases having the book. These two resultative inferences rely 

on just one antecedant: the book was ATRANSed (Fig. 5-13). 

tf=x 

t=x 0 
MARY <===> ATRANS ~--- BOOK 

l' 

I~I:~: ~~:~ 
val ts=>< val 

BOOK <====> POSS ~---- MARY BOOK <====> POSS ~---- JOHN 

Figure 5-13. Two very simple resultative inferences. 
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However, to illustrate a more complex resultative inference, consider the reaction to "Baby 

Billy threw his top at the cat" in the context of Baby Billy's mother having seen him do it, and 

having previously told him not to do it. Among other simpler ones (the cat gets hurt, for 

example), we would like the memory to recognize the likelihood of Billy's mother becoming angry 

because of his action, and hence becoming angry at him. 

5.5.2.2 CAUSATIVE/RESULTATIVE INFERENCES, "CAUSE" AND "REASONS" 

This example typifies most complex resultative inferences: although the inference is 

triggered by just one other unit of information (Billy's kicking), the triggering at that point is 

only possible because all the other requisite conditions for the resultative inference already 

existed at the time the triggering information was perceived. These more complex resultative 

inference are frequently called "belief patterns". The relation between the triggering information 

and the other contributing factors is shown in Fig. 5-14. 

By convention, when a resultative inference for a complex pattern such as this is triggered 

(detected and generated by an inference molecule), the information structure which triggered it 

is said to have CAUSEd the structure which is the product of the resultative inference. In the 

example above, this means that Billy's mother's anger was directly CAUSEd by his kicking. But in 

addition, to preserve the surrounding circumstances (antecedants) whose existence permitted the 

triggering, those circumstances are recorded as the REASONS for R's existence. Thus, if we ask 

the memory "What is likely to have happened?", it has enough information to make the response: 

"Billy's mother probably became angry at Billy because he kicked the cat, she knew he did it, and 

she had told him not to do it." 
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triggering .. -, 
information ~ 

(CAUSE 

(PROPEL #BILLY top 

resultative j 
inference 

REASONS 

(

NEGCHANGE mother #ANGER) --­

resultative 1 
inference 

* *) 
~ REASONS 

{MFEEL mother #ANGER #BILLY} --- I~ 

"' (MTRANS M * EYE CP) 

1 
resultative 
inference made 
ear Ii er 

------(MLOC * CPmother) 

(MTRANS mother *~cpmother CPb i I I y) 

'i' 
I "Don' t do it." , 

other contributing 
factors 

Figure 5·14. The relations among causative/resultative 
inferences. REASONS and CAUSE. 

The resultative inference class is very broad, very useful, and vital to other kinds of 

conceptual inferences. Since we will see many examples of resultative inferences throughout 

other sections, I will not undertake more examples here. 

5.5.2.3 CAUSATIVE INFERENCES 

Causative inferences are in general less easy to predict than resultative inferences. This is 

in part because language tends to emphasize how the world moves forward, and this is the 

domain of resultative inferences. It is also partly because many actions and states in the world 

are caused by people, and discovering their intentions is not always easy. Because of this, 

section 5.6 which deals with motivation and intentionality will account for a large class of 

causative inferences. 

However, there are many causative inferences which can be made rather easily, and which 

can contribute to understanding in important ways. To make them is to draw out new information 

and touch new concepts; hence they should be spontaneously generated in as much proliferation 

as is possible. 

Consider the examples: 
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1. Mary has the diamond ring. 
2. The plastic dol I melted rapidly. 
3. John went to the store. 
4. Mary was mad at John. 

These are cases where it is possible and quite useful to make causative inferences. From (1) it 

highly likely that the cause of Mary's having the ring is that someone ATRANSed it to her. If the 

memory makes this inference, it will draw into the picture the question of who ATRANSed it to 

her; to discover this might be important to the larger understanding of this utterance, and it 

would be missed entirely if the causative ATRANS inference is not made. Similarly for (2): what is 

likely to be causing the doll to melt? One likely explanation is that it is near something very hot. 

But this possibly means that someone PTRANSed it there (another causative inference). To draw 

all this probabilistic information out increases the chances of relating (2) to other information, 

say in a story. And if it does not, this is an important cue that to understand (2) might require 

some special processing by some higher level heuristics. That is, it can help to discover what 

might be a potentially interesting task to which to devote some goal- directed processing. 

(3) above is an example of causality which can be explained in terms of an actor's probable 

intentions. In (4) a very likely and useful causative inference is that John did something which 

caused some sort of NEGCHANGE (directly or indirectly) to Mary. To infer this as a causative 

inference is to draw out this fact in which an UNSPECIFIED action is predicted to have occurred. 

This will eventually be detected by the DO specifier molecule which will attempt to specify this 

missing action. If, for example, utterance (4) occurs in the environment 

John had painted the kitchen cabinets black. 
Mary was mad at him. 

the specifier molecule could tentatively infer that it was this action which had angered Mary. On 

the other hand, if the specification is not possible by the heuristics in the DO inference molecule, 

the memory at least has the basis at that point for asking the question "What did he do?". 

Without the causative inference, this would not be drawn out. 
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5.5.2.4 MAKE THEM ALL! 

In general, it will be possible to make more than one causative and more than one 

resultative inference from a structure. When this is the case, they all should be made. Recall that 

it is the goal of inferencing to establish as many points of contact in inference space as possible. 

To do this, there must be considerable breadth. otherwise, things which are seemingly 

unimportant in most contexts might be squelched in some contexts in which they were of 

extreme importance. Since it is the goal of conceptual inferencing to make these discoveries, the 

memory cannot safely suppress things at this low cognitive level. 

5.5.3 LANGUAGE-COMMUNICATED CANCAUSE RELATIONS 

There is always at best only a fine distinction between what is process and what is data. In 

the memory, I have chosen to encode as much inferential knowledge about the world as possible 

in the form of executable LISP procedures which I have called inference molecules. These 

processes which generate inferences can be made arbitrarily sensitive to context simply by 

having them perform enough tests for the presence or absense of other information in the 

memory which could affect the nature of the inferences they generate. 

But how is the memory to encode highly specific patterns of inference which come and go 

with the passage of time? Specifically, how can very specific, often transitory, CANCAUSE 

information which has been communicated by language exert an influence on the generally 

program-based control structure I am proposing? For instance, if Mary tells John that to possess 

a catcher's mitt would make her happy (Fig. 5-15), how can this knowledge augment the less 

transitory inferences the memory can already make about acts of POSSessing in general (that is, 

those which are already encoded as process in inference molecules)? Clearly, if there existed 

effective algorithms for mapping data patterns into programs which could test for those patterns, 

we could manifest the entire inference capabilty of the memory in inference molecules. New 

(language-communicated) inferences could be mapped from their data form into chunks of code in 

the appropriate inference molecules (POSS, POSCHANGE in this example). There, they would exert 

their influence in the same way as all other "original" inferences. 
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val 
CATCHER'S <EEE> POSS ~---- MARY 

MI TT / \ 

MARY <,~~!::i:~~~~: ~+a 
Figure 5-15. Having a catcher's mitt would make Mary happy. 

But there are two problems with this. First, we don't yet know enough about procedures 

which transform descriptions of processes (a fairly simple inference in this case) into procedures 

which implement those processes (an inference atom in this case). Second, many of the specific 

inference patterns communicated by language are extremely fleeting, and it is not clear that they 

should be framed in the same relatively static procedural knowledge of the world as more 

universally applicable inferences. The example of Fig. 5-15 is a case in point: as soon as Mary 

gets a catcher's mitt, this inference is no longer of much utility, and even if she doesn't get one, 

the validity of the pattern may fade rapidly with time. For these reasons, it is desirable that the 

memory have the ability to use data-based CANCAUSE patterns to augment the basic inference 

capability in causative and resultative inference molecules. 

In order to make the process of generatin~ a causative or resultative inference sensitive to 

CANCAUSE data patterns, the inference monitor must, in addition to applying the appropriate 

inference molecule to each structure S from which it is to generate inferences, also perform a 

search for information of the forms 

(CANCAUSE S X) (to discover resu I tat i ve inferences) 

(CANCAUSE Y S) (to discover causative inferences) 

If the first form can be found, then the resultative inference, X, can be generated; if the second 

form can be found, the causative inference, Y, can be generated. Of course, there may be several 

applicable CANCAUSE structures; if so all should be applied. 

There are currently no heuristics for selectively "deactivating" a language-communicated 
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CANCAUSE structure after having used it one or more times. That is, if Mary does receive a 

catcher's mitt, are we justified in tagging the CANCAUSE structure of Fig. 5-15 .as "USED", noting 

that it probably won't be useful again? Indeed, having used a CANCAUSE structure such as this 

once, it is perhaps more to the point to deactivate it and generate another CANCAUSE structure 

which would indicate that, should Mary receive another mitt, she will probably say "Thanks, but I 

already have one." There are many problems with knowing what to do with this kind of 

CANCAUSE information after it has been used one or several times. I have not pursued them. 

5.5.4 IMPLEMENTING CAUSAL CHAIN EXPANSION 

We have enough now to describe the process of causal chain expansion. Language­

communicated causals, (CAUSE Cl C2) or (CANCAUSE Cl C2), are detected in the input during 

inferencing by the CAUSE inference molecule. For real-world events (ie. there is some concrete 

time aspect associated with the causal relation itself, or, equivalently, with Cl and C2), the 

CAUSE inference molecule places Cl and C2 on the inference queue, then calls the service 

function RECORD_CAUSAL, which places the pair (C1.C2) on a global list, !CAUSALS. 

Conceptual causal configurations of the form 

x X <:::::::::::: Y X <:::::::::::: Y 
/ \ / \ / \ 

III III III 
y <==z=:=== Z Z Z <:::::;::::: W 

(that is, something causing a causal, a causal causing something, or a causal causing another 

causal) are detected by RECORD_CAUSAL as special cases. This is a heuristic which is made 

necessary by the language use of causals, as cases c,f,g,h,i of Fig. 5-8 illustrated. Conceptual 

forms like this will arise for which the expanded causal explanation might have the respective 

forms: 

X <ES& tt. <ass Y <_.= tt. <a~6 Z 

for the first two forms, and 

x <=::: ••• <:::: Y <::: ••• <::::E Z <EEE ••• <555 W 
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for the third form. That is, in addition to the existence of a path from Y-Z in the first form, X-Y in 

the second, and X-Y and Z-W in the third, there might also exist longer paths from X-Z in the 

first and second forms, and from X-W in the third form. Hence, to understand these three forms, 

these longer paths must also be explained. 

Having recorded these language-communicated causals and placed C1 and C2 on the 

inference queue, inference spheres will begin to expand around C1 and C2 (in parallel, and along 

with many other structures on the inference queue). And in particular, this expansion will include 

causative and resultative inferences from Cl and C2. If an explicable causal path exists between 

language-communicated causals, then some causative inference path on C2's sphere will 

eventually intersect with some resultative inference path on Cl's sphere. 

Recall that as each new inference (of any theoretical type) is generated it is evaluated for 

confirmation, contradiction or augmentation. At some point some inference lying on a resultative 

chain from Cl will confirm (match) some inference lying On a causative chain from C2. Since this 

intersection is detected by the inference evaluator, which is part of the inference monitor, this 

function must always be aware of pending "causals" on !CAUSALS. This means that for each 

confirmation which arises as the result of a causative or resultative inference, causal chains in 

both directions away from this confirmation point must be scanned in order to detect whether 

one in the causative direction matches some left member on !CAUSALS and one in the resultative 

direction matches the corresponding right member. 

When this occurs, the structures which, when matched, established the point of contact 

between Cl' resultative line and C2's causative line are merged into one structure, S, thus 

completing a causal chain between Cl and C2. In addition, (C1.C2) is removed from !CAUSALS, 

the association: 

(S C1 C2) 

is placed on another list, !EXPANDED_CAUSALS, which simply maintains a record of successful 

causal chain expansions. At the end of all inferencing, the list !CAUSALS provides an important 

source of MEMORY-generated questions for those causal chains which could not be explained. 

It should be clear that there is little goal direction to this process. Since the theory I am 
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CAR 

proposing predicts that a human language user automatically performs these Ilrge expansions in 

inference space, the process of causal expansion is scarcely more than an important byproduct 

of the expansion. But is a very important one, and failures to explain causals at this 

"subconscious" level provide motivation to higher level processes which might attempt special 

heuristic analysis to explain causal chains. 

5.5.5 ANOTHER TASK RELATED TO LANGUAGE USE OF CAUSALITY 

There is another aspect of the language use of conceptual causals which has not been 

addressed in the current implementation of the theory, but which deserves mention. It is this: 

conceptual causals are frequently used not to convey causality between the two events they 

aptJear to relate, but rather to convey the cause of the speaker's belief that an event occurred. 

For example, "John must have come because his car is here" will be analyzed conceptually as 

shown in the left of Fig. 5-16. However, one potential meaning, which we would like the memory 

to be able to discover, is shown in the right of Fig. 5-16: "The reason the speaker believes John 

came is because John's car is here." 

<=55> POSS 
t 
.} 

CAR <555> 
/ \ 

III 
JOHN 

p 
<===> 

val 
~---- JOHN 

val 
LOC ~---- "HERE" 

o 
PTRANS ~--- JOHN 

t 
I~I--~ "HERE" 

~-- L{?) 

CAR <===> POSS 
t 
.} 

val 
~---- JOHN 

val 
CAR <555> LOC <---- "HERE" 

/ \ 

J9~N I I I 
p I I <=======================> MLOC ~~~~- L~M \/ I--~ "HERE" par t 1 PTRANS ~--

t ~-- L (?) SPE KER 

Jol~ 
Figure 5-16. 
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5.5.6 PRESERVING CAUSAL CONNECTIVITY 

sample: John kicked the dog. 
The dog bit John. 

sample: John's hitting Mary pleased Bill. 

sample: John rubbed Mary's sore back. 
She kissed him. 

The memory must do more than simply generate resultative and 
causative inferences. It must also make explicit the underlying 
causal relations themselves. 

There are many inferences which are triggered by some state of the world, but which 

require in addition to the existence of the state, information about what cau.sed that state to 

exist. There are other inferences which rely on explicit information about what caused what in 

order to predict actors' intentions. These are two of several reasons why the memory needs to 

preserve causality relations as explicit structures. 

Consider the second sample sentence above: "John's hitting Mary pleased Bill.", whose 

underlying conceptual representation is shown in Fig. 5-17. Among other things, we would like 

one of the memory's potential responses in suitable contexts: to be "Why doesn't Bill like Mary?". 

That is, it will be insightful to discover how we can get from the original utterance to this 

question, regardless of whether such a response is actually ever generated. I will show here the 

processing which underlies a response of this sort. 

JOHN 
o par t 

<===> PROPEL ~--- HAND ~---- JOHN 
I \ t 

I~I--~ MARY 
~-- JOHN 

p 

BILL 
I \ 

<5================5===========:55 III 
part val 

JOHN ----~ HAND <E:E> PHYSCONT ~---- MARY 

Figure 5-17. 
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In this utterance we must ask the question "Why was Bill pleased?" The chances are that it 

was neither John's act of PROPElling nor the PHYSCONT, nor even the entire causal relationship 

(the fact that his propelling caused a physical contact). Rather, what actually caused 8i1I's 

pleasure was likely to have been some other inferred result of this conceptualization, namely 

that Mary became hurt: 

(NEGCHANGE #MARY #PSTATEl 

That is, although the NEGCHANGE is only an inferred result of this utterance, it's importance to 

explaining Bill's pleasure is foremost. 

The memory must therefore realize that, when an event is stated to have caused a 

statechange of some person on some scale, it is quite possible that not the event itself, but 

rather some other inferrable result of the event was in reality the cause of the statechange. In 

order to do this, the memory must keep track of possible causals of this nature: it would not be 

acceptable to forget that (NEGCHANGE #MARY #PSTATE) (having arisen from the input) might in 

fact be the cause of Bill's pleasure. Were this to happen, the belief pattern (causative inference): 

X undergoes a NEGCHANGE on some scale 
CAUSEs 

Y to undergo a POSCHANGE on the JOY scale 
implies that 

Y has a negative relationship with X 

would never be accessed. That is, Bill's POSCHANGE has added significance when it has 

been CAUSEd by Mary's NEGCHANGE. Without remembering its cause, an important inference 

about Bill and Mary's relationship would be altogether missed. This is illustrated in Fig. 5-18. 
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(NEGCHANGE #MARY #PSTATEl ."--, 

resu I tat i ve 
inferences 

< 

< 

1 
> 

1 

(CAUSE * *) 
~----_.-/ 
~-------------~ ~ (CAUSE * *) 

..-I 

~~--------------~ (CAUSE * *) 1 ----~ {POSCHANGE #BILL #JOYl ~ 

~ (MFEEL #BILL #NEGEMOTION #MARY) 

by remembering why Bi I I 
became happy, and using 
the reason to generate 
inferences, an important 
prediction about Bi I I and 
Mary's relation can be made. 

Figure 5-18. Inferences which are ba~ed on causal relations. 

This is very general principle: 

The significance of ANY information can be highly dependent 
upon HOW that information came into existence -- its 
surrounding causal environment. 

Two other examples are: "The hammer had come to rest on the vase. John had flung it 

across the room." and "Mary gave John a tool he had been wanting." In the first example, the 

first sentence communicates a PHYSCONT relation. However, the result of such a relation Is hard 

to assess in the absence of information about how it came about. When we discover in the next 

line that it was a fairly vigorous PROPEL, the 

{CAUSE (PROPEL ",J IPHYSCONT ".J) 

information makes possible the prediction that the vase may have been broken as the result of a 

PHYSCONT in this causal context. From the utterance "Mary gave John the tool he had been 

wanting" a probable resultative inference is that John experiences a POSCHANGE in JOY. If the 

memory were not to remember that it was Mary's action which caused this POSCHANGE, it would 

not be possible to apply the crucial pattern: "people usually MFEEL a positive emotion toward 

people who cause them POSCHANGES", thus inferring that John started feelin a positive emotion 

toward Mary. 
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I will label this carrying-along of causal information with every causative or resultative 

inference with the ominous title: causal connectivity preservation. Adherence to this principle 

means that 

Anytime a causative or resuItative inference is generated. its causal 
relation to the information from which it was generated l11ust be 
generated and stored as well. 

Furthermore, the REASONS associated with the explicit CAUSE structure thus generated are 

those other information structures in the memory which were used by the inference molecule to 

generate the resultative or causative inference. Fig, 5-19 illustrates this: because Mary gave 

John something he wanted, he experiences a poschange, and because Mary WaS responsible for 

this poschange, he MFEELs a positive emotions toward her. 

(A TRANS #MARY 

resultative l' 
inference 

T' #MARY #JOHN)~ 

(CAUSE * *) === iTl REASONS 

(POSS T' 

resultative 1 
inference 

#JOHN) .... +-!::======-=::::::~:::::------
_____ ------~~ I~ 

{POSCHANGE #JOHN 

resultative 1 
inference 

(CAUSE * *) 

#JOYl 
~ 

(CAv~E * *) 

~ 
(MFEEL #JOHN #POSEMOTION #MARYl •• s 

REASONS 

(WANT #JOHN (POSS * #JOHN)} 

~he tool 
T John wanted) 

T' is the tool which Mary gave John, and which satisfies 
the conceptual features of T which is the tool John wanted. 

Figure 5-19. How REASONS. CAliSE, resultative and causative inferences are related. 
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In this example, we assume Mary doesn't like Bill very much. In this context, the memory 

receives the conceptual graph underlying "Mary kissed John because he hit Bill" (Fig. 5-20), in 

which there are three language causals which the memory must explain in terms of its knowledge 

of causality. I have suppressed the two less important causal expansions, and have focused on 

the main one: how could John's hitting action have caused Mary to kiss John? The particular path 

discovered in this example is six memory structures long, involving five intervening causals. Fig. 

5-21. shows the path, as it would be decribed in English, and we will have a look at the internal 

structures at the end of the computer example. 

(C) 

JOHN <===> 
/ \ 

(A) 

o 
PROPEL +---- X? 

l' 

I~I---+ BILL 
+--- JOHN 

p 

MARY <===> DO 
/ \ 

(B) 

<EE:::::::::::::::::::::::::::: 

val val 
X? <ESE> PHYSCONT +----- BILL LIPS <ESS> PHYSCONT +-~--- JOHN 

l' (O) 
I part 

MA~Y 
Figure 5·20. Mary kissed John becaues he hit Bill. 
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WORKING "FORWARD", GENERATING 
RESULTATIVE INFERENCES FROM 
THE PROPEL UNDERLYING "HIT": 

,: 

* John propel led his hand toward Bi I I 
resu I tat i ve 1 

* John's hand came into physical contact with Bi I I 
resultative 1 

* 
resu I tat i ve 1 

Because it was propel led, the physical contact was probably 
forceful 

* Bi I I probably suffered a negative change in physical state 
resu I tat i ve 1 

* resu I tat i ve 1 
Because Bi I I suffered a negative change, and Mary fel t 
a negative emotion toward Bi II at the time, Mary might 
have experienced a positive change in joy 

* Because Mary may have experienced this posi tive change, 
and because it was John whose action indirectly caused her 
positive change, she might feel a positive emotion toward John 

WORKING "BACKWARD", GENERATING 
CAUSATIVE INFERENCES FROM THE 
PHYSCONT UNDERLYING "KISS": 

/ \ 

\ / 

POINT OF. CONTACT: 
Marv probably feels a 
positive emotion toward 
John. 

* l' 
Mary's placing her I ips in contact with John was probably 
caused by Mary feel ing a positive emotion toward John. 

causative I 
* Mary's lips were in contact with Bill 

Figure 5·21. One explanation of why Mary's kissing 
was related to John's hitting. 

(MARY KISSED JOHN BECAUSE HE HIT BILL) 

( ((CON ((CON ((ACTOR (JOHN) <=> 
(*PROPEL*) OBJECT (*PHYSOBJ* SPEC 
(*U*)) FROM (JOHN) TO (BILL)) TIME 
(TIMB1)) <= ((ACTOR (*PHVSOBJ* SPEC 
(*U*)) <=> (*PHVSCONT* VAL (BILL))) 
TIME (TIM01l))) <= ((CON ((ACTOR 
(MARY) <=> (*00*)) TIME (TIM02) SPEC 
(*U*)) <= (ACTOR (*LIPS* PART (MARY)) 
<=> (*PHYSCONT* VAL (JOHN))) TIME 
ITH102) )))) TIME (TIM61l) 

(TIMB6 ((VAL T-6))) 
(TIM01 ((BEFORE TIM62 X))) 
(TIM02 (BEFORE TIM66 X))) 

This is the input sentence. Its underlying 
conceptual graph is shown next. 
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«CAUSE «(CAUSE (*PROPEL* (#JOHN1) 
(Cee13) WJOHNll (#BILLi» (TIME 
(Cee15») «*PHYSCONh (C131313) (#B"ILLl)) 
{TIME (Ce8l8»))) «CAUSE «*00* 
(#MARYf) C0(18) (UNSPECIFIED ) (TIME 
(C8e17)) «*PHYSCONT* (Cee211 (#JOHNlf) 
<TIME _ (C8817)))))) <TIME _ (C8e18») 

C8835 

STARTING INFERENCE QUEUE: 
( (X 1. 8 C8(35» 

ABOUT TO APPLY ®CAUSEl TO ce835 
cee35: (CAUSE (CAUSE (*PROPEL* #JOHNl 

cee13 #JOHN1 #BILLl) (*PHYSCONT* 
C8813 #BILL1) (CAUSE (*00* #MARY1 
C8818) (*PHYSCONT* C8821 
tlJOHNll ) ) 

INFERRING: C8828 

ABOUT TO APPLY ®CAUSE2 TO C8e35 
cee35: (CAUSE (CAUSE (*PROPEL* #JOHN1 
C8813 #JOHN1 #BILLl) (*PHYSCONT* 
C8813 #8ILLl» (CAUSE (*00* #MARYI 
C88l8) (*PHYSCONT* cee21 #JOHN1))) 
INFERRING: C8834 

RECORDING CAUSAL RELATION: 
(C8824 . C8(32) 

ABOUT TO APPLY ®PHYSCONT1 TO cee32 
ce832: (*PHYSCONT* cee21 #JOHN1) 
INFERRING: (*MFEEL* #MARYl #POSEMOTION 

#JOHN1) 
ALSO GENERATING: (TIME C8838 C8e17) 

ABOUT TO APPLY 0PROPELl TO cee24 
Ce1324: (*PROPEL* #JOHN1 ce848 #JOHN1 

#BILLl ) 
I NFERR I NG: (*FORCECONh ce848 #B I LLl) 

ALSO GENERATING: (TS C8852 Cee15) 

ABOUT TO APPLY 0FORCECONT2 TO C8852 
C8852: (*FORCECONT* C8848 #BILL1) 
INFERRING: (NEGCHANGE #BILLI #PSTATE) 

ALSO GENERATING: (TIME cee55 C8e15) 

This is the partially integrated memory 
structure, after references have been 
establ ished. No reference ambiguity is 
assumed to exist for this example. 

cee35 is the resulting memory structure 
for this utterance. 

We suppress al I but this structure on the 
starting inference queue .. 

(We wi I I be seeing about one fourth of the 
original trace output for this example) 

Here, the CAUSE inference molecule 1s 
injectin9 the two subconceptual izations, 
A and B In Fig. 5-213, into the inference 
stream. 

The causal structure of this conceptual ization 
indicated that a path should be found 
relating structure C to structure 0 in 
Fig. 5-213. This is noted. C8824 corresponds 
to C, C0032 to D. 

Here,' the causative inference that Mary's 
kissing was probably caused by her feel ing 
a positive emotion toward John is made. 

Because the PHYSCONT of John's hand and 
Bi I I was caused by a PROPEL, MEMORY here 
makes the inference that it was a forceful 
contact. 

Since one of the objects involved in the 
FORCECONT was a ~erson, MEMORY predicts 
a smal I NEGCHANGE on his part. The degree 
of the NEGCHANGE is dependent upon the 
t~pe of object which cane into contact 
with him. 
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ABOUT TO APPLY .NEGCHANGE2 TO C00SS 
cee55: (NEGCHANGE #BILLl #PSTATE) 
INFERRING: (POSCHANGE #MARYI #JOY) 

ALSO GENERATING: (TIME C00GI C00lG) 

ABOUT TO APPLY .POSCHANGEI TO C00GI 
ceB51: (POSCHANGE #MARYI #JOY) 
INFERRING: (*MFEEL* #MARYl #POSEMOTION 

#JOHN1 ) 
ALSO GENERATING: (TS C0058 C0015) 

CAUSAL EXPANSION ACHIEVED: 
(C0024 . C0032) 

CONTACT POINTS ARE: (C0058 C0039) 

MERGING: 
CB058: (*MFEEL* #MARY1 #POSEMOTION 

#JOHN1) 
cae39: (*MFEEL* #MARY1 #POSEMOTION 

#JOHN1 ) 

*lEXPANOED_CAUSALS 

({Cea24 . C0032» 

*(CAUSAL_PATH @C0024 @Ca032) 

(Cge24 ce952 Cge55 C0051 C90G8 C0032) 

caB24: (*PROPEL* #JOHN1 C0048 #JOHN1 
#BILLl) 

ASET: 
C0054: (CAUSE # C00S2) 
C0028: (CAUSE # C0025) 
C0B25: (TIME # C0015) 

RECENCY: 99130 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

CBB28: (CAUSE C0024 C0025) 
OFFSPRING: 

caB7B: (CAUSE cee51 C0058) 
CBe58: (*MFEEL* #MARYl #POSEMOTION 

#JOHN1) 
C0e55: (CAUSE cee55 Cee53) 
CBB53: (*MFEEL* #BILLI #NEGEMOTION 

#JOHNI) 
cee54: (CAUSE ce024 C(052) 
cee53: (TS C0052 Cee15) 
cee52: (*FORCECONT* C0048 #BILL1) 

ISEEN: (.PROPELl) 

Here, because Mary was feel ing a negative 
emotion toward Bi II at the time, when Bi II 
underwent a smal I NEGCHANGE, the prediction 
can be made that Mary may have experienced 
a degree of joy. 

Looking back the causal path which lead 
to Mary's I ikely change in joy, the 
POSCHANGE inference molecule discovers 
that it was an action on John's part 
which was most directly responsible for 
her joy. The inference that Mary might 
have started feel ing a positive emotion 
toward John is made. 

As this last inference is made, the 
inference evaluator notices that the same 
information exists elsewhere in the memory. 
This is a point of contact in inference 
space. It is furthermore not iced that the 
two MFEEL structures join a causal path 
between two structures which have been 
related causally by language. The two 
MFEEL structures are merged into one, and 
this event is noted as a causal chain 
expansion. To the left, CBeG8 and Cee39 
are the contact points, CBB24 and CBB32 
are the two structures which have now been 
causally related. 

Inference proceeds, and finally stops. At 
that point, we took a look at the structures 
lying along this explained causal path. 
CB024 is the original PROPEL structure 
C0e32 is the PHYSCONT-I ips structure. the 
service function CAUSAL PATH wi I I track down 
the causa I linkage for us. The causa I cha i n 
consists of the six structures to the left. 

This is the original PROPEL. During the 
process, but not shown, Cee48 was detected 
as unspecified, and fi I led in as John's 
hand. Notice on the REASONS and OFFSPRING 
sets the results of other inferencing which 
was not discussed above. 
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-----------------------------------
C0052: (*FORCECONT* C0048 #BILL1) 
ASET: 

C0077: (WANT #JOHN1 #) 
C0057: (CAUSE # C(055) 
C0054: (CAUSE C0024 #) 
C0053: (TS # C(015) 

RECENCY: 18415 
TRUTH: T, STRENGTH: 0.89999999 
REASONS: 

C0024: (*PROPEL* #JOHN1 C0048 #JOHN1 
#BI LLl) 

OFFSPRING: 
C0078: (TS C00n C0(15) 
C0077: (WANT #JOHN1 C(052) 
C0057: (CAUSE C0052 C(055) 
C005G: (TIME C0055 C0015) 
C0055: (NEGCHANGE #BILL1 #PSTATE) 

I SEEN: (.g,FORCECONT2) 

C0055: (NEGCHANGE #BILL1 #PSTATE) 
ASET: 

C0079: (WANT #JOHN1 #) 
C0057: (CAUSE # C0(59) 
C0055: (CAUSE # C(051) 
C0055: (CAUSE # C(053) 
C0057: (CAUSE C0052 #) 
C0055: (TIME # C(015) 

RECENCY: 19833 
TRUTH: T. STRENGTH: 0.85500000 
REASONS: 

C0052: (*FORCECONT* C0048 #BILLll 
10008: ( I SA #B I LLl #PERSON) 

OFFSPRING: 
C0080: (TIME C007S C0(15) 
C0079: (WANT #JOHN1 C0055) 
C0057: (CAUSE C0055 C0(59) 
C0055: (CAUSE C0055 CeeG1) 
COOG5: (CAUSE ce055 CeeG3) 
C00G4: (TS CeeG3 cee1 5) 
C0053: (*MFEEL* #BILL1 #NEGEMOTION 

#JOHN1 ) 
C0052: (TIME C0051 C0(15) 
C0051: '(POSCHANGE #MARY1 #JOY) 
CBB50: (TS CBB5S CBe15) 
CBBS9: (WANT #BILLl Cee58) 

ISEEN: (eNEGCHANGE3 .NEGCHANGE2 
.NEGCHANGE1) 

-----------------------------------
ce051: (POSCHANGE #MARYl #JOY) 
ASET: 

C0070: (CAUSE # Cee58) 
C0055: (CAUSE cee5S #) 
C0052: (TIME # Cee16) 

RECENCY: 24515 ' 
TRUTH: T, STRENGTH: NIL 
REASONS: 

C0055: (NEGCHANGE #BILLl #PSTATE) 
10137: (MFEEL #MARYl #NEGEMOTION 

#BILLl) 
OFFSPRING: 

Here is the FORCECONT which was inferred 
from, the PROPEL. 

This is Bi II's likely (smal I) change in 
PSTATE which resulted from the FORCECONT. 

This is the important inference that 
Bi II's NEGCHANGE may have cause a smal I 
degree of haQpiness in Mary. Notice that 
one of the REASONS was assumed to be the 
case beforehand (le137). In section 7.5 
we wi I I see other aspects of this same 
example which illustrate how structure 
merging occurs. But there, that Mary may 
feel a ne~ative emotion toward Bi II wi II 
be established as an inference from a 
preceding input instead of being assumed 
as a starting condition. 
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C0070 
C0059 
C0058 

(CAUSE C0051 C0(58) 
(TS C0058 C(015) 
(*MFEEL* #MARY1 #POSEMOTION 

#JOHNll 
ISEEN: (.POSCHANGE1) 

C0058: (*MFEEL* #MARYI #POSEMOTION 
#JOHN1 ) 

ASET: 
C0085: (WANT #JOHN1 #) 
C0040: (TIME # C0017J 
C0044: (*MLOC* # C0041) 
C0047: (CAUSE # C(032) 
C0070: (CAUSE C0051 #) 
C00G9: (TS # C0015) 

RECENCY: 27355 
TRUTH: T, STRENGTH: 0.35000000 
REASONS: 

C0051: (POSCHANGE #MARY1 #JOY) 
C0024: (*PROPEL* #JOHN1 C0048 #JOHN1 

#BILLl) 
C0044: (*MLOC* C0058 C(041) 

OFFSPRING: 
C0087: (TS C0085 C0015) 
C0085: (TiME C0085 C0017) 
C0085: (WANT #JOHN1 C0058) 

ISEEN: NIL 

C0032: (*PHYSCONT* C0021 #JOHN1) 
ASET: 

C0088: (WANT #JOHN1 #) 
C0071: (WANT #MARY1 #) 
C0047: (CAUSE C0058 #) 
C0045: (CAUSE # C0044) 
C0034: (CAUSE C0023 #) 
C0033: (TIME # C(017) 

RECENCY: 12015 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

C0034: (CAUSE C0028 C0032) 
OFFSPRING: 

C0089: (T I ME C0088 C0017) 
C0088: (WANT #JOHN1 C0(32) 
C0072: (T I ME C0071 C001 7) 
C0071: (WANT #MARY1 C(032) 
C0047: (CAUSE C0058 C0032) 
CB045: (CAUSE C0032 C0044) 
C0VJ45: (TS C0044 C0017) 
C0644: (*MLOC* C0058 C(041) 
C0040: (TIME C0058 C0017) 

ISEEN: (.PHYSCONT2 .PHYSCONT1) 

Here, Mary is feel ing a positive emotion 
toward John, whose action indirectly caused 
her joy. This structure is the point of 
contact, and is the structure which resulted 
from the merge. Notice that its STRENGTH 
has assumed the higher STRENGTH of the two 
structures which were merged. 

This is the original PHYSCONT-I ips structure 
which lead, via a causative inference to 
the prediction that Mary may have fel t a 
positive emotion toward John. 

This WANT is a prediction that one reason 
Mary may have kissed John is so that he 
would know she felt a positive emotion 
toward him. 
This MLOC represents the inference that 
John probably now knows that Mary MFEELS 
a positive emotion toward him. We wi II 
account for these types of inference in 
upcoming sections. 
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5.6 MOTIVATIONAL INFERENCES: ACTIONS AND INTENTION 

sample: John hit Mary. 
John probably wanted Mary to be hurt. 

sample: John told Mary that Bill wants a book. 
John may want Mary to give Bill a book. 

sample: John set out to the grocery. 
John probably wanted to be at the grocery. 

sample: Mary stabbed herself with a knife. 
Mary probably wanted to die. 

sample: Bill went to the store. 
Bill probably wanted to be at the location of the store. 

sample: Mary pointed out to Bill that he hadn't done his chores. 
Mary may have wanted Bill to feel guilty. 

sample: Rita liked Bill. 
Mary kissed Bill in front of Rita. 
Mary may have wanted Rita to become jealous. 

When dealing with conceptual information which involves people and their actions in the 

world, it is of considerable importance to be able to to separate what actually happens by way 

of actions from what is intended to happen by an actor who has performed some action. That is, 

the intentions of actors, and what motivates them to those intentions are very important. The 

notion of a motivational inference deals with this distinction between the actual and the 

intentional levels of events in the world. Motivational inferences hence always relate the internal 

states and actions of people. In this section I will describe the idea behind a motivational 

inference. 

To illustrate, let us return to our battle-fatigued example, "John hit Mary." Again, the 

underlying conceptual content of this utterance is shown in Fig. 5-22. 

0 par t 
JOHN <===> PROPEL +---- HAND +------ JOHN 

/ \ l' 

p 
I~I---+ MARY 

+--- JOHN 

val 
+----- MARY JOHN 

part 
------+ HAND <555> PHYSCONT 

Figure 5·22. 

201 



There are lines of inference which arise directly from the mechanics of the event which this 

structure conveys. Inferences in these lines begin with the main causal predication, inferring 

that both events or states which the central causal structure of Fig. 5-22 relates actually 

occurred. Inferences organized under PR~PEL and PHYSCONT (these two inference molecules) will 

thus be called into play, and they in turn will lead to various other inferences which deal with 

the explicit contents of the conceptualization as expressed. In this case, these inferences result 

in predictions about the physics of hitting, what happens to a person when a PROPEL causes the 

physical contact of some object with that person, what enabling states (next section) must have 

been in effect at the time, and so on. These are all extremely interesting conceptual inferences. 

But there is another level at which every utterance can be simultaneously analyzed. This 

level concerns inferences about humans: in particular, their motivations and reasons for 

performing actions in the world. An analysis of motivations will eventually lead to other 

inferences relating to their social interactions. Hence, much of the interesting content of this 

conceptualization would be lost if only those inferences explicitly activated by the input -- those 

concerning the mechanics of the event -- were generated. 

In this example, the missing linr, between the literal description of the situation and this 

other level of intentionality is the following simple fact: John probably intended to hit Mary. That 

is, John probably preconceived that his PROPELling would cause the PHYSCONT, and, in general, 

the probable consequences of the PHYSCONT as well. Thus, aside from the analysis of the 

mechanical facets of this utterance there is another entire realm which is entered only by making 

this crucial prediction. This example characterizes a very general principle: analyzing both sides 

of this duality between the actual and intentional is crucial at all levels of inference. The primary 

means of accomplishing it is to have the memory assume that every real-world action might have 

been volitional (in the absence of explicit information to the contrary). It is the purpose of this 

section to describe the mechanism by which motivations of actors can be inferred. 

5.6.1 RESULTATIVE INFERENCES AND MOTIVATION 

A first approximation to drawing out what an actor wanted an action to achieve can be had 

by asking "What actually happened as results of his action in the context in which he performed 

it?" That is, what conceptual resultative inferences could the memory make from the mechanics of 
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the hitting action? If these can be ascertained then they are good candidates for things John 

may have had in mind as results of his action. 

That is, an actor's desire for one or more of the results of his 
action might have been what motivated him to perform the action. 

Resultative inferences are easily locatable in the memory, since preserving causal 

connectivity is one important byproduct of the causative/resultative inference process: in order 

to locate the results of actor AC's action, A, which is under analysis to generate motivational 

inferences, the motivational inference process, ASSERT_WANT, can simply gather the set of 

structures, Ri, which lie in the relation (CAUSE* A Ri) with A. The result of such a retrieval is a 

set {Rl, ... ,Rn} which is the set of all structures were predicted by the memory to have been 

results of A, all structures which were in turn the results of the results, and so on. 

5.6.2 MODELING THE ACTOR'S KNOWLEDGE 

In a first-approximation, the memory could at that point simply generate the motivational 

inferences (WANT AC Ri) for each Ri in this set. That is, many probablistic predictions (Fig. 5-23) 

about what the actor, AC, wanted could be made. But this is obviously a fairly crude 

approximation: although it would encompass everything the memory could infer by way of results 

of action A, it is based on the memory's characterization of cause and effect in the world, and on 

the memory's specific world knowledge at the time, not on actor AC's knowledge. Since the 

actor's knowledge of the environment in which he performed his action is clearly more relevant 

than the memory's for the purposes of predicting his intentions, this difference must be taken 

into account. {Rl, ... ,Rn} must be thought of only as candidates for what the actor may have had in 

mind. 
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resultative 
inferences 

. .. } 

Figure 5·23. A first approximation: 
candidates for motivational inferences. 

The memory must realize that its own knowledge is not necessarily the same as the actor's. 

Where is this modeling of the actor's knowledge at the time of his action injected into this 

process of making motivational inferences? Recall that each Ri in the result set MEMORY 

generates from action, A, has an associated set of REASONS. For resultative inference, Ri, this is 

a list Xl, ... ,Xk of other structures in the memory which were factors in Ri's generation as a 

result ative inference. Therefore, to ask the question "was AC also able to make this resultative" 

inference is to ask "did AC have access to information Xl, ... ,Xn at the time of his action?" If it can 

be predicted that he did, then it is also reasonable to infer that he may have been aware of the 

same Ri as memory. 

Thus (Fig. 5-24), in order to predict (WANT AC Ri), the memory must ascertain that AC knew 

Xl, ... ,Xk: that is, (MLOC Xj L), where Lis AC's LTM or CP, and l~j~k. If it can ascertain this, the 

. motivational inference (WANT AC Ri) can be generated, and given the following REASONS: (a) the 

action occurred, (b) the action CAUSEd Ri (perhaps through several levels of resultative 

inference -- all the CAUSE structures are explicit structures generated by the resultative 

inference process), and (c) the MLOC structures which represent the actor's knowledge of 

Xl, ... ,Xk at the time of his action. 
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(ACTION actor ••• ) 

I"~~·" /- .. j 
resu I tat i ve 
inferences \ REASONS 

======== 

~ LTM-actor} ? 
I::::I~ 

.J----I::::ly- (MLOC * LTM-actor) ? 

_ ~* LTM-actor) ? 
'-I ... 
__ ... 1] ~* LTM-actor) ? 

Figure 5-24. Where predictions about the actor's knowledge fit. 

Since knowledge propagation inferences (section 6.6) require the same knowledge modeling 

ability for a slightly more general process, rather than discuss here how the capability to make 

such predictions about an actor's knowledge at some time has been implemented, I will wait until 

that section. Suffice it to say here that memory's knowledge of what people can be expected to 

know, as well as what the memory explicitly knows they know, plays an important role in this 

modeling. 

It is quite common that the memory simply will not be able to predict whether or not certain 

information essential ~o the generation of a motivational inference was in fact available to the 

actor at the time of his action. When this happens, it is far more desirable to have the memory 

make the tentative assumption that the actor might have had access to the same information the 

memory used to generate a particular resultative inference, Ri, and proceed with the motivational 

inference, (WANT AC Ri), on this assumption. That is, it is safer to be wasteful than to be too 

frugal, and thereby miss important points of contact in the inference space. This of course is a 

guiding principle of all inferences, but it is especially important with respect to motivational 

inferences, because modeling another person's knowledge in any detail is difficult, and requires 

tremendous quantities of dat a in a practical program. This is the approach taken in the current 

implementation: when it cannot be decided one way or the other what the actor knew, give him 

the benefit of the doubt. As we will see, "peculiar" motivational inferences thus generated wili be 

detected by the inference evaluator, and re-evaluated. 

I can summarize the main idea behind a motivational inference as follows: 
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In the absence of information to the contrary, people can be 
assumed to perform actions for the probable consequences of those 
actions. That is, if an actor performs an action with the knowledge 
of what that action will result in, Rl, ... ,Rn, then it can be inferred 
that the action was motivated by the actor's desire for one or more 
of Rl, ... ,Rn. 

It should be emphasized that I am not concerned with discovering the actual intentions of an 

actor at some mysterious higher level than perhaps even he himself could explain. Rather I want 

only good commonsense predictions about what he might have had in mind as the outcome of his 

action, because predictions about what he may have been up to can lead to more points of 

contact in inference space. Without such predictions in this hitting example, the memory would 

miss altogether the important inferences about human interactions, which begins from the 

inferred pattern: 

(WANT #JOHN (NEGCHANGE #MARY #PSTATE)} 

since (NEGCHANGE #MARY #PSTATE) is an eventual resultative inference which arises from the 

mechanics of hitting. This inferred structure will subsequently lead to inferences about MFEELing 

anger (a causative inference), and so forth. 

5.6.3 IMPLEMENTATION OF MOTIVATIONAL INFERENCES 

Motivational inferences are implemented in the memory via a special procedure, 

ASSERT_WANT, which is called by the inference monitor after the expansion of inferences 

resulting from some action. This may be viewed as an interruption to the operation of the 

inference monitor, and is part of the larger process POSTSCAN, which is described further in 

7.2.2. 

During this interruption, the following things occur within the POSTSCANner, relative to 

motivational inferences. 

1. each action structure on the current queue of inferences is examined, and its actor, AC, 

isolated 

2. a memory search is performed, gathering all resultative inferences which have been generated 
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from this action, A. This is the set of other structures, Rl, ... ,Rn in the memory which lie in a 

(CAUSE A Ri) relation to A. 

3. For each Ri, in turn, Ri's REASONS, Xl, ... ,Xk are retrieved. For each Xjin this reasons set, it is 

determined whether AC knew or could be expected to have known Xi. If not all Xj can be 

assumed to have been known by AC, the motivational inference for Ri is not generated. 

4. Otherwise, ASSERT _WANT then infers (WANT AC Ri) for each Ri collected in step (2). In 

addition, it makes explicit the probable causal relation: the desire for A's result, Ri, could 

have been the cause for AC's performing A. 

5. All the new motivational inferences generated by (1 )-(4) are placed on the inference queue 

for subsequent further expansion. 

The inference monitor then proceeds. This process is depicted schematically in Fig. 5-25. 

(CAUSE * *) 

* ....... ---

(MLOC * Ll' . 

(CAUSE * *) 

==== (STATE 

TREASONS ~ __ Ci '- REASON:JS 

(WANT ACTOR *) _ _ 

\... -
.. , ) ~ 

(CAUSE * *) 

*~ (MLOC ~1::::lj~ 
(CAUSE ,* *): (MLOC ~I::::I ~'*' 

===== (STATE 

REASONS 

. .. ) J 
* (MLOC * L) 

TREASONS ~I::::I-
(WANT AcTOR *~)~ __ ---------

L IS THE ACTOR'S LTM OR CP 

Figure 5·25. The generation of motivational inferences . . 

5.6.4 PROBLEMS WITH INTENTIONALITY: "PECULIAR" MOTIVATIONAL INFERENCES 

The problem of assessing actors' intentionality is vast, and I claim only to have a 
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rudimentary ability to deal with intentions. Even with this ability to model an actor's knowledge 

at the time of his action, there are still difficult problems. The main one is the following: even 

though the actor may have been fully aware of the consequences of action A, in some particular 

environment, if those consequences led to NEGCHANGES for the actor himself, or, in some cases 

for others, it is often likely either (a) that the performing of the action itself was not volitional, 

or (b) that an incorrect model of the actor's knowledge was used. I do not pretend to have 

solved many of the deeper issues, but will indicate how one of them has been approached. 

