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I. Introduction

In an earlier report we have studied the routing of messages in
a de Bruijn network [SchThl). Messages go in a "store and forward' way
frem node to node before reaching their final destination, In a de
Bruijn graph, a node of address M has fop de;cendunts the nodes of

addresses

(d'M + J) mod n, for each j such that 0 £ J < d=l

and where h is the number of nodes in the network.
, I the previocus report, all nodes sre operative all of the time, 7This
report studles the possibilities of a network with a ecertaln number of

nodes that fall, A step is the operation that sends & message from one

node to one of its neighbors, The distance between two nodes is the

smallest number of steps needed for a mesgage to go from one node to the

other, The dimmcter of a network is the largest dlstance between any

two hodes in the network., The number of directly accessible neighbors to
a given node is, by definition, the degrec of that node, The degree of a
Detwork is the largest degree of all nodes of that network,

We can use such a network in two ways, either orlented or unoriented,
In an oriented network, the comnmections are unidirectional, going from a
node to its descendants. In an unoriented network, the connections are
bidircctional, This 1s the same as two unidirectional conuections, We
should then ecxpect much betler clharasteristics in an unoriented network

than in an oviented one.



. The degreee of g de Bru_i_jl_l__uutw_ork is the same as fflm’r. of all
the nodes. If the out-~degree is d and the number of nodes in Lhe
network is n, the diasmeter of the oriented network is rlogd nl, Tiis
diameter is the sawme when the network 1ls unoriented,

When a single node is not working, we show schemes that reroute
messages arouud thai node 1n at most six steﬁs, when 2 or when
n = k‘de.

We alse study the vulnerability of the network, IFf the unorilented
network has degree 2-d and n nodesg, we show that the number of wnodes with
less than &+d distinct neighbors is smaller than E-de, and that for
sufficlently large netﬁorks, no node has less than 2'd-2 distinct neighbors,
We find an upper and lower hound for the comnectivity of the network to be
regpectively 2¢d-2 and d-1. We know that the minimum number of node-
independent paths between two points In a network is equal to the
connectivity of the network, JIooking then at node-independent paths
between nodes in the network, we show how to construet such paths in a
network with d'p nodes once we kunow how to construet them in a network
with p nodes, Using such paths, we slso show that the connecetivity of

an oriented network with dk nores s d-1. In a simllar unoriented network,
there arc at least d node-independent paths between two nodes. In an
uroriented network with degree h, and un even number of nodes, there ure

at least two node independent paths between any two nedes,



11. DLy=passiiur o foulty node

Vhen oll nedes of o nedvwork gre operative, the conitrol of the
message flow is done locally at cach node, and is independent of vhau
happens in the rost of the network. We would like this to also apply
when only one rode is faulty, '

In some c¢ases g node magy becone inoperative, It is overloaded, or
scime link to the nooe is out of serviee, This prevents the genceral routing
gchene from working, Wwe must find wn alicrnate path that by-pasces the
faulty node, We show such a path, lirst when there are dk nedes in the
rnetwork, then in the general casce, In general, there is a by-poss if
d > 2, or if rp ic a multiple of dg.

We shiow a Ly-puss around an inoperative node, six-steps long, when
d > 2, or n=k de. This shows that when a node becomes inoperaiive, the
maximum number of ¢xtra steps necded for a message to rcach its destination
is four. This also requires only local knowledge of the nelwork as the
detour has a finite aumber of steps, A message taking the detour shoaid
carry information about the detour path for the length of the detouy,

A possible scolution to the detour preblem, although terribly waste-
ful, 15 tv send the message Lo any neighbor but the bad node, ang restart
the routing ol the message from there. This reqguires up to an extva k
gteps in o network with diameter k and does 3t dnsure that the bad node
is nut evncountered ggoin, or that the messapge reaches its destination un

w finite time.  We show here o wv-poss of a bad node that tokes only six



steps; or four pore han the path through the bad node,

Suppose thnt the node with the Tellowing adidress is Laoperatice:

k
and that there are ¢ nodes in the network with degree 2.d. The message

comes Trom:

beLXE"'Xk—] .

and the path, going thr>ugh the bad node; leads to:

XE"‘xkxk+1

The path in Table Z-1 links the above two addresses without going through
the bad node, One sheculd note thgagt this path does not follow the
orientation of the edges, at some point the poth requires an "ancestor'
transformation instead of the "d. scendant” transformation used up to now,
The various restrictions on the right insure that no intermediate
node has the same address as the inoperative node if d > 1, 1f the bad
node is the final destination of the message, then not much can be done.
This shows 1in general for all nciworks with dk nodes, the existance
of a 6-step detour or an B-step unoriented cyele, When messages in the
system encounter a bad node, they go inte a speeial "detour state”, and
go around the bad nodc hefore resuming normal routing., Wien the messapge

'

encounters another bad node while in "detour state”, we noed a control

h

stnrk to come back to the prev_.cus detour state once we are out of the

new onc., I1f there are too many bad nodes, the message may go into an



Tablu c-1: Addresses of nodes in a detour.

step nunber address Eg_ments
0 XoXpeee ¥ g
1 X Xy X2 a # X
2 XEXB...Xk_lam 2 # X
3 X, v e X .8 LI
L L SO ¢t X

5 bX. o K%y

6 x2x3...xh o4l



infinite loop.

When the nunboer of nodes in the network is not a power of the
out-deg ree, this detour mechanism does not always work, For example,
let n=10, d=2, and assume we *:** to transit a messapge from node L to
node 6 when node 9 is out cu . The schgm@ gives the nodes in
Table 2-2, After 6 steps, the scheme does not route the message 1o
its destination, In general the scheme works when the number of nodes
in the notwork is a multiple of dg, where 4 is the out-degrec of the
netwerk, or when d > 2.

In order to prave the existence ©f detours in these cases, we study
the graph consist.ng of the detours and the direct path betwecn two nodes
separated by one pode. We count the number of node independent paths in
this graph between the origin ond destination nodes. Before studying this

graph, we prove some lemmas related to the expression:
Y=x- ({(x+ry)medd) {2-1)
where x, y and ~ ~re ilntegers between (¢ and d-1,

Lemma 2-1:
When x is inereased by ohe in (-1}, Y is elther unchanged, or changes
by an amount of d. This change occurs at most once, for x's in the

Interval O < x < d,

Piroof ;

Tnis proof shows where the change happens and that it is the only one,



Table 2-2: Addresses ¢f nodes in a detour when n=10, d=2,

from aode 4 to node & when node § is inoperative,

i

} step addresses of the nodes comments

|

i G L origin

! 1 8,9 Descendants of Step 0; node 8 is not possible

} because of falilure.

! 2 8,9 Descendants of Step 1; node 8 is not possible

!

i because of fallure,

i 3 L, ¢ Ancestors of Step 2; node 9 is its awn elcestior,
‘ + 2,7 5, 4,9 Ancestors of Step 3.

i

] 5 4,5,8,9 Descendants of Step 4; nodes 2 and 7 have nodes
| L and 9 as descendants, nodes L and 9 have
! nodes 8 and 9 as descendants und node 8 is
! not possible.

