rx_‘@ i f?‘

STAN—CS;Ah

Efficient Data Routing Schemes for

ILLIAC IV-Type Computers

by

Samuel E. Orcutt

Technical Report No, T0

April 197k

Digital Systems Laboratory
Stanford Electronics Laboratories

Stanford, California

This work was supported by Bell Laboratories and by the National
Science Foundation under grant GJ-41093.

—

BIBLIOGRAPHIC DATA
SHEET

Technical Report No. 70

1. Report No. 2.

3, Recipient’s Accession No.

4. Title and Subtitle
Efficient Data Routing Schemes for

ILLTIAC IVv-Type Computers

5. Report Date
April 1974

7. Author(s)
Samuel E. Orcutt

8. Performing Organization Rept.
No.

9. Performing Organization Name and Address

Stanford University
bigital Systems Laboratory
Stanford, California Q}305%

10. Project/Task/Work Unit No,

11. Contract/Grant No.
NSF GJ-41093

12. Sponsoring Organization Name and Address

National Science Foundation
1800 G Street NW
Washington, D.C, 20550

13, Type of Report & Period
Covered

technical

14,

15. Supplementary Notes

STAN-CS-Th-429

16. Abstracts

Much research has recently been done on processor interconnection schemes for

parallel computers,
performed in less than lincar time,
elements and N processors,

These interconnection schemes allow certain permutations to be
typically G(log N) or O(,/N) for a vector of N
In this paper we show that many permutations can alsc

be performed in less than linear time on a machine with an ILLIAC Iv-type inter-
connection scheme, that is connections to processors at distances of 1l and %/N.
These results show that recently developed interconnection schemes yield less

speedup over the ILLIAC IV-type interconnections than was thought,

These results

are of current interest due to the present ILLIAC IV programming efifort.

17. Kev Words and Document Analysis. 17a. Descriptors

ILLIAC IV, parallel computation, permutations, perfect shuffle, bit reversal,

bitenic sorting, data routing.

17b. Identifiers/Open-Ended Terms

17c. COSATI Field ‘Group

18. Availability Statement

Approved for public release;

distribution unlimited

19. Security Class (This 21. No. of Pages
Report) 3
5 UNCIASSIFIED
20. Security Class (This . Price
Page
UNCIASSIFIED f) 00—/ %3

FORM NTIS-38 (REV. 10-73) ENDORSED BY ANSI AND UNESCO.

THIS FORM MAY BE REPRODUCED

USCOMM-DC 8265-F74

AR}

Hf

INDEX TERMS

ILLIAC IV, parallel computation, permutations, perfect shuffle,

bit reversal, bitonic sorting, data routing,

Figure
Figure
Figure

Figure

3.1
3.2
.1

5.1

FIGURE CAPTIONS

Construction of a size 2m perfect shuffler
Size 16 perfect shuffler
Size 16 bit reversal network

Determination of (i, d(i))k

Table 3.1
Table 4,1

Table 5,1

TABLE CAPTIONS

Decision table for perfect shuffle
Decision table for bit reversal

Decision table for general algorithm

Vi

EFFICIENT DATA ROUTING SCHEMES FOR

ILLIAC IV—TYPE COMPUTERS
by Samuel E. Orcutt
Abstract

Much research has recently been done on processor interconnection
schemes for parallel computers, These interconnection schemes allow
certain permutations to be performed in less than linear time, typically
0(1og N) or OQJN) for a vector of N elements and N processors, In this
paper we show that many permutations can also be performed in less than
linear time on a machine with an ILLIAC IV-type interconnection scheme,
that is connections to processors at distances of 11 and iJN. These
results show that recently developed interconnection schemes yield less
speedup over the ILLIAC IV-type interconnections than was thought. These
results are of current interest due to the present ILLIAC IV programming

effort.

I. INTRODUCTION

One of the factors involved in determining the usefulness of a
parallel computer is the facility available for communicating results
between processors. Much research has recently been done on these
interconnection schemes., Representative of the interconnection schemes
proposed are sorting networks [Rohrbacher, 1966], the shuffle-exchange
{ store, 1971; Lang, 1973], p-ordered vectors [Swanson, 1973], and
~networks [Lawrie, 1973]. These interconnection schemes allow certain
permutations to be performed in less than linear time, typically
O(log N) or OG/E) for a vector of N elements and N processors, In this
paper we show that these permutations can also be performed in less than
linear time on a machine with ILLIAC Iv-type interconnections.