Consider the sentence "John ate a spoiled hamburger." Most adults know that eating spoiled 

meat leads (with a fairly high probability) to sickness. Because of this, the average hearer of this 

utterance would probably not infer that John WANTed to eat the meat, because people don't 

normally wish to induce sickness. But why is this, and how are we to have the memory realize 

such things? 

The problem here is not with the intentionality of the action (John probably WANTed to 

perform the simple ACT of ingesting). Rather the problem has to do with a certain feature of the 

object of the INGEST and the consequences of the action which depended on that feature. The 

problem, therefore, is that, at the time the motivational inference process needs to know whether 

or not John knew the meat was spoiled, it could easily happen that the process which models this 

knowledge (normative inferences, section 6.7) simply cannot make a decision, based on the 

information conveyed by this sentence alone. The possibility that John knew this can not 

therefore be ruled out ("Mary wanted to end it all. She ate a spoiled hamburger."). The memory 

must proceed with the motivational inference that John may have WANTed the probable 

resultative structure (NEGCHANGE #JOHN #HEAL TH). 

It is at this point that the inference evaluator comes into the picture. As each new 

inference is generated, it is evaluated by the inference monitor which makes use of small 

programs called normality molecules (N-molecules, section 6.7.1). The function of these molecules 

is to assess the degree to which some unit of information agrees or disagrees with memory's 

other knowledge of the world. Hopefully, in a case such as this one, even though the inference 

{WANT #JOHN (NEGCHANGE #JOHN #HEALTH)) 
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IS generated by the motivational inference process, it will be assessed very low by the WANT 

normality-molecule, because it will contradict memory's knowledge of normality in the world: 

people do not normally WANT NEGCHANGEs for themselves. (It is at this point -- in an N-molecule 

-- however, that the memory could make very specific tests about John before assessing this 

structure. That is, the WANT normality atom which assesses this structure could be sensitive to 

knowledge such as "John is a masochist", or whatever else might affect the assessment of this 

structure for normality.) 

We need the services of the inference evaluator and N-molecules for the purposes of 

motivational inferences because of the following principle: 

If a motivational inference is assessed by a normality molecule as 
being highly incompatible with memory's other knowledge of the 
world, its STR ENGTH and the STRENGTHs of the tentative 
assumptions upon which it was based should be decreased. That is, 
it should be cOllsidered less likely because of the feedback from the 
evaluator. 

Since the assumptions upon which each motivational inference is based are stored as its 

REASONS, it is possible to retrieve them. Those which were "tentative" are the ones with low 

STRENGTHs to begin with (less than STRENGTH 0.50 in the current program). This heuristic 

prescribes tha! these assumptions, as well as the motivational inference they led to, should have 

their STRENGTHs severly decreased (to a quarter of their original value in the program). This has 

features of "backtracking" in that it will go back and alter the STRENGTH of tentative 

assumptions when those assumptions have led to "fuzzy inconsistencies" such as are detected by 

the normality molecules. This process is depicted in Fig. 5-26 for the spoiled hamburger 

example. 
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(l NGEST #JOHN #HEALTH) 

I REASONS 

..... mot i vat i ona I inference 

The pattern (WANT #JOHN (NEGCHANGE #JOHN #HEALTHll is evaluated as incompatible 
wi th the memory's knowledge of what is normal. This causes the REASONS for the 
WANT structure above to be reexamined. AI I but the (MLOC (PSTATE M #LOWl L), where 
M is the meat he ate, have relatively high strengths. Sensing that this structure 
was a tentative assumption in the first place. its STRENGTH and the WANT structure's 
STRENGTH are both decreased. 

L IS #JOHN'S LTM OR CP 

Fig'ure 5-26. Retracing tentative assumptions. 

5.6.4.1 DETECTING THE NON-INTENTIONALITY OF THE ORIGINAL ACTION ITSELF 

What is the memory to do if no tentative assumptions can be located (that is, all the 

REASONS behind the motivational inference have very high STRENGTHs)? In this case, the 

performance of the action itself may have been accidental. That is, the actor might not have 

wished the action ever to be performed in the first place. "Bill drop,ped his camera" is a 

conceptualization in which this will occur. There are no low-STRENGTH assumptions On the 

REASONS list for the motivational inference (WANT #BILL (NEGCHANGE C #PSTATE», where C is 

his camera: Bill can be assumed with near certainty to have known the consequences of dropping 

C, namely that this action could lead to the camera's demise. Because there are no tentative 

assumptions, as in the hamburger example, instead of reducing STRENGTHs, the action structure 

is marked with the conceptual modification (NONVOL A) as a prediction that the action was not 
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volitional. No more motivational inferences are generated from it or from any of its resulting 

structures, and those which have already been generated have their STRENGTHs reduced to a 

near zero value. 

5.6.5 MOTIVATIONAL INFERENCES AND FUTURE ACTIONS 

Although we have been examining the concept of a motivational inference from the point of 

view of predicting possible desires of actors who have performed actions, it should be clear that 

motivational inferences can also be used to understand why a person might desire a future 

action. That is to understand "John wants to give Marya present", the memory can create a 

structure standing for this hypothe.ical future event, let resultative inferences arise from it, then 

predict that the reason John wants this action is because of the probable results it can achieve 

(perhaps to make Mary happy). On the other, hand, what John might do to satisfy this desire to 

give Marya present (for example, go to the store and buy it) concerns inferences which attempt 

to predict his future actions. These are distinct from, yet related to, motivational inferences 

which attempt to explain why people desire actions. 

I will conclude with an example of how motivational inferences can be of use in 

understanding why someone might want to perform some future action. This example is shown in, 

Fig. 5-27, and relates to the computer example in section 6.10: it shows how the utterance "John 

wanted an aspirin." can lead, through motivational inferences to the question "What happened to 

him?" Although Fig. 5-27 focuses on just one line of likely resultative inferences, bear in mind 

that there will generally be many others as well. 
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(WANT #JOHN (INGEST #JOHN A M S» 
A is the aspirin, M is John's mouth, 
S is John's stomach 

to understand why John wants this, see 
what its resultative inferences might be 

result result 
(INGEST #JOHN A M S) ---~ (LOC A S) ---~ (POSCHANGE #JOHN #HEALTH) 

1 motivational motivational 

(WANT #JOHN (LOC AS» 

(NEGCHANGE #JOHN #HEALTH) ---~ (WANT #JOHN (POSCHANGE #JOHN #HEALTH» 
t causat i ve 

missing original 
cause leads to question 

(CAUSE (NEGCHANGE #JOHN #HEALTH) ??) 

that is, what is I ikely to have 
caused John's desire to become 
more healthy? 

Figure 5-27. How motivational inferences lead to interesting things. 

This computer example illustrates the postscan mechanism as it concerns the generation of 

motivational inferences. The input sentence is "John hit Mary.", from which numerous inferences 

arise. Among others are the following resultative inferences: John's hand came into forceful 

contact with Mary, Mary suffered a negative change in physical state, and Mary began feeling a 

negative emotion toward John. During the postscan process, these inferences will be "detected as 

resultative inferences from John's propelling action. Since they were predictable results of 

John's action, MEMORY will infer that John wanted them, and that wanting them motivated his 

action. One of the motivational inferences which is made (John wanted Mary to suffer some' 

negative change) will lead to another inference: John probably wanted this because he felt a 

negative emotion toward Mary. This becomes a causative inference which begins the line of 

inferencing which will attempt to discover what caused him to feel this negative emotion. 
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JOHN HIT MARY 

{{CAUSE ((*PROPEL* (#JOHNl) (CBBB3) 
(#JOHNlJ (tIMARYll j (TIME (CeeeG))) 
({*PHYSCONT* (CBBB3) (#MA~Yl» 
(TIME (C000G»)) 

CBBll 

STARTING INFERENCE QUEUE: 
{(X 1. B CBBll» 

ABOUT TO APPLY @CAUSE2 TO 
CBBll: (CAUSE (*PROPEL* #JOHNI CBBB3 

#JOHNI #MARYl) (*PHYSCONT* 
C0003 #MARYl) 

INFERRING: CBBBS 

ABOUT TO APPLY @PROPELI TO 
C0BB7: (*PROPEL* #JOHNI CBBl5 #JOHNI 

#MARYl) 

INFERRING: (*FORCECONT* ceelS #MARYl) 
ALSO GENERATING: (TS CBBl9 CBBBG) 

ABOUT TO APPLY @FORCECONT2 TO 
C0B19: (*FORCECONh CBBl5 #MARYlJ 

INFERRING: (NEGCHANGE #MARYI #PSTATE) 
ALSO GENERATING: (TIME CBB22 CBBBG) 

ABOUT TO APPLY @NEGCHANGEI TO 
CBB22: (NEGCHANGE #MARYI #PSTATE) 

I NFERR I NG: (WANT #MARYI (CBB25» 
ALSO GENERATING: (TS CBB2G CBBBG) 

ABOUT TO APPLY @NEGCHANGE3 TO 
CB022: (NEGCHANGE #MARYI #PSTATE) 

INFERRING: (*MFEEL* #MARYI #NEGEMOTION 
#JOHNl) 

ALSO GENERATING: (TS cee28 CBBBG) 

ENTERING POSTSCANNER •.• 

ACTION CB0B7: (*PROPEL* #JOHNI CBBl5 

213 

To the left. the input sentence is being' 
read and internal ized in MEMORY structure 
CBBII. In Engl ish this structure is: John 
propelled some physical object (CBBB3) from 
John to Mary. causing this physical object 
to come into physical contact with Mary. 
This happened at time CeeBG. During the 
course of i nferenc i ng, one task wi I I be 
to specify this unspecified physical object. 
This is not shown. but it occurs behind 
the scene. 

We suppress al I subpropositions but the. 
main one for this example. 

I wi I I show only the resultative inferences 
which are generated as results of this 
starting structure. To the left, CBB0S 
(the second part of the CAUSE relation. 
that CBee3 and #MARYI were in PHYSCONTI 
is inferred. 

Here. the probab I e resu I t of prope I ling 
an object toward #MARYI is that the object 
came Into forceful contact with her. This 
inference is CBB19. Notice that by this 
point in the inferencing; Ceee3 has been 
specified as CBB15 (John s hand) which 
has replaced it. 

One result of an object coming into forceful 
contact with a person is that the person 
suffers a ne~ative change in his physical 
state. This Inference is CBB22. 

A person who undergoes a negative change 
on some scale might begin wanting to undergo 
a positive change on that same scale. This 
inference could lead to predictions about 
the person's future actions which would tend 
to bring about this positive change. 

Mary underwent a negative change. However, 
in addition, MEMORY detects that it was an 
action by John WHICH LEAD TO THIS NEGCHANGE. 
MEMORY thus infers that Mary begins feel ing 
a negative emotion toward John. 

Finally inference via the inference monitor 
ceases. The postscanner is cal led into action 
2lli3 scan the queue of inferences wh i ch ex is t 



#JOHN1 #MARY1) 
DETECTED. 

PERFORMING MOTIVATIONAL SCAN .•• 
RESULT SET OF ceee7 IS 
(COOe9 C0019 C0022 C0028 C0026) 

C0032: (WANT #JOHN1 C0009) 
(WANT #JOHN1 (*PHYSCONT* C00l5 #MARY1)) 
ASET: 

C0B34: (CAUSE # CeeB7) 
C0033: (TIME # C0ee6) 

RECENCY: 18666 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

coe07: (*PROPEL* #JOHNl cee15 #JOHN1 
#MARYll 

ISEEN: NIL 

so far. One function of the postscan process 
is to detect actions, locate those resultative 
inferences from those actions which have 
stren~ths hi~h enough to be condidered 
"predIctable, then infer that the actor 
of the action WANTed those results. To the 
left, the postscanner has located 5 such 
resultative inferences from John's propel! ing 
action. It generates 5 motivational inferences.. 

The inferences generated during the 
postscan are subjected to another pass 
through the inference monitor. I have 
interrupted MEMORY at that point to 
examine the motivational inferences and 
one other inference which resulted from 
one of the motivational inferences. To 
the left is the inference that John wanted 
his hand t be in PHYSCONT with Mary. 

cee35: (WANT #JOHN1 C13e18) John wanted his hand to be in forceful 
(WANT #JOHNI (*FORCECONT* CeelS #MARY1)} contact with Mary. 
ASET: 

Cee37: (CAUSE # Ceee7) 
Cee36: (TIME # Ce006) 

RECENCY: 18733 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

C0007: (*PROPEL* #JOHNl C0015 #JOHN1 
tlMARY1) 

ISEEN: NIL 

ce038: (WANT tlJOHNl C0022) 
(WANT tlJOHNl (NEGCHANGE #MARYl tlPSTATE)} 
ASET: 

Ce049: (CAUSE C01347 tI) 
C00413: (CAUSE tI C13ee7) 
Cee38: (TIME tI Ceee6) 

RECENCY: 18783 
TRUTH: T. STRENGTH: 1.13 
REAsor'JS: 

Ce0e7: (*PROPEL* #JOHNl C001S #JOHNl 
tlMARYll 

OFFSPRING: 
Cee48: (CAUSE Ce1347 Cee38) 
Cee48: (TIME Cee47 Ceee6) 
Ce047: (*MFEEL* #JOHNl #NEGEMOTION 

tlMARY1) 
ISEEN: {®WANTl} 

C0e41: (WANT #JOHN1 C0028) 
{WANT tlJOHNl (*MFEEL* tlMARYl #NEGEMOTION 

tlJOHN1)} 
ASET: 

C0e43: (CAUSE tI C01307) 
Ce042: (TIME # C130136) 

John wanted Mary to suffer a negative change 
in physical state. Notice that this 
motivational inference has in turn lead to 
the causative inference (C0e47) that John 
felt a negative emotion toward Mary, and 
that this feel ing was the cause of his 
desire that she become hurt. C13047 is displayed 
at the end. 

This motivational inference predicts that 
John wanted Mary to feel a negative emotion 
toward him. The evaluation function demotes 
this inference because this is negative 
with respect to John and peop I e norma I II;J 

aJdinot want things which are negative WIth 
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RECENCY: 18850 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

C0007: (*PROPEL* #JOHNl C0015 #JOHNl 
#MARY1) 

ISEEN: NIL 

C0044: (WANT #JOHN1 C0025) 
(WANT #JOHNl {WANT #MARY1 (POSCHANGE 

#MARYl #PSTATE))) 
ASET: 

C0645: (CAUSE # C(007) 
C6045: (TIME # C(005) 

RECENCY: 18833 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

C0007: (*PROPEL* #JOHN1 C0015 #JOHN1 
#MARY1) 

ISEEN: NIL 

C0047: (*MFEEL* #JOHNl #NEGEMOTION 
#MARY1) 

ASET: 
C0049: (CAUSE # C0(38) 
C0048: (TIME # C00(6) 

RECENCY: 21100 
TRUTH: T, STRENGTH: 1.0 
REASONS: 

C0038: (WANT #JOHN1 C0022) 
ISEEN: NIL 

respect to themselves. 

This is the inference that John wanted 
Mary to want to get better. Although unl ikely, 
it could nevertheless be a val id inference 
in the correct context, and should not be 
suppressed·at time of inference. Such a 
context might be: "Mary was hyterical. John 
slapped her." 

Here is the causative inference which arose 
from the motivational inference that John 
wanted Mary to suffer a negative change 
(Ce038) . 

5.7 ENABLING INFERENCES 

sam pie: Mary said that she killed herself. 
That's impossible. 

sample: John kissed Mary. 
John and Mary are near each other. 

sample: John told Mary that Pete was at the store. 
John must have known that Pete was at the store. 

sample: Mary gave John the book. 
Mary had the book just before she gave it. 

sample: Pete went to Europe. . 
Where did he get that kind of money? 
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5.7.1 INTRINSIC AND EXTRINSIC ENABLING STATES 

Every action which occurs in the world must have a fairly well-defined -- and usually 

predictable -- surrounding environment: namely one in which the action is possible! The 

environment in which an action occurs interacts with the action in two important ways. First, it 

can influence the result of an action after it has been initiated or completed. That is, the specific 

effects an action can have on the world are determined by the condition of the world before and 

during the action. (This includes the action's time, location, etc.) Second, the state of the world 

can either predetermine the nature of the action before it is undertaken, or even preclude its 

occurrence altogether. The first form of interaction concerning the course of an action, or the 

effects it has on the the world after it has been initiated or completed, is the realm of resultative 

inferences, and these must be inherently sensitive to the dimensionality of influence the 

environment can exert upon an ongoing or completed action. These inferences pay attention to 

the conceptual features of the entities involved, and states of the world which might influence 

the course or end effects of the action in a particular situation. 

Resultative inferences, however, do not account for the second form of interaction between 

an action and its environment: circumstances which must obtain before the action can be 

successfully initiated. To account for and deal with these pre-conditions -- those states of the 

world which must be in effect for an action to be performed -- we must distinguish a separate 

class of inference. I will call those inferences which attempt to make explicit the probable 

enabling states which surround an action event enabling inferences, or just "enabling inferences". 

Fig. 5-28 schematizes the idea of enabling conditions. 
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enabling states 

STATE 

STATE I 

STAlE 

STATE 

AcTIoN 

~ STATE I 
1 r I STATE 

------------------~ STATE 
state changes 

Figure 5·28. Actions cause changes in states. States enable actions. 

An enabling inference therefore is a prediction about particular states (preconditions) of the 

world which must be (must have been) true in order for some action to be (have been) 

performed. We may further discriminate inferences in this class in a way which will be useful to 

the operation of the memory. This distinction concerns, in a sense, the degree to which the 

would-be actor can influence some precondition of an action. Those preconditions over which the 

would-be actor has some degree of potential control I will call "extrinsic". These are the actor­

manipulable states of the world whose existence is requisite to the action. 

In contrast, there are some preconditions over which the actor has no control, but rather 

which he himself must implicitly satisfy in order to perform the action. We can call these 

"intrinsic" preconditions. 

Examples of very simple extrinsic preconditions are: "before a person PI can give object X 

to P2, PI must first have possession of X", or "in order for person PI to kiss P2, PI and P2 must 

have spatial proximity". Examples of intrinsic preconditions are "for a person PI to perform an 

action, Pl must be alive", or "for a person Pl to play the piano, Pl must have healthy fingers". 

Matters of the actor's basic ability are not in general so well defined as these examples, since 

abilities can both develop and atrophy with time. However, at any given time, an actor may be 

thought to possess a basic set of abilities which we can view as intrinsic to him at that time 

(they are neither directly nor immediately alterable), but perhaps extrinsic over periods of time. 
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Why be concerned with enabling states of actions in the world? There are two reasons. 

The first lies at the heart of the theory of conceptual memory: part of what it means to 

"comprehend an action" is to be aware not only of how it occurred, what its causes were and 

what it caused, but what must have been true in order for it to have occurred. When a language 

user "comprehends" a language utterance which is underlied by a conceptual action, I will argue 

that he subconsciously expands the situation which must have surrounded the action when it 

occurred; he "imagines" the situation. This is the purpose of all inferences. If the memory can 

draw out many predictions about what must have surrounded the situation to which each 

utterance alludes, it stands a much better chance of discovering how one utterance relates to the 

next. 

Enabling inferences are a particularly powerful source for this expansion about actions. As 

the examples we will examine shortly will bear out, it is the generation of enabling inferences 

which, perhaps more than inferences of any other single class, illustrates the need for a vast 

amount of computation in what I have called this unconscious substratum of cognition in which all 

conceptual inferencing occurs. By being aware of the preconditions for every action which we 

perceive indirectly through language, by exploring its implied intrinsic and extrinsic enabling 

conditions, we can discover very useful relations which would not otherwise be drawn out. In a 

sense then, enabling inferences must put back the richness surrounding an action which is lost in 

the process of communicating just the action by language: they "reconstitute the situation", 

elaborate it, and this can frequently lead to interesting discoveries -- intersections with other 

spheres in this inference space which might have been apparent if the situation had been 

experienced directly, but which are likely otherwise to be missed when experienced indirectly 

through language. 

The second reason for concerning ourselves with enabling inferences is quite a bit more 

specific: many other processes in the memory which ultimately contribute to expansion in the 

inference space, particularly those concerned with making predictions (say, at each point in a 

story), rely heavily on an ability to predict preconditions for actions. A typical question posed 

by a predictive inference might be: "John may want to perform action A because of X, Y and Z. 

What might he do first in order to be able to perform A?" To answer such a question is to 

generate extrinsic enabling conditions for action, A, in A in the context in which it has been 

218 



predicted to be performed. The inference monitor has the ability to allow only inferences of a 

certain type to be generated from a structure. This is one application which requires this ability. 

Because of this, each type of conceptual inference is marked with a distinctive mnemonic by the 

inference molecule which generates it. Enabling inferences are are marked with the mnemonics 

EENB and IENB for extrinsic and intrinsic enablement, respectively. 

5.7.2 ARGUMENTS FOR GENERATING MANY ENABLING INFERENCES SPONTANEOUSLY 

It might be asked "Does a human language user really make very many enabling inferences 

on the average?" I argue emphatically "Yes": he makes a tremendous number, and many have the 

false appearance of being trivial! Insight into this is more readily gained by considering 

contradictions which a human language user will detect immediately, but which would not be 

readily detectable without this expansion of each action's underlying enabling conditions. 

Consider the following five examples: 

1. Mary said she killed herself. 

2. John's dog wrote a concerto yesterday. 

3. Billy's innertube had a hole in it. He inflated it and off he swam. 

4. George, the N.Y. skid row bum, took a vacation to Europe. 

5. Mary was in Seattle John was in Spokane. Mary bent over and kissed John. 

It costs a human language user very little thought to uncover the absurdity of (1). Why is this? 

How do we 50 readily recognize that it is impossible, and impossible because it contains a 

contradiction? That is, suppose it were buried deeply in a story in which there were many 

facets and levels of understanding involved, and perhaps in which the reader even had some 

specific goals which were motivating and guiding his interpretation as he was reading the story. 

How does this leap out at him, almost disruptively? Although this utterance is not in itself very 

interesting, it points out an extremely interesting undercurrent of the understanding process: 

everything the reader reads has to fit, and he subconsciously ver.ifies that it does. When it does, 

fine. But when it does not, this lower cognitive stratum where all sorts of conceptual inferences 

are being produced detects it and brings it to the attention of some higher level process. In this 

case, this happens because Mary performed an action at some time after she is all edged to be 
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dead. But it is a very direct intrinsic enabling inference that the actor of any sort of action be 

alive at the time of the action. The computer example at the end of this section illustrates this 

example. 

The other examples (2-5 above) are equally absurd, Or at least fishy for the same reason: 

at some level, an enabling inference has been drawn out and it clashes with information which 

has arisen from another line of inference initiated from some other aspect within the same 

utterance, or from some other source altogether. (4) causes concern because to take a vacation 

involves many ATRANS' of money from the vacationer to other people, and a precondition for 

ATRANSing an object is that the ATRANSer have possession of it first! 

My operating assumption concerning enabling inferences is therefore: 

Anytime a conceptual action is perceived in language, generate as 
many relevant intrinsic and extrinsic enabling inferences for the 
action as possible. They can lead to interesting discoveries. and 
they insure every time that the action adheres to the memory's 
assumptions about what is normal in the world. 

Section 8.1 contains another computer example illustrating how an enabling inference can 

be (as can all classes of inference) a vital link in the process of unambiguously establishing the 

identity of a reference to some person. In that example, if the enabling inference had not been 

spontaneously made, there would have been no way of distinguis'hing which of two people by the 

same name was being referred to. Furthermore, there would have been no good way for some 

"goal-directed" process to go back and discover this information. I take this to be one more 

SOurce of confirmation for the hypothesis that human language users make copious quantities of 

subconscious enabling inferences in reaction to language stimuli. 
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In this example, we will see how an inferred intrinsic enabling state will playa key role in 

the discovery of a rather blatant contradiction: "Mary said she killed herself." Here, the enabling 

inference that Mary was alive at the time she said this is made from the main MTRANS action. But 

the substance of what she allegedly said leads by a resultative inference that she ceased to be 

alive before the time at which she spoke. Without spontaneously making both the intrinsic 

enabling and resultative inferences, the contradiction would be altogether missed by the memory, 

and presumably by a human language user! 

(MARY SAID SHE KILLED HERSELF) 

«(ACTOR (MARYl) <=> (*MTRANS*) 
MOBJECT ((CON (ACTOR (MARYl) <=> 
(*00*) )) <= «ACTOR (MARY1) G>F 
(*HEALTH* VAL (*ONE*)) <~>T (*HEALTH* 

VAL (-10))) TIME (TIMell)) TIME 
(TIM01)) FROM (*CP* PART (MARY1)) TO 
(*CP* PART (*ONE*) SPEC (*U*))) 
T I ME ( TI MB2) ) 

!TIM0e «(VAL T-0))) 
!TIMBI (IBEFORE TIMB2 X))) 
(TIM02 «BEFORE TIM0e X))) 

«*MTRANS* (#MARY1) «CAUSE «*00* 
(#MARYlJ (Ce0e8))) «STATECHANGE 
UtMARY1) I#HEAL TH) (C0010) 
(#MINUSTEN)) (TIME (Cee12)))) 
!TIt1E (C0012))) (Cee17J (Cee2e)) 
(TIME - (C0e13))) 

C0028 

STARTING INFERENCE QUEUE: 
«(X 1. 0 C0028)) 

ABOUT TO APPLY 0MTRANS0 TO C0e28 
C0028: (*MTRANS* #MARY1 

(CAUSE (*00* #MARY1 C0(08) 
(STATECHANGE #MARY1 #HEALTH 

C0010 #MINUSTEN)) 
C0017 C0020) 

INFERRING: (TIME #MARY1 C(013) 

ABOUT TO APPLY 0MTRANS1 TO Cee28 
INFERRING: (*MLOC* C0e25 C0031) 

ALSO GENERATING: (*TIME* C0034 C0(13) 

ABOUT TO APPLY @MTRANS3 TO C0028 
INFERRING: (*MLOC* Cee25 Ce(20) 

ALSO GENERATING: (TS C0035 C0(13) 

Here is the input utterance. This example 
assumes that the conceptual analyzer has 
identified "Mary", "she" and "herself" all 
to refer to the same person. 

This is the partially integrated resul t 
in which the referencer has decided that 
"Mary" refers to #MARY1. 

This is the resulting memory structure. 

We suppress al I but the main structure 
on the starting inference queue. 

Here, the intrinsic enabl in~ inference 
that Mary must have been alive at the 
time of her MTRANS action is being 
generated. This inference becomes structure 
C0030. 

Other inferences about Mary bel ieving what 
she said and whoever she said it to starting 
to know what she said are made by the MLOC 
inference moleCUle. These wi II lead to 
the memory's considering what she said. 
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ABOUT TO APPLY 0MLOC2 TO C131343 
cee43: (*MLOC* (CAUSE (*00* #MARY1 
C1313138) (STATECHANGE #MARY1 
#HEALTH C13131e #MINUSTEN» C13134e) 
INFERRING: C131328 

ABOUT TO APPLY @CAUSE1 TO C131325 
C131328: (CAUSE (*00* #MARY1 C1313138) 
(STATECHANGE #MARY1 #HEALTH C1313113» 
#MI NUSTEN) ) 
INFERRING: C131323 

ABOUT TO APPLY ®CAUSE2 TO C13e25 
INFERRING: C131324 

RECORDING CAUSAL RELATION: 
(Cee23 . C13024) 

ABOUT TO APPLY ®STATECHANGE1 TO Ce1324 
Ce1324: (STATECHANGE #MARY1 #HEALTH 
ceele #MINUSTEN) 
INFERRING: ITF #MARY1 Cee12) 

CONTRADICTION DETECTED: 

Ce1348 
C1313313 
C131316 

C131346 CONTRADICTS C131338 
REASONS: (C8~H6) 

(TF #MARY1 C131312) 
(TIME #MARY1 C131313 
(BEFORE C13812 C131313) 

Here, MEMORY be~ins to consider the substance 
of what Mary said. The two resulting 
inferences are that she did something. and 
what she did caused a STATECHANGE in her 
hea I th to -113. 

The causal relation is recorded for 
causal chain e~pansion. This is not 
directly related to this e~ample, but 
has been included for reference. 

,Here is the resultative inference from 
Mary's STATECHANGE that she ceased to exist 
at the time of the STATECHANGE. 

At this point, the inference evaluator 
detects a direct contradiction: Mary 
must have been e~isting after she ceased 
to exist (TIME and TF structures are 
contradictory). Notice that the reason the 
evaluator suppl ies for this contradiction 
is, C131315, the relation of the two times, 
Ce1312 and C13e13. The contradiction is 
recorded, the two structures are removed 
from the inference queue, and inferencing 
proceeds. 
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CHAPTER 6 

MORE CONCEPTUAL INFERENCES 

This chapter is a logical continuation of the previous one, which was getting pretty long 

and, out of compassion for the reader, was artificially interrupted. This is just the "sixth-chapter-

stretch"! 

6.1 FUNCTION INFERENCES 

sample: John wants the book. 
John probably wants to read the boo~. 

sample: Mary needs a hammer. 
What is she building? 

sample: John went to the grocery. 
He probably wants to buy some food. 

sam pIe: Mary was furious at John. 
She asked Bill for the baseball bat. 
Mary might want to use the baseball bat to clobber John. 

sample: A fly was annoying Bill. 
He asked Pete to hand him the newspaper. 
Bill probably wants to use the newspaper to swat the fly. 

Everyone has at his disposal a wealth of information concerning the normal functions of 

physical objects, and this information is closely related to· our algorithmic knowledge of the 

world. That is, given any common task, the average human language user will have a fairly 

thorough idea of what is necessary for the successful execution of that task. When the task is a 

physical one, the chances are high that some conceptual instruments will be involved in the 

algorithm which will accomplish the task. For example, if someone wants to open a bottle, he will 

perhaps want momentary control over a bottle opener; if someone wants to learn about 

computers, he is likely to want a book on the subject. In both cases, some object (bottle opener, 

book) is involved in some action lying on a path to the task solution. 

A later section describes a class of inference which predicts a person's future actions based 

on his current wants. Inferences in this class have been termed action prediction inference. 

Action prediction inferences work forward from a person's WANT states to algorithms he is likely 

to engage to satisfy those wants. However, it is often desirable to go the other way: to be able 
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to infer the algorithms and goals themselves from some small glimpse of the algorithm in which 

he is engaged. For instance, given that someone wants a book, what might he be up to? What 

would having the book enable him to do? Predicting the use to which a person intends to put an 

object can lead to other important inferences concerning his goals. Predictions of this nature will 

be called function inferences. This section describes how the memory makes function inferences, 

and how they are useful to understanding. 

6.1.1 TRIGGERING INFORMATION 

What conceptual pattern should trigger a function inference? That is, how is the memory to 

detect when a person may be involved in some algorithm which requires an object? Clearly, the 

intent to use the object is one criterion for a function inference. That is, if a book falls off the 

shelf into John's lap, John has the book, but probably has no intentions of using the book in its 

normal manner. This suggests that function inferences should only be triggered when someone is 

known to want an object. But it is conceptually impossible to WANT just an object itself, as in 

(WANT JOHN BOOK). Conceptually, WANT only takes an entire conceptualization: some action or 

state involving the object is WANTed. To want an object commonly means to want to have 

possession of that object. Thus, John's wanting a book is represented conceptually as: 

(WANT #JOHNI (POSS Cl #JOHN1)) 

Cl being a token of.a book. 

Function inferences are therefore triggered by the pattern 

(WANT PI (POSS X P2)) 

where P 1 mayor may not be distinct from P2 ("John wants a book.", "John wants Mary to have a 

book."). 

(It should be pointed out that the object in the WANT -POSS pattern which reaches the 

memory from the conceptual analyzer is, because of the representational formalism, guaranteed 

to be a real object. In other words, conceptualizations such as "John wants political power" have 

been mapped onto radically different conceptual structures in the analyzer, and hence are 

incapable of (incorrectly) triggering a function inference.) 
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6.l.2 NORMAL FUNCTION INFERENCES 

What should the nature of the function inference which is triggered by patterns of this form 

in the proper causal environment be? Since it is the purpose of a function inference to relate a 

person's wanting possession of an object with some step in a probable algorithm, and since steps 

of an algorithm are actions by people, 

the function inference should be in the form of an action by the 
person, involving the object he is believed to WANT. 

Furthermore, this one action (or several actions if more than one is applicable) should be all 

the function inference introduces. Indeed, consequences or implications of the inferred action will 

subsequently lead to the person's motivations for the action, the results of the action, what 

enabling states must have applied at the time, and sO forth. But these are other inferences and 

should not be generated as part of the function inference because there are other inference 

classes designed for them later. Consider for example some object which is commonly thought of 

as food. What people usually do with food is ingest it for the purpose of nourishment. There 

are, however, clearly two parts to this: (1) the action of ingesting and (2) the nourishment which 

results. Since the memory needs for other purposes the general inference that when a person 

ingests food, he becomes nourished (John ate a steak => John became nourished), it would be 

redundant for a function inference to consist of more than the some mimi mum action involving 

the object. 

6.1.2.1 THE NORMAL FUNCTIONS OF OBJECTS 

Therefore, a function inference (triggered by the pattern (WANT PI (POSS X P2)) ) 

produces a pattern (WANT PI A), A being some action by P2 involving X. This means that the 

content of function inferences devolves on a knowledge of normal actions which represent the 

usual function to which physical objects are commonly put. Some examples are: 

(1) 
(2) 

(3) 
(4) 
(5) 

The normal function of a book is that it be read. 
The normal function of money is that it be traded 
with someone in return for something else. 
The normal function of food is that it be ingested. 
The normal function of a car 1s that it be driven. 
The normal function of a telephone is that it be 
used to communicate. 
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and so on. 

The examples in Fig. 6-1 illustrate how patterns which represent the normal function of 

objects and places are entered into the memory. The examples there are the LISP S-expressions 

which are read from the initialization file. 

(NFeT #STORE 
«DUALCAUSE {(*ATRANS* (3 X lISA #PERSON)) 13 NIL (ISA #MONEYJ) X #STORE) 

I (*ATRANS* #STORE (] NIL (UNSPECIFIED _)1 #STITRE Xl») 

(NFCT #FOOD 
«*INGESh (3 X (ISA 

(NFCT #PRINTEDMATTER 

#PERSON)) #FOOD (T NIL (ISA #MOUTHJ (PART 
IT NIL lISA _ #INSIDE) (PART-_ XI I»)) 

X) ) 

{(*MTRANS* (3 X (ISA #PERSON)) (a NIL (ISA _ #CONCEPTS) {*MLOC* #PRINTEDMATTER)I 
#PRINTEDMATTER (T NIL (ISA _ #CP) (PART _ XI)))) -

(NFCr #MONEY 
( IDUALCAUSE 

{{*ATRANS* {3 X (ISA #PERSONI) #MONEY X (3 Y 

{(*ATRANS* Y {3 NIL (UNSPECIFIED _)1 Y X))))) 

(ISA _ #PERSON) (UNSPECIFIED ) 
-))) 

Figure 6·1. Four common NFCT patterns. 

6.1.2.2 GENERATING A FUNCTION INFERENCE 

Let us consider how the normal function of a book is stored and accessed for use in a 

function inference. For example, knowing 

John wants a book. 

(WANT #JOHNl IPOSS C1 #JOHN1» 

(C1 being the token for some book), we want to know how the inference having content "John 

wants to transfer concepts in the book to his mind" (ie. John wants to read the book) arises. 

The above pattern is intercepted by the WANT inference molecule which is called in the 

normal course of inferencing. This inference molecule calls a special procedure WHYWANT with 

. the arguments #JOHNI and Cl. WHYWANT attempts to locate a normal function of Cl first by 

finding a memory structure of the form (NFCT Cl _). In this example, if Cl itself were known to 

have some unusual function not shared by other books (eg. it had been hollowed out by dope 
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smugglers to conceal their shipment), this function would be found and used. Of course, this will 

not in genera! happen for tokens of abstract concepts, because most tokens of concepts serve in 

the usual capacity as defined for the concept. 

WHYWANT next scans up Cl's ISA-set sequence searching for NFCTs until some abstract 

concept lying on this sequence is found with which a normal function is associated (Fig. 6-2). In 

this example, discovering (lSA Cl ttBOOK) would cause the NFCT of #BOOK to be sought. In the 

current taxonomy of concepts in the memory, finding no NFCT of #BOOK, (ISA #BOOK 

#PRINTEDMATTER) would cause the NFCT of #PRINTEDMATTER to be sought and this time located. 

(In the case that no NFCT information is located in this manner, WHYWANT simply generates no 

function inference.) The located NFCT structure will be interpreted as a pattern to be 

instantiated, substituting Cl for occurrences of #PRINTEDMATTER, and #JOHNI for the actor in 

the pattern. Other things will happen during the instantiation, but we must first understand the 

structure which is stored. 

# (printed matter) 

(NFCT # *) 

~ structure 
representing the 
normal function 
of any printed matter 

some particular book 

Figure 6-2. Searching up ISA sets for an NFCT property. 

The normal function of #PRINTEDMATTER, is represented by the memory structure shown in 

Fig. 6-3. (There, A,B,C are for the purposes of the following discussion only). In English this is: 

"The normal function of something which is printed matter is for someone to transfer mental 

concepts located in the printed matter to his conscious processor {short term memory)." The 

same data structures used for all passive data are also used here. However, patterns such as 

these have some additional information associated with each substructure which indicates how 
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that substructure is to be interpreted during instantiation. This information also serves to 

denote what is template, requiring instantiation, and what is not template and should be taken 

literally. If this information were not available, the instantiator would wander off through the rest 

of memory thinking everything to be part of the template! 

(NFCT #PRINTEOMATTER *) 

(ISA # #CONCEPTS) 
) 

# (B) a 
~ IMLOC # #PRINTEOMATTERI 

(MTRANS * * #PRINTEOMATTER *) 

\# (A) 3 \ 
( I SA # #PERSON) 

Figure 6-3, The memory structure which stores 
the'normal fUllction of priilted matter. 

Template information for some substructure signals one of three actions to be taken by the 

instantiator for that structure, Each of these three is illustrated in this example: 

-- Locate a concept satisfying each element of the template component's occurrence 

set. If none is found, create one and use it. The conscious processor of the person 

who reads printed matter is such an example. If the token representing John's CP 

cannot be found, it is only because MEMORY has never had occasion to reference 

it. Since it is perfectly normal to assume John has a CP, and that it is sufficiently 

specified by the two facts about it in Fig. 6-3, it should simply be created with no 

special attention paid to its creation. 

a -- Locate a concept satisfying each element of the template component's occurrence 

set. If none is found, create one and mark it as an unspecified concept. The 

concepts which are located in the printed matter read by a person are an 

example of this. If the nature of the concepts contained in Cl is known, the token 

standing for them will be located and used. However, if the contents of Cl are not 

known, a token representing them will be created and marked as unspecified. 

Whenever the function inference which contains this unspecified concept is in 
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turn subjected to inference, the unspecified contents of the book will be detected. 

At that point some specifier molecule will either successfully guess what the book 

is about (unlikely), or the unspecified contents of the book will be recorded on 

the missing information list, !MISSINGINFO. This list is one of several sources of 

response after the memory finishes its reaction to an utterance. 

:3 -- Create a new concept which has the properties specified by the component's 

occu.rrence set. This provides a way of forcing the creation of a new token, and 

generally corresponds to some existentially quantified variable which is 

unspecified at the time of the template instantiation. This form is not well 

illustrated in this example, because the actor of the MTRANS will be substituted 

as #JOHNl. The pattern for the normal function of money provides a better 

illustration. There, the person who receives the money in the trade is 

represented in this form, and is instantiated as some unspecified person whose 

identity may be filled in later by some specifier molecule .. 

Having located this NFCT, WHYWANT next determines where the actor in the template lies so 

that #JOHNl may be substituted for it during the instantiation. This is a simple task since the 

normal function is assumed to be either a simple action or a causal form. In the case of a causal 

form, the actor is assumed to be the actor in the causing action. In Fig. 6-3, A is located as the 

actor. 

Next, the pattern is instantiated, with the substitution list #JOHNI for A, Cl for 

#PRINTEDMATTER, and following the three instantiation modes just described for the pattern's 

substructures. The instantiator takes care not to flow back from lower levels to higher levels in 

the graph during instantiation, since this would result in duplication of information and cycles. In 

this example, the result of instantiation is shown in Fig. 6-4 (assume the memory had no 

knowledge of what concepts the book, CI, contained) .. 
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{MTRANS #JOHN1 * C1 

#~ 
(ISA # #CONCEPTS) 
(MLOC # C1) 
WNSPEC I F I EO #) 

# 
(l SA ti tiCP) 
(PART ti tiJOHN1) 

Figure 6-4. The instantiated NFCT pattern about reading. 

(Notice that this is an inference process which can give rise to concepts and tokens whose 

specification is missing. This is essentially the same as a lack of specification at the linguistic 

level. Hel'e, the origin of an UNSPECIFIED entity is internal to the memory: an inference implies 

the existence of an entity, but it cannot be specified. Such internally-generated unspecified 

entities are also noted on the list !MISSINGINFO and will subsequently pass through the 

specification process.) 

WHYWANT then generates the inference: (WANT #JOHNl X), where X is the above structure. 

In this example, it supplies as REASONS for the new inference four other memory structures: the 

original (WANT #JOHNl (POSS #JOHNl Cl)), the two ISA relations which related Cl to 

#PRINTEDMATTER, and the NFCT structure used in the instantiation. Were the memory later to be 

asked "Why do you believe that John wants to read the book?", it could respond "Because John 

wants C 1, C 1 is a book, a book is printed matter, and the normal function of printed matter is 

that a person reads it." 

In addition to the function inference itself, a CAUSE relation is generated to record that 

John's wanting to read Cl probably caused him to want to possess it. That is, the desire to use 

an object in its normal capacity causes a person to want to possess that object. Finally, any time 

information is copied from the original WANT to the new function inference. The result of the 

function inference for this example is shown in Fig. 6-5. 
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(WANT #JOHN *) 

(CAUSE * *) function 1 ~ 
____ ---'....-~ence (Pass * #JOHNJ 

* ===== (WANT #JOHN *) 
REASONS ~ 1ISA # #CONCEPTS) 

( /' (MLOC # *) 

(MTRANS #JOHN * * *) 

(ISA #BOOK #PRINTEDMATTER) 

NFCT #PRINTEDMATTER *) 

~# 
(ISA # #CP) 
(PART # ~OH/'J) 

l . (the NFCT structure In memory) 

Figure 6-5. The complete function inference and its surroundings. 

6.1.2.3 CONTRIBUTION TO UNDERSTANDING 

What becomes of a function inference after it is generated? That is, why is it useful? In this 

example, further inferencing will occur from the function inference: knowing that John probably 

wants to MTRANS concepts in the book to his CP, MEMORY can apply motivational inferences 

which predict that he wants this action because of its probable consequences. One almost certain 

consequence is that he will begin to know the concepts he read. Hence, John must want to know 

about whatever topic the book discusses. But this in turn will lead to other predictions about 

what he might be up to, since knowing about some topic enables a person to engage in other 

algorithms involving that topic. 

The general utility of a function inference is that. based on a 
knowledge of common functions of an object. it predicts some 
likely action which might be enabled by possession of that object. 
This will open up a new realm of motivational inferences. 

Actually, I have oversimplified the nature of the pattern which triggers function inferences. 

In fact, the memory reacts to three other patterns: 
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1. A person wanting an object to be at his location or at the location of his hand 

2. A person wanting to OWN an object, rather than merely to possess it 

3. A person needing an object, which is represented as P's not POSSessing X would 
cause (CANCADSE) some negative change for X 

In addition, there is a class of similar function inferences based on locations and the normal 

function of common locations. If a person wants to be at some location, he probably wants to 

perform an action which can be predicted from the normal function of the location (as in buying 

something from a store). (The computer examples which follow will illustrate this concerning 

John's wanting to be at a store.) As we will see in the next section, this notion of function 

inference is just one example of a more general class of inferences which involve the notion of 

action enablement in a way different from that of enabling inferences. 

6.1.3 OVERRIDING NORMAL FUNCTION INFERENCES 

Normal function inferences are clearly embedded deeply in our knowledge of normality in 

the world. It is equally clear that normality should provide no more than a backdrop which 

catches all types of reasoning which have terminated or failed because of a lack of speCifiC world 

knowledge. We must therefore ask the question: by what mechanism does specific world 

knowledge override this knowledge of normality implied by the process of function inferencing? 

In particular, how does our speCific knowledge of the individual who desires possession of an 

object, or of the object itself, influence the function inference process? 

To illustrate, suppose we have a friend, John, who pours chocolate sundaes down womens' 

dresses. That is, that John does this is explicitly stored in a memory structure, accessible as a 

direct conceptual feature of both John and chocolate sundae. One day, we hear "John was with 

Mary yesterday. He asked Bill for a chocolate sundae." How is the inference that John wants to 

eat the chocolate sundae suppressed and the inference that he is likely to pour it down Mary'S 

dress drawn out? 

To answer this question, we must examine more closely what it means for a piece of world 

knowledge to be "specific". The specificity of a piece of knowledge, X, must be defined relative 

to some process which manipUlates a class of knowledge of which X is an instance. What is 
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regarded as specific to one process might be regarded as general to another. For instance, 

before an appropriate inference can be made, the process which makes the inference must know 

what dimensions should influence it, and should be responsive to differences and deviations from 

the norm along those dimensions. This dimensionality can be quite narrow and well-defined, or it 

can be a very general, even ill-defined one. An example of specific dimensionality to which an 

inference process might be sensitive is the mass of object X, where, having discovered that 

object X was dropped on Pete's foot, the severity of the resulting state of affairs is up for 

inference. In contrast, an example of a very general, ill-defined dimensionality is the following: "is 

there some relation between object X and object Y which is not true for most other objects in 

the classes represented by X and Y?" The latter, more general type of dimensionality appears to 

characterize fhe tests which enable special-case knowledge to influence the substance of 

function inferences. 

Specifically, there are two dimensions to which the function inference process is sensitive. 

The first solves problems of specific knowledge, the second makes function inferences sensitive 

to contextual instrumentality. 

6.1.3.1 OVERRIDING FUNCTION INFERENCES BY SPECIFIC KNOWLEDGE 

The firs! dimension is this: before a function inference is generated, a test is made to 

determine whether there is any special relationship between the person who wants the object 

and the object. This question is framed as follows: is there a path (through conceptual 

propositions) between "John" and "chocolate sundae" other than those which include #JOHN's ISA 

set and #CHOCOLATESUNDAE's ISA set relations, (#PERSON and #FOOD, respectively)? If so, is this 

relation some structure which involves John as the actor (ie. an action or causal) and chocolate 

sundae as some sort of object, and is this proposition a timeless statement (that is, does it 

represent a fact or belief rather than one isolated event which may have occurred)? In the event 

that such a relation can be found, then it is a possibility that John may want the chocolate 

sundae for use in an action of this form. 