!

|

! A o, 1,8,9 Descendants of Step 5; nodes 4 and 9 have nodes

€ ond G as descendants, noce % has nodes O

and 1 as descendants,

‘.Z‘A_



The replacenmcntof x by %, = sk An (=1} gives:

1

Y = %) - ((x1 + r'y) mod d) ,

-
1

x+1 - ((x+1 + r*y) mod d) (2-2)

If x41 + r*y # 0 mod d, then t1he value of ¥ in (2-2) is the seme as in
{2-1) as bolh terms of the right-hand-side have increased by one,

As % increases from O to d-1, therv can be only one time where the

2

value of Y changes when x increases, 1t is when;
¥, 4+ vy =0 mod o ,

When » ts less than {-r‘y rod d), then ¥ = -(r*y mod d), and otherwise,
Y =d - {r-y mod d}, Wwhen ry = 0 mod d, Y is vqual to zerv for all x

such that 0 = x < d. QBE. D,
Leirma 2-2:

In {(2-1); ¥ € 0 for preciscly d-(r-y mod 4) x's in the interval

C < x < 4,

Proof:

When x-O, Y is nonpesitive, and equal to -(r+y mod d;. As x
fncreases, Y cnanges only 7er x = d - (rvy mod d) Fur all x's smaller
than d - (r*y rog d), Y i5 nonpositive,  This tappens for d - [r-y mod dj

values of x. When x is largcr than this value, Y increpses by d and

becomes strictly positive, Q.E.D.



Leveia 2=3
If, in (Enl)J gcd(y,d) =g and d - g5, then the value of Y as o

function of r, is pericdic in r with period §.

Proof;

The replacement of r by r+0 in (2~1) does not change the value of Y.
x = [{x + rry+bey) mod d} = x - {(x + r'y) mod d), as
'y = O mod d. QED.

We can now study the dotour scheme in general, betweien a node of
]
address M and a node of address ¢7'M + d*h + J, with h and j between Q
and d-1. We first restate a result from a previous report on Lhe

connections between nodes,

Lemm=n 2-l:

The ancestors of a node with address M have s addresses:
(M + k'n)/d] mod n, with O 5 k < d .

Proof:

The detalled proof is in a previous report [Sch7h], and sYows that

onc descendant from cach of these addresses has M &8 an address.  QLE.D.

Table &~3 shows the possible addresses of the nodes i the detour
2
when n = d *z2 + dy + x. 1hese addresses are derived from the defintition
of a de Druijn network for the addresses of the descendants ol a node
and Lemma 2-4 for the addres:es of the ancestors of o node.  lor example

- Al
the addresses of the ancestory of the node with addresses d7 M o+ d'p + g



Table 2-3: Possible addresses for the nodes in a detour

. 2
when n =d "z + dy + x.

2
address modulo n = d *z + d*y + x

step comments
O M origin
1 dM + p ~escendahi. of Step 0; choose
cooffiiont n,
e
2 dM + d*p + q Descendants of Step 1l; choose
coefficient q.
3 &M+ po re(dzty) + L(q+rx)/d Ancestors »f Step 2; choose
coefficient r,
L Mir-z+s* (d*z+y) + L(ptrey+s-x+{(q+tr-x)/d] )/d] Arcestors of Step 3; choose
coefficient s,
5 deMrre (d- z+y )+ L{q+r-x)/d] +p-2+t Descendsnts of Step h; choose
coefficient t; here f {s:
f = ptr-y+s-x+|[gq+r-x)/d] mod n.
- 2
5 d M + dr (p-f+t) + g-gtu Descendants of Step 5; choose

]
= d™*M + d'h + ¢

coefficlient u, this is the
destinatior and g is:

g = q+ rx wmod d.

We have the following inequalities:

0= pyq,r,s,t,u,x,y <d, as (p,q,r,s,t,u) are

coefficients for the transformation of addresses hetween a node and its Jdescendants

o:r awacesiors, and (x,y) come from the division of n by powers of d,

P
>
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(in Step . of Table 1-3) are:
{(d°*M 4 d'p+q+r'n)d wodn,

or, using the value of n, n = dE-z + d'y + x, and dividing when

possible,
ld'M + p +{g + r*x)d + r-(dz + y }J mod n ,

and, taking the integers out of tre floor function we obtain the

expressivn of the gdaresses of Step 3 in Table 2-3.
d*'M+ p+ r(dz+y)+ L{gtrex)/d modn.

There a.e a few obvious constraints on the coefficients in the

cteps of Table £-3, The definitions of f and g in Steps 5 and 6 are:
f=p+ry+sx+ L{q+trx)/d mod d and
E= q + Ir'x mod d .

It the bad node has address d*M + h and the destination node has address

dE-M + d*h + i, the constraints are:

P £ h mod n, for Step 1 to avoid the faulty node (c-1)
p-f+t = h mod n, for Step 6 to be ithe destination (c-2)
g-g+u = 1 mod n, for Step 6 to be the destination (c-3)

re (dez+y) + L(qtr-x}/d]# O mod n, for Step 5 to avoid

the faulty node, (C—h)
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We now prove o fow lemuas related to the addresses in the doetour

before showing how many node-independent detlours tlere are,

Lempa 2-5:

When n = d, constraint (C-4) is equivalent to r#0 .

Proof:

We first sk-w that (C-4)} implies r#0, then that for n 2 d,
r#0 implies (C-4).
Lei r=0 in {c-4), This gives:

Qr (drz+y) + [(q+C x)/d] # O mod n, or, after simplifications
la/d] # mod n ,

But g is by definition less than d, and the resulting coutradiction

implies r#0.

In order to prove the converse part of the lemma, we show that

r#0 implics (C-4),

When r#0, re(drz+y) = rrL/d] # 0 mod n, So (C-4) can only te

false when rf0, if

r{drx+y) + {(q+tr'x)/dl =0 mod n (2-3)

= k*n, for some positive integer k.
We show that the exrression on the left-hand-side of (2-3) is always
less than n when n 2 d, hence that (2-3) canrnot be satisfied for rf0.

Let A{x,y,z) be the expressicn on the lelt-hond-side of (2-3}. By setting
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r=q=d-1, we obtain an upper bound on A(x,y,z):
(a-1) * (drz+y) + L(d=1) * (x+1)/d] = U(x,y,2z) 2 A(x,y,z) .
We now show that U(x;y,z) is less than n = de'z+d-y+x .

U(x,y,2z) = d vzbdy - (d'zéy) + x+1 + L=(x+1)/q)

1

n - (dzty) + 1 + [=(x+1)/dJ

[\}

and as 1 € n+l £ d, we have:

Wx,r,2) = n -(drz+y) o

<n, wher n = d ,

Hence, when n z d, A(x,y,z) < n, and r#0 implies (C-4}, Q.E.D.
Lemra 2-6:

In the general detour scheme, at most one value of the parameter

q yields addresses that do not satisfy (0—3).

Preof:

The destinavion address is:

2
dE*M + G*h + i =d*M+ d (p-f+t) + gq=g+tu mod n , (-4)

where
f=p+ry+s8x+ g+ rx)d mod d, and

g =q+ rxmedd,
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Coastraint (C=-3) requires:

g-g+a = 1 .

If 1=0, this implies that g-g < 0, The expression for q-g is:

g-g = q -((q + r*x) mod d} ,

This is the same expression as (2—1), witin a chahge of variables,

Lemma 2-2 shows then that gq-g € O for precisely d-(r'x mod d) values of o,
1f ged{x,d) # 1, we can always choose an r such that g-g S O for

21l values of g in C £ ¢ < d, as there is an rf0 such that r*x = ¢ nmod d.

If ged(x,d) =1, then r=0 is the only r for which there rre d values of

q such that g-g s O,

We have seen in Lemma 2-5 that r must be different from zero,
However, by cheoosing r to be the sclution of the congruence r*: = 1 mod d,
wkich is possible as ged{x,d} = 1, it is possitle to find d-1 values of
q such that g-g < O, There are then alwavs at least d-1 valu-s of g for
vhich condition {C-3) ls satisfied. Q.E.D,

We first show how to satisfy conditions (C-2) and (C-") when h and 1
are equal to zero, We then show how to extend those results to any values

of h and 1 less than d.