In the next section we describe the interconnection scheme that we
consider, and we give the notation used in the rest of the report,
Seetions III and IV present specific algorithms for the perfect shuffle and
bit reversal. In Section V we present an algorithm capable of handling
a wide variety of permutations in OQ/E) time. Section VI describes the
- application of this algorithm to a specific problem, namely the p-ordered
vectors of Swanson [19?3]. In Section VII an algorithm is presented that
is capable of doing any permutation in OG/Erlog ﬁ) time. This shows that
recently developed interconnection schemes yield a speedup of at most

0(/N) as compared with the ILLIAC IV-typc interconnections.

II, BASIC DEFINITIONS

To analyze algorithms for parallel computers it is necessary to
make certain agssumptions regarding the structure of the computer on
which the algorithms are to execute. So these analyses will be of
practical use, the assumptions made in this paper are consistent with
the structure of the ILLIAC 1V,

The basic organization of the machine we consider is Single
Instruction stream - Multiple Data stream (SIMD [Flymn, 1966]). 1In
this class of machine all Processing Elements (PE's) obtain their
instructions simultaneously from a single instruction stream. Each PE
will, in general, execute this instruction stream with different data.
A PE is either enabled or disabled from executing instructions according
to its own enable bit.

We consider a parallel computer with N = ot PE's, for some even
integer n, each labelled with a distinct index between O and N-1, A PE
is connected to PE's whose indices differ by #1 and %/N, In particular,

PE i is connected to PE's (i-/N) mod N, (i-1) mod N, (i+l) mod N, and
(i+/N) mod N. The ILLIAC IV interconnection scheme is precisely this

scheme for N = 6L,

Communication of data between PE's is accomplished by cyclically
shifting data between the PE's. This data transfer is referred to as a
32239. The physical interconnections that are present allow routes of
1 and iJﬁ-to be done in a single step. These four routes are referred
to as unit routes. We assume that a single route instruction can be used

to route any distance k, 1 < k < N-1. The execution of a route instruction

is done by performing a sequence of unit routes in such a manner as to
move data the required distance. For example, a route of distance 5
can be done as five routes of +1, The length of a route, {(k), is the
minimum number of unit routes required to route a distance k. For
example, L(/N-1) = 2 since a distance of \/§-1 can be obtained by a

route of *Jﬁ followed by a route of -1. It is easily shown that

1 s (k) £ /x-1

The time required to route a distance k is given by
T(k) = a + b L{k)

where a and b are machine dependent consténts.

The algorithms in this paper are given in an ALGOL-like language
previously used by Stone [1973) and Kogge [1972]. The main difference
from ALGOL is an extension to describe the parallel features of algorithms
as follows:

1) An inequality of the form {r £ i < s) following a statement
indicates that the statement is to be executed simultaneously
for all values of the index in the specified range.

2) I1f M is a logical vector, a vector whose elements are either

true or false, of appropriate dimension then an expression of

the form (M{i)) following a statement indicates that the
statement is to be executed simultaneously for all values of
the index corresponding to true elements in M, When used in

this manner the vector M is called a control vector,

Additionally, we make frequent use of the function
pit(1,j)

which yields the value of the jth bit in the binary representation
of i where the least significant bit is bit O.

In the analyses of algorithms that cccur in subsequent sections,
we consider only the time used by route instructions when estimating
execution times. We let the execution time of an algorithm be given

by
T = a*R + b*L

where R is the total number of route instructions and L is the total

number of unit routes required,

I11, PERFECT SHUFFLE

An intercommunication pattern frequently encountered is the

perfect shuffle, A shuffle of the elements of a vector is equivalent

to viewing the vector as a card deck, and shuffling them so that after
a shuffle the elements from the two halves of the vector alternate.
Under this pattern the ith element is shuffled into position i' where
i' is obtained by shifting the bits in the binary representation of i
left one bit cyclically, 1In this Section we consider performing the
perfect shuffle with a parallel computer having 1 and %/N inter-
connections,

