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I. Jut 1'0 duct ton

In an ()al'licl' rcpo,r't we 11f1\'0 Fi"ludied the routing: of meSGngc~) in

a de Ilrui:Jn network [Seh7JfJ, Mnssages go in t. "store and forwal'd" way

frOln noclo to node b'nfore rcaelling theil- final dostinatl.on, In a de

I3ruj.jn gl'aph, a node of oddrc1ls M lias for descendllnts the nodes of

addreSSt~S

Cd'M 1· JJ mod n, for each j such thAt 0 s j ~ d-l

And where 11 is tll~ number of nDdes in the network,

In the prcvJ.otlS report, all nodes arc operative all of tllG time., This

report studioI' the possibilities of a network with A certai11 numbcr of

nodes thl1t fail, A~ is the operation that sends fl mcssage from one

node to one of its neighbors, Th" distance between two nodes is the

smallest number of steps needed f,;,r a meSSage to go f1'01n one node to the

other, The dimnctel' of • network is the largest distance between any

two nodos in the t16tW01'k. Thc number of directly acce:;sible neiuhbors to

a given node is, by definition, the degree of that nOde. The deg-reo of a

.!!.~:~ is tho largest dogl'eC! of all nodes of that network,

We can lise such a network tn two ways, either ""iented or lInorientcd,

In on oriented 1I0LWOt'k, the connections arc unidirectional, going frDn! a

nodo to its des(;endnnts. In nn unol'icnted ,lctwork, the connections ll.~e

bldlrcct iono1. This is the same as two unidirectional Gonnc ctiom,. We

shoUld then Cll}1"Ct Dluch better chlll'acterlstics in nil unori<JlIled network

thnn in an oriclltcd one,
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tile nodes. If the Ollt- dcr,1'e" is cl and the nur"bc1' of nodes tn the

network is n, the dinmetO'r of the ortented network is rlogel Ill. 'rd.s

diameter is tile sm"e when the network is unol'ientcd.

When a single node is not working, We show schemes that reroute

messages ~rouud that nodo ill at most six steps} when cJ:>2 or when

2
n :-:: kl-d •

We also study the vLllncro1bility of tlle network. If tlle unoriented

network has uegree 2,d and n nOdes, we sholV that the number of nodes with

2less than 2· <[ <\Ls'cinct neighbors is smalJ.er than 2· d , and that for

sufficiently large networks, no node has less than ~~, d-2 distinct neig·hbors.

We find an upper and lower bound for tlle connectivity of the network to be

respcctivcly 2' d-2 and d-l. We know that the minimum number of 110de-

independent path:; between two points in a network t:; equal to the

connecUvltyof thlO network. Looking then at nodlO··independent paths

between nodes in the network, we show how to construct such paths in a

network wi th d' P nodI'S once we know how to construct them 1n a network

with p nodes. Using suell paths, we also show that the connoctivit J, of

k
lin oriontod network with d norJos is d-1. In n similar unorionted network,

thero nro at least d node-independent paths betweon two nodes, In an

unorionteu network wi th degree )~, and "n even numbor of nod"s, there nre

lit least two node indopondent paths between any two 1I0des.



message flow is eione ]0cnl1y at uncIl nO(lc j and is independerlt uf v;hal

h"ppcn~ in the rcst of the network. We would like this to "1';0 apply

when only one rode is falJlly.

smne link try the nO(IC is OLlt of service. Thi3 Il]'CVCI1Ls the geno]"nl rOlltillg

SChCl1;C fron worl.ing. V~'o must find ..,n nll.crll;:Itc p~ltb that by~pa5S(;S the

i'aulty node. We ~;bow such a r::lth, ill'~t I.... hen Lncrc aloe elk lHidLS in the

r.ctwork, then .:in C"':.e- g-cnl'l"nl c.r:sc.

d > 2, or if n ie B multiple of d
2

In general] there is a by-pas;c-, i1

"
d> ;;', or tl;;;;;k l dl:.. Thts shows thnt when a nodr; becomes inOpclative, the

maximum nU1nber of l'xtr~ steps needed for a mcs5agf~ to reach its destinc.lion

1s four. This also requires only local knowledge of the network os tho

detour hAs 3 finite ~umber of stops. A message taking the detour shUJid

c.u-ry lnfo]"li1al'.ion about th~~ ch.:tour p~lh for thE' 112I1[;th of t.110. det.o~lt',

A p05~iblC' ~u]lltion to the detour pr('h1l::'m, [tJthou~h tL'rribl.\ WH:-ite-

the rnl\t j ng- of the rnes~;ng(' fron th('rt-~. Th!.' rf'quirr:s up to an (:,xt :" k



k
and that thcr~ nrc Co lIodes ill the network with degree 2.d. The messn[;f2

comeS from:

and the path, going th~,ugh the bod node, leGds to:

'I1le path in Tnble ::-1 links the above two addrcssc" without going through

the bact nod~. One sheuld note that this path does not follow the

orientation of tile edges, at some point thof:, poth requires an "ancestor"

transformation instead of the "de sccndant" transformation usC'd up to new.

The various r"strictions on the right insure that no intermediate

node h as the same address as tlte inopera t i ve node if d > 1. If the bad

node is the final destination of the message, then /lot much can be done_

k
This shows in general for all lictworks with d nodes, the existnnce

of a 6-stcp detour "1' an 8-stcp unol"icnted eyel,,_ \\l"'n messages in ttl!'

system encounter :J ball node, they go into a spuci.:.:Jl "d(ltour sUIte", and

go around the had node- .)cforc rcsUfll1ng nOJ~~l routing. Yfj,('Il the mcs3-.'l[';e

encountci·S ~lnotl.ler bad nod(' while in "detour stnt.c" J we nC'"ed n cJntrol

~t~rk to cOme back to the pr~v:ous detoUl" state 011CC We arc out of the

new une. If there nrc too m~ny b~d nodes, the m~ssngc mny ~o itlto ~n



Tabl~ :-1: Addr~5sc5 of nodes in a detour.

step number address comments---
0 XOX I , "Xk_ 1

1 XIX2'"'~_la a f. ~

2 X2 X3' •• ~-l am :n f. ~

3 bX2 " .. ~_~a b f. Xl

cbX2 , . 'XJ..-l c r Xl

5 bX2 ·, '~-l~

6 x2 x3· .. xl. «+1
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inf ini te loop.

When tb'v' nUIL;LH..:r of HOu.es in thl:' n~tio\()i'k is not a pow~r of the

out-d~Lree, this detour mechaniMm does not always work. For example,

let n~lO, d~2, and assume we ", .. ". to transit a message f,'om node L to

node 6 when node 8 is out G, ThE:' s('h£:m·~ give-s the nodes in

Table 2-2. After 6 steps, the selleme does not route the message to

its destination. In ~enera1 the scheme ~or~s when the number 01 nodes

in the network is a multiple of i', whe,n. :I i:; the out-degree of tt,e

network, Or when d > 2.

In order to prove the existence of detours in these cases, we study

the graph consist~n~ of the detours and the direct path between two nodes

separated by one node. We count the number of node independent paths in

this graph between tln' orij;in ~m! destinaLion nodes. Defore stUdying this

graph, we Pl~Ve some lemmas related to the expression:

y x - ((x + r'Y) ~od d) (2-1)

where x, y ane: - ~re integers between 0 and d-1.

LcllllTla 2-1;

~Vh~n x is incre"~,cd by on,.. in (?-J), Y Is eHhel' unchan~e<!, or changes

by an SIT.ount of d, This ch"tl~l' occurs at mOSL once, for x's in H,'

intervul 0 ~ x < d.

Proof :

Tnis pr"of sh'"w5 where the chan.:" t.nppcns nnd that it is the only one,



Table 2-2: Addresses of nodes in a detour wh~n n=lO, d=2,

from node 4 to node b when node 8 1s inoperative.

f. step I ~ddresses of the nodes

4

8,9

comments

origin

Descendants of Step 0; node 8 is not possible

because of failure.

:2

3

+

8 , 9

4 , 9

2,7 ) 4,9

Descendants of Step 1; node B 1s not possible

becouse of f~11ure.

Ancestors of Step 2; node 9 is its own a~cestor.

Ancestors of Step 3.

,
(l

5 4 , 5 8 , 9 Descendants of Step 4; nodes 2 and 7 have nodes

4 and 9 as descendants, nOnes 4 and 9 have

nodes 8 and 9 as descendants end node 8 1s

not possible.

6 0,1,8,9 Descendants of Step 5; nodes 4 and 9 have nodes

e and 9 as descendants, no~e 5 has nodes 0

ond 1 as descendants.