Lemma 2-7:

In the general detour scheme, there exlsta & one-to-one correspondence

between values of the parameters g and r that satisfy condition (C-3),
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Proof ;

Lemma 0-0 has shoun which valucs of r satisfy (C-3) for a
given value of q. We now show that for ecach value of g we can assign
a different value of r such that condition (C—3) ig satisfied,

We do the correspondence sequentially, keeping (C-3) satisfied.
Let ged(x,d) = t, Using Lemma 2-3 and the ﬂroper change ot variables,
we know that {r-x) wmod d and g-g in (2-4) are periodic in r with period
d/t. This implies that (r.x) mod d tekes d/t different valucs and cach
of these values is taken for t different values of r. We assigr values

of r to corresponding values of g in the feollowing way that satisfies

(c-3) -

(0) Set i to zero, Let R and @ be respectively the sets of all
possible values of r and g. Both these sets have cardinality d.

(1) Take, in R, the t values of r that maximize (r+x) mod d. They
correspond to the values of g that lL.ave the least number of
possible values of r so that [C-3) is satisfled, Associate
these valuas of r arbitrarily with the values of q between
1 aro .+t-1,

{2) Delete from R the values that have been axsigned. Set i to
i+1, If i+t = d then stop, =all values have been assigned,

{3) go to Step 1.

We now have to show that, usinhg this correspourndence, the expression
of q-g in (E-h) stays less than one, Using a change of veriable, the

proof of Lemma 2-2 shows that the first d-(r*x)mod d valves of q satisfy



this condition., {iIn Step 1, we associate with the t values of r that
give the same value for (rex) mod d, t walues of q betwecen d-((r+x) mnd d)} -1
and d-t-{r*x) mod d. This association satisfies {C=3) . Q.E.D.
Table 2-4 shows aon example of possible matches between the parameters
q and r that satisfies (C-3) when t=1.
This co.respondeng¢e has another propcrt} that is useful laticr,

wvhen finding a correspondence between parameters p and r of the detour,

Lemma 2-8:

Condition (C-3) gives a correspondence between the parameters ¢ and
r such that |(g+r-x)/d] = (i+r*x)/d], when i is the parameter of the

destination jin (C-3).

Proo{:

We can write the addresses of Step 5 in two different ways,
depending on the method used to obktain them, They are either a

descendant of Step L, or an ancestor of Step 5, This gives the equality:

d'M + p-f+t + [{gtr x)/dl = d*M+ h + [(i+r-x)/d] mod n .

As condition (C-2) implies that p-f*t = h, the ecquality becomes

L{qtr x)/d] = ((i+r+x)/d] Q.E.D.

Using this correspondence between Q and R, we show what happens
with condition (C-2). Once q or r is chosen this is very similar to

(0—3), and we can {ind o cone-tc-one correspondcnce batween the parameters



Table 2-4: Matching the parameters q and r when t=l,

The table shows the values of g-{qrr x) mod d,
when x=1, d=7. The shaded arcas indicate where there
is no possible match. The matches in the one-to=one

correspondence fall on a diagonal and encircled.

16, TR S VI o

o

-
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P and r that satisfy conditicns (C-2) and (C-3).

Let Alr) be the part in the expression of f that depends on g and r:
A{r) = (ry + L(gtr-x)/d]) mod 4 , (2-5)
Conditior (C-2) i5 satisfied 1f:
p-f =0, or, using A(r)
P-(p+s:x+ A(r))ymod d =0

We now show an important preoperty on A(r), when 1 < ¢/2, By symmetry,

a similar property is true when i 2 d/2,

Lemma 2-9;
¥hen i < d/2, for all h less than t, there are at least h differert

values of r70 such that A{r) mod t < h,

Proof:

Let Z(r) = A(r) mod t. We have, using the correspondence of Lemma 2-7

between q and 1 z-d Lem. ° 2-8;
Z(r) = ry + L(i+r'x)/d} mod t,

with 0 £ 5,y < d. We can rewrite this as;

z(r) = L(r*{d-y+x} + 1}/d] mod t.
The expression within the floor furction 1s less thin h for:

TyS T ST by, (2-6)
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where

H
fr

(J‘t'd-&'i)/{d'y+x) ; and

>
|

hed/(d yi+x) .

We want to show that for all h less than t, there are at least h

different integer r that satisfy (2~6). Let then

ged(de L,d y+x) = u ,

As t=gcd{d,x), we have u 2 t, Using u, we can express r.j differently,
It 1s:
ry = Jetea/(drytx) - 2:1/{d y+x) ,
=By - Ay, with b, = 2'1/(d y+x) ,
= Lst + (§t*d mod (d y+x))/(d y+x) - 4, -
= LSJJ + mu/(dry+x) - Ay, with the integer m such (2-7)

that O < m < (d'y+x)/u, and m
can also be egual to zero when u > 1,

There are then a: least u-1 different values of j for which there is
an integer r satisfyiag (2-6) with b=l, These values of j correspond to
those where m=0 in (C-7), and there is an integer satisiying (2-6) taen
as d > 2°'1,

When u=1l, the lemnn is verified, as t is also equal to one. Assume

now that u > 1." The integers satisfying [2-G) with m=0 in (2-7) are:

it i g



Ls*} = {J*ted/(dey+x}), for j = k' (dy+x)/(t-u), and k=1,...,u-1

If u £ d, this gives u-1 different integers, hence at least t~1 of them,
and the lemma is verified. If u > d, this gives d-1 different integers,
and the lemma is also verified, Q.E. D,

We are now ready to show the exis<tance of a one-~-to-one correspr.dence
between the parameters p and r of the iddresses of the nodes of the

detour that satisfy conditions (C-1) tu (C-4).

Lemma Z-10:

In the general detour scheme, there exists a one-to-one correspondence
between the values of the parameters p, q and r that satisiy conditions
(¢-1) to {C-4), when the parameters h and i of the destination address are

equal to zero.

Proof;

Lemme 2-7 has shown such a corrzspeilence between the parameters g
eand r for condition (C-3). <Coaditicn (C-4) restricts the values of r to
be nonzero, as shown in Lemma 2-5. We now focus on conditions (C-1) ana

(c-2).

Condition (C-2) is very similar to {C-3), it is satisfied if
p~ 1 <0, or using A'r) in the expression of f
p-{(p+s'x+A(r)) mdds O, (2-8)

Lemma 2-2 and a change of variables show that (2-8) is satisfied for
(d = {3*x + A{r)} mod d) values of p. By definitlon of t, (s*x + A(r))

mod d, 1s periodic ia s with period d/t. 1n order to be able to have all
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the values of p and r # O corresponding, we must show that for any
h less than d, ((s'x + A{r)}) woed d} is luss than h for r different
values of r # O, This is proven, for s=k*t, in Lemma 2-9. All
values of r # O have a correspoading p., Because of the freedom of
the choices of p, wo can choose the p corresponding to r=0 to be the
cne avoided hy condition (C-l). This shows the existence of a one-
to~one correspondence between the d-1 nonzero values of r and the
parameters p and q satisfying conditions (C-1) to (C-L). Q.E.D.
We now show that these results can be extended to values of the

parameters of h and 1 other than zero.

Lemma 2-11;
The results of Lemmas 2-6, 2-7, 2~9 and 2-10, are also valid if

the parameters h and i of the faulty node are different from zero,

Proof:

¥e prove this only for i # O, &s the proof for h is the same with
a change of variables. We also restrict our vroof to Lemma 2-7 as the
others follow from it,

Condition {C-3) is equivalent to:
1-d< g-7 s 1 .,

We know how to find n correspondence between vulues of q and r,
that 1is one to onc and satisfles (C-3) when i=0, or, by symumetry when
1=d-1, The reason why we find a correspondcnce in this case, 1s because
for pny m le.s than d, there are at least m possible porameters g that

have at lecndt d-m possible matches in r, We show that this prouperiy is
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kept when 1 increases from O to [d/Z), or by symmetry, decreases from
d-1 to ¢/, Let t = ged{x,d). Let QJ be the nurber of parameters
q that huve at least d-j*t possible matches in r that satisfy (C-3)
for a given 1, Lemma 2-7 uses the fact that for 1=0, we have

QJ = (j+1)*t. Let ":=" indicate an update. When i increases Irum

zero to t, we have the following changes,
QJ 1= QJ +t, for j = 1,,,.,d/t - 2,

as t parameters r that coulu only be matched with d/t g's can now be
matched only with the other d-d/t g's. Similarly, when i increases to

i+t, the changes are, when i+t < [d/Z]

Q =Q,+t, for j =1+ §/t,.,.,d/t - 2 - 1/t ,

37T
As all these changes only increase the QJ'S, we keep the property tnat
allowed for the cne-to-one correspondence, Q.E.D.