The algorithm for performing the perfect shuffle is based on the
construction of a size 2m perfect shuffler from two size m perfect shufflers
and a size Zm adjustment network., Starting with size 2 perfect shufflers,
which perform no interchanges, a size N = 2“ perfect shuffler can be con-
structed in log2 (N/2) = n-1 stages using only adjustment networks, A
typical stage of this :process is shown in Figure 3.1. The complete network
for N = 16 is given in Figure 3.2. For this method to be useful, the
adjustment networks must be easily implementable using the available inter-
connections. At stage k in the construction we are implementing adjustment
networks of size 2k+1. A network of this size performs interchanges based
upon bits O and k of the processor index as described in Table 3.1.

The algorithm for the perfect shuffle is easily derived from the

description in Table 3,1, 1In this algorithm the array X contains the data

m-3
m~2

m=-31

m+1

m+2

2m-3
2m-2
Z2m-1

S— m e——
— 5 —
h 2 e
. ; 3 m
* .
™ f . A
e J
a—— I u
s
] t
m
e
n
t
N
— m e
t
—_— s w
— h °
a r
. ™
° f * K
P f °
1
— e
R r I
Figure 3.1

Construction of a size 2m perfect shuffler

_&5 ¢

ﬁoo o

RN
N

%

7 7 7 11
8 8 8 4
9 10 12 12
0 ; yawi _s
11 11 13 13
12 12 10 \ __6
13 14 14 14
14 13 w \ 7
15 15 15 15
Figure 3.2

Sizc 16 perfecct shuffler

Table 3,1
bit k bit O action
0 0] ~do nothing
0 1 route 2k—1
' k
1. 0 route -(2 -1)
1 1 do nothing

Decision table for perfect shufile.

to be shuffled, the array TEMP is a temporary storage area and the

arrays MASKL and MASK? are control vectors,

for kK := 1 step 1 until n-1 do begin

MASK1(1i) := —bit(i,k)Abit(i,0), (0 < i < N-1);
MASK2(1) := MASK1(i- (25-1)), (%1 s i s n1);
TEMP(i) := X(i+2k-1), (MASK1(i));

TEMP(i) := x(i-(ek-l)), (MASK2(1));

x(i) := TEMP(i), (MASK1{i)vMASK2(i));

end;

This algorithm works in a very straightforward manner. MASK1l and
MASK? determine which pairs of elements are to be exchanged according
to Table 3.1. The new values are stored in the vector TEMP while inter-
changes are being made, and then copied back into X when the interchanges
are completed.

To complete the presentation of this algorithm we now determine its
execution time. Since there are n-1 stages and each stage requires three

route instructions, the total number of routes is

R = 30-3 = 3-log, N -3 = O(log N)

The evaluation of L is somewhat more difficult, L is given by
n-1 K
L=y 34(2-1)
k=1

This is quite straightforward except that the behavior of the function

L(x) is quite peculiar. In particular if

x =a + N+ b ay 20, 0<b <yN-1
N-x = a, * N + b, 8,20, Osb,syN-1
then
L(x) = mln(a1 + by, ay + by, a4 14N~ b, a, + 1 + /N ~ b2)

In this algorithm we know that 1 £ x € N/2-1, TFor x in this range it

is seen that

min(al + b, a;, + 1 + N - bl) < min(a, + b,, a, + 1+ NN = b,)

1’ "1

From this we conclude that

{(x) = min(a1 + b a. + 1 ++N - bl) 1 € x < N2-1

171

By considering the form of the values of x required by this algorithm, it
is easily shown that

k

2 =1 1 £k < n/2-1

J&(ek-l) = .
121‘"“/ +1 n/2 € k < n-1

Using these values for {(x) we obtain

n/2=1 i n-1 i-n/2
L=3° 2. (27-1) + 3+ > (2 + 1)
i=1 i:n/2

6(/¥-1) = 0{/N)

As compared with the straightforward permutation method which requires
R =N-1 = O(N) and L = N-1 = O(N)

this method yields a speedup of OQ/E).