-----
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Y = x+l - ((x+l + r'~) mod d) (2-2)

If x+l + r'Y F 0 mod d, then !he value ~f Y in (2-2) is the Same 's in

(2-1) as both terms of the ri{;ht-hand-sidc have increased by one.

As x increasos from 0 to d-l, ther~ call be ~nly one time where the

value of Y changes when x increases. tt is when,

o mod d •

When>, Is les~ than (-rot Y rr'od d)J ":hcn Y ;::: - (r- y mod d)J and otl'f!l'V,'ise,

Y " d - (r' y mod d). When r' y '" 0 mod <.1, Y is ~qual to "etv for all x

such that 0 ,;; x < d. ~.E.D.

LCI1\ma 2-2:-----
In (2-1), Y ~ 0 for precisely d-(r'Y mod d) x's in the 1nterv"l

o s; x < d.

Proof:

When x-O, Y 15 lIonpcriitiVt" DTld l'qtlul to - (1'. Y mod d). As x

Incrcflse~J Y Cl1ahg'es only ff'r x o-c d - ( .... y mod d) Fo.l" ;111 x 1 s smaller

values of x. Wh"n x is InrgLl than lids value, Y inereaSl'S by d Dnd

oocomcs strictly positive. Q. E. D.



If, in (~.'- I ), r: cd ( y , d) c· g and d

function of r, is p~riodic ill r with period 6.

Proof:

The replacement "f r by r+6 in (2-1) does not change the value of Y.

x - ((x + r'y+5'Y) mod d) x - ((x + r·y) mod d), ns

6')' ~ 0 mod d. Q. E.n.

h'e can no"\ i.;tudy the detour ;-,chcmC' in general, between a node of

2
address M and a n0dc of ~ddress ~ 'M + d'h + j, with h nnd j between 0

and d-l. We first restate a result from a previou~ report on the

connections betwv~n nodes.

Lemm~ 2-4:-----
The ancestors of a nOde with address M hav~ ~s addresses:

L(M + k' n)/dJ mod n, ~·ith 0 ,; k < d .

Proof:

one descendant frotH ouch of tlll'Sl' :Hldr('~ses ha!:! M as an address. Q. E. D.

Tab] c ~>3 shows the possible ~Hjdn..'.s~(~S of tJl(J nCl'lh':-; in 1 ~lC dcto\1r

2
when n = d 'Z + d'y • x. ,1,esc f1dd.'P:iSI'."'i ;--.rp dprivPd f1'Of11 l)lf' definitioll

of 0 de Urui ..in nct .....·ork for the ~Hh..ln.~!;sl.'S uf the d(,scC'lld~nts oj Ol nod£'

and Lemma ;~-l~ for the LlrldJ'l';j~ cos of the 'lrH.:C'slors of u noLle.

')

the oddrC$Scs DC the ancestors of tllC no~c with addrcsses d~'M • d'p + q



Table 2-3: Possible addresses for the nod2s in a detour

. 2
wnen n = d ·z + d'y + x,

M

comments

vrlgin

+ d'y + x_____ I1---=----
2= d 'Zaddress modulo n

o

step

1 d'M + P "'escendaht" of Step 0, choose

c::;cf!i..:::"~~~ ~~

2 d
2

'M + d'l' + q Descendants of Step 1; choo5e

coefficient q.

3 d'~l + P -j- rr(d'Z+Y) + L(q+r'x)/dJ Ancestors ·)f Step 2; choose

coeffi ... lent r.

~ITr'z+s'(d'z+y) + L(P+r'y+s'x+L(q+r'x)/dJ )/dj Ancestor.s of Step 3; choose

coefficient s.
'J

s d' Ml-r' (d' z+y)+ l.( q+r' x )/dJ +p-:!+t Des ..~end&nt£ of Step h.; chJose

coefficient tj here f is:

f " p+r'y+s'x+L(q+I"x)/dJ mvd n.

6

=

2
d 'M + d' (p-f+t) + q-g+u

.)

d'~'M + d'h + 1

Descendants of Step 5; choose

coefficient u, this is the

destination and g Is:

g = Q + r'x mod d.

We have tile following inequalities; 0 S p,q,r,s,t,U,x,Y < ct, as (p,q,r,s,t,u) are

c0effir:~nts for the tr~n~formatlon of addresses between a node ar.d its ~escendBnts

0: ~nces~ors, and (x,y) come from the division of n by powers of d,
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(in St~·p . of Ta!'I," :-3) arc;

L(d"'M oj d' P + q + r' n)/dJ mod n ,

or, using the value of n, n

possible,

2
_ d .~ + d'y + x, and dividing when

mod n ,

and, takillll' the Jlltegers out of He floor function we obtain the

expl'essivn of thp uc;hiresses of Step 3 in T~ble 2-3.

d'M + p + r' (d' Z + YJ + L(q+r'x)/dJ mod n .

There a.e a few 01>.iOU5 constraints on the coefficients in the

!:teps of Table 2-3, The definitions of f and g in S:eps 5 and 6 an:;

f", P + r'y + s'X + L(q+r'x)/dJ mod d and

g" q + r'x mod d ,

If the bad node hdS address d'M + h and the destination node has address

d
2 'M + d'h + 1, the constraints arc:

p t- h mod n, for Step 1 to Dvoid the faulty node

p-f+t - h mod n, for Step 6 to be the destination

q-g+u - i mod 11, for Step 6 to be the destination

1" (d':t+y) + L(qtr'x)ldJ1 a m;Jd 11, fOl' ~tep :3 to avoid

the faulty node,

(C-l)

(C-2 )

(C-3)

(C-4 )
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lI'e now prove :, few 1<.''':;i1~'' related to the aLJdrcssC"; In thc detour

before showin,; how n:l!1y node-inch-pcndent dcl.nlll'S t le' t'C arc.

Lemma 2-5:

When n 2 d, constraint (c-4) is equivalent to 1',0 •

Proof:

We first slow thnt (c-4) implies do, then that for n .2: d,

rfO implies (c-4).

Let 1'=0 in (c-4). This givps:

Q. (d'z+y) + L(q+O'x)/dJ t- 0 mod n, or, lifter simplifications

~qldJ i' mod n •

But q is by definition lcs:.s than d, and the resul"ting cOl.tradlction

impl1es rIO.

In order to prove the converse part of the len~a, we show that

1'#0 implies (c-4),

When rfO, r'(d'z+y) '= r'LlI/dJ 'I- 0 mod n. So (c-4) can only ce

false when riO, if

r' (ct·x+y) + L(q+r'x)/dJ - 0 mod n (2-3 )

= k'n, for some positive integer k.

We s,",ow thllt the expression on the lcit-hand-side of (2-3) is always

less th,lll n wl.en n .2: d, hence that (2-3) ca~not b~ s<ltisficd for 1'1-0.

Let A(y., y,z) be the expression on the le:'t-h(lnc··sidc of (2-3). By setting
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r",q:;d-l, we obtllin on upper bound on A(X,y,z):

(d-l) , (d'z+y) + L(d-l) • (x+l)/dJ :; U(x,y,z) 2. A(X,y,z) •

We now show that U(x;y,z) is less than n
2

d 'z+d'y+x

U(x,y,z)
2

'" d 'z+d'y - (d'z+y) + x+l + L-(x+l)/dJ

'= n - (d'z+y) + 1 + L-(x+l)/dJ

and as 1 ~ ::+1 ~ d, we have:

U(x,y,z) :; n -(d'z+y) •

< n, whel' n :l: d •

Hence, when n ~ d, ~(x,y,z) < n, and rlO implies (c-4).

LeIlllLa 2-6 :

Q.E.D.

In the general detour scheme, at most one value of the parameter

q yields audre~ses that do not satisfy (0-3).

Proof:

n.e destina,,~on address is:

where

2. 2 ( )d 'M -+ (,'h + i = d 'M + d' p-f+t + q-~+u mod n , (2-4 )

f :; p + r'Y + IS'X + L\q + r·x)/dJ

g = q + r'x mod d •

mod d, and
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CO:1straint (C-3) l"<.'qlli1'cs:

q-g+'.l i.

If i~~, this implies that q-g ~ O. The expression for q-g is:

q-g., q -«'I + r''') maud).

This is the same expression as (2-1), wi til a challg-e of variables.

Lemma 2-2 shows then that q-g ~ 0 far precisely d-(r'x mod d) values of Q,

If gcd(x,d) t 1, we can always choose an r such that q-g S 0 for

£Ill values of q in 0 s 4 < d, as there is an rr!O such that r'x '" 0 mod d.

