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ABSTRACI' 

Present day computers have been designed with processing elements 

and me.ories in a one-to-one correspoJldence. For lIany problems this 

architecture limits the speed of solution. In this paper a m.chine 

architecture is presented in which processing elements and mellOries 

are consider~d independent resources. This architecture provides a 

techniqu~ ~or increa.ing the logical bandwidth of the memory without 

incre.sing the physical bandwidth. The scheme for interconnectine 

proce&sinc elellents and memories . s based on the mathematical forau-

latlon of a matrix-matrix product. 

Of interest in determining the usefulness of a particulAr computer 

architecture are the problem classes which it is able to solve efficiently. 

FOr this machine we consider several problems. On a serial processor 

the aultlplication of two nXn matrices requires t(n3) steps when using 

the classical algorithll or 0(n(10g2 7» steps when using Strassen'5 

alcorit~. We present an algorithm tor our machine which performs this 

aultipllcation in O(log n) steps. ~is can easily be shown to be the 

.lnimum time possible. We also consider the solution of linear triangul~r 

sy.te.s of equations. 2 This problem requires O(n ) steps tor a serial 

processor, and O(n) steps for a parallel processor of the ILLIAC lV-type. 

We present a parallel algorithm suited to execution on our .. chine which 

2 solves these systems in O(log n). This nlgorithm is based on an extension 

of the principle of recursive doubling. 
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A NOVEL PARA",LEL COMPUTER ARCHITECl''''RE 

AND SOME APPLICATIONS 

by Samuel E. Orcutt 

Abstract 

Present day computers have been designed with processing elements 

and ae~rtes in a one--to-one correspondence. FOr many problems this 

architecture limits the speed of solution. In this paper a ma'~ine 

ar~hitecture is presented in which processing elements and memories 

are considered independent resources. This architecture provides a 

technique for increasing the logical bandwidth of the memory without 

increasing the physical bandwidth. The scheme for interconnecting 

processing elements and memories is based on the mathematical formu-

lation of a matrix-matrix product. 

Of interest in determining the usefulness ot a particular computer 

architecture are the problem chsses which it is able to solve efficielltly. 

For this machine we consider delreral problems. On a serial processor 

the multiplication of two nXn ~atrices requires 0(03) steps when using 

tne classical algorlthu: or O(n',log2 7» steps when using Strassen's 

algorithm. We present an algcrithm for our machine whi~h performs this 

aultlpl1cation in O(log n) stl~PS. This can easily be shown to be the 

.1ni.um time posslble. We a)so consider the solutlon of linear triangular 
') 

systems of equations. This problem requires O(n") steps for a serial 

processor, and O(n) steps for a parallel processor of the ILLIAC IV-type. 



•• present a par31lel olgorithm suited to execution on our machille which 

2 
.(,lves these systeas in O(lo~ n). Th1s algorithm 1s based on an extension 

of the principle of recursive dOubling. 

In addition to numerical type &lgorithms, we present algorithms 

for several combinatorial type problems. In particular, we give methods 

for perfot~ing permutations and sorting. These algorithms require O(log n} 

steps when operating on n items. 



I. INTRODUCTION 

Present day computers have been designed wi th process}.ng elements 

(PE's) and memories in a one-ta-one correspondence. The classical serial 

processor is composed of a ~il\gle PE and a single memory. In a typical 

parallel processor, say the ILLIAC IV, t~ere are a multplicity of indi­

vidual processors, each one compos~d of a PE and a memory. In this case 

there ar~ many independent PE's and memories but they are organized so 8S 

to associate a single memory with each PE. 

As on alternative, P~'s and memories can be interconnected in an 

arbitrary manner. In Section II a machine architecture that makes use 

ot this additional fre~dom is described. This architecture provides a 

method for increasing the logical bandwidth of the memory without iocreasing 

the physical bandwidth. The scheme used for interconnecting PE's and 

memories is based upon the mathematical formulation of matrix-matrix products. 

]n order to utilize such a computer organization effectively, it is 

essential that the algorithms chosen be organized in a manner appropriate 

to this organization. Considerable recent research has been done on the 

development of algorithms in this manner, much of the impetus in this area 

being plQmoted by the ILL]AC IV project. The main emphasis of this research 

has be~n toward developing algorithms for solving problems of size n, size 

being measured in a manner appropriate to the particular problem under 

conSideration, on a machine with n processors. 

In Section III we present an algorithm fOl' computation of m .. trix.-iIOotrix 

products that requ1res only O(log n) steps when executed OD our machine. In 



Section IV the speedup and efficiency of this algorj.thm is investigated. 

We also consider the problem of solving t~iqngul3r linear systems of 

equations. The serial algorithm requires 0(n2) steps, and the st~aight-

forward parallel algorithm requires O(n) steps when er.~cuted on a 

parallel machine of the ILLIAC lV-type. T~e fastest algorithm known 

to this author is that of Heller [1973]. By applying matrix theoretical 

argu~nts to a lower Hessenberg matrix derived from the original triangular 

2 
.atrix: he develops an algorithm which requires O(lOi n) when executed 

on a MIMD computer with 0(n4) processors and an appropriate interconnection 

network. (We use MIMD and SIMD in the senEe of Flynn [1966]. They are 

taken to mean Multiple Instruction stream - Multiple Data stream and Single 

Instruction stream - Multiple Data stream respectively.) By applying 

recursive doubling arguments, similar to those of Stone [1973a] and KOige 

(1974], dire~tly to the recurrence relation represented by the triangular 

system we also develop an algorithm requiring 0(log2 n) steps. Although 

this time behavior is identical to Heller's, our algorithm requires only 

0(n3) processors and is suitable for execution on the machine of Section II. 