This algorithm allows us to adapt parallel algorithms that utilize
perfect shuffle interconnections for execution on a machine of the type
we consider, Although the implementation of the perfect shuffle is
efficient, the algorithms developed by using this method to simulate the
perfect shuffle are not necessarily the best possible, For example, this
method can be used to adapt sorting and the Fast Fourier Transform, both
of which have the perfect shuffle as a natural intercommunication pattern,
for execution on a machine of this type, but these algorithms are not as

efficient as those developed directly for this type machine.

-10-

IV. BIT REVERSAL

Another problem of interest for computation on a parallel computer
is the Fast Fourier Transform [Pease, 1968]. An idiosyncracy of this
algorithm is that the results of the transform appear in bit reverse

order, that is, if i is the binary representation of

P R S W
i then the ith component of the result is in position io i1 VN in_2 in_1
of the result vector, This unscrambliing has recently been considered by
Polge et al. [19Th] for the serial computer caseL: In this section we
present an algorithm for efficient bit reversal on an SIMD computer with
interconnections similar to those of the ILLIAC 1IV. The algorithm given
here, although developed independently, is a parallel equivalent of their
algorithm, This algorithm illustrates the use of control vectors to re-
place loop structure when converting algorithms from serial to parallel.

The unscrambling of bit reversed vectors is done in stages as for
the perfect shuffle. At stage k, 0 < k < n/2-1, interchanges are performed
based upon bits k and n-1-k of the processor index according to Table 4,1,
Figure k.1 shows a complete example of this procedure for N = 16. The
interchanges are performed in such a way that after k steps all items are
in the correct PE with respect to the high and low order k bits of their
index.

We now present the actual unscrambling algorithm. The arrays X,

TEMP, MASKl, and MASK2 are defined as in the previous section.

-11-

Table 4.1
bit k bit n-1-k action
0 0 do nothing
0 1 route —(En—l—k-Ek)
1, 0 route (2n_1-k—2k)
1 1 do nothing

Decision table for bit reversal.

- 4

15 15 15

Figure 4.1

Size 16 bit reversal network

for k := 0 step 1 until n/2-1 do begin

MASK1(i) := bit(i,k)Abit(i,n-1-k), (0 < i < N-1);
MASK2(1i) := MASKl(i—(En_l-k—Ek)), (2“'1'k-2k <1< N-1);
TEMP(i) := x(i+2"'1'k-2k), (MASK1(1));

n-1-k .k
-2)):

TEMP(i) 1= X(i-(2 (MASK2(1));

X(i) :

TEMP(i), (MASK1(i)VMASK2(i));

It

end;

This algorithm functions similarly to the previous one, MASKl and
MASKZ determine the pairs of items that are to be exchanged, The exchanges
are made into the array TEMP and then copied back into X when completed.

We now determine the execution time for this algorithm. n/2 steps

are used each requiring 3 routes, This gives

R =3n/2=(3/2) log, N = 0(log N)
n/e-1

L= Y 3_{(2n—1-k_2k)
k=0

Proceeding similarly to the analysis for the perfect shuffle, we obtain

‘2n/2'1'k+2k 0 <k < n/2-2
{(gn‘l‘k_gk) -
lév%@ k = n/2-1
This yields
n/2-2
L = (3/2) * M, z 3 . (En/g‘l"k+2k)
k=0

(11/2) + /N - 9 = O(N)

-13-

This again yields a speedup of O(/N) as compared to the straight-
forward algorithm.

Although the computation of the control vectors is shown as a
part of the main computation loop in both of the previous algorithms,
it is easily seen that the control vectors need only be computed once.
Precomputation of the control vectors provides for some savings in time

if the permutation is performed more than once.

—14-

V. GENERAL ALGORITHM

In the previous two sectiéns we developed algorithms for performing
several particular permutations on a machine similar to the ILLIAC 1IV.
These results are of interest, but it is desirable to develop a more
general algorithm for performing permutations, In this and subsequent
sections we consider performing permutations that are specified as a
set of pairs (1,d(i)) indicating that element i is to be mapped into
element d(i).