By excluding conceptual paths between "John" and "chocolate sundae" which pass through 

these concepts' supersets, we automatically exclude "standard" relations between people and food, 

the most obvious of which is that people INGEST food. This guarantees that, should any other 
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paths be found, they will be specific to the two concepts, "John" and "chocolate sundae". This 

heuristic is illustrated abstractly in Fig. 6-6. 

(NFCT .(';; ~ 
4(JNGEST * * * *.L.. 

-' \. 'L;--

#~RSON ~ #FOOO 
t t 

(CANCAUSE * 
~ 

1 unusual relations f 
ISA are those paths which ISA 

exclude one or both 
of these ISA I inks 

#J HN ~ #SUNOAE 

*) '\ 
~ (POSCHANGE * #JOYl 

(CAUSE * *) 
--~ \ ~ . 

(00 #JOHN) (LOC * *l 

L...# 
(I SA # #DRESS) 
(LOC # *) 

L- # 
(J SA # I;IPERSON) 
(SEX 1;1 #FEMALE) 

Figure 6-6. Discovering unusual relationships between two tokens or concepts. 

6.1.3.2 THE INFLUENCE OF ACTION PREDICTIONS ON FUNCTION INFERENCES 

The second "vague" dimension to which function inferences can be sensitive consists of 

tests aimed at discovering whether the person wanting the object is engaged (or has been 

predi~ted to engage in, via a predictive inference) some activity requiring an object having 

certain features. If the function inference process detects that the object the person is stated to 

want has the requisite features, it suppresses the normal function inference in deference to this 

contextual use of the object. 

An example of this dimensionality is: 

A fly was aggravating Bi I I. 

Bi I I asked Pete to hand him the newspaper. 
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From the first line it is a predictive inference that a likely future action of Bill's is that he might 

be expected to propel some massive (from the fly's point of view) physical object toward the fly 

with the intention of killing the fly. At this point, Bill's wanting possession of a physical object 

(whose features are sufficiently specified to rule out things like the kitchen sink -- or "a feather) 

can and should be associated with his current probable desires concerning worldly actions. This 

association is made by searching for structures of the form (WANT P A), where A is SOme action 

structure in which P is the actor and which involves an UNSPECIFIED object in some conceptual 

capacity. If such a structure can be found and if the requisite features of the unspecified object 

in the wanted action, A, are possessed by the object involved in the WANT -POSS triggering 

pattern, then A, with its unspecified object replaced by the object Bill wants to possess is a 

highly probable candidate for overriding the normal function inference. Here, this would mean 

that the inference "John wants to swat the fly:with the newspaper" overrides "John wants to 

read the newspaper." 

Both these "overriding" heuristics have a very attractive feature: since they involve 

searches through ever-changing conceptual structures, they are inherently sensitive to context. 

That is, they allow the situation to override the norm. Failures to override correspond to missing 

dimensions of testing before the normative inference is generated. No claim will be made here 

that the two dimensions of sensitivity to overriding situations just described are adequate, only 

that they are useful and can account for many interesting situations. 
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This computer example will illustrate how the normal function of printed matter is accessed 

in order to relate the desire to possess a book with the desire to read it: one potential reason 

John may have given Mary the book is because he wanted her to read it. 

JOHN GAVE MARY A BOOK 

((ACTOR (JOHNl) <=> (*ATRANS*) TO 
(MARYl) FROM (JOHNl) OBJECT (BoOKl 
REF (*A*») FOCUS ((ACTOR» MODE 
(NIl) TIME (TIMelJ) 

(TIM00 ((VAL T-e») 
(TIM01 «(BEFORE TIMBe X») 

( (*A TIlANS* (#JOHNlJ (Ce020) (#JOHN1) 
(#MARYll) (TIME (C0022») 

cee25 

STARTING INFERENCE QUEUE: 
((X 1. e C(025» 

ABOUT TO APPLY 0ATRANS2 TO ce025 
C0025: (*ATRANS* #JOHN1 C0020 

ffJOHNl ffMARY1) 

I NFERR I NG: (*POSS* cee2e ffMARYl) 
ALSO GENERATING: (TS CBB28 CBB22) 

APPLYING INF MOLECULE WANT TO CBB41: 
(WANT #JOHN1 (*POSS* C0e2e ffMARY1» 

(ENTERING .1 WHYWANT) 
(WHYWANT C0041 ffJOHN1 ffMARY1 C0e2e) 

SEARCHING FOR NFCT OF ce02B 
SEARCHING FOR NFCT OF ffBooK 
SEARCHING FOR NFCT OF ffPRINTEDMATTER 
NFCT FOUND: IB177 

10177: (NFCT ffPRINTEDMATTER l(175) 
(TEMPLA TE T) 

This is the input sentence whose anal~zed 
version, partial I~ internal ized version, 
and finished version (C0B25) are shown. 

C0B25, the structure representing this input 
is submitted to the inference mechanism. 
Other subpropositions have been suppressed 
for this example. 

Numerous inferences are ~enerated. Among 
them is the resultative Inference that Mar~ 
begins possessin~ the book at time C8828 , 
the time of John s *ATRANS* action. 

Other inferences arise. Among them is the 
motivational inference that John wanted 
Mar~ to possess the book. This inference 
is generated, subsequentl~ to be detected 
b~ the function inference generator. Here, 
b~ turning on traces, we see the function 
inference mechanism in action. 

CBB2B represents the book which is in Mary's 
possession. The first step is to locate a 
NFCT for it or one of the abstract concepts 
L~ing on its ISA superset. The NFCT for 
printed matter is located. 

At th is po i nt, we wi I I interrupt the program 
and take a look at this NFCT structure. 

le177 represents the knowledge that 18178 
represents the normal function of printed 
matter. 
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RECENCY: NIL 
TRUTH: NIL, STRENGTH: NIL 
ISEEN: NIL 

10175: (*MTRANS* 10158 10170 
#PRINTEDMATTER 10173) 

(TEMPLATE T) 

ASET: 
10177: (NFCT #PR I NTEDMA TTER #) 

RECENCY: NIL 
TRUTH: NIL, STRENGTH: NIL 
ISEEN: NIL 

10158: NIL 
(TEMPLATE 3) 

ASET: 
10175: (*MTRANS* II 10170 

#PRINTEDMATTER 10173) 
10175: (PART 10173 #) 
10153: (J SA 11 #PERSON) 

RECENCY: NIL 

------------~----------------------
101713: NIL 
CTEMPLA TE en 
ASET: 

10175: (*MTRANS* 10158 11 
#PRINTEDMATTER 16173) 

10172: (*MLOC* # #PRINTEDMATTER) 
10171: (ISA # #CONCEPTS) 

RECENCY: NIL 

10173: NIL 
(TEMPLATE !) 

ASET: 
10175: (*MTRANS* 10158 10170 

#PRINTEDMATTER #) 
10175: (PART # 10158) 
10174: USA # #CP) 

RECENCY: NIL 

*PROCEED 
SEARCHING FOR ACTOR IN 16178 
ACTOR ESTABLISHED: 10188 

(ENTERING 1 FINDUNIT) 
(FINDUNIT (NIL (*MLOC* Cfl02fl) 

(ISA #CONCEPTS))) 
(LEAVING-l FINDUNIT) NIL 
(ENTERING 1 MAKEUNITJ 
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Ifl178, in Engl ish, says the followin~: a 
person *MTRANS*s concepts contained In 
something which is printed matter from that 
printed matter to his conscious Qrocessor. 
HH58 represents the person, 10170 the 
concepts, 10173 the person's conscious 
processor. 

Here is the actor in the structure. Mary 
wi I I assume this role in the finished 
inference. 

Here is the template representing the concepts 
contained in the printed matter. Notice 
that its template marker is a, indicating 
lhat if such a structure is not fDund for 
the book, C0020, the template should be 
instantiated as an unspecified token, ie. 
that the concepts in C6020 are unknown. 

Here is the template which represents the 
person's conscious processor. Notice that 
its template is of type !, indicating that 
if such a token is not found, it shou I d be 
created with no attention being paid. 

At this point, we proceed with the preparation 
for instantiation. MEMORY now locates the 
actor in the NFCT template in order to 
substitute occurrences of the actor in the 
template by the actor at hand, namely Mary. 
10158 is located. 

The instantiation is underway. Here 
MEMORY is attempting to establ ish 
the identity of the concepts in the 
book. Finding no such token, MEMORY 
creates a token, Cflfl47 , to stand for them 

afr)!:j marks it as an unspecified structure. 



(MAKEUNIT (NIL (*MLOC* C0020) 
(ISA #CONCEPTS) (Uf\JSPECIFIED _))) 

(LEAVING-l MAKEUNIT) C0047 

(ENTERING 1 FINOUNIT) 
(FINOUNIT (NIL (PART #MARYl) 

(ISA #CP))) -
(LEAVING-l FINDUNIT) NIL 
(ENTERING 1 MAKEUNIT) 
(MAKEUNIT (NIL (PART #MARYl) 

(j SA #CP))) 
(LEAVING-l MAKEUNITJ C0051 

(ENTERING 1 MAKEUNITJ 
(MAKEUNI T «*MTRANS* #MARYI C8847 

C0828 C8051))) 
(LEAVING 1 MAKEUNIT) C0854 

COMPLETED INFERENCE: C0855 

(*BREAK* . HELLO) 

C0055: (WANT #JOHNI C8854) 

ASET: 
C0057: (CAUSE # C0041l 
C0055: (T I ME # C0022) 

RECENCY: 29233 
TRUTH: T, STRENGTH: 8.98000000 
REASONS: 

C0041: (WANT #JOHNI C0(28) 
C0621: ( I SA C0620 #BOOK) 
10658: (ISA #BOOK #PRINTEDMATTERJ 
10177: (NFCT #PRINTEDMATTER 

18176) 
ISEEN: NIL 

C6654: (*MTRANS* #MARYI C8047 C002e 
C8(51) 

ASET: 
C6055: (WANT #JOHNI #) 

RECENCY: 28233 
TRUTH: NIL, STRENGTH: NIL 
ISEEN: NIL 

C6047: NIL 

ASET: 
C0054: (*MTRANS* #MARYl # C0028 

C0051) 
C0650 (UNSPECIFIED #) 
C6649 (ISA # #CONCEPTS) 
C0048 (*t1LOC* # C(020) 

RECENCY: 29233 

Later on, th Is un spec I fled token may give 
rise to a quest I on of the nature: "What 
Is the book about?". 

Here MEMORY Is Instantlatln~ the template 
which represents the person s conscious 
processor. Finding no token representing 
Mary's, MEMORY simply creates one, Cee51. 

Finally, MEMORY creates the structure 
representing Mary's reading C0026. 

The finished inference is generated b~ 
asserting that John probabl~ WANTs thiS 
reading action, and that thiS WANT CAUSEd 
him to WANT Mary to have possession of the 
book. We wi I I now have a look at the 
final structure which Is the inference. 

C0055 is the finished function inference. 

Notice that the causal relation between 
John's wanting Mary to read Ce8Z0 and his 
desire that she possess it has been generated. 

Notice the reasons indicating why MEMORY 
believes this structure: John wanted Mary 
to have possession of C0020, C0820 is a 
#BOOK, a #BOOK is #PRINTEDMATTER, and the 
normal function of printed matter is that 
it be read. 

This token re~resents the unknown contents 
of the book, Ce828. 
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C131320: NIL 

ASET: 
C0054: (*MTRANS* #MARY1 C6647 

# C0051) 
C6648: (*MLOC* C6647 #) 
C0029: (*POSS* # #MARY1) 
C0627: (*POSS* # #JOHN1) 
C0025: (*ATRANS* #JOHN1 # #JOHN1 

#MARY1 ) 
CB621: (ISA # #BOOK) 

RECENCY: 29233 

ce651: NIL 

ASET: 
C6654: (*MTRANS* #MARY1 C6647 

C13626 #) 
CB1353: (ISA # #CP) 
C13652: (PART # #MARY1) 

RECENCY: 29233 

*PROCEED 

This is the book. Viewed in this form, 
not all of the information is visable. In 
particular, there are modifying TIMEk TS 
and TF relations on the structures C~e54, 
C6648, C6629, C61327 and C6625 which are 
not shown here, but which MEMORY is 
sensitive to in inferencing, answering 
questions, and so forth. 

This is Mary's conscious processor. 

(LEAVING 1 WHYWANT) C6655 Control is returned to the WANT inference 
molecule with function inference Cee55. 

In this example, the prediction will be made that the reason Rita went to the store was so 

that she would be LOCated there, and that the reason she wanted to be LOCated there was that 

it would enable her to perform an action commonly associated with being LOCated in a store, 

namely a buying action. 

RITA WENT .TO THE STORE 

«ACTOR (RITA) <a> (*PTRANS*) OBJECT 
(RITA) FROM (*ONE*) TO (STORE REF 
(*A*»)) TIME !TIMl3lJ) 

!TIM66 ((VAL T-13)) 
(TIM61 «BEFORE TIM136 X») 

«*PTRANS* (#RITA1) (#RITA1) 
(C13613) (C6014» 
(TIME (C6615») 

MEMORY accepts the sentence from the 
analyzer. Its analyzed form, partially 
internal ized form, and final structure 
pointer (C13619) are shown. 

C6013 stands for the (unspec i f i ed) I oca t i on 
Rita set out from. 

C8619 
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STARTING INFERENCE QUEUE: 
«X 1. 0 C(019)) 

ABOUT TO APPLY .PTRANS2 TO C0019 
C0019: (*PTRANS* #RITA1 #RITA1 

C0013 C0(14) 
INFERRING: (*LOC* #RITA1 C(014) 

ALSO GENERATING: (TS C0023 C(016) 

APPLYING INF MOLECULE WANT TO C0027: 
(WANT #RITAl (*LOC* #RITA1 C8814)) 

SEARCHING FOR NFCT OF C0014 
SEARCHING FOR NFCT OF #STORE 
NFCT FOUND: 10151 

(*BREAK* . HELLO) 

10151: (NFCT #STORE 18150) 

(NFCT #STORE (OUALCAUSE 
(*ATRANS* 10142 10144 10142 #STOREJ 
(*ATRANS* #STORE 18147 #STORE 1(142))) 

(TEMPLA TE T) 
RECENCY: NIL 
TRUTH: NIL, STRENGTH: NIL 
ISEEN: NIL 

*PROCEED 
COMPL[TEO INFERENCE: C8840 

(*BREAK* . HELLO) 

C0040: (WANT #RITA1 C(039) 

{WANT #RITA1 {OUALCAUSE 
(*ATRANS* #RITA1 C0033 #RITA1 C(014) 
(*ATRANS* 'C0014 C0036 C0014 #RITA1J)) 

ASET: 
C0041: (TIME # C0(16) 

RECENCY: 10800 
TRUTH: T, STRENGTH: 0.98000000 
REASONS: 

C0027: (WANT #RI TAl C0023) 
C0015: (JSA C0014 #STOREJ 
10151: (NFCT #STORE I e150) 

ISEEN: NIL 

C0033: NIL 

Inferencing begins, again with other 
subpropositions suppressed. 

At some point, MEMORY generates the inference 
that Rita arrives at the store. A 
motivational inference scan (which is not 
shown by tracing here) will infer that 
she went to the store because she wanted 
to be there. 

The WANT inference molecule eventual I~ 
intercepts the pattern of Rita's wanting 
herself to be located at a store, and 
undertakes a functioh inference. 

MEMORY finds the NFCT of a store. We 
interrupt the process to have a look at 
this NFCT structure. 

In En91 ish: "the normal function of some 
location which is a store is that a person 
gives it money in exchange for something. 
In this structure, 10142 stands for the 
actor, 10144 stands for a token of monelJ 
which is to be created. and 10147 stands 
for some un spec i f i ed ob.i ec t. I t maIJ of cour se 
be possible to specify this object. but this 
wi I I be intercepted later bIJ some speci fier 
molecule (example: "John needed some bread. 
He went to the store."). 

Havi ng seen the NFCT structure, we a I low 
MEMORY to proceed. The completed function 
inference is C0040. We again break to displalJ 
this new inference structure. 

C0033 is some money, C0014 is the store 
Rita went to, Cee36 is some unknown object. 

Here are the reasons MEMORY bel ieves this 
structure to be true. 

This is the money that Rita will probabllJ 
~ANS to the store. 
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ASET: 
C0035: (*ATRANS* #RITAl # #RITAl 

C(1314) 
C0034: (ISA tI tlMONEYl 

RECENCY: 10800 

-----------------------------------
C01335: NIL 

ASET: 
C131338: (*ATRANS* C131314 tI C13014 

tlRITAll 
C01337: (UNSPEC I F I EO til 

RECENCY: 113813e 

*PROCEEO 

APPLYING INF MOLECULE WANT TO cee4e: 
(WANT tlRITA1 (oUALCAUSE 
(*ATRANS* tlRITA1 C131333 tlRITA1 C013141 
(*ATRANS* C131314 C131335 C131314 tlRITA1111 

Here is the as-yet unspecified object which 
Rita probably wants the store to ATRANS her. 

We again return control to the program. 
Eventually, this function inference itself 
wi II be subjected to the inference mechanism. 
The WANT DUALCAUSE wi I I lead to predictions 
that Rita wants the consequences of this 
oUALCAUSE, Among them wi I I be that she 
wants to possess this unspecified object 
and that she wants to cease to POSS the 
money involved. The latter is intercepted 
b~ the evaluation function as contradicting 
MEMORY's knowledge of normal ity. For the 
former, if MEMORY already knew that Rita 
wanted some object, the evaluation function 
would detect this pattern as matchin~ that 
pattern, and infer that the unspecified 
object in this pattern to be the object 
she was known to want. 0 therw i se, some 
specifier molecule wi II at some point 
attempt to predict more about the nature 
of the object from features of C13014, the 
particular store Rita visited. 

6.2 ENABLEMENT PREDICTION INFERENCES 

sam pIe: John asked Mary where Fred was. 
John wanted to give Fred some keys. 

sample: 

sample: 

sample: 

sample: 

sample: 

Andy blew fervidly on the hot meat. 

Dick looked in his recipe book to find out 
how to make a roux. 

I sure hope it is sunny Saturday. 
We're going on a picnic. 

Mary put on her glasses. 
Mary probably wants to look at something. 

John wali',ed over 10 the hammer. 
John might want to pick the hammer up. 
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Function inferences actually represent an interesting subclass of a far more general class of 

inferences. We may generalize such obs.ervations as "the possession of an object is generally 

desired so that that object may be put to its normal use" and "the desire to be located at a 

certain place is probably instilled by the desire to perform an action normally associated with 

that place" to the more general observation that "states in the world are frequently desired 

because of the actions they will enable." More concisely, 

If some state, S, is an important extrinsic enabling state for some 
common action, A, and if some person, p, is said or inferred to 
desire that S exist, then is possible and useful to predict that P 
might also desire to perform A, (and that this desire instilled the 
desire that state Sexist). 

I will term inferences which accomplish this type of task enablement prediction inferences. 

For the purposes of generating enabling inferences, every action must have associated with 

it in the memory's inference molecules certain intrinsic and extrinsic enabling conditions, and 

these enabling conditions are spontaneously generated whenever their associated action arises. 

As we saw, these inferences, especially the extrinsic ones, are vitally important to the process of 

expansion in inference space. They can lead to extremely useful lines of inference, and can 

uncover apparent contradictions. 

The goals of an enablement prediction inference lie in something of an inverse relation with 

the goals of an enabling inference: whereas an enabling inference works from an action back to 

states of the world which must have been (probably were) true for the action to have occurred, 

an enablement prediction inference works forward from a state S, which is detected in a pattern 

of the form (WANT P S), inferring a structure (WANT P A), where a is some action which state S 

commonly enables (Fig. 6-7). Of course, not all states are commonly associated as an enabling 

condition for any action action in particular, but for those which are, it is desirable that their 

relation be accessible in this "reverse mode". 
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the triggering,,"'---'(WANT ~ 
WANT structure ) "-,. # 

(lSA II IIPERSON) 
other ~ enab ling 
states t I 

COMMONLY ASSOCIATEDI 
ENABLING STATE 

I 1 I then make probab iii s tic 
inferences: 

ACTION ACTION I 1 

~ 
(WANT * *) 

I 
A_CT_I_ON ______________ ~===-----~ _____ ~ (WANT * *) -----_/ 

Figure 6-7. The process of enablement prediction. 

For enabling relationships of any complexity there is no convenient "clean" or explicit data 

structure which links common enabling states to the actions which they are commonly thought of 

as enabling. The variability of the objects involved requires that this relationship be far more 

complex than a simple data structure can conveniently capture. For example, it would be 

conceptually pleasing to represent the enablement relation "In order for Pi to give P2 

(physically), Pi and P2 must have approximately the same location" by a data structure such as: 

(ENABLES (LOC X Yl (PTRANS X Z X Yll. 

But upon closer examination, there are simply too many dimensions which must be tested in 

particular situations to make this realistic (time aspects, unusual instrumentalities, tolerances on 

the closeness of the LOC, dependencies on the conceptual features of X, Y and Z, etc.). 

Therefore, for any state, 5, which is commonly thought of as the primary enabling condition 

for some action, A, there exists an inference atom which can relate 5 to A: when applied to 

structure 5, one or more inference atoms in the inference molecule' will generate an action 

structure A as an "enabled action" inference. A simple enablement prediction process will then 

generate (WANT ACTOR A) predictions. This process and the form of the inference are shown in 

Fig. 6-7. 
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6.2.1 WHY AND HOW 

How does an enablement prediction inference fit into the process of understanding? 

Consider the second sample above: "Andy blew fervidly on the hot meat." One very predictable 

resultative inference from such an action is that a hot object across which air is propelled 

decreases in temperature: (NEGCHANGE X #TEMP). A simple further resulative inference is that a 

result of a NEGCHANGE tends to yield a low(er) value along the scale on which the change 

occurs. The memory may therefore conjecture (via a motivational inference), that Andy WANTed 

these predictable results of his action. These two (of perhaps many) motivational inferences will 

have the form shown in Fig. 6-8. 

(WANT #ANDY *) (WANT #ANDY *) 
J 

~ ,r 
(NEGCHANGE * #TEMPERATUREl (TEMPERATURE * #LOW) 

"-- ..-/ 
~# ~----------------~--

(lSA # #MEATl 

Figure 6·8. Why Andy might be blowing on the meat. 

At that point, the structure (WANT #ANDY (TEMPERATURE C8324 #LOW», C8324 being the 

meat, will be detected (in the WANT inference molecule) as a potential enablement prediction 

inference pattern. At that point, the WANT inference molecule defers control to the enablement 

prediction process, which then directs the inference monitor to generate inferences of type EA 

(enabling action) from the TEMPERATURE structure of Fig. 6-8. This amounts to applying the 

TEMPERATURE inference molecule to this structure, and filtering out all inferences but those of 

type EA. Because (lSA C8324 #MEAT) and (lSA #MEAT #FOOD), in this instance the EA inference 

set returned will consist of the single action (INGEST #ANDY C8324). Notice the need for the 

TEMPERATURE inference molecule's EA sensitivity to the conceptual features of the objects 

involved: if C8324 had been a piece of molten glass, entirely different EA inferences would have 

resulted. Any special information the TEMPERATURE inference molecule applied in making its EA 

inference are returned as the REASONS property of the new inference structure. In this case, the 

REASONS would be the two ISA properties of C8324 which relate it to #FOOD. 
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MARY 

JOHN 

Having thus generated a set of actions commonly associated with this enabling state (which 

in this not-atypical case consists of just one) the .fPI process creates a (WANT #ANDY (INGEST 

#M~DY C8324 X V»~, where X and Y are the token's for Andy's mouth and stomach, respectively. 

It then transfers the REASONS property supplied by the TEMPERATURE inference molecule to 

this new WANT structure, and appends the original (WANT #ANDY (TEMPERATURE C8324 #LOW» 

structure to it as another reason. In English, the reasons for the inference end up as: "because 

Andy wanted the temperature of C8324 to be low, C8324 is meat, and meat is a form of food." 

The substance of the inference is "The reason a person wants food to be cool is so that he can 

eat it." Having thus generated WANT-INGEST structure, and supplied it with REASONS, the EPI 

monitor finally makes explicit the probable causal dependence between the WANT -TEMPERATURE 

structure, S1, and the WANT-INGEST structure, S2: (CAUSE S2 51). That is, "Andy's desire to eat 

C8324 probably caused his desire that C8324 be cooL" 

This new structure can then lead to other inferences. The important step in this example 

was drawing out the idea of eating from the desire of some temperature state of some object. 

6.2.2 EXAMPLES OF UTILITY 

The utility of an enablement prediction inference to the other samples is similar. In the first 

sample ("John asked Mary where Fred was. John wanted to give Fred SOme keys,"), the first 

utterance (whose underlying meaning is illustrated in Fig. 6-9) is that John wants Mary to 

perform an MTRANS action. 

JOHN 
part 

------+ part 
------+ 

P MTRANS <===> 
t 

CP :J~I CP 

FRED 
/ \ 

MARY <===> 
/ \ 

o 
+----------

MT~ANS ~--~---p~~~?) ~-------+ II Ip 
I~I---+ CP ~p~~t- JOHN ~ot 
. ~-- CP ~----- MARY t 

c, f 

1

-----+ X+O JOHN <==== JOY 
~---- X 

val I 
L (??) 

Figure 6-9. John asked Mary where Fred was. 
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In order to discover why John desires this action, the process of generating probable 

motivational inferences from the structure is undertaken. This process consists of finding the 

probable results of Mary's MTRANS action if she were to perform it, then conjecturing that John 

might desire her action because of one or more of the results it could produce. 

An immediate resultative inference from such an MTRANS is that John would then know 

Fred's location. One highly likely motivational inference which follows, then, is that John WANTs 

to know Fred's location (Fig. 6-10). 

(WANT #JOHN *~ 

(MLOC * *G II 
, 

(LOC #FRED Ll 

Figure 6·10. 

# 
USA # #LTM) 
(PART # #JOHN) 

But the need to know the location of an object is a common enabling condition for only a 

few common actions, foremost among them being a PTRANSing action, on the part of the knower, 

to that location. That is, the question "Why does John want to know Fred's whereabouts?" is 

reasonably answered by "Perhaps because John wants to go to there." Therefore, at that point 

the enablement prediction inference that John might want to PTRANS himself to Fred's location, L, 

is generated (among others -- remember, I'm willing to "waste" some computation in inference 

space) by the MLOC inference molecule, having been applied to the MLOC substructure in Fig. 6-

10. The resulting probabilistic inference is shown in Fig. 6-11. (Note there that it will be a 

subsequent task for a specifier molecule to specify the D-FROM of John's PTRANS as the location 

where he and Mary currently are.) 

(WANT #JOHN *) 

(PTRlNS #JOHN #JOHN * *) 

#~\# 
(UNSPECIFIED #) (ISA # #LOCATION) 
(l SA # #LOCA TI ON) (LOC #FRED #) 

Figure 6·11. 
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But now a similar process may begin anew on the question "Why would John want to be at 

Fred's location?". Here, although to be at a location can be an enabling condition for a vast 

number of actions, the number of them most frequently associated with the condition is small, and 

the conceptual features of the location and specific knowledge about the person both can help 

narrow, the set of probable actions. For example, since the location in this example is where 

another person is, two very commonly associated actions are (a) to communicate (some sort of 

MTRANS via a SPEAK) or to perform some sort of physical action which involves being at that 

location (very likely a PTRANS, perhaps a PROPEL, etc.). In other words, these are associations 

human language users commonly make, even though they may be proven incorrect later on. We 

would like the enablement prediction process at least to make a prediction about the forms 

John's subsequent actions are likely to take at that point, even if it would be ludicrous to try to 

predict any details of his probable action. 

We have come far enough in the analysis of the first line of this sample ("John asked Mary 

where Fred was. John wanted to give Fred some keys.") to illustrate what happens when the 

second line arrives: the second utterance explicitly communicates a desire on John's part to 

perform the PTRANS of the keys to Fred. The hope is that this explicit information matches one 

of the predictions of form the memory was able to make from the first sentence. Although it 

might appear that I have set up just the right inferences at the right times, this is not what in 

fact happens in the memory, because there are in general large numbers of inferences which 

simply don't come to fruition. The claim is that this is necessary in order to discover the few 

inferences which do connect up in inference space. 

In the third sample, by enablement prediction, we again can go from Dick's desire for some 

knowledge to an action that knowledge can enable him to perform (making a roux). As we might 

expect, the desire jor knowledge is a very common pattern for triggering enablement prediction 

inferences: Dick wants to know how to do X because he wants to do X! In the fourth sample, 

since one "commonly held" enabling condition for some sort of outdoor activity is that it Occur 

during nice weather, by making the prediction that the speaker has some outdoor plans for 

Saturday, the memory can establish contact with the information communicated by the second 

line. 

It should be clear that it would be undesirable to spend too much effort making enablement 
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prediction inferences for states which could enable many actions. On the other hand it is 

desirable to be able to make at least predictions about the nature of the action someone who 

desires some state might be expected to perform, because this increases the likelihood of points 

of contact in inference space. 

6.3 MISSING ENABLEMENT INFERENCES 

sample: Mary couldn't see the horses finish. 
She cursed the man in front of her. 

sample: Ellen couldn't read the sign. 
She walked over to the light switch. 

sample: Ellen couldn't read the sign. 
She walked closer to it. 

As illustrated in the enablement inference section, it is very useful, for each action which is 

believed to have occurred, to generate predictions concerning the enabling states which must 

have surrounded the action in order for it to have occurred. However, what can we infer from 

an action which was attempted, but which failed? In conceptual form, this situation corresponds 

to a (CANNOT <action» pattern with which a time is associated, such as "Mary couldn't see the 

horses finish." 

The way I have chosen to view actions and enablement makes the anwser more or less 

immediate: when an action cannot occur, it is probably because SOme enabling state is not 

satisfied. If the memory can make predictions about what the missing state might be, other 

predictions about what the inhibited actor might do can result from those predictions. When we 

hear the first sample, we immediately infer that something was not correct for Mary's act of 

looking at something: either she was sightless, she wasn't in the vicinity, something was in her 

way, or the horses' finishing didn't exist to be seen in the first place. By making these 

predictions, the memory stands an improved chance for discovering relations with other 

information: in the first sample, the second line confirms the prediction about blockage of sight -­

somethihg was in front of her. Since another inference that Mary WANTed to be able to perform 

the action, and since it was another person who caused her not to be able to perform it, the 

resultative inference can then arise that Mary might feel a negative emotion toward the person 

because of this. Her cursing also leads to this conclusion, and this knits the first and second lines 

together at a critical point which makes their underlying causal relation explicit. 
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Similar remarks apply to the second and third samples. Notice also how this sort of 

inference can lead to action predictions which help clear up references. In the third sample, one 

of the missing enablement inferences from the CANNOT MTRANS pattern is that Ellen might not 

be close enough. This leads to one prediction that she might want to be at a location clser to the 

sign. From this, the action prediction arises that she might PTRANS herself closer to the sign. 

When the second line come in, if the pattern can be matched to the prediction, the matching 

could yield the identification of "it" as the sign Ellen is trying to read. 

6.4 INTERVENTION INFERENCES 

sample: 8ill saw Mary hitting John with a baseball bat. 
Bill took the bat away from Mary. 

sample: Baby Billy was running into the street. 
Mary r an after him. 

All actions in the world have intrinsic and extrinsic enabling conditions (states) which must 

be satisfied for the action to occur (and continue in cases of protracted actions). Furthermore, 

certain of the extrinsic enabling states are distinguished in that they are commonly thought of as 

the most vital ones to the performance of the action which they enable. From these observations, 

I have made three important inference classifications: enabling inferences, enablement-prediction 

inferences, and missing enablement inferences. 

But there is another important facet of this action/enabling state relationship The 

observation is this: that, by removing an essential enabling state, it is pOSSible to prevent or 

curtail an action which it enables. Since actors have some degree of control over extrinsic 

enabling conditions -- that is, they can either bring them about, remove them, or cause them not 

to come about in the first place -- removal of an enabling state is one potential method through 

which an actor can influence other actions around him -- in particular, actions which he believes 

are likely to cause undesirable states. This phenomenon is of considerable interest to our goal of 

knitting together an actor's actions and his motivations for performing them. 

We are therefore interested in predicting situations in which an actor may desire that an 

extrinsic enabling state not be allowed to exist, or cease to exist. When we can predict such a 

desire, let us call it an intervention inference. An intervention inference is one source of our 

ability to make certain predictions about what actors might do in the future, based on their 
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awareness of their surroundings (Fig. 6-12). The questions are twofold: what kind of actor 

awareness justifies the generation of an intervention inference, and what is the substance of the 

inference which is generated? 

~ (ACTION actorl •.• ) <== 

* CP,LTM-actor2} 1 resultative <MLOC 
• • . inferences 

(MLOC * LTM-actor2) 1 
'-------~> < some unde sir ab I est ate> 

actnr2 must have knowledge 
of the action, and what It 

might cause 

~---- <enabl ing state> 

~---- <enabl ing state> 

~---- <enabl ing state> 

THEN INFER THAT actor2 
DESIRE THAT ONE OF THE 
<enabl ing state>'s BE 
ANNULLED: 

{WANT actor2 (NOT <enabl ing state») 

Figure 6-12. The circumstances surrounding an intervention inference. 

Consider the first sample above. We would like the memory to have the capability, having 

heard the first line, to predict that Bill might do something to intervene. If this prediction can be 

made, it will be confirmed by the second line, representing a point of contact in inference space 

between the two utterances. If the prediction is made, but never confirmed, it can later be of use 

in generating the question "Why didn't Bill try to stop Mary?" 

6.4.1 THE TRIGGERING PATTERN 

The crucial feature of the pattern in the first sample seems to be that something bad is 

happening to John, and furthermore, that Bill is aware of this. In the memory, "something bad is 

happening to pIt is a very simple pattern: (NEGCHANGE P SCALE), or (BIGNEGCHANGE P SCALE). 

Furthermore, this pattern in general lies on some causal sequence in which an action is the 

immediate cause of the negative change. In this example, MEMORY makes the simple resultative 

inference from Mary's hitting action with a baseball bat that John is suffering a negative change 

on his physical state scale. (There are many other interesting lines of inference -- for example 

that Mary probably MFEELS anger toward John -- which I will ignore here.) 
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But to predict that Bill will take steps to intervene, we must first have reason to believe 

that Bill is aware of both this NEGCHANGE and its .;ausing action. In general, inferring who knows 

what in a story is often difficult because it is often bound up with assumptions and conventions 

about the structure of stories. Frequently, a sizeable chunk of a story will unfold before it 

becomes apparent that another person was around all along. (This is either stated explicitly, or 

can be inferred from his introduction as an actor and the nature of the action he performs), and 

that he was aware of everything. Because of this, there must be some means for retracing the 

story, inferring all the newly-inferable awarenesses of this new actor. The second sample is a 

very simple example of this: it is implicit in the structure of the story that Mary was around and 

aware of Baby Johnny's action, and it is vital to our understanding of her action that we know 

she was aware. I will not stray into story heuristics here, but only point out that inferring who 

knows what in a story is not always an easy task. 

There is no such problem in the first sample: in a situation such as this the memory will 

infer that Bill knows of John's negative change by Mary's action, because he knows of her action 

and he, as well as the memory, can be predicted to know what this sort of action commonly 

results in. Through these inferences, the following pattern (among others) emerges: a person is 

aware that another person is undergoing a negative change. This is the basic pattern which we 

want to trigger an intervention inference, and in memory it has the form shown in 7-13, that is, 

two units of information are located in P1 's conscious processor: that P2 is undergoing a 

negative change and that action A is the cause of it. Of course, Pl and P2 might be one and the 

same person: people try to avoid negative changes to themselves! 

(MLOC * *) 

~ (MLOC * 

/' ((NEGCHA~ * ;: 
(CAUSE * *) \,# (PZ) 

(ISA tI #PERSON) 

(some specific action. A) 

# 
fI SA tI #ep) 
(PART # *) 

#'::1) 
( J SA tI tlPERSON) 

Figure 6-13. The triggering pattern for i.nterventioll inferences. 
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In addition to this basic pattern, tests along certain other dimensions must be made in order 

to mi1ke an intervention inference more sensitive. to context. The principal check is that Pl must 

not presently have a strongly negative (social) relationship to P2, for otherwise we might rather 

infer that Bill is enjoying watching Mary give it to John. (Section 7.6 has a computer example 

where this in fact occurs because of the context established by previous inputs). In the memory, 

to detect such a negative relationship is to locate a pattern of the form (MFEEL Pl E P2), E being 

such that (ISA E #NEGEMOTION); 

6.4.2 THE SUBSTANCE OF AN INTERVENTION INFERENCE 

What is the substance of an intervention inference to be, once this pattern has been 

triggered (ie. detected by the MLOC inference molecule)? The memory's knowledge of extrinsic 

enabling states plays an important role here. Assuming Bill does not MFEEL a negative emotion 

toward John, and since Bill knows that the causing action of the NEGCHANGE is Mary's hitting 

action, and that one way to stop an action is to annul one of its enabling states, it is a 

reasonable prediction that Bill may desire that one of the common enabling states for Mary's 

hitting action be removed. Examples of common extrinsic enabling states for this particular action, 

PI hitting P2 (under lied by PROPEL CAUSE PHYSCONT), are 

1. P1 is LOCated near P2. 
2. The ob ject of the prope lis LOCated in the hand of P1. 
3. P1 is mentally focusing on carrying out the PROPEL action. 

There are perhaps others, but in general the number of enabling states for any particular action 

is not large. The substances of intervention inferences for this example are therefore: 

1. Bill may desire that Mary not be LOCated near John 

2. Bill may desire that the baseball bat not be LOCated in Mary's hand 

3. Bill may desire that Mary cease to CONCeptualize the action she is performing. 

By the algorithm I am about to describe, these three enabling conditions will lead to the 

respective predictions: 

(a) Bill might PTRANS the bat away from Mary's hand, 

(b) Bill might PTRANS Mary or John away from the LOCation of the other, or 
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(c) Bill might try to replace the current contents of Mary's conscious processor with 
something else -- that is, he might try to distract her. 

Once again, by making explicit these predictions about Bill's future actions, we stand the chance 

of linking One of them to a subsequent conceptualization, and this enriches the memory network 

for this story. The process of detecting and linking such points of contact in inference space is 

discussed in section 7.5. 

How is this ability to make intervention inferences implemented? Again, it is possible to 

apply the inference monitor to any memory structure, requesting that only inferences of certain 

theoretical types be generated from that structure. Having detected a pattern of the form shown 

in Fig. 6-13, the MLOC inference molecule calls the intervention inference process (lIP). The liP 

locates the nearest action lying on the causal path to the NEGCHANGE (Fig. 6-14), and then, using 

this feature of selective inference generation, requests the inference monitor to generate the 

extrinsic enabling inferences from it. In this case, the enabling inferences from Mary's PROPElling 

action are desired. The result is a list of structures which are the extrinsic enabling states for 

the propel action. 

scanning back 
through causal 
structures 

(CAUSE 
~ <action> 

* *) 1 
r~"'> 
* *) 1 
~< ... > 

* *) 1 
~undesired state> 

t 

(CAUSE 

(CAUSE 

Figure 6-14. Locating the culprit action. 

resultative 
inferences 

The liP next generates a (WANT PI (NOT Xi)) structure for each enabling inference, Xi, on 

this list. At this point in our example, there exists a set of Bill's possible desires. Knowing these 

desires, it is possible to predict probable sequences of future actions by Bill -- what he is likely 

to do. Since other patterns can also lead to this action-prediction analysis, I distinguish the 

processing which continues after this point as another class of conceptual inference called 

action-prediction inferences, discussed in the next section. Intervention inferences, therefore, 
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make predictions about a person's desires. Predictions of what those desires will motivate him to 

do are the province of action prediction inferences. 

6.4.3 EXAMPLES 

In the first sample, from the intervention inference "Bill possibly wants that the bat not be 

located in Mary's hand", this action prediction will result in at least the following predictions: "Bill 

might want to PTRANS the bat away from Mary", and "Bill might PTRANS himself to Mary" (in 

order to enable himself to PTRANS the bat aV!ay from her). And in general, as we will see in the 

section on action inferences, Bill might perform many other actions which would produce 

intermediate states lying on the solution path to the goal "get the bat away from Mary." 

The solution of the second sample at the beginning of the section is similar. Seeing that 

Baby Billy's running action can lead, through the result inferences "Billy will be located in the 

street", and "Someone may PROPEL a car into Billy", to a NEGCHANGE for Billy, Mary will 

probably intervene. The action "run", is underlied conceptually by a PTRANS (oneself) by the 

instrument of MOVEing legs and feet. Among others, two important enabling conditions for these 

actions are (1) that the path to the goal (the street) be unobstructed, and (2) that the feet of the 

runner be in physical contact with the ground. From this, we may predict that Mary might desire 

to annul one of these conditions: that she will desire to block his path or pick him up. Since both 

require (as an an extrinsic enabling condition) that Mary be LOCated near Billy, the prediction 

that she will PTRANS herself to him can result and provide a point of contact with the second 

sentence on this sample. 

Fig. 6-15 summarizes the intervention inference process. 

254 



# 
(MLOC * *) --7. (lSA # {#LTM, #CP}) 

/ ~ (. (PART # *) 

I (MLOC * *) . .. ~ # 

(CAUSE * *) \ (ISA # #PERSONl 
( ~(NEGCHANGE * <scale» 

l' 
I 

~ '-# 
ACT! ON (l SA 11 11PERSON) 

'f_ 1' ___ _ 

5TATE STATE 
then make the intervention 
prediction inferences: 

I 5TATE 

extrinsic enabl ing states for ACTION 

• 

Figure 6-15. Summary of the intervention process. 

6.5 ACTION PREDICTION INFERENCES: 
APPL YING ALGORITHMIC KNOWLEDGE TO UNDERSTANDING 

sample: 

sample: 

sample: 

John wanted some nails. 
He went to the hardware store 

Pete needed some milk. 
His car wouldn't start. 

Mary wanted to go to New York. 
She called a tr avel agent. 

sample: Rita couldn't find her glasses. 
She called Bill. 

sample: John wanted Mary to know how much he loved her. 
He bought some flowers. 

sam pIe: John said the room was cold. 
He walked over to the thermostat. 

Knowing a person's WANTs, it is possible and useful to predict his 
future actions by applying algorithmic knowledge of the world. 
This includes knowledge of causality relations and extrinsic 
enabling states. 
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In our "naive" psychology whose goal is to understand language, states motivate people to 

perform actions, which in turn cause other states. In particular, knowing a person's state, and in 

particular his WANTs, it is often possible and advantageous to predict future actions ("future" 

meaning relative to the time of his WANTs) on his part which might help achieve those WANTs. 

This section describes how and when this prediction of actions occurs and how it is fundamental 

to comprehension. I will call inferences which make predictions about a person's likely future 

actions, based on what he is known -- or can be inferred -- to WANT, action prediction 

inferences. I will often abbrieviate this as simply "predictive" or "prediction" inferences. 

Predictive inferences bear something of an inverse relationship to motivational inferences. 

That is, whereas motivational inferences look at a person's actions and attempt to infer what he 

might have been trying to accomplish by those actions (that is, what resulting states they 

WANTed), predictive inferences work forward from a person's wants, attempting to predict what 

actions those wants might motivate (or have motivated) him to perform. 

Although predictive inferences always result from some WANT state of a person, that WANT 

state may have been inferred from some other source (a resultative, enablement prediction, 

intervention inferences, for example). In this sense, predictive inferences will in general 

ultimately result from all sorts of mental and physical states of people, since these commonly 

instill WANTs in the person. However, 

The process of generating action prediction inferences is always 
triggered directly by a WANT state of an individual. 

The notion of a predictive inference can be illustrated by two very simple examples: 

(la) John wants some nai Is. 
(lb) John is I ikely to go to a hardware store. 

(2a) John was extremelV angry at Bi I I. 
{2bl John might want B, I I to suffer some negative change. 
{2cl John might do something to hurt Bi I I. 

In both cases, conceptual memory must take some WANT state of an individual and use it to 

predict likely actions of that individual. (It should be emphasized here that there are of course 

many other inferences to be made from both (1a) and (2a). I am singling one of these out in each 
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case to illustrate predictions. For instance, the reason John wants nails is probably because he is 

PBUILDing something. However, this is a causative relation which will be generated by the 

function inference process.) 

Both examples show how new predicted action information can be generated from a 

person's WANTs. In the first example, the want is explicit in the input (1a). In the second, the 

want (2b) has been inferred via a resultative inference as being likely, and this want leads in 

turn to (2c) via a predictive inference. The remainder of this section will explain how and when 

predictive inferences are generated, and how they are vital to understanding. 

It should be clear by now that the memory has an implicit algorithmic knowledge of the 

world. This knowledge is encoded in the form of resultative, causative inferences and in the 

various forms of enablement inference. The predictive inference process is a realization that one 

use of this knowledge can be to predict one or more solution paths from a person's current state 

to some goal state which he is known to desire. To illustrate how this algorithmic knowledge can 

be applied to make useful predictions about entire sequences of likely actions by a person who 

is known to want some state, let us trace through the deceptively simple example (1) about 

wanting some nails. Because it will be easy in this example to lose track of the general goals, let 

us first describe the general principle of a predictive inference. 

6.5.1 OVERVIEW OF THE ACTION PREDICTION PROCESS 

The abstracted schematic illustrating the idea of action prediction inferences is shown in 

Fig. 6-16. The general algorithm of the prf?diction process is as follows: S is a state desired by P. 

Generate a set of general actions, {Al, ... ,An}, which could cause S to exist. For each action by P 

which could achieve this result, infer that he may want to perform that action. Find the enabling 

states for this action and infer for those which cannot be assumed to exist already that P might 

also want them to exist to enable him to perform Ai. Each of these WANT -enabling states may in 

turn lead to more action prediction inferences. Do this until no new actions arise, and all enabling 

st ates have been satisfied. 
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Figure 6-16. What the action prediction inference process tries to do. 

6.5.2 AN ACTION PREDICTION EXAMPLE 

We will now follow through the predictive inference process as it would be performed in 

response to "John wanted some nails": The question is this: how might John achieve this POSS 

state which he desires: 

(WANT #JOHN *) 

J 
{POSS N #JOHN} 

where N is a token for some nails (we will ignore the fact that this is a set of objects). The most 
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general answer to this question seems to be: "by performing some action whose result could be 

this POSS structure." 

To determine what John could do to bring this state about, the predictive inference 

mechanism requests the inference monitor to generate causative inferences from the POSS 

structure. Stored within the POSS inference molecule is the knowledge that POSS relations are 

normally caused by ATRANS actions. That is, a normal way to begin possessing something which 

is not currently possessed is to receive (get, take) it from someone else. This general knowledge 

is a simple causative inference (stored in the POSS inference molecule). For this example, this 

means that the monitor's application of the POSS inference molecule to find causative inferences 

will result in the prediction: 

{ATRANS * N * #JOHN} 

# ~~ 
(l SA # #PERSON) 
(UNSPECIFIED #) 

# 
{ I SA # #PERSON} 
{UNSPEC I F I ED #} 

It should be pointed out that there will in general be several possible causes (but still a 

small number of them) generated as causative inferences from some state structure. The memory 

must pursue them all in the same way as I will describe for this single case. 

