PB-234 513

A NOVEL PARALLEL COMPUTER ARCHITEC-
TURE AND SOME APPLICATIONS

Samuel E. Orcutt

Stanford University

Prepared for:

National Science Foundation

May 1974

DISTRIBUTED BY:

Natienal Technical Information Service

_

!

BIBLIOGRAPHIC DATA 1. Report No. 2,
SHEET Technical Report No. 71 PB 234 513
4. Title and Subkitle S. Report Date
May 197L4
A Novel Parallel Computer Architecture and Some Applications 6.
7.A 8. Performing Organizari :
uthor(s) Samuel E. Orcutt N:t orming Organization Rept
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Stanford University
Digital Systems Laboratory

1. Contract/Grant No.

Stanford, California 94305 NSF Grant GJ-41093
12. Sponsoring Organization Name and Addreas 13. Type of Report & Period
Covered
National Science Foundation technical

1800 G Street NW
Washington, D.C, 20550

14,

15. Supplementary Notes
STAN-CS-74-430

16. Abstracts

(see attached sheets)

17. Key Words and Document Apalysis. 17a. Descriptors

parallel computation, computer architecture, interconnection

netwvorks, triangular linear systems, matrix multiplication, sorting.

17b. Ideatifiers/OpensEnded Terms

Kepooaurad by

NATIONA! TECHNICAL
INFORMATION SERVICE
WS Depo ot ol Domecrce

S finld VA 27
17¢. COSATI Field/Group prinafield VA 22151

18. Availability Statement 19. |Slecwi')y Class (This
114
Approved for public release; distribution unlimited it

21, No. of Prges
. Security Class is

P.ﬁN /. %\r

FORM NTIS-33 (RKV. 10-73) ENDO SED BY ANSI AND UNESCO. THIS FORM MAY BE REPRODUCED USCOMM. DC 32¢8-P74

ABSTRACT

Present day computers have been designed with processing elements
and memories in a one-to-one correspoandence, For many problems this
architecture limits the speed of solution. In this paper a machine
architecture is presented in which processing elements and memories
sre considered independent resources. This architecture provides a
technique for increasing the logical bandwidth of the memory without
increasing the physical bandwidth. The scheme for interconnecting
processing elements and memories .s based on the mathematical formu-
lation.of a matrix-matrix product,

Of interest in determining the usefulness of a particular computer
architecture are the problem classes which it is able to solve efficiently.
For this machine we consider several problems. On a serial processor
the multiplication of two nxXn matrices requires C(n3) steps when using
the classical algorithm or O(n(IOg2 7)) steps when using Strassen's
algorithm, VWe present an algorithm for our machine which performs this
multiplication in O(log n) steps. This can easily be shown to be the
minimum time possible. We also consider the solution of linear triangulsr
systems of equations, This problem requires O(n2) steps for a serial
processor, and O(n) steps for a parallel processor of the ILLIAC IV-type.
We present a parallel algorithm suited to execution on our machine which
solves these systems in 0(log2 n). This algorithm is based on an extension

of the principle of recursive doubling,

. ./l
STAN-CS-74-430 /"

A Novel Parallel Computer Architecture

and Some Applications

by

Samuel E. Orcutt

May 1974

Tecknical Report No. T1

Digital Systems Laboratory
Stanford Electronics Laboratories

Stanford, California

This work was supported by Bell Laboratories and by the National
Science Foundntion under grant GJ-41093.

A NOVEL PARA’.LEL COMPUTER ARCHITECT{RE

AND SOME APPLICATIONS
by Samuel E, Orcutt
Abstract

Present day computers have been designed with processing elements
and mewories in a one-to-one correspondence, For many problems this
architecture limits the speed of solution. In this paper a machine
architecture is presented in which processing elements and memories
are considered independent resources, This architecture provides a
technique for increasing the logical bandwidth of the memory without
increasing the physical bandwidth. The scheme for interconnecting
Processing elements and memories is based on the mathematical formu-
lation of a matrix-matrix product,

Of interest in determining the usefulness of a particular computer
erchitecture are the problem clssses which it is able to solve efficiently.
For this machine we consider several problems. On a serial processor
the multiplication of two nxXn matrices requires O(n3) steps when using
tne classical algorithr or 0(n’-1°32 7)) steps when using Strassen's
algorithm, We present an algcrithm for our machine whi~zh performs this
wmultiplication in O(log n) steps, This can easily be shown tc be the
minimum time possible. We also consider the solution of lincar triangular
systems of equations, This problem requires O(nz) steps for a serial

processor, and O(n) steps for a parallel processor of the ILLIAC Iv-type.

v

¥: present a parallel algorithm suited to execution on our machine which
s(lves these systems in 0(1032 n). This algorithm is based on an extension
of the principle of recursive doubling,

In addition to numerical type slgorithms, we present algorithms
for several combinatorial type problems. In particular, we give methods
for performing permutations and sorting. These algorithms require 0(log n)

steps when operating on n items.

I. INTRODUCTION

Present day computers have been designed with processing elements
(PE's) and memories in a one-to-one correspondence. The classical serial
processor is composed of a single PE and a single memory. In a typical
parallel processor, say the ILLIAC IV, there are a multplicity of indi-
vidual processors, each one composed of a2 PE and a memory, In this case
there are many independent PE's and memories but they are organized so as
to associate a single memory with each PE.

As on slternative, PE's and memories can be interconnected in an
arbitrary manner. In Section II a machine architecture that makes use
of this additional fre~dom is described. This architecture provides a
method for increasing the logical bandwidth of the memory without increasing
the physical bandwidth. The scheme used for interconnecting PE's and
memories is based upon the mathematical formulation of matrix-matrix products,

In order to utilize such a computer organization effectively, it is
essential that the algorithms chosen be organized in a manner appropriate
to this organization. Considerable recent research has been done on the
development of algorithms in this manner, much of the impetus in this areca
being p:omoted by the ILLIAC IV project. The main emphasis of this research
has been toward developing algorithms for solving problems of size n, size
being measured in a manner appropriate to the particular problem under
consideration, on a machine with n processors.