To simplify the discussion that follows we introduce some additional
notation. The particular notation that we use is due to Lang [1973].
Consider a permutation P: i-d(i) where O < i,d(i) < N-1, d(i) is the
destination of i, that is the datum starting in PE i is to end up in
PE d(i), We consider permuting only the d(i) since the associated data
is moved in exactly the same way. We define (i,d(i))k to be the location
of d(i) after k steps of the algorithm. Clearly (i,d(i))o = i and
(i,d(i))M = d(1i) where M is the required number of steps in the algorithm.
The k' step of the algorithm performs the permutation P : (1,d(i))k'1~
(i,d(i))k. The technique that we use is to develop a decomposition of P
into PM pM—l PM_2 e P2 P1 where each Pk can be efficiently realized using
the available interconnections and M is "small enough'. To describe the
particular decomposition that we use, let the binary representation of i

be and the binary representation of d(i) be

fn-1tne2t hato
d(i)nnld(i)n—E'"'d<i)1d(i)0' At step k we consider pairs of words i' and

i" where 1' and i'" are identical except bit k-1 of i' is O and bit k-1

~15-

Let d(j") be the tag currently in PE i' and d{j") be the tag.
currently in PE i, We perform interchanges based upon d(j')k_l and
d(j")k_l simultaneously for all N/2 pairs of i' and i'" according to

Table 5.1 From this it follows that
(i,d(i))k = da(1) moa 25 4+ 2F -+ |3/2K)

where |x| denotes the integer part of x. This is shown schematically
in Figure 5,1, We perform these interchanges for k = 1,2,3,...,n, After
n steps all the d(i) are in the correct PE. This is easily seen from the
A . . v1 K
definition of (i,d(i)) .
In the table describing the execution of this algorithm, Table 5.1,
certain entries are marked as not allowed, We now present a theorem that

describes the set of permutations that satisfy this requirement.

Theorem: A permutation P: i-d(i) can be performed using the previous

k
algorithm if and only if Q: i»(i,d(i)) 1is a permutation for 1 < k < n,

Proof: See Lawrie [1973].

We now give the actual algorithm for performing the permutation.
The array X contains the d(i) currently in each PE and the arrays TEMP,

MASK1, and MASKZ are temporary storage and control vectors respectively.

for k := 0 step 1 until n-1 do begin

MASK1 (1) ::*ﬁbit(i,k)Abit(X(i),k)Aﬂbit(X(i+2k),k),
(0 < i < n1-25);

MASK2(1) := MASKl(i~2k), (2k £ i< N-1);

TEMP(1) = x(1+25), (MASKI(1));
TEMP(1i) := x(1-2k), (MASK2(1));
X(1) := TEMP(1i), (MASKI(1)VMASKR(i});

end;

16—

Table 5.1
d(j')k_l d(j")k_l action
0 0) not allowed
0 1 do nothing
1 0 exchange d(j') and d(j")
1 1 not allowed

Decision table for general algorithm,

Mo - &

n-k bits

k bits

i n-k bits k bits ai)
. [n-k bits k bits
(i,a(i))
Figure 5.1

Determination of (i,d(i))k

-17-

This algorithm functions the same as the last two except that
different pairs of elements are exchanged at every step.
We now evaluate the execution time of the algorithm, The

algorithm takes n steps each requiring 4 routes. This yields

R = in = Lplog2 N = 0(log N)

n-1

L = z b o £(2Y)

J=0
Similarly to previous cases we obtain

2 0= j<n/2-1
223 =

P32 o< < -l

Substituting gives

n/2-1 n-1
b S N j-n/2
L =5k Z 27 + L s 2
-j= j=n/2

=8+ (1) = OWF)

~18-

VI. P-ORDERED VECTORS

One of the main considerations in programming the ILLIAC IV is
the choice of data structure, From the standpoint of minimizing wasted
space the packed storage scheme is very attractive, A characteristic
of this storage scheme is that when accessing columns of an array stored
packed by rows the data comes out in permuted order, These particular
permutations have been called p-ordered vectors by Swanson [1973]. In
this section we consider an algorithm for unscrambling p-ordered vectors
into normal order,