At this point the predictive inferencer can thus infer that John may want an action of this 

form to come about, namely 

{WANT #JOHN (ATRANS Pl N P2 #JOHN)} 

where PI, P2 stand for these as-yet unknown people. Notice that the POSS inference molecule 

which generated this causative ATRANS inference is able only to predict the general nature of 

the action. Who P could possibly be is not the concern of the causative inference. Hence, at this 

point there is still no specific action prediction, and in particular, no potential action by John has 

yet arisen by this process. 

The PI and P2 which were marked as unspecified by the POSS inference molecule 

represent general forms of missing information. As such, they are potentially specifiable by a 
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specifier molecule. The prediction inference process i!i on the lookout for this type of missing 

information, since causative inferences typically are only good for predicting general patterns. 

Because of this, it recognizes the presence of these unspecified entities and requests that the 

ATRANS specifier molecule be applied to this predicted ATRANS structure in an attempt to supply 

reasonable guesses about the identity of these unspecified people. 

In this case, the ATRANS specifier molecule senses that it is being called upon to answer the 

question: who is the most likely candidate for ATRANSing nails from someone (possibly himself) 

to John? In this case, the operation of the ATRANS specifier molecule would be the following: the 

conceptual features of the object of the ATRANS -- the nails -- are examined. In particular, the 

ATRANS molecule is on the lookout for two general patterns associated with the object. The first 

pattern is one of the form shown in Fig. 6-17. There, Y stands for some class concept lying on 

N's ISA set chain at some level. That is, the molecule will use NFCT information to determine 

whether Or not there is some entity whose normal function is to ATRANS things like,,#NAILs to a 

person. 

(NFCT X *) 

! 
(ATRANS X Y X Z) 

Figure 6-17. 

The second pattern the ATRANS specifier molecule will attempt to satisfy has the form 

shown in Fig. 6-18. There, X is someone else who has some nails and who John knows. In a 

realistic specifier molecule, there would of COurse be many other similar heuristic tests such as 

these, and even for these, the level of detail would have to be quite a bit greater. For instance, 

to narrow the set of potential X's who might be candidates for the ATRANS, the memory might 

have to check which of them live nearby, which of those John is on good terms with, and so forth. 

I am illustrating here the kinds of things which are realistically attainable in the current 

implementation. 
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# 
~ (ISA # #PERSON) t' (ACQUAINTED # #JOHN) 

(POSS * *) 
\'# and (MLOC 

(ISA # #NAILl 

Figure 6·18. 

* *) 
~# 

USA # #LTM) 
(PART # #JOHN) 

In testing for the NFCT pattern of Fig. 6-17, no NFCT will be found involving the ATRANS of 

either N, or #NAIL. However, since (ISA #NAIL #HARDWARE), the NFCT pattern 

(NFCT #HARDWARESTORE *) 

~ 
(ATRANS #HARDWARESTORE #HARDWARE #HARDWARESTORE #PERSON) 

("the normal function of a hardware store is to dispense hardware") would be located. Recall 

that entities like #HARDWARESTORE refer to concepts which are bundles of conceptual features. I 

am using common names only to discuss these concepts. 

Having located this pattern, the specifier molecule can thus predict that PI and P2 might be 

some hardware store. It will make this prediction, and supply as the REASONS the following 

structures: because (ISA N #NAIL), (ISA #NAIL #HARDWARE), and (NFCT #HARDWARESTORE (. .. ». 

Currently, specifier molecules stop when one specification is decided upon. Notice, 

however, that it would be desirable in this application for a specifier molecule to have the ability 

to return an entire set of candidates for missing information, sorted from most likely to least 

likely. Each prediction would then give rise to an ATRANS structure, some being more likely than 

others. 

After the specifier molecule has been applied and has decided upon #HARDWARESTORE, the 

previously unspecified WANT -ATRANS structure will have the predicted form 
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(WANT #JOHN~ ) 
I 

(ATRANS * N * #JOHN) 
~'-# 

(ISA # #HARDWARESTORE) 

where C2 now has the specification (iSA C2 #HARDWARESTORE). (Personification of things like 

stores and machines isn't exactly correct, but is sufficient to illustrate the kinds of things the 

memory is trying to do.) 

6.5.3 SEEKING AN ACTION ON THE PART OF THE WANTER 

But the memory still has not arrived at an action on John's part. Because of this, the 

predictive inference process again poses the question: what could John do to cause the 

hardware store to perform this action? That is, it again seeks causative inferences, but this time 

from this inferred causative ATRANS structure. Because (ISA #HARDWARESTORE #STORE), the 

most likely candidate causative inference, and the one generated by the ATRANS inference 

molecule, is that the person must first ATRANS money to the #HARDWARESTORE: 

(ATRANS P M P S) 

where P is a person, M is somE,) money, and S is some store. In other words, this action can be, a 

cause of the store's ATRANSing something to P. Had the specifier molecule predicted that John 

might attempt get a friend to ATRANS him some nails, the causative, inference would have been 

quite different: rather than ATRANSing money to the friend, he would probably just ask. This 

again illustrates how very sensitive all inference molecules must be to features of the involved 

objects. 

Using this new causative inference, the following is inferred: 

(WANT #JOHN (ATRANS #JOHN M #JOHN C2» 

where M is a token for some money. The prediction process has thus finally arrived at an action 

for John, the original WANTer. But things do not stop here. 
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6.5.4 PREDICTING THE DESIRE FOR ENABLING STATES 

Having found a likely future action by John, the memory must decide whether the action is 

possible in the current situation. Other actions may first be necessary to get the extrinsic 

enabling conditions right for the ATRANS. Having arrived at a predicted action by John, the task 

then becomes to determine (a) which conditions must exist for this ATRANS, and (b) which of 

these cannot be assumed to exist at the time John wants to perform the ATRANS. 

This task is accomplished by calling for the generation of enabling inferences from the 

predicted ATRANS structure. In this example, the following enabling inferences will be returned: 

1. (LOC #JOHN H), ie. that John have the same location as the hardware store 

2. (POSS #JOHN M), ie. that John have some money to give the store 

Having generated these enabling conditions, the memory is interested in determining which can 

be found already to exist explicitly, or can be assumed to exist based on a knowledge of what is 

normal (section 6.7). At this point, therefore, the predictive inferencer looks in turn for each of 

the enabling conditions. For (PaSS #JOHN M), the explicit lookup will probably fail: that John 

possesses some money is simply not likely to be stored explicitly. But the normative inference 

process will assess this as being very compatible with the memory's knowledge of what is normal 

in the world: people normally possess money. (We are of course ingoring quantities of money 

here.) Because of this match, no further processing will be done on this POSS enabling inference. 

However, in the case of (LaC #JOHN H), if John is not explicitly known to be at the store, it 

cannot nominally be assumed -- based on a knowledge of what is common in the world -- that he 

is there. In this case, therefore the predictive inferencer will predict that John WANTs to be at 

the store: 

(WANT #JOHN (LOC #JOHN H)) 

because otherwise he could not perform the ATRANS action which he may desire to perform. 

But we have completed the cycle! The process I have just described can now go to work on 

this new WANT state, predicting other actions on John's part. In this example, one prediction will 

occur immediately, since a highly probable cause of something being in a location is that it was 

PTRANSed there. That is, 

263 



(WANT #JOHN (PTRANS X #JOHN Y H)} 

(John wants to be transported from where he is, X, to the hardware store, H. The PTRANS 

specifier molecule will be called, and indicate that this usually occurs by the person doing the 

PTRANS himself. No significant event-enabling inferences will result, and the memory will 

conclude: 

(WANT (PTRANS #JOHN #JOHN Y H}) 

that is, John might go to the hardware store to buy some nails. 

It should be pointed out that during this process, causality relations between each of John's 

successive WANTs have been preserved by the inference mechanism in explicit CAUSE structures 

so that the memory does not "forget" why various actions are likely to occur. The importance of 

preservating causal relations has already been emphasized, and this is simply another point 

where they are important. 

6.5.5 ACTION PREDICTION INFERENCES' UTILITY 

The importance of being able to make intelligent predictions at each point in a conversation 

or story about what is likely to happen next cannot be overemphasized. It is a fruitful endeavor 

for two reasons. First, it establishes many new points in the inference space, some of which 

stand a good chance to be related to subsequent input. Whereas other inferences "reach 

backward" in this venture, action prediction inferences reach forward. By predicting what is 

likely to happen, and why, when new information is perceived which matches these predictions, 

the recognition of new causal and enabling relationships can be almost spontaneous. 

Second, by predicting (expecting) certain kinds of things to happen next, many new 

concepts are drawn into memory's "immediate memory", and these can be of extreme importance 

to understanding subsequent language forms and references. The second sample at the beginning 

of this section: 

Pete needed some mi Ik. 

The car wouldn't start. 
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is a good illustration of this sort of thing: how is it that we don't balk at a reference to some car 

at this point? We almost certainly would balk if the second sentence had occurred out of the 

"context" established by the first sentence. Action prediction inferences seem to playa vital role 

here: knowing that Pete needs some milk, we somehow seem subconsciously and automatically to 

know in a general way what this situation emcompasses, and what Pete might do in such a 

situation. That is, we somehow anticipate at that point what sorts of things Pete might do, and 

one of them involves a sequence of actions which would get him to a grocery store. Having 

drawn out these actions which involve some sort of transportation, it is no surprise at all to hear 

about a car in the next sentence. 

I interpret this sort of phenomenon as supporting evidence for the action prediction 

inference process. Although the example I carried through above may seem a bit awkward and 

tedious (perhaps because I am trying to have the memory be too specific in its predictions), the 

feeling is that it represents a very real thing in people. This is a first step toward a "fuzzier" 

predictive capability. 

6.5.6 AN INADEQUACY 

One flaw with the approach to predictive infet'ences as I have described it may have 

become evident. It is this: as with just about every inference the memory makes, action 

prediction inferences are effectively modeling another person, rather than the memory itself. 

Because John's knowledge about how to go about acquiring nails might be totally different from 

the memory's, if we don't model Ids knowledge, the predictions the memory generates may be 

totally irrelevant. This is a recurring theme, and it has been addressed to varying degrees in the 

solution of other classes of inferences. I will have more to say about it in section 6.6. Even 

where this need to model other people's knowledge has been taken into account, its 

implementation in the model is weak, and the whole topic requires much more research. 

Nevertheless, at the level of information complexity at which we are dealing, the assumption that 

everyone possesses approximately the same knowledge is not at all unrealistic. For this reason, 

this inability to model other people in any detail is not really yet a handicap. 
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6.5.7 GENERALIZING ACTION PREDICTION INFERENCES: ENLISTMENT PREDICTION 

We have seen the sort of capability the memory should have in order to predict actions of a 

person by considering those actions he himself could perform which would directly achieve his 

goals. However, a person frequently enlists the services of others to help achieve goals which he 

either cannot, or prefers not to, achieve alone. 

We saw an example of this as it related to predicting a person's motivations in the computer 

example at the end of section 6.10. There, PI tells P2 that P3 wants an X. One possible 

motivation which was discovered was that P1 may have done this: so that P2 would know that P3 

needed an X, and as a consequence of this, would perhaps give P3 an X. That is, Pl enlisted the 

services of P2 as one means of satisfying his own want, namely that P3 have an X. It would be 

desirable to have the ability not only to work "backward" in motivation-establishing mode, but 

also to work forward under certain circumstances to predicted enlisting actions on PI's part. In 

this example, this would mean starting at Pl's desire that P3 have an X (P3 can of course be 

PI D, and working forward to predictions about how P3 might enlist someone else's service to 

accomplish this goal. 

Although I do not propose to delve into general problems of knowing when and how to 

predict one person will attempt to enlist the services of another, there is one obvious point in 

this action prediction process where the idea of enlistment fits. It is this: when an action on the 

part of an actor can be predicted, and there is one or more extrinsic enabling conditions which 

does not exist and which cannot be caused to exist by the actor, it is reasonable to predict that he 

may request that someone else who can cause the necessary condition to exist either perform 

the action for him, or do some other action which would cause the missing condition to exist. For 

instance, when, on a vacation, we remember we left the water running at home, we want the 

water to be stopped. An immediate prediction is that we will want to turn the lever on the 

fixture. But an enabling condition that we have the same location as the fixture to perform this 

action is not easily met. Under these conditions, the memory could search for someone with 

whom we were acquainted, and who satisfied this LOC property, then predict that we might 

request of this person that he perform the action for us. 

There is much potential for research in this area, and much of it spills over into the domain 
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of conversation, since instilling desires in other people is more central to the idea of an 

enlistment inference than to the other types of conceptual inference I have been discussing. I 

merely want to point to it as an unexplored topic related to action prediction inferences. 

6.6 KNOWLEDGE-PROPAGATION INFERENCES 

sample: Pete told Bill that Mary hit John with a baseball baL 
Bill knew that John had been hurt. 

sample: John saw Bill kiss Mary. 
John probably believes that Bill feels 
a positive emotion toward Mary. 

Many particular inferences in classes I have been discussing rely upon information, either 

explicitly conveyed or inferred, about what information and knowledge of the world is available 

to a person at a particular time. For example, we have seen how result, intervention and 

motivational inferences, respectively, require information about who knows what, using this 

information to infer other information of various types. The realization is that the knowledge of 

some state in the world, rather than simply the existence of the state, is the crucial factor in 

motivating the actor to act. For instance, in section 6.4, we were able to generate an intervention 

inference about Bill because we could infer that he knew of John's NEGCHANGE and that it 

resulted from Mary's ation. The intervention inference did not arise simply because of John's 

NEGCHANGE. It is therefore of immense interest to the memory to keep extensive models of who 

knows what, and when. Let us call inferences which implement this modeling knowledge 

propagation inferences. 

The rough idea of a knowledge propagation inference is this: 

if P knows information X. and (II .... .In) are inferences (of all 
theoretical classes) which arise from X in the memory. then it is 
possible that P also has knowledge of (11. ...• In). 

That is, assuming P has access to the same knowledge the memory has access to, he is 

likely to be aware of many of the same consequences (inferences) of that knowledge that the 

memory is. 

The first sample illustrates a very simple instance of knowledge-propagation. In this 

example, two immediate inferences in the memory are (a) that Bill probably believes that Mary 
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was hittit'g John, and (b) that Mary probably was hitting John (ie. the memory will also believe 

Pete). Further, among other things it will probably be inferred (1) that John probably sufferer! a 

negative change in his PSTATE, (2) that it was Mary's action that caused it, (3) that Mar)' was 

probabl)l mad at John, (4) that her anger motivated her to want John's NEGCHANC::, and hence 

the hitting action, (5) that previous to this incident, John might have causf'd some kind of 

NEGCHANGE for Mary, and that this is perhaps what caused her ~nger, (6) that John might have 

become angry at her as a result of this incident, (7) that Mary and John were near each other at 

the time of the incident, and so On. But, since Bill has also become aware of the incident (that is, 

this information is nOW located in Bill's CP is a direct resultative inference from the underlying 

MTRANS from Pete), each inference which stemmed from it in the memory might also be an 

inference which Bill made upon hearing this news from Pete. Furthermore, since Pete MTRANSed 

this information from his CP to Bill's CP, and since a very important enabling condition for an 

MTRANS is that the mental object first have the location from which it is MTRANSed (Pete's CP), 

Pete himself may be predicted to know much of this inferred information as well. 

This draws out two important questions: (a) does a human language user really make all 

these knowledge-propagation inferences, and (b) how are knowledge propagation inferences 

sensitive to differences between the knowledge available to MEMORY and the knowledge 

available to another person who is involved in the memory's knowledge propagation inferences? 

Because an awareness of who knows what a~ any given time in a particular situation seems 

to be so vital to the other kinds of conceptual inference we have been and will be discussing, we 

must conclude that the generation of many knowledge propagation inferences at this presumed 

subconscious stratum is a reality. Of course, as with all conceptual inferences at this cognitive 

level, many of these inferences may not prove to be of much use. Still, they must be generated 

in copious detail in hopes of "fueling the fire" -- of discovering what will be useful toward 

discovering interesting lines of inference. 

The second question is not a simple one to answer: any two people stand the chance of 

making slightly or even totally different interpretations of a given experience. And this happens, 

of course, mainly because the knowledge they apply to their interpretation (the inferences they 

generate) is slightly or totally different. For instance, if Bill knows that John is a masochist, and 

that this incident occurred as part of Mary and John's Saturday night ritual, he will reach totally 
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different conclusions from Pete, who doesn't know about John's peculiarities. By the same token, 

if the memory knows about John, but Pete and/or Bill do not, it would certainly be incorrect to 

infer that Pete and/or Bill believed that John was deriving pleasure from the event. 

In their "pure" sense, these are fairly deep, perhaps unsolvable, philosophical issues. But 

they are not beyond our grasp at the level at which we require a solution: the fact is that human 

language users are capable of modeling other users' knowledge and of putting this capability to 

use in understanding. The method by which the memory can be sensitive to differences in 

people's knowledge will be outlined shortly. But first I will describe the how and when of the 

mechanism which generates knowledge propagation inferences in MEMORY. 

6.6.1 GENERATING KNOWLEDGE PROPAGATION INFERENCES 

Knowledge propagation inferences --just as motivational inferences -- must be generated at 

a different time from most ordinary conceptual inferences. Each of the potentially numerous 

conceptual structures in an utterance is identified, and passed to the inference monitor for 

expansion in inference space. This process will normally result in a large number of inference 

spheres about each starting structure. When this process terminates, the result is a list, 

!INFERENCES, of all inferences which have arisen from the starting structures. 

At that point, the POSTSCAN process is entered. (This process is also related to the 

generation of motivational inferences). Relative to the task of generating knowledge propagation 

inferences, the postscanner looks for inference structures (with TRUTH= TRUE -- the memory 

must believe the structure to some degree) of the form shown in Fig. 6-19. Call any structure of 

this form S. 

(MLOC * 

(any structure, X)/ II 
(J SA II IILTM) 
(PART II Pl 

Figure 6-19. 

That is, the postscanner detects structures which indicate that some information, X, is MLOCated 
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in someone's LTM, L -- that he believes, or knows X. For each structure satisfying this pattern, 

the postscanner will attempt to generate knowledge propagation inferences. 

In a simple model which is not sensitive to differences between its own knowledge and the 

knowledge mentally located in L (which is part of P), the next step is to retrieve the OFFSPRING 

list for structure X (Fig. 6-20). Recall that OFFSPRING and REASONS together preserve "inference 

connectivity", a record of what arose from what, in inference space. Hence, the OFFSPRING set 

for X is a set, OFFS(X), of other inference structures in whose generation X played a part in the 

memory. If the memory operates under the simplifying assumption that P's knowledge and 

conceptual inferences are the same as its own, then the inferences, OFFS(X), it was able to infer 

from X were (are) probably also inferable by P. Using this assumption, the memory can then 

generate new inference structures of the form (MLOC I i L) for each I i in OFFS(X). 

structures 
which arise 
by a I I sor ts 
of conceptual 
inferences 
from X 

Figure 6-20. The offspring set. 

6.6.1.1 MODELING THE KNOWER'S KNOWLEDGE 

This works accurately enough for many inferences which are based upon common world 

knowledge. For instance, if a person knows that John kissed Mary, he will normally infer that 

John felt a positive emotion toward Mary, that he was near her at the time, and so forth. But it is 

in general not adequate because no model of the hearer's knowledge has been incorporated. 

Where then does the modeling of the other person fit? 

We must view OFFS(X) as simply a set of candidates for what P possibly infers from X. For 

each I i in this set, there is an associated REASONS set, which records exactly which other 

information in the memory played a part in the generation of I i as an inference from X .. Before 
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generating a knowledge propagation inference from any 1'1 in OFFS(X), the REASONS set, R( Ii), 

for I i must therefore be examined. For each reason, r, in this set the question must be asked: "I 

(the memory) knew r, but is P likely to have known it"? To answer this question, the 

postscanner attempts to locate a (MLOC r L) structure. A failure (as is frequently the case) to 

find such a structure indicates one of two things: (a) (MLOC r L) was not found simply because it 

truly does not (cannot be assumed to) exist, or (b) it was not found simply because it has never 

been made an explicit structure in the memory, but it is something which a person who meets 

certain minimal requirements (say, a normal adult) can be expected to know. 

This abuts with memory's assumptions about what is normal in the world (next section). 

There I will describe how patterns such as "Most people know that the normal function of a book 

is for reading" can be stored. This example, for instance, is a predication that this knowledge 

about books is commonly located in the abstract #LTM which is PART of this abstract concept 

#PERSON. But to represent and match passive patterns of this complexity is not a convenient 

approach. Hence, much "common knowledge" of this sort has been implemented in the form of 

programs, called normality molecules (N-molecules). N-molecules are not sensitive to context, 

since their purpose is to relate specific information to "default" assumptions about the world. N­

molecules give the memory a much larger apparent storehouse of knowledge by applying these 

default assumptions to specific instances. 

Briefly, an N-molecule (next section), when applied to some specifiC memory structure such 

as "John Smith knows that most people sleep at night", will return a STRENGTH, which is a 

measure of the likelihood of that pattern, based on the memory's "default" knowledge of the 

world. 

Therefore, when the knowledge propagation process fails to locate an (MLOC r L) explicitly, 

it creates an (MLOC r L) structure, and requests that the MLOC N-molecule be applied to it. The 

result of the N-molecule's assessment of the structure will be a STRENGTH which is a measure of 

the likelihood of this MLOC. If the N-molecule can judge it, and its judgement is non-zero, the 

knowledge propagation inference continues its examination of OFFS(X). If the assessed STRENGTH 

is zero, the knowledge cannot be assumed to have been possessed by the ~,nower, and a 

knowledge propagation inference cannot be made. 
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If all the candidates in OFFS(X) can be determined also to have been known, the knowledge 

propagation inference that the knower of X also knows this I i which arose from X -- (MLOC I i 

L) is generated, and assigned as REASONS X, and all the (MLOC r L) sfructures which are the 
I 

reason for the memory's belief of I i. The entire process is illustrated in Fig. 6-21. 

POSTSCANNER -+-+-+ 

! INFERENCES: (* * * * * * * * * * * * * * * * * ...... ) 

REASONS 

* * * * * 

~ 

REASONS 
OFFSPRING 

<=====>11 i 1<=====> : 

* * 
* * * 

~ '.. (CONTI NUED PROPAGATION IF 
-- PIS I NFERRED TO BEll EVE Ii) 

1:1 1:1 1:1 I:~ _ 

~" -,-- (MLOC * *) oirf these can be located e~pl icitly 
~ } predicted by normative inferences 
(MLOC * *) 

l ----> THEN INFER (MLOC * *) 
(MLOC * *) 'v ---- (for REASONS the four MLOC's to the left) 

(ML DC * *) '---. (L) 
~ 

Figure 6-21. The knowledge propagation inference process. 
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6.6.2 AVOIDING THE "HE KNOWS THAT HE KNOWS THAT ... " PROBLEM 

The process of generating knowledge propagation inferences occurs after the expansion of 

inferences by the normal monitor process by a postscanner. The inferences thus generated will 

go onto the inference queue where they will be expanded by subsequent inference passes. 

But because inferences in the inference queue will normally undergo at least another pass 

through the inference monitor, and because knowledge propagation inferences augment the 

OFFSPRING set of some of the existing inferences on the queue, there is a problem. Suppose X 

gives rise to knowledge propagation inference Y. Y is put on the inference queue, and it is also 

recorded on X's OFFSPRING set. On the next pass through the inference monitor, X would be 

examined for knowledge propagation inferences, and this new member of the OFFSPRING set, Y, 

would be seen and a knowledge propagation inference generated for it. But the substance of this 

new inference would be lip knows that P knows that X", and this is not desirable, especially since 

it will happen all over again on the next pass. 

To prevent this, the postscanner tags with its own special tag air inferences on the queue 

which it has processed once for knowledge propagation inferences. On subsequent passes, if this 

tag is detected, no further knowledge propagation inferences will be generated for any of the 

new offspring which have the form (MLOC ... ) and which were generated on a previous pass. 

6.7 NORMA TIVE INFERENCES 
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sample: Does John Doe own a book? 
Probably. Middle-class business executives normally own books. 

sample: Was Mary Smith at work Tuesday morning? 
I don't know, but she has a job, so she probably was. 

sample: Was John at home Tuesday evening? 
I don't know. There's a good chance of it, though. 

sample: Does Pete have a gall bladder? 

sample: 

sample: 

It's highly likely. 

Is the normal length of time required to read a 
book a few minutes? 
No, not usually. 

Is it unusual that John was asleep a 3PM yesterday? 
Mildly unusual. He normally is at work then. 

sam pie: Does Mary know that John normally sleeps at night? 
Probably. Most people know that people sleep at night. 

sample: John saw Mary at the beach Tuesday morning. 
Why was John at the beach then? He normally is 
at work in the morning. 

sample: John loves Mary. Does John want Mary dead? 
Extremely unlikely. 

A human language user applies staggering amounts of knowledge to the understanding of 

even the simplest utterances. Part of this knowledge is specific from situation to situation, and 

from special case to special case. But part of it is implicit in common assumptions and knowledge 

of the world. In the description of the specification inference process, it was illustrated how 

filling in implied but unspecified information can rely heavily upon a knowledge of what is normal 

in the world in the absence of overriding context. There, this normative knowledge was used to 

predict - to add on - missing information in the hope that this would draw out implicit 

references, open up new lines of inference, and so forth. Also, we have seen how applying 

assumptions about the normal functions of objects can lead to quite interesting new sectors in 

inference space. In reality, every class of inference makes implicit reliance upon assumptions 

about what is normal in the world in given contexts. This reliance is so pervasive that I would 

like to draw it out and identify it as a form of conceptual inference. What should the nature of 

such an inference be? 

The key point is this: by recognizing speCifiC patterns as instances of general patterns of 

what is normal in the world, a language user can operate as though he possessed an apparently 

limitless amount of specific world knowledge. The idea is that, even though very few instances of 
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a general pattern ever actually come into existence as explicit memory structures, the potential 

for generating instances is always there, and should be applied when some specific instance of a 

normative pattern would be of use to some process. For example, if the knowledge propagation 

inference mechanism needs to know (say, in order to generate an inference) whether John Smith 

knows that a kiss is a sign of affection, the general knowledge that just about everyone has this 

knowledge ought to be applied to this specific case, even though this would hardly ever be 

stored explicitly. 

What I propose, then, is that the memory should recognize that much of its knowledge is 

stored only as a potential, which is embodied in many general patterns. This is a departure from 

precise systems (in which the world consists of a well-defined data base of explicit ·facts), to a 

"fuzzier" system in which much mOre is actually known than what is explicitly stored. In this 

fuzzy system, failures to locate a needed piece of information explicitly should not be 

interpreted to mean the information is not true. Rather, the conclusion that the information is 

false or improbable should be assumed only after an attempt to verify it as an instance of a 

more general pattern fails. This means that 

Every time an information lookup fails to locate information 
which is necessal'y to some inference process, the memory should 
attempt to apply its knowledge of normality to that information 
before concluding the information does not ex ist. 

I will call such a successful attempt a normative inference, 

The approach to storing normative information which involves the least reliance upon large, 

passive data patterns seems the most attractive for the level of complexity at which we are 

dealing. That is, whereas it may be desirable to encode the simple knowledge "Almost everybody 

has a gall bladder" in a passive pattern (PART #GALLBLADER #PERSON) (in other words, by 

predicating a PART relationship between the abstract concepts, with the convention that this is 

interpreted as a predication about people and gall bladders in general), it is less desirable for 

patterns like "All veterans of World War /I who were living in Minnesota earn at least $15,000 a 

year", or "Most healthy adults can drive a car, but few children can, no matter how healthy they 

are." This is because mOre complex patterns involve many dimensions, many conditions in general 

must obtain, and which conditions which must obtain is often a function of many complicated 

conceptual features of the objects, times, locations, etc., of the entities involved in the pattern. 
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6.7.1 NORMALITY MOLECULES 

Because of this, normative inferences in the memory are made by LISP programs called 

normality molecules, which we can abbrieviate as N-molecules. As specifier and inference 

molecules, N-molecules are organized by conceptual predicates: there is an ATRANS N-molecule, 

an MLOC N-molecule, a PART N-molecule, and so forth. The function of an N-molecule is this: 

when applied to a memory structure, X, involving predicate P, the N-molecule for P performs 

tests on X and returns a STRENGTH, S(X), which is a real number between 0 and 1. This S(X) is a 

measure of how strongly the molecule "believes" the specific structure, X, insofar as X conforms 

to its encoded knowledge of what is normal in the world. That is, X will be a measure of how 

"normal" or "unusual" the structure is. In the terminology of fuzzy set logic [Z 1], this S(X) is a 

measure of the compatibility of X -- how compatible it is with assumptions (pattern information) 

about the world. 

This number, S(X), is the normative inference for structure X. A normative inference 

therefore differs from other types of conceptual inference in that its content is not a new 

memory structure, but a number which assesses the compatibility of an existing structure such 

as (PART C1321 #JOHN) (C1321 being a token of a gall bladder), or (MLOC C8768 9924), C9924 

being Pete's LTM, and C8768 the conceptual structure for "Jim owns a car.". For these two 

examples, the numbers returned would indicate the STRENGTH with which these structures can 

be believed, based on the knowledge of normality contained in the PART and MLOC N-molecules, 

respectively. 

6.7.1.1 ASSESSING A STRUCTURE'S COMPATIBILITY 

It may seem as though I am proposing to solve a very difficult problem simply by 

compartmentalizing it in some abstract process which magically assesses an arbitrary memory 

structure's compatibility with assumptions about normality. This is not the case; I am not 

proposing some sort of alchemy whose goal is to get something for nothing. While it is true that 

this compartmentalization is convenient, there is nothing mysterious about an N-molecule; it is a 

very candid construction. Fig. 6-22 shows one. 

For every piece of normative information in the world we desire the memory to possess, 

there must be an "N-atom" within the appropriate N-molecule which will test of a structure 
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whether that structure conforms to its pattern. These tests are not fuzzy. The only fuzzy 

component is the S(X) which is returned: it is an estimate of X's truth, and as such it will be 

propagated by inferences which rely upon X. S(X) is not a measure of the degree to which the 

N-molecule was successful in matching X to some normative pattern. Rather it is the STRENGTH 

associated with some normative pattern which is fully successful in matching X: the process of 

matching merely serves to select some well-defined compatibility (Fig. 6-22). Fig. 6-23 shows a 

very simple specific N-molecule. 

STRUCTURE 
BEING 

ASSESSED 

~
<test> <success, 1.0> 

___ <test> 
• <test> 

<test> 
<test> <success, 0.95> 
<test> <success, 0.90> 

<test> 

~ 
.. <test 

~
. <test> <success, 0.65> 

<test> <success, 0.70> 
<test> <success, 0.90> 

<test> 
<test> <success, 0.60> 

Figure 6-22. Precise testing to arrive at a fuzzy compatibility. 
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is P a member of a pure communal society. or is it an infant? 
if so, very unlikely that P owns X 
otherwise, does X have any distinctive conceptual features? 

if so, assess each one, form the product of like I i hoods, and ca I lit 
M. M wi I I be used at the end to mitigate the I ikel ihood which would 
normally be assigned. 

is X I i v i ng? 
if so, is X a person? 

is P a slave owner, and does X possess characteristics 
of a slave? if so, likelihood is low but non-zero 
otherwise I ikel ihood is zero 

otherwise, is X a non-human animal or a plant? 
if so, is X domestic in P's culture? 

if so, does P have a fear of X's or is 
P allergic to X's of this type? 

if so, like I i hood is low 
otherwise, likelihood is moderate 

otherwise, is X related to actions P does in any special 
).Jay? 

if so, likelihood is low, but non-zero 
otherw i se, like I i hood is near-zero 

otherwise, does X have a normal function? 

and so on ••• 

if so, does P do actions I ike this normal function? (Note 
that we would want to look at P's profession, and actions 
associated with that profession.) 

if so, I ikel ihood is Oloderatel\.! high 
otherwise, is X a common personal item? 

if so, is it's value within P'means 

if 
otherwise, 

if 

if so, like I i hood ish i gh 
not, I ikel ihood is low, but non zero 
is X a common household item? 
so, is P a homeowner? 

if so, is X within P's means? 
if so, like I i hood ish i gh 
otherwise, likelihood is moderate 

otherwise, I ikel ihood is low, but non-zero 

Figure 6·23. How we might go about deciding 
whether person P owns an X. 

6.7.2 INSIDE AN N-MOLECULE 

here 
commonly 

What kinds of tests can a typical N-molecule be expected to make in testing whether a 

specific structure matches some general pattern about the world? Although heuristics will 

certainly vary from case to case, there are three general types to which all tests should be 

sensitive. 

Consider the OWN N-molecule's assessment of this (OWN C7536 #BILL) structure, where 
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C7536 is a token of a hammer. The first obvious test is that C7536 not be OWNed by SOmeone 

else other than 8ill at the time in question. In this case, because of specific knowledge about 

C7536, we would want S(X) to be O. Notice that if this is the case, it will be detected only in the 

N-molecule, because the original attempt to locate the (OWN C7536 #8ILL) structure will fail, but 

not because another OWN structure existed, only because this particular one did not exist. 

A second general heuristic is that an N-molecule must watch out for "over-specified" 

objects in the structures they assess. Consider the following progression of queries: 

1. Can J assume that John Smith owns something? 
2. Can I assume that John Smith owns a hammer? 
3. Can I assume that John Smith owns a claw hammer with a wooden 

handle? 
4. Can I assume that John Smith owns a 16 oz. Stanley claw hammer 

with a steel-reinforced wooden handle and a tack puller on the 
claw? 

We would certainly want the answer to be an unequivocal "yes" for the first case, if John is an 

adult and not a member of a pure communal society. On the,other hand, queries 2, 3 and 4 

specify progressively more conceptual features of the hammer (we might just have well specified 

progressively more features of John), and in general, each query is less likely because of these 

features. S(X) for (4) should be very near zero, while S(X) for (2), depending on other features 

of John, should be closer to 1.0. Although there are clearly well-defined ways to make an N­

molecule sensitive to such overspecification, and though this is intuitively the correct theoretical 

approach, it is equally clear that we are only on the periphery of an awesome infinity of pattern 

information about the world. It takes the average adult 15 or 20 years of experience to 

accumulate enough knowledge of normality in the world to answer questions 2-4, so we cannot 

expect to make much of a dent in this knowledge with the few simple N-molecules which exist in 

the memory! 

However, there is one interesting interaction which helps ease this apparent infinity of 

pattern knowledge about various things. N-molecules themselves ask many questions in order to 

assess S(X) for structure X. And the questions they ask will in general look no different from the 

questions asked by other inference processes whose queries invoke N-molecules in the first 

place. Why not give each N-molecule the potential for calling upon other N -molecules to answer 

tests for features which are not explicitly locatable? Suppose for example, that, in the process of 
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assessing (3) above, some N-atom in the OWN N-molecule decides that the compatibility of John 

possessing something which ISA #HAMMER is 0.95. But it can't decide what effect the additional 

features (the composition of it's handle, and the shape of its head) should have upon the ultimate 

S(X). At that point, it could call other appropriate N-molecules to assess these two properties of 

hammers: "C7536 has a wooden handle" and "C7536 has a claw-shaped head". It could then use 

the assessments of these two N-molecules to equivocate the 0.95 which would be returned in the 

absence of these features. The resulting S(X) would then reflect the following lines of thinking: 

"Yes, it's pretty likely that John OWNS a hammer, because John is a middle-class, male 

suburbanite. And since many hammers have wooden handles, and most have claw-shaped heads, 

the chances are good that this hammer which he is likely to own fits these descriptions. I will 

therefore assess this with a moderately high compatibility." 

Modeling other people's knowledge is essential to certain types of inference. It can be 

expected therefore that various processes will frequently require the assessment of (MLOC X 

#L TM), that is, does some person, P, know (believe) X. Rather than encode in the MLOC N­

molecule the explicit knowledge of what people normally do and do not know, the MLOC N­

molecule defers most such decisions to the N-molecule which assesses X directly, with the 

constraint that, should any REASONS be returned along with the S(X) returned by the sub­

contracted N-molecule, P must be verified to have knowledge of these as well. 

Of course, just as tokens and concepts must be checked by N-molecules for 

"overspecification", so too must an information-bearing structure. That is, the assessment of 

structure X must be sensitive not only to the conceptual features of the objects X relates, but 

also to conceptual features of X itself. A good illustration of this is to contr ast 

John was asleep at 3AM. 

John was asleep at 3PM. 

Assume in both cases that the main structure to be assessed is "John is asleep", that is, (AWARE 

#JOHN -5). In order to assess either structure, the AWARE N-molecule defers most of the 

decision to the N-molecules which assess the features on the (AWARE #JOHN -5) structure's 

occurrence set. Here, only TIME features are present. The TIME N-molecule can therefore assess 

(TIME (AWARE #JOHN -5) 3AM) much higher that (TIME (AWARE #JOHN -5) 3PM), unless, by its 

own special heuristics, it detects some special information such as "John is a night watchman". 
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It was mentioned that there are three general heuristics common to all N-molecules. The 

third is that there must in general be tests which "massage" information which is stored in one 

form with potentially equivalent information, but which happens to be stored in another form. For 

example, section 8.1 will illustrate how the process of inferencing interacts with the process of 

reference establishment. In the example discussed throughout that section, a crucial realization 

turns out to be that (AGE #ANDY #ORDERMONTHS) (ie. that Andy's age is on the order of months) 

is highly compatible with (TS #ANDY #7MAR72) (ie. that Andy was born March 7, 1972). The AGE 

information was generated as al1 inference which, when discovered to match more closely with 

(TS #ANDYI #7MAR72) than (TS #ANDY2 #lJUN48), serves to choose baby Andy Rieger rather 

than adult Andy Jones as the referent of "Andy" in the example sentence. The point is that the 

process of discovering compatibility in that example was based on special knowledge contained 

in the AGE N-molecule which relates certain forms of AGE structures with certain forms of TS 

structures another. It is this ability of individual N-molecules which allows MEMORY to perform 

and use fuzzy matching: because the AGE N-molecule knew, among other things, to check for 

applicable TS relations, the compatibility of these two structures was realized, and helped solve 

a reference in that case. 

6.7.2.1 SUPPLYING THE REASONS FOR THE ASSESSMENT 

There is one final issue of normative inferences as they have been implemented. It is 

imperative that the memory preserve a record of connectivity in inference space: that MEMORY 

record the REASONS and OFFSPRING for each information unit it stores. It is therefore also a 

requirement of the normative inference process to supply any reasons (a list of other structures 

in the memory) which lead to its assessment S(X) of structure X. In cases where X remains as a 

memory structure after assessment (for example it plays a pad in the generation of another 

inference), these reasOns are attached to structure X as its REASONS property. This means that 

the N-atom which successfully assesses X must make explicit those facts it used. These facts 

correspond exactly to those successful tests it made which lead up to some fuzzy compatibility, 

as shown in Fig. 6-22. 
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6.7.3 WHERE N-MOLECULES ARE USEFUL .. ,. 

The normative inference process is not an isolated one. Rather, its purpose is to serve 

other processes which need access to this kind of fuzzy knowledge. Requests for normative 

inferences arise principally at the following points in conceptual processing: 

(1) when some inference molecule requires a unit of information, which can not be 
located explicitly, in order to generate its inference. 

(2) when an inference has been generated and the inference monitor needs to compare 
. it to its knowledge of normality for the purposes of determining what is 

potentially most interesting. This gives a slight goal direction to the process of 
spontaneous expansion of a structure in inference space. 

(3) when an question has been asked of the memory for which no explicit answer can 
be found. 

Requests in the second category require only the S(X) which is the result of the normative 

inference. Requests in categories (1) and {3} however generally result in the creation of a new 

memory structure if the normative inference returns an S(X) greater than O. For instance, if an 

action prediction inference needs to know whether Bill owns a hammer, and this is not stored 

explicitly, a temporary structure, X, which represents this ownership, (OWN C7536 #8ILL), where 

C7536 is a token of a hammer, must be created in order that the OWN N-molecule have a 

structure to assess. If the assessment, S(X), turns out non-zero, or greater that 0.5, or whatever 

the process which requested its assessment requires it to be, then the structure can remain, in 

its now explicit form, with STRENGTH equal to the S(X) supplied by the OWN N-molecule. Thus, 

just as a specifier molecule gives rise to a new unit of information as the result of a missing 

case, an N -molecule can give rise to a specific instance of a general pattern when it is needed 

by a process in category (1) or (3). 

6.7.3.1 HOW N-MOLECULES MASSAGE FUZZY MATCHES 

I have characterized the central purpose of an N-molecule as being to assess how 

compatible some new structure which enters the memory by inference is with the rest of the 

memory's knowledge. That is, should a required fact for some inference not be explicitly 

locatable, an N-molecule should then be called to attempt to assess the likelihood of X as a 

specific instance of more general patterns in the world which are believed to be true. It should 

be emphasized that this process will in general not be a clean one, but rather it will rely on 

case-to-case special heuristics. The N-molecule construct is where these heuristics can exist. 
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The N-molecule is where data lookups can be given a certain degree of fuzziness. For 

example, suppose some inference needs to know whether X is touching Y, that is (PHYSCONT X 

V), but only the information (PHYSCONT Y X) is stored in the memory. The PHYSCONT N-molecule 

is the ideal place 10 encode PHYSCONT's symmelricily: when the straightforward lookup fails, the 

structure (PHYSCONT X Y) is simply created, then assessed by the PHYSCONT N-molecule, which, 

among others, applies the special heuristic that PHYSCONT is symmetric. In a sense, this is a very 

primitive form of fuzzy matching, and it is not hard to imagine many subtler forms. 

The notion of an N-molecule is reminiscent of a theorem in a traditional, task-oriented 

system. That is, given that some information cannot explicitly be located in the data, what can a 

special procedure (a theorem) do to help out. In a sense, each N-atom is a theorem which brings 

a knowledge of normality and special heuristics to bear on specific units of information. However, 

an N-molecule is viewed as "something to do when all else fails", whereas the traditional utility of 

a theorem is a far more central process. That is, because the system tries spontaneously to make 

everything as explicit as possible, the assumption is that most information which is true will be 

drawn out explicitly, and this leaves little work for the traditional theorem. However, I am not 

proposing that all information will be drawn out, or that it is desirable to go too far in this 

process. The concept of an N-molecule will undoubtedly have to be extended to accomodate the 

traditionally more involved operations of a theorem prover. But, however extensive this 

capability is, it will remain ancillary to the spontaneous expansion of structures by conceptual 

inference. 

6.7.4 SUGGESTIONS FOR RESEARCH 

Assessing the "normality" of a memory structure is a very sophisticated process. It, 

however, provides a very important focus for memory research. By asking "What other 

knowledge could affect the likelihood of X being true?", we spill over into every conceivable 

topic of memory and knowledge. Yet doing it is fun, useful, and provides a direct paradigm by 

which we can get into some tougher issues of inference and deduction. My feeling is that anyone 

who desires to attack any issue of comprehension should begin by analyzing the kinds of 

information he would need to assess the normality of a piece of conceptual information in the 

way outlined in this section. 
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6.8 STATE-DURATION INFERENCES AND THE FRAME PROBLEM 

sample: Johnny was mad at Billy last week for: breaking his toy. 
Is Johnny still mad at Billy? 
Probably not. 

sample: John handed Marya book a moment ago. 
Is Mary still holding it? 
Perhaps. 

sample: John handed Marya book yesterday. 
Is Mary still holding it? 
Almost certainly not. 

sample: John started eating dinner at 6pm. 
It's nOw 6:15. Is he finished? 
Perhaps, but probably not. 

In the conceptual memory, the temporal truth of a structure is not merely a function of that 

structure's presence or absence in memory, but rather is a function of explicit time relationships, 

time-related inferences and time normality knowledge. In other words, every structure (concepts 

and tokens included) has time dependencies. In order to determine the truth of a structure, X, at 

time T, much more work has to be done than simply asking whether X exists (disregarding time 

attributes) in memory. 

Any model which deals with a constantly changing world is beset by the classic "frame" 

problem. Briefly, this problem is the following: given some piece of information which is true at 

time t 1, under what conditions will this information be true at a future time, t2, and how and 

when should it be updated to reflect this passage of time? This problem is compounded when no 

piece of information is either true or false, but rather is "believed to some fuzzy degree." The 

frame problem is a very real issue for conceptual memory. 

Consider for example the following sequence: 

John handed Mary a book. 

Is Mary holding the book? 

Too simple a proof procedure which was sensitive only to explicitly stored time information 

would say "no" to this query, simply because knowing that Mary was holding the book at some 

past time (regardless of how near in the past) has nO logical relation to Mary's holding the book 

nOw. The proof would simply fail, not realizing how close it came to locating the desired 
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information. In a conceptual memory, solutions to this aspect of the frame problem (keeping 

temporal knowledge up to date) are provided by state-duration inferences. 

6.8.1 POSSIBLE APPROACHES 

There are two basic approaches to the problem of knowing what is and is not true #NOW, 

based on what is known to have been true sometime in the past. Th~ firs! approach is based on 

the philosophy that this updating should be constantly in progress as some sort of background 

monitor. While perhaps aesthetically pleasing because it keeps the memory "clean", it is hard to 

envision either a theoretical or practical means of implementing this type of scheme in a truly 

large memory. There are, in addition, strong psychological arguments against this method. People 

simply do not periodically scan through their entire memory updating all old facts! 

A more realistic approach, both computationally and psychologically is to have the ability to 

detect information which may have become dated, and update it before using it. This has the 

same effect in theory if the detection and updating are done at a very low information retrieval 

level because then only temporally true information will then be "seen" by the processes which 

request the information retrieval (in particular, all sorts of inference molecules). This ability to 

detect and update information is based heavily on a knowledge of normal durations of states and 

protracted actions in the world. 

6.8.2 NORMAL DURATIONS 

Recall that with any proposition, P, whose truth has a temporal component (ie. is not a 

timeless truth) is stored at least one time proposition using one of the following predicates: TIME, 

T5, TF. The question is, what happens when some process needs to know whether P is (was, will 

be) true at some time T whose relation to one or more of P's explicitly stored time aspects is 

known? That is, if at 3pm we say "John is eating lunch", the memory will make the resultative 

inference that John becomes satiated. Then, if we come back at 4PM and ask the memory "Is John 

hungry now?", we would want the memory to answer "Probably not. He ate at 3, and entered a 

state of hunger satiation then, and this particular state typically lasts 4 or 5 hours in John's 

culture." Although this is a fairly sophisticated example, a fairly simple, and very general, 

mechanism underlies it. 
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This mechanism is one which converts a knowledge of normal durations for various states 

and actions into compatibility measures, ie. STRENGTHs. In the memory, knowledge about the 

normal duration of states and actions is organized around the time predicate N-molecules. 