In Section III we present an algorithm for computation of Mutrix~woatrix

products that requires only O(log n) steps when executed on our machine. 1In

Section 1V the speedup and efficiency of this algorithm is investigated.
We also consider the problem of solving triangular linear systems of
equations, The serial algorithm requires O(ne) steps, and the straight-
forward parallel algorithm requires O(n) steps when executed on a
varallel machine of the ILLIAC IV-type. The fastest algorithm known
to this author is that of Heller [1973]. By applying matrix theoretical
arguments to a lower Hessenberg matrix derived from the original triangular
matrix, he develops an algorithm which requires 0(1032 n) when executed
on a MIMD computer with O(nu) processors and an appropriate interconnection
network, (We use MIMD and SIMD in the sense of Flynn [1966]. They are
taken to mean Multiple Instruction stream - Multiple Data stresm and Single
Instruction stream - Multiple Data stream respectively.) By applying
recursive doubling arguments, similar to those of Stone [1973a] and Kogge
[197h], directly to the recurrence relation represented by the triangular
system we also develop an algorithm requiring O(log2 n) steps. Although
this time behavior is identical to Heller's, our algorithm requires only
0(n3) processors and is suitable for execution on the machine of Section II.
In Section V we give serial and straightforward parallel algorithms for
the solution to triangular linear systems, Section VI presents the hasic
principle upon which our algorithm is based, the principle of recursive
doubling developed by Stone, In Sections VII and VI1I we develop our
algorithm for the solution to triangular linear systems of equations. This
problems is of interest as it forms a fundamental step in the solution of

general linear systems of equations when using the LU factorization.

In addition to the numerical type problems, it is useful to consider
some combinatorial applications, The twu problems comsidered in Section_
IX are sorting and permutations. For the case of sorting the best known
parallel algorithm tskes O(log2 n) steps, while the algorithm we present
requires only O(log n) steps. The algorithm presented for performing

permutations also requires 0(log n) steps.

II. THE MACHINE ARCHITECTURE

Extant parallel computers have been designed using a set of
independent processors, each consisting of a PE connected to a memory.
Although this architecture is suitable for many applicatinns, there
exist large problem classes that are not well suited to efficient
solution on such a machine., To solve problems of these classes
efficiently, a computer architecture more versatile than those currently
in use must be developed. In this section such an architecture, based
upon a set of independent PE's, a set of independent memories, and a set
of interconnections, is considered. A block diagram of this architectura
is shown in Figure II.1l. The five blocks in the diagram are each described
in detail in the remainder of this section.

A bottleneck in many computers is the memory. To compute at maximum
possible speed the memory must have sufficient bandwidth to supply the
arithmwetic hardware with operands as fast as they are used. In modern
computers several techniques have been used to increase the availability
memory bandwidth without just buying faster and faster memory. The most
commonly used technique is memory interleaving. This consists of parti-
tioning a single memory into a set of smaller, independently operating
modules., In this way multiple memory requests may be simultaneously active
resulting in a higher bandwidth than otherwise. We have taken this princi-
ple one step further. 1In addition to having multiple independent memory
modules, we arrange the data paths from thc memories in such a way as to

transmit the data from a single memory to many different PE's simultancously.

Data Flow Paths

-~ meomees Control Signal Flow Paths

MEMORIES

. MEMORY-PE INTERCONNECTION NETWORK

CONTROL UNIT

PROCESSING ELEMENTS (PEL)

T -j PE-PE INTERCONNECTION NETWORK

Figure II.1

Basic Machine Block Diagram

In this way, if n PE's are connected {0 each memory we obtain an increase
in memory bandwidth of up to n,

There are n2 memories 1n our computer, Conceptuaslly these memories
are organized as a nXn array. Each memory is assigned a unique label
(1,3) where O s i,j< n-1, Every memory can he addressed independently
of all other memories. The memories operate synchronously, and any or
all of the memories may be active during any memory cycle,

Memory addressing on this machine is similar to that on conventional
machines with interleaved memories. To identify a single word in memory
it 18 necessary to specify both the memory in which the word is located and
its displacement within that memory. The way in which a memory address is
formed from these two items is shown schematically in Figure 11.2. For our
machine there arce two different cases. When a memory address is obtained
from the PE arrasy the memory identification is implicitly provided from the
lgbel of the PE providing the address in a manner described later in this
section, In this case only the displacement need be specified. When access
is from the control unit both the memory identification and displacement must
be explicitly provided.

3

There are n” PE's in our computer. Conceptually these PE's are
organized as a n X n X n array. Each PE is assigned a unique label (1,3,k)
where O < i,j,k < n-1. The PE's each have the basic arithmetic capabilita:s
normally found in a serial machine. All PE's obtain their instructions
simult.ineously from a single instruction stream., A PE is either enabled or
disalled from execucing instructions according to its local cnabie bit,

These cnable bits are set and reset by cither local tests or global erable-

setting instructions,

displacement i I J

Figure I1.2

Structure of Memory Addrerses

The control unit (CU) is the central element in the computer
structure., It is a computer in its own right, The instruction re-
pertoire of the CU consists of most instructions found in typical
serial machine repertoires, plus instructions for controlling the
parallel features of our machine., The instruction stream of the
machine is under control of the CU. Instructio>ns that pertain to
the CU are executed locally. Instructions that pertain to other parts
of the machine are decoded in the CU and sent to the appropriate part
of the mechine in the form of control signals. Included among these
control signals are any common operands required by the PE's,

The memory - PE interconnection network provides the requisite data
transfer paths between the memories and the PE's. Which PE's are connected
to each memory depends on which of three memory access modes is used. 1In
any case, n PE's are simultaneously connected to every memory. Table II.1
describes the connections present for memory (i,j) in each of the access
modes. In this table, an entry of the form {i,j,*) represents the set of
all PE's whose labels have i and j as the first and second components
respectively,

The PE-PE interconnection netwo:l provides the requisite processor
interconnections. As in the case of the memory-PE interconnecticn network,
there are three modes of opcration., In each of these modes the PE's are
partitioned into n blocks of n2 PE's each, Duta is exchanged only between
PE's in the same block. These exchanges take place simul taneously and in
an identical marner for all n blocks., Figure I11.3 shows the interconnections
established within a typical block of PE's when the interconnection network

is used in moc: Z, The interconnections are similar in the other two modes.