If gcd(x,d) = 1, then 1'=0 1s the only I' for which there rre d values of

q such that ~-g ~ O.

We have seen in Lemma 2-5 that I' must be different .from zeI'''.

However, by choosing I' to be the solution of the congruenc'J r':: = 1 mod d,

w~ich Is possible as gcd(x,d) = 1, it is possible to find d-l values of

q such that q-g ~ O. Th~re are then always at least d-l valu's of q for

.hich condition (C-3) is satisfied. Q.E.D,

We first show how to satisfy conditions (C-2) and (C--') '~hen hand i

are equal to zero. We then ~how how to extend those results to any values

of hand i less than d.

Le1llllla 2-7:

In the general detour scheme, there exists a one-ta-one correspondence

between values of the parameters q and r that snUsfy condition (C-3).



-15- .

Proof:

has sl1mm whi.;h v~ltll'S of r s,ltisfy (C-3) for a

given value of q. We now show that for each valuf' of q we can a~si"n

a different valae of r such thot conoit10n (C-3) is satisfied.

We do the correspondence sequentially, keeping (C-3) satisfied.

Let gCd(x,d) = t. Using Lemma 2-3 and the proper change 01 variables,

we know that (r·x) ~od d and q-g in (2-4) are periodic in r with period

d/t. This implies that (r.x) morl d takes d/t different valucs and cacti

of these values is taken for t different values of r. We assign values

of r to corresponding values of q in t~e followi~ way that satisfies

(0) Set i to zero. Let Rand Q be respectively the sets of all

possible values of rand q. Both these sets have cardinality d.

(1) Take, 1n R, the t villues of r that maximize (r· x) mod d. They

correspond to the values of q that I.nve the least number of

possible values of r 'So that (0-3) 1s snti:5fied t Associate

these va1up,s of r arbitrarily with the values of q between

i ar.o :..+t-1.

(2) Delete from R the values that have been a~~igned. Set i to

i+l. If i·t ~ d then stop, all values have Leen assigned.

(3) KO to Step 1.

We now hrove to shOW throt, usin!; this correspClr.dencc, the e"pression

of q-g in (2-4) stays less than one. Using a change of variable, the

proof of Lemma 2-2 shows thDt the first d-(r'x)mod d vu1~es ~f q satisfy
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this condition. In Step I, we ao;socialc with the l values of r that

give the same value for (r'x) mod d, t "'(lIlies of q betw{'cn d-((r·x) wld 0) -1

and d-t-(r·x) mod d. This association s(1tisfics (C-3) . Q.E.D.

Table 2-4 shows an example of possible matches between the parameters

q and r that satisfies (C-3) when t=l.

This co. respondence has ar.other property tlw.t is useful later,

when finding a ~orrespondenc~ between parameters p and r of the detour,

Lemma 2-8:

Condition (0-3) gives 8 correspondence between the parameters q and

r such that L( q+r' x )/dJ = li+r' x )/dJ, when i is the parameter of the

destination In (C-3).

Proof:--
We can write the addresses o~ Step 5 in two different ways,

depending on the methOd used to obtain them. They are either a

descendant of Step 4, or an ancestor of Step 5. This gives the equality:

d'M + p-f+t + L(q+r'x)/dj = d'M + h + L(1+r'x)/dJ mod n .

As condition (C-2) implies that p-fH h, the equality becomes

L( q+r' x)/ dj '" L( Hr' x )/dj Q.E,9.

Usin& this correspondence between Q anJ R, we ~how What happens

With condition (C-2), Once q or r is chosen this is very similar to

(0-3), rind WI"! can find n one-lo-one correspondcnc!! between the pnramcters



Table 2-4: M~tching the parameters q and r when t=l.

The table shows the value~ 0f q-(q+r x) mod d,

~hen x~l, d~7. The shaded areas indicate where there

is no possible lnatch. The matches in the one-to-one

co~respondence fallon a diagonal and encircled.

,
•

r 0 1 2 3 4 5 6-
o I 0 ·1 -2 -3 -4 -5 @

0 -I -2 -3 -4 (-5)~ ,
-.

"",__ V-'/////F.

2 a
3 0

4 I a

5 I 0

6 I @
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p "ad r t1wt satisfy cOlldith'IlS (C-.:') :llld (C-3).

J£t A(r) be the part in the expression of f that depends on q and r:

A(r) (r' y + L(q+r' x)/dJ ) 'lIod d • (2-5)

Condl tior. ~C-2) is satisfied 11':

p - f $ 0 , or, using A(r)

p - (p + S'X 4 A(r) mo~ d sO.

We now show an importa:1t property on A(r), when 1 < d/2. Ily symmetry,

a similar property is true when i 2 d/2.

Lemma ';>- 9 :

V~en i < d/2, for all h less than t, there are at lea~t h different

values of rrO such that A(r) mod t < h.

Proof:

Let Z(r) = A(r) mod t. We have, using the corre~pondence of Lemma 2-7

between q lind r :: -:d Lel1ll. ' 2-8:

Z(r) ." r' y + L(Hr' x)/dJ mod t J

witt. 0 S x.,y < d. We can rewrite this 8S:

Z(r} ." L(r' (d'y+x) + t)/dJ mod t.

The expression wilhi.n the floor fur.('tion is less thr,n h for:

(2-6 )
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where

We want to show that for all h less than t, there are at least h

different integer r that satisfy (2-6). Let then

gcd(C·t,d·y+x) = U •

As t=gcd(d,x), we have u ~ t. Using u, we can express r
j

differently.

It 1s:

r j = j' t· d/ ( d' y+x) - 2' il ( d' y+x) ,

~ 5
j

- 62, with 62 ~ 2'i/(d'y+x) ,

'" LS} + m'u/(d'Y+x):- 1:.
2

' with the integer tI such

that 0 < m < (d'Y+x)/u, and m

can also be equal to .~ero when u > 1.

There are then at least u-l different values of j for which there is

an integer r sat1sfyi.lg (2-6) with h",l, These values oJ j correspond to

those wherf. m=O in (;;-7), and there 1s an integer satisl'ying (2-6) Caen

llS d > 2' 1.

When u=l, the lemma is verified, DS t 15 also equ.ll to one. Assume

now that u > 1." The integers satisfying (2-G) with m=Q in (2-7) are:



Lsi = U·t·'i/(d·y+x)J, for j = k' (d·y+x)/(t.u), nIld k=l, ... ,ll-l .

If u ~ d, this gives u-1 different integers, hence at least t-1 of them,

and the lemma is verified. If u > d, this gives d-l different integers,

and the lemma is also verified. Q.E.D.

We are now ready to show the exis';ance of a one-to-one corresr,r.Idence

between the parameters p and r of the idd,esses of the nodes of the

detour that satisfy conditions (C-l) t:.> (c-4).

Lemma 2-10:

In the gE'ner'll detour scheme, th" re exists a one-to-one correspo;ldcnr;;c

between tha v<llues of the parameters p, q and r that satisfy conditions

(C-~.) to (c-4), when the parameters hand i of th2 destination address 3r"

equal to zero.

Proof:

Lemma 2-7 has shown such a correspo1Jence between the parameters q

and r for condition (C-3). Conditicn (C-4) restricts the values of r to

be nonzero, as shown in Lemma 2-5. We now focus on conditions (C-l) ano

(C-2).

Condition (C-2) is very simil H to (C-3), it is satisfied if

p - f ~ 0, or using A~r) in the expression of f

p - (p + S'X + A(r» mod d ~ 0 • (2-8 )

Lemma 2-2 nnd a chonj:;c of vnriahles show that (2-8) is sntisfied for

(d - (s": + A(r» mod d) vlllues of p. By definition of t, (s'x + A(r)

lIod d, 19 periodic ill S with p\lriod dl t. In order to be oble to hOJve uil
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the vAlues of p and r "I 0 corresponding, 111(> 'n-1st show that for any

h less than d, ((s'x + ,\(r)) llIod d) is h"5~ tLun 11 for r diffC'l"L'lll

values of r '" O. This is proven, for s",k' t, in LeIWh2 2-9. All

volues of riO h3vc a corresponding P. Because of the freedom of

the choices of p, Wr.! can choose the p corresponding to r:oO to be the

cne avoided hy condition (C-l). This shows the existence of a one­

to-one correspondence between the d-l nonzero values of r and the

paramete~s p and q ~atisfying conditions (C-l) to (C-4). Q.E.D.