In Section V we give serial and straightforward parallel algorithms for 

the solution to triangular linear systems. Sectlon VI presents the ~asic 

principle upon which our algorithm is based, the prinriple of recursive 

doubling developed by Stone. In Sections VII and VIII we develop our 

algorithm for the solution to triangular linear systems of equations. This 

problems is of interest as it fOl~S a fundamental step in the solution of 

general linear systems of equations when using the LU factorization. 
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In addition to the numerical type problems, it is useful to consider 

some co.binatorial applications. The twu problems considered in Section 

IX are sorting and permutations. FOr the case of sorting the best known 

2 parallel algor1thm takes O(log n) steps, while the alB(lrithm we present 

requires only O(log n} steps. The algorithm presented for performing 

perautations also requires O(log n) steps. 
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II. 11IE MACHINE ARCHITECI'URE 

Extant parallel computers have been designed using a set of 

independent processors, each consisting of a PE connected to a memory. 

Althouch this architecture i8 suitable for many applications, there 

exist large problem classe~ that are not well suited to efficient 

solution on such a machine. To solve problems of these classes 

efficiently, a computer architecture more versatile than those currently 

in use must be developed. In this section such an srchitecture, based 

upon a set of independent PE'S, a set of independent me~ries, and a set 

of interconnections, is considered. A block diagram of this architectura 

i __ hown in Figure 11.1. The five blocks in the diagram are each described 

in detail in the remainder of this section. 

A bottleneck in many computers is the memory. To compute at maximum 

possible speed the memory must have sufficient bandwidth to supply the 

arithmetiC hardware with operands as fast as they are used. In modern 

computers several techniques have been used to increase the availability 

-..ory bandwidth without Just buying faster and faster memory. The most 

co.aonly used technique is memory interleaving. This consists of parti­

tioning a single memoty into a set of smaller, independently operating 

.adules. In this way multiple memory requests may be simultaneously active 

resulting in a higher bandwidth than otherwise. We hSiC taken this pri~ci­

pie one step further. In addition to having mult~ple independent memory 

.adulcs, we arrsnge the data paths from the memories in such a way as to 

transmit the data from a single memory to mony different PE's simultaneously. 
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In this way, if n PE's are connected :'0 each memory we obtain an increase 

In memory bandwidth of up to n. 

2 There are n memories 1n our computer. Conc£ptually these memories 

are organized as a ~ array. Each memory is aSSigned a unique label 

(I,j) where 0 s 1,jS n-l. Every memory can be Rddressed independently 

of all other memories. The memories operate synchronously, and any or 

all of the memories may be active during any memory cycle. 

Memory addre~sing on this machine i~ similar to that on conventional 

machines with interleaved memories. To Identify a single word in memory 

it i. necessary to specify both the memory in which the word is located aDd 

It. displacement within that memory. The way in which a memory address is 

foraed from these two items Is shown schematically in Figure 11.2. FOr our 

.. chine there arc two different cases. When a memory address is obtained 

fro. the PE array the memory Identification is implici tty provided from the 

label of the PE providing the address In a manner described later in this 

section. In this case only the displacement need b~ specified. When access 

is from the control unit both the memory Identification and displacement must 

be explicitly provided. 

There are n3 PE's in our computer. Conceptually these PE's are 

0rcanized as a n X n X n array. Each PI is assigned a unique label (i,J,k) 

where 0 S i,j,k S n-1. The PE's each have the basic arithmetic capabllih·)s 

noraally found in a serial machine. All PE's obtain their instructions 

simult .. l1eouslv from a single instruction stream. A PE is either enDbled or 

dis~~l~u from execu,ing instructions according to its 10CDl enable bit. 

TnEoSt' enable bits are set and reset by either local tests or global cLoble-

setting Instructions. 



-1-

I displaceaent I 1 I j I 

Figure II.2 

Structure of Memory Addre~ses 
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l'he control unit (CU) is the central element in the cOlll)Juter 

structure. It is a computer in its own right. The instruction re-

pertoire of the CU consists of Dlost instructions found in typical 

serial machine repertoires, plus instructions for controlling the 

parallel features of our ma~hine. The instruction stream of the 

machine is under control of the CU. Instructi)n6 that pertain to 

the CU ar. executed locally. Instructions that pertain to other parts 

of the machine are decoded in the CU and sent to the appropriate part 

of the machine in the fOnD of control signals. Included among these 

control silnals are any common operands required by the PE's. 

The .emory - PE interconnection network provides the requisite data 

transfer paths between the memories and the PE's. Which PE's are connected 

to each memory depends on which of three memory access modes is used. In 

any case, n PE's are simultaneously connected to every memory. Table 11.1 

describes the connections present for memory (i,j) in each of the aecess 

modes. In this table, an entry of the form (i,j,*) represents the set of 

all PE's who~e labels have i and j as the first and second components 

The PE-PE interconnection netwolot provides the requisite processor 

interconnections. As in the case of the memory-PE interconnection network, 

there are three modes of operation. In each of these modes the PE's are 

2 partitioned into n blocks of n PE's each. Duta is exchanged only between 

PE's in the same block. These exchanges take place simultaneously and in 

an identical manner for all n blocks. Figure 11.3 shows the interconnections 

establi3hed within a typical block of PE's when th~ interconnection network 

is uaed in mO('1 Z. The interconnections arc similar in the other two modes. 
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PEs Receiving Data 
When Fetching 

Table 11.1 

PE Prov1ding Data 
When Storing 

(O,I,j) 

{i,j,O} 

Memory-PE Interconnection Network Function 
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Processor Interconnections for a typical block when in 

mode = Z 
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Table 11.2 describes these interconnections more precisely. This 

table specifies the FE (1' ,j' ,k') that is at a distance d from PE 

(l,j,k) ill each of the three modes, that is if data is routed a 

distance d, the datum froin FE (i,j,k) ends up in FE (i' ,j' ,k'). 