MODE

PE Providing PEs Receiving Data
Addresses When Fetching
(0,1,3) (*,1,3)
(1,0,3) (1,%,3)
(1,3,0) (1,3,%)
Table II.1

PE Providing Data
Yhen Storing

(0,1,3)

(1,0,3)

(1,3,0)

Memory-PE Interconnection Network Function

=10-

(0,0,k) (0,1,k) - "1 (o,n-1,k)
(1,0,k) (1,1,k) e+ (1,n-1,k) 1
|
L— (n-1,0,k) (n-1,1,k%) eees =1 (n-1,n-1,k)

Figure IL.3

Processor Interconnections for a typical block when in

mode = 2

=]ll=

Table 11.2 describes these interconnections more precisely. This
table specifies the FE {1',3',k') that is at a distance d from PE
(1,3,k) in each of the three modes, that is if data is routed a
distance d, the datum froin PE (i,j,k) ends up in PE (i',3',k").

In this table, an entry of the form (i,%,*) reprisents the set of all
PE's with labels whoée first component is 1.

To further clarify the nature of the machine we now give examples
of several typical machine instructions, A more complete description of
the machine instructions is given in Appendix 1. The insfructions are
described in a notation very similar to the ISP notation of Bell and
Newell [1971]. The main deviation from ISP is an extension to allow
description of the explicit parallel activities that occur in the machine.

To this end we define a new type of item that we call an index wariable.

An index variable has us its value a set of integers., The appearance of

an index variable in a statement indicates that the statement is to be
executed simultaneously for every integer in the set associated with that
index variable. Index variables do not correspond to anything physically
present in the machine architecture but are merely a notational convenience,
In these descriptions we use the following symbolic coding conventions,
$PERL is the symboljic name of Processing Element Register i, $CURi is the
symbolic name of Control Unit Register i, and $R is the symbolic name of

the Route register. The mnemonics used here are not necessarily those that
should be present in an actual assembly language but are chosen for their
descriptive quality., Since some of the PE and CU instructions have identical
mnemwonics, we assume that the actual bit encoding of the instructions allows
the type of instruction, PE or CU, to be determined. We present CU

instructions first.

MODE

1' J' k'

1 ((n+J+k+d)/n) mod n (k+d) mod n
((n<1+k+d)/n) mod n J (k+d) mod n
((n+1+j+d)/n) mod n (j4d) mod n k

Table II.2

PE (i',3',k') that 1s at distance d from PE (i,J,k) 1in each mode.

BLOCKS

(1,%,%)

(*:3,%)

(*,%,k)

-at—

-13-

£xample Instruction Comment

LOAD $CURL, N $CUR1 := MEMORY(N)

SUB $CURO, $CUR2 $CURO := $CURO - $CUR2

JMP £Q,LABl if condition code indicates egual

then go to LABl
BCAST $CUR2, $ PERY for every PE that is enabled do

$PER1 := $CUR2

The instructions LOAD, SUB, and JMP function like similar imstructions in
s serial machine. The instruction BCAST 1s used to broadcast a single
datum to all the PE's.

We now consider PE instructions., All of these instructions, except

ROUTE, affect only PE's that are enabled. ROUTE affects all PE's,

Example Instruction Comment

LOAD,X $PER1,A $PER1 := MEMORY(A) in aceess mode X
ADD $PERO, $PER3 $PERC := $PERO + $PER3

ROUTE,Y 3 route data between PE's a distance

d = 3 in routing mode Y
oMP $PER], $ PER2 the condition code is set according
to $PERY : §PER2
SETE A,GE set the enable bit if and only if the

condition code indicates > or =,

14

These instructions are basically similar to typical parallel computer
instructions, 7The differences arise from the strategy used for memory
accessing and PE interconnections. The exact nature of these two items

was described p:eviously in this section.

III. COMPUTATION OF MATRIX - MATRIX PRODUCTS

For an algorithm to execute efficiently on a given computer the
organization of the algorithm must be suited to the structure of the
computer, To utilize the available computing resources as efficiently
as possible, algorithms should be selected with this in mind. As an
example, consider the computation of a matrix-matrix product.

Let A, B, and C be n X n matrices. Consider the equation

C = A'B
This computation is to be performed in minimal time using arithmetic
operations on pairs of operands. It is easily shown, by a fan-in argument,
that the minimal time reqﬁired for this computation is O(log n). By
introducing the maximum apparent parallelism into the classical serial
algorithm for computing matrix - matrix products, a parallel algorithm
that requires O(log n) steps when executed on the machine of Section II
is developed.,

It is well known that

n-1
i =F a4 ° bk O0< i,k <n-l

The computation of a8y " ka is performed in PE (1,j,k). 1In this way
all n3 products can be computeu simultaneously provided sufficient operands
are available. To obtain these operands the matrices A, B, and C must be

stored in a manner that allows access to the entire matrix simultancously,

and that allows each PE access to the proper elements of the matrices. It

-16-

is easily verified that both these criteria are satisfied if the (1,3)'"
elements of A, B, and C are all stored in memory (i,J).
To complete the computation of the matrix - matrix product, the

summations

n-1
;6 (a5 * byy) 0 s i,k < n-1

must be evaluated. The interconnections provided are sufficient to

allow the computation of these summations. The following algorithkm, where
Acc{i,],k] is an accumulator, one of the $PER's, of PE (i,j,k), computes

a matrix - matrix product. The algorithm is given in an ALGOL~-like
notation [Stone, 1973:1. In this notation an inequality of the form