Suppose P is an information structure with which no TF time feature is associated, but which has 

a TS time feature, as shown in the left of Fig. 6-24. 

ns * *) 

IPI/ ~ ITI 
Figure 6-24. 

time ----+ 

If' 
T 

If' 
T' 

The problem to be solved by a state duration inference in its simplest form is this: what is 

the approximate likelihood of P being true at T', where T' is some other time whose value is 

known? That is, if an inference process needs to know whether P is true at T', how can this 

informaton be related to the TS information of Fig. 6-24? 

Clearly, if T' is before T, this information cannot be of much help! The interesting question 

in this case occurs when T' is after T. (Of course, if some other structure has only a TF, with no 

TS relation, the opposite is the case: the interesting T' is one which lies before T.) To ascertain 

P's likelihood at T', we must know something about the specific action or state P: how long do 

actions or states of this sort normally last. Notice that the answer is always highly dependent on 

the concepts involved in P, not just upon the conceptual predicate or even the form of the 

conceptual structure. For example, how long will it take an elephant to walk from San Francisco 

to Washington D.C.? How about if his right hind leg is broken? What if his trunk is sore? For what 

order of magnitude of time might a person continue to grasp a small object he is handed: what if 

it's a hot potato, what ·if it's a sentimental diamond ring from a departing lover. How long will 

Mary be gone shopping: where is the store, what does she need to buy? This is again a hint that 

to attempt to encode knowledge about the normal durations of actions and states in passive data 

structures might lead to undesirably complicated data structures. There are in genenal simply 

too many dimensions, and too many places where special heuristics are needed (for instance 

calculating the elephant's walking time from an estimate of his speed, and of the distance from 

San Fransisco to Washington D.C.) to attempt to encode duration information in passive patterns. 
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Instead, it would seem to be far more desirable to have an organized system of procedures 

whid1, when applied to a state or action structure, P, will return an "order of magnitude" 

estirnate of P's duration. Where are such procedures to fit? The question "What is the normal 

duration of structure P likely to be" can be viewed simply as a statement of fact with part of the 

statement unspecified: (NDUR P X?). This leads naturally to the notion of an NDURation specifier 

molecule which is a collection of specifier atoms designed to handle all sorts of patterns. 

The process of making a duration prediction for structure P would then consist of creating 

another structure (NDUR P X?) (where the X? here stands for another token in memory which has 

been marked UNSPECIFIED), then applying the NDUR specifier molecule to this new structure. A 

successful specification would result in the unspecified entity, X?, having been specified by some 

particular duration concept, D. If D is a "precise" duration concept (the time of a TV program for 

instance), then P is either true or not true at time T', depending on whether T' lies in the interval 

T to T +D. Otherwise, the duration is a fuzzy durati6n concept, and some more computation, 

which we will get to in a moment, must be performed. But notice that by handling the problem 

this way, a very desirable byproduct is produced: the specified NDURATION structure will remain 

and can be associated as one REASON behind any inferences which rely on P's truth at time r. 

That is, the memory makes explicit what would otherwise have been an implicit duration 

inference. Hence, if we ask the memory why it believes John not to be hungry at 4pm, it can 

respond "Because he was satiated at 3pm, the normal duration of such a state is usually on the 

order of several hours, and it's only 4pm now." 

Should some specifier atom within the NDUR specifier molecule successfully specify a fuzzy 

duration, it can attach whatever reasons it used to make its decision to the NDUR structure as 

this structure's REASONS. 

What should become of this duration which has been specified for structure P? Suppose, 

for example, the NDUR specifier molecule specifies for P the fuzzy duration #ORDERHOUR. 

Although "on the order of an hour" here is indeed a fuzzy duration concept, in this context it has 

a very concrete interpretation: all "order-of" duration concepts can be mapped onto a 

compat'lbility, C (a measure of the degree to which some structure, P, can be believed), such that 

C is some function of the difference between the T associated with a TS, TIME or TF feature of P 

and the T', for which P's truth is being ascertained. Thus, for example, if the normal duration for 
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P can be specified as "order of an hour" and there is a (TS P T) relation stored, P's truth at T +50 

minutes would be very likely, whereas P's truth at T +3 hours would be very unlikely. 

6.8.3 MAPPING FUZZY DURATIONS ONTO COMPATIBILITIES 

Assuming some specifier atom can determine a likely fuzzy duration for structure P, how 

does the fuzzy duration concept become a compatibility, based On T'-T? Associated as a 

property of every fuzzy duration concept in the memory is a function, F, which specifies the 

STRENGTH with which P might believed, based On the value of T'-T (recall that T is the known TS 

of P, T' is the time at which P's likelihood is being assessed). In general, such an F will be a 

continuous function of (T'-T), having the characteristic shape shown in Fig. 6-25. In general, it is 

necessary not only to have fuzzy duration concepts for all orders of magnitude, it is also 

necessary to have sharply-falling and gradually-falling versions of the same order of magnitude 

to characterize states which come to generally abrupt halts after some approximate duration as 

well as those whose likelihood trails off more gradually after some approximate duration. 

I 
1.0+ 

A---------i~hr--------~hr 
(T - T') ---~ 

Figure 6-25. A typical STRENGTH function for fuzzy duration ItORDERHOUR. 

In the memory, functions F which map T -T' onto a STRENGTH are implemented by simple 

LISP lists which store STRENGTHs as a step junction of T'-T, rather than as a continuous one. 

This approach simplifies the problem of designing complicated continuous functions, and it makes 

the correspondence easier to read and adjust experimentally. Such a list is shown in Fig. 6-26 

and takes the form of window-strength pairs. For fuzzy duration concept, D, this associated step 

function list is attached as the property "CHARF"; the fuzzy duration's characteristic curve. 
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(W1MAX 5ll (W2nAX 52) (W3MAX 53) ... (WnMAX Sn) ) 

B $ T'-T < W1MAX has strength Sl 
W1MAX $ T'-T < W2MAX has strength 52 

T'-T ~ WnMAX has strength e 
Figure 6·26. The format of a fuzzy duration concept's step function. 

6.&.4 THE COMPLETE PROCESS 

The complete process of a state-duration inference is the following: P is some memory 

structure with TS= T, and the likelihood of P still being true at time I' is desired. An (NDUR P X?) 

structure is created and the NDUR specifier molecule applied to it. The molecule performs tests 

to match P with some more general pattern with which a duration concept, 0, is associated. If P is 

successfully matched, the X? is replaced by (the usually fuzzy) D, and whatever distinctive 

features of P figured into this decision are attached to the NDUR structure as REASONS. Next, the 

CHARF property for 0 is retrieved, and the quantity 1'-T is calculated. A window in the CHARF 

step function -- with which a STRENGTH, S, is associated -- is then selected. This S is a measure 

of the likelihood that P is still true at 1', and is the essence of the state duration inference. 

However, if some other inference molecule needs the NDUR structure as a REASON for its own 

inference, a (TIME P 1') structure is created ("P exists at time T"'), and this structure is given 

STRENGTH=S and a REASONS property consisting of two structures: the original (TS P T) 

structure, and the newly-created (NDUR P D) structure. 

There are two more loose ends which I have not mentioned. First, before creating the 

unspecified NDUR structure and calling a specifier molecule, the state duration inference process 

first looks to see that such an NDUR structure does not already exist from some previous 

assessment of P. If it does, the duration already specified can be reused. Second, if the assessed 

likelihood of P's truth at I' turns out to be extremely low (say, less than 0.10), the state duration 

inference process should generate the explicit terminating (TF P 1') structure. That is, it should 

make explicit the fact that P has probably ceased to be true. This is the "automatic" updating of 

temporal aspects of memory structures mentioned at the outset. 

Fig. 6-27 illustrates the process of a state duration inference. 
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6.9 

.. -'? , ... ') I' 
REASONS ' 

for s~ecification 
of #OROERHOUR 

1* * ... *1 r 
1 R~SONS I NDOR SPEC t F t ER 

<TS 

(NDUR * *)~~==========> MOLECULE 

is P) ~ .......... - _ 1 spec if i cat i on 
'\ --... result 

# ... ~ #ORDERHOUR ' 
(UNSPECIFIED #) . ~-'" 

* Ie:.... REASONS for 
--'1'...--- be I i ev i ng t ha t 

k~ ... ~ Pis st i II true rUt a t t his tim e , T ' 

this S determined 
from #ORDERHOUR's 
step function, 
using M-N 

, 
... , , 

, 
(TIME * *) ~----~ STRENGTH S ~---

~# 
(this is the T' at which P' 
truth is being assessed) 

(TVAL # M) 

Figure 6·27. The process of making a state duration inference. 

FEATURE AND SITUATION INFERENCES 

sample: Andy's diaper is wet. 
Andy is probably a baby. 

sample: John's weathered face and gray beard intimidated Johnny. 
John is probably an old man. 

sample: Fred wagged his tail. 
Fred is probably an animal of some sort. 

sample: Fred bit the postman on the leg. 
Fred must be a dog. 

Most of the classes of conceptual inference I have discussed so far can be thought of as 

dealing with the more important facets of a large "motivation- action- state-cause- enablement­

knowledge" complex: how each aspect, when allowed to react spontaneously to language meaning 

stimuli, contributes to understanding by expansion in inference space. Although this complex 

seems to provide the main architecture for processing the meaning content of utterances, there 

are other classes of inference which have far less structure, but which play very important roles 
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in the expansion process. These are typically inferences which are more closely related to the 

ideas of chapter 4 where I discussed some desirable word and feature "activation" capabilities, 

through which features of complex situations to which language alludes are drawn out. Of course, 

as I have argued, this is the purpose of all inferences. But I want here to illustrate a very large 

class of inferences which are founded more on simpler associative relationships between 

information in complex world patterns, rather than on the more rigid cause-effect, or action­

enablement relationships of many of the previous sections. 

There seem to be two distihtt classes of these kinds of inference which are based more on 

"association" than on "logic": (a) those which predict new conceptual features of concepts and 

tokens, based on their old conceptual features and upon the situations in which they appear, and 

(b) those which make explicit features of a pattern in the world -- a situation -- to which SOme 

other information alludes. I will call inferences in class (a) feature inferences, those in class (b), 

situation inferences. 

6.9.1 FEATURE INFERENCES 

A feature inference draws out new features of a token or concept from existing (known) 

features of that token or concept. That is, by knowing a small number of "distinctive" features 

of an entity, it is often possible to have the ability to predict (make explicit) more features of 

that entity which are commonly associated with those already known. This is an extremely simple 

idea, but it is something at which human language users are quite facile, and it provides an 

important source of expansion in inference space. In section 8.1 there is a computer example 

where a feature inference plays a key role in the memory's ability to understand a simple 

utter ance. 

I will illustrate the idea of feature inference using that example: "Andy's diaper is wet". The 

underlying meaning graph of this utterance is shown in Fig. 6-28. 

val 
FLUID <===> LOC ~---- DIAPER 

t 
,j, val 

DIAPER <===> LOC ~---- ANDY 

Figure 6·28. 
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Hearing this, we automatically conclude that Andy is a very young person. Although it is 

conceivable that an intelligent analyzer, while constructing this meaning graph, could be equipped 

with special heuristics to realize that "Andy" is probably an infant, it is not clear how general or 

desirable such an ability would be, or exactly how it would be done. On the other hand, tasks of 

this nature have a very natural solution in the memory where such information can be quite 

useful. It would be acceptable for the analyzer to render the descriptive sets shown in Fig. 6-29 

for the objects involved in this conceptualization, as long as the memory is prepared to extend, 

'refine or correct them subsequently by applying its broader knowledge of the world to make 

further predictions. But exactly how and when can this knowledge be called into play? 

(LaC * *) 
#.,/ '------~ # 
(ISA # #FLUIO) (ISA # #OIAPER) 

(LaC # *) 

# tt-""----.... / 
(ISA # #PERSON) 
(NAME # ANDY) 
(SEX # #MALE) 

Figure 6·29. "Andy's diaper is wet." 

To answer this, it is important to recall the process by which the memory extracts all the 

information from each conceptual input. This is especially relevant to feature inferences because 

most features of objects are communicated only incidentally in utterances, through RELative 

conceptual links. In thi's example, the subpropositions MEMORY extracts which are relevant here 

are twofold: 

1. (LOC C4516 C2308) 
2. (LOC C2308 C7211) 

assuming C4516 is some fluid, C2308 is some diaper 
which is located on C7211, some person named Andy 

Figure 6·30. 

The important point is that both of these subproposition structures will be allowed to 

expand in inference space. But in particular, doing so will permit (2) to give rise to the feature 
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inference: "C7211 is not only a #PERSON, because a diaper is located on it, it is likely to be a 

very young person". In other words, the new feature inference (AGE C7211 #ORDERMONTHS) can 

be made, with REASONS being the fact that (LOC C2308 C72ll). By noticing one feature of 

C72ll, the LOC inference molecule, when applied to structure (2), can predict another feature of 

C721l on the basis of a common association between the old and new features. This is a typical 

feature inference. 

The four samples above all illustrate similar feature inferences. Three interesting questions 

arise, though: what are the differences between feature inferences and (a) specification 

inferences, (b) certain forms of intrinsic enabling inferences, and (c) what is the relation between 

the PART inference in the example above and the process of relation pathfinding which predicted 

the PART relation in the first place. 

The first question might be phrased this way: couldn't the fact that Andy's exact nature was 

unknown have been explicitly marked by the analyzer, to be filled in by a specification 

inference? The answer is "Yes, probably". Clearly, the descriptive set for this "Andy" could have 

been marked as an UNSPECIFIED, later to be detected by a specifier molecule. But there are 

three reasons why the feature inference approach is more convenient. First, the conceptual 

analyzer tries at all times to make "best guesses". In this case, since its best guess predicts that 

"Andy" refers to a male person named Andy,for the analyzer's purposes, "Andy" IS specified -­

age information is simply not relevant to the process of constructing the meaing graph of Fig. 6-

28. In general, the analyzer will not be expected to be aware that much more about Andy in in 

general inferrable. That is, how, in general, is the analyzer to know what is and is not ultimately 

"fully specified" in cases such as this? Second, if the nature of "Andy" in this example were to be 

solved by a specifier molecule, that molecule would in general become extremely complex, having 

to have special heuristics for searching for telltale existing features already known about the 

entity it is further specifying. A feature inference, on the other hand comes about naturally by 

the process of inferencing on all information in a meaning graph "simultaneously". Third (and 

most importan!), more often than not an entity will be "fully" specified, in that it uniquely 

identifies a token in memory, yet we still want the ability to collect more features of it. Specifier 

molecules are out of the picture in such cases, so that feature inferences can be quite distinct 

from them. Thus, the process of speCification is viewed more as a means for inferring the 
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identity of truly missing information, rather than as a process which collects more and more 

conceptual features of an entity which might already be fairly richly endowed with features. 

The second question -- what is the difference between certain types of feature inferences 

and certain types of intrinsic enabling inferences -- is really a non-issue. The answer is that 

they are frequently the same sort of thing, but feature inferences are more general. For 

instance, if the memory hears "John ate a gronk", it .will certainly make the intrinsic enabling 

inference that a gronk, whatever it is, is capable of being eaten: (EDIBLE #GRONK) becomes a 

new feature of this concept with name "GRONK" (there is still no information about what happens 

to you if you eat one -- only that one can be ingested). In other words, what I have called a 

feature inference, might also arise via an enabling inference. But this is unimportant. What is 

more important is that feature inferences are more .general: they are capable of inferring new 

features, even where no enablement is implied. The samples above illustrate this. 

The third question in this: if, by the relation pathfinding technique, the memory can discover 

the LOC relationship between "Andy" and "diaper" in the first place, why can't the information 

that Andy is very young be inferred at that point? Again, we must say that it could, but that it is 

more naturally done later on. The problem in this case is that it is convenient to classify "diaper" 

as an article of clothing whose relation to a person is the same as all other articles of clothing~ 

The path which the relation pathfinding process yields will serve only to relate #DIAPER with 

#PERSON as a thing to be worn. Nowhere is age involved in the clothes-person path, and rightly 

so: a person of any age can wear a diaper. It is only a (highly likely) inference that, if some 

person is wearing one, he is very young. By recognizing that this is just another inference -­

that is, by implementing it in an inference molecule -- it can be made quite sensitive to unusual 

contexts. In this example, for instance, before generating the (AGE X #ORDERMONTHS) inference, 

the LOC inference atom can test for special information about X which could affect the inference 

(for example, what if X a paralyzed adult). 

6.9.2 SITUATION INFERENCES 
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sample: Mary is going to a masquerade. 
Mary is probably wearing a costume. 

sample: John is asleep on the subway. 
He is probably sitting slouched over on the seat. 

sample: John is picnicing in a meadow. 
John probably smells flowers, and sees grass. 
He might be stretched out, relaxing. 

It is not difficult to extend this notion of a feature inference of a concept or token to 

feature inferences of entire situations. That is, just as some feature(s) of an entity can lead to 

other features of that entity which frequently co-occur with X, so can one conceptualization 

serve to draw out an entire situation which consists of many other conceptual patterns. I will 

simply illustrate this idea here with some examples. In practice, this kind of inference is too 

unstructured to perform extensively in a practical way. But it suggests an interesting topic for 

further research. 

By drawing out implicit information and features of entities, feature inferences have some 

hard-to-capture, but intriguing, relationship with notions of "visual imagery" and "iconic memory". 

That is, they seem in some sense to be capturing, in a discrete, propositional form, something of 

what it means to "imagine a situation" or an object. 

Modulo some more directed research into this type of inference, it might at some point 

prove not unreasonable to conjecture that visual imagery and iconic memory are nothing more 

than this drawing out -- this activation -- of features of objects and implied information in a 

situation. This is perhaps not a new idea, but it has a tangible expression in the memory 

formalism, and hence is a concrete conjecture to make in this context. 

6.10 UTTERANCE INTENTION INFERENCES 

sample: 

sample: 

Mary couldn't jump the fence. 
Why did she want to? 

Don't eat green gronks. 
OK. But YOLi mean I can eat other kinds of gronks, right? 

I have for the most part avoided inferences which lie more in the domain of conversation 

models. There are many classes of inferences bound up with the speaker's intention for saying 

something, or saying something with a particular emphasis, which bear no immediate logical 
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relation to what he has said, but which people clearly employ most fruitfully. While these 

inferences are connected with many specific conventions of language use, they are nonetheless 

real conceptual inferences. They simply exist at the "higher" level, within a model of 

conversation. I will call inferences in this class utterance intention inferences, and abbreviate this 

by "U-intent". 'In this section, I will point out some simple instances of this class. 

What are some examples of these mysterious inferences? Two of them are based on very 

simple patterns: (CANNOT X) and (NOT X). Suppose we hear P say "I can't get the lid off this jar.", 

ie. P has just communicated a (CANNOT X) form to us which is roughly represented as: 

(CANNOT ') 

(CAUSE * t 
(00 P}~(TF * TU 

~{PHYSCONT * 
# ~<---_.-/ 
(the I i d) 

*} "# (the jar) 

(P is unable to cause the lid to cease to be in physical contact with the jar). What did P mean by 

this? That is, what effect does P believe it will have on the hearer? In everyday use, it can 

safely be construed as a request for help. But what inference makes this known to the hearer? 
, ~ 

The answer in this case appears to lie in a very simple inference which, once generated, 

will lead. to other inferences and actions dependent upon the context. This inference is that P 

WANTs X to be the case. In this example, this leads to the structure 

(WANT P 1) 
(C~r) 

{DO ~ (T~ * Ti) 

~{PHYSCONT #L I D1 #JAR1} 

This structure has the interpretation: P wants sOme causal structure to be true; P must therefore 

also want the results of the causal if it were to be true; P therefore wants (DO P) and (TF 

(PHYSCONT ltLiDl ltJAR1) Tl). Knowing both the CANNOT and the WANT, the hearer might 

perform some action that would help P, having applied some other belief pattern that when a 

friend can't achieve something he desires, he needs help. 
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There seems to be one additional criterion for this inference type, however. That is that the 

CANNOT structure have a time associated with it- that it not be a timeless statement of fact. The 

interpretation of a time associated with a CANNOT is that its associated action was a.ttempted, 

but was unsuccessful in achieving its probable consequences. Put this way, this kind of 

inference's utility can be viewed as setting the stage for motivational inferences from the 

unsuccessful action. As an example of why timeless CANNOT structures should not give rise to a 

U-intent inference, consider the statement "Ralph can't swim." Ralph simply never learned to 

swim, and it is not implied that he in fact wants to be able to swim. In other words, the 

implication that he has ever attempted to swim at time X is not present. 

There are many illustrations of how this type of inference can serve as a critical link in 

understanding: 

1. John was unable to start the fire. 

2. Bill couldn't find his keys yesterday. 

3. Rita wasn't able to go to the fair. 

4. Pete prevented Sally from climbing the flagpole. 

5. John doesn't seem to be able to sell his car. 

6.10.1 OTHER EXAMPLES OF U-INTENT INFERENCES 

Inferences which can stem purely from the way in which a thought is phrased, or from what 

information the speaker decided to include constitute a seemingly limitless class. I will not go 

very deeply into it here, but merely point out that there is a wide-open domain for research. I 

will briefly discuss two of the more obvious and useful types of inferences in this U-intent class. 

The first is sensitive to possible causality relationships between an actor's action and extra 

attributional information in the sentence concerning an object involved in that action. For 

example, Linda said to Chuck the other day 

I threw out the rotten part of the fig. 

Contrast this with the similar, but simpler thought "1 threw out part of the fig." The first sentence 
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carried a referentially nonessential attribution about the part of the fig which was discarded; 

that is, in the context of this utterance, it would have been quite possible to identify the fig and 

its "part" even without knowing anything else about it, as in the second sentence. Since the extra 

information was not included to identify which fig and part were discarded, why was the 

attribution about the part's rottenness included? Apparently, Linda had included this extra 

attribution to indicate that she wanted Chuck to infer that the part was discarded because it was 

rotten. 

There seems to be a mini-principle here: when more information is communicated about an 

object than is requisite for the referential disambiguation of that object, the extra attribution 

might stand a chance of being causally related to the action involving that object. In this 

particular example, the extra attribution is somewhat redundant, since we normally assume that 

fruit is thrown out because it is rolten. However, in the sentence "I lambasted the man who was 

standing in my way", this extra attribution serves to specify what would otherwise be an 

unexplained cause of the lambasting. This language use of the REL link to communicate underlying 

causals is illustrated in Fig. 6-31. 

LINDA 
P 

<=c=> 

THIS 

FIG <i:=i:> PSTATE 

o 
PTRANS +---­

l' 

l' 

1 
FIG 

I~I--"" GARBAGE 
+--- LINDA 

CAN 

REALLY MEANS 

val 
+----- -4 FIG 

LINDA 

THIS 

val 
<EEE> PSTATE +----- -4 

/ \ 

III p 

<===> 
o 

PTRANS +---­
l' 

I~I:~: 
FIG 

GARBAGE CAN 

LINDA 

Figure 6·31. All underlying causal communicated conceptually by a REL link. 

The second representative of this large class of U-intent inference types also concerns the 

reasons a speaker chooses to include more information about an object than is necessary for 

referential distinction. However, from this type of additional attribution, it is often possible to 

infer attributes of the object or concept itself, rather than causality relationships. For example, 
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someone might lell you "Don't eat gronks." If you're friends, you can safely infer that the 
existence of a gronk in one's stomach probably leads to bad things; in other words, gronks are 
inedible. If, however, he says "Don't eat green gronks.", you may infer with nearly equal safety 
that gronks are OK to eat, it is only a green gronk which will do you in! Because of one 
additional and seemingly inconsequential attribution, you may infer that gronks are edible. This 
could save your life on a desert island some day! 

Both of these are very general rules. To implement them in a theory of conceptual memory 
would obviously require a much more detailed analysis, especially of when special cases and 
circumstances should override these normal U-INTENT inferences. They have been cursorily 
described here only to represent a large "missing" class of inferences in the current theory and 
implementation of conceptual memory. 

This example illustrates the usefulness of one type of U-intent inference: inferring (WANT P 
X) from (CANNOT P X). The input sentence is "John was unable to get an aspirin." MEMORY will, in 
the absence of context, predict that John wanted an aspirin, and this inference opens up an 
otherwise inaccessible line of inference which terminates in the presumption that John 
underwent a negative change on his health scale. Since, having generated this inference, MEMORY 
has no means of determining the cause of the negative change, a reasonable question for 
MEMORY to ask is drawn out by Ihis line of inferencing: "What caused John to be sick?" 

JOHN WAS UNABLE TO GET AN ASPIRIN Here MEMORY reads the input sentence. Its analyzed representation is shown to the left. 
«ACTOR (JOHN) <=> (*ATRANS*) OBJECT 
(ASPIRIN REF (*A*)) FROM (*PERSON* SPEC (*U*)) TO (JOHN)) TIME (TIM01) 

MODE «*CANNOT*))) 

TIM00: «VAL T-0)) 
TIM01: «BEFORE TIMe0 X)) 

«CANNOT «*ATRANS* (#JOHNlJ (C00B1) (Ceee5) (#JOHNll) (TIME (Ce'0B8))))) 

C0013 

This is the partially integrated MEMORY structure. CBee1 is the token of asp i r i n. CBBBS is the person from whom John could not get CBee1. Ce0B8 is some past time. Notice that C0e05 has arisen as an unspecified concept. It will in the absence of context in this example be fi I led in as some 
instance of a #DRUGSTORE. 
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STARTING INFERENCE QUEUE: 
({X 1. B CBB13)) 

APPLYING INF MOLECULE CANNOT TO C0013: 
{CANNOT (*ATRANS* #JOHNl CB0Bl C0BB5 

#JOHNll ) 

ABOUT TO APPLY .CANNOT1 TO C0B13 
I NFERR I NG: (WANT #JOHNl ceen 1) 

ALSO GENERATING: (TIME ce018 C0016) 

«P 1. 0 C0018) (M 1. 0 C0(25) 
(M 1. B C0028) (C 1. 0 C0039) 
(M 1. B CBB48) (M 1. B CB051l 
(M 1.B CBB58) (C 1.B CBB53)) 

C0B13: (CANNOT CBell) 
(CANNOT (*ATRANS* #JOHN1 CBBB1 ceBes 

#JOHN1)} 
RECENCY: 5765 
TRUTH: T, STRENGTH: 1.0 
OFFSPRING: 

C0B18: <TIME CBe18 C0e15) 
cee18: (WANT #JOHNl CBell) 

I SEEN: (@CANNOTl) 

tee18: (WANT #JOHNl C0el1) 
(WANT #JOHNl (*ATRANS* #JOHN1 ce0e1 

ceees #JOHN1}) 
ASET: 

C0031: (CAUSE C0e29 #) 
cee28: (CAUSE C002G #) 
CBe19: <TIt1E # Cee16) 

RECENCY: 6816 
TRUTH: T. STRENGTH: 0.89999999 
REASONS: 

CBB13: (CANNOT Cee1l) 
OFFSPRING: 

C0031: (CAUSE CBB29 C(018) 
CB03B: <T I ME CBB29 C0Bl G) 
C0029: (WANT #JOHN1 CBB22) 
CBe28: (CAUSE C0025 C0(18) 
C0027: <TIt1E C0026 C(016) 
C0025: (WANT #JOHN1 CB021) 

ISEEN: (0POSTSCAN) 

(P 1. 0 C(018) 
(WANT #JOHN1 (*ATRANS* #JOHNl C00e1 
C0005 #JOHN1)) 

CBB31: (CAUSE C0029 C0B18) 
C0028: (CAUSE C0026 C(018) 
C0019: <TIME ceel8 Ce016) 

The starting proposition relevant to this 
example is simply the main one. AI I others 
have been suppressed. 

The first inference to occur from this 
structure is that John probably wanted 
to *ATRANS* himself an aspirin. The CANNOT 
inference molecule which generates this 
inference first checks that the CANNOT 
event has a time associated with it (ie. 
this impl ies that John attempted the 
*ATRANS* action. C00B8 is found as the time. 

Other inferences are made possible from 
this CANNOT ~ WANT inference. These are 
shown at the left. t0gether wi th their 
type (peripheral, motivational, causative). 

This is the original structure as it appears 
after inferencing. 

Here, the crucial WANT inference has been 
recorded as its sole offspring. 

This is the inferred structure after inferencing 

Notice how it has lead to other inferences. 

This is the resulting set of inferences 
from the original structure: John must have 
wanted to get an aspirin. 
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(M 1. 0 C0025) 
(WANT #JOHNl (TF (*POSS* C0001 C000S) 
C8008) ) 

C0028: (CAUSE Cee26 Cee18) 
C0027: (T I ME cee25 C0016) 

(M 1.0 C0029) 
(WANT #JOHN1 (*POSS* ceee1 #JOHN1» 

C0041: (CAUSE cee38 Cee29) 
C0031: (CAUSE C0e29 Cee18) 
C0030: (TIME C13e29 Cee16) 

(C 1. 0 C0039) 
(WANT #JOHN1 (*INGEST* #JOHN1 ceee1 
C6632 C6635» 

C0053: (CAUSE cee51 Cee39) 
[0050: (CAUSE C0648 Cee39) 
C0041: (CAUSE cee39 [:6629) 
C0040: (TIME C0639 C6015) 

(M 1. 0 C0648) 
(WANT #JOHNl (*LOC* cee61 C0635» 

C6050: (CAUSE cee58 [:01348) 
C0056: (CAUSE cee48 Cee39) 
C6649: (TIME ce048 Cee16) 

(M 1. 13 Ce051) 
(WANT #JOHNl (TF ceee1 Cee44») 

C6053: (CAUSE cee51 Cee39) 
C6052: (T I ME cee51 C6e16) 

(M 1. 0 C0058) 
(WANT #JOHN1 (POSCHANGE #JOHN1 #HEALTH» 

C0055: (CAUSE ce053 Cee58) 
C0050: (CAUSE C0058 C0048) 
C0059: (TIME cee58 Cee16) 

(C 1. 0 C0053) 
(NEGCHANGE #JOHN1 #HEALTH) 

C0058: (CAUSE C0053 C0055) 
C0655: (CAUSE C0053 C0058) 
C0654: (T I ME ce053 Cee51J 

John must haVe wanted to *ATRANS* an aspirin 
to himself because of the predictable results 
of that action. One of these is that whoever 
he tried to get it from would cease having 
it. 

Another result of *ATRANS*ing would be that 
John begins possessing the aspirin. 

The probable reason why John might want to 
possess an aspirin is to use it in its 
normal function. The normal function of 
an aspirin is found to be that it be ingested. 

The reason John probably wants to ingest 
an aspirin is for its predictable consequences. 
One predictable consequence is that the 
aspirin begins being located in John's 
insides (Cee35). 

Another predictable consequence of the 
in~esting is that the aspirin ceases to 
eXist. John might therefore possibly 
want this. Hopeful I,;!, heuristics in the 
evaluator demote this inference. 

A predictable result of a medicine being 
located in someone's insides is that the 
person wi I I undergo a positive change on 
his health scale. Therefore, it can be 
inferred that John wants such a positive 
change to occur. 

But if a person wants a positive change 
on some scale, it must be because he had 
previously suffered a negative change on 
that scale. During the post-inferencing 
scan for missing causalit':;J, this inference 
(poss i b I Y among others) w I I I be detected 
as lacking a causal explanation. This 
gives rise to the potential question shown 
to the left: "What caused John's negative 
change in health?" 
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6.11 SOME THOUGHTS ABOUT COMPREHENSIVENESS 

Having read this and the previous chapter on inference types, you may have framed the 

following question: "what is the relative scope of these inferences?" That is, of all the types of 

inference and deductive mechanisms people use to understand language, what portion can be 

accounted for by this system of classification? How comprehensive is this catalog of inference 

types? 

Any answer to this question is bound to be speculative. In addition, there is an inherent 

fuzziness concerning whether some particular inference is of type X or type Y, or even whether 

it can be viewed as one type in one context and another type in another context. What can be 

said concerning comprehensiveness, however, is this: I believe I have attacked the central core of 

the human inference ability. By doing so, the real success lies, not in the percentage of inference 

capability accounted for by this classification, nor in its variety, but rather in the demonstrations 

of how inferences interact among themselves and with language. Certainly there are other 

classes of inference which have not even been alluded to in these two past chapters. Section 

6.10 suggested one such class, and there are many which are mOre logically a part of a theory of 

conversation. To attempt to discover and classify by function all types of inference a human 

language user employs is a noble goal indeed, and it needs to be done. However, it will be 

encyclopedic, and this is not my immediate goal! 

Instead, we have the beginnings of a synthetic and computationally effective theory for 

modeling the abstract flow of information in the human brain as it concerns language 

underst anding. We must put into focus the larger issues which concern the utility of an inference 

class rather than its descriptive ability. In this way, the stage has been set for integrating more 

and more classes of inference -- based upon their efficacy to the understanding process -- into 

the larger picture of information flow in response to language stimuli. 
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6.12 SOME THOUGHTS ABOUT PRACTICALITIES 

In a sense, I have constructed a monster. If all the inference powers I have described these 

last two chapters were unleashed at once, it would not be unrealistic to expect 500 or 1000 

inferences to arise from each utterance. This is invigorating, because it is the essence of the 

theory: that each utterance expands into a very broad spectrum of surrounding information, and 

this spectrum interacts with the spectra of other utterances. When we consider orders of 

magnitude, 1000 inferences, viewed as a wave of activity in a parallel neural net of over ten 

billion nodes might be quite insignificant. While the program can perform in this "all-at-once" 

mode, it will often require 5-10 minutes of real time on a day when the system is not too heavily 

loaded. This is obviously unacceptable on a real-time basis, and it makes debugging very tedious. 

The theory is no less desirable because of this. What I envision ultimately is a system of 

genuinely parallel processes, which are based on the various reference and inference 

mechanisms, and which all work cooperatively and simultaneously on each utterance. This is a big 

order in practice, but it is an exciting goal which we could set out toward today on a small 

network of existing "mini" computers: one mini to determine referents, another to perform state­

duration inferences at the lowest level of information lookup, another to generate action 

prediction inferences from each input, another to generate enabling inferences, another to 

maintain RECENCY and TOUCHED tags, and so on. 

Also, the theory is in immediate need of a good, effective theory of forgetting. Clearly, it is 

neither psychologically real, nor practical, to retain all the 500 or 1000 inferences which can 

arise from each simple utterance. This is particularly true, since many of them represent a 

calculated waste. Those, however, which have been successful in enrichening the memory's 

connectivity -- those which have made interesting contacts with other memory structures, or 

those which have lead to interesting contradictions -- should remain as the net effect of the 

utter ance in the context in which it was perceived. This forgetting function might also be 

conveniently viewed as a parallel process which runs constantly "beside" the memory as it 

generates the inferences I have described. 

But for the immediate future, the progress will lie in upgrading the current program to the 

present state of the theory,.and in encoding many more inferences and data about the world in 
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general. Until this is done, we would perhaps only be skirting the tough issues by getting 

involved in parallel IJrocessing. 

In the next chaptei I will cover some of the programming topics which have been defined by 

the inference capabilities I have described. 
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CHAPTER 7 

THE INFERENCE CONTROL STRUCTURE, THE STRUCTURE MERGER, 
AND OTHER ASPECTS OF THE PROGRAM 

This chapter is devoted mainly to the memory's inference mechanism, which has been 

referenced throughout the two previous chapters, but not yet explained in programming terms. In 

particular, the major topics to be covered are the inference monitor and evaluator, inference 

molecules, and the structure merger. 

7.1 IMPLEMENTING THE INFERENCE CAPABILITY 

How are the inference capabilities described in chapters 5 and 6 
implemented? What is the nature of the inference control 
structure? 

There are three parts to this question: the first one concerns the familiar dilemma of 

whether to use data structures or program structures for what will eventually become a very 

sophisticated pattern matching process. The second part concerns the inference control structure, 

and the third concerns the nature of an individual inference. 

7.1.1 DATA VS. PROGRAM VS. DATA VS. PROGRAM VS .... 

What is the difference between information which is stored as "data" and information which 

is stored as "program"? I use sneer quotes here because a philosopher would perhaps tell us 

there is no ultimate distinction between the two: he can perhaps always argue that a program is 

simply a data structure which is interpreted by some higher process, and hence that it is simply 

data. Alternatively, he can view the "program" which interprets what he chooses to call "data" as 

"some higher process", then it is no longer data, but a program written in the language of this 

interpreter. So why pose the question? There are genuine pragmatic distinctions between 

program and data in a pattern matching system with requirements such as those we have 

defined. At some point, something needs to cause changes in the memory. Whatever this is at 

the time, it must be "process" rather than "data". 
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The main question is whether we want to view pattern matching as a very general higher 

level process which attempts to compare two data patterns with one-another, or whether it is 

more desirable to view pattern matching as a collection of many very specific, lower-level 

processes which attempt to match themselves to one one specific data pattern. These two 

alternatives are abstractly illustrated in Fig. 7-1. 

PASSIVE, DATA-BASED 

DATA I 
-----.---

~ 
GENERAL 
PURPOSE 
MATCHER 

U 

I PATTERN I 

rr 
YES, DATA AND PATTERN MATCH 

NO, DATA AND PATTERN DO NOT MATCH 

ACTIVE, PROCEDURE-BASED 

DATA 

r 
test 1 
test 2 

. 
test n 

U 

tests are on 
DATA and other 
memory 
structures 

SPECIFIC 
MATCHER 

YES, I MATCH THIS DATA 
NO, I DO NOT MATCH THIS DATA 

Figure 7-1. "Passive" vs. "active" pattern matching. 

A system which employs data-based matching is often termed "declarative", whereas one 

which relies mainly upon active, program matching is often termed "procedural". There are 

arguments on both sides of the fence about declarative versus procedural pattern matching: 

1. Data-based pattern matching provides a clear-cut distinction between that which is 
timewise relatively static process, and that which is timewise relatively dynamic data. 

2. There is a greater need to standardize data structures which store data than to 
standardize those which store process. Patterns encoded as process will by definition 
already be subject to the requirements in form of the programming language in which they 
are written. 

3. Data-based matching, with suitable formatting routines, permits easy extension of a data 
base. This includes the addition of new rules. 

4. Program-based matching is as fast and to-the-point as the pattern it is matching will allow. 
Case-specific heuristics are more easily encoded from pattern to pattern in a program­
based matching system. Data-based methods are inherently slower and harder to organize 
in optimal ways, on today's computers. Whereas a program-based matching system can 
look exactly at what is relevant from pattern to pattern, and can perform the matching in 
different orders for different patterns, based on special-case heuristics, heuristics which 
tell a data-based matcher which is relevant and what is a good order of matching are 
elusive, awkward and hard to encode in data structures. 
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5. In data-based matching, since the patterns are data themselves, they can be referenced 
just as any other data. Also, to communicate new patterns and rules to a data-based 
system is more straightforward than to co.mmunicate new patterns and rules to a program­
based matcher. This is because, in the program-based matcher, a new process must be 
synthesized which will perform the matching required to detect the new pattern. However, 
if they are formatted in predictable ways, programs can be treated as data when 
necessary. This permits rule extensions, but methods for building programs from rules are 
:10t well understood yet. 

6. Program-based matching allows a convenient means of escape to arbitrary subroutines 
during the match with no interruption. Although Tesler, Enea and Smith [T2J have 
demonstrated how to approach this problem in a data-based matcher, the solution is part 
of a very sophisticated system. 

7. Program matching is quite straightforward when variable binding must Occur to points in a 
matched pattern. In data-dased matching, special, often tedious, provisions must be made in 
order to extract features from the matched data as a byproduct of the match. 

One other practical drawback of data-based matching relative to the development of a large 

memory relates to (2) above. In a data-based matching system, some fairly rigid and 

comprehensive data format must be decided upon early in the research before it is fully known 

what the potentials of the system should be. It is much easier at this stage of development to 

write programs, keeping an eye out for recurring patterns of processing, than it is to define an 

all-encompassing data format for a data-based matcher. We must tolerate sloppy, cut-and­

pasted processes for the time being, and this is an admission that we simply don't know enough 

yet to commit ourselves. Once it is discovered with a degree of confidence what needs to be 

done, we can worry about encoding it in a pleasing homogeneous data formalism. But until then, 

we should not compound the problem by constraining ourselves to what will probably turn out to 

be inadequate or unwise choices of data structures for the dynamic (inference) processes in the 

memory_ 

From the bias evident in these pros and cons, and in the previous chapters, it should be 

clear that program-based pattern matching has been used wherever possible in the memory, and 

the bulk of the pattern matching occurs by active inference procedures. 
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7.2 THE INFERENCE CONTROL STRUCTURE 

The inference monitor is a LISP procedure called INFERENCES. It, in conjunction with 

specifier and normality molecules, is the supervising process by which all the various types of 

conceptual inferences I have discussed are generated. The monitor consists logically of the 

following components: 

1. queues of memory structures which have undergone inferencing (!INFERENCES), and 
of memory structures which are awaiting inferencing(!NEWINFS) 

2. the basic monitor, which maintains these queues, locates applicable inference­
generating packages of procedures, called inference molecules, and applies them 
to successive structures on the queue 

3. the structure generator which helps inference molecules generate inferences. This is 
a very simple interface function which actually creates new memory structures 
and adds them to the inference queue upon demand from specific inference 
molecules. As we will see, the structure generator is sensitive to the theoretical 
type of each inference it is requested to generate a memory structure. 

4. the inference evaluator, which looks at each inference after it is generated. The 
evaluator detects contradictions, reorders the inference queue, and requests 
merges of identical and similar structures which have been generated from 
independent sources. It is the principal agent by which new points of contact in 
inference space are recognized. 

5. the structure merger which physically constructs the new points of contact by 
merging two memory structures into one 

The reaction to each utterance involves several iterative passes through the inference 

monitor and reference-establisher. I am about to describe the character of the first pass through 

the inference monitor. This will then be extended to multiple passes which realize the important 

inference-reference interaction. 

7.2.1 THE BASIC MONITOR 

7.2.1.1 THE QUEUES 

The main inference queue is simply a top-level list, !INFERENCES, of pointers to memory 

structures which represent information from which inferences are desired. The starting 

inference queue for each utterance, U, consists of the set of sub propositions which the 

internalization process extracted from U's meaning graph. In the example of Fig. 4-16 for 

instance, three were extracted, so that the starting queue would be as shown in Fig. 7-2. This 
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queue will grow in length as new inferences are made, and will eventually end up as R (typically) 

very long list of memory structures which were inferred as a reaction to U. 

The inference queue is a temporary construction for each utterance, U: it is reset to NIL 

before inferencing from each U is begun. The lasting tangible effects of the utterance on the 

memory are the actual structures which result from inferencing and structure merging; the 

inference queue is simply a temporary record of the memory structures currently associated 

with the utterance under inferencing. 

! INFERENCES: (* * 
----~.,) ,r- / 

* ) 
"-----"). 

(MLOC * *) ~* *) 
(A TRANS #pfu. •• \--..# ~ 

(FRIEND #PETE #JOHNl 

(ISA # #LTM) (ISA # #TIME) 
(PART # #MARY) <BEFORE # 417768) 

Figure 7·2. A typical starting inference queue. 

The basic monitor implements a breadth-first inference expansion of this starting queue of 

structures, SI, ... ,Sn. It begins with the first structure, SI, on the queue, and proceeds to the 

right, performing the operation I am about to describe on each Si in turn. The inferences which 

arise from SI, ... ,Sn are collected on another temporary queue, !NEWINFS. When SI, ... ,Sn have 

been exhausted, !NEWINFS is appended to the main queue, !INFERENCES, and !NEWINFS becomes 

the new queue to expand. Thus, each !NEWINFS represents the next level in the breadth-first 

expansion, and at the end, !INFERENCES, will have collected every inference generated by this 

level-by-Ievel expansion. The relationship of these two queues is illustrated in Fig. 7-3. 

! INFERENCES: (* * *) ( ••••• ) 

!NEWINFS: (* * * * * ........ * * * *) 
Figure 7·3. The queues which collect 

the breadth-first expanded inferences. 
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7.2.1.2 APPLYING INFERENCE MOLECULES TO EACH STRUCTURE ON THE QUEUE 

For each 5i to be expanded by conceptual inference, the following occurs. First, if any 

UNSPECIFIED entities are detected in 5i, the appropriate specifier molecule is applied to it. Next, 

the monitor examines Si's conceptual predicate, Pi, and retrieves the executable inference 

molecule which is associated with Pi as the property IPROG(Pi). The relationships between the 

queue, Si, Pi, and IPROG(Pi) are shown in Fig. 7-4. The monitor then applies this inference 

molecule to 5i, and the molecule will ask many questions of 5i, as characterized in the right half 

of Fig. 7 -1, generating inferences of many theoretical types from 5i in the process. 

!NEWINFS: ( 

THE ATRANS 
INFERENCE 
MOLECULE 

• * * * * *~*l / ~ISA # #CARI 

~~\ /( * *\ *\*~~ISA # #PERSON) 
I PROG {P i} ~ ~ ~ {NAME # JOHN} 
========= ATRANS # 000 

n SA # #AC T IONPRED} {I SA # #PERSON} 
(NAME # PETE) 

Figure 7-4. Relationships between the queue, the structure, 
the predicate, and the inference molecule. 

To apply IPROG(Pi) to 5i, the monitor first does a small amount of bookkeeping by locating 

and assembling information about 5i into the standard calling arguments expected by all 

inference molecules. These calling arguments are similar to those of specifier molecules: 

UN a list of the following form: 

( 5 TIME T5 TF FRAME ) 

where S is the structure the IPROG is being applied to, TIME, T5 and TF are the 
time aspects of the structure if they could be located (NIL otherwise), 'and FRAME 
is "PAST", "PRESENT" or "FUTURE". FRAME is based On TIME, TS and TF, and is 
determined by a simple time proof procedure which attempts to establish BEFORE 
relations with #NOW. 

AC OB DF DT the actual entities in the bond, bound individually as ACtor, OBject, 
DFrom and DTo. Which, and how many, of these there are of course are specific 
to the particular conceptual predicate. 
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To illustrate, the calling arguments thus constructed for the structure underlying "John gave Bill 

the book" would be: 

UN 

------ ------ AC 
I 

DB 
I 

OF 
\ 

oT 
I 

((C2783 C3147 NIL NIL PAST) C6411 C1983 C6411 C2540) 

where C2783 is the structure itself, C3147 is its TIME, C6411 is this person, John, C1983 is the 

book, and C2540 is the person 8ill. The two NIL's indicate that no TS or TF time relations are 

associated with the structure. 

Also, as the IPROG is called, a sub-queue, !INFS, is set to NIL. This sub-queue will be used to 

collect the set of inferences which arise from IPROG(Pi)'s application toSi. 

7.2.1.3 THE STRUCTURE GENERATOR 

The inference molecule, IPROG(Pi), generates individual inferences by calling the structure 

generator. When, for instance, an inference molecule has performed tests, and decided that it can 

generate resultative inference, R, from structure Si, it calls the structure generator with enough 

information to put R into a new memory structure. This information is listed in section 7.3.2.1. 