In this table, an entry of th'" form (i,*,*) repr,sents the set of all 

PE's with labels whose first component is i. 

To further clarify the nature of the machine we now give examples 

of several typical machine instructions. A more complete description of 

the machine instructions is given in Appendix 1. The instructions are 

described in a notation very similar to the ISP notation of Bell and 

Newell [1971]. The main deviation from [SP is an extension to allow 

description of the explicit parallel activities that occur in the machine. 

To this end we define a new type of item that we call an index variable. 

An index variable has as its value a set of integers. The appearance of 

an index variable in a statement indicates that the statement is to be 

executed simultaneously for every integer in the set associated with that 

index variable. Index variables do not correspond to anything physically 

present in the machine a rchl tecture but are merely a notational convenience. 

In these descriptions we use the following symbolic coding conventions. 

$PERi Is the symboliC name of Processing Element Register i, $CURi is the 

.ymboilc name of Control Unit Register 1, and $R is the symbolic name of 

the Route register. The mnemonics used here are not necessarily those that 

should be present in an actual assembly language but are chosen for their 

descriptive quality, Since some of the PE and CU instructions have identical 

mne\llOnics, we assume that the actual bil encoding of the instructions allows 

the type of instruction, PE or CU, to be de~ermincd. We present CU 

instructions first. 



MODE l' j' k' 

x 1 «n.j+k+d)/n) mod n (k+d) aod n 

y «n.l+k+d)/n) JIIOd n j (k+d) JDOd n 

z (n.l+j+d)/n) mod n (j+d) mod n k 

Table 11.2 

PE (1' ,j',k') that 1s at d1stance d fro. PB (l,j,k) in each mode. 

BLOCKS 

(1,*,* ) 

(~.j,* ) 

(*,*,k) 
I .... 
'P 



gxa.p1e Instruction 

LOAD 

SUB 

JIIP 

BeAST 

$CUR1,N 

$CURO,$CUR2 

t:Q,LAB1 

$CUR2,$P!Rl 
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CoIIIJIIe n t 

$CUR1 := MEMORY{N) 

$CURO : = $CURO - $CUR2 

if condition code indicates equal 

then go to LABl 

for every PE that is enabled do 

$PERl : = $CUR2 

The instructions WAD, SUB, and JJ4P function like similar instructions in 

a serial machine. The instruction BeAST is used to broadcast a sincle 

datwa to all the PE' s •. 

We now consider PE instructions. All of these instructions, except 

ROUTE, affect only PE's that are enabled. ROUTE affects all PE's. 

Ex •• ple Instruction COlllllent 

IDAD,X $PERl,A $PERI := KEMORY(A) in access mode X 

ADD $PERO, $PER3 $PERC := $PERO + $PER3 

ROIrrE, Y 3 route data between PE's a distance 

d = 3 in routing mode Y 

$PER1,$PER2 the condition code is set according 

to $PER1: $PER2 

SETE A,GE set the enable bit if and only if the 

condition code indicates> or =. 
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These lnstru~tlons are basically similar to typical parallel computer 

instructions. 7he dlfferences arise from the strategy used for memory 

accesslng and PE interconnections. The exact nature of these two ltems 

was described p:4eviously in this section. 
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III. COMPUTATION OF MATRIX - MATRIX PRODUCTS 

FOr an algorithm to execute efficiently on a given computer the 

organization of the algorithm must be suited to the structure of the 

computer. To utilize the available computing resources as efficiently 

as possible, algorithms should be selected with this in mind. As an 

example, consider the computation of a matrix-matrix product. 

Let A, B, and eben X n matrices. Consider the equation 

C = A·B 

This computation is to be performed in minimal time using arithmetic 

operations on pairs of operands. It is easily shown, by a tan-in argument, 

that the minlmal time required for this computation is O(log n). By 

introducing the maximum apparent parallelism into the classical serial 

algori tlun for computing matrix - matrix products, a parallel algorithm 

that reqUires O(log n} steps when executed on the machine of Section II 

is developed. 

It 1s well known that 

o :!O i,k :!O n-l 

The computation of a1j • bjk is performed in PE (1,j,k). In this way 

all n3 products can be computeu simultaneously provided sufficient operands 

are available. To obtain these operands the matrices A, B, and C must be 

stored in a manner that allows access to the entire matrix simultaneously, 

and that allows each PE access to the proper clements of the matrices. It 
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18 easily verified that both these (:riteria are satisfied if the (i,j)th 

eleaents of A, B, and C are all stored in memory (i,J). 

TO complete the computation of the matrix - matrix product, the 

sWIIIIla t io DB 

o S i,k s: n-1 

must be evaluated. The interconnections provided are sufficient to 

allow the computation of th~se summations. The following algorit~~, where 

Acc(1,j,k] 1s an accumulator, one of the $PER's, of PE (1,j,k), computes 

a matrix - matrix product. The algorithm is given in an ALGO~like 

notation [Stone, 1973-]. In this notation an inequal1t~' of the form 

(r SiS 8) following a statement means the statement i8 to be executed 

simultaneously for all values of the index In the speclfled range. 