(r <1 < 8) following a statement means the statement is to be executed

simultaneously for all values of the index in the specified range.

array A,B,c(0: n-1,0: n-1];
Accli,3,k] := Al1,3] x B{3,k], (0 =1 <n-1), (O <1 5n-1),
(0 < k s n-1);
for i1 := 1 step ii until n/2 do
Acc[i,3,k) := Aacc(i,3,k] + Acc(i,j+i1,k], (O < i < n-1),
(0<J)snp1), (0sksn-1);

c(1,k] := acc[1,0,k], (0 <1 <n-1), (0 <k s n-1);

The function of this algorithm is quite simple to understand. We
3

first form all n~ products a b

iJ Jk*

n2 times in parallel to compute each of the c

We then apply the log-sum algorithm

ik*

To help illustrate the use of our machine, we now give a machine

language =quivalent of this algorithm,

LOADR

ROUTE, Z

STORE, Y

$PER1, A
$PER2, B
$PER], $ PER2
$CUR1, '1'
$CUR2, ndiv2
, 42

$CUR1, $CUR1
$CUR1, $CUR2
GT,L2

$R, $PER]
$CUR1
$PER], $R
,L1

$PER1,C

#Enable all PEs

%PE(1,J,k) gets

%PE(1,1,k) gets B(J,k)

%torm A(1,J) * B(j,k)

%set 11=1

$ndiv2 = n/2

%Skip increment first time through

P11 ;= 11 + 14

fgo to L2 if i1 > n/2

%load register to prepars for route

4step of log sum

%store results

-18-

1V, SPEEDUP AND EFFICIENCY

One of the major reasons for building a parallel computer is to
increase the throughout, measured in an appropriate manner, of the
computer as compared with that obtainable with a serial machine using
equivalent technology. Although the maximum obtainable speedup is deter-
mined by the architecture of the machine, the actuul speedup obtained is
determined by the particular algorithm being considered.

Oonsider the parallel computer described in Section II, With n3
PE's the maximum obtainable speedup is n3. For the classical matrix -
matrix product algorithm O(n3) steps are required in the serial case while
the paral}el version requires only O(log n) steps, assuning that the time
required for a maximal length route is comparable to the time required for
a typical arithmetic operation (For the ILLIAC IV a maximal .ength route
takes 14 clocks while a typicai floating multiply takes 9 clocks.,) 1In
this case the interconnections provuded are only slightly sub-optimal and
consequently matrix - matrix products can be computed in nearly minimal
time. This gives a speedup of 0(n3/IOg n).

Although this is the speedup obtained for the classical algorithm,
it is not the speedup obtained for matrix - matrix products in general.
Recent work by Winograd {1968] and Strassen [1969] has shown that matrix -
matrix products can be evaluated in less than O(n3) steps, Strassen presents
(1085 7))

an algorithm requiring only O(n steps. This reduces the speedup

obtained for matrix - matrix products to O(n(1°g2 7)/log n).

-19-

Although speedup is important, it is not as important as cost-
effectiveness when evaluating a parallel computer. One of the main
factors entering into the cost-effectiveness is resource utilization.
For the parallel) matrix-matrix product this is easily determined. In
this analysis we consider relative utilization as compared with that
for a serial machine. Resource utilization is evaluated as (results
generated / unit time) / unit of hardware. We consider two cases. For

the classical serial matrix-matrix product we obtain

PE = (n° / 0(n3)) / 1 = O(1/n)

Memory (n2 / 0(n3)) / 1 =0(1/n)

[}
n

For Strassen's method we obtain

(n2 7 o(n{2°82 7))y , 1 ~ 0(1/n2-8)

’

8

PE

[

[

Memo ry (n2 / O(n(1°¢2 7))) /1w O(I/nO‘
For the parallel algorithm the results are

PE

]
L}

(n2 / 0(1og,, n)) / n3 0(1/(n-log n))

Memory

(n2 / 0(log,, n)) / n° 0(1/10g n)

From these figures we can determine the relative efficiency of resource
utilization for the parallel computer. The figures that we give are
obtained by comparing with the Strassen algorithm. If the comparison were
made with the classical algorithm the figures would be approximately n0'2

higaer,

.2

8 *log n))

PE ~ 0(1/(n*1log n))/0o(1/n°-°) = o(1/(n°

Memory = O(1/log n)/o(l/no‘a) = O(no'ellog n)

With present technology the main cost of the parallel computer would
probably be involved in the memory, Since the memory utilization of
the mechine is quite good, the cost-effectiveness of this architecture
should be reasonably high. As for the PE's, although their utilization
is low current trends in integrated circuit technology indicate that
the costs of the PE's should be guite low, allowing them to be used
rather inefficiently without causing the coverall cost-effectiveness to

to be lowered significantly.

-21-

V. TRIANGULAR LINEAR SYSTEMS OF EQUATIONS

For a computer to be useful it should be capable of solving more
than a single class of problems, We now consider the problem of solving
triangular linear systems of equations on the machine of Section I1I.