As we will see, the structure generator can, based on the theoretical type of the inference, 

decide not to generate the requested inference under certain circumstances. However, when it 

does generate the inference, it performs the following 5 tasks: 

1. it calls lower level bond and superatom creation functions which store the inference 
in a new memory structure 

2. it attaches to this structure the REASONS for making this inference (supplied by the 
inference molecule) to the newly-created structure 

3. it computes the structure's STRENGTH based on the strength factor supplied by the 
inference molecule and on the STRENGTHs of each structure on the REASONS list 

4. it attaches the value of the special atom #NOW to the new structure as its RECENCY. 
#NOW was set to the time of the system clock when the utterance was received 
from the conceptual analyzer 

5. it records the new structure on a temporary sub-queue, !INFS, which are collecting 
all inferences made by IPROG(Pi) about 51. This will be appended to the main 
inference queue after the inference molecule returns control to the basic monitor. 
The mnemonic denoting the inference's theoretical type is recorded along with 
the new structure on !INFS. 

These five steps occur for each inference IPROG(Pi) requests to be generated. 

311 



7.2.1.4 EVALUATION AND REORDERING 

When IPROG(Pi) has finished, it returns control to the basic monitor, which then retrieves 

!lNFS, and calls the inference evaluator to evaluate each new inference on !INFS in turn. The 

results of this evaluation will be (a) to discover confirmations (points of contact) and merge two 

memory structures together, (b) to discover contradictions, and (c) to assign each new inference 

a significance factor which will be used later to reorder the inference queue. We will get to the 

evaluation process in section 7.5. 

After the evaluator has evaluated each member of !INFS, this subqueue has the following 

format: 

<theoretical-type-mnemonic> <significance> <memory-structure-pointer> 
<theoretical-type-mnemonic> <significance> <memory-structure-pointer> 

. 
( <theoretical-type-mnemonic> <significance> <memory-structure-pointer> ) 

That is, it is a list of triples, each triple representing an evaluated inference which has just been 

made by IPROG(Pi). !lNFS is then added to the end of !NEWINFS, which is collecting next-level 

inferences from all of S 1, ... ,Sn (the current level). 

When all of S1, ... ,Sn at the current level have given rise to the next level of inferences, 

!NEWINFS is appended to the main queue, !INFERENCES, and reordered on the basis of its 

STRENGTH and significance factor assigned by the evaluator. Those inferences which lie below a 

threshhold on this measure are cut off, and placed on a "dead" queue called !CUTOFFINFS. These 

will not continue in the inference process. 

In practice, we want cutoff to occur very seldomly, since the technique for assessing the 

significance of a given structure is still quite crude, and could erroneously exclude very 

interesting inferences. Indeed, it is not clear whether there should be any cutoff mechanism for a 

theory of this sort which relies on large quantities of probablistic inferences. Remember, that by 

modeling the human brain, we are simulating a very sophisticated parallel processor which can 

perhaps afford to pursue many lines of inference In depth. I will have more to say about this 

later. In any event, we will not know what is "correct" until the memory becomes much larger. In 

the current implementation, the inference queue is rarely cut off. 
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This process of breadth-first inference expansion of the starting queue occurs until (a) no 

new inferences can be generated from the -structur-es On the most recent level (those on 

!NEWINFS), or (b) until a pre-determined maximum depth is reached. This depth is currently set 

to 15, and is rarely achieved in practice because of the relative paucity of inferences currently 

in the memory. When the process ceases, !INFERENCES is a list of triples as shown for !INFS 

above, each triple'representing one inference' which was generated in response to U. At that 

point, !INFERENCES represents the memory's initial inference response to the utterance. 

7 .2.1.5 SUMMARY OF THE BASIC MONITOR 

The overall flow of information in the inference monitor is shown in Fig. 7-5. This is not yet 

the complete picture of the reaction to each utterance. 

scan ---------+ 
!NEWINFS: 

INFERENCE 
MOLECULE 

lJ 
STRUCTURE 
GENERATOR 

* * * * * .,' * . '. \ ." 

(* * * 
J 

"" .... predicate 

! INFS 

====> * * * * * * 11111 1 

* * * * * * 

r i I I r f 
REORDERER 

r r f r 1 

next level becomes 
new !NEWINFS 

* ) 

r 
cut off inferences 

===> ( * * ) ;a 
~ , 

r i 
. 
agBend to 
! TOFFINFS ..... )""\ 

-:lr:--_E_V_A_L .... U_A T_O_R_-r-_I ==== = = = = => ( * * * * * ) 
t t t 
1 1 1 

N-MOLECULES I N II N II N I 
Figure 7-5. The inference monitor. 
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7.2.2 THE INFERENCE POSTSCANNER 

The basic monitor is the heart of the inference capability, but it is not adequate for certain 

classes of inference. Recall that there are classes of inference which, in order to function for 

structure S, require an "after-the-fact" access to other classes of inference which have arisen 

from S. Specifically, two examples of this are motivational inferences, which are based upon a 

knowledge of the resultative inferences from an action, and knowledge-propagation inferences, 

which are based upon a knowledge of the OFFSPRING and REASONS sets of memory structures. In 

other words, motivational inferences from S cannot arise until resultative inferences from Shave 

been generated, and knowledge propagation inferences from S cannot arise until inferences of 

all types have arisen from S. Other classes of conceptual inference will probably emerge which 

will require similar after-the-fact information. 

To accomodate such classes of inference, there is a special process, POSTSCAN, which 

rescans !INFERENCES after the basic monitor has ceased. Currently, POSTSCAN searches for 

structures of the following three varieties on the inference queue: 

1. Action structures 

2. WANT structures 

3. MLOC #LTM structures 

As each structure on !INFERENCES which satisfies one of these three patterns is detected, the 

POSTSCANer invokes the appropriate process: the motivational inference generator for the first 

two cases, and the knowledge propagation inference generator for the third case. 

These processes will return a list of inferences, which are collected on !NEWINFS as 

POSTSCAN scans !INFERENCES. After all the postscan inferences have been collected, each in turn 

is evaluated by the evaluator, and a theoretical (type/significance/structure) triple is assembled 

for each. The resulting list is appended to !INFERENCES, which represents at that point the 

results of attempts to generate inferences of all theoretical types from the starting 

sub propositions extracted from the input utterance. 
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7.2.3 RELAXING THE INFERENCE NETWORK 

But even after this postscan process, the first-pass through the inference monitor is still 

not complete, because there is still a potential for generating more inferences from this first 

pass inference queue. To understand why, observe that the monitor is an inherently sequential 

modeling of what I abstractly envision to be a parallel, breadth-first expansion of inferences. The 

problem is this: as the monitor generates inferences from structure Si on the inference queue, 

some inference, X, from Si may be almost applicable, except for one important missing fact, F. At 

that pOint, X can therefore not be generated. But suppose F arises later down the queue, as an 

inference from some other structure, Si+j. If the monitor were to stop after the POSTSCAN 

process, X might still not exist, even though there would then be sufficient information to 

generate it. Since X may itself be an important inference, and might lead to other important 

inferences, it should not be missed because of "bad timing". This undesirable situation is 

illustrated in Fig. 7-6. 

left-right 
expansion 

---------0+ 

other information 

Fl-F3 exist 
at the time 
this inference 
molecule is 
appl ied. F4 
does not. 

Fl ---0+ 
F2 ---0+ 
F3 ---0+ 
F4 ---0+ 

INFERENCE 
MOLECULE 

U 
inference which could 

Si+j -0+ 

have been generated from Si 
if F4 had existed at the time 

Figure 7-6. "Bad timing." 

+----
INFERENCE other 

MOLECULE information 
+----

U 
F4 required information 

arises later down the 
inference queue 

In practice, such bad timing is quite common, because of the way in which two of the most 

critical classes of conceptual inferences arise: motivational and knowledge propagation inferences 

can be generated only after the first crop of inferences has arisen through the basic monitor. If 

things were to stop there, significant inference potentials could go unrealized, because many 

inferences rely heavily upon what actors want and know at any particular time. This observation 

is borne out empirically in the current implementation. 
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To prevent this order-sensitive characteristic of the inference mechanism from causing 

important inferences to be missed, 

Each structure on ! INFERENCES is reexamined, re-applying 
inference molecules to each in an attempt to generate inferences 
which were missed on the first round because of order 
dependencies. 

Any new inferences which arise from this scan are evaluated and appended to the main queue, 

then subjected to the POSTSCANner just as first-round inferences. This rescan/re-postscan 

sequence is repeated until no new inferences arise. At that point, what I have called the "first­

pass" through the inference monitor has ended. 

This rescanning mechanism is a form of relaxation processing on what is in reality a very 

large, parallel inference network. But the ability to rescan comes not without a price: the monitor 

and inference molecules must be smart enough not to duplicate work which was done on 

previous passes. We will see in section 7.3.4 how this problem has been solved. 

7.2.4 INFERENCE-REFERENCE-INFERENCE INTERACTION 

At that point, !INFERENCES is a list of all first-pass inferences generated in response to the 

utterance. Of course, this list is not of much significance in itself. 

The real effect lies in the existence of all the new structures which 
have been created, and in the structure merges and contradictions 
which are discovered during this process by the evaluator. 

Also, this list will serve as the beginning inference queue for subsequent inference-reference 

passes. I will outline here the general form of the interaction between the reference and 

inference mechanisms, and the reasons for this interaction. 

The basic observation is this: some very interesting inferences may not be generated On 

the first inference pass because of incomplete features of entities in the structures on the 

inference queue. For instance, if some "John" could not be unambiguously identified by the 

reference mechanism before the first pass of inferencing began, the entity which represents this 

unidentified person will be a temporary token which in general will have nowhere near the 
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richness of features of any particular "real" token of a person, John. Because of this temporary 

token's lame-duck occurrence set, there is a good chance that many interesting inferences from 

structures which involve it cannot be generated on this first pass. 

But fortunately there is another side to this coin: the process of inferencing can contribute 

features to this temporary entity. The crucial point is that these new features might be able to 

identify it as, say, John Smith, the carpenter, if only the referencer had another attempt to 

identify it, using some of the newly-inferred inferences from the first inference pass. 

To account for these phenomena, there is a higher form of inference-reference relaxation 

processing in the memory. After the first pass of inferencing, in case there are some pending 

unidentified references either in this utterance, or from previous utterances -- this condition is 

signaled by a non-null !REFDECISION or !REFNOTFOUND list -- the referencer is reentered. The 

hope is that new features of unidentified entities have been produced as a byproduct of the 

inference process, and, by using these new features, the referencer can select one reference 

candidate over the rest. If this can in fact be accomplished, the information-rich occurrence set 

of the identified entity (say John Smith) will become available. 

But then, because of all the newly-accessible features, new inferences may be possible by 

rescanning the existing inference queue for new inferences which weren't preViously pOSSible. If 

new ones can be made, the relaxation processing described in the previous section is performed, 

and then still another round of reference-inference interaction is performed. This is depicted in 

Fig. 7-7. 

By this interaction, the inferencer helps the referencer, which in turn helps the inferencer, 

and so on. Whereas the relaxation processing described in the previous section was necessitated 

by practical issues of implementation, 

this form of relaxation processing realizes an important theoretical 
interaction between the memory processes of reference and 
inference. 
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Figure 7·7. Multiple reference·inference interaction passes. 

INFERENCE MOLECULES 

How are inferences organized? What does an individual inference 
look like in the memory? 

Any procedure-based system capable of inference must ultimately be no more than 

sequences of tests on the features of the information from which an inference is desired, 

interspersed with inferences to be made when tests succeed. In the kind of memory I am 

proposing, there will generally be many applicable inferences from each unit of information. The 

goal is not to choose among them, but to make them all, and see what happens. Thus, the effect I 

want to simulate is one in which many associatively-triggered inferences are simultaneously 

applied to relevant memory structures as those structures arise in the memory (either from the 
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outside world, or from other inferences}. Each conceptual inference is imagined to be an active 

process which is constantly on the lookout for its applicability, and which spontaneously 

contributes its inference when appropriate. 

7.3.1 EXTERNAL ORGANIZATION 

What kind of inference organization can achieve this goal? Recall that the input which the 

memory receives has already undergone a significant amount of processing by the conceptual 

analyzer from its "raw" sentential form. As we have seen, the intent of this processing is to 

reduce each utterance in context to its underlying conceptual meaning. From the standpoint of 

inference organization, this means that a tremendous quantity of fairly sophisticated pattern 

matching has already been performed. To reemphasize how significant this can be, consider the 

three sentences 

Mary gave John a beating. 
Mary gave John a penei I. 
Mary gave John some responsibi lity. 

All three have very similar surface forms, but all have radically different underlying meanings. 

Since it is the role of the conceptual analyzer to capture in a conceptual graph the most likely 

underlying thought of the language form, recognizing the many variations of language forms 

which communicate the same thought is not a concern of the conceptual memory. 

Because of this, it is possible to organize inferences about "real" GIVE actions (the transfer 

of an object's possession) under the conceptual predicate ATRANS, without having to know or 

care about the actual sentence form which communicated the thought or, for that matter, even 

the language in which the utterance was spoken. 

Conceptual inferences can get directly to their business of dealing 
with how the meaning of each utterance interacts with other 
knowledge, without having to cope with all the additional variety 
of language form. 

This leads to a very natural and simple organization of inferences in the memory: inferences 

are organized by conceptual predicates. By this I mean that every inference which could ever be 

applicable to any memory structure which stores information involving predicate P should be 
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associated with the predicate P in the memory. Obviously, this is only a very general 

organization, and there will typically be an extremely large number of inferences grouped by 

this organization under anyone conceptual predicate. I have called the large cluster of 

inferences associated with each predicate an inference molecule. 

Logically, we can view an inference molecule as a very large, "sloppy" discrimination net 

which can yield multiple responses. Each response is a conceptual inference of .a certain 

theoretical type, and the molecule will in general yield responses of many types at once 

Physically, an inference molecule is an executable LISP PROGram which contains all 

inference potentials for some conceptual predicate in the system. That is, if inferences are 

desired from some strocture in memory which is an ATRANS action, the inference molecule which 

is associated with ATRANS -- and only this one -- can generate them. Furthermore, essentially 

no pattern matching is performed to locate the relevant inference molecule, since, to generate 

inferences from memory structure S which involves conceptual predicate P, the inference monitor 

simply retrieves the Pinference molecule and applies it to S. 

7.3.2 INTERNAL STRUCTURE 

I want to shy away from sophisticated or prematurely elegant inference structures until our 

comprehension of the complete picture of interesting tasks for such a memory as this has has 

time to mature. The internal architecture I am about to describe 

(a) is unci ever as data structures go 

(b) is about as straightforward as possible 

(c) does not make very efficient use of storage or time. 

But it has made experimenting with the memory quite simple, pleasurable -- and possible! I view 

the next major step in the memory's development as being to clean up the internal structure of 

inference molecules. 

An inference molecule is not a totally random piece of program, however. Fig. 7-8 shows 

the general form of all inference molecules. Each conceptual inference rule within a molecule is 

called an inference atom. Inference atoms can be totally independent of each other, or can share 
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common tests heirarchically, being structured more like a large decision tree than like a bundle 

of independent test packets. 

<predicate name> <cal ling argument I ist> <temporary variables> 

<test> 
<test> 

<test> 

<test> 

<inference> 
<test> 

<inference> 
<test> 
<test> 
<test> 

<test> 
<test> 

<inference> 
<inference> 

<inference> 
<inference> 

<inference> 
<test> 

<inference> 

<inference> 

Figure 7·8. The logical internal organization 
of a typical inference molecule. 

7.3.2.1 INFERENCE ATOMS 

Each inference atom «inference> in Fig. 7-8) has the internal structure shown in Fig. 7-9. 

This structure consists of the following 8 parts: 

1. the theoretical type of the inference about to be generated 

2. the reference name of the inference atom 

3. a list which is to become the bond of the main structure which is about to be 
created as the inference 

4. a default significance factor in case the evaluator cannot assess the new inference's 
significance 

5. a reason list. This will become the new structure's REASONS, and is each inference 
atom's way of making explicit what other information in the memory has been 
used to generate the inference. 

6. a propagation strength factor. This is the strength factor with which the new 
inference is to be generated. When multiplied by the strengths of each member of 
the REASONS list, the product will become the STRENGTH of the new structure. 

7. lists which represent modifying str.uctures for the main inferred structure. These 
will become the main structure's starting occurrence set, and are most frequently 
time modifications. 
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8. propagation strength factors and reasons for each modifying structure 

<theoretical type> <reference name> 

<main structure> 
<propagation strength> <reason list> 

<modifyin~ structure> 
<propagation strength> <reason list> 

<modifyin~ structure> 
<propagation strength> <reason list> 

Figure 7-9. The structure of an inference atom. 

Fig. 7-10 shows an actual inference molecule which will be described shortly. 

7.3.2.2 COMMON LOW-LEVEL PATTERN MATCHING TESTS 

Inferences in an inference molecule can arbitrarily sensitive to features of the structure it 

is testing, and to other contextual information, since the basic structure of the molecule is test­

branch-infer, where the test phase may access arbitrary functions, and arbitrary features of 

entities in the structure from which the inference atom is attempting to generate inferences. 

Although the number of tests has continually been on the increase as the memory has developed, 

there are a few recurring tests which I can list here to give a feeling for the types of questions 

inference atoms ask to determine their relevance to the structure under inferencing. Some of the 

most common are: 

(find x) locates all structures with bond X, returning as its value the list of structures. If X 

contains one occurrence of "underbar", then FIND interprets X as a simple template, and 

returns a list Yl, ... ,Yn of all structures which could be substituted for the underbar. In this 

case, the list of structures where Yl, ... ,Yn were found are recorded on a special global list 

!GLOBALFIND. Find will not accept modifications of X. 

EXAMPLES: 

(FIND (ATRANS #JOHN2 C1876 #JOHN2 #MARYl}) returns a list of all ATRANS structures 

of this form in the memory. 
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(FIND (LOC #JOHNl _» returns a list of all of John's locations (independent of time). 

Also, !GLOBALFIND stores the list of the memory structures where these LOC information 

units were stored. Thus, a typical response for this query might be 
(#AILAB #SANFRANCISCO #FRANCE) 

with !GLOBALFIND set to 
(C237l C9762 ClI03) 

if these three structures stored the information (LOC #JOHN X) for these three X's. 

(find! x) same as FIND, but will return only the first item found 

(findunit x) X has the form «main structure><modifier> ... <modifier». A list of all memory 

structures which have the form of the main structure, and which further satisfy the modifiers 

is returned. As with FIND, the main structure may have an underbar in it. Each modifier has 

one underbar denoting the main structure, and the main structure may be either a simple 

entity, or a bond. If it is a simple entity, a NIL appears and the modifiers are assumed to be 

its defining features. Any concepts or tokens within the main structure or modifiers may 

itself be described by a template suitable for use by FINDU~JIT. This allows arbitrary nesting 

of features. 

EXAMPLES: 

(FINDUNIT «ATRANS #JOHN2 C2315 #JOHN2 #MARYl)(LOC _ #AILAB)(TIME _ Tl») returns 

a list of ATRANS structures of this form which occurred at the AI Lab at time T 1. 

(FINDUNIT (NIL (ISA _ #PERSON)(NAME _ #JOHN)(POSS _ (NIL (lSA _ #CAR)(COLOR _ 

#RED»») returns a list of all people named John who own a red car. 

(FINDUNIT «LOC #JOHN .J(TIME _ (NIL (BEFORE T1 -l(BEFORE _ T2»))) returns a list of all 

places John was located during the period Tl-T2. 

(eq x y) this is the LISP test for equality of pointers. 

(whatisit x) returns entity X's immediate ISA class. For concepts and tokens, this involves a 

simple (FINDl (ISA X _». However, since (by convention) an information bearing structure will 

not be explicitly classified by an ISA relation, WHATISIT must examine its predicate to 

determine what the class of the structure is. The possible ISA classes of information bearing 

structures are: #ACTION, #ST ATE, #ST ATECHANGE, #CAUSAL, # TIMEREL. 
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(hasprp x y) searches for feature Y of X, or for feature Y of any ISA superset concept of X. 

Thus, if feature Y cannot be directly located for X, HASPRP locates X's superset via a (FIND1 

(ISA X -», then attempts to find Y for this superset concept. This is continued until Y is 

found, or until the ISA superset sequence has been exhausted. 

EXAMPLE: 

(HASPRP #JOHN (PART _ #HEAD» 

(isastar X) returns X's ISA set sequence in increasing generality. 

EXAMPLE: 

(lSASTAR C1135) would return (#HAMMER #TOOL #PHYSOBJ) if C1135 were some token 

of a hammer. 

(event x) tests X's time aspects to determine whether X is a real event, namely that it has 

actually occurred in the past, or is presently occurring. This distinguishes it from other 

structures which have been stated or predicted to occur in the future, or which are timeless 

statements of fact about the world. 

EXAMPLE: 

(EVENT C2734) is true is C2734 is some information bearing structure representing 

something which has actually occurred in the world. 

(causer x) X is assumed to be sOme information bearing structure. CAUSER traces back X's 

CAUSE relations until some action structure is found. The actor is then extracted from this 

action, and returned as the CAUSEr of X. That is, CAUSER traces down the actor most 

immediately responsible for the existence of some action or state structure. The actor and 

the structure representing his action are returned as a LISP dotted pair. 

EXAMPLE: 

(CAUSER C8764) would return (#JOHN3 . C6513) if C8746 were the structure 

(NEGCHANGE #BILL #PSTATE), and if this NEGCHANGE had been caused by John's action. 
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7.3.3 AN INFERENCE MOLECULE EXAMPLE 

Fig. 7-10 shows an actual inference molecule used by the program. There are currently 

only about 25 inference molecules, and a typical molecule contains just 3 or 4 inference atoms. 

This is little more than a token beginning, since I envision future inference molecules as 

containing thousands of atoms of about the same complexity as those shown. Undoubtedly, many 

new issues of effective organization which I have not yet addressed will arise. 

Let's now take a look at the NEGCHANGE inference molecule shown in Fig. 7-10. 
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{IPROG NEGCHANGE (UN PE SC) (Xl X2) ( 

{COND { (EVENT UN) 

) 
» 

{COND ( (Fl (@ISA PE @#PERSON» 

) 

{IR ®NEGCHANGEl 
{@WANT PE (GU (@POSCHANGE PE SC») ""PEOPLE OFTEN WANT TO BETTER 
U3.85 1. e (CAR UN) ) ""THEMSELVES AFTER SOME NEGCHANGE 
(@TS @* (II UN» 
(l.e (CAR UN») 

(COND { (AND (SETQ Xl (FI (@*MFEEL* @ @#NEGEMOTION PEl»~ 
(SETQ X2 !GLOBALFIND» -

) 

( I R ®NEGCHANGE2 
(@POSCHANGE Xl @#JOY) 
(e.9 l.e (CAR UN) X2) 
(@TIME @* ITI UN» 
(1. e ICAR UN») 

NPERSON GETS HAPPY WHEN ENEMY 
NSUFFERS NEGCHANGE 

ICOND (AND (SETQ Xl (CAUSER (CAR UN») 
(NOT (EQ (CAR Xl) (a:2 ICDR Xl»») 

( I R ®NEGCHANGE3 
(@*MFEEL* PE @#NEGEMOTION (CAR Xl)} ""PEOPLE DON'T LIKE 
(e.95 l.e (CAR UN) (COR Xl» NOTHERS WHO HURT THEM 
(@TS @* (II UN» 
(1. e ICAR UN))) 

{ (HASPRP PE (@ISA PE @#PHYSOBJ)} 

{COND ( (AND (SETQ Xl IFI (@*OWN* PE ») 
(SETQ X2 (CAUSER (CAR UNf» 
(NOT (EQ Xl (CAR C2») 

) 
II R ®NEGCHANGE4 

(@*MFEEL* Xl @#NEGEMOTION (CAR X2}) 
{e.B5 l.e (CAR UN) Xl (COR X2» 
(IS @* (II UN)) 
(1.e (CAR UN») 

NIF X DAMAGES Y'S PROPERTY 
NTHEN X MIGHT FEEL ANGER 
""TOWARD Y 

Figure 7·10. An inference molecule used by the current program. 

Fig. 7-10 shows the form in which the molecule appears in the inference data file. The 

IPROG tells the initialization function that what follows is the inference molecule for the 
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conceptual predicate NEGCHANGE. UN, PE and SC are the three calling arguments for the 

molecule which are extracted from the structure under inferencing: UN is the list whose first 

element is the structure itself, and whose remaining elements signal the time aspects of the 

structure as described above. PE is the entity which underwent the NEGCHANGE, and SC is the 

scale on which it occurred. X 1 and X2 indicate to LISP that the molecule will be using these two 

temporary variables during the testing it will perform. 

The first tests determine whether the NEGCHANGE actually occurred, and whether the 

entity which underwent the NEGCHANGE is a person. The first three inferences in this simple 

molecule are desiined for actual NEGCHANGE events which occur to people; the fourth concerns 

NEGCHANGES to objects. If other inferences dealing with future or timeless NEGCHANGES existed, 

they would follow at the end of the molecule (the false branch of the EVENT test). 

If the EVENT test is satisfied, one inference is immediately requested: that the person who 

underwent the NEGCHANGE may desire to undergo a POSCHANGE on the same scale. The 

component 

{I R 0NEGCHANGEl 
(@WANT PE (GU (@P05CHANGE PE SClll 
{e.95 1.e (CAR UN)} 
(Ii T5 @* (T I UN» 
(1.e (CAR UN») 

is an inference atom. The "IR" calls the structure generator and signals that the inference is of 

type RESUL TATIVE. 0NEGCHANGEl is this inference atom's reference name, and will be recorded 

under the property list of the structure from which this inference is being generated. 

The next line is the bond which represents the inference: 

(WANT PE {GU (@P05CHANGE PE SC») 

namely, that the person might want to undergo a positive change to compensate for his negative 

change. GU is a call on function GETUNIT, which creates the substructure (POSCHANGE PE SC) for 

reference by this inference. 

The next line 

{e.95 1.e (CAR UN» 
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gives the strength propagation factor for this inference (0.95), a default significance measure 

(1.0) to be used in case the inference evaluator cannot assess this inference's significance, and 

the remainder of this line enumerates the REASONS to be attached to the new inference, and 

whose STRENGTHs will be used to compute the STRENGTH of the new inference. In this first 

inference atom, the only REASON supplied is the NEGCHANGE structure itself, (CAR UN). 

The next lines, 

hiTS @* tTl UN» 
(1 • 0 (CAR UN» 

specify that this new inference structure is to be modified by a time relation: that the person 

begins his wanting at whatever the time of the NEGCHANGE was. The time of the NEGCHANGE is 

retrieved from the time vector set up by the inference monitor by a simple function, TI. The 

asterisk refers to the main structure, (WANT ... ). The 1.0 is the strength factor for the modifying 

time structure, and the (CAR UN) is the reason supplied for the modifying structure's existence. 

In general, time modifiers are given the same STRENGTH and REASONS as the main structure. 

The ®NEGCHANGE2 and ®NEGCHANGE3 inference atoms are similar. Notice in ®NEGCHANGE2 

however that two reasons are supplied: 

(0.9 1.0 (CAR UN) X2) 

Here, X2 will be pointing to the structure which stores the information that some other person 

MFEELs a negative emotion toward the person who underwent the NEGCHANGE. The inference 

that this person might become happy because of the other person's NEGCHANGE is thus based 

on both the NEGCHANGE structure, and on this MFEEL information. Although the particular 

substance of this inference -- as are most of the inferences the memory currently makes -- is 

more appropo of a soap opera, it illustrates the desired underlying mechanism. 

The inference atom, ®NEGCHANGE4, implements the inference that if 

1. the entity undergoing a NEGCHANGE is a #PHYSOBJ 

2. the scale is #PSTATE 

3. the owner of the object knows that the NEGCHANGE occurred 

4. some other person was the CAUSER of the NEGCHANGE 
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then it is possible to infer that the object's owner might feel #ANGER toward the CAUSER. This is 

of course also crude in substance, but as many other discriminating tests as necessary could 

quite easily be inserted. 

7 .3.4 MULTIPLE INFERENCE PASSES: SMART INFERENCE ATOMS 

The inference monitor is in reality simulating a large parallel inference network via breadth­

first expansion of inferences. Because this is a serial simulation of a parallel process, there are 

several undesirable characteristics which must be overcome by a iterative relaxation technique 

which involves a rescanning of the inference queue, retesting for newly-applicable inferences 

from each structure on the queue. 

The following four points summarize why this relaxation processing is essential: 

1. some information which is vital to one inference may not turn up until later in the expansion 
(perhaps along another line of inference). This is undesirable, because it is purely an 
artifact of the sequential simulation of a parallel inference network. 

2. the inferences contributed to the inference queue by the postscan process are available only 
after the first inference pass finishes. These can lead to more interesting inferences, 
especially in combinations with some of the inferences generated on the first monitor pass. 
Without subsequent passes, the inferences contributed by the postscanner would never be 
considered again. 

3. there are interactions concerning the establishment of references which cannot be solved by a 
simple one-pass breadth-first inference mechanism. 

4. there can be cycles in the inference network 

This ability to rescan the inference queue incurs two new problems which require solution. 

In particular, the rescanning process should be able to function 

1. without duplicating much computation 

2. without re-generating any inferences it made on previous passes 

This multiple pass capability is achieved at the inference atom/structure-generator interface: the 

memory has "smart" inference molecules. 

Fig. 7-11 shows how each inference atom is made smart enough so that its inference made 

on a previous pass will not be duplicated on subsequent passes. Associated with each inference 
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atom, A, is a unique identifier, I(A), which serves to "name" the atom within its inference molecule. 

Whenever execution passes to A and A calls the structure generator, I(A)'s existence on the 

property list of the super atom of the structure,S, under inference, is tested. If I(A) exists on 5's 

property list under property ISEEN, this means that inference atom A has already generated its 

inference from 5, and that the structure generator should not re-honor its request. Notice that it 

is essential that a record be kept that the inference atom has already operated on this 

particular S, and not just that it has operated On some S on a previous inference pass: the same 

inference atom might be applicable to numerous distinct structures during inferencing. For 

example, "John hit Mary" might lead to "John is mad at Mary", and to "Mary is (now) mad at 

John", which are both treated by the same inference atom. 

If I(A) is found not to exist under property ISEEN on S's property list, this means that 

inference atom A has not previously successfully generated an inference from S. If A's 

applicability tests are still not successful, nothing else happens: no inference is generated and 

I(A) is not placed on S's ISEEN list. However, if the tests are successful this time, A generates its 

inference and I(A) is placed on S's ISEEN list. 

memory structure 

under lnfere~:~ __ "I-s I 
THE STRUCTURE'S:[ ISEEN PROPERTY 

"--- ... 

tests 

:::::::: II NFERENCE ATOM I ..... eNEGCHANGE17 <~ - , ~ 

\ 

~!~:~;nce 
( <re f name> <re f name> ••• <re f name> <. '> ) 

name IS 
appended 

Figure 7·11. Recording the successful application of an 
inference atom to a memory structure. 

This ability to rescan the inference queue has an intuitive psychological analog which merits 

brief mention. The notion of passing information through the inference network more than once 

roughly corresponds to "rehashing the problem in the light of new evidence." As the rehash 

proceeds, the human language user remembers each avenue of inferencing he pursued from 

some piece of information, saying for each either "Now, I have already examined the implications 

of this, and don't believe any more will COme of it" or "this didn't mean much a minute ago, but in 
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light of this new information, it might mean something now." ihis is admittedly a rough analogy, 

but aside from the four practical considerations. described at the beginning of this section, the 

concept of a "smart" inference atom has this intuitive psychological appeal. 

7.3.4.1 CONCERNING THE REFERENCEA81LITV OF INFERENCE ATOMS 

By choosing program-based pattern matching over data-based matching for inference 

molecules, I have in effect made part of the memory's world knowledge inaccessible to 

"introspection" and reference. That is, because inference molecules are programs rather than 

data, they cannot be "discussed" or expressed outside of the system in the same way passive 

data structures can. Although the memory can apply the rule contained in a conceptual inference 

atom to generate new information, and supply REASONS for having generated the new 

information, without a label for each inference atom no relation between the new information and 

the actual rule of conceptual inference which generated it would be possible. By placing each 

inference atom's identifier on the inferred structure's REASONS list, this relationship between 

every structure in the memory and the conceptual inference which caused it to be generated 

could be preserved. 

Also, using this labeling scheme, inference rules could be made accessible in data form: each 

inference atom identifier is a unique LISP atom such as @NEGCHANGE3. On this atom's property 

list, a "passive" data representation of the inference rule which the inference atom realizes could 

be stored in the memory data structures described in chapter 3. Although this would represent 

duplicated information (every conceptual inference would be encoded in both an easy-to-execute 

and an easy-to-inspect and reference form), it would afford the best of two worlds: fast 

program-based matching, yet access at the data level to the conceptual content of rules of 

inference. This idea is illustrated in Fig. 7-12 as it might apply to the @NEGCHANGE3 inference 

atom of Fig. 7 -1 O. 
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THE CONCEPTUAL RULE OF INFERENCE: 

"People tend to dislike others who hurt them" 

PROCEDURALLY 
ENCODED 

CONCEPTUAL 
INFERENCE 

ATOM 
. ®NEGCHANGE3 

x-a x 
t ANY I 

DO 1-1-

)( <==========allT 
\I /\ 

PROPERTY OF 
Pl I I I c \p~ <==::::========> 

®NEGCHANGE3 

/ P2 
equivalent 
referenceable data­
encoded inference rule 

ts=t val <aaa> MFEEL ~---­
t 

I~I---+ Pl 
~-- P2 

#NEGEMOTION 

Figure 7·12. Making program.based conceptual rules of inference 
referenceable as data structures. 

7.4 MULTIPLEXING INFERENCES BY THEORETiCAL TYPES 

The expansion of an input into many probablistic inferences represents the memory's reflex 

attempt to relate every language stimulus to the context in which it occurs, and to world 

knowledge in general. For this purpose, all types of inference discussed in chapters 5 and 6 are 

of extreme potential interest. Every aspect of the input potentially merits examination and 

elaboration via conceptual inference. Without this, significant relations may remain undiscovered. 

However, there are times at which it would be useful to restrict the generation of 

inferences to those of certain theoretical types only. These are times when some specific task or 

process requires a much narrower analysis of a situation for its goal-specific needs. This 

"narrowing of analysis" corresponds with the ability of the inference monitor to allow the 

application of only certain types of inference to some proposition. Hence, the term "multiplexing", 

or the selecting-out of one or several "signals" from a larger group of potential ones. 
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7.4.1 WHY MULTIPLEXING IS NECESSARY 

In the memory, there are several such goal-specific processes which require of the 

inference monitor the ability to "multiplex" or filter out all but certain kinds of inference. A 

motivational inference, for example, is triggered by the pattern of a person wanting an action to 

occur in the world. The goal of this type of inference is to determine why the person might 

possibly want the action to occur. As we have seen, a good assumption is that people want 

actions to occur because of the states those actions could produce in a particular environment. 

The knowledge of what changes to the world an action might be capable of effecting is contained 

in inference molecules, which, when executed on some proposition in some environment, can yield 

a set of result ative inferences in addition to many other inferences of other types. Therefore, to 

carry forth a motivational inference from an action and the possible states that action could 

cause, there must be some way of generating only resultative inferences from a WANT -ACTION 

pattern. This ability to multiplex inferences by type enables processes such as this to contribute 

to the larger, unmultiplexed, expansion of a structure in inference space. 

Another example concerns the task of making action prediction inferences. Inferences in this 

class start from a person's internal WANT states and predict what actions in the world he might 

reasonably be expected to carry out as a result of these states. Thus, from a WANT state of a 

person, several WANT -ACTION patterns involving the person may arise. However, rather than 

stop at that point, the predictive inference generator seeks out the extrinsic event-enabling 

preconditions for each of these predicted actions. For those preconditions which are not already 

known to be satisfied, other WANT-STATE patterns arise, and these in turn can lead to more 

action predictions. Hence, in the process of generating action prediction inferences, points exist 

which require that only extrinsic event-enabling inferences for certain actions in certain 

environments be generated by (allowed to pass through) the inference monitor. 

Still another process which relies upon this multiplexability is that of enablement prediction. 

This process implements the notion that particular states of the world are often desired because 

of the actions they enable. That is, it is often possible to work forward from a WANT -STATE 

pattern to WANT -ACTION patterns, where the state which is WANTed is a common extrinsic 

enabling state for the actions. Clearly, in order to accomplish this, a point comes where only 

enablement prediction inferences are desired from some state. 
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There are many other potential uses of multiplexing, such as conducting very narrow 

searches backward from an event to dete.rmine only its original causes, or performing an 

extensive but narrow resultative-inference analysis of some situation, and so on. 

7.4.2 THE MULTIPLEXOR 

The method by which multiplexing is achieved is straightforward. Every recursive entrance 

into the inference monitor has associated with it an inference filtering (IF) vector. This vector 

specifies, by mnemonics standing for the various inference types, which inference types are to 

be passed by the structure generator. For example, the IF vector which allows only action 

prediction, extrinsic enabling, and result inferences through would look like 

( A EE R ) 

There is a pre-defined vector which is simply a list of all type mnemonics, and this is the default 

filter vector: when the filter vector consists of all types, this is the "global" mode of operation, 

where the expanding sphere of inferences about points in inference space "to see what might be 

seen" is the only goal. 

The IF vector is transparent to inference molecules. This means that an inference molecule 

can execute as though it were generating inferences of all types. Undesired inferences are 

intercepted and suppressed by the structure generator which is called by all inference molecules 

to generate their various inferences. The postscanner is also sensitive to this vector. 

Fig. 7-13 illustrates the multiplexing process. 
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Figure 7-13. Multiplexing inferences by theoretical type. 

7.4.3 AVOIDING INFERENCE BACKFLOW IN THE NETWORK 

There are several pairs of conceptual inference classes which perform functions that are 

iiwerses of each other. That is, where one class may look "forward", from some point in 

inference space, another companion class may simultaneously be looking "backward" from the 

same point. Examples of this are the resultative/causative pair, the enabling/enablement­

prediction pair, the missing enablement/intervention pair, and the motivational/action-prediction 

pair. In each of these pairs, inferences in one class have the potential for inferring, say, 

structure S 1 from S, while inferences in the other class of the pair have the potential for 

inferring S2 from S. The problem is that the same kind of inference which is capable of carrying 

S to S2 is precisely the kind which could carry S1 back to S. Similarly, the kind of inference 

which carried S to S 1 is precisely the kind which could carry S2 back to S. This undesirable 

situation, which I will call inference backflow is illustrated in Fig. 7-14. 
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Figure 7-14. Inference backflow. 

In words, the desire to avoid backflow means, for instance, that if we have just generated a 

resultative inference, 51, from 5, we do not then want to worry about generating any causative 

inferences from S 1: we know what the cause was; it was S, because S 1 just arose from S by a 

resultative inference! This is admittedly rather a mundane issue, but without a stop to prevent 

this backflow, many lines of inference would either be duplicating effort Or would lead to 

recursive cycles in the expansion in inference space. 

The solution to the backflow problem relates to the mUltiplexor. As described, the 

inference monitor has the ability to filter out all inferences but those types which have been 

requested by some subprocess in the memory. Recall also that, as each inference of any is 

generated, a mnemonic representing its theoretical type is also indicated by the inference 

molecule which requests that it be generated. In this way, the monitor can filter it out if it is not 

of a desired type, simply by checking whether this mnemonic is a member of the filter vector. 

We can make use of this filtering to avoid backflow. As each inference is generated and 

added to the ever-growing inference queue to be expanded later itself, its type mnemonic is 

recorded on the queue along with it. For instance, if 51 is a resultative inference from S, not just 

S 1 is placed on the queue, but rather ("R" 5 1) to indicate that S 1 arose via a resultative 

inference. When 51 subsequently comes up for inference, the monitor will examine S 1 's 

associated mnemonic. If the mnemonic is one of these pairs of inverses, the mnemonic of its 
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inverse is removed from the filter vector if it is currently on it, then inferences from 51 are 

generated by applying the appropriate inference molecule. Thus, if 51 's type is "R" (resultative), 

then "e" (causative) inferences will be disabled by the filter vector. When the inference mOlecule 

returns control to the monitor, the original filter vector is restored, and the monitor proceeds. 

7.5 RECOGNIZING POINTS OF CONTACT: 
THE INFERENCE EVALUATOR 

What happens to an inference after it is generated? How is it 
related to existing knowledge? What happens when it confirms or 
contradicts some other information in the memory? 

The process of inference evaluation represents the fruit of all the memory's labors, since it 

is the means by which new points of contact are recognized in inference space. 

The problem is this: a new inference is generated, and something must be done to relate it 

to other structures. On obvious thing is to integrate it into the memory, but this is automatically 

done by the structure generator as part of the process of inference. We are more concerned 

with how this new piece of information relates to other knowledge in the memory at that point. 

Were the memory not able to do this, it would never connect lines of inferencing, and hence 

would never really "understand" the connection between the information in one line of a story or 

dialog and others in that story or dialog. Equally catastrophic, the inference monitor could 

blithely duplicate the same information Over and over, not realizing that all related to the same 

situation in potentially interesting ways. 

7.5.1 POSSIBLE INTERACTIONS: CONFIRMATION, CONTRADICTION, AUGMENTATION 

What, specifically, does it mean to relate anew piece of information, 5, to existing world 

knowledge? That is, what are the possible interactions of S with other information structures in a 

conceptual memory? There seem to be five very general ways the new structure S can relate to 

world knowledge: 

1. 5 matches some existing memory structure. That is, the new structure references 
the same action or state as some other existing memory structure. 

2. S contradicts some existing structure 

3. 5 conforms to the memory's knowledge of what is normal in the world 
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4. S deviates from the memory's knowledge of what is normal in the world 

5. S is "neutral" (none of 1-4 applies) 

As we will see, each of these conditions has a different effect on the inference mechanism, and 

all are usually "fuzzy" events. For the purposes of classification, I will refer to case (1) as 

confirmation, to case (2) as contradiction, and to cases (3), (4) and (5) as forms of augmentation. 

7.5.2 REACTIONS TO COMFIRMATION, CONTRADICTION AND AUGMENT ATION: INTUITIVELY 

Briefly, confirmations indicate that SOme point of contact has been established between two 

different lines of inferencing. Contradictions indicate that something peculiar has been 

discovered, or that a prediction has turned out to be wrong, or that SOme incorrect reference 

decision has occurred in the memory. Unlike formal systems, contradictions are healthy 

occurrences in the conceptual memory, because they offer a form of feedback to a process which 

is concerned with generating many probabilistic inferences: the memory is not in search of just 

one truth! Augmentation is empirically the most common result of evaluation and is very 

important because it represents the addition of new information to the memory. But it is 

uninteresting from the evaluation function's standpoint. 

I will describe intuitively what each of these five cases signifies. In the next sections, I will 

explain how each of the cases is recognized by the inference evaluator. 

7.5.2.1 DIRECT CONFIRMATIONS 

When some new information can be found to confirm some other piece of existing 

information directly, it can mean one of two things: if the information it confirms has a high 

enough STRENGTH, the new information is simply reaffirming something the memory is already 

"pretty certain of". If, however, the information confirms something which has a fairly low 

strength, it is a far more significant event. In general, this will be an indication that new evidence 

has appeared for some "guess" (probabilistic inference) the memory has made in the past. 

Typical of this is the case where the memory has predicted some future state or action which 

subsequently turns out to be true. For example, hearing (1) below, action prediction inferences 

will be called into play to determine what Mary is likely to do, given her current WANTs. One line 

of predictions is that she will go to the store, doing all the necessary actions. These predictions 

made, (2) is perceived as confirming one of these action predictions: 

338 



1. Mary needed soMe eggs. 

2. She got in the car. 

Another very common source of direct confirmations arises from the process of causal chain 

expansion. 

7.5.2.2 DIRECT CONTRADICTIONS 

When the new information can be found to contradict some old factual information, if the 

STRENGTHs of the two pieces are approximately equal, a conflict exists. This is a hint that the 

line of inference has gone far enough: either it has uncovered a genuine contradiction, some 

probabilistic inference has turned out not to have been correct, some incorrect reference 

decision has been made, or even an incorrect meaning graph has been given to the memory. In 

any event, inferencing should be discontinued on this line of inferencing, and the conflict noted. 

If, on the other hand, the new information has a clearly higher STRENGTH than the old, it 

would seem correct to retain it on the inference queue as a potentially interesting line of 

inference, and lower the strength of the old. If the strength of the old is clearly higher than the 

new, it would again seem appropriate to discontinue the new line of inference, and perhaps 

lower the strength of the new inference. 

What would be a reasonable thing to do to a structure which has clearly been overridden 

by another contradictory inference? We are on the limits of the theory at this point; this is 

simply a difficult question. Clearly, the memory should not simply erase the overridden structure: 

this is intuitively incorrect from a psychological point of view. Rather, it would seem most 

appropriate to "rule it out of the picture" in a way which would still retain the structure for 

future reference. In the memory, the way to do this is by severely decreasing the overridden 

information's STRENGTH. But by how much? And should this demotion in strength apply only to 

the overridden structure, or to other structures which arose from it and from which it arose 

(OFFSPRING and REASONS)? I have made some tentative decisions which I will describe, but they 

are highly speculative. 
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7.5.2.3- "NORMALITY" OF THE NEW STRUCTURE 

Intuitively, when the new information neither directly confirms not contradicts other existing 

explicit information, but nevertheless conforms to the memory's knowledge of what is normal in 

the world (which, recall, is principally encoded in N-molecules), the new information is likely to 

be "uninteresting". The idea I want to capture is, roughly speaking, that if any inferences at all 

must be cut off from the inference queue, those which strongly confirm the memory's knowledge 

of what is normal should be the first to go: 

Less cognitive processing should be devoted to information which 
is highly normal according to the memory's model of normality. 

"Normal" here is used in the sense described in the discussion of N-molecules. In the 

evaluation sequence, checks against normality are performed only after attempts to discover 

confirmations and contradictions with explicit knowledge have not yielded results. 

On the other hand, when the new information deviates from the memory's knowledge of 

what is normal (that is, it is assessed with low compatibility by an N-molecule), the potentials for 

making interesting discoveries is intuitively greater. Since language's centralmost function is to 

communicate new or unusual relationships, the memory should have some sort of awareness 

about what is unusual, and use that awareness to heighten the amount of cognitive processing it 

devotes to the information. In terms of the inference control structure, this means that if any 

inferences are cut off from the inference queue, those which deviate from what the memory 

believes to be normal should be the last to go. 

7.5.2.4 AUGMENTATION 

When the new information neither confirms nor contradicts explicit knowledge, and its 

normality cannot be assessed, the new information should simply remain as a new structure in 

the memory, and exert no particular influence on the inference control structure. The memory 

has simply heard something new. Empirically (in the program), more new information currently 

falls into this category than is ultimately desirable, because, as we will see, the evaluator's 

powers are not yet very highly developed. 