~ A,B,C(O: n-l,O: n-l]; 

ACc[i,j,k] := A[i,j] X B[J,k], (0 ~ 1 S n-1), (0 S 1 s n-l), 

(O S k :s n-l); 

for 11 := I!.!!!! 11 ~ 0/2 do 

Acc(i,j,k] := AOC[l,J,k] + ACc(i,J+11,k], (0 Sis n-l), 

(0 ~ j :S D-l), (O:S k S n-l); 

C( 1, k] : = ACC( i, 0, k] , (O:S 1 :S n-1), (O:s k s n-1); 

The functlon of this algorlthm Is quite simple to understand. We 

first form all n3 products a
lJ 

• bjk• We then apply the log-sum algorithm 

2 
n tiaes in parallel to compute each of the cik • 
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To help illustrate the use of our ma~hine, we now give a machine 

languQle ~quivalent of this algorithm. 

SETE pEnable all PEs 

LOAD,Z $PER1,A ~PE(1,j,k) gets 

LOAD, X $PER2)B ~PE(1,j,k) gets B(j, k) 

IIPY $PER1,$PER2 ~form A(i,J) * B(J,k) 

LOAD $CUR1, '1' ~Set 11=1 

LOAD $CUR2,nd1v2 ~ndiv2 = 0/2 

JIIP ,*+2 ~Sk1p increment first time through 

Ll: ADD $CUR1,$CURl ~11 := 11 + 11 

ClIP $CUR1,$CUR2 

JIIP GT,12 ho to 12 if 11 > n/2 

IDADR $R,$PERl ~lo.d register to prepare for route 

ROtlTE,Z $CURl 

ADD $PER1,$R ~step of log sum 

JIIP ,Ll 

12: STORE,Y $PER1,C ~store results 
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IV. SPEEDUP AND EFFICIENCY 

ODe of the major reasons for building a parallel Gomputer is to 

increase the th~ughout, measured in an appropriate manner, of the 

computer as compaI~d .ith that obtainable with a serial machine using 

equivalent technology. Although the maximliM obtainable speedup is deter-

mined by the architecture of the machine, th~ actu~l dpeedup obtained is 

determined by the particular algorithm being considered. 

COnsider the parallel cQmputer described in Section II. With n3 

PEts the maximu~ obtainable speedup is n3• For the classical matrix -

matrix product algorithm 0(n3) steps are required in the serial case while 

the para~el version requires only O(log n) steps, assuming that the time 

required for a maximal length route is comparable to the time required for 

• typical arithmetie operation (For the ILLIAC IV a maximal ~ength route 

takes 14 clocks while a ~ypical floating multiply takes 9 clocks.) In 

this case the interconnections prov~ded are only slightly sub-optimal and 

consequently matrix - matrix pT~ducts can be computed in nearly minimal 

time. This gives a speedup of 0(n3/log n). 

Although this is the speedup obtained for the classical algorithm, 

it is not the speedup obtain~d for matrix - matrix products in general. 

Recent work by Winograd [1968] and Strassen [1969] has shown that matrix -

matrix products can be evaluated in less than 0(n3) steps. Strassen presents 

an algorithm requiring only 0(n(log2 7» steps. This reduces the speedup 

obtained for matrix - matrix products to O(n(log2 7)/10g n). 
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Although speedup is important, it i8 not 8S imp~rtant as cost-

effectiveness when evaluating a parallel computer. One of the main 

factors entering into the cost-effectiveness is resource utilization. 

For the parallel matrix-matrix product this is easily determined. In 

this analysis we consider relative utilization as compared with that 

for a serial machine. Resource utilization is evaluated as (results 

generated / unit time) / unit of hardware. We consider two cases. For 

the classical serial matrix-matrix product we obtain 

PE = (n2 / 0(n3» I 1 = O(l/n) 

Memory = (n
2 

/ 0(03» / 1 = O(l/n) 

For Strassen's .ethod we obtain 

PE = (n2 I 0(n(1012 7)) / 1 ~ 0(lInO. 8 ) 

(n2 I 0(n(10l2 7») / 1 ~ 0(lIDO.8) Memory 

For the parallel algorithm the results are 

PE = (n
2 I 0(10g2 n» / n3 = O(l/(n'log n» 

2 2 ) Memory = (n / 0(10g2 n» / n = 0(1/101 n 

From these figures we can determine the relative efficiency of resource 

utilization for the parallel computer. The figures that we give are 

obtained by comparing with the Strassen al~orithm. If the comparison were 

1 1 •. - i 1 0.2 .ade with the classical a gorithm the figures wou d ~ approx mate y n 
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PE ~ O(l/(n'log n}}/0(l/nO.8 ) ~ 0(1/(nO.2.101 n» 

Memory ~ 0(1/10, n)/0(1/ 00.8) = 0(nO. 8/10g n) 

With present technology the main cost of the parallel computer would 

probably be involved in the memory. Since the memory utilization of 

the .. chine 1s quite good, the cost-effectiveness of this architecture 

should be reasonably high. As for the PE's, alt~ou,h their utilization 

is low current trends in il1tegl'ated circui t technology 1ndicate that 

tbe costs of the PE's should be qui te low, allowing them to be used 

rather inefficiently without causing the overall cost-effectiveness to 

to be lowered significantly. 
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v. TRIANGULAR LINEAR SYSTEMS OF EQUATIONS 

For a computer to be useful it should be capable of solving more 

t~an a 5ingle class of problems. We now consider the problem of solving 

triangular linear systems of equations on the machine of Section II. 