We wish to solve problems of the form

My=D>Db
where

= L
™

Py P22

M = m n m
31, 32 33
mnl 'n2 mn3 « o o o mnn

For the purpose of our derivation we choose to work with an equivalent
formulation. Consider evaluating sequences of the form

i-1

y(1) = ;Z; A(1,3) * y(1) + H(1) 0<SisN
A, H, and N are related to M, b, and n by

H(i) = b /

141 7 Mia, i

/ 0sj < i-1

A(1,3)

M1, 341 7 Ma,10

N=n-1

-P2m

These sequences can be easily evaluated on a serial computer in the

following manner.

for i := O step 1 until N do y(1) := H(1);
for j := O step 1 until N-1 do
for 1 := J+1 step 1 until N do

y(1) := y(1) + A(1,3) X v(3);

This algorithm requires N-(N+1)/2 each of additions and multiplications.
The algorithm thus requires O(Na) steps.
From the above serial algorithm we derive the following parallel

algorithm for a machine of the ILLIAC IvV-type.

y(1) :=H(1), (0 <1 s N);
125 J := 0 step 1 until N-l_gg

y(1) := y(1) + A(1,3) X y(4), (3+1 s 1 < N);

This algorithm requires N each of addition and multiplication steps, each
consisting of up to N operations performed simultaneously im parallel,

This yields a speedup of (N+1)/2 as compared with the sequential algorithm,
We would like to obtain further speedup of the algorithm but there
appears to be no straightforward way in which this speedup can be obtained.
For each value of j the statement in the for loop requires the values of y

from the previous iteration. This situation is quite similar to that en-
countered in Stone [1973a] for tridiagonal systems. On this basis we apply

the techniques of recursive doubling to our problem,

-23-

VI. THE BASIC PRINCIPLE

The basic principle used in the development of our algorithm is
an extension of the technique termed recursive doubling by Stone [19733].
This technique is discussed in detail in Kogge [197&], and the interested
reader is referred there¢ for a more thorough discussion, By way of an
example, we now present sufficient .ackground to enable the reader to
understand the derivation of the next section.

Consider the problem of evaluating y(i), O < 1 £ N, where y(1i) is

defined by the linear recurrence

y(0)

Yo

7(1) = A(3) * y(i-1) , 1 21

We proceed by deriving a sequence of equations for y(i) of the following
form,

y(1) = A% (1) % y(1-25) , A®)(1) < a0V (q) x A1) (4 oK1

These equations, although valid in general, must be modified slightly to
account for the boundary conditions in the recurrence that occur at y(0).
In this way we derive a method for computing the values of y(i), 1 s 1 < N,
Let n = flog2 Nl. We evaluate A(n)(i), 1 < 1 £ N, eccording to the above

formular. From the definition of A(n)(i) we know that
y(1) = A(n)(i) * ¥ 1s4$<N

Thus, after computing the first flog2 Nl sets of A(k)(i), the values of
y(i), 1 < 1 < N, are all available as the result of a single multiplication,
On an SIMD computer with appropriate interconnections this can be done in
O(log N) time and requires O(N) processors. We now proceed with our main

development,

-2~

VII. A DOURLING FORMULA

Consider evaluating y(1), O < 1 < N, where y(i) is defined by the

inhomogeneous linear recurrence
i-1

y(1) = E A(1,3) * y(3) + H(1) 120
3=0

We proceed, in the same manner as for our previous example, to derive a

sequence of equations for y(i) of the form

1-2k
(*) (1) =3, AM,a) x y) + 1™y 120
J=0

A vacuous sum 1s interpreted as having the constant value 0. From these

equations we can evaluate y(1) by

y(1) =81 | k= Mog, (1+1)1

To evaluate y(1), O < 1 < N, we derive the rlog2 (N+1)]st set of equations
for y(1). We now give an inductive proof of the validity of (*) which yields

appropriate recurrence relations defining A(k)(i,J) and H(k)(i).
Basis Step:.
Let A(o)(i,J) = A(1,J) and H(O)(:l) = H(1)

From this we have immediately

1-20

) =3 4900 * v 1), 120
J=0

Induction Step:
Assume that (*) is valid for k = n-1. We prove that (*) is also

valid for k = n, We know that

1_2n-1

1) =30 AV, =)+ 1)
3=0

Using the inductive hypothesis we substitute for y(1—2n.1), y(1-2n-1-1),
seey y(1-2n+1). This yields the following recurrence relations defining

A(n)(i,j) and n(“)(i).

Case 1: 12 220
' 1-2""1
ﬂ(n)(i) - H(n—l)(i) + 2 A(n—l)(i':’) * H(n-l)(.'))
3=1-2"1
3271
A0y e T A i) % a0,
k=i-29+1
0<3=< 1-2"1-2"?
A(n)(iij) =
1_2n-1
A(n-l)(ixd) + 2 A(n—l)(i,k) * A(n-l)(k,:])
k=342 !

1-2%0-2%) < 5 < 12"

Case 2: s 1< Mg
i n-1
1™ (1) = w1 i A1) (g,5) « w(m2)(y)
J=1-2n+1
;_2n—1
A®5) 2 a5y« T APk « Ak, g)
k=J+2n-1
0< 3« 1-2n
Case 3: Moy
11

i) 2wy« T Al « w1t gg)
J=0

Case L: 1< 2™?
1™ (1) = a(™V)

The four cases shown above can be reduced by noting that the differences

between the cases are due to different bounds on otherwise identical

supmations,

Vvili. THE ALGORITHM

We now present the algorithm used to evaluate the y(i). This
algorithm is obtained directly from the recurrence relations for
A(k)(i,J) and H(k)(i) derived in the previous section, In this algor-
ithm the arrays A and H contain the current values of A(k)(i,J) and
H(k)(i), and the procedure P computes vector inner products. The
language that we use here is slightly different from ALGOL in the
declaration and usage of arrays as parameters of procedures. A declar-
ation of a formal parameter as array A[*] indicates that the corresponding
actual parameter is to be a one-dimensio;al array. Similarly, actual
parameters of the form A(1,*] and A[*,j] denote the 1" row ana 3"

column of an array A.