For this unscrambling we use the previous algorithm. To use this
algorithm we must show that no conflicts can arise, For p-ordered vectors
with p relatively prime to N the ith element of a vector is in PE (p-i)
mod N. We choose q such that (p'q) mod N = 1. That such a q must exist

is easily shown, With this g we can unscramble the vector by
d(i) = (g*i) mod N

To show that this can be done without conflicts we must show that

Qs iﬂ(i,d(i))k is a permutation for all k. We do this by showing that
. . Kk . k . .
(ll)d(ll)) = (12.’d(2)) = 11 = 12
We proceed as follows
.) Lk kK . .k _ Kk kK . ..k
i) d(ll) mod 2% + 27+ i /27} = d(lg) mod 2° + 27 li,/2]

ii) i) = d(il) mod 2% = d(ig) mod 2%

~19-

1i1) d(i) mod & {q*1) mod 2K

iv) ii) = (g 11) mod 2" (g° 12) mod 2

i

v) iv) = q'(il mod 2k) q'i, mod Ek)
vi) 1) = 2 Lil/2k_f - 25 Lig/2kj

vii) wvi) = il—il mod 2k = 12—12 mod 2k

cls - . . k . . k
viii) vii) = q‘ll—q'(ll mod 27) = q'12—q~(12 mod 2°)
ix) v,viii) = i = qi,
x) ix) =i, =1
Since this shows that Q: i*(i,d(i))k is a permutation for all k we can

use the algorithm of the previous section and know that it will function

properly. Thus the unscrambling of p-ordered vectors requires

j=r}
il

0(log N) and

OWN)

t
n

~20-

VII. UNIVERSAL ALGORITHM

The main drawback to the general aigorithm previously described
is the requirement that Q : ia(i,d(i))k be a permutation for all k., It
is fairly easy to devise permutations that are important but fail to
satisfy these requirements, In fact, both the perfect shuffle and bit
reversal are permutations of this class, The restriction on Qk was
removed in Lang [1973] by providing queues for the conflicts at each PE,

It is easily shown that for our interconnection scheme we have
R = 0(/N) and L = O(N)

if we attempt to use this method. This is not a suitable sclution. We
choose instead to make use of an entirely different approach.

Stone [1971] describes implementing the bitonic sorting algorithm
of Batcher [1968] on a parallel computer. This method was previously
proposed for interprocessor communications in Rohrbacher [19661. In this
section we show that this algorithm c¢an be utilized to perform permutations
efficiently on a computer with the interconnection scheme under consideration,

To perform permutations we use the Batcher algorithm to sort the d(i),
Since all d(i) are distinct and O < d(i) £ N-1, it is easily seen that this
method willvyield the correct permutation. As before, the algorithm presented
permutes only the d(i).

The Batcher algorithm consists of doing comparison-exchange operations
on items in PEs whose indices differ in only one bit. These comparison-

exchanges are done on bits in the order

Pl

i

P S

lgpiysdgatostystnseeenty 453 o

The algorithm to implement this is very similar to the previous
algorithm. The additional complexity is due to a peculiarity of the
Batcher algorithm. A comparison-exchange operation may order its
outputs in either ascending or descending order, A set of mask bits
must be calculated to determine the appropriate mode for each comparison-
exchange operation, These mask bité are stored in the array MASK. The
method used for computing these mask bits is not that originally used by
Stone, but is due to Knuth [1973, p. 237].

The algorithm we now present is derived directly from the above

description,

for j := 0 step 1 until n-1 do begin

MASK(i) := bit(i,j+1), (0 < i < N-1);

ng k := j step -1 until 0‘92 begin
k
MASK1(i) ::-ﬁbit(i,k)A[(X(i+2) > x(i)) C)MASK(i)],
(0 < 1 < N-1-25);

SIP N-1);

MASKZ2(i) := MASKl(i—2k), (2

TEMP{i) := X(i+2k), (MASK1(1));

TEMP{i) := X(i-2k), (MASK2(1i));

x(1) 1= TEMP(i), (MASKL(i)VMASK2(i));
end;

end;

~00.