We wish to solve problems of the form 

.. Y II: b 

where 

.. = 

m nn 

For the purpose of our derivation we choose to wor~ with an equivalent 

formulation. Consider evaluating sequences of the form 

i-l 
y(i) = ~ A(i,J) • y(i) + H(i) 

A, H, and N are related to M, b, and n by 

H(i) = b I m i+l i+l,i+1 

A(l,J) - -m / m - 1+I,j+1 i+l,i+1 o ~ J ~ i-l 

N = n - 1 
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These sequ~nces can be easily evaluated on a serial computer in the 

followinc manner. 

for i .- o step 1 until N ~ y(i) := H(i) ; 

for J .- o step 1 until N-l do .-
for i := j+l .!!~ 1 until N do 

y(i) := y(l) + A(i,J) X y(j); 

This algorithm requires N·(N+l)/2 each of additions and multiplications. 

The alcorithm thus requires O(~) steps. 

Froll the above serial algorithm we dtlrive tbe following parallel 

alrorithm for a lIachine of the ILLIAC lv-type. 

y(i) := H(l), (0 ~ 1 ~ N); 

for j := 0 step 1 ~ N-l ~ 

y(i) := y(1) + A(i,J) X y(j), (j+l ~ i :!> N); 

This alcorithm requires N each of addition and multiplication steps, each 

consisting of up to N operations perfo~ed simultaneously in parallel. 

This yields a speedup of (N+l)/2 as compared with the sequential algorithm. 

We would like to obtain fUrther speedup of the algorithm but there 

appears to be no straightforward way in which this speedup can be obtained. 

FOr each value of J the statement in the for loop requires the values of y 

from the previous iteration. This situation is quite similar to that ~n-

countered in Stone [1913a] for tridiagonal syst~ms. On this basi~ we apply 

the techniques of recursive doubli~ to our problem. 
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VI. THE BASIC PHINCIPLE 

The basic principle used In the development of our algorithm is 

an extension of the technique termed recursive doubling by Stone (19738]. 

This technique is discussed in detail in Kogee (1974], and the interested 

reader is referred ther£' for a more th!)rough discussion. By way of an 

example, we now pr~sent sufficient ,ackground to enable the reader to 

understand the derivation of the next section. 

Consider the problem of evaluating y(i), 0 ~ i ~ H, where y(i) is 

def1ned by the linear recurrence 

y(O) = YO 

y(i) = A(t) * y(i-l} , t ~ 1 

We proceed by deriving a sequence of equations for y(i) of the following 

foJ'll. 

These equations, although valid in general, must be modified slightly to 

account for the boundary conditions in the recurrence that occur at y(O). 

In this way we derive a method for computing the values of y(l), 1 sis H. 

Let n = rlOg2 Hl. We evaluate A(n)(i), 1 sis N, according to the above 

fOJ'llular. From the definition of A(n)(l} we know that 

I s 1 ~ N 

Thus, after computing the first r1012 Hl sets of A(k)(1}, the values of 

y(i), 1 ~ 1 s H, are all available as the result of a sirele multiplication. 

On an SIMD computer with appropriate interconnections this can be done in 

0(101 N} time and requires O(N) processors. We now proceed with our main 

developlIlent. 
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VII. A DOUBLING FORIRILA 

Consider evaluating y(i), 0 SiS N, where y(i) i8 defined by the 

lnbo.ogeneou8 linear recurrence 

1-1 

1(1) = E A(i,J) * y(J) + H(i) 
j..o 

i ~ 0 

We proceed, in the same manner as for our previous exampl.e, to derive a 

sequence of equations for y(i) of the form 

i-~ 
y(l) = ~ A(k)(i,J) * y(j) + H(k)(i) i ~ 0 

ja::O 

A vacuous sum i8 interpreted as having tbe constant value O. From these 

equations we can evaluate y(l) by 

To evaluate y(i), 0 s: i s: H, we derive the rlOg2 (N+l)1 8t set of equations 

for y(i). We now give 3n inductive proof of the validity of (*) which yields 

appropriate recurrence relations defining A(k)(i,j) and H(k}(i). 

Basis Step:. 

From this we have immediately 

i_20 

y(i) = L A(O)(l,j) * y(j) + H(O)(1) , i;:e 0 

j=O 
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IDduction Step: 

A •• u.. that (*) 18 va11d for k = n-l. We prove that (*) is a180 

valid for k = n. We know that 

1_ 2n-l 
y(l) = L A(o-l)(l,J) * y(J) + H(n-1)(1) 

J=O 

U81nc the lnductive hypothes1s we substitute for Y(1_2n- 1 }, y(1_20
-

1_1), 

••• , 1(1_20 +1). This yields the followlnc recurrence relations defioing 

A(0)(1,J) aod H(n}(1). 

Cue 1: 

1_2n- 1 

H(0)(1) = H(n-1)(1) + L A(n-1)(l,J) * H(D-l)(j) 

J=1-2D+l 

1_20-1 

A(n-l)(1,j) + L A(n-l)(l,k) * A(n-1)(k,J) 

k .. i-2'l+l 

n n-1 o ~ j ~ 1-2 +1-2 

1_20
-

1 

A(n-1)(1,j) + ~ A(n-l)(1,k) * A(n-l)(k,j) 

k;:j+2n- 1 

n 0-1 D 
1-2 +2-2 ~ j " 1-2 



-26-

Calle 2: 

n-l 
H(n)(i) = H(n-l)(i) + it A(n-l)(i,j) * H(n-l)(J) 

J=i-2n
+l 

i_2n- 1 

A(n)(i,j) = A(o-l)(I,J) + ~ A(n-l)(i,k) * A(n-l)(k,j) 
k:J+2n- l 

Case 3: 

1_20 - 1 

~ A(n-l)(i,j) * H(n-l)(J) 
j=O 

Calle 4: 

Tbe four cases shown abov~ can be reduced by noting that the differences 

between the cases are due to different bounds 00 otherwise identical 

alP_ations. 
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VIII. THE ALGORITlDt 

w~ now present the algorithm used to evaluate the y(i). This 

algo~ithm is obtained directly from the recurrence relations for 

A(k)(i,j) and H(k)(l) derived in the previous section. In this algor­

ithm the arrays A and H contain the current values of A(k)(i,j) and 

H(k)(i), and the procedure P computes vector inner products. The 

language that we use here is slightly different from ALGOL In the 

declaration and usage of arrays as parameters of procedures. A declar-

ation of a formal parameter as !!!!l A[*) indicates that the corresponding 

actual parameter is to be a one-dimensional array. Similarly, actual 

) ) th th parameters of the form A[I,* and A[*,j denote the 1 row and j 

column of an array A. 