Teble 2-5 shows an example of possible matches betwe¢en the para-
meters q and r that satisfy (C~3)}, when t=1, for various values of the
parameter i.

We ncv show an example of a correspondence betweon the various
parameters that satisfy (C-1) to (C-4%) when h and i1 are nonzero.
Example:

Takc d=12, X:g, }’:2, h:51 1:3

This gives t=3, j=k. We compute the values of rrx mod d, for O s r < d,
then match the parameters g to each valuc of r, We tiien compute r*y mod d,

l{r*x+1)/d] and'A(r). We tncn show what valucs of p are impossible to



Table 2-5: Corresponding values of g and r when t=1,

We show the values of q - {grr-x)mod d, when x=1, d=] aud indicate the areas of the

table for which therz is no possible match,
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The shad:d areas are those where there 1s no possible match. The circled squares are
the correspcnding values., The numbers in the table sre the same for all 1, but the

¢ireles and shaded areas depend on 1.



-2

associate Lo a given value of r, and choose the matches among the
romaining ones, aveidirg p=5,  For ecach chesen value of p, we give a
possible valuc for s, All this is summarized in Table 2-06.

In order to find how many node-independent detours there are, we

first check what nodes may be common tu two different steps of the detour.

Lemma 2-1¢2;
fn > de, there is no common node between Steps ), 3 and 5 of the

detour.

Prooi:

——r—

We show that the address of the nodes are different in each step,.

First we look for nodss common to Steps 1 and 3. This is possibhle when

d*°M+p=dM+p + ((rn+q)/dl mod n,
This gives, sfter simplifications:
p-p' = L(r'n+q)/d] mod n , (2-9)

As, in the detour (C-L) implies r#0, (2-9) is impossible to satisfy

for n > d‘.

There can be some noles in common between Steps 1 and 5 if
d'M + p=d'M+ h+ ((ron+q)/d] modn ,

o
As r#0, this is alvo impessible, for n > d,

There can be some nodes in comron beilween Steps 3 and 5 if
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Table 2-f: Setting the paramcters in order

to by-pass a faulty node. d=l12, x=9, y=2, h=5, i=3,

i r 0 1 3 4 5 6 7 & 9 10 11

g.-r mod 12 Q 9 3 0 9 6 3 0 9 6 3

i q 1 3 6 9 L 1 7 10 5 2 8

2+r mod 12 0 2 6 8 10 0 2 h 6 8 10

L(9.r+3)/12] Q 1 2 3 Y it 5 6 7 &

A(r) 0 3 8 11 2 4 7 1c 1 3 6

impnssible / 11 / / /s 11 11 11 11 11 11
p's 10 10 10 10

p 5 T g 10 11 0 1 2 3 L 6

s 0 (o] 1 1 0 o] 1 0 c 0
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d*M + p + L{r'ntq)/d} = d*M + h + {{r'*n+q')/d] mod n,

-

. 2
As (C—l) requires pgh, this is impossible for n > &, Q.Lk.D.

We now study what bappens when two steps have nodes in common.

We start with one node in common between Steps 1 and 2.

Lemma 2-13:

When there is a node in common between Steps 1 and 2, there can be
no other steps in the detour with nodes in common when n is larger

than du.

Proof:

The relation satisfied by the address of a node common to Steps 1

and 2 is:

&M+ p = d® M + d'p' + q' med n, (2-10)

Lemma 2~11 has shown that there is no common node between Steps 1, 3
and 5 in the detour when n > d2. If there were & node common to Steps 1

and 4, its address would satisfy the relation:

&M+ p' =M+ L{(h+s01+ [(L+ rn)d)d mod n,
Muitiplying this by d gives:

a®om + dp’ = d&*M + h + L(i+r'n)/d] - £ mod n,

where f 1s less thon d, This is impossible to satisfy along with (2-10)

wvhen n > dh, os 1#0.



Simtlarly, as r#J, Lhere is no coumon node between Step 2 and

Steps 3 and %, or between Step 4 aed Step 3 ond L, and bectwecen
Steps 2 and 4, This finishes the proof as there is ho other common
node hetween two steps possible. Q.E.D.

We should note that the common node between Steps 1 u ' 2 may be

the faulty node responsitis for the detour. We now show a similar

result when there ig a node in common between Steps 1 and 4.

Lemma 2-1l:
When there is a node in commen hetween Steps 1 and L, fthere can be

no other node in common between twe steps of the detour when n > dtl + d3.

Proof:

If there is a node in common tc steps 1 and 4, ics address satisfies

the relgation:
dM+p =M+ L{h+ 5°n+ [+ r»n')fd_j mod n,
or multiplying both sides by d,
a4 d'p = d'M+ Ll + |[{i*rn)/d] - T wod n, (2-11,

where £ < d.

Lemma 2-11 shows that there 18 no node in common hetween any two of
the Steps 1, 3 or 5. Lemma 2-13 shows that there is no node in common
between Steps 1 and 2, If there is & node in common between Steps 2 and 3,

some set of parameters satlsfles the following relation:
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d2-M + dp' +q" =d'M+h+ [(L+r n)/d - £' mod m,

where f' < d, If n > d4, this can only be verified, along with (2-11),
if they have the seme set of parameters, This alsc implies that these
nodes are the same. But we have seen that there is no common node
between Steps 1 and 2, the relation cannot be satisfied., There is no
common nede betwcen Steps 2 and 3,

Similarly, there is no common node between Steps 2 and 5 between
Steps 3 and 4, By changing the orientation of the network, Step i is
charnge~ into Step 6—1, but the topelogy of the network is maintained,
Lemma 2-13 chows then that there is no common node between Steps 4 and 5,
as they correspond to Steps 1 and 2 in the other orientation,

If there is a node in common between Steps 2 and 4, there are para-

meters that soatisfy:
a%om + d'p' +q' =M+ L{h+ 5"*n+ L(1+:;"- ny/dl )/d] mod n, (2-12)
Subtracting (2-12) from (2-11) gives:
d*M + h + [(i+r'n)/d] - f = d (p-p') - q' +
M+ L(h + s"'n+ [(L45"-n)/d] )/d] mod n
This gives, after nultiplication by d:

2

M 4 9 (1-1) + 1-g = &% (pp') - dra’

d*M + h + L(1+4r'*n)/d] - g’ mod r, (2-13)

where g and g'- are less than d.
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Subtracting (2-11) from (2-13) gives:
2 L) 1 A 1]
d-(h-f-p) + t-g = d" " (p-p') - d*q' + L{i++"*n)/d] - g" -
L{i+rn)/df mod n.

