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Section 0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

The reader ready 10 plunge right into making FOL. proofs may skip to section 1.

The idea of doing mathematical reasoning mechanically goes back to Leibniz. but it was not
until the end of the last century that Frege and Peano developed the first completely formal
systems adequate for expressing some kinds of reasoning. Much of the work of Whiteiread and
Russell was an attenpt at demonstrating that large parts of mathematics could actually be
expressed within such systems. After these initial successes, however, the interest of logicians
changed from proving theorems within mathematical systems to proving meta-theorems about
such systems.

Even before Goedel's work, it was intuitively clear that checking proofs was different from
finding them. It is an essential part of the idea of formal system that proofs can be checked
mechanically, whereas finding proofs mechanically was always regarded as a research problem.
This distinction was clarified by the work of Goedel. Tarski, Turing and Church which showed
that algorithms for finding proofs can work infallibly only in limited domains and that some
mathematical ideas c=~gnt be completely characterized by axiomatic systems.

The advent of comprters and the beginning of the study of artificial intelligence gave rise to
attempts to explore experimentally what can be proved by machine. There has been sieady
progress in this endeavour, but twenty years work leaves us a long way from being able to prove
important mathematical theorems.

Knowing that mechanical theorem proving has a long way to go justifies a renewed interest in
the more straight-forward task of proof-checking by computer. Moreover, while it is not as
intoresting to check proofs by computer as to make computers prove the theorems, proof.
checking has obvious potential applications. The most important of these is proving that
computer programs meet their specifications since the reasoning involved is lengthy although
usually straightforward - or so our intuition tells us. Since a computer program is a
mathematical object whose properties are determined entirely by its symbolic form, it is a
mathematical disgrace 10 have to debug themn case by case rather than proving them correct in
general. Since the programs are long, the proofs of correctness will be long, and since
programmers sometimes think wishfully, it is obviously desirable that the proofs be checked by
computer.

It is aiso interesting to see if we can check the proofs of interesting mathematical theorems even
though the problem is of less practical urgency, since the human refereving process works quite
well.

At first sight, computer proci checking seems almost trivial. We know that almost all practical
mathematical reasoning ran be done in ax’umatic set theary which in turn is expressed in first
order predicate calculus. Therefore, it wou'J seem that all we need do is 10 make a proof checker
for predicate calculus, choose either the Zermelo-Fraenkel or the Goedel-Bernays-von Neumann
axioms for set theory and write and check our proofs. This is one of the things the FOL project
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is dning, but in order that it; formal proofs should not be substantially longer than conventional
mathematical proofs, it is necessary to reformulate the usual logical systems. This can be
thought of as an effort to produce a forinal systemr in which the rules of inference, as well as
the expressive power of the language, is more closely correlated with actual mathematical
practice. The use of a computer allows for the introduction of complicated rules of inference
whose metamathematics is not simple. FOL provides for the following:

(1) its notloa of a first-order language includes function symbols, equality and other usual
mathematical notation, such as infix operators, n-tuple notation:

(2) the user can declare sorts and declare variables to range over given soris. This greatly reduces
the length of axioms and theorems and corresponds to the fact that in an informal proof a
context is established, and the reader knows that a certain part of the proof is carried out within
the context;

(3) the decision procedures for certain simple domains are built into the system. This allows
some proofs to be much shorter than usual mathematical proofs, because the computer can go
through some quite complex chains of reasoning by itself. At present, propositional deduction
and a fragment of the theory of equality have been implemented. The Boolean algebra of sets
and elementary commuiative algebra are planned:

(4) some facilities for introducing definitions have been implemented:

(5) a facility is provided for defining the interpretations of constants and predicate/function
symbols, and for computing within a model of the language. This means, for example, that
algebraic and LISP functions can be calculated directly, rather than being synthetically derived:
(6) some primitive facilities are available for metamathematical reasoning:

(7) rutes of inference for some interesting modal logics are provided.

The domains which are being explored by means of FOL proofs include:

(1) CLASSICAL MATHEMATICS. This is the single most striking success in our ability to
represent reasoning in terms of formal derivations. How close are these derivations to a
mathematician’s informal proof? Do they constitute a faithful representation of his reasoning?
How are the inference rules of our logic related to the actual rules of evidence he uses when
convincing himself of some truth? The answers to these questions are important in determining
whether we can make computer-checkable proofs that are not enormously longer than the proofs
in mathematical jowrnals. Experiment with the use of FOL in classical mathematics will help
answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel
(19712,1971b) are also relevant. Moreover, it turns out that 3 large part of m-ny mathematical
proofs in the literature are really at the metamnathematical level, i.e. they are reasoning about the
reasoning in the axiomatic system. Thus it can happen that a simple theorein praver or proof-
checker Is not even capable of expressing the theorems of mathematicians, let alone proving
them;