I begin 

2 real array A[O:N,O:N]; 

3 real array H[O:N); 

4 real procedure P(U,V,FIRST,LAST); 

5 real array U,v[*]; 

6 1nteeer FIRST,LAST; 

1 begin 

8 real array T[O;N): comment T is used for temporary storage: 

9 T[k] .-0., (O~k~N); 

10 T[k] .- U[k] X V~k), (FIRST 50 k so LAST); 

II ~t:=l~t~NdO 
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12 

13 P := T[O]; 

14 ~ of procedure P; 

15 INITIALIZE; comment this procedure initializes A and Hj 

16 !2!. III := 1 step m ~ N 22 

17 begln 

18 H[lJ :- H[iJ + P(A[i,*], H[*J,max(O,i-2 X m+l),i-m), 

19 (- ~ i ~ N); 

20 A[i,j] := A[l,JJ + P(A[i,*J,A[*,J],max(i-2 X m+l,j+m), 

21 i-a), (2 X _ ~ i ~ N), (0 -= j ~ i-2 X m); 

22 ~ of main loop; 

23 Y[i]:= H[i], (0 SiS N); 

24 ~; 

The actual function of this algorithm follows quite easily fro~ the 

definition of A(k)(i,j) and H(k)(i) derived in the previous sectiotl. The 

statement in lines 18-19 determines the values of H(k+l)(i) from H(k) and 

A(k) with procedure P computing the summation 

~ A(k)(i,j) X H(k)(j) 
j 

on some appropriate range for j. Similarly, the statement in lines 20-21 

deteraines the values of A(k+l)(i,j) fro~ A(k) with procedure P computing 

E A(k)(i,t) X A(k)(t,j) 

t 
on some appropriate range for t. The main loop of the program is executed 

rl0g2 (N+l)l times. This allows the deterJllination of y(i) as 
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y(i) = H(i) 

10 complete our development we now consider the execution time 

and processor requirements of the algorithm. First we consider the 

processor requirements. Each invocation of the inner product procedure, 

procedure P, requires N+l processors and for m = 1 there are about ~/2 

lnnter products to be computed. This yields O(~) processors. FOr the 

execution tlme we note that each invocation of the procedure P requires 

IDg2 (N+l) steps. This procedure 1s involved at most 2.1082 (N+l) times 

so the total time required is O(log2 N). 

10 show that this algorithm is suited for execution on our machine, 

we consider a typical invocation of the procedure P. COnsider the 

statement 

We assign this computation to the set of PEts with labels (i,*,j). If 

we store A in memory in such a way that A(i,J) is in memory (i,j) theD. 

PE (i,J,k) will be able to access the necessary elements of A. The basic 

operations performed by this algorithm are the same as those of the matrix-

matrix product algorithm except the limits on 

are different. From these results the suitability of our machine for 

executing this algorithm can be seen. 
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IX. COMBINATORIAL APPLICATIONS 

The applications that we have considered thus far have all been 

numerical in nature. As further examples of the versatility of our 

.. chine, we now consider two combinatorial problems, namely soring and 

permutations. The methOds described are optimal in the sense of re-

quiring mlnlmal time. 

In the case of sortlng we consider the following problem. Given 

an array of n items, we. want to rearrange these items into ascending 

order as quickly as possible. It can be shown, by an information theoretic 

arcument, that the minimum number of comparisons required to do this sorting 

1s O(n'log n). This indicates that the best possible algorithm for a 

serial machine must requirp at least O{n'log n) steps. FOr a parallel 

aachine with n processcrs the minimum possible would be O(log n) steps, 

but the best known algorithm [Batcher, 1968J requires 0(10g2 n} steps. 

In this section we describe u method for sorting that requires O(log n) 

steps when executed on the machine of Section II. 

The strategy that we use for sorting is as follows. We first perform 

2 comparisons on all n pairs of items. We assign a value of 1 to each 

comparison that indicates < and a value of 0 to each comparison that 

indicates = or >. Let cij denote the val~e assigned to the result of 

comparil~ the ith element with the jth element. The value of the summation 
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th is the position of the i element of the original list in the sorted 

list if we count from 0 instead of I as the origin. This sum can be 

determined in O(log n) steps, using the standard log-sum algorithm, 

s1aultaneously for all n items under consideration. 