3 begin

2 resl array A[O:N,0:N];

3 real array H{O:N];

I real procedure P(U,V,FIRST,LAST);

5 real array U,v{*];

6 integer FIRST,LAST;

T begin

8 real array T[O:N]; comment T is used for temporary storage;
9 (k] ::0., (0 < k < N);

10 k] := U[k] x v(k], (FIRST s k s LAST);

11 for £:= 1 step £ until N do

12 (k] := T(k] + T[k+], (0 = x < N-L);

13 P := T(0]; '

pLs end of procedure P;

15 INITIALIZE; comment this procedure initializes A and H;
16 form :-1 stepm until N do

17 begtn

18 B{i) :- H[1] + P(A[4,*], H[*],max(0,1-2 X m+l1),1-m),
19 (m <1 <N);

2 Al1,3) := A(1,3) + P(A[1,%],A[*,3],max(i-2 X m+1,j+m),
21 i-m), (2Xm<1isN), (0] <£i-2Xm);
22 'e_n_g of main loop;

23 (1] :=u{i], (0 s 1 < N);

24 end;

The actual function of this algorithm follows quite easily from the
definition of A(k)(i,,j) and H(k)(i) derived in the previous section. The
statement in lines 18-19 determines the values of H(k+1)(1) from H(k) and

A(k) with procedure P computing the summation

Y A, x 1))
J

on some appropriate range for j. Similarly, the statement in lines 20-21

determines the values of A(k+1)(1,_j) fron. A(k) with procedure P computing

3 a0 1,8y x a®e,)
)

on some appropriate range for £. The main loop of the program is executed

|'-log2 (N+1)1 times. This allows the determination of y(1) as

-29-

y(1) = H(1)

To complete our development we now consider the execution time
and processor requirements of the algorithm. First we consider the
processor requirements. Each invocation of the inner product procedure,
procedure P, requires N+l processors and for m = 1 there are about N2/2
innter products to be computed. This yields O(N3) processors, For the
execution time we note that each invocation of the procedure P requires
log,, (N+1) steps. This procedure is involved at most 2-1og, (N+1) times
so the total time required is 0(log2 N).

To show that this algorithm is suited for execution on our machine,
we consider a typical invocation of the procedure P, Consider the

statement
A[1,1] := Al[1,3] + P(A[1,%],A(%,3],...

We assign this computation to the set of PE's with labels (1,%,j). If

we store A in memory in such a way that A(i,J) is in memory (1,j) then

PE (1,3,k) will be able to access the necessary elements of A, The basic
operations performed by this algorithm are the same as those of the matrix-

matrix product algorithm except the limits on

PR

J

are different. From these results the suitability of our machine for

executing this algorithm can be seen.

IX. COOMBINATORIAL APPLICATIONS

The applications that we have considered thus far have all been
numerical in nature, As further examples of the versatility of our
machine, we now consider two combinatorial problems, namely soring and
permutations, The methods described are optimal in the sense of re-
quiring minimal time,

In the case of sorting we consider the following problem. Given
an array of n items, we.want to rearrange these items into ascending
order as quickly as possible, It can be shown, by an information theoretic
argument, that the minimum number of comparisoné required to do this sorting
is O(n*log n). This indicates that the best possible algorithm for a
serial machine must requirs at least O(n-log n) steps. For a parallel
machine with n processcrs the minimum possible would be O(log n) steps,
but the best known algorithm [Batcher, 1968] requires 0(10g2 n) steps.

In this section we describe » method for sorting that requires O(log n)
steps when executed on the machine of Section II.

The strategy that we use for sorting is as follows, We first perform
comparisons on all n2 pairs of items, We assign a value of 1 to each
comparison that indicates < and a value of O to each comparison that
indicates = or >, Llet c denote the value assigned to the result of

1)
th th
comparing the i~ element with the j element., The value of the summation

-31-

is the position of the 1th element of the original 1ist in the sorted
1ist if we count from O instead of 1 as the origin, This sum can be
determined in O(log n) steps, using the standard log-sum algorithm,
simultaneously for all n items under consideration,

To complete the sorting, we must now move the items into the correct
location., The method used to do this part of the sorting procedure is
also suitable for performing arbitrary data permutations, We proceed in
the following manner, Make n copies of the entire vector under consider-

ation, This is easily done on our machine in unit time, 1In the 1th copy

of the vector we wish to select the element that is to end up in the 1th
position of the output vector. To do this, in the ith copy of the vector
we zero out all entries except the one that is to end up in the 1th position
of the output vector. After this modification, it is easily seen that the
suri of all elements in the ith copy of the vector is exactly the value of
the element that is to epd up in the ith;position in the output vector. To
compute these sums we again apply the log-sum algorithm, This rcquires
another O(log n) steps to perform the data permuting that is required,
Although this algorithm will work in the case where there are no
duplications in the list to be sorted, a minor modification must be made to
allow lists with duplications to be sorted. We make this modification in
such a manner as to generate what is referred to in Knuth [1973] as a stable
sorting algorithm, that is if there are items which have identical keys in
the 1ist to be sorted they appear in the same relative order in the sorted
list as they did in the original 1ist. We accomplish this by extending our

comparisons in such a way as to eliminate the possibility of two items

-32-

being equal. In particular, we consider that
12 X(1) = X(3) and 1 < J then X(1) < X(J)

That is to say an item 1s less than another item if its key is less
or their keys are equal and it appears first in the original l1ist.

Both the sorting and permuting methods use only n2 PE's, Since
there are n3 PE's available this results in a very low level of resource
utilization. It would be desirable if there were some method of make use
of these idle PE's., From consideration of the nature of our machine and
the operations required for the algorithm, it can be seen that the entire
algorithm can be executed using only one block of n2 PE's, If wmore than
one permutation were to be done then it would be possible to perform up
to n of them simultaneously by allocating a different block of PE's to

each permutation. This would increase the resource utilization when appli-

cable.