We now 5110111 that these resul ts c:an be extended to values of the

parameters of hand i other than zero.

Lemma 2-11:

The results of Lemmas 2-6, 2-7, 2-9 and 2-10, are also v3lid if

the paral~eters hand i of the faulty node are different from zero.

Proof:

We prove this only for i , 0, as the proof for h is the same with

• changf: of variables. We also restrict o::r oroof to Lemma 2-7 as the

others follow from it.

COndition (C-3) is equivalent to:

We know how to find D corrO:-3pondcnce bo:-t ..cen vtolues of q lind r,

that is one to one and satiSfies (C-3) whc.. i",O, or, by syn.metry when

l=d-l. Th~ rcason why we find u corresponucnec i~ this case, is bcenusc

for ony m Ie.!. thnn d, there nre nt lC3st m possiblc pornmcteTs q tlwt

have at lenst d-m posslb!e mntches in r. We show thnt this pruper~y is



kept when i increases from 0 to Ld/2J, or by symmetry, decreases from

d-l to ,-cl::l. Let t = gcd(x,d).

q thHt h;,vc at least d-j' t pussible matches in r that satisfy (C-3)

for a given i. Lemma 2-7 uses the fact that for i=O, we have

Qj '" (j+l)' t. Let" :=" indicate an upcta teo When i inc'-"'dses iT"'"

zero to t, we have the following changes.

Q j : '" Q j + t, for j = 1, ••. ; d/ t - 2 ;

as t parameters r that coulu only be matched with d/t q's can now be

matched <>nly with the other d-d/ t q' S. Simi! ar1y; when i increases to

i+t~ the changes are, when i+t < rd/21

Q j : '" Q j + t; for j '" 1 + 1/ t .•••• , d/ t .. 2 - i/ t •

As all these changes only increase the Qj'S, we keep the property tilat

allowed for the ene-to-one correspondence. Q.E.D.

Teble 2-5 shows an example of possible matches between the para-

meters q and r t.hdt satisfy (C-3), ~hen t=l, for various values of ~he

parameter i.

We nt,\1 show an example of a correspondence betwe"'n the various

parameters t.hat satisfy (C-l) to (c-4) when h 'md i are nonzero.

Exnmple:

This gives t=3, J=4. We compute the values of r'x mod d, for 0 s r < d,

thoan mater. the parameter!! q to each value of r. We ti",n compute r' y mod d,

L(r'x+1)/dJ and·A(r). We tnen show .,hat values of p ore impossible to



Table 2-5: Corresponding values of q and r when t=l.

We show the values of q - (q~r'x)mod d, when x=l, d=7 aud indicate the areas of the

table for which there is no possible match.

2

3

4

:;

6

j =0

3

I:: I

4 '"~ 6 o 2 3

I:: 2

4 5 610 2

i =3

'"()..

r~~ shad!d areas are those where there is no pOSHiblv match. The circled squares Bre

the corrcspcnding values. The numbers in the table sre the same for all 1, but the

circles and shaded Bre~s depend on i.
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a~suciatu to a given value of 1', and choose Lhe matches among the

p'-'S~,iblc value for s. All this is sunmClrized in Tnb10 2-6.

In order to find how many node-independent detours there are, we

first check what nodes may be com~on to two different steps of the detour.

Lemma 2-12:

[f n > d
2

, ther~ is no common nOJe between Steps 1, 3 and 5 of the

detour.

Proof:

We show that the address of the nodes are different in each step,

~irst we look for nod2s common to Steps I and 3. This is pOssihle when

d'M + P '" d'M 4- p' + L(r'n+q)/dJ mod n,

This gives, ~fter simplifications:

p-p' L( r' n4-q)1 dJ maC: n • (2-9)

As, 1n the detour (C··4) i!'1plies 1',.0, (2-9) is impossible to satisfy

.:
for n > d •

There can be some noJes in cowman between Steps 1 and 5 if

d'M + p d'M + h + L(r' n+q)/dJ mod n •

4 2As 1',.0, this is al~o impossible, fo,- n > d _

There cnn be sOme nodes in com~on between Steps 3 and 5 if



Table 2-6: Setting the parameters in order

rr 0 1 2 3 4 5 6 7 8 9 10 11

-
9'r mod 12 0 9 6 3 0 9 6 3 0 y 6 3

I q 11 3 0 6 9 4. 1 7 10 5 2 8
-

2'r mod 12 0 2 4 6 8 10 0 2 '+ 6 8 10

L(9· r +3)/12J 0 1 1 2 3 ~ 4 ~ 6 7 7 8

A(r) 0 3 5 8 11 2 4 7 10 1 3 6

impo5sible / 11 I I I I 11 11 11 11 11 11

p's 10 10 10 10

P 5 7 8 9 10 11 0 1 2 3 4 6-
B 0 1 0 1 1 0 0 1 0 0 0
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d·M + P + L(r' n+q)/dJ d·~l + h + L(r'·n+q' )/dJ mod n,

2
As (C-l) requires Pfh, thi~ i~ impossible for 11 > d • Q.E.D.

We no~ study what happens when two steps have nodes in common.

We start with one node in common between Steps 1 and 2.

Lemma 2-13:

When there is a node in common between Steps 1 and 2, there can be

no other steps in the detour with nodes in common when n is larger

4than d •

Proof:

The relation satisfied by the address of a node common to Steps 1

and 2 is:

mod n. (2-10)

Lemma 2-11 has shown that there is no common node between Steps 1, 3

2and , in the detour when n > d. If there were a node common to Steps 1

and 4, its address would satisfy the relation:

rl·M + p" eM + L(h + s·n~· L(l + r'n)/dj)/dj

Mui-tiplyillg this by d gives:

d
2.", + d·p" c d·M + h + L(i+r'n)/dj - f mod n,

mod n.

.here f is less than d. This is impossible to satisfy along with (2-10)

4.hen n > d , DS rIO.
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Similarly, '''' r{v, lh.,re 1S fiU common node between Step 2 and

Step~ 3 and 5, or bCt~CCll Step 4 ~i'd Stcl' 3 ~nd J' alld between

Steps 2 Rnd 4. This finishes the proof as there is no other common

node between two steps possible. Q.E.D.

We should note that thf~ common node between Steps 1 il ' 2 may be

HIP fpulty node responsible" for the detour. We now show a ~!milar

result when there is a node in common between Steps land 4

Lemma 2-11+:

When there is a node in co",mnn between Steps 1. and 4, there can be

no other node in common between tW0 steps of the detour when n> d4 + u3•

Proof:

If there is a node in common to steps 1 and 4, JIS address satisfies

the relation:

d'M + P M -I L(h + s'n t L{i + l"n)/dJ mod n,

or multiplying both sides by d,

':)

d"'M + d'p = d'''' + 11 -t. L(i+r'n)/dJ - f mod n,

where f < d.

(2-11j

Lemma 2.. :1.1 shows tlll'll thcre 1s no node in common between any two of

the Steps 1, j or 5. I.emma 2-13 show,; thal; there 1s no nodI'! in common

between Steps 1 and ~). If there i~ Il node in COln."'Tlon between Steps 2 and 3,

SOme set of parameters snU.siies the £ollollo'ing relution:
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2
d '~l + d'p' + q' "d'~l + h + L(1+r"'n)/dJ - i' mod n,

where f' < d. If n > d:', this can only be verified, along with (2-11),

it they have the s~me set of parameters. This als<:. implies that these

nodes are the S8m... But wn have seen that there is no common node

between Steps I and 2, the relation ~dnnot -be satisfied. There is no

common node between Steps '" and 3.

Similarly, there is n~ common node between Steps 2 and 5 between

Steps 3 and 4. By changing the orientation of the network, Step 1 1s

chat,ge r : into Step 6-1, but the topology of the network is maintained.

Lemma 2-13 ~hows then that there is no common node between Steps 4 and 5,

8S they cQ!'~espond to Steps 1 and 2 in the other orientation.

If t~eI-e is a node in common between Steps 2 and 4, there are para-

meters that s~tisfy:

2
d 'M + d'p' + q' M + L(h + s'" n + L(1+r", n)/dj )/dJ IllOd n. (2-12)

Subtracting (2-12) from (2-11) gives:

d'M + h + L(l+r'n)/dj - f d' (p-p') - q' +

M + L(h + s"· n + L( Hz"· n)/dj )/dJ

This gives, after nultiplication by d:

d'M+h+ L(i+r"'n)/dj - g" modn,

where g and i~ are less thon d.

mod n

(2- 13)
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$ubtrncting (2-11) from (2-13) gives:

d' (h-f-p) + i-g .. d
2

• (p-p') - d' q' + L(i-,.... ·D}/dJ - g"

l(t+r·n)/dJ mod n.