(i)  MATHEMATICAL THEORY OF COMPUTATION. (McCarthy 196%, Floyd 1967, Manna
1974)and others have shown how first-order theories can be used in proving properties of
programs. Making this into a tool for verifying programs before they are widelv distributed is
one of the ma jor goals of the FOL project. This will require further research in farmalizing the
properties of programs, the ability provided by the aftacAment feature of FOL to establish
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decidable properties of parts of the prngram by direct calculation rather than step-by-step
inference, and a great deal of experiment aimed at making the proofs correspond to the
programmer’s informal reasoning that his program does what it should:

(iil) REPRESENTATION THEORY. Common sense reasoning is being represented in FOL in
the style of (McCarthy and Hayes 1969). As in j.roving programs correct, purely inferential
reasoning must be supplemenied by assertions directly computed from the data base
representing the environment: again the FOL attachment [eature is the key device used. Even
more experiment will be required before the formal proofs correspond (o informal reasoning
than in the case of mathematics, because this area has not been well explored (perhaps oaly by
McCarthy, Hayes 1974, and Sandewall 1970). Particular problems are the axiomatization of time,
stmultaneity, causality, knowledge, and the geomneiric reasoning involved in perception.
Metamatiiematics also comes in. particularly when it is necessary to reason about knowledge and
belief. We hope that axiomatizing the metamathematics of FOL, i.e. the structure and truth
conditions of FOL sentences together with a reflection principle, suitably restricted to avoid
paradoxes, will enable us to express common sense reasoning about knowledge. belief. truth and
falsehood.

FOL is committed to a system of natural deduction. The use of the word ‘natural’ is best
explained by Prawitz himself (Prawitz,1965):

‘Systeme of naturnl deduction, invented by Jaskowski and by Gentzen in
the carly 1930°z, ennstitute a form for the development of logic that i
natural in many respecis. In the first place, there in a similarity between
natural deduction and intuitive, informal reasoning. The inference rules of
the systems of naiural deduction corcespond clasely 1o procedures common
in intuitive rensoning, and when informal proofs == such as are emncountored
in mathematies for example -~ are formalized within these sy-tems, tie
main structure of the informal proofs can often be preserved, This in itself
givea the systems of nasural deduction a. interest as an explicaion of the
informal concept of logical deduction.

Centzen’s variant of natural deduction i natural also in a deeper sense,
His inference rules show a noteworthy systematization, which, among other
things, is closely related 10 the interpreiation of the logiral signs,
Furthermaore, as will be ahown in this study, his rules allow the deduction 0
proceed in a certain direet fashion, affording an interesting mormal form
Jor deductions. The result that every naturnl deduction can be tranaformed
into this normal form is aquivalems 10 what in known ar Hauptsatz or the
normal form tAcorem, a basic result in proof throry, which was established by
Centzen for the ealeuli of sequents.  The proof of this result for systoms of
natural dedurtion is in many ways simpler and more illuminating.

In thizx manual, most of the metamathematical notions discussed will bo eeferred to by worda in the
Jollowing font: ».g. SYNTYPE, INOVAR, WFF. TAcse motions will play a grester role in later versions of
FOL.
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Section | THE NOTION OF AN FOL LANGU AGE

In FOL the user specifies a firsi-order language by making a set of DECLARATIONs (see Section
4.3). The proof-checking system then generates a proof checker and a collection of rules specific
to that system.

An FOL language is determined by specifying a way of building up expressions, usvally called
well formed formulas or WFFs, from collections of primitive symbols. In FOL these classes of
symbols are called SYNTYPEs. They are:
L. logica’ constants:
a) sententia! constants - SENTCONSTs: FALSE, TRUE
b) sentential connectives - SENTCONNs: ~Avp> 9
) quantifiers - QUANT: V.3
2. auxiliary symbols: - AUXSYM: (" and 7)"

8. sets of variable symbols:

a) individual variables - INDVARs,
b) individal parameters . INOPARs.

4. a set of n-place predicate parameters - PREDPARs.

These symbois are used to form those sentences common to all FOL languages. Sometimes a
language L may also contain symbolt which are intended to have interpretations which are
fixed relative to the domain of the interpretation. Examples are: "¢ in set theory, “«” in first
order logic with equality, “0° and "Suc” in arithmetic. These ave represented by

8. sets of constant symbols:
a) individual constants - INDCONSTs.
b) n-place operation symbols - OPCONSTs.
c) n-place predicate constants - PREDOONSTS.
In addition one can

6. restrict the range of a variable symbol to some PREDCONST by declaring it to be a SORT.