- 33_

X. SUMMARY AND CONCLUSIONS

In this paper u machine architecture is presented that considers
processing elemcnts and memories to be independent resources, The
arciitecture of such a machine is determined by the nature of the
interconnections between the processing elements and the memories. By
considering the mathematical formulation of a matrix-matrix product,

a machine architecture is developed that allows compuiatiion of matrix-
matrix products in O(log n) steps, where the matrices are n X n. The
machine has ne memories and n3 processing elements, Stone [1973b] has
given some results on the suitability of certain algorithms for parallel
computation as related to questions of speedup and resource utilization,
These results indicate that this machine would be reasonable to use for
some classes of algorithms. Additionally, this architecture provides a
valuable method for increasing the logical bandwidth of the machine memory
without increasing the physical bandwidth in those cases where it is
applicable.

We also developed an algorithm for the solution to triangular linear
systems of equations that 18 as trast as the best algorithm known to this
auihor. The algorithm requires 0(1032 n) steps for execution on the machine
presented here. The other algorithm known to exhibit equivalent time be-
havior requires a MIMD computer with O(nh) processors for execution,

The development of our algorithm is based upon the principle of

recursive doubling. In our proof we develop an extcension of this principle

-34-

as compared to the work of Stone [1973a) and Kogge [1974). This
technique seems to be very valuable for introducing parallelism into
problems which can be posed as recurrence problems,

At this writing the error behavior of the numerical algorithms
in this paper has not been investigated. The work of Kogge [1972]
indicates that the error behavior could be expected to be as good or
better than that of the serial algorithms,

Sorting and permutations are two importaut combinatorial type
problems. V¥We have described methods for both of these problems that
require only O(log n) steps when applied to vectors of n elements using

our machine,

35<

ACKNOWLEDGEMENT

The author expresses his appreciation to Professor Harold Stone
of Stanford University for pointing out the paper by Heller [1973]
which inspired this work and to Bell Telephone Laboratories for the

financial support which made this work possible.

db<

BIBLIOGRAPHY

Bell, C. G. and Newll, A,, Computer Structures: Readings and Examples,
New York, New York: McGraw Hill, 1973.

"

Flynn, M. J., "Very high-speed computing systems,” Proceedings of the
1EEE, Vol. 54, no. 12, pp. 1901-1909, December 13966,

Heller, D., "A determinant theorem with applications to parallel algorithms,”
Department of Computer Science, Carnegle-Mellnon University, Pittsburgh,
Pennsylvania, March 1973.

Knuth, D. E., The Art of Computer Programming, Vol. 3, Searching and

s

Sorting, Reading, Massachusetts: Addison-Wesley, 1973.

Kogge, P. M., ''The numerical stability of parallel algorithms for solving
recurrence problems,"” Rep. 44, Digital Systems Laboratory, Stanford
University, Stanford, Culifornia, September 19T72.

Kogge, P. M., "Parallel algorithms for the efficient solution of recurrence
problems,"” IEM Journal of Research and Development, Vol, 18, No. 2,
pp. 138-148, March 1975,

Stone, H. S., "An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations,” Journal of the ACM, Vol. 20,
No. 1, pp. 27-38, January 1973a.

”

Stone, H, S., "Problems of parallel computations,” Froceedings of the
Symposium on Complexity of Sequential and Parallel Numerical Algorithms.
New York, Ncw York: Academic Press, 1973b.

Strassen, V., "Gaussian elimination is not optimal," Numerische Mathematik,
vol. 13, pp. 354-356, August 1969.

Winograd, S., "A new algorithm for inner product,” IEEE Tramsactions on
Computers, Vvol. C-17, pp. 693-694, July 1968.

APPENDIX 1 37«

Definitions;

Index Variable i = {0,1,.,.,n-1]}

Index Variabl-: j

k]

[011:"',”'1]

Index variasble k = {0,1,...,n-1)}

Memory MEM[O:na;_mem—l]; "This 1s the total memory of the system"

Register CUR[O:nreg-1]; "Control unit registers"

Register CU_CC; '"Control unit condition code register"

Register PC; 'Program counter'

Register PER[O:n-1,0:n-1,0:n-1][0:nreg-1]; "Processing Element Registers —-
PER(1,J,k)(m) is the nt? register in PE(1,J, k)"

Register ENABLE[O:n-1,0:n-1,0:n-1]; "Enable bits -- ENABLE(1,J,k) is the
enable bit for PE(i,j,k)"

Register PE CC[0:n-1,0:n-1,0:n-1]; "Processing element condition code —-
PE CC(1,3,k) 1s the condition code for PE(i,j,k)"

Register R{0:n-1,0:n-1,0:n-1]; "Routing register -- R(i,j,k) is the
routing register for PE (i,J,k)"

Register 1{0:n-1,0:n-1,0:n-1]; "I(4i,j,k) contains the value 1"

Register J(0:n-1,0:n-1,0:n-1]; "J(1,3,k) contains the value j"

Register K[0:n-1,0:n-1,0:n-1]; "K(i,3,k) contains the value k"

End of Definitionms;

"control Unit instructions"
Functions;
cu_addr ~ (cu_reg2 = 0 — disp;
cu reg2 # O — disp + CUR(cu_reg2));
End of Functions;
Instructions;
" LOAD cu_regl,disp(cu_reg2)
LOAD := (CUR(cu_regl) ~ MEM(cu_addr));
" STORE cu_regl, disp(cu_reg2)
STORE := (MEM(cu_addr) - CUR(cu_regl));
" ADD cu_regl,cu reg2 |
ADD := (CUR(cu regl) ~ CUR(cu_regl) + CUR(cu reg2));
" SUB cu_regl,cu reg2
SUB := (CUR(cu regl) «~ CUR(cu_regl) - CUR(cu_reg2));
" MPY cu_regl,cu_reg2
MPY := (CUR(cu_regl) - CUR(cu_regl) * CUR(cu_reg2));
" DVD cu_regl, cu_reg2
DVD := (CUR(cu regl) «~ CUR({cu_regl) / CUR(cu_reg2));
" LOADR cu_regl,cu reg2
LOADR := (CUR(cu_regl) -~ CUR(cu_reg2));
" cNp cu_regl,cu reg?
oMP := (CU _CC + CUR(cu_regl) : CUR(cu_reg?));
" JMP cond,disp(cu_reg2)
JMP := (comdACU CC = PC ~ cu_addr);