This is impossible to satisf., if r#r" and n > dh + d3, as the difference
of the two floor functions is larger than the rest of the elements,
This finishes the proof, showing that there i: nc common node to two

steps, but the first one, Q.E.D,

This takcs care of all the cases where Step 1 has some node in
common with some other Step in the detour, Py reciprocity, it also
takes care of Step 5. We assume now that Steps 1 and 5 have no node in

common with any other step,

Lemma 2-15:
When Step 1 has no common node with any other step, there can be
at most one common node between Step 2 snd any other step, elther between

1
Steps 2 and 3 or between Steps 2 and L, when n is Jlarger than d’t o+ d3 .

Proof:

We consider what happens i'len we reverse the orlentation of the
network, The primed numbers denote step numbers when the orientation
is reversed. Assume that there is a common node between Steps 2 and 3,
or 3" and ',

There cannot be any new node in common between Steps 2 and 5, as this

corresponds to 1' and h', and this would contradict Lemma Z2-14,
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Similarly, a common node is impossible between Steps L and :

(1* and 2'), because of Lemma 2-17,

A node in common between Steps 3 and k is the same as the node
in common between Steps 2 and 3, as shown in Lemma 2-1i4. Assume now
that there are both a node in common between Steps 2 and ? and 2 and 4.

This implies. the existence of sets of param.eters satisfying the eguations:
d2'M + d'p+q=dM+p" + Lr-'n/d mod n, {2—1&)
for a common node between Steps 2 and 3 and

da'm +dp' +q =M+ L(pl + s *n + L(rl-n)/d_l )/d/ mod n, (2-15)

1l

for a common node between Steps 2 and 4,

Subtracting (2-14) from (2-15) give.:
d(p'-p) + q'-q + &M +p' + [r'wad =
M+ L(p, + sy'n + L(r;*n)/d) )/4] med nm,

We multiply th's by d, and get;:

% (prep') + d(qi-grp') + dM - g" =

aM + py + Lrl'n/dj - £, uodn. (2-16)

Subtracting (2- 14} from (2- 16} gives:

a2 (p"=p') + o+ (q"-q+p'-p) - &'~ q =

pl-p + Lrl'n/d.j - 1'1 - Lr''n/d} mod n.
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This is impossible 1o satisfy, if r' # r.oand n > dk + da, as the
difference of the floor fuaction is larger than the rest of the elenents.,
This finishes the proef, showing that there can only be one common

node under those conditions, between Step 2 and either Step 3 or 4, Q. E.D.

If we assume that there is no common node between Steps 1 and 2 and
the rest of the detour, we can, by reciprocity, assume the same of Steps
S and b, which takes care of all possible cases.

In summary, there can be only one node commen to twe different

h

steps when n > d  + da. We can how count the number of ~=-independent

detours,

ZXheorem 2-1:

In a de Druijn network with out-degree d > 2, there are at least
d-2? node-independent detours between a node with address M and a node
with address dE-M + d-h + i, when the ncde with address d*M + h is in-
operative, the addresses are taken modulo n -the number of nodes in the

I 3

petwork-, O £ h, L < d and there are at least d 4 d~ nodes in the network.

Proof:
We court how many rnodes must fall in the detour graph before all
detours can be rut, Frank and Frisch [Fra7l], among others have shown
that this is the number of node-independent paths between the origin and
destinatiorn of such a grarh.
‘Lemmas 2-13 to 2-1% show that when f nodes fail, at most f+2 paths

may be cut, as nt most two nodes are comnmon to two different steps. In

order to cut all detours, a minimum of 'd-3 nodes must then fail, as
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Lemma 2-9 shows the existence of d-1 independent sets of paramctors

for the addresses of the deotour. Q.E.D.

When n is a multiple of d2J some of the restrictions for the

detours disappear.

Theorem &-2:

There exist d-1 node-~independent six-step detours betwern a node
of address M and a node of address d2'M+d'h+1, with h and i between QO
and d-1, wnen the node d*M + h is inoperative, and when n = k-dg.

W¢ use the same notations as for the general detour. The steps are
now as shown in Table 2-7.

If there is a total of S bad nodes in the detorrs, including tke
original bad node, there are at least d-S5 possible parameters possible
for each step, when n is large encugh so that nodes in Steps 1, 3, and 5
are dlstinct, except the original bad node. At least d-1 ncdes need
then to become 1lnoperative before there is no detcur left., There are

then d=-1 node-irdependent detours, Q.E.D,

We nov show an example of detours around a faulty node, in the same
case as Table 2-5, The parameters of the system are. n=24035, d=12,
h=5, 1=3. This gives the set of detours shown in Table 2-8, We use
the parameters chosen in Table 2-5, We should nate that there only are
10 jindependent detours, as the addresses of the ncde in Step 1 with p=2

is the same as the node in Step 2 with p=1.
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Table 2=7: Possible addresses for the nodes in a detour
when n = k*d2 .
atep address comments
0 M origin
1 d'M + p p#h
2 dg'M + 40+ q choose g
3 d*M+p + rdz
b M4 rz+ s dz choose s
5 &M+ h+rdz r#0
6 a% M + dh o+ 1 destination
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Table 7-3: A set of detours when n = 24035, d = 12,

M= 107, d2'M + d*h + 1 = 2227 mod n.

1] Step O 1 2 3 k 5 6
0 2184 2174 14201 1183 1h206
1 2185 2192 16205 1350 16209
2 2186 2207 18209 3520 18212

2187 221k 20213 16TH 20215

(W0}

L 2188 2223 22217 1841 22213
5 182 2189 2236
6 2190 2241 185 2008 186
T 2191 2248  h1gy 39 h1g2
8 2162 2257 6198 2519 6195
9 2163 2275 8202 683 8198
10 2194 2290 10205 2852 10200
11 2195 2297 12209 3020 12203

The entry for p=5 is not a detour, but the regular path between

the nodes in Steps O and 6,
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The method given here requires the edges of the neitwork to be
unoriented in ordcr to by-pass a foulty node. Previous knowledge of
the bad nodes within the detour is neceded in order to avoid them, as
shown in Theorems 2-1 and 2-2, However a limited knowledge of the
state of the nodes in the ne'work 1s needed; as all the nodes of a
detour are at most & steps apart, This stil& insures the locality of
the control,

If unoriented routing is used in general, ancther kind of detcur
is necessary as a message must by-pas$ in a small number of s=tepr the
node with address d*} + k on its way from M to M + |(k+j'n)/d] med n,

The following theorems show the existence and the number of such

detours,

Theorem 2-3:

There exlect at least d--Z node-independent paths of six steps or
less between a node of address M and a node of address M + L(k+j*n)/d],
with k and j between O and d-1, and when there are at least d2 nodes in

the network.

Proof:

The two schemes below, used together, fulfill the conditions,

- The first screme gives d-ged(d,n)-1 nude-independent paths, the
second one gives the remaintng gecd(d,n)-1. The first sicheme 1s two or
four zteps long, These steps are shown in Table 2-9.

Flgura 2- ! shows an example of such a set cof paths., The destination

address is of the form:



Table 2-9;:

step
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Possible addresses for the nodes ia Theorem 2-3.

address modulo n comments
M origin
d*M + p
M+ L(p+q'n)/dl may be the destination
N+ p-f+r f=(p+qmn} modd
¥ + L{p-f+r + s'n)/4d destination

Tahle 2-10: Possible addresses in the second scheme

of Theorem -3,

step address module n . comments

0 M origin

i u'M+ p g possibilities

2 M+ q'n/g cotld be M again

3 L(M + q'n/g + r'n)/d] ancestor to M + q'n/p and
M+ q'n/g+h, where h=t1,
depending onh e,

i M+ qg'n/g ¢+ h

5 d'M + t g unused descendants of

the destination,
6 M+ Ltk n)/q destination
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M+ L(j+k n)/d mod n,

this gives a restriction on the possible values for p-f+r, For n

large cnough, p~f+r must be between e and e+d-1, where e is equal to
J = (j+k*n mod d) .
I1f g is the ged{n,d), we can write, using lemma 2-3:

e = -d + a'g , with a between 2 and (2-d/g)-1 ,

depending on the value of j.

Lemma 2-2 shows that the first g values of p-f, for all p's arc less
th;n one, 1If e is then larger than g there are at most d-g independent
paths, as thuse that start with a p less than g cannot go to an address
larger than d'M + d-1.