This is impossible to satisf" if rlr" and n > d4 + d3, liS the eli :!crCl1ce

of the two floor functions is larger than the rest of the elements.

This finishes the proof, s!lo.... ing that there i~ DC common node to two

steps, but the first one. Q.E.D.

This takes care of all the cases where St2P 1 has sonw node in

common with some other Step in the detour. By reciprocity, 1t also

takes care of Step 5. We assume now that Steps 1 and 5 have no node in

common with any other step,

Lenuna 2-15:

When Step 1 has no common node with any other step, there can be

at most one common node between Step 2 end any other step, either between

~ 3
Step~ 2 and 3 or between Steps 2 and 4, when n is larger than d + d •

Proof:

We consider lI'hat happens ~:hen we reverse the orientation 01 the

network. The primed numbers denote step numbers when the orientation

1s reversed.

or 3' lind 4'.

Assume that there is a common nOde between ~teps 2 and 3,

There Cannot be Gny new node in common between Steps 2 and 5, as this

corresponds to l' <lnd 4', Dnd this would contradict Lemma 2-14.



-30-

Slml1llr1y, a common node is irlpossib1c bctW€lctl Steps 4 llnd ;.,

(1' and 2'), ~ecause of LemMa 2-1j.

A node in common between Steps 3 iJ/ld 4 is the S(lme as the node

in common between .steps 2 ,led 3, as shown in Lelll/ll8 2-J.4. Assume now

that there are both a node in common between Steps 2 and? and 2 and 4.

This implie" the Gxistence of s,ets of parameters satisfying .he equations:

tor a common node between Steps 2 and 3 and

mod n, (2-14)

for a common nod~ between Steps 2 and 4.

SUbtracting (2-)4) from (2-15) glve~;

d' (p"-p) + q"-q + d'M + 'p' + LT" nldJ '"

We multiply cht~ by d, and get:

d2 • (p"-p') + d' (q"-q+V') + i'M - g' '"

IOOd n.

IJod n. ( 2-16)

Subtracting (2- 14) from (2- 16) gives:

d
2

• (p"-p') ... d' (q"-q+t"-p) - g' - q

mud n.
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This is impossible to satisfy, if r' I r
1

~nd n > d4 + d3, as the

difference ~f the floor function is larger than the rest of the ele~cnts.

This finishes the proof, shOWing th3t there can only be one common

node under those condi tiOI1S, between Step 2 and either Step 3 or IL Q. E. D,

If we aasume that there is no common node between Steps 1 and 2 and

the rest of the detllur, we can, by reciprocity, assume the Same of Steps

5 and 4, wl',ich takes care of all possible cases.

In summary, there can be only one node common to two different

steps wt.en n > d
4

+ d3, We can now count the number of '- independent

detours.

',"heorew 2- 1 :

In a de ~~ijn n~twork with out-degree d > 2, there are at least

d,·? node-indeplmdent detours between a node with address M and a node

2 .
with address d 'M + d'h + i, when the node w1th address d'M + h is in-

operative, the addresses are taken mudulo n -the number of nodes in the

4 3network·-, 0 ~ h, 1 < d and there are at least d + d nodes in the n.?twork.

Proof:

We CO\JI,t how many nodes ml:st fail in the detour graph before all

detours £lOll be ru t. Frank and Fr~ sch [Fra7l], among others have shown

that this is the number of node-independellt paths betweer. the origin and

destinntio~ of such a grarh.

LellllDas 2-13 to 2-15 show that when f nodes fail, at most :Ct2 paths

..y be cut, as ~t most two nodes are comnon to two different steps. In

order to cut all detours, a minimum of "d-3 nod('s must then fail, as
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Lemmo 2-9 shows tfte e:dstence of d-1 independent sets of p"rnmclc,'s

for the addresses of the dntour. Q.E.D.

When n is a multiple of d2, some of the restrictions for the

detours disappear.

Theorem 2-2:

There exist d-1 node', independent ,;ix-stcp detours betweC!n a node

2of address M and a node of address d •M+Ij' h+l, wi th hand i between 0

and d-l, wilen the node d'M + h is inoperative, and when 11 '" k·d2 .

Proof:

We use the same notat10n., as for the genl.lral detour. The steps are

now as shown in Table 2-7.

If therE! is a total of S bao nodes in the detol'rs, including the

original bad node, there are at least d-S possible par!lIneters poss1ble

for each step, when n is large enough so that nodeS in Steps 1, 3, and 5

are distinct, except the original bad node. At least d-l nedes need

then to become inoperative before there is no det~ur left. There are

then d-l node-ir:'opendent detours. Q.E.D.

We nol' ahow an example of r1etours Bround a fault) node, in the same

case as Table 2-5. The parameters of the system arr. 0=24°35, 0=12,

h=5, 1=3. This gives the set of detours shown in T~b18 2-8. We use

the parameters chosen in Table 2-5. We shOUld n·ltE. Ulat there only are

10 indepelldent detours, as the aCdresses of the node in St"p 1 with p~

is the some as the node in Step 2 with p=l.
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Table 2-7: Possible addresses for the nodes in 3 detour

when n = .~- d2 _

step address COlllments

0 M origin

1 d-M + P p;!h

2 choost!2 d 'M + do;> + q q

3 d-M + P + 1" d' z

4 M+ r-z + 5- i- z choose s

5 d-M + h + rod' z r;!O

6 2 destinationd 'M + doh + i
i
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Table ,~-3; A sct of deLours when n = 2403:..>, d 1.2,

M = 10:, d2'~j + d'h + i = 2236 mod 11.

-
p Step 0 1 2 ., 4 5 6

0 2184 2174 14201 1153 14206

1 2185 2192 16205 1350 16209

2 2186 22°7 18209 3520 18212

3 2187 2214 20213 1(j74 20215

4 2188 2223 22217 1841 22C:l8

5 182 2189 2236

6 2190 2241 185 2008 186

7 2191 2248 h194 349 4192

8 2192 2257 61)18 2519 6195

9 2193 2275 8202 683 8198

10 2194 2290 10205 2852 10200

11 2 195 2297 122°9 302J 12203

The entry for p=5 is not a detour, but the regular path between

the nodes in Steps 0 Gnd 6.



The method given here requil'es the edges of the network to be

unoricnted in order to by-pass a faul ty node. Previous ~no'::lcdbc 01

the bad nodes within the detour is nceded in order to avoid them, as

shown in Theorems 2-1 and 2-2, However a limited knowledbe o~ the

state of the nodes in the ne~work is needed, as all the nodes of a

detour are at most 6 steps apart, This still insures the locality of

the control.

If unoriented routing is used in general, another kind of detcur

is necessary as a message must by-pass in a small number of ~tepr the

nocie with address d' ~,i + k on its way from ~I to 11 + l (k+j' n)/dJ mod n,

The following theorems show the existence and the number of such

detours.

Theor.?m 2-3:

There exist at least d-~ nod(,-independent paths of six steps or

less between a node of address M and a node of address M + L(k+j' n)/dJ ,

2
tlith k and j betwten 0 and rJ-l, and when there are at least d nodes in

the network.

Proof:

The two schemes below, used together, fulfill the conditions,

The fl.rst sc!",<;me g1ves d-gcd(d,n)-J. nude-independent paths, the

second one gives the remail.tng gcd(d,n)-l. The first Hcheme is two or

tour ~:cps lon~. These steps nre shown in Table 2-9.

F'.'.gure 2· I shows an example of such a set of paths. The destination

address is ot the form:
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Table 2-9: Possible :lddrcS5CS for the notles in Theorem 2-3.

step addre5s modulo n COITu"e Il t S

0 M origin

1 d-Ill + P

2 M + L(p+q' n)/dJ may be the destination

3 d'M + P - f + r f '" (p + q·n) rr.od d

4 ,,~ + L( p-f+r + S' n)/dJ destination

Tahle 2-10: Possible addresses in the second scheme

of Theorem ~'-3.

step address modulo n comments

0 M origin

1 u'M + P g possibilities

2 U + q' nlg CGtold be M again

3 L(M + q' nlg + r' n)/dJ ancestor to ~1 + q" nlg ~nd

M + q' n/g+h, where h:!; l,

depending on e.