To complete the sorting, we must now move the items into the correct 

location. The method used to do this part of the sorting procedure is 

also suitable for performing arbitrary data permutations. We proceed 1n 

the following manner. Make n copies of the entire vector under consider­

ation. This is easily done on our machine in unit time. In the ith copy 

of the vector we wish to select the element that is to end up in the ith 

position of the output vector. To do thiS, 1n th~ ith copy of the vector 

th we zero out all entries except the one that is to end up in the i position 

of the output vector. After this modification, it is easily seen that the 

th Bur, of all elements in the 1 copy of the vector is exactly the value of 

th the element that is to end up in the i ;position in the output vector. To 

compute these sums we again apply the log-sum algorithm. This requires 

another O(log n) steps to perform the data permuting that is required, 

Although this algorithm will work in the case where there are no 

duplications in the list to be sorted, a minor modification must be made to 

allow lists with duplications to be sorted. We make this modification in 

Buch a manner as to generate what is referred to in Knuth [1973J as a stable 

sorting algorithm, that is if there are items which have identical keys in 

the list to be sorted they appear in the same relative order in the sorted 

list as they did in the original list. We accomplish this by extending our 

comparisons in such a way as to eliminate the p~ssibility of two items 
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being equal. In particular, we consider that 

if X(i) = X(J) and i < j tben X(i) < X(j) 

That is to sayan item is less than another item if its key is less 

or their keys are equal and it appears first in the original list. 

2 Both the sorting and permuting methods use only D PEts. Since 

there are 0
3 PE's available this results in a very low level of resource 

utilization. It would be desirable if there were some method of make use 

of tbese idle PEts. From consideration of the nature of our machine and 

the operations required for the algorithm, it can be seen that the entire 

2 alcorithm can be executed using only one block of n PE's. If more than 

one permutation were to be done then it would be possible to perform up 

to n of them simultaneously by allocating a different block of PE's to 

each pe~utation. This would increase the resource utilization when appll-

cable. 



-33-

x. SUDARY AND CONCLUSIONS 

In this paper u machine architecture is presented that considers 

processing elements and memories to be independent resources. The 

ar~1itecture o~ such a machine is determined by the nature of the 

interconnections between the processing elements and the memories. By 

considering the mathematical formulation of a mstrix-matrix product, 

a machine architecture is developed that allows computation of matrix-

matrix products in 0(101 u) steps, where the matrices are n X n. The 

.. chine has n
2 

memories and n3 processing elements. Stone [1973b] has 

liven SOme result. on the suitability of certain algorithms for parallel 

computation as related to questions ot speedUp and resource utilization. 

These results indicate that this machine would be reasonable to use for 

soae classes of algorithms. Additionally, this architecture provides a 

valuable method for increasing the logical bandwidth of the machine memory 

without increasing the physical bandwidth in those cases where it 1s 

applicable. 

We also developed an algorit~m for the solution to triangular linear 

systems of equations that is as fast as the best algor1thm known to this 

aU;:hor. 2 The algorithm requires 0(101 n) steps for execution on the machine 

presented here. The other algorithm known to exhibit equivalent tlme be-

4 hav1.or reqUires a MIMD computer wi th O(n ) processors for execution. 

The development of our algorithm is based upon the principle of 

recursive doubling. In our proof we develop an extension of this prinCiple 
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as compared to the work ot Stone [l973aJ and KoCCe [19'74J. This 

technique seems to be very valuable tor introducinC parallelism into 

problems which can be posed as recurrence problems. 

At this writing the error behavior ot the numerical algorithms 

in this paper has not been Investigated. The work of Kogge [1972J 

indicates that the error behavior could be expected to be as good or 

better than that of the serial algorithms. 

Sorting and permutations are two important combinatorial type 

problems. We have described methods for both of these problems that 

require only O(log n) steps when applied to vectors of n elements using 

our _chine. 
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APPENDIX 1 

De:l1ni tions; 

Index Variable i = (O,l, ••• ,n-l] 

Index Varieb1· J -. (O,l, ••• ,n-l) 

Index Variable k (O,l, ••• ,n-l) 

37....: 

MellOry MEM[O:max_mem-l]; "This is the total memory of the system" 

Register CUR[O:nreg-l]; "Control unit registers" 

Register CU_CC; "Control unit condition code register" 

Register PC; "Program counter" 

Register pEr.[O:n-l,O:n-l,O:n-l][O:nreg-l]; "Processing Element Registers -­

th 
PER(i,J,k)(m) is the m register in PE(i,j,k)': 

Register ENABLE[O:n-l,O:n-l,O:n-l]; "Enable bits -- ENABLE(i,j,k) is the 

enable bit for PE(i,J,k)" 

Register PE_CC[0:n-1,O:n-1,0:n-1]; "Processing element con~ltlon code -­

PE_CC(i,J,k} i8 the condition code for PE(i,j,k)" 

Register R(O:n-l,O:n-l,O:n-lj; "Routing register -- R(i,J,k) 18 the 

routing register for PE (i,J,k)" 

Register 1[0:n-1,0:n-1,0:n-l]; "I(i,J,k) contains the value i" 

Register .1[0:n-1,0:n-1,0:n-1]; ".1(i,J,k) contains the value J" 

Regist-.:r K[0:n-1,O:n-1,0:n-1]; "K(i,J,k) contains the value k" 

End of Detinitions; 



"Control Unit instructions" 

FUnctions; 

cu addr ... (cu_reg2 = 0 -t disPi 

cu_reg2 F 0 -t disp + CUR(cu_reg2»; 

End ot FUnctions; 

Instructions; 

" WAD cu_regl,disp(cu_reg2) 

LOAD : = (CUR( cu_ regl) ... MEPd( cu_ addr ) ) ; 

" STORE cu_regl,disp(cu_reg2) 

STORE := (MEM(cu_addr) ... CUR(cu_regl»; 

" ADD cu_regl,cu_reg2 

ADD : .. (CUR( cu _ regl) ... CUR ( c,,-regl) + CUR ( cu_ reg2); 

II 
SUB cu_regl,c~_reg2 

SUB := (CUR(cu_regl) ... CUR(cu_regl) - CUR(cu_reg2»; 

II 

" DVD c,,-regl,cu_reg2 

DVD := (CUR(cu_regl) ... CUR(cu_regl) / CUR(cu_reg2»; 