The comment in Table 2-Q sor Step 2 says that this address may be the
destination. This happens when p is between e and e+d-1 and g=k. Steps
3 and 4 then become useless,

Another restriction appears when (in Fij, 2-1) M, is beiween d'M + e
and d*M + d-1 (one of the intermediate nodes on the "direct” Z-stips path,.
Fewer independent paths exist. We show later that for n-large enough, at
most one node in Y*d nodes with consecutive addresses can be like that,
This restricts the minimum number of node-independent paths to d-g-1.

This finishes the discussion of the first scheme. The second one
glves‘g-l new independent poths and 1s four or six steps long., Figure -0

shows such a detour in the sime case as Figure Z-1, The steps are shown

in Table =10, .
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Figurc 2-.: Possible cuonnectioas for the paths of Theorcm 2-3,

M+ L(2+h-n}/6) = M,

destination: M -+ L %+k-n)/¢]

‘ \

M+ n/2

d'M + e {e=4 here) .

The edges used by the pains are dark Lines.
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There are three cases where those paths are not node- independent,
when the poths of the first detour are included.

The first case of dependence is when a node of address M+h+q'n/g
is between a-li+e and d-M+e+d-1., There Is at most one such node, for n
large enough, as these nodes are n/g apart.

The second case of dependence is when ;n ancestor to a node with
address M+h+q'n/g s the same as an gncestor to one of the nodes of
addresses between d-M+e and d*Mtetd-1 already used in some path, This
is included in the first czse.

The last case of dependence is when one of those ancestors to a
node with address M+h+q'n/g is the same as one of the nodes of addresses
between d*M + e and d-M + e + d-1 already used in some path, Such a
node canh always be aveided as there are d-g possible siuch ncdes per path,

and thelr addresses are of the order of n/d apart, Q.E.D,

Theorem 2-14:
There exist at least d node-independent paths of twn steps or less
bBetween two no s with the same descendants 1n a network where n 1s a

nultiple of d.

Proof:

The two nodes have d descend=uts in common, this gives d rode-inde-

pendent paths, Q.E.D.

In summary, we have shown the existence of at least d-1 node-

ol
independent detours around a faulty node, when n # k-d“, and 4 node-

independent detours when n = k'da. Similarly we have shown the existence



~40-
Figure 3-2: Poséfﬁ{e connections for the theorem of 2-3,

when the two types of paths are used,

d&, E=2 -

L(ma n/g + ren)/d) = M

{destinatiom™
My

N N
. ,/o\{',/oﬂ V%

Mn/2 \ . LA M/2 + 1
W

The edges used by the paths are dark lines.

{origin)

aM
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of d-1 or d node-independent paths between two nodes with common

descendants, depending on the divisibllity of n by de.
We have shown a six-step by-pass mechanism that allows a message

to avoid an lnoperative node. This Jdoes not change the locality of

the controls of the mnetwork, but requires a stack, when the petwork

is used in an oriented menner, in order to h;ndle possible bad nodes

encountered during the detcour. This stack could be incorporated in

the contreol part of the message. If too many nodes are inoperative,

or i1f the degree of the network is four, the detour mechanism might

fail, This leads us to study the conditions under whic’i communications

are possible between tw§ nodes in the networi, and the number of ncdes that

can become inoperative without impairing the cimmunications within the

rest of the svstem,



-

III. Vulnerrbility of a de Bruijn nctwork

" 1is sectlon studies in which ways portions of the system can
become inoperative withou* impairing the rest of the system. We
discuss the sens.tivity of the network tc the destruction of & given
number of nodes or :dges. By counting the number of distinct neighbors
& node has, we show that the number of nodes with less than 2-d distinct
nelghbors, where d is the out-degree of the network, is independent of
the size of the network. We then study cycles and show the existence
of oriented cycles of various lengths, The existence of such cycles 1is
useful in studying how to isolate a group of nodeé from the rest of the
network, Finally a study of node-independent paths shows that there
are at leest d-1 node independent paths in an oriented de Bruijn network
with dk nodes and out-degree d.

The connectivity of a network 1s the smallest number of nodes that

must be removed from the network, for the network to be disconnected.
Similarly, the cohesion of a network is the smellest number of edges
needed (0 dicconnect the network, As we have allowed self-loops and
parallel edges, the degree of a node does not indizate the number of

independent neighbors a node has. The node and edge vulnerability of a

node are the minimum number of nodes and edges, respectively, that must
be removed in order to disconnect that node from the rest of the network,

The node and edge vulnerability of a network are the minimum, respcctively,

of the node pnd edge vulnerability of individual nodes.

We look for bounds on the connectivity end conesion of de Bruijn



networks of degree Z+d. The detour mechanisms outlined in the

previous sections give g lower bound on the «onnectivity of the

network, This lower bound is d-1 if n is not divisible by dE, and

d if n is divisible by de. The node and edpge vulnerability in such

netwourks give an upper bound on the cohesion and vulmnerability of

d-1 or 2¢d-2 in oriented or unoriented networks, respectively.
Denoting the connectivity of a network as Cn, and the cohsion

as Ch, Boesch and Thomas [Boe?O} derived the following relation in an

unoriented network with n nodes and e edges:
"Cn= Ch £ 2'e/n .

Thus, in order to find a lower bound for both the connec¢tivity and the

eochesion, we only have to find one for the connesctivity.

Lemma 3-1:
The connectivity cf an unorierced de Bruljn networkx is at least
k+]1 when there are at least Kk independent detours oetween two nodes

separated by z bad node,

Proof;

The connectivity of the network is equal to the least humbe ' of
nodes needed to disconnect the network,

The treorems of the previous section show how many node-independent
detours exist between two nodes separated by one bad node. When there
are k such detours at each node, we use a proof by induction to show

that the connectivity is ot least k+l,
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Supposc k=0. As wc are in a network, the connectivity is onec,
Now supposc that there are kK 2 1 detours, the connectivity is ot
least k, 1In order to cut o node from ancther, at least k nodes must
fail, If only k nodes fall, there still ex!sts a path connecting any
two nodes, as there still is one detour among the k node-independent
detours, that does not fail around any of tge bad nodes, as there only
are k-1 other bad nodes. The connectivity of the network is at least

k+l. Q.E.D.

Theorem 3-1:

Let 2*d be the cegree of an unoriented de¢ Bruijn network, The

connectivity of this network is at least:

d, when the number of nodes in the network is a

multiple of d2 3
d-1, otherwise.

Proof:

The proof follows immediately from Theorems Z2-1 and 2-2 and Lemma

3-1. Q.E.D.

We now look fo, an upper bound onn the connectivity and cohesion of
the network. The node and edge vulnerability is such a bound, because if
all the independent neighbors to a node faill, there is not path left
between that node and the rest of the network,

An immediate upper bound for the nodec and edge vulnerability is

the degree of the network, as all nodes have the same degree. In some
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cases, a node may have a lower node or edge vulnerability. We look

at those caszes and count the nunber of loepg there are in some networhs.

Theorem 3-2;

In a networi where d is the out-degree, n the number of nodes and
g the ged{n,d-1), the number of self-looups is equal to d+g-1, when n is

larger thar d-1.

Proef:

In general a node with address M has as descendants the nodes with

addresses:
d*M + 3 mod n

)

where j is between O and d-1, and n is the number of nodes ip the network.

The p 1resses of the nodes that have themselves as descendants satisfy:
M =d'M+ J mod n,
We can rewrite this as:
M = (k*n - j)/(d-1, , where O s k < d, and k is an

+

integer that corresponds to the "mod n” in the

above equation.

Let z = gcd(n,d-2). The possible values of M are:

L L(k*n)/{a¢-1}} , with k=0,...,d-2 ,
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and

M2 = k*n/(d~1) - 1, when this is a positive integer.