M + q- n/g • h

5

6 M + ~(J+k' njt oJ

g unused dcscC'ndOl,ts of

the dcst1nntion.

dest1nntlon
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~l + L(j+k' n)/dJ mod n,

this gives a restriction on the possible values for p-f+r, For n

large enough, p-f+r must be between e and e+d-l, where e is equal to

j - (j+k'n mod d) ,

If g is the gcd(n,d), we can write, using lemma 2-]:

e ~ -d + a'g , with a between' and (2'd/g)-1

depending on the valuE of j.

Lemma 2-2 shows that the first g values of P-f, for all p's arc less

than onp., If e is then larger than g there are at most d-g independent

paths, as thuse that start with a p less than g cannot go to an address

larger than d'M + d-1.

'I1le commc;,t 1n Table 2-9 ior Step 2 says that this address may be the

destination, This happens when p is ~etween e and e+d-l and q=k. Steps

3 and 4 then become useless,

Another restriction appears when (in Fi~. 2-1) M
2

is bel'~een d'M + e

and d'M + d-1 (one of the intermedinte nodes on the" dl n-c l " 2-st"!Js pnth ~,

Fewer independent paths exist. We show later that for n large enough, at

most one node in 2'd nodes Nith consecutive addresses can be like that.

This restricts the minimum number of node-independent p~ths to d-g-l.

This finishes the discussion of t~e fIrst scheme. The second one

elves g-l new indep~ndent pplhs nnd Is four or six steps lO~g.
" ,
"-"--

shows such :'I detour in the s"me COSI.~ os Fi(;ure ~J_l. The steps ore shown

in TobIe 2-10.
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Figure 2-~: Possible cunnect:1.O.1S for the paths of Theorem 2-3-

N + L(2+h. n).((i) = M
2

I( + D/2

d-N + e (e0:4 here) _

destination: M; ~~4+k'n)16J

d'M + 2d - 2

The edges used by the pncils are darl\ :,incs.
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There arc thl'f"e c[lses wher'e those paths [Ire not node-independcnt,

whcn the pdhs of thc' first detour' arc lnclude'U.

Thc first {'else of dependence 1S when a node of addr'css ~l+h+qo nlg

is between u·t.l+e and d'M+e+d-l, There is at most one such node, for n

large e~ough, as these nodes are nig apart.

The second ca~e of dependence is when an anc~stor to a node with

address M+1I+q' nig ~,s the same as an ancestor to one of the nodes of

addresses between d'~I+e and d'M+e+d-l already u:;ed in some path. This

is included in the first esse.

The last case of dependen~e is when o~c of those ancestors to a

node wi th address M+h+q' nig is the same as one of the nodes of addresses

between d'A! + e and d-M + e + d-l already used iil some path. Such a

node can always be avoided as there are d-g possible silch n::>:Jes per path,

and their addresses are of the orde. of n/d apart.

Theorem 2-4:

Q.E.D.

There exist at leas~ d node-lndependent paths of two steps or less

between two no s with the same descendants In a network where n is a

Ilultiple of d.

Proof:

The two nodes halle d descendqrlts in common, this gives d I'0de-inde-

pendent paths. Q.E.D.

In summary, we halle shown the existence of at least d-l node-

independent detours around a faulty node, when n 2f k·d , Dnd Q node-

independent dcteurs when n • k·d2 • Similarly we hOlle shown tIle existence
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Figure 3-2: Possible connections for the theorem of 2-3,

when the two types of pnths are Used.

d~, g=2,

d'lI

M
(origin)

1I+D/2

l(M+q'n!g + r'n)/qj = M'
1

.d·m + 2'd

The edges used by the paths are dark lines.
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of d-l or d node-independent p~ths between two nodes with common

2
dese~nd3nts, depending on the divisibility of n by d .

We have shown a six-step by-p~s~ mechanism th~t ~11ow5 a mcss~gc

to avoid an inoperative node. This does not change the locality of

the controls of the network, but requires a stack, when the ~etwork

is used in an oriented manDer, in order to handle possible bad nodes

~ncountered during the detour. This stack could be incorporated in

the control part of the message. If too many nodes are inoperative,

or if the degree of the network is fQur, the detour mech~nism might

tail. Th~s leads us t~ study the conditions under whic~1 communications

are possible between two nodes in the networ~, and t~e number of nudes that

can become inoperative without impairing the ccmmuni~ations within the

rest of the system.



-42- .

lII. Vulncr;billty of a de Druijn network

lis section studies in ~hlch ways portions of the system can

beco"le inoperative without impairing the rest of the system. We

discuss the sensLtivity of the network to the destruction of a ~iven

number of nodes or ~dges. By counting the number of distinct neighbors

a node has, we show that the number of nodes with less than 2'd distinct

neighbors, whe:re d is the out-degree of the network, is independent of

the size of the network. We then study cycles and show the existence

of oriented cycles of variOUS lengths. The existence of such cycles is

useful ill stUdying how to isolate a group of nodes from the rest of the

network. Finally a study of node-independent paths shows that there

are at le~st d_l node independent paths in an oriented de Bruijn network

k
with d nodE'S and out-degree d.

The connectivity of a network 1s the smallest number of nodes that

must be removed lro~ the network, for the network to be disconnected.

Similarly, the cohesion of a network 1s the smallest number of edges

needed to di~connect the network. As we have allowed self-loops and

parallel edges, the degree of a node does not indi=ate the number of

independent neighbors a node has. The node and edge VUlnerability of a

node are the minimum number at nodes and edges j respectivelyj that must

be removed in order to dIsconnect that node from the rest of the network.

The node and ed~e VUlnerability of a network are the minimum, resp~ctively,

01 the node and edce v~lnerability 01 individual nodes.

We look tor bounds on the connectivity and con~sion of de Bruijn



networks of degree 2' d. The d.!tour mechanisms outlined in the

pr€vious scctl0ns give a lo~cr bOUl'd on the ~onncctivity of t~c

network. This lower bound is d-l if n is not divisible by d
2, and

d if n i5 divisible by d
2 • The node and edge VUlnerability in such

netw~rks give an upper bound on the cohesion and vulnerability of

d-l or 2'd-2 in oriented or unoriented networks, respectively.

Denoting the connectivity of a network as en, and the cohsion

as Ch, Boesch alid Thomas [Boe70] derived the following relation in an

unoriented network with n nodes and e edges:

Cn s: eh ~ 2'e/n .

ThUS, in order to find a lower bound for both the connectivity and the

cohesion, we only have to find one for the connectivity.

Lemma 3- 1 :

The connectivity ef an unorie~ced de Bruijn network is at least

k+l when there are at least k independent detours between two nodes

separated by a bad nOde.

Proof:

The connect-vity of the network is equal to the least numbe' of

nodes needed to disconnec~ the network.

The treorems of the previous section show how many node-independent

detours exist between two nodes separated by one bad node. When there

are k such detours at each node, we use :I proof by induction to show

that the connectivtty is ut leest k+l.
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Suppose k=<). As w(: arc 1n a network, the connectivity 1s one.

Now suppose that there 3rc k ~ 1 dctourh, the conJlectivity is nL

least k. In order to cut a node from another, at least k nodes must

tail. If only k nodes fatl, there still ex1sts a path connecting any

two nodes, as there still is Dnc detour among the knode-independent

detours, that does not fail around any of the bad nodes, as there only

Ire k-l other bad nodes. The connectivity of the network is at least

k+\. Q.E.D.

Theorem 3-1:

Let 2'd be the Gegree of an unorientpd de Bruijn network. ,he

cqnnect1vity of this network is at least:

d, when the number of nodes in the network is a

2
multiple of d ,

d-l, otherw1.se.

Proot:

The proof follows immediately from Theorems 2-1 and 2-2 and Lemma

3-1. Q.E.D.

We now look fo,' an upper boun"" or.. the connectivity and cohesion of

the network. The node and edge vulnerabil i ty is such a bound, becoluse if

all the independent neighbors to a node fail, there 1s not path left

between that node and the rest of the network.

AD immediate upper bound for the node and edge vulnerab~llty is

the degree 01 the network, as all nodes hove the some degree. In some



cases, a nod~ m~y h~vc a low~r nodc or eubc vUlnerabllity. w~ look

Theorem 3-2;

In a netw':lr~; where d is the out-deg~ee, n the number of nodes and

g the gCd(n,d-l), t~e number of self-loops is equal to d+g-l, when n is

larger thar.. d-l.

Proof:

In general a node with address M has as descendants the nodcs with

addresses:

d'M + j !!lOa n,

whe~e j is between 0 and d-l, and n is the number of n0des in the network.

The e'lrcsse~ of the nodes that have themselves as descendants satisfy:

•• d'M + j mod n.