Let us turn now to a discussion of the problems involved with detecting confirmations and 

contradictions, and to the problems of judging how "normal" a new structure is. 
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7.5.3 DETECTING CONFIRMATIONS AND CONTRADICTIONS 

How does the evaluator detect when newly inferred information 
directly confirms or contradicts some other information structure 
in the memory? 

7.5.3.1 THE FIRST PROBLEM: COMPATIBILITY OF OCCURRENCE SETS 

The simplest form of direct confirmation is of course to discover another structure which 

stores a bond identical to the bond of the new structure. Therefore, the first step in searching 

for confirmations is to locate any other structures with the same bond. Similarly, the simplest 

form of contradiction of structure S is to find another structure (NOT S). But there are two 

rather complex potential mishaps for these simple first steps. First, a failure to locate an 

identical bond via the low level memory search function does not necessarily imply that the new 

structure does not directly confirm or contradict SOme existing structure. We will get to this in 

the next sections. Second, even though some confirming or contradictory bond can be located, it 

will be rare indeed for them to have identical occurrence sets. Because of this, we must 

consider the problem of compatibility of two occurrence sets: if the Occurrence sets are 

incompatible, it is unlikely that the two structures could be referentially identical. That is, even 

though the structures might have identical bonds, there may be irreconcilable features on their 

occurrence sets, and these would preclude a meaningful confirmation or contradiction. 

The general problem of determining with certainty when two structures reference the same 

action or state is a complex one, and is not yet very well understood. To know whether or not 

some member or combination of members of one is incompatible with some member or 

combination of members of the other will eventually require many heuristics and a better 

measure of fuzzy compatibility than currently exists. To illustrate the potential problems of 

occurrence set compatibilities, suppose (Fig. 7-15) the new structure, SX, is "John gave Bill a 

cigar at the fair", and the bond, X, of this new structure is identical to Y which is the bond of 

another existing structure, SY. Suppose in addition that SX and SY both have TIME and LOCation 

features on their occurrence sets, and that these features are compatible with one another. But 

suppose that 

l.M ary saw SX occur 

2.Pete saw SY occur 
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That is, each of SX and SY has an MTRANS feature on its occurrence set, but one involves Mary, 

the other Pete. Here, SX and SY obviously have different features, but does this make SX 

incompatible with SY? Probably not. But what if X and Y represent some relatively short-lived 

action (this ATRANS is such an example), and Mary is known to have been at the fair and left 

before Pete ever arrived. Clearly, SX and SY could not represent the same ATRANS event. 

From this simple but typical example, we observe (a) that the compatibility of features of 

occurrence sets can involve features of other entities arbitrarily distant from the two structures 

under' examination, and (b) that a large number of special case heurisics would be required to 

recognize such "subtle" interactions as these. To be completely certain of the referential 

identity of the two structures would involve tremendous quantities of computation. This is the 

type of problem which also can pose difficulty even to human 
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Figure 7-15. When are two occurrence sets compatible with each other? 

language users. For the most part, tests on a very few common features of action and state 

structures will suffice to determine the compatibility or lack thereof of two structures. In the 

current implementation, the only two classes of occurrence set features checked for compatibility 
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are time and location. That is, if another structure can be found whose bond matches the bond of 

the new structure in One of the ways to be described, and the locations and times are 

compatible, the current memory considers the two structures identical and merges them into one. 

The ways in which the location features can be compatible are the following: 

1. one or both structures have no explicit LOCation feature 

2. both have LOCation features, and their values are identical 

3. both have LOCation features, but one or both are UNSPECIFIED 

4. both have LOCation features X and Y, and (LOC X Y) or (LOC Y X) (that is, one is a 
more general location which is compatible with the more specific one) 

For time features, if the two times or time intervals could possibly have been the same, the 

times are considered compatible. That is, if the structures are actions, then only if the time of 

one is known to be strictly before or strictly after the time of the other are the times considered 

incompatible. If the structures are states, then only if their time intervals can be shown not to 

overlap are the times considered incompatible. This is a crude heuristic and obviously needs 

considerable refinement; fuzzy matching of times poses a major topic of research all its own. The 

basic problem is one of durations, and how close in time two structures must be in order to 

stand a chance of being referentially identical. In a typical case the times, T1 and T2, of the two 

structures will have only the very loose relation shown in Fig. 8-16: they are both after some 

particular point. But the after relationship could represent microseconds or centuries the way 

things are handled by the evaluator currently. 
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Figure 7-16. Typically. time relations in the memory are sparse. 
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The current plans are to apply the state-duration inference capability to the problem of 

deciding when two states have occurred at times close enough together to be considered time­

wise compatible. Also, since one very common source of confirmation is the matching of a 

prediction about the future to what actually occurs in the future, another valuable extension 

would be to impose approximate time limits on the applicability of all predictions. Thus, if John 

needs some nails, an action prediction is that he might go to a store, and perform all the 

intermediate actions to do this. But these predictions only apply to the very near future (say the 

rest of the day), and should not match up several weeks later. 

The compatibility of occurrence sets is a problem of detecting both confirmations and 

contradictions. Let us now turn to the problems involved with detecting when the bond of the 

new structure matches the bond of another structure closely enough for the two structures to be 

potentially referentially identical structures. 

7.5.3.2 DETECTING CONFIRMATIONS: THE PROBLEMS OF MATCHING BONDS 

As mentioned, even if a lookup fails to locate another bond which is identical to the bond of 

the new structure, this does not imply that no confirmation exists. There are several reasons for 

this, and each relates to the need for a certain amount of tolerance -- fuzziness -- in the 

process which recognizes confirmations. The particular forms of fuzziness the memory is on the 

lookout for are the following: 

1. Some conceptual predicates are symmetric. This can easily prevent a successful retrieval of 

some bond by low level-lookup functions which are not sensitive to symmetry. For example, 

(PHYSCONT X Y) directly confirms (PHYSCONT Y X), even though there is not a strict structural 

match between these two structures. The evaluator must be sensitive to this simple kind of 

"fuzziness". 

2. Often, the structures exist at different levels of specificity, but mean essentially the same 

thing. For example, if an inference is made that Mary feels a positive emotion toward John 

around time Tl, and another structure exists which represents that Mary feels love toward 

John around Tl, the two structures stand a good chance of referencing the same state, and 

should be recognized as a confirmation: 
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{MFEEL #MARY #POSEMOTION #JOHN} 

(MFEEL #MARY #LOVE #JOHN) 

Another example of this is when a very general action prediction of the form (DO P X) is made. 

It would be desirable that the evaluator recognize this general prediction as matching any 

appropriate specific action which P might subsequently perform, provided the occurrence sets 

of the general and specific action structures are compatible. 

3. If one or both of the structures contain an UNSPECIFIED entity, but match in other respects, 

and if the features (occurrence set) of the unspecified entity are compatible with the features 

of the corresponding entity in the other structure, then the chances are also good that the 

two structures reference the same action or state. For example, if the action prediction 

inference "John will get some nails from someone" arises, and subsequently another structure 

"John is getting some nails from Pete" comes about, it would be desirable to recognize the 

probable direct confirmation: 

{ATRANS #JOHN C2247 C2386 #JOHN} 

(ATRANS #JOHN C2247 #PETE #JOHN) 
C2247 represents some nai Is, C2388 some 
unspecified person. 

4. It is quite common that two distinct tokens which in reality represent the same entity will 

appear in two otherwise identical structures. The above example about nails illustrates this: 

the prediction is that John will acquire some nails (no particular ones). But the same 

indefiniteness is present in the confirming structure "John is acquiring some nails from Pete. 

Although it makes little sense to ask whether the nails which John wanted are the "same" nails 

he is getting from Pete, it would be desirable to recognize that the two distinct tokens for 

these two sets of nails reference basically the same entity. Otherwise, the confirmation would 

be missed: 

(ATRANS #JOHN C2247 #PETE #JOHN) 

(ATRANS #JOHN C6511 #PETE #JOHN) 

where C2247 regresents the nai Is John 
WANTed, and C6511 represents the nai Is 
John is getting from Pete. 
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5. It is possible in the memory for two completely different structures to represent essentially 

the same information. Although the use of conc:eptual primitives has reduced this problem to 

manageable levels, one gains the feeling that it will never be completely solvable. An 

illustration of this will occur in an inference-reference interaction example in section 8.1. In 

that example, the two information units 

(TS #ANDYl #lJUN48) 

(TS #ANDY2 #7MAR72) 

exist in the memory. That is, one Andy started to exist (was born) at time #lJUN48, and 

another at time #7MAR72. In the example, the problem is to discover which Andy might be the 

referent of an ambiguous reference. During inferencing, a crucial discovery is that whichever 

one it is, his age obeys: 

(AGE X #ORDERMONTHS) 

Clearly, this relative information tends to agree with with the absolute TS information about 

#ANDY2 more than with the TS information about #ANDY1, who is much older. The problem is 

that the AGE inference has nothing to say about absolute times, but is essentially the same as 

the TS information about #ANDY2 if it is made during the years 1912, 7 J or 74. It is highly 

desirable that the AGE inference be recognize able as representing essentially the same 

information as the TS for #ANDY2. 

7.5.3.3 DETECTING CONTRADICTORY BONDS 

What are the effective procedures for determining when the bond of a newly-inferred 

structure contradicts the bond of some other structure in the memory? I am not concerned with 

an elaborate probing ahead to determine whether X would eventually contradict sOme Y which 

already exists, since the new structure will eventually lead to that point in its expansion by 

inference anyway. Rather, all the problems of detecting contradictions concern whether two 

bonds are contradictory in themselves, not in what they imply. 

Currently, the memory can detect a direct contradiction between new structure, S, and some 

other memory structure, X, in any of the following forms: 
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1. S and X are identical propositions, except one is true and the negation of the other is true. 

That is, both an S and a (NOT S) structure exist 

2. S and X both involve a predicate, P, and, for this P, its conceptual arguments in S contradict its 

conceptual arguments in X. An example is where (LOC #JOHN #USA) contradicts (LOC #JOHN 

#FRANCE), given that the times of the two structures are the same or "very close". This 

kind of test is clearly specific to each conceptual predicate: whereas it is impossible to be 

in two different locations at the same time, it is entirely possible to POSSess two different 

objects at the same time: (POSS #JOHN #8ALL3), (POSS #JOHN #CAR17). 

3. X and Y both involve predicate P, and have arguments which are conceptually opposites (to 

some degree) of one-another. An example is: (MFEEL #JOHN #LOVE #MARY) vs. (MFEEL 

#JOHN #HATE #MARY), where (OPPOSITE #LOVE #HATE). 

4. X and Yare simply different structures which directly contradict each other. In section 5.7, 

the computer example ("Mary said she killed herself") showed how an intrinsic enabling 

condition of Mary's speaking action contradicted an implication of what she said. The 

contradictory structures had the forms: 

(TIME #MARY Tll (that is, Mary was existing at TU 

<TF #MARY T21 {Mary ceased to exist at T2} 

where T1 occurred after T2 (Mary still existed after she ceased to exist)! The heuristics 

which detect this class of contradictions seem to be both predicate-dependent and highly 

sensitive to the natures of the entities the predicate relates. 

7.5.4 N-MOLECULES AND THE EVALUATION PROCESS 

The need for special predicate-specific heuristics to perform all these relatively involved 

tests for fuzzy confirmations and contradictions seems to be great. That is, the heuristics which 

POSS uses to locate contradictory structures will be quite a bit different from those LOC uses, 

both these will be quite a bit different from those MFEEL uses, and so On. Similarly, the process 

of detecting confirmations involves heuristics which seem to be quite specific from predicate to 

predicate. It would be desirable, therefore, to have access to predicate-specific knowledge 

during these confirmation and contradiction-seeking processes. 
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The main question is: where should such predicate-specific heuristics exist in the memory? 

The nature of this task is reminiscent of N-molecules. Recall that the basic purpose of an N­

molecule is to encode patterns and normative information in processes rather than in complex 

passive data structures. In other words, when applied to a memory structure, it is the N­

molecule's job to rate the structure according to "how reasonable it sounds" in the absence of 

specific information one way or the other. As described in section 6.7, the N-molecule was 

sensitive mainly to features of the structure being rated, and to its occurrence set, and only 

minimally sensitive to other specific world knowledge, since it operated under the assumption 

that unfruitful attempts had already been made to locate specific knowledge which would answer 

the question directly. But, as we are beginning to see, this is not a good assumption, because the 

low level retrieval functions search for information on the basis of structural similarity only, 

disregarding the meaning of what they are trying to locate. 

Putting enough predicate-specific knowledge to detect fuzzier confirmations and 

contradictions into N-molecules is more attractive than creating a new kind of process, because it 

seems to be a proper part of the general task of assessing a structure's compatibility with other 

knowledge. The generalization which seemed to be needed was to have N-molecules first 

attempt to relate the structure they are assessing to other specific structures, in search for 

direct contradictions or confirmations which might have been missed by the Simpler memory 

retrieval functions. If a direct confirmation or contradiction could in fact be located, then it should 

affect the decision of the N-molecule. 

7.5.4.1 EVALUATOR/N-MOLECULE COMMUNICATION 

In order to do this, we must extend the concept of an N-molecule to one which returns a 

three-part signal: 

1. the judged compatibility of the structure 

2. a list of reasons (pointers to other information) explaining why this compatibility 
was chosen. By convention, when the N-molecule returns a direct response, it 
returns a single REASON: the structure which was detected to confirm or 
contradict the structure it was given. 

3. the type of discovery which this judgement was based upon: another structure in 
memory which (a) directly confirms or contradicts S in one of the "fuzzy" ways 
described in the preceding sections, or (b) a knowledge of what is normal in the 
world. The latter is the use of N-molecules as already discussed. If the N­
molecule can provide neither a direct nor normative response, a failure signal is 
returned. 
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Fig. 7-17. illustrates the external appearance of an N-molecule designed to perform these 

tasks. 

information structure 
under assessment 

N-MOLECULE 

i f r 1 

three-part 
response 

basis 
••••••• > DIRECT/NORMATIVE/FAILURE 

value 
=======> STRENGTH 
reasons 

= •• ======> (* * * * *) 

tests for/on other 
specific memory structures 

Figure 7-17. The external logic of an N-moJecule. 

This organization allows us to view an N-molecule as a black box which will tell us whether 

or not some structure S relates in a fuzzy way with some other specific information, and if not, 

how likely is S to be true, based on a knowledge of what is normal in the world. 

7.5.5 THE EVALUATION SEQUENCE IN THE PROGRAM 

The situations and processing actions which characterize these five cases are summarized in 

the flow diagram in Fig. 7-18. In order to decide which case is applicable, the evaluator asks the 

following sequence of questions and performs the associated actions for each newly-inferred 

structure, S: 

1. does S directly match some other structure in the memory, and are their occurrence 

sets compatible? If so, call the structure merger to merge the two structures, 

increase the strengths of structures lying along both lines of inference which 

have been joined, and add the merged result to the inference queue. Also, record 

the merge on the list !CONFIRMATIONS. 

2. if (1) fails, does S directly contradict (ie. S and (NOT S), or (NOT S) and S) some 
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other structure whose occurrence set is compatible with S's? If so, and if the 

strengths of the two structure are within 0.20 of each other, record the pair of 

contradictory structures on the list !CONTRADICTIONS, and do not place the new S 

on the inference queue (that is, discontinue the line of inference). Although pairs 

of !CONTRADICTIONS are simply expressed (passed to the conceptual generator) 

by the present program, they comprise the beginning point for another entire 

theory of what to do next. If the strengths are more than 0.20 apart,· demote the 

strength of the structure with the lower strength, the strengths of its 

OFFSPRINGS, and the strengths of its REASONS which are also less than 0.20 

below the strength of the higher. 

3. if (1) and (2) fail, how compatible is S with the memory's knowledge of what is 

normal in the world? To answer this question, the evaluator applies the 

appropriate N-molecule to S. If the N-molecule can, by applying its special 

heuristics, locate another structure which directly confirms or contradicts S, the 

evaluator performs the appropriate step (1) or (2). Otherwise, if the N-molecule 

can assess the new structure's compatibility, C, based on how closely it matches 

the N-molecule's tests for normality, the quantity (l-C) becomes the inference's 

significance factor on the inference queue. This implements the heuristic: "the 

more normal some memory structure is, the less likely it wi" lead to interesting 

discoveries." Therefore, if any inferences must be cut off during expansion in 

inference space, the inference monitor should prefer those with the lowest 

significance f actor. 

4. if (1) and (2) have failed, and the N-molecule cannot assess the new structure, it is 

simply retained on the inference queue, using the default significance factor 

specified by the inference atom which generated it. 
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ASSIGN DEFAULT 
SIGNIFICANCE 
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find 

yes 
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• 

ARE OCCURRENCE 
SETS COMPATIBLE? 

ASSIGN 
<l-C) AS 

SIGNIFICANCE 

yes 

yes 
NOTE ON LIST 

!CONTRAOICTIONS 

RETURN NEW 
STRUCTURE 

TO INF QUEUE 

I~" 
EXIT 

Figure 7-18. Actions of the evaluator, based 011 how 
the new inference relates to other knowledge. 

The problem of detecting confirmations and contradictions, as I have shown, is not a simple 

one. In fact, future developments will likely prove that the problems I have addressed here are 

quite inadequate. Furthermore, the operation of the current evaluation function is stymied by the 

sparseness of N-mol~cules in the implementation. In the future, a massive N-molecule writing 

campaign will be necessary to upgrade the evaluator's performance. 
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7.5.6 PROBLEMS, PROBLEMS, PROBLEMS 

The inference evaluator is, both in theory and in practice, the single most important 

component of the conceptual memory. At the same time, it is the most enormous problem I have 

yet encountered. Its successful operation is seemingly dependent upon hundreds of details which 

linger on the periphery of the current theory and remain to be identified and solved. For 

instance, can we reasonably expect a new structure to confirm more than one existing structure, 

and if so, what is involved in the merge of more than two structures? What should happen when 

the new structure both confirms existing structures and contradicts other ones? How concerned 

should we be with the logical consistency of the conceptual memory? How extensively should the 

occurrence sets of actions and states be examined for compatibility, and what are the features 

which are most salient ant reliable in this regard? How should confirmations affect the 

STRENGTHs of the REASONS and OFFSPRING of the confirming structures? The questions are 

endless, but most interesting. 

Also, there are many inadequacies and inconsistencies of the evaluator and merger as they 

now exist. Many forms of interaction have been ignored in order to implement the basic 

mechanisms. For example, when a merge occurs between two structures, one or both of which 

contain UNSPECIFIED entities, and these entities are clarified by merge, they should be identified 

with their counterparts in the other structure, and merged into one (by an identity merge, 

section 8.1.2) before the merge of the two larger structures which are about to be merged. The 

absence of this interaction with the identity merger currently can lead to results which are 

simply incorrect. The entire evaluation-merge sequence needs extending and upgrading. All that 

exists now is a primitive capability for a very interesting and critical process. 

7.5.7 INFERENCE CUTOFF: IS IT A REAL ISSUE? 

Clearly, in a memory very richly endowed with conceptual inferences (for instance, a human 

language user), there must be some limiting influence on the spontaneous generation of 

inferences in reaction to each utterance. Otherwise, aside from wasting time on very unlikely or 

insignificant information, the process might never stop! The same problem exists, but is less 

severe, for the current modestly endowed memory: when can SOme line of inference be curtailed 

with reasonable assurance that "nothing of significance" will be overlooked? Of course, one can 
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never be absolutely certain; our only aspiration should be to be safe most of the time when a 

decision to discontinue a line of inference is made. 

The question therefore is: what are the criteria for discontinuing a line of inference in such 

a way as to prevent an "overreaction" to an utterance by the inference process? Of all the 

potential criteria available, two seem to be the most relevant, and the most obvious: significance 

and strength. Intuitively, we would want cutoff to occur when the inferences become too 

"unlikely", or too "insignificant", or sOme combination of these abstract metrics. Those structures 

with high significance should be pursued to lower strengths than those structures of lower 

significance. 

To approximate this idea, the following simple cutoff criterion has been used: 

STRENGTH * SIGNIFICANCE < 0.25 

where the strength is the STRENGTH property of the structure, and the significance is the 

quantity 1-C, where C is the compatibility returned by the N-molecule which the evaluator called 

to assess the new inference's compatibility with memory's knowledge of what is normal. In case 

no such C could be obtained, the significance is the default significance supplied by the inference 

atom which generated the inference. 

I am trying to capture a very imprecise feeling about cognitive resource allocation by two 

admittedly crude measures, and somewhat arbitrary numbers. Time will tell how incorrect this 

simple measure is. 

7.S MERGING INFORMATION STRUCTURES: 
THE STRUCTURE MERGER 

When a direct confirmation is detected by the evaluator, the two 
memory structures representing this information must be merged 
into one. How is this achieved in a way which preserves all the 
surrounding information associated with each. How does this 
merge physically occur? 

As we have seen, one important goal of the evaluator is to identify some existing structure 

as representing the same information as each newly-inferred structure. That is, two structures 
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have been discovered to stand for the same entity in the real world -- concept, token, action or 

state. At that time, there is a need to merge the two structures into one new structure, because 

(1) structures in the memory should remain distinct if and only if the real-world notions they 

represent are distinct, and (2) by merging the two structures into one, new connections are 

made among other structures which involve them, and this frequently opens new useful paths 

which will enable more inferences to be made. 

This need to merge also occurs when some reference to a token or concept is finally 

established and must replace the temporary token which was created to stand for it. Although 

most of what I am about to describe is applicable to this case as well, a later section deals 

specifically with other issues of merging two tokens -- .in particular how the opening of new 

pathways can result in further inferencing when some missing referent is finally identified and 

merged with the temporary token which was used previous to identification. In every case, the 

discovery that the reference identity of two structures is equal is an important event,since it 

represents a quantum of understanding. 

The mechanical goal of merging is rather straightforward: that One structure, 5, result from 

two structures, 51 and S2, and that this structure contain all the information from 51 and S2. 

Equivalently, one structure, 52, is to be merged into the other structure, 51, which is to be 

preserved in its augmented form. Of primary concern is that all information from both sources be 

preserved. How does MEMORY effect a merge of S2 into 51? 

7.6.1 THE MERGE SEQUENCE 

The process is illustrated in Fig. 7-19. The first step i,,' ,,,,~',,es examining each member of 

52"s occurrence set. For each occurrence set member. ;v1, if the information represented by M 

about 52 is not also known for 51, M is modifi~" so that it describes 51 instead of 52. The 

alternative to modification would b", to create a new unit, M', to describe 51. However, M itself 

can in general be part of a much larger structure, so that generating a new copy of M would in 

general leave the new copy unrelated to the larger structure in which M participates. This 

modification involves substituting 51 in M's bond and adding M to 51's occurrence set. If the 

information M conveys about 52 is also known for 51, it is not copied. 



At the end of this process, S 1's occurrence set (its features) will represent the union of 

previous knowledge about S 1 and S2. Members of S2's occurrence set which were not 

transfered to S 1 are then purged. 

Next, the RECENCYs (times of last memory access by the reference mechanism) are 

examined and the most recent is assigned as the recency of the merged proposition, S 1. The 

merge process always performs recency and occurrence set merging. However, if the structures 

represent actions or states (that is, they are information-bearing structures rather than concepts 

or tokens), the merger continues. S2's REASONS set is appended to S1's REASONS set, and the 

OFFSPRING set of 52 is appended to the OFFSPRING set of S1. 80th of these steps of COurse 

involve reflecting the modifications in the reverse links as well, since REASONS and OFFSPRING 

are inverses of each other. Next, S1's ISEEN set becomes the union of S1 and 52's ISEEN sets, 

preserving a record of which inference atoms have generated inferences from the information S 1 

and 52 represent. Finally, 51 receives the "logical-OR" of the TRUTHs of S 1 and 52, and the 

higher of S 1 and S2's STRENGTH. At this point, 51 represents the merged result. The merge is 

then recorded on !MERGELl5T and the structural remains of 52 are purged. 

C6514: # the actor of this ATRANS ... 
simi larly for the 
other members of 
the bond 

the actor's C9214 this occurrence set member is deleted 
occurrence .•• 

set C2387 this one remains 

C2387: (ATRANS C6514 

C5312 
C2387's C2619 
occurrence C3459 
set before Cl899 
the merge C1582 

C2846 

features I-­contributed _ C2836 
by C9214 

* * *) C9214: (ATRANS * * * *) 
mer?in~ structure C1188 C9214'5 
C92 4 Into C2387 C9365 occurrence 

~--------------------- C7211 set before 
~--------------------- C2836 the merge 

C3721 

C2836: (MLOC C9214 C7746) 

Assume feature C2836 of C9214 was not 
also a feature of C2387. C9214 is replaced 
by C2387 in C2836's bond, and C2836 is 
placed on C2387's occurrence set as a 
new feature. 

Figure 7·19. Merging two memory structures. 
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This sequence of processing represents the standard merge. However, when it is two 

concepts or tokens, rather than information-bearing structures, which are being merged, the 

merge process emcompasses some additional computation. 

The following computer example demonstrates a complete standard merge. 

In this example, we will observe the point of contact established which completes the causal 

chain expansion for the utterance "Mary kissed John because he hit BilL" The memory is able to 

discover the causal chain because this utterance occurs in an environment in which Mary has 

been inferred to feel a negative emotion toward Bill. 

(JOHN. MARY AND BILL WERE AT THE PARK) 

(BILL TOOK MARYS BOOK AWAY FROM HER) 

(MARY KISSED JOHN BECAUSE HE HIT BILL) 

«CAUSE «CAUSE «*PROPEL* (#JOHN1) 
(Cee57) (#JOHNll (#BILU» (TIME_ 
(Ce1370) » «*PHYSCONh (CeeS7) 
(#BILL1}) {TIME _ {Cee70})}}} {{CAUSE 
({*OO* (#MARYll) (UNSPECIFIED ) (TIME 

(Cee7l) » «*PHYSCONh (Ce075) 
T#JOHN1)} (TIME (CeB71)}}}}) 
(TIME _ (Cee7e)}f 

INTEGFIATION RESULT: Cee89 

STARTING INFERENCE QUEUE: 
«X 1. 13 Ce(89» 

APPLYING INF MOLECULE *PHYSCONT* 
TO C0085: (*PHYSCONT* Ce0lS #JOHN1) 
ABOUT TO APPLY 0PHYSCONTl TO Cee86 

C0086: (*PHYSCONT* Ceel5 #JOHNl) 
INFERRING: 
(*MFEEL* #MARYl #POSEMOTION #JOHNl) 

ALSO GENERATING: (TIME Cee99 Cee7l) 

MEMORY reads the first lines of the 
story. Among other inferences, one 
which wi I I be generated from the 
second I ine is that Mary feels a 
negative emotion toward Bi I I because 
he took her book from her. This wi I I 
be used durin~ inferencing from the 
next line to Infer that when Mary knows 
that Bi I I suffers some sort of negative 
change, she might become happy. 

MEMORY reads the third I ine. Its 
partially integrated result is shown, 
followed by its integrated result, Cee89. 
Cee89 is the main event, so it becomes 
the input to the inference mechanism. 
Other sUbpropositions have been suppressed 
for this example. 

Numerous inferences result from these 
starting propositions. Eventual Iy~ from 
the fact that Mary kissed John, Mt:MORY 
infers that she feels a positive emotion 
toward him. That is, her feel ing a 
positive emotion toward him caused her 
to kiss him. 
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APPLYING INF MOLECULE POSCHANGE 
TO C0018: (POSCHANGE #MARYI #JOYJ 
ABOUT TO APPLY 0POSCHANGE1 TO cal18 

C0118: (POSCHANGE #MARY1 #JOY) 
INFERRING: 
(*MFEEL* #MARYI #POSEMOTION #JOHNl) 

ALSO GENERATING: (TS ca125 Caa7a) 

CAUSAL EXPANSION ACHIEVED: 
(C0078 , Ca(86) 

MERGING: 
C0125: (*MFEEL* #MARY1 #POSEMOTlON 

#JOHNl) 
C0099: (*MFEEL* #MARYI #POSEMOTION 

#JOHN1) 

(*BREAK* . HELLO) 

*(VOMIT C(3125) 

ce125: (*MFEEL* #MARYl #POSEMOTION 
#JOHNll 

ASET: 
C13127: (CAUSE ca118 #) 
C13125: (TS # Ca137e) 

RECENCY: 54500 
TRUTH: T, STRENGTH: 13.81225131313 
REASONS: 

C13118: (POSCHANGE #MARY1 #JOY) 
C0e78: (*PROPEL* #JOHNI ce1e5 

#JOHN1 #BILLl) 
lSEEN: NIL 

* (VOMIT Cee98) 
-----------------------------------
C13e89: (*MFEEL* #MARYI #POSEMOTION 

#JOHN1) 
ASET: 

ce1e4: (CAUSE # Ce(385) 
ce1e1: (*MLOC* # C13(55) 
C1311313: (TIME # C13(371) 

RECENCY: 452513 
TRUTH: T, STRENGTH: 13.95131313131313 
REASONS: 

C13e85: (*PHYSCONT* cee75 #JOHN1) 
ISEEN: NIL 

*(VOMIT C0125) 

ce125: (*MFEEL* #MARY1 #POSEMOTION 
#JOHN1 ) 

ASET: 
ce157 
C1311313 
C131131 
ce1a4 
ce127 

(WANT #JOHN1 #) 
(Tl ME # Ce(371) 
(*MLOC* # C13(355) 
(CAUSE # Ca(385) 
(CAUSE ce118 #) 
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More inferences are generated. Eventually, 
because Mary underwent a positive change 
(she knew that someone she felt a negative 
emotion toward suffered a negative change), 
and since it was John who caused her 
positive change (by his action of hitting 
Bi I I), MEMORY infers that Mary feels a 
positive emotion toward John. 

MEMORY realizes that the fact that Mary 
feels a positive emotion toward John has 
been generated from two distinct sources, 
and, further, that this fact I inks two 
causal chains together, thus explaining 
a causal relation in the input. At this 
point we wi I I interrupt MEMORY to see 
what is about to be merged, and how things 
look after the merge. 

This is one of the structures representing 
Mary's feeling a positive emotion toward 
John. 

This is the other. Notice that its REASON 
is that Mary kissed John. 

This is the merge result. The occurrence 
sets (ASETs) have been merged, as have 
the RECENCYs, TRUTHs, STRENGTHs and 
REASONs. In Engl ish, this structure is 
read: Mary felt a positive emotion toward 
John. This started at time C13e7e and was 
also known to be true at time Cee71. 
Furthermore, John probably wanted this to 
be the case. Mary's feel ing was caused 

3iij1 Ca118 (8 i I I' s suffer i ng a negat i ve 



C0126: (TS # C0070) 
RECENCY; 54500 
TRUTHI T, STRENGTH I 0.85000000 
REASONS: 

C0118: (POSCHANGE #MARYl #JOY) 
C0078: (*PROPEL* #JOHN1 C0105 

#JOHNI #BILLl) 
C0086: (*PHYSCONT* C0075 #JOHNl) 

ISEEN: NIL 

change), and her feel ing in turn caused 
C0085 (her kissing John). 

7.7 A SWIPE AT THE NOTION OF "BACKUP"; 
AN EDITORIAL 

A fair question to ask is the following: "How does a conceptual memory cope with mistakes 

it makes?" I will briefly address the issue here. 

"Backup", and sophisticated programming techniques and languages which implement it, have 

recently become fashionable in Artificial Intelligence. Backup is also called "backtracking" or 

"non-deterministic programming". These terms refer to the undoing of things which have been 

done by a process. Backup usually occurs in reaction to something which has gone awry, 

ostensibly because of a "bad decision" along the way. In this context, however, "decision" often 

refers to no more than a random or "first-option" choice of alternatives, where in fact no real 

decision criteria were ever applied. Programs which use backup techniques are based on the 

premise that they will frequently make incorrect decisions because of incomplete knowledge, and 

would like the final successful version of the processing not to reflect any incorrect decisions 

which occurred during the search for the final solution. 

In many cases, backup is an attractive programming technique simply because it is often 

easier to undo bad decisions made by some myopic process than it is to give each decision­

making process the extensive perspective required to make good decisions the first time. To 

implement a good backup system, decision points must be explicitly recorded and a record must 

be kept of which changes to the data were made after which decision points. If enough is 

recorded, previous states of the program and data can be restored as though nothing had 

happened. 

The main swipe at this notion is this: 
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Natural language processing is too complex to rely upon backup 
AS A PROGRAMMING TOOL. In the common programming 
sense of the term, there is no such thing as "backup" in the 
conceptual memory. Backup presupposes that precise decisions are 
being made along well defined goal paths. It is simply not the 
purpose of the memory to make all-or-none. precise decisions. 

Human language users rarely "back up" when comprehending language. To study them and 

discover why they don't back up seems to be a far more useful an endeavor than to construct 

more and more awesome programming languages under the banner of "attaining more power". In 

my opinion, the high-pressure language vendors have so far done little more than tempt 

language researchers into shortcut, "slam-bang" solutions with their new, improved programming 

techniques. 

This is not to suggest that the memory assumes it will make no errors in processing the 

meaning graphs of natural language utterances, nor does it imply that there should be no 

recourse for altering bad decisions. Rather, it means that there should be no single source of 

decision points, and no "clean" way to restore the exact state of the program and data after 

something "bad" happens. These capabilities are simply not desirable for a conceptual memory. 

What is desirable is to make many probable inferences whose utility is ultimately a measure of 

how they connect with other information in the memory. Those which don't connect simply 

atrophy; they are not "bad" decisions, but rather conjectures which didn't pan out. 

7.8 THE MEMORY AS A CONVERSATIONALIST 

The memory cannot yet be properly called a "production" program which runs alone, and 

communicates with the outside world in great abundance; it is still in a fragile experimental stage. 

However, the current program does interface with Riesbeck's conceptual analyzer [R2], and with 

Goldman's conceptual generator [Gl]. 

Two awesome questions remain to be addressed: what factors should determine when an 

external response of some sort is called for, and what factors determine the substance of 

responses? Both questions are beyond my present scope. Nevertheless, we may view the 

memory as black box with many queues and sources for external responses. 8y hooking up all 

these sources to the conceptual generator, we would essentially have an uninhibited low-brow 

intelligence which constantly babbled its stream of consciousness. 
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This is roughly what the memory is and does! I will simply list here the sources of 

information from which responses originate: 

7.9 

1. missing information which the specification process failed to make explicit 
(!MISSINGINFO) 

2. unexplained causal chains (!CAUSALS) 

3. comments on causal chains it has explained (!EXPANDED_CAUSALS) 

4. contradictions (!CONTRADICTIONS) 

5. confirmations (!CONFIRMATIONS) 

6. unestablished and remaining ambiguous references (!REFNOTFOUND, !REFDECISION) 

7. all inferences. Those which lie below the STRENGTH 0.75 are framed as "I wonder" 
type questions by including the modifier (MODE (*?*)) in the structure sent to the 
conceptual generator. Otherwise, a MODE *POSSIBLY*, *PROBABLY*, *CERTAINLY* 
is included, based on the inference's strength. 

REORGANIZING THINGS A BIT 

Up to this point in the research, the emphasis has been mainly on defining useful theoretical 

tasks for a memory, rather than focusing upon efficient ways of organizing large numbers of 

inferences. The decision was made early to perform as much inference pattern matching as 

possible beyond the point of the simple retrieval of the appropriate inference molecule. That is, it 

has been convenient to regard an inference molecule as some sort of benevolent black box. 

However, as anticipated, experience is showing that it would be helpful to perform mOre 

matching in order to determine which subset of inferences organized around a conceptual 

predicate would be applicable. For example, rather than simply group all PTRANS inferences 

together under one inference molecule, it would be more efficient to subclassify them into, say, 

two groups: those involving the PTRANSing of a person in one group, those involving the 

PTRANSing of an object in another. This reduces the number of tests which must be made by the 

more specific inference atoms, and, although it doesn't buy any power, it is a convenient way of 

avoiding redundant and aWkward testing in each molecule. This would also allow, for instance, 

the selection of relevant inference atoms on the basis of the time aspects of the structure: often, 

the nature of inferences the memory must make are quite dependent on whether S has occurred, 

is occurring, will occur, or is a timeless statement. 
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Plans for the immediate future are to evolve the organization into a more two-level system. 

Since the main advantage of embodying inferences in program form is that it is an easy way to 

implement arbitrarily detailed pattern matching, I want to preserve the idea of an inference atom 

as the last step before making each inference. Yet, there is much that can be filtered out by far 

simpler tests before the atom applies its detailed tests. I would like to associate these two 

levels of simpler and more complex tests in the way shown in Fig. 7-20. Instead of simply testing 

the conceptual predicate of structure S which is under inferencing, S would be filtered through a 

sequence of simple feature matchers. Associated with each simple test would be a collection of 

inference atoms containing all the specific tests for applicability beyond the first level of simple 

matching. In this way, as much special case attention to detail as necessary could still be 

exercised in the inference atom, but each inference atom could make more assumptions about the 

environment in which it is called, since it will have been called by a fairly selective general 

matcher. 

STRUCTURE 

S 

IGENERAL TESTS 11 

IGENERAL TESTs 21 ~ 

IGENERAL TESTs NI 

CLUMP OF 
SPECIFIC 
INFERENCE 

ATOMS 

Figure 7-20. Plans for a more two-level inference organization. 

CLUMP OF 
SPECIFIC 
INFERENCE 

ATOMS 

CLUMP OF 
SPECIFIC 
INFERENCE 

ATOMS 

In Fig. 7-20, all the general tests would be applied in sequence, so that more than one 

clump of inference atoms might be accessed: the structure might satisfy several of the more 

• gener al selection tests. 

Another extension of the current organization will be to implement an automatic REASONS 

collection. Currently, each inference atom has a "manually supplied" list of reasons which it 

361 



supplies when it generates its inference. But since these reasons are exactly a record of the 

successful and unsuccessful tests which lead up t(l the inference atom, it would be desirable for 

the inference monitor to keep track of the sequence of tests and their results which have been 

performed within the inference molecule up to the point at which each inference atom generates 

its inference. However, a completely automatic REASONS collection system will have to await a 

better defined set of tests than currently exists; for the time being, I want to exercise more 

control over the reasons list. 
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CHAPTER 8 

INFERENCES APPLIED TO REFERENCE ESTABLISHMENT AND TIME RELATIONS 

This chapter shows how inferences can be vital to the solution of two subsidiary problems 

of the conceptual understanding of natural language. Section 7.1 will show how some of the 

more general problems of reference and anaphora can be successfully attacked with the 

inference mechanism, and section 7.2 demonstrates the applicability of inferences to solving 

unspecified time relationships. 

8.1 INFERENCE AND REFERENCE ESTABLISHMENT 

How does the process of conceptual inference interact with the 
process of reference establishment? What capabilities are required 
to make optimal use of this interaction? 

What does a human language user do when he can figure out the lexical sense of some word 

in a sentence (in conceptual dependency terms, he is able to identify a PP), yet isn't 

instantaneously certain of the real world token to which it refers, its referent? That is, if we 

hear "John made up with Mary yesterday" either out of the clear blue (in no particular context), 

or in some definite context, how do we decide which of the many #JOHNs we might know the 

"John" in this sentence references? (The case where no #JOHN can be located at all is distinct 

from, and less interesting than, this problem.) This is a very fundamental aspect of the problem of 

reference. Its solution should be sensitive to as much contextual information as is available. This 

section presents a theoretical solution to this problem and describes how it has been 

implemented in the memory. Hopefully, by synthesis of a solution, we can shed some light on 

functions which bear analytical reality from the psychologist's point of view. 

The following obs~rvation has served to define my framework for the solution of 

references: people simply do not "back up" very often in processing natural language and its 

conceptual content. (They must be doing something right!) Avoidance of backup during the 

analysis of a sentence has always been a main tenet of Conceptual Dependency: conceptual 

world knowledge should be brought to bear upon analysis and integration of natural language 

utterances sO that backup occurs for nothing less than truly conceptual problems. If, for 

363 



instance, the conceptual analyzer backs up when most humans do not, it should only be because 

of a deficiency in the conceptual world knowledge to which the analyzer and memory have 

access; it should never occur because of sloppy analysis or failures to make use of conceptual 

context. The same should be true of the process by which referents are identified. 

What then do people do? The answer is simple at an abstracted level: they use everything 

available at the time to figure out the referent. This is not a very useful answer, so this section 

is devoted to some details of the problem. It should be clear that MEMORY is capable of 

effectively filling out the circumstances surrounding an utterance, and that it would be desirable 

to interface with this ability in solving problems of reference. 

To this end, a reference capability has been developed which permits the dejerrment of 

referent identification when necessary. This results in the ability to proceed with other aspects 

of conceptual processing even though all referents may not have been established before this 

processing begins. This scheme also provides for the eventual establishment of these referents 

as another goal of the inference process, and has the potential for recovering from incorrect 

identifications and doing so without loss of information or comprehension. The conclusion I will 

draw is that, in general, the solution of the reference problem for sOme concept involves 

arbitrarily intimate and detailed interaction with the inferential processes of the memory, an'" 

that these processes must be designed to function with concepts whose features may ..... ( be 

completely known at the time. 

8.1.1 AN ILLUSTRATION 

I will illustrate this inference-reference intI':; :IC(;vll by following a very simple, "clean" 

example. In this example, assume the memory knows of exactly two tokens, MCI, MC2 such that 

x ( {MC1, MC21 : 

<Dll (J SA X #PERSON) 
(02) (NAME X "ANDY") 

that is, there are two tokens in MEMORY each of whose occurrence set contains the information 

that the token stands for a person whose name is Andy. (Elswhere, these would have been 

illustrated as _ANDYl and #ANDY2, but to avoid confusion in this section, these forms will not be 

used.) 
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However, probably in addition to much other information (many other structures on MCl's 

and MC2's occurrence sets), assume it is also known that: 

{TS MCl #7MAR72l 
and {TS MC2 #lJUN48l 

that is, MC1 started to exist March 7,1972, and MC2 started to exist June 1, 1948. The 

concepts here represented as #7MAR72 and #lJUN48 are actually time tokens having as TVALs 

points on MEMORY's "absolute" time scale. These descriptive symbols are used here for clarity 

only. 

Now, suppose the sentence "Andy's diaper is wet." 

FLUID <EEE> LOC ~--- DIAPER 
l' 

1 
DIAPER <EEE> LOC ~--- ANDY 

("there is fluid located at the diaper which is located at Andy", a close-enough approximation for 

our current needs) is perceived. This is a typical reference dilemma: no human hearer would 

hesitate in the correct identification of "Andy" in this sentence using the available knowledge 

about these two Andys. (Let us assume no previous context for this example). Yet the obvious 

order of "establish references first, then infer", even though intuitively the correct order of 

processing, simply leads to an impasse in this case. In order to begin .inferencing, the referent of 

"Andy" is required (ie. access to the features of MC1 -- its occurrence set-- in memory), but in 

order to establish the referen of "Andy" some level of deduction must take place. This would 

seem to be a paradox. 

Actually, the "paradox" stems from the incorrect assumption that reference establishment 

and inferencing are distinct and sequential processes. The incorrectness of this assumption is a 

good example of the ubiquitous theme that no aspect of natural language processing, (from 

acoustic phonology to story comprehension), can be completely compartmentalized. In reality, 

referent identification and inferencing are in general heavily functionally dependent upon each 

other. Realization of this leads to an interesting sequence of processing capabilities which will 

untangle and solve this dilemma. 
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At the point the reference problem is undertaken, the state of the conceptualization "Andy's 

diaper is wet" (omitting times) is the following (represented in descriptive set notation): 

{LOC C1: ({1SA C1 #FLUID)} 
C2: {{! SA C2 #01 APER) 

{LOC C2 C3: {(ISA C3 #PERSON) 
(NAME C3 "ANDY")} )}) 

In other words, there is some fluid located at the diaper which is located at (worn by) a person 

whclse name is Andy. Section 4.3.2.2 described how the correct LOC relation between "Andy" and 

"diaper" was inferred during the conceptual analysis. 

Let us step back a moment and look several steps ahead by describing how the other 

references in this utterance will fall into place. Once the correct "#ANDY" has been identified, the 

referent of "diaper" can be established. That is, "the diaper", occurring out of context with no 

conceptual modification is referentially ambiguous (hence, we might be motivated to inquire 

"What diaper?"), whereas "the diaper located at X" is a signal to the referencer that the speaker 

has included what he feels is sufficient information either to identify or create the token of a 

diaper being referenced. 

The reference to the concept #FLUID is simply solved: the concept #FLUID is drawn out by 

the analyzer as part of the definition of what it means conceptually to be wet, and MEMORY 

simply creates a token of this mass-noun concept. The referencer realizes that references to 

mass nouns frequently occur with no explicit conceptual modification, and does not bother to 

identify them further unless contradictory inferences result from them later on. The token of 

#FLUID created stands for the fluid which is currently in this person's diaper. 

Back to the main problem! Using the reference search procedure described in se~tion 4.2, 

MEMORY uses the descriptive set for C3 shown above to locate MCl and MC2 as possible 

candidates for the referent of C3. When recency considerations fail to disambiguate, no more can 

be done to disambiguate at that point. MEMORY therefore creates a new concept, MC3, (which may 

or may not turn out to be temporary) whose starting occurrence set consists of the conceptual 

features which lie in the intersection of all candidate's occurrence sets. This, of course, includes 

at least the descriptive set which has served to locate the candidates. In general, the intersection 

will be large; however, in this simple example, we assume the intersection to be just this 

descriptive set, the resulting new structure being: 
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MC3: # 
(I SA # #PERSON) 
(NAME # ANDY) 

In addition, MEMORY notes that this concept has been created as the result of an ambiguous 

reference by adding MC3 to the global list !REFDECISION. This done, a token of a diaper which is 

located at MC3 can then be created. Ideally, This token too, by virtue of its referencing another 

possibly incorrectly identified concept in MEMORY (MC3), should be subjected to reference 

reevaluation, pending identification of MC3. For instance, if MEMORY were to hear "John's bike 

was broken." and makes the wrong identification of "John", the subsequent identification of 

"John's bike" will certainly be wrong and will have to be changed when "John'''s referent is. 

MEMORY currently does not attempt this. 

At this point, MEMORY has an internal form of the conceptualization containing a tentative 

reference. Inferencing may therefore begin. Of interest to this example is the subproposition "a 

diaper is located at MC3." This situation is an example of where an explicit-peripheral 

subproposition which is incidentally communicated plays a major part in the understanding of the 

entire conceptualization: one feature inference MEMORY can make with a high degree of 

cert ainty from 

{LOC X Y} 

where (ISA X #DIAPER) and (ISA Y #PERSON) 

is that the pers~:>n at (on) which the diaper is located is an infant, namely: 

{AGE Y #ORDERMONTHS} 

#ORDERMONTHS is a fuzzy duration concept. 