This also ig:

M2 =gq'n/g - 1, with q=1,...,g"

There are d-1 inaependent M.'s, and g 1lndependent M A repetition

2'5.

might mccur between an Ml and an M2 if two Ml's are only one apart, as

1

@ll VM. 's are one away from a given N This gives for the repetitions:

2 1’
(k*n = 3}/ (d=-1) = (k'n + n - d+1)/(d-1) .

or

=]
#

d-1-j

This is possible only if n < d. This gives us, for n 2 d, a total of

d+g-l independent nodes with a self-loop. Q.E.D.

The nodes #i1th self-loops, in an oriented network, have & node and
edge vuluerasbility of d-1, If n is smaller itiian d, the node and edge
vulneragbility may ge larger,

We now look at node znd edge vulnerability in an unoriented network.
The cases wlere the edge or node vulnerability are less than the degree
occur when a node has a self-loop, or when two edges are parallel, Those
two examples are shown in Figure 3-1. The numbering of the nodes is taken

from a de Bruljn graph with 8 nodes and degree U,
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Q00

00l

self-loop

Jeo] OIC

parallel edges

Fig. '-1: Cases where edge or node vulnerability are less

[

then the degree 21 a node.



We first show th:t in large cnough a network, there is ne node

with both a sclf-loop and parallel cdges.

Lenma 3-2:
In an unoriented network with more than d2 nodes, a node cannot

have both a self-loop and parallel edges.

Proof;

If j,k,p are integers between O and d-1 included, the address of M
of a node with both a self~-loop and parallel edges satisfies the

relations modulo n:

M=d'M+J=d2'M+d'j+3 ,
tor the self-loop, and

M= d2-m + d*k + p, with k), for the parallel edges.
This gives, modulo n:

d2'2+d'j+J =d2'M+d'k+p,
and;

d*(j-k} = p-j, which is impossible, with j#k, when

2

n&d ., Q.E.D.

We alreedy have found the occurrences of self-loops, When a node

has a sclf-loop in an unorientec network, its edge and node vulnerability
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become 2:d-z if the degree of the netwerk is 2.d. In case of parallel
edges, the edge vulnerability is unchanged, but the node vulnerability

goes to 2-d-1,

Theorem 3-3:

In an unoriented de Bruljn network%, where n is the number of rodes
and 2-d the degree of the network, if n is larger than de, and
E = gcd(n,de-l), the number of nodes with parallel edges is equal to

d2+g-1.

Proof:
Parallel edges happen when z node has one of its "descendants”

among 1ts ancestors, for n larger than d, This occurs for:

M= d2'M +dj+ i mod n, where i and J are d-ary diglts.

If g = gcd(n,danl), the solutions to thls congruence are, includiny:

some repetitions:

M, = L(k'n)/(de-l)_] , with k = 5,..,,d%-2 ,
and

M2 =q'n/g-1, with q=1,.,.,g .

As in Theorem 3~2 we cal count the repetitions, and similarly, when n
2 2 -
is larger than d°, the congruence has d +g-1 1independent soclutions., Q,E.D,
Some - f those "parnllel edges’ are actually self-loops uscd twice,
the actual number of nodes with parallel edges that are not self-locps

is then:
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d2-d+gcd(n,d2~1)-gcd{n,d—l) .

We can now find the node and edge vulnerability of an unariented

de Bruijn network with more than d2 nodes.

Theorem 3-4:
The ncode and edge vulnerability of an unoriented de Bruijn network

with wore than d2 nodes is Z-d-2, where 2°d is the degree of *the network.

Prooi:

When the number of nodes is larger than d2, there is not overlap
bepween self-loops and parallel edges: all self-loops are considered
as parallel edges, and there is at most one self-loop per node.

The node and edge vulnerability of the network is then that of

the nodes with self-loops, 2+d-2 . Q.E.D.

We study now the node and edge vulnerability of an orlented network,
then count the number of cycles of various lengths that exlst in those

networks.

Theoren 3-5:

Let d be the out-degree of an oriented de Bruijn network, The node
end edge vulnerability of such a network is ¢-1, when the number of nodes

in the network is larger taan d,

Proof:

When the number of nodes in the network 1s larger than d, nho lwo
descendants of a gilven node can be the same, The only case where the

number of distinct neighbors of o nede iy less than d 18 when one
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of those descendants is the node itself, The edge and node vulnera-
bility of such a node 1s d-1. This is nlso the node and cdge

vulnerzhility of the network. Q.E.D.

Cycles in the graph show how strongly nodcs are connected, and help
in defiring measures of connectivity that include a group of nodes

[BOETIJ. We show the existence and count various cycles in the network,

Theorem 31§;

In an oriented de Brulin network with n nodes and cut-degree d,
the number of cycles of length L and no less, with L = Llogcqj, is
equal to:

(2 ma(a) t(wa))L ,

q
a|L
where mu(q) is the Mcbius function:

1 if g=1,

(-1)T if q 1s the product of r distinct

mu(q) = primes,

O 1f q contains any repeated prime
factors.

and f{q) as:
2(q) = d% + ged(n,d%1)-1 ,

Proof:

Berlekamp [BerC8,pp. 81-85], has proven this theorem in h!s book,

for general fuhctions f(q). Q.E.D.
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We now have upper and lower bounds for cohesion and connectivity

of an unoricnted de Bruijn nctvourk wilth o nedes and degrec z2d:

If n 1s not divisible by dE:

d-1 s Cn s Ch g 2=-2 .,
o
and, when n is divisible by d~ :
d<C scChs 2:d=2 ,
For an oriented network, we have:
lsCn<.h=<d-1l,

Another way to look a* the comnectivity of a graph is to look at
the number of nouo-independent paths “:etween any two nodes in the graph
[¥ra71, Berf2].

Two paths between two nodes are called '"node-independent” if they
have only the origin and destination nodes in common. Two paths are
called edge-independent if they have 1o edge in common. We already
krow that the number of node-indenendent paths in a network is equal te
the connectivity of that network.

This section studies the construction of node-independent paths
in networks with d'n nodes, from the construction of corresponding paths
in networks with n nodes, It shows in particular that there are at
least d-1 node-independent paths between any tv0o nodes in an oriented
network with dk nodes, It also shows that for unoriented networks with
dezree 4 and 2'm nodes, there are at least 2 node-independent paths

betwecn ahy two nodes,
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In the rest of this section, we call a de Bruijn network with

degree 2*d and n nodes as « (d,n\; nciwork, As usual, the definition

for the integer k is:

P ensd ,

an earlier report [Sch74] snows that k is ag upper bound for the
digmeter of the network., A path is monotone if it is possible to go
from ore end of the‘path to the other end, following the orientation
of the edges. A path is singular if it consists of at most two monotone
siabpaths.

We first extend a result that is already koown for (d,dk) networks
[60167]: there is an isomor;hism between the oriented edges of a
{¢,p) network znd the nodes of a (d,d-p) network, We then prove a theorem
on node-independent singular path3s, constructing such paths in a (d, d°p)
network from corresponding paths :m a {d,p) network. Another theorem
shows that i 5 node-independent monotone paths exist between any two
nodes of a (d,p) network, the same is true of a (d,d*p) network, This
theorem applied to (d,dk\ networks shows the existance of at least d-1
node- indeprendent paths between any two nodes in such networks. This also
gives a good lower bound for the conhectivity of such networks,

We now show how the edges of a (d,p) network ccrrespond to the nodes
of a (d,d"p) network. Figure 3-2 shows possible addrezses for the cdges

of a (3,7) network.
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Addresses of edges 1n a (3,7) network.

Fig. 3-2:



Llemma 3- 1:

There exlsts an isomorphism between the edges of a (d,p}

network and the nodes of a (d,d*p) network.