" BCAST cu_regl,pe_reg2

BCAST := (ENABLE(1,3,k) — PER(1,J,k)(pe_reg2) ~ CUR(cu-regl));

End of Instructions;

Load"

Store”

Add"

Subtract”

Multiply"

Divide"

Load Register’

Compare'

Transfer'”

Broadcast"

39<

" frocessing Element instructions”
Functions;

pe_addr(1,J) ~ (mode = 'X' - (disp +

(cu_reg2 = 0~ 0; cu reg2 # O — CUR(cu_reg2)) +
(pe_reg2 = O - O; pe_reg2 # O — PER(0,1,1)(pe_reg2)))
a(0,1,3)oK(0,1,3);

mode = 'Y' — (disp +
(cu_reg2 = O = 0; cu_reg2 # O ~ CUR(cu_reg2)) +
(pe_reg2 = 0 = 0; pe_reg2 # O — PER(1,0,J)(pe_reg2)))
ar(4,0,4)oK(1,0,3);

mode = '2' - (disp +

(cu_reg2

0 = 0; cu reg2 # O — CUR(cu_reg2)) +
(pe_reg2 = 0 » 0; pe_reg2 # O —~ PER(1,J,0)(pe_reg2)))
o1(1,3,0)03(1,4,0));

d ~ disp + (cu reg2 = 0 = O; cu_reg2 # 0 » CUR(cu_reg2));

End of Functions,;

30<

Instructions;

" LOAD, mode pe_regl, disp(cu_reg2, pe_reg2) 1oad"

[}

LOAD ;= (ENABLE(1,J,k) — PER(1,3,k)(pe_regl) ~ (mode = 'X' ~ MEM(pe_addr(J,k));

mode

'Y' ~ MEM(pe_addr(i,k));

mode = 'Z' — MEM(pe addr(1,3)));

" STORE, mode pe;regl,disp(cq_rege,pq_reg2) Store"

STORE := (mode = 'X' — (ENABLE(O,j,k) — MEM(pe_addr(j,k)) ~ PER(0, J,k)(pe_regl));
mode = 'Y' — (ENABLE(1,0,k) - MBM(pe addr(i,k)) — PER(1,0,k)(pe_regl));
mode = 'Z' — (ENABLE(1,3,0) - MEM(pe addr(1i,J)) ~ PER(1,J,0)(pe_regl)));

" ADD pe_regl,pe reg2 Add"

ADD := (ENABLE(i,j,k) - PER(i,J,k)(pe_regl) - PER(1,J,k)(pe_regl) +

PER(1,3,k) (pe_reg2));

" SUB pe_regl,pe_reg2 Subtract”

SUB := (ENABLE(1,J,k) — PER(1,J,k)(pe_regl) - PER(4,J,k)(pe_regl) -

PER(1,4,k) (pe_res?));
" MPY pq_régl,pq_regE Multiply"
MPY := (ENABLE(4,J,k) — PER(i,J,k)(pe_regl) ~ PER(1,J,k)(pe_regl)*

PER(1,J,k)(pe_reg2));
" DVD pe_regl,pe_reg?2 Divide"
DVD := (ENABLE(1,J,k) —= PER(1,3,k)(pe regl) «~ PER(1,J,k)(pe_regl) /

PER(1,3,k)(pe_reg2));

" LOADR pe_regl,pe reg2 load Register"

LOADR := (ENABLE(1,J,k) - PER(1,3,k)(pe_regl) ~ PER(1,3,%)(pe_reg2));

" op pe_regl,pe_reg2 Compare"

CMP := (ENABLE(i,},k) - PE_Cc(i,J,k) - PER(l,j,k)(pe_regl) : PER(&,J,R)(pe_rch));

31<

SETE mode, cond Set Enable Bit"

SETE := (ENABLE(1,3j,k) ~ (mode

' ' = condAPE_CC(1,J,k);
wode = 'A' - cOndAPE CC(’,J,k)AENABLE(1,3,k);
mode = '0' - (condAPE_CC(:l,J,k))VENABLE(i,J,k);
mode = 'C' = —ENABLE(1,3,k));

" LDE, mode disp(cu_reg2,pe_reg2) Load Enable Bit"

LDE := (ENABLE(i,3,k) «~ (mode = 'X' — MEM(pe_addr(Jj,k))<i>;

mode

'Y’ — MBEM(pe_addr(i,k)})<y>;

mode = 'Z' -~ MBM(pe_addr(i,J))<ic;
" STE,mode disp(cu_reg2,pe reg2) Store Enable Bit"
STE := (mode = 'X' — MBM(pe_addr(j,k))<i> ~ ENABLE(1,J,k);

mode

'Y' = MEM(pe_addr(1,k))<y> ~ ENABLE(1,],k);
mode = 'Z' - MEM(pe_addr(1,3))<k> — ENABLE(1,J,k));

" ROUTE,mode disp(cu_reg2) Route”

ROUTE := (R(1,3,k) ~ (mode = *X' = R(1, ((n-3+k-d)/n) mod n, (k-d) mod n};
mode = 'Y' = R(((n+1+k-d)/n) mod n,j,(k-d) mod n);

mode

'z = R(((n-1+§-d)/n) mod n,(3-d) mod n,k));

End of Instructions;