.. 
1.OADR cu_ regl, cu_ reg2 

" CMP cu_regl,cu_reg2 

CMP := (CU_CC'" CUR(cu_regl) : CUR(cu_reg2); 

" 

.nIP : = (condACU_ CC - PC ... cu_ addr); 

Load" 

Store" 

Add" 

SUbtract" 

Multiply" 

Divide" 

Load Register" 

compare" 

Transfer" 

" BCAST c:u _ regl, pe_ reg2 Broadcast" 

BCAST := (ENABLE(l,j,k) - PER(1,j,k)(pe_reg2) ... CUR(cu-rcgl»: 

End of Instructions; 



""rocessinc EleJllent instructions" 

Functions: 

pe_addr(i,J) ~ (mode = 'X' - (disp + 

39·<: 

(cu_rec2 = 0 - 0; cu_reg2 ~ 0 - CUR(cu_reg2» + 

(pe_reg2 = ° - OJ pe_reg2 ~ 0- PER(0,i,J)(pe_reg2») 

OJ(O,l,J)cK(O,i,j): 

mode = 'Y' - (dlsp + 

(cu_reg2 = ° - 0; cu_reg2 F ° - CUR(cu_reg2» + 

(pe_reg2 = 0 - OJ pe_rec2 F ° - PER(1,O,J)(pe_rec2») 

Cl(l,O,J)CK(i,O,J); 

.ade = ·Z' - (disp + 

(cu_rec2 = ° - OJ cu_reg2 F 0 - CUR(cu_reg2» + 

(pe_reg2 = 0 - 0: pe_reg2 F 0 - PER(1,J,0)(pe_reg2») 

DI(l,j,O)CJ(l,J,O»: 

d ~ dlap + (cu_reg2 = 0 - 0; cu_reg2 F 0 - CUR(cu_reg2»; 

End of Functions: 
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Instructions; 

" LOAD, 110 de Load" 

LOAD := (ENABLE(l,J,k) 1 PER(i,J,k)(pe_regl) ~ (JDOde = 'X' 1 MEM(pe_8ddr(j,k»; 

mode :: 'Y' ~ MEM(pe_addr(l,k»; 

JlDde 'z' - MEM(pe_addr(i,J»)i 

" STORE,JDOde pe regl,dlsp(cu reg2,pe_reg2) Store" 

STORE := (mode 'X' - (ENABLE(O,j,k) - MEM(pe_addr(J,k» - PER(O,J,k)(pe_regl»; 

mode = 'Y' ~ (ENABLE(l,O,k) - MEM(pe_addr(l,k)} - PER(i,O,k)(pe_regl»; 

mode = 't' - (ENABLE(l,J,O) - MEM(pe_addr(i,J» - PER(i,j,O)(pe_regl»); 

" ADD Add" 

ADD := (ENABLE(l,J,k) - PER(i,j,k)(pe_regl) ~ PER(i,J,k)(pe_regl) + 

PER(i,j,k)(pe_reg2»i 

" SUB pe_ regl, pe _ reg2 Subtract" 

SUB := (ENABLE(i,J,k) - PER(l,J,k)(pe_regl) - PER(l,J,k)(pe_regl) -

PER(1,J,k)(pe_re,2»; 

" Multiply" 

MPY := (ENABLE(i,J,k) 1 PER(l,J,k)(pe_regl) ~ PER(i,J,k)(pe_regl)* 

PER(1,J,k)(pe_reg2»i 

DVD Divide" 

DVD := (ENABLE(l,J,k) - PER(i,j,k)(pe_regl) ~ PER(l,j,k)(pc_regl) I 

PER(1,J,k)(pe_reg2»; 

.. LOADR Load Register" 

LOADR := (ENABLE(l,J,k) - PER(l,J,k)(pe_regl) ~ PER(1,J,k)(pe_reg2}}i 

" ClIP pe_ regl, pe_ reg.~ Compare" 



" SETE aode,conc.' Set Enable Bt t" 

Sl!.'TE ::: (ENABLE(l,j,k) ~ (mode :: , I ~ condAPE_CC(1,J,k); 

mode :: 'A' ~ condAPE_Cc(t,j,k)~ENABLE(t,j,k); 

IIOde :: '0' ~ (condAPE_CC(l,j,k»VENABLE(i,J,k): 

IIOde :: 'C' ~~ENABLE(t,j,k»; 

" LDE,JIIOde dlsp(cu_reg2,pe_reg2) LOad Enable B1t" 

LDE :- (ENABLE(i,j,k) - (lIIOde 'X' - MEM(pe_addr(J,k)}<1>i 

110 de 'Y' - MEM(pe_addr(i,k)}<j>i 

mode = 'z' - MEM(pe_addr(i,j)~; 

" STE,lIOde disp(cu_reg2,pe_reg2) Store Enable B1t" 

STE := (aode = 'X' - MEM(pe_addr(j,k»<t> - ENABLE(l,J,k)i 

aode = 'Y' - MEM(pe_addr(t,k)}<J> - ENABLE(l,J,k); 

.,de :: 'Z· - MEM(pe_addr(t,J»<k> - ENABLE(l,J,k»: 

" aouTE,mode disP( cu_rec2) Route" 

ROUTE :~ (R(l,J,k) ~ (mode :: 'X' - R(l,«n'J+k-d)/n) mod n,(k-d) lIIod D); 

mode :: 'Y' - R«(n.i+k-d)/n) mod n,j, (k-d) mod n): 

mode = lZ' - R«(n.l+j-d)/n) mod n,(j-d) mod n,k»: 

End of IDS tructiQns; 