We can J'ewrite this as:

J,: .. (k·n - j)1 (d-I) , where 0 S; k < d, and k is an

integer that corresponds to th~ "mod n" in ::he

above equat.ion.

Let ~ = gcd(n,d-l). The possible values of Mare:

Ml = L(k'n)/(d-.Il! , with k=O, ... ,ct-2 ,
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and

M2 = k'n/(d-l) - 1, when this is B posit:ve integer.

This also is:

1Il2 = q' nlg .- 1, with q=l, .•. ,g·

There are d-l inoependent Ml'S, and g independent M
2

'S. A repetiti,)n

might ()ccur between an M
1

and an M
2

if two M
I

' s are only one apart, as

all ~~'2' s are one away from a given MI' This gives for the repetitions:

(k'n - j)1 (d-l) = (k'n + n - d+l)/(d.. l)

or

n = d-l-j .

This is possible only if n < d. This gives us, tor n ~ d, a total of

d+g-l independent nodes with a self-loop. Q.E.D.

The nodes ~lth self-loops, in an oriented network, have a node and

edge vU1..erabi1ity of d-l. If n is smaller Lhan d, the node and edge

vulnerability may be larger.

We now look at node and edge vulnerability in an unoriented network.

The cases wl.ere the edge or node vulnerability are less than the degree

occur when a node has a self-loop, or when two edges are parallel. Those

two examples are shown 1n Figure 3-1. The numbering of the nodes is taken

from a de Bruijn graph w1th 8 :lodes and degree 4.
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~OOI

self-loop

101~__-:J010

parallel edges

Fig. ~-l: Coscs where edge or node vulncr~bility ~re less

thtn the degree :Jf D node.
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We first show thlt 1n lor~e enough a network, there is no node

with both a self-Iool' and porallel edges.

Lemma 3-2:

2In an unoriented network with more than d nodes, a node cannot

h9ve both a self-loop and parallel edges.

Proof;

If j,k,p are integers between 0 and d-l included, the address of M

of a node with both a self-loop and parallel edges satisfies the

relations modulo n:

M = d'M + j

for the self-loop, and

2= d 'M + d'j + j ,

M so d 2 , M + d' k + P, with kfJ, fOT the parallel edges.

This gives, modulo n'

2= d 'M + d'k + P

and;

d·(j.k) • p-j, which is impossible, with jlk, when

2
n 2: d • Q.E.D.

We alreedy have found the occurrences of self-loops. When a node

has a selt-Ioop 1n an unorientea network, its edge and node VUlnerability
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become 2'd-~ 1f the degree of the network is 2·d. In case of p~rollcl

edl;Cs, thc ed!;c vulner~bilitr 1s unch~n;;ed, bll.t the node vulncr:>bility

gOf,S to 2·d-l.

Theorem 3-3:

In an uLtor1ented de Bruijn neh.'or", where n is the number of r.odes

2
and 2'd the degree of the network, if n is larger than d , and

2
g = gcd(n,d -1), the number of nodes with parallel edges is equal to

2
d +g-1.

Proof:

Parallel edges happen when e node has one of its "descendants"

among its ancestors, for n larger than d. This occurs for:

mod 0, wh~re 1 and j are d-ary digits.

2If g = gcd(n, d -I}, the solutions to this congruence are, including

some repetitions:

2
M

1
= l(k·n)/(d -l)J , with k

and

~. d2 2I, .... , - ,

~ = q'njg - 1 , with q = l, ... ,g •

As in Theorem 3-2 we ca.1 count the repetitions, end similarly, when n

2 2
1s larger than d , the congruence has d "g-::' independent solutions. Q. E. D.

Som.: : f those "parallel edges" al'e actually lielf-Ioops used tWice,

the actual number of nodes with parallel edges that arc not self-loops

1. then:



2 2
d -d+gcd(n, d -1 )-gcd(n,d-l) •

We can now find t~e node and edge vulnerability of an unoriented

2de Bruijn network with more than d nodes .

•Theorem 3-4:

The node and edge vUlnerability of an unorlented de Bruijn network

2wi th UlOre than d nodes 1s 2- d-2, where 2' d is the degree of <:hf.l networlt.

Proof:

2When tbe number of nodes is lorger thon d , there is not overlap

be~ween self-loops and parallel edges: all self-loops are considered

as parallel edges, and there is at most one self-loop per node.

The node and edge vUlnerability of the network is then th&t of

the nodes with self-loops, 2'd-2 • Q. E. D.

We study now the node and edge vulnerability of an oriented network,

then count the number of cycles of various lengths that exist in those

networks.

Theorem 3-5:

Let d be the out-degree of an oriented de Bruijn network, The node

and edge v~lnerabllity of such a network is d-l, when the number of nodes

in the network is larger than d.

Proof.:

When the number of nodes in the network is larger than d, no two

descendants of a given node con be the samc. The only case wherc the

au~ber of distinct neighbors of Q node is less thDn d is when onc
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of those descend:mts 15 the node itself. The edge lind node vulncra-

b11ity of such ~ node 1s d-l. This is 0190 the node and cligc

vulnero~ility of the network. Q.E.D.

Cycles in the graph show how strongly nod~s are connected, and help

in d~f1rtng measures of C'onnecttvi ty that include a group of r,odes

[Boe71]. We show the existence and count variou, cycles in the networ:~.

Theorem 3-6:

In an oriented de Brui.in network with n nod~s and out-degree ct,

the number of cycles of length L and no less, with L :;; Llog nJ, is
Q

equal to:

(2: lIlU( q). f(J...Iq) )/L )
q

qlL

where mu(q) is the Mcbius function:

and f(q) as:

=

1 1.f q=l,

(_l)r if q is the product of r distinct
primes,

o 1f q contains an) repeated prime
factors.

Proof:

Bcrlekamp [ocr68,pp. 81-85J, has proven this ('leorem in hl.s hook,

for general functions t(q). Q.E,D.



-5 2-

We now have upper and lower UOUll(L; 1:':,r cC'hesJon and COllnectivtty

of an unoricnted de flruljn nen.o d-; ',n ~)l l l,o'l,-,s CO"" (k;:n::<: -"d:

If n is not divisible by d2 :

'~

and, when n is divisible by d'-

For pn oriented network, we have:

1 :s; en :s; '.;h S <I-I •

Another way to look a~ the connectivity of a graph is to look at

the number l)f not:{'-lndependent pa ths l~e tl,een any two nodes in the graph

[l"ra7l, Ber62J.

Two paths between two nodes are called" node-independent" if they

have only the origin and destination nodes in common, TWo paths are

called edge-independent if they Illive tlO eige. l.n common. We already

know that the nll'Ilbel' of n()dE:-inde~endent paths in a network is eq'-1al to

the connectivity of chat network.

This section studies the construction of node-independent paths

in networks with d'n nodes, from the construction of corresponding paths

1n networks with n nodeg. It shows in p~rticular. that there are at

least d-l node-independent paths between any Von node;; in an oriented

k
Detwork with d nodes, It 'Ilso shows that for unorlented networks with

de~ree 4 and 2'~ nodes, there nrc nt lenst 2 node-independent pnths

between any ~wo nodes.
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In the rest of this section, we call a tie Druijn network with

df'grcc 2' d and n nodt"s as ~ (d, n) n< l\\;ork. ,\s usual, the defini tie,,,

for the integer k is:

k-l k
d <nS:d,

an earlier report [Sch74] shows that k 1s an upper bound for the

diameter of the network. A path is monotone if it is possible to go

from are enu of the path to the other end, following the orientation

of the edges. A path is singular if it consists of at most two monotone

,.·..bpa ths •

k
We first extend a result that is already Know:! for (d, d ) networks

[00167]: there is an isomorl.hism between the oriente<! edges of a

(~,p) network ~nd the nodes of a (d,d'p) network. We then prove a theorem

on node-independent singUlar paths, constructing such paths in a (d, d'p)

network from corresponding paths .... a (d, p) network. Another theoram

shows that 11 ~ node-independent monotone paths exist between any two

nodes of a (d,p) network, the sume is true of a (d,d'p) network. 7his

k
theorem applied to (d,d ) networks shows the existance of at least d-l

Dode-lnde~endent paths between any two nodes in such networks. This also

gives a gooe lower bound for the connectivity of such networks.

Ne now show how the edges of a (d,P) network ccrrespond to the nodes

of a (d,d'p) network. Figure 3-2 shows possible addre~ses for the ~dges

of a (3,7) network.
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000

oD

FiF. 3-2: Addresses of edges 1n a (3,7) network.



-55- .