Proof:

To each edge in the (d,p) network, we associate a node of the
(d,d*p) network in the following manner:

If the address of the origin of the edge is M, and that of the
destlnation is d*M + j mod p, the node in the (d,d-p) network

associated to that edge of the (d,p) network has an address of:
Cd'M 4+ 3 mod dep

%e define the descendants of an edge as the edges leaving from
the destination node of that edge, If a node assoclated with a given

edge has address M, its descendint nodes have addresses:

d*M + 3 wod d'p, with j between 0 and d-1 ,
These sddres;e+ are the same as those of the nodes assoclated with the
descendant edges of the ~dge associated wit* +‘he node of address M,

The correspondence between the nodes and edges keeps the connection
patterns, To each edge in the {d,p) network, we can associate z node in
the (d,d'p) network, and to each node in the (d,d'p) network, we cun
associste an edge in the {d,p) network: If there is a uode without an

associated edge, the same is true of all its descendant nodes, and we

know that any node hes eventually all the nodes in the network as
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descendants, If there is then onc node without gn assoclated edge,
there is no node with an associated edge, which is in contradiction
with the possibility of associating a node with any edge. In con-
¢lusion, as there is the same number of edges and nodes, there is an
isomorphism between the edges of a {d,p) network and the nodes of a

(d,d°p) metwork, Q.E.D.

¥n particular an oriented path along the edges of a (d,p) network
corresponds to an oriented path between nodes of a (d,d'p) network,

We can then extend to all (d,d*p) networks the known result [Gol67)
that all (d,dk) networks have »n Hamiltonian circuit: 1t corresponds to
the Fulerian circuit in the {d,p) network,

¥e now show how to go from a singular path in a (d,p) netwosk

a stngular path in a (d,d"p) network.

Transformation 3-1:

-If the singular path 18 a monotone path in the (d,p) network, the
transiormation is immediate, the path, instead of going from edge to
edge in the (d,p) network, goes from node to node ir the {(d,d:p) network,
and t ose nodes are associated to the edges in the same way as in
Theorem 3-3,

=If there is a change of orientation, the two monotone subpaths
cau be transformed as above. The resulting path is not complete, but the
open ends, not the origin ond destlnation, come from the same ancestor or

go to the same descendant, as the corresponding edges join in one node in

-
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the (d,p) network.  Adding one node to the paths bridges the gap,

and keeps the sirgularity of the resultirg path, as shown in Fig, -2

.

Definition: A forward singular path is 2 singular path which in an

oriented network takes an sdge cut of at least one of

its extremities.

For example a monotone path is a forward singular path, Figure 3.4
shows a path that is not forward singular.

We are now ready to prove the following theorem:

Theorem 3-7:

| If there exist s node-~independent forward singular paths between
any two nodes in a (d,p; network, with 5 < d, then there are s node-
independent forward singular paths between any two nodes in a (d,d-p)
netwvork. These paths are the transformed by transformation 3-1 of the
forward singular paths between the destination nodes of the edges

corresponding to the extremities of the paths in the (d,d'p) network,

Proof:;

This proof shows that such paths keep their independence and forward-
ness in transformation 3-1,

The node-independence of the paths in the (d,p) network implies
the edge-independeiice of these paths, The transformed paths in the
(d,d*p) network ccrrespond to edge paths with an extra sdge at the summit
of the forwarli singuler paths. As the degree of the net 1s 2-d, and there

is at most one seli-loop per ncde, it 1s always possible to choose that



Fig. 3—3;

da+l

mod ¢-p
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Transforming singula~ paths in Transformation L4-1,

4

d:e+¢ mod d*p.

dbp ¢ d-f+p mod d'p
mod d-p

in the (d,p) network

glves

db + B de + ¢

df + ¢
da + &

. in the (d, d:p) network,



Fig. 3-4: A path that is not forward singular.
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Fig. 3-5° How to choosc the last node,
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Izst edge independently from the other s-1 prths, when s € d,  Wwhen

the summit is not an extremity, we can choose any edge out of this
sumnit because of the node-independence of the paths, When the

summit is an extremity, the choice goes as follows: each node has

at most one self-loop, hence at least 2'd-1 independent edges (Thm 3-2).
At most d-1 incoming paths use 2¢d~2 edges,-as they actuall. use the
extremity as a swumit, and the last path goes directly to the

destination edge and does not need an extra edge, Q.E.D.

Figure 3-~5 shows such choices.
The paths that we get may still be shortened 1f the extra node
is linked to some other noede in that path.

We now prove a similar theorem for monotone paths:

Theorem 3-8:
If there exist a rode-independent monotone paths between any
nodes in a (d,p) netwerk, then there are at least s node-independent

monotone paths between any nodes in a (d,d'p) network,

Preool:

In the (d,p) network we look for edge-independent paths between
th? nodes corresponding to the destination of the origin edge and the
origin of the destination edge. as shown in Figure 3-6,

If those two nodes are different, there are s node-independent
paths between them in the (d,p)} network, which transformation 3-1
transforms into s node-independent paths in the (d,d*p) network, Boesch
and Frisch [Boeﬂa], have shown that this 1s enough for the connectivity

of the path to be 8, and for s nede-indepcndent paths to exist between
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sany two nodes, Q.E.D.

In some coses, thls theorem gives a better lower bound than
the general one on the number of pode-independent paths between two
nodes in a de Bruijn network, We look at the number o node-independent

monotone paths in a (d,d) network,

Lemma 3-4:
There are at least d-1 monotone nodz-independent paths between two

nodes in a (d,d) network.

Proot:

The connection pattern of the (d,d) network is the complete directed
graph with d nodes and a loop on each node, There always are d-1 inde-
pendent paths between any two nodes made of the edges from the origin node
to all other nodes, and if necessary the edges to the destination node,

Q.E.D.
Theorem 3-G generalizes this result *o a larger class of networks:;

Theorem 3-0:
k
For any (d,d ) network, with d and k being integers, there are at

least d-1 monotone node-~independent paths between any two nodes,

Proof:

The proof follows immediately from the above lemma and theorem, Q.E.D.

This gives a better Jower bound for the connectivity of an oriented
k
(d,d" ) network:r monotone paths are paths in such a network, and the

connectivity is at most d-1. This glves;



de + ¢ dre + ¢ mod d*p

mod d-p DEST\NAT!ON

d:d + & mod d-p

db + B
mod d+p b d't + g mod d-p
ORIGIN
b d-a +  mod d-p
P in tte (d,p) petwork in the (d, d+p) network

Fig. 3-6: Transforming a monotoneous path,

)

Fig. 3-7: The (3,3) network.



Theorem 3-10:

The connectivity of an oriented (d,dk) network is 4-1.

Proof:

The proof follows immediately from the above theorem. Q.E.D.
Golng back to unoriented networks, we can tell a little more

about the case where d=2:

Theorem 3-11:

There are ai least 2 node-independent paths between any two

nodes of a (2,2-p) network,

Proo:!:

This 1s an immediate derivatica from the existance of a Hamiltonian

circuit in those networks. Q.E.D.

“ulnerability in a cde Bruijn network is & function of the d:gree
of that vetwork., For an unoriente! (d,d*p) network, the connectivity
snd cohes:on increase with d, For (d,dk) oriented networks, the
connectivity is d-1, for unoriented ne-works it is at least d; for small

values of k, the connectivity 1s :n fact 2.d-2.



I1v. Conclusicn

De Bruijn networks have interesting properties for communications
networks: a small diameter with respect tc the number of nodes in the
network, and an easy routing and rerouting scheme. The control
liformation for the by-rass of a bad node c;n easily be added to the
header of the messege., 1In case of a single bad node, it takes only
an extra four steps o go around it. A limited number of nodes,
independently of the size of the network are more vulnerable than the
rest of the nodes in the network, The larger the network, the more
"invulnerable" it is, the same is true when the degr2e increases,

An open problem is the statistical analfsis of the message flow

inside such a network. This problen is studied in a coming report,
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