We now evaluate the execution time of the algorithm.

n-1
R=214:° :g (n-k} = 2n2 + ?n
k=0
=2 ¢ logg N + 2‘10g2 N = 0(10g2 N)
n-1
L =)_l_ . Z (n_k) ° ’&(Ek) - 2n.2n/2 - 6“ + 16.2!1/2 _ 16
k=0

2/N log, N - 6'log, N + 16/N - 16 = O(/N log N)

This algorithm allows us to perform any arbitrary permutation in a
time of O(/N log N). It was shown in Stone [1972] that it is not possible
to perform these permutations in less than O(log N) time using any inter-
connection scheme with the same number of connections per processor. This
shows that the maximum speedup obtained by any interconnection scheme with
the same number of connections per processor as compared to ILLIAC IV-type
interconnections is only O(/N),

An algorithm that could possibly be somewhat faster‘can be developed
by combining the algorithm of Section V with the previous algorithm in the
following manner. First apply the algorithm of Section V. Assume that the
first conflict occurs when considering bit k. The preceeding steps have
partitioned the data into 2k groups in such a way that it is not necessary
to consider moving data between groups. To complete the permutation we

apply the previous algorithm to all groups in parallel. Clearly the

execution time of such an algorithm would be bounded by the executicn
times of the two indiviaual algorithms, Since there is additional
bookkeeping to be done in this composite algorithm, whether or not this
algorithm would actually be faster would depend on how often the
permutation being performed partially satisfies the requirements of the

algorithm of Section V,

-2h=

VIII. CONCLUSIONS

In this paper we have presented a number of algorithms for
performing permutations on a parallel computer with an interconnection
scheme similar to that of ILLIAC IV. Particular algorithms are
developed for the perfect shuffle and bit reversal, Other algorithms
are developed for more general classes of permutations, All of these
algorithms require less than linear time for execution. These new
algorithms show that the speedup obtained by recently proposed inter-
connection network as compared to ILLIAC IV-type interconnections is

less than was thought,

Acknowledgement

The author would like to thank Professor Harold 8. Stone and

Mr, Tomas Lang for their many helpful discussions on this topic,

2

BIBLIOGRAPHY

Batcher, K. E., "Sorting networks and their applications,” 1968 Spring
Joint Computer Conference, AFIPS Proceedings, vol, 32, Washington,
D,C.: Thompson, pp, 307-31k, 1968.

Flynn, M, J., "Very high-speed computing systems,” Proceedings of the IEEE,
vol, 54, no, 12, pp. 1901-1909, December 1966.

Knuth, D, E., The Art of Computer Programming, Vol. 3, Searching and
Sorting. Reading, Massachusetts:; Addison-Wesley, 1973.

Kogge, P. M., "Parallel algorithms for the efficient solution of
recurrence problems," Rep. 43, Digital Systems Laboratory, Stanford
University, Stanford, California, September 1972,

Lang, T., "Interconnections between processors and memory modules using
the shuffle-exchange network,”" Submitted to IEEE Transactions on
Computers (AVailable through IEEE Computer Society Repository,
no, R7k=19).

Lawrie, D, E,, "Memory-processor connection networks,” Ph,D, thesis,
Rep. 557, Department of Computer Science, University of Illinois,
Urbana, Illinois, February 1973,

Pease, M., C,, ''An adaptation of the fast Fourier transform for parallel
processing,” Journal of the ACM, vol. 15, no. 2, pp. 252-264, April 1968.

Polge, R, J. et al,, "Fast computational algorithms for bit reversal,”
IEEE Transactions on Computers, vol. C-23, no. 1, pp. 1-9, January 1974.

Rohrbacher, D. L., "Advanced computer organization study,” vols. I and II,
Goodyear Aerospace Corp., Rep. GER-12314, April 1966 (DDC accession
nos., AD631870 and AD631871).

Stone, H, S., "Parallel processing with the perfect shuffle,” IEEE
Transactions on Computers, vol. C-20, no. 2, pp. 153-161, February 1971.

Stone, H. 8., "Dynamic memories with enhanced data access,” IEEE
Transactions on Computers, vol. C-21, no. I, pp. 359-366, April 1972.

Stone, H. S., "An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations,” Journal of the ACM, vol. 20,
no. 1, pp. 27-38, January 1973.

Swanson, R, C., "Interconnections for parallel memories to unscramble
p-ordered vectors," Rep. T2, Digital Systems Laboratory, Stanford
University, Stanford, California, May 1973.