Lemma 3-3:

There exists an isomoruhism between the edges of a (d,p)

network and the nodes of a (d,d'p) network.

Proof:

TO ea~h edge in the (d,p) network, we associate a node of the

(d,d'p) network in the following man~er:

1~ the address of the origin of the ~dgc is M, and that of the

destination is d'M + J mod p. the node in the (d,d'P) network

associated to that edge of the (d,p) network has an address of:

d'lI + j moil d'~ .

We define the descendants of an edge as the edges leaving from

the destination node of that edge. If a node associated with a given

edee has addres3 Ill, i t8 -Jescend.•nt nodes have addresses:

d'M + j .,d d'p, with j between 0 and d-l ,

These addres.3e"t '!re the same as those of the nodes associated with the

descendant edges of the "'dge ass<)~lated wit~ ~he node of address M.

The correspondence between the nodes and e~ges keeps the connection

patterns, To each ed~ in thp. (d,p} network, we can associate ~ node in

the (d,d'p) network, and to each node in the (d,d"p) network, we c;.n

••sociate an edge in the (d,P) network: If there is a node without an

aSSociated edge, the same is true of all its descendant nodes, and we

know that any node has eventually all the nodes in the network as



descend~nls. If there is then one node without an associated cd~e,

there is no node with an osso~iated edge, which is in contrndicli0n

with the possibility of nssocintin~ a node with nGY ed~e. In con-

elusion, as there is the Same number of edges and nodes, there is all

i&o~rphism between the edges of a (d,p) network and the nodes of a

(d,d'p) net~ork. Q.E.D.

In particular an oriented path along the edges of a (d,p) network

corresponds to an oriented path between nodes of a (d,d'p) network.

We can then extend to all (d,d'p) network~ the known result [00167]

kthat all (d, d ) networks have t>n Hamiltonian circuit: it cl"'rresponds to

the EUlerian circuit in the (d,p) network.

We now show how to go from a singular path In a (d,P) netwo.k

a singular path in a (d,d'p) network.

Transformation 3-1:

-It the singular path Is a monotone path In the (d,p) network, the

transiormatio~ is immediate, the path, instead of going from edge to

edge in the (d,P) network, goes from node to node ir- the (d,d"P) network,

and tose nodes are associated to the edges in the same way as in

'I'beorem 3-3.

-If there is a change of orieHtation, the two monotone subpaths

ea" be tran5fol~ed as above. The resulting path is not. complete, but the

open ,ends, not the origin ond dest In:ltion, come from the same ancestor or

go to the same descendant, as the corresponding edges join in one node in
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the (d,p) network. Addin~ one node to tho paths bridges the F,3P,

and keeps the singularity of the rcsultirG ~:Ith, nS shown in fib. ':'- )- ~.

Definition: A forward singular path Is a singular path which in an

oriented network takes an edge out of at least one of

its extremities.

For example a monotone path is a forward singular path, Figure 3-4

shows a path that is not forward singular.

We are now ready to prove the following theorem:

Theorem 3-7:

If there exist s node-independent forward singular paths between

any two nodes in a (diP) network, with s ~ d, then there are s node-

independent forward singular paths between any two nodes in a (d,d'p)

network. These paths are the transformed by transformation 3-1 of the

forward singular paths betwep.n the destination nodes of the edges

corresponding to the extremities of the paths in the (d,d'p) network.

Proof:

This proof shows that such paths keep their independence and forward-

ness in transformation 3-1.

The node-in<:lependelJce of the paths in the (d, J') network implies

the edge- independence of these pa ths. The transformed paths in the

(d,d'p) network correspond to edge paths with an extra edge at thn summit

of the forwarj singular paths. As the degree of the net is 2'd, and there

is at most one self-loop per ncde, it 1s always possible to choose that



F1g. 3-3: Transforming slngul::." paths 1n Transformation 4··1.

r

db+~

lDOd ljop

da+a
IIlOd c'p

mod dop.

in the (d,p) network

gives

dof-Hp mod d'P

f

da + a

in the (d, doP) network.

df + cp



o 0
a C

F1g. 3-4: ,~path that is not forward singular.

d-l other paths

summit 1s an extremity

•
r'

d edges to

choose from

•

\ •
" D'\

summ1t 19 not an extremity

Fig. 3-5: Row to choose the last node.
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l~st ed~e independent1>' from the other <;-1 p~ths, when s ::; d. When

the summit is not an extremity, We call choose any edge out of this

summi t bcc;luse of the node- independence of the PCl ths. When the

aummit is an extremity, the choice goes as follows: each node has

at most one self-loop, hence at least 2' d··l independent edges (Tlun 3-2).

At most d-l incoming paths use 2'd-2 edges, as they actuall. use the

extremity as a summit, and the last path goes directly to the

destination edge a~d does n~t need an extra edge. Q.E.D.

F~gure 3-5 shows such choices.

The paths that We get may still be shorte~ed if the extra node

1s linked to some other node in that path.

We now prove a similar theorem for monotone paths:

Theorem 3-8:

If there exist s ~ode-1ndependent monotone paths between any

nodes in a (d,p) network, then there are at least s node-ind~pendent

.anatone paths between any nodes in a (d,d'p) network.

Proof:

In the (d,p) network we look for edge-independent paths between

the nodes corresponding to the destination of the origin edge and the

origin of the destinoti.on edge. as shown in Figure 3-6.

If those two nodes are different, there are s node-independent

paths between them in the (d,p) network, which transformation 3-1

tranSforms into s node-independent poths in the (d,d'p) network. Boesch

end Frisch [noeGBJ, have shown that this is enough (or the connectivity

of the path to be Ii, and for s node-independent paths to eXist between



.ny two nodes. Q.E.D.
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In some cases, this theorem gives a better lower bound than

the general one on the number of r.ode-independent path;; between two

Dodes in a de Bruijn network. We look at the number o:~ node-independent

monotone paths in a (d,d) network.

Lemma 3-4:

There are at least d-l monotone nod3-independent paths between two

Dodes in a (d,d) network.

Proof:

The connpctioll pattern of the (d,d) network is the complete directed

Iraph with d nodes and a loop on each node. There always are d-l inde-

pendent paths between any two nodes made of the edges from the origin node

to all other nodes, and if necessary the edges to the destination node.

Q.E.D.

Theorem 3-9 generalizes this result to a larger class of networks:

Theorem 3-9:
k

FOr a~ (d,d) network, with d and k being integers, there ar~ at

least d-l monotone node-independent paths between any two nodes.

proor:

The proof follools immediately from the above lemma and theorem. Q. E. D.

This ~ives a better lower bound for the connectivity of an oriented

k(d,d ) network~ monotone paths are paths in such a network, and the

connectivity is at most d-l. This gives:



de + 0
IIIOd d'p

•••

OESi1NP-iI ON

•••

da
IIIOd d'p 1n th~ (d,p) network

d'lr + ~ mod d'p

in the (d, d'p) network

F1g. 3-6: 'transforming a monotoneous path.

Fig. 3-7: The (3,3) network.
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Theorem 3-10:

k
The connectivity of an ,niented (d, d ) network is "i-I.

Proof:

The proof follows immediately from the above theorem. Q.E.D.

GOing back to unoriented networks, we can tell a little more

.bout the case where d=2~

Theorem 3-11:

There are at. least 2 nClde··.lndependent paths between any two

nodes of a (2,2'p) network.

proo:r:---
This i:s an immediate dp.rivaticl from the exis tance of a Hamil tonian

c1rcIl1t 1n those networks. Q. F~. D.

;'ulnerability in a ll'e Bruij n network is a function of the (I::t:ree

of that IJEtwork. For an unorientei (d,d'P) network, the connectivity

.nct cohes:.on increase with d.
k

For (d,d ) oriented networks, the

connect Iv tty is d-l, fr-r unoriented ne",works it is at least dj for small

".lues of k, ":he cOilnectlvlty il'l ;'.n fact 2·d-2.



IV. Conclusion

De Bruijn networks have interesting properties for communications

networks: a small diameter with respect to the number of nodes in the

netwoTk, and an easy routing and rerouting scheme. The control

il.formation for t~e ~Y-r-ass of a bad node can easily be added to the

header of the messege. In case of a single bad node, it takes only

an extra four steps ;0 go around it. A limited number of nodes,

independently of the size of the network are more vulnerable than the

rest of the nodes 1n the network. The larger the network, the more

"invulnerable" it is, the same Is true when the degr~e increases.

An open problem is the statistical analysts of the message flow

inside such a network. This problem is stUdied in a coming report.
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