During inferencing therefore, the inferred structure (AGE MC3 #ORDERMONTHS) augments 

MC3's occurrence set, and other inferencing proceeds. Eventually, all inferencing from the 

utterance will cease.t or be cut off by At that point, !REFDECISION is consulted and MC3 is 

detected as having been unestablished, sO the second (and subsequent)-pass reference solver, 

SOLVCREF, is entered. 
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SOLVE_REF examines MC3's occurrence set, collecting those members which came into 

existence on the most recent pass of inferencing. These are detected by comparing RECENCYs of 

the new members with the value _NOW, stored before MEMORY began any processing of this 

conceptualization. The new members are first sorted according to the reference relevance 

heuristic mentioned in section 4.2.1. Then, for each new proposition, each candidate associated 

with MC3 is examined, checking for confirmation or contradiction. Candidates which have 

contradictory features on their occurrence set are immediately excluded. Confirmations count in 

a candidate's favor by the amount of the reference significance associated with the predicate of 

the confirming structure. 

This done, SOLVCREF seleds the candidate with the highest score. When there are still 

ties, the surviving candidates are reassociated with MC3 on !REFDECISION, hopefully with fewer 

candidates than before. Subsequent lines of a story or a MEMORY-generated external question 

can solve these in the same manner. This means, therefore, that 

The memory can defer identification of referents for as long as 
necessary without losing information. 

The worst that can happen is that MEMORY will fail to understand certain things by not 

having immediate access to some concept's occurrence set. This appears to approximate what 

people do: a human language user can listen to an entire sequence before who or what it is 

about dawns on him. At the point that happens, he nevertheless can reconstruct what he heard 

and re-apply it to the newly-discovered referent. Most of the time this is a "micro-process", in 

that the referent can be identified almost instantaneously -- usually during the analysis of the 

utterance into conceptual form. Nevertheless, the process is the same whether it is "micro" or 

protracted over a longer sequence. 

I have yet to describe what Occurs when the reference candidate set is narrowed to one, as 

in our example. After the first pass of inferencing in this example, information will be available 

which resolves the reference ambiguity: the AGE proposition is recognized by the confirmation 

process as matching the TS proposition stored on the occurrence set of MCl. This gives MCl a 

higher score than MC2 in SOLVE_REF. MC3, the temporary concept, has thus been identified as 

MCl, one of the two candidates. 
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Upon identification, MEMORY must have the ability to merge the temporary concept into the 

identified concept. In this example, this mean~ that MC3's occurrence set, which possibly has 

collected other new information (now known to reference Mel) which was not used in the 

identification (ie. it augments MCl), must be merged with that of Mel to preserve any additional 

information communicated by the input or its inferences. After merging, the temporary concept, 

MC3, is purged and removed from !REFDECISION. 

But now, Mel's (possibly augmented) occurrence set containing a" old knowledge about 

MCl is accessible since MCl has been identified. This means that new inferences, which could 

have been successful had they had access to Mel's full feature set, may now be applicable. To 

illustrate that this in fact happens in people, consider the following scenerio: assume that we 

know of two people named "John", John Smith and John Doe, that we know that Bi" and John 

Smith are arch-enemies and that Bill and John Doe are the best of friends. Further, assume we 

know that Smith owns a car, Doe does not. Suppose that in this situation we hear the following 

sentence, and from it make the response shown: 

INPUT: Bi I I wrecked the car John loaned him yesterday. 

RESPONSE: Oh, oh. I bet there's going to be trouble! 

Here, the reference to "John" is undetermined when the first pass through the inference network 

begins. A temporary concept is therefore created to stand for this reference. After the inference 

network silences, one new piece of information (probably among many others) is that, whoever 

the referent of "John" is, he owns a car. This was generated by an enabling inference in which 

is encoded the knowledge that for someone to loan (underlied by ATRANS) someone else an 

object, the loaner must have ownership of that object. This inference serves to identify John 

Smith and rule out John Doe as the referent of "John" by the process we have just seen. 

However, now John Smith's occurrence set, and in particular the fact that Bill and John Smith are 

archenemies, is available. Because of this, a second pass through the inference network would 

enable the resultative inference: 

"if PI has a negative relationship with P2, and P2 causes a NEGCHANGE of PIon some 
scale (regardless of intent), then PI is liable to do something that would cause a 
NEGCHANGE for P2 on some scale". 

to be made. This is the inference that underlies the response above. 

369 



The point is that this inference turns up only on the second inference pass because only 

then was John Smith's full occurrence set availab~ to inferences which could make use of it. 

The general principle is, therefore, that as long as references on !REFDECISION continue to be 

narrowed or solved, another pass of inferencing (on the original conceptual structures and all of 

their first-pass inferences) should be performed (without duplicating work done on the first 

pass). The hope is that new inferences will be generated which will in turn help to solve more 

references . 

. Notice that even the narrowing of a reference (decreasing the number of candidates) 

constitutes progress, since then the intersection of the remaining candidates' Occurrence sets will 

in general increase, thus associating with the temporary referent more common features of the 

candidates. Theoretically, this process should be iterated until no new inferences arose. 

This section has shown that solving references by waiting until the spontaneous generation 

of inferences on the structures involving those references can be quite fundamental to 

understanding. A good way to end is to suggest that this· process is so automatic in day-to-day 

speech that we tend to overlook it. Last night Linda asked me: "Are you going to fix Andy's 

thing?" I must have made the (unconscious) inference that, whatever "thing" was, it Was brOken, 

because broken things need fixing. This enabled me to identify "thing" as Andy's chair, which I 

knew had been broken earlier that evening. There was no "conscious" deduction; the processes 

of inferencing and referencing simply "did their thing". 

8.1.2 ADDITIONAL MERGE PROCESSING AT REFERENT IDENTIFICATION: IDENTITY MERGE 

A conceptual memory should have the ability to preserve a record of each reference 

identification it makes. There are two reasons for this. First, it enables references to be made to 

the process of identification, something which the "fact that" test (section 3.2) indicates should be 

referenceable. For instance, we might hear "Before I realized it was John Smith you were talking 

about, ... ". This utterance clearly makes reference to the time at which the process of reference 

identification occurred. Without recording the identification of a referent as an explicit event, 

there is no possibility of comprehending an utterance such as this. 

The second reason is that there must be recourse for undoing reference blunders. This 
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includes the ability to track down the effects of changing a reference after it has been involved 

in inferencing. Although the notion of backup has been deemphasized, and the current 

implementation of MEMORY does not have the ability to detect reference errors and back up, the 

embryo of this capability exists, and is embedded in the process of merging. 

However, when the merge is being used to culminate the identification of a referent, the 

merge is called an "identity merge" and some additional things happen. First, the occurrence set 

of the temporary token, T, which is being merged into the identified memory token, M, is copied 

and .saved (under the property SAVEDASET) as it exists at the time of merging. At that time, 1's 

occurrence set consists of the original descriptive set and any inferences which were generated 

and which enabled the identification to be made. 

The merge process will then combine T's occurrence set with M's, purge it, then delink all of 

T's other connections with MEMORY. However, T is not then purged. Rather, it receives a new 

occurrence set consisting of one feature: 

{l DENT I F I ES M T} 

that is, the relationship which makes explicit that T has been identified by M in MEMORY. At that 

point, T has only this occurrence set and the feature SAVEDASET to define it. In addition, the 

time of the identification is recorded on this IDENTIFIES structure's occurrence set. The finished 

structure looks like: 

~(IDENTIFIES * *) 

(TJ ME • *) / \... hHE TEMPORARY TOKEN) 

11 

~ 1THE MEMORY CONCEPT, M) 

(A TIME CONCEPT WHOSE 
TVAl IS THE TIME OF 
IDENT! FICA T! ON) 

By doing this, the process of reference identification can be referenced by a pointer to this 

IDENTIFIES structure, since it is just another structure in MEMORY. In addition, if the identification 
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is later found to be in error (for instance, it lies on a path leading to a contradictory inference), 

the SAVEDASET can be resurrected, and reused by some process which relocates and 

ree)(amines other reference candidates. 

There are many issues I have only touched upon, and others I have completely ignored in 

this section. This scheme is just the beginning outline of a larger capability, and much research 

on these processes clearly remains to be done. This "identity merge" merely hints at one 

approach to a solution. 

8.1.3 AN EXTENSION TO tHE REFERENCE MECHANISM 

The concept of an N-molecule came relatively late in the delevopment of the memory, as the 

need to perform "fuzzier" matching became more and more apparent. Gradually, the meaning­

sensitive N-molecule has supplanted or augmented lower level memory retrieval calls to locate 

information on a structural similarity to the desired information. 

The reference mechanism as I have described it provides yet another logical source of 

interaction with N-molecules. Rather than locate referents of descriptive sets by attempting to 

locate candidates with features which directly match features of the descriptive set, a more 

general approach would be to apply appropriate N-molecules to each feature in the descriptive 

set for each reference candidate. By doing this, the full power of fuzzy matching encoded in the 

N-molecules would be available to the referencer, and instead of a simple tally of the number of 

features on the descriptive set each candidate satisfied, the criterion for selecting one candidate 

over the rest would be based on a cumulative tally of compatibilities returned by N-molecules 

for each feature relative to each candidate. 

For example, suppose some descriptive set references a male named John who owns a 

hammer, and a simple intersection search locates several Johns on the basis of the NAME, ISA 

and SEX features of the descriptive set. But none are explicitly known to own a hammer. The 

simple referencer I have described might fail to select one over the rest. But suppose one of the 

John's (John Smith) is a carpenter. If a human language user hears this reference, even though 

he also may not explicitly know that Smith owns a hammer, he might conclude that owning a 

hammer "simply sounds more appropriate" for John Smith than for any of the other candidate 
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Johns, because of other things he knows about Smith. He might therefore use this information to 

clear up the ambiguous reference. 

But recall that this is just the sort of task N-molecules were designed for: in this example, 

the task posed to the OWN N-molecule would be the following (suppose C2317 is a token of a 

hammer): 

RA TE THE STRUCTURE (oWN C2317 Pi) 1,·.1 

FOR EACH CANDIDATE, Pi, IN THE CANDIDATE SET OF JOHNS 

Since the OWN N-molecule knows that P's profession might be relevant when trying to assess the 

likelihood that P possesses a certain kind of tool, this specific heuristic can have its effects in 

signaling Smith as the most likely candidate: although it is quite common that an adult male own a 

common shop tool such as a hammer, the likelihood is heightened if his profession involves the 

use of such a tool. In other words, "John Smith owns a hammer" is slightly more compatible with 

the N-molecule's knowledge of normality than "John Jones owns a hammer", etc. 

By keeping a tally of compatibilities for each feature in the descriptive set as it applies to 

each candidate rather than a simple YES-NO tally of structurally matched features, the referencer 

could make far more sophisticated reference decisions, and do so in a way closer to the way I 

imagine a human laniuage user does. This N-molecule/referencer interaction is one of the 

extensions planned for the immediate future. 
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This example demonstrates reference-inference-reference interaction for the input "Andy's 

diaper is wet." MEMORY knows two people named Andy, one of them an infant, the other an 

adult. At the time the structure which represents this sentence is internalized, MEMORY does not 

know which Andy is being referenced. MEMORY thus creates a new tOken, X, to stand for this 

referent and copies all features which are common to both candidate Andys to it as its 

occurrence set. MEMORY can then initiate inferencing. One inference which is triggered by the 

information that there is a diaper located on X is that X is likely to be an infant. This, along with 

others, is therefore generated as an inference. After inferencing, MEMORY recalls that X's 

identity is pending solution, so it returns to the problem of establishing the reference. At that 

time, however, X's occurrence set contains the information that X is an infant. This solves the 

ambiguity, so MEMORY merges X into the token for the correct Andy. The normal process is to 

continue with a second pass of inferencing after such a successful reference attempt. The second 

computer example wiil illustrate a case where this results in the generation of information which 

was not possible on the first inference pass. 

It might be reemphasized that this example illustrates the solution of a "micro-reference", 

rather than a missing reference which is protracted over several lines of a story. That is, it is 

only during the very first phase of understanding (first inference pass) that MEMORY lacks the 

referent of Andy. However, the process which permits deferring the choice of referent is general 

enough to handle protracted "macro-references". 

ANDYS DIAPER IS WET 

«ACTOR (FLUID REF (*A*» <5> (*LOC* 
VAL (DIAPER ~ «ACTOR (DIAPER) <5> 
(*LOC* VAL (ANDY»»») TIME (TIMeS» 

(TIMeS «VAL T-0») 

COPYING COMMON FEATURES 
TO Cee3e FROM (#ANDY2 #ANDY1) 

(*8REAK* • HELLO) 

This example illustrates MEMORY's abi I ity 
to defer the identi.fication of some referent 
unti I more is known about it via inference. 
MEMORY previously knows about two people 
by the name of Andy: Andy Rieger, a baby, 
and Andy Smith, an adult. The representation 
of age has been simpl ified bV using an AGE 
predicate with a fuzzy duration concept. 

The first step after discovering that "Andy" 
could refer to either #ANDY is to create 
a new token (C0030) to stand for whoever 
it is. This token then receives al I features 
which are common to both candidates, #ANDYl 
and #ANDY2. This new token and al I candidates 
for its identity are then recorded on the 
list !REFDECISION. We interrupt processing 
here to examine this new token and its two 
candidates. 
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-----------------------------------
cee3e: NIL 

ASET: 
C0035: (*LOC* C0033 #) 
C0032: elSA # #PERSON) 
C0031: (NAME # ANDY) 

RECENCY: 6050 

-----------------------------------
#ANDYl: NIL 

ASET: 
113012: (AGE # #OROERMONTHS) 
Ie011: (SURNAME If RIEGER) 
Ie01e: (ISA # #PERSON) 
I 000S: (NAME # ANDY) 

RECENCY: NIL 

#ANOY2: NIL 

ASET: 
10016: (AGE # #OROERYEARSJ 
10015: (SURNAME # SMl TH) 
lee14: USA # #PERSON) 
101313: (NAME # ANDY) 

RECENCY: NIL 

«(*LOC* (C0028) (C0033» 
(T I ME (C0036) ) ) 

C0837 

STARTING INFERENCE QUEUE: 
({X I.e C0037) (X 1.0 C0035) 
(X 1.0 C0032) (X 1.0 C0031) 

(*BREAK* . HELLO) 

C0835: (*LOC* C0033 C0030) 
ce032: (ISA C0030 #PERSON) 
C0831: (NAME cee30 ANDY) 

*PROCEEO 

APPLYING INF MOLECULE *LOC* TO 
ce035: (*LOC* ce033 C0030) 

ABOUT TO APPLY ®LOC2 TO ce035 
ce835: (*LOC* C0033 C0030) 

INFERRING: (AGE cee30 #ORDERMONTHS) 
ALSO GENERATING: (TIME ce040 C0039) 
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C0035 is the new information about a diaper 
being located on this person named Andy. 
C0e31 and Cee32 are the common features. 

Here is Andy Rieger as MEMORY kno~s him. 

Here is Andy Smith. 

This is the sentence's partially integrated 
result. C0028 is a token of some #FLUIO, C8833 
is a token for the diaper ~hich is located 
on C0030, some person named Andy. Cee37 is 
the integrated MEMORY structure for this 
input. 

The starting inference queue consists of 
this main structure, together ~ith all other 
propositions MEMORY kno~s about this 
un'ldentIfied reference, Ce030. These are 
subjected to inferencing in the hope that 
one or more of them, in addition to the main 
structure, ~il I lead to inferred information 
~hich ~i I I clear up the reference. AI lather 
subpropositions have been suppressed for 
this example. 

MEMORY generates inferences from these 
startin~ structures. C0035 , that C0030 
has a diaper on, leads to the inference that 
Ce030 is a baby, namely, that his age is 
#OROERMONTHS (at the current time, C0039). 

~er inferences are generated. Finally, 



-----------------------------------
cee3e: NIL 

ASET: 
C0040: (AGE # #ORDERMONTHS) 
C0035: (*LOC* C0033 #) 
C0032: (ISA # #PERSON) 
cee31: (NAME # ANDY) 

RECENCY: 5300 

-----------------------------------
cee35: (*LOC* cee33 Cee3e) 

RECENCY: NIL 
TRUTH: NIL, STRENGTH: NIL 
OFFSPRING: 

cee41: <TIME cee4e C0039} 
C0e40: (AGE cee30 #ORDERMONTHS) 

I SEEN: (®LOC2) 

*PROCEEO 

RETRYING REFERENCE: 
(Caa3a #ANDY2 #ANDY1) 

REFERENCE AMBIGUITY SOLVED. 
OLD: (Cee30 #ANDY2 #ANDY1) 
NEW: #ANDYl 

MERGING: 
#ANOY1: #ANDY1 
C0e3e: C0030 

(*BREAK* • HELLO) 

-----------------------------------
#ANOY1: NIL 

ASET: 
C0042: (IDENTIFIES # C003e) 
cee35: (*LOC* cee33 #) 
lee12: (AGE # #OROERMONTHS) 
I eell: (SURNAME # RI EGER) 
I eel e: (I SA # #PERSON) 
113009: (NAME # ANDY) 

RECENCY: 5300 

-----------------------------------
cee30: NIL 

ASET: 

inferencing ends. At this point, we examine 
The state of #ANOY1, #ANDY2 and Cee3e. #ANDYl 
and #ANDY2 have of course thus far been 
unaffected by this input. 

Here is Cea3e. Notice the new inferred 
age information, C004e. 

This is the subproposition that a diaper 
is on this person named And~. Notice its 
offspring set contains the Inference about 
C0030's age. 

We al low MEMORY to continue. After inferencing 
has died out, by looking at the list 
!REFDECISION, MEMORY discovers that a 
reference identification is pending. This 
is shown at the left. 

Scanning for new information about Cee3e, 
the new AGE information is discovered. It 
is further discovered that this settles the 
reference, since it matches 10012 (#ANOY1's 
age information) exactly. Such a clean match 
WI I I not in general result, and the powers 
of the evaluation function and N-molecules 
must in general be cal led upon to determine 
whether two structures "match" each other. 

Having identified C003e as #ANDY1, MEMORY 
merges C0e3e into #ANDY1. 

Finally, we examine #ANDYl and Ce939 after 
the merge. 

Notice that the new information about 
a wet diaper has been associated with #ANDY1. 

The merge process unl inked C9930 from 
MEMORY, recorded what was known about it, 
and identified it as #ANDY1. 
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C0042: (IDENTIFIES #ANDYl #) 
SAVEDASET: 

(AGE # #ORDERMONTHS) 
(*LOC* C0033 #) 
( I SA # #PERSON) 
(NAME # ANDY) 

RECENCY: 5300 

The original structure which 
no~ involves #ANDVl can be subjected 
to inferencing a~ain, in hopes that 
ne~ inferences ~I I I result b~ virtue 
of this new access to #ANDYl s occurrence 
set. 

This computer example illustrates reference-inference, reference-inference interaction (two 

inference passes). Hearing the input "Bill saw John kiss Jenny.", MEMORY is unable to decide 

upon the referent of "Jenny": it could be Jenny Jones or Jenny Smith. MEMORY therefore 

creates a temporary token having as features all the common features of Jenny Jones and Jenny 

Smith. By inference, MEMORY is able to decide upon Jenny Jones. At that point, the temporary 

token is merged into the concept for Jenny Jones, and a second pass of inferencing is initiated. 

However, on the second pass a new inference arises: because Bill loves Jenny Jones, and he saw 

John kiss her, he (probably) became angry at John. This inference was not triggered on the first 

inference pass because being loved by Bill was not a common feature of both Jennys, and hence 

not accessible then (ie. it had not been copied to the temporary tOken's occurrence set). 

The example begins with a few lines to set the scene for MEMORY. Inferencing on these 

setup lines (which is normally spontaneous) has been suppressed for the sake of simplicity in 

this example. 

JOHN WAS IN PALO ALTO YESTERDAY 
«*LOC* (#JOHN1) (#PALOALTO» 
(TIME (C0001») 
C0002 

JENNY JONES WAS IN PALO ALTO YESTERDAY 
«*LOC* (#JENNYZJ (#PALOAL TOJ) 
(TIME (C0004}}) 
ceees -

This example illustrates reference-inference, 
reference-inference interaction. That is, 
MEMORY is unable to establ ish a reference, 
so it creates a temporar~ token, and proceeds 
with inference. Inferenclng generates new 
information which solves the reference, so 
more inferencing can be undertaken. However, 
because features of the referent are 
accessible on the second inference pass, 
ne~ inferences are possible. 

To the left, MEMORY is reading in some 
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JENNY SMITH WAS IN FRANCE YESTERDAY 
{{*LOC* {#JENNYll (#FRANCEll 
{TIME (Ceee7)}) 
ceee8 

BILL LOVES JENNY JONES 
(*MFEEL* (#BILLl) (#LOYE) (#JENNY2))) 
ceele 

BILL SAW JOHN KISS JENNY YESTERDAY 

COPYING COMMON FEATURES TO ceel5 
FROM (#JENNY2 #JENNY1) 

((*MTRANS* (#BILL1) «CAUSE «(*00* 
(#JOHN1) (#UNSPECIFIED» (TIME 
(Cee11») «(*PHYSCONT* (Ce012) 1C0015» 
(TIME (Cee11l»)) (Cee18) (Ce0211) 
(TIME - (ceell)) (INST (*LOOK_AT* 
(#BILLfl (Cee15 #JOHNllf (TIME _ 
(C0011) ) ) ) ) 

cee31 

#JENNY1: NIL 

ASET: 
113019: (SURNAME # SM] TH) 
10018: (ISA # #PERSON) 
113017: (NAME # JENNY) 

RECENCY: NIL 

-----------------------------------
#JENNY2: NIL 

ASET: 
I 0e22: (SURNAME # JONES) 
I ee21: (I SA # #PERSON) 
11313213: (NAME # JENNY) 

RECENCY: NIL 

-----------------------------------
cea15: NIL 

ASET: 
cee29: (*LOOK AT* #BILL1' #) 
C0e26: (*PHYSCONT* cae12 #l 
ce017: (ISA # #PERSONl 
cee16: (NAME # JENNY) 

RECENCY: 9866 

STARTING INFERENCE QUEUE: 
{(X 1. 0 C0e31l (X 1. 13 Cee17) 
(X 1. 13 C0~H6)) 

information which is relevant to this 
demonstration. Each of these inputs would 
nOFm~1 Iy pro?uce inferences as it is processed, 
but Inferenclng has been suppressed for the 
first four sentences of this example. The 
four sentences are shown with the i r ,,'ar t i a I 
integrations and final structures, Ceee2, 
Ceee5, Ceee8, C0e1e. 

The synopsis of this short plot is as follows: 
There are two Jennys: Jenny Jones and Jenny 
Smith. Bi I I loves Jenny Jones. John and Jenny 
Jones were In Palo Alto yesterday, Jenny Smith 
was in France yesterday. The cl imax comes 
when Bi I I sees John kiss Jenny. It is MEMORY's 
job to figure out which Jenny. MEMORY wi I I 
decide upon Jennv Jones, then re-inference 
and infer that BI I I probably ~ot angry at 
John-- something which wouldn t have happened 
if Bill had seen John kiss Jenny Smith. 

To the left, the cl imax I ine is in the 
process of being read and internalized~ 
Its final structure is Ce031. Notice that 
Cee15 was created to stand for some Jenny, and 
that al I common features of the two Jenny 
candidates were copied to it. 

We interrupt MEMORY at this point to have 
a look at the two Jennys and Cee15, the token 
representing one of these Jennys. 

This is the person named Jennv who Bi I I 
saw yesterday, and who John kissed. Cee12 
is the token representing John's I ips, which 
were in *PHYSCONT* with this person named 
Jenny (Cee15) at time Ce011. 

MEMORY be~ins inferencing from this input. 
The starting inference queue consists of 
the main structure for the sentence~ together 
with all other facts known about Ce,,15. In 
~s case, these are simply that Cee15 is 
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APPLYING INF MOLECULE *MLOC* TO 
cee37: (*MLOC* (CAUSE (*00* #JOHN1 

#UNSPECIFIEO) (*PHYSCONT* ceel2 
Cee1S)) Cee2lJ 

ABOUT TO APPLY ®MLOC1 TO cee37 
INFERRING: (*MLOC* cee28 Cee4e) 

ALSO GENERATING: (TS cee43 Cee11) 

APPLYING INF MOLECULE *PHYSCONT* TO 
caa28: (*PHYSCONh cee12 Cee1S) 

ABOUT TO APPLY ®PHYSCONTl TO cee26 
INFERRING: (*MFEEL* #JOHNl #POSEMOTION 

CeelS) 
ALSO GENERATING: (TIME cee49 Cee11) 

ABOUT TO APPLY ®PHYSCONT2 TO cee26 
INFERRING: (*MLOC* cee49 CeeSl) 

ALSO GENERATING: (TS ceeS4 Cee11) 

ABOUT TO APPLY ®PHYSCONT3 TO C0026 
INFERRING: (*LOC* cee1S #PALOALTO) 

ALSO GENERATING: (TIME ceess Ceel1) 

APPLYING ®POSTSCAN TO cee43: 
(*MLOC* (CAUSE (*00* #JOHNl 
#UNSPECIFIEo) (*PHYSCONT* cee12 Cee1S)) 
Cee40} 

INFERRING: (*MLOC* cee49 Cee4e) 
COPYING TIMES FROM ce043 TO cee8B 

caelS: NIL 

ASET: 
ceess 
C00S3 
C0049 
cee29 
cee26 
Ceel? 

(*LOC* # #PALOALTO) 
(PART C0051 #) 
(*MFEEL* #JOHNl #POSEMOTION #) 
(*LOOK AT* #8ILLl #) 
(*PHYSLONT* cee12 #) 
(l SA # #PERSON) 

a person, and that its name is Jenny. These 
wi II not be of use in this example. All other 
subproPQsitions have been suppressed from 
the starting inference queue for this example. 

One inference from Bi II's seeing this event 
is that he knows that the event occurred. 
That is, the event went from his eyes to 
his conscious processor, Cee21. 
To the left, the inference that Bi I I knows 
about John's kissin~ Jenny is bein~ generated: 
information in Bi II s CP (Cee2lJ Will also 
enter his LTM, Cee4e. This fact wi I I be of 
use during the second pass of inferencing 
(after MEMORY decides that Cee15 is Jenny 
Jones) • 

Another inference arises from John's I ips 
being in PHYSCONT with CeelS: that John 
feels a positive emotion toward Cee15. The 
structure representing this inference is 
Cee49. 

Another inference from John's kissing action 
is that CeelS knows that John feels a positive 
emotion toward Cee1S. CeeS1 is Cee1S's LTM. 
This inference wi I I be of no direct 
consequence in this example. 

MEMORY also infers from John's kissing Cee15 
that John and Cee1S had the same location 
at the event time, Ceell (yesterday!. Since 
MEMORY knows that John was in Palo Alto, and 
has no information concerning Cee1S's location 
~esterday, MEMORY infers that Cee15 was also 
In Palo Alto yesterday. This information" wi II 
solve the reference ambiguity. 

During the postscan inferencing, the fact 
that 8i I I saw John kiss Cee1S leads to 
the inference that Bi I I knows that John 
feels a positive emotion toward Cee15. This 
inference type implements the principle that 
if a person knows X, he also is likely also 
to know the inferences which can be drawn 
from X. That is, MEMORY assumes that other 
people possess the same inference powers as 
MEMORY does. 

Inferencing eventual I~ ceases. We interrupt 
processing at this pOint to examine Cee1S. 
the unknown Jenny. Notice the new information 
which has been bui It up about Cee15. 

Ce0S1 is Ce01S's LTM. 

cee12 is John's I ips. 
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C0018: (NAME # JENNY) 
RECENCY: 83513 

caaS6: (*LOC* cee15 #PALOALTO) 

ASET: 
caa78: (*MLOC* # C0040) 
caa57: (TIME # Cae11) 

RECENCY: 42533 
TRUTH: T, STRENGTH: e.ge25aeee 
REASONS: 

ceaa2: (*LOC* #JOHN1 #PALOALTO) 
cee28: (*PHYSCONT* cee12 Cee1S) 

OFFSPR I NG: . 
ce1el: (*MLOC* cae24 CeeSl) 

ISEEN: NIL 

-----------------------------------

ASET: 
cee87: (TS # C0ell) 

RECENCY: 257513 
TRUTH: T, STRENGTH: e.95eeeeee 
REASONS: 

ca843: (*MLOC* caa28 Cea4a) 
I SEEN: (®MLOC2) 

RETRYING REFERENCE: 
(Cee15 #JENNY2 #JENNY1) 

REFERENCE AMBIGUITY SOLVED. 

MERGING: 

OLD: (Cee15 #JENNY2 #JENNY1) 
NEW: #JENNY2 

#JENNY2: #JENNY2 
cee1S: caelS 

PURGING:, (*LOC* ce~H5 #PALOALTOl 
PURGING:' (*MLOC* (*LOC* ceelS #PALOALTO) 

, Cee4a) 
PURGING: (TS {*MLOC* (*LOC* cae15 

#PALOALTO) Cee4e) Ceell) 
PURGING: (TIME (*LOC* cee15 #PALOALTO) 

Cee1l) 
PURGING: (ISA cee15 #PERSON) 
PURGING: (NAME ceel5 JENNY) 

#JENNY2: NIL 

ASET: 
ce117 
cee28 
cae29 
cee49 
cee53 

(IDENTIFIES # Cee15) 
(*PHYSCONT* cee12 #) 
(*LOOK AT* #BILL1 #) 
(*MFEE[* #JOHNI #POSEMOTION #) 
(PART ceeSl #) 

Since it ~i I I settle the reference ambiguity, 
~e have a closer look at the structure which 
represents Cee15's being in Palo Alto 
yesterday (Cee11). Cee78 represents Bi II's 
kno~ledge of Cee15's location yesterday 
(but has no direct relevance to this example). 

Notice that the reasons for MEMORY bel ieving 
that Cee15 ~as in Palo Alto at time Cee11 
are t~ofold: that John was in Palo Alto at 
that time, and that a body part of John 
~as in PHYSCONT ~ith Cee15 then. 

We also examine the structure which represents 
the inference that Bi I I knows that John 
feels a positive emotion toward Cee15. This 
information ~i I I come into play after Cee15's 
identity is solved (on the second inference 

,pass). Cee87 indicates ~hen Bi I I started 
kno~ing this fact (Cee4e is his LTM). 

The first pass of inferencing is now finished. 
We al low MEMORY to proceed. It notices that 
a reference decision is pending, and attempts 
to decide between #JENNYI and #JENNY2 as the 
referent of Cee15 by using newly-inferred 
information about C8e15 (from the first 
pass). It succeeds, because #JENNY2 was 
known to be in Palo Alto yesterday, and 
this matches ne~ Cee15 information~ CeeS6. 

MEMORY merges Cee15 into #JENNY2, purging 
old information which is not used to augment 
#JENNY2. Recal I that the merge replaces 
occurrence set pointers, so that every 
MEMORY structure which referenced Cee15 now 
references #JENNY2. 

We have another look at #JENNY2 before the 
second inference pass begins. 
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C0010: (*MFEEL* #BILL1 #LOVE #1 
COOOS: (*LOC* # #PALOALTOI 
I0019: (SURNAME # JONES) 
r 0018: USA # #PERSON) 
10017: (NAME # JENNY) 

RECENCY: 8950 

RE- I NFERR I NG ... 

APPLYING INF MOLECULE *MLOC* TO 
coe86: (*MLOC* {*MFEEL* #JOHN1 

#POSEMOTION #JENNY2} C0040) 

ABOUT TO APPLY ®MLOC3 TO C0086 
I NFERHI NG: (*MFEEL* #8 I LLl #ANGER 

#JOHN1 ) 
ALSO GENERATING: (TS C0119 C0011) 

C9119: (*MFEEL* #BILL1 #ANGER #JOHN1) 

A.SET: 
C0121: (CAUSE C0086 #) 
C0120: ITS # C0011) 

RECENCY: 107500 
TRUTH: T, STRENGTH: 0.902S0000 
REASONS: 

C0086: {*MLOC* ca049 Ca040} 
C0010: (*MFEEL* #BILLl #LOVE #JENNY2) 

ISEEN: NIL 

MEMORY be9ins the second pass of infe~encing. 
This consists of subjecting each inference 
which arose from the first pass to inference 
again. The ISEEN property prevents dupl ication 
of inferences during second and subsequent 
passes. 

One new inference which was not possible 
on the first pass is that Bi I I probably 
became an~ry at John. This inference arises 
from Bi I I s knowing that John feels a positive 
emotion toward #JENNY2, someone Bi II loves. 
C0119 is the structure represent i ng B i I I' s 
incipient anger toward John. The crucial 
point is that this inference became possible 
onl~ after #JENNY2's features became 
available after a reference decision, which 
was in turn made possible through first-
pass inferencing. 

Finally, we have a look at this second pass 
inference. 

C0121 represents the cause of Bi II's an!iler 
as being C0086, his knowing about the kissing 
event, C0049. 

Notice the reasons MEMORY bel ieves that Bi II 
became angr~ at John: he knew John kissed 
#JENNY2 (thiS structure is C0049), and he 
loves #JENNY2. 

8.2 TIME AND INFERENCE 

Exact interrelations among the various times alluded to by an 
utterance are frequently unspecified. This is a form of missing 
information which the speaker of an utterance assumes the hearer 
can infer to obtain a complete meaning graph. How are 
·inferences in conceptual memory relevant to this problem? 

One major theme has been that the notion of spontaneous conceptual inference is crucial to 

most aspects of understanding. That is, it has become clear that nearly every important aspect of 
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conceptual memory which involves probabilistic decision-making should be able to interface to 

one degree or another with the inference mechanism. In most cases this amounts to making the 

best of an indeterminate state and deferring decisions when at all possible until inferences have 

been called into play. This section discusses another aspect of this principle: inferences are 

useful for determining missing time relationships within one, or among several conceptual 

structures. 

Consider the sentence "Mary gave John the book which Pete gave her.", for which the 

analyzer renders the following conceptual graph: 

MARY 

t1 < "NOW" 
t2 < "NOW" 

t1 
<===> 

1

---+ JOHN r (--: MARY 

ATRAN5 (---- BOOK 
l' 

t2 ! o 
PETE <-======> ATRAN5 (---- BOOK 

l' 
I~I---+ MARY 

(--- PETE 

Here, the analysis yields only that the two times, t 1 and t2, are both in the past of "NOW". The 

conceptual analyzer has no need here to ascertain the more detailed relation (that t2 must have 

been before t 1) for· the purposes of analysis. However, the complete meaning graph of this 

sentence cannot truly be said to exist until the relations among the various times in the graph 

have been determined as accurately as possible in the given context. In this case, a relatively 

precise relationship between t 1 and t2 can be established through inferencing. 

During the process of internalizing this graph from the analyzer, the following two 

subpropositional structures (among others) are extracted, and are put on the initial inference 

queue: 

51: (ATRAN5 #MARY C1 #MARY #JOHNJ (at time t1l 
52: (ATRAN5 #PETE C1 #PETE #MARYJ (at time t2) 

where Cl is the book. Inferencing will thus occur on these two propositions simultaneously. We 

will assume for simplicity that all references have been successfully identified. 
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The solution to this time relation comes about via two resultative inferences which will lead 

from independent sources to the same proposition, causing two lines of inference from different 

sources to establish a point of contact in inference space. 

In this example, a resultative inference which can be made with certainty from S 1 is that 

Mary must have had a book immediately before the ATRAN5 action, and in particular, that she 

ceased to have it at t1: 

11: {TF (POSS C1 #MARYJ T1J 

(There are, once again, many other inferences which are not pertinent to this illustration.) 

Likewise, one resultative inference which arises from 52 is that Mary began having the book at 

t2: 

12: (TS {POSS C1 #MARYJ T2J 

Whichever of these two inferences, 11,12, is generated second will cause the following event: the 

(POSS C1 MARY) generated by the second will be detected by the evaluation function as 

confirming an existing piece of knowledge (the first (POSS Cl MARY) generated as an inference). 

Hence, the evaluation function calls the merger to knit these two propositions together into the 

following single one: 

# {POSS C1 #MARYJ 
{TS # T2J 
{TF # T1 J 

that is, a structure representing a state with a TS and a TF, possibly in addition to much other 

information. Since t2 is now known to be the starting time of a state whose ending time is known 

to be t 1, it is directly deduce able that t2<t 1 by the time proof procedures. This relation was not 

ascertainable before inferencing. 
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9.1 

CHAPTER 9 

CONCLUSIONS, FUTURE WORK 

NUTSHELL 

Language, memory, and conceptual inference are inseparable notions. My thesis, briefly, is 

that there is a stratum of cognition in which large quantities of inference-based computations 

occur spontaneously from each thought to which the human brain attends. The existence of such 

a stratum would help explain much of the observable behavior we classify as "language 

comprehension", or simply "understanding". 

9.2 SPECIFIC CONCLUSIONS 

I have mapped out and implemented the beginning of what I hope to be a comprehensive 

theory of understanding by conceptual inference. Since the theory is "synthetic" rather than 

"analytic", can I justify drawing any conclusions from it about how human memory works? 

Probably not. Nevertheless, it is possible to summarize by way of the following "educated 

guesses" about memory and understanding. 

1. Understanding is not possible without large quantities of conceptual inference. Humans 

must perform many spontaneous, meaning-based inferences on each thought they perceive in 

order to relate that thought to their models of the world and to other thoughts perceived in the 

same situation. "Understanding" can be defined in terms of conceptual inferences, and how the 

inference sphere around one meaning graph interacts with the spheres of inferences around 

other meaning graphs. 

Inferences are all probabilistic, and must be made in seemingly wasteful quantity, even if 

only a very small number of them eventually interacts with other information in the memory. The 

existence of "weird contexts" for any given thought stands as evidence for this claim: what is a 

relevant or salient inference from thought T in one circumstance may be quite an irrelevant 

inference from T in another circumstance, and there is no a priori way of deciding without 

making exploratory inferences in hopes of discovering interesting interactions with other 

knowledge. 
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2. Based upon how it processes and understands language, human memory must be 

regarded as a highly "volatile" entity rather than a passive one. I submit that, at a subconscious 

level, hundreds of inferences of the natures proposed in chapters 5 and 6 are generated from 

each thought we perceive. Only when interactions between spheres in inference space Occur do 

we become aware of the underlying processing. The notion of the conceptual expansion of 

meaning units in inference space bears a direct analogy to the notion of free-associative 

concept-concept activation in "concept space". 

3. The "gestalt" of a thought (meaning graph) can only be captured by simultaneously 

exploring inferences from all subpropositions of the thought. Again, what might be a totally 

insignificant unit of information in one context might be extremely critical in another. 

4. It is theoretically important to systematize conceptual inferences: to partition them into 

classes, based upon their utility in the understanding process. All classes of inference are always 

potentially applicable to all inputs. For certain sub-goals of the general expansion of the input in 

inference space, it is important that the memory be able to restrict inferences to one or several 

classes (to "multiplex" inferences). This can be imagined as a more directed type of reasoning 

which occurs during the general expansion. 

The number of inference classes is manageably small -- perhaps no mOre than 30. Sixteen 

of the most important classes have been examined and incorporated in the computer model, 

5. Prediction and specification (the filling-in of missing conceptual information) are powerful 

mechanisms of understanding. By making explicit probabilistic predictions about why each actor 

may have performed an action, what actions he might reasonably be expected to perform next, 

what the predictable results of an action were (will be), and so forth, the chances for discovering 

crucial implied relations are enhanced. 

6. "Understanding", as the word is used, say to define how we process the information in a 

story, is simply the composite of many different kinds of inference: to understand is to unCOver 

as many implied relations between an input and other information as possible. There is no black 

and white measure of understanding. For this reason, it is for the most part meaningless to talk 

about "backup" in the context of a conceptual memory. Probabilistic inferences which don't "pan 

out" are assumed simply to atrophy (disappear completely or become inaccessable) with time. 
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There are perhaps classes of special problems whose solutions rely on some sort of "backup 

thinking", but they do not provide insights into general mechanisms of cognition. 

7. There is a strong interaction between the process which locates (deduces) the memory 

referents of language entities and the process of conceptual inference. This observation is by no 

means new (see [W5], [ei] for example), but has been dealt with here in a new way. This 

interaction is a form of relaxation processing, in which conceptual inference can infer features of 

an unidentified entity, thus clearing up its identity, or further restricting the set of candidates. 

On the other hand, having narrowed the candidate set, or having succeeded completely in 

identifying the referent, new features become available (the referent's occurrence set, or the 

then-larger intersection of all candidates' occurrence sets), and these new features can lead to 

further conceptual inference. This interaction occurs both as a "microprocess" which takes place 

as the thought containing the references is initially perceived (analyzed), and as a protracted 

process (say, over the duration of an entire novel). 

Reference decisions are generally not made until there is little doubt about their 

correctness. The idea of a descriptive set allows the memory to use as much conceptual 

information from as many sources as possible in the identification process. 

8. Inferences in a meaning-based theory of understanding can be conveniently structured 

around conceptual primitives. By using a system of meaning primitives rather than dealing 

directly with language, or with even a syntactic-semantic analysis of language, the memory (and 

human memory) can function in a pure meaning environment, without the additional burden of the 

syntactic and lexicographic variablility of each thought. Inferences can be organized in multiple­

response discrimination-net-like structures beneath the conceptual primitives in a way which 

avoids time-consuming searching for relevant inferences. Inferences themselves are active 

(program) entities rather than passive patterns and templates. 

9. The maintenance of time relations is crucial to the understanding process. The frnme 

problem becomes a "non-issue" if low-level memory retrieval functions have the ability to access 

state duration inferences and update time-sensitive information only as the need arises. That is, 

my theory predicts that the majority of the information stored in the human brain is "out of 

date" until it is accessed again. The process of accessing it automatically updates the 
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information's temporal features and its strength of belief based on those features. The process 

of observing thus alters that which is observed. 

10. The ability to assess the "normality" of a given meaning graph is important. It provides 

an essentially infinite amount of knowledge by allowing the memory to make educated guesses 

about the probable truth of information which is not explicitly stored. By encoding this 

knowledge of normality in active normality molecules, the assessment can be made quite sensitive 

to features of entities involved in the meaning graph being assessed. (That is, normality 

information stored this way can be tailored to accomodate situations which are known to be 

abnormal in specific respects.) A knowledge of what is normal also plays an important role in 

determining -- in a general way -- which inferences are likely to be the most fruitful to pursue 

from any given meaning graph. 

9.3 GENERAL CONCLUSIONS 

One general conclusion I have reached is that conceptual meaning primitives provide a very 

powerful and realistic approach to language. The memory truly does function in "pure meaning", 

as that phrase is defined by the nomenclature of chapter 2. Syntax and traditional semantics are 

implicated only at the outermost (input/output) level of perception, and are never seen at this 

deeper level of understanding. 

I believe it is not unrealistic to assume that all of language (ie. all thoughts communica'ble by 

language) can be represented by a shockingly small number of conceptual primitives. Having 

done this research, it is my belief that the number of conceptual links will not exceed, say, 50, 

and that the number of meaning primitives, properly systematized, will not exceed several 

hundred. Furthermore, a system based upon these primitives could be natural and convenient to 

work with at this "compressed" level. At the beginning I expected to be depressed by the 

magnitude of the representation problem. Instead I have been encouraged. 
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9.4 DISAPPOINTMENT 

One disappointment which occurred early in the research was my inability to encode 

process and data in the same "homogeneous" memory structures in a way that would make them 

indistinguishable, except for the way SOme other process happened to use them. I quickly 

discovered that the questions I wanted to ask were at too high a level to frame within the 

constraints of such a representation. I still believe that this should be done, and regard its 

absence as the system's major weakness, particularly since its absence precludes most forms of 

"learning". The development of a single, homogeneous data structure to accomodate all the ideas 

in this thesis will remain as one long-range goal. 

9.5 IMPLICATIONS FOR PSYCHOLOGY AND AI 

By this thesis I hope to have demonstrated (1) that the Artificial Intelligence framework is a 

valid one from which to condue! inquiries into questions of how humans use and understand 

language, and (2) that researchers -- psychologists in particular -- should not shy away from the 

Al point of view simply because it might lead to conclusions which are less tangible than those 

obtainable by direct laboratory experimentation. Modeling and experimentation must proceed 

hand-in-hand. 

Some researchers have made this important commitment to approach problems of language 

from both the AI and psychology points of view. Of particular encouragement from the 

psychology side are such works as Anderson and Bower's research into human associative 

memory [A5], Rumelhart, Lindsay and Norman's proposals for a process model of long-term 

memory [R3], and Colby's computer simulation of artificial paranoia [C5]. In addition, Abelson's 

work with belief systems (scripts, superscripts and his structuring of notions of causality, 

motivation, enablement and purposes) [AI] are particularly refreshing, and served as inspiration 

. for many of my views on language. From the AI side, Winograd's integration of syntax, semantics 

and world knowledge into a system for understanding language [W5], Quillian's semantic memory 

[Q2], Becker's model of intermediate level cognition [81], and Charniak's model of the mechanisms 

of children's story comprehension [Cl], have all demonstrated that Al is an effective framework 

from which to attack language. 
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Certainly these researchers are not in full agreement with all of the ideas of this thesis. 

Neither do I agree fully with th~m. It should be clear, for example, that I believe that Quillian's 

approach is too word-based, that the Rumelhart-Lindsay-Norman approach and Charniak's 

approach lack a much-needed formal system of conceptual representation, that COlby's non­

infE!rential system relies too heavily upon stimulus-response theory, and that Winograd's system, 

although it represented a quantum advance in language processing, was overly syntactic and 

dealt with an overly restricted domain. However, the overall approach to language by all these 

researchers -- through detailed computer models -- is fundamentally correct. Language and 

memory -- indeed, all of A I and memory -- are inseparable, and this realization should be 

adopted as the underlying theme of all AI research in the years to come. 

9.6 FUTURE QUESTIONS 

One large lingering question concerning the conceptual memory is: what really happens 

when the memory has 50,000 inference atoms instead of 50? My intuition is that, as the system 

grows, fewer inferences will be recognized as applicable to any given meaning structure if they 

are well organized in their respective discrimination nets: the nets simply will become more 

discriminating! In other words, increasing the number of potential inferences will not lead to a 

combinatorial explosion. On the other hand, more and better heuristics for cutting off the 

expanding sphere of inferences around each meaning graph will have to be developed before the 

system can be called "practical" instead of "toy". 

Finally, there is an irresistable analogy to be drawn between expanding spheres of 

inference in inference space, and expanding "wavefronts of cognition" in the human brain's 

neural network as suggested many years ago by researchers such as John C. Eccles: 

"Thus we have envisaged the working of the brain as a patterned activity formed 
!by the curving and looping of wavefronts through a multitude of neurons, now 
sprouting, now coalescing with other wavefronts, now reverberating through the 
same path. aIJ with a speed deriving from the miJlisecond relay time of the 
JiJldividual neuron, the whole wavefront advancing through perhaps one miJIion 
neurons in a second. In the words of Sir Charles Sherrington, the brain appears as 
an 'enchanted loom where millions of flashing shuttles weave a dissolving pattern, 
always a meaningful pattern, though never an abiding one: a shifting harmony of 
subpatterns'. II 

-- John C. Eccles, 
Scientific American, Sept. 1958 
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