7. designate a partial order to hold among sonie of those PREDCONSTs which have been declared
to be SORTs:

TERM, AWFFs (stomic well formed formulas), and WFFs (well tormed {armulas) are defined in the
usual way.
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A formal description of these languages and of the notion of SORT is given in appendix 1. The
entire extended syntax of FOL is described in appendix 2.

A first-order THEORY is defined by a (possibly empty) set of sentences of L, called AXIOMs. It is
the creation of such theories and the checking of valid deductions in them thit is the main
puspose of the computer program FOL.
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Section 2 THE NOTION OF AN FOL DEDUCTICN

A derivation (the following description of which is taken almost verbatim from Prawitz 1965)
begins by inferring a consequence from some ASSUMPTIONs or AXIOMs by means of one of the
RULESs listed below. We indicate this by writing the formulas assumed on a horizontal line and
the formula inferred imnediately below this line. On the computer this can be repeated usin
previous consequences as new hypothesis. This generates a tree, which we call a DERIVATION.
Thus if we wish to derive A(BAC) from (A2BJA(ASC) we write:

[CECR N 4 (Ra8) A (RC)

840)

At each step so far, the configuration is a DERIVATION of the undermost formula from the set of
formulas that appear as ASSUMPTIONs. The assumptions are the uppermast formula occurrences,
and we say that the undermost formula depends on these ASSUMPTIONs. Thus, the example above
is a deduction of BAC from the set of assumptions {{AsBJA(A2C)A}), and in this deduction, BAC
is said to depend on the top occurrences of these formulas.

As the result of some inferexces, however, the formula inferred becomes independent of some or
all assumptions, and we then say that we discharge the assumptions in question. There are four
ways to discharge assumptions, namely:

(1) Given a deduction of B from {AJI, we may infer ASB and discharge the assumptions
of the form A:

(2) Civen a deduction of FALSE from {-AJUl', we may infer A and discharge the
assumptions of the form ~A;

(8) Civen three deductions, one of C irom {A}UT';, one of C from {B)Urz and one of AvVB,
we may infer C and discharge the assumptions of the form A and B that occur in the
first and second deductions respectively, ic. below the end-formulas of the three
deductions, we may write C and then obtain a new deduction of C independent of the
mentioned assumptions;

(4) Civen a deduction of B from {A{x~a]JUT" and a deduction of 3x.A, we may infer B and
discharge assumptions of the form Alx«a) provided that a does not occur in 3x.A, in
B, or in any assumption - other than those of the form A[x+~a] - on which B depends
in the given deduction.

To continue the deduction above, we may write A3(BAC) below BAC and obtain a deduction of
A(BAC) from {(AsB)a(A=C)}.
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Section 3 THE RULES OF INFERENCE

Page 7

The inference rules consist of an introduction (I) and an elimination (E) rule for each logical
constant. The letters within parentheses indicate that the inference rule dischasges assumptions

as explained above.

vD)

o1

Y

-1

FD

[1}]

Restriction on the V/-rule: a must not occur in any assumption on which A depends.

...........

--------

AE)

w)

ot)

ve)

L

4 4}

of)

----------

(L)
4

Rixsts

IR

(( H
4

(A {xea))

Restriction on the 3E-Rule: a must not occur in Ix.A, in B, or in any assumption on which the
upper occurrence of B depends other than A[x=a}
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Section 3.1 An FOL deduction using the computer
We show here the computer interaction necessary to check the derivation given in Section 2.

In this and all succeeding sections examples of interactions with the computer will appear ir small
type. Those lines which are typed by the user will be preceeded by five stars "seves™. T he ofher lines
are those typed by the computer.

To derive A3(BAC) fram (A>B)A(A>C), we proceed as follows.

»9eesDECLARE SENTCONST A,8,C;
*909sRSSUNE (RB) A (RSC) )
1 (RBIARC) [#8]
soeesl 1,1

2 (R o)
r000sRSSUNE M)

IR O

eoveedt 2,3,

4 UM

soseenl 1,2

S A0 (2}

eosnedt 3.5)

6 C un

ssssenl 4aS)

7 <6 QY

eonees] 557

8 M0 D

Each LINE typed by the computer contains: 1) a LINENUM, which labels that LINE: 2) the WFF
representing the result of applying the RULE typed by the user on the line above: 3) a list of
numbers cepresenting those LINES of the proof on which the WFF depends. Consider the LINE
begining with 7 in the above example. 7 is its LINENUM, BAC is the WFF on this LINE, and the
derivation of BAC on this LINE depends on the assumptions on LINEs | and 3. This LINE was
generated by the user specifying as a RULE Al (AND introduction) using lires 4 and 5. This
information is typed by the user and in the example appears directly above LINE 7 of the proof.
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There are two other things to natice about this example. The first thing typed by the user was
a declaration stating that A,.B and C are SENTCONS1s. Making declarations is essential. Failure
to declare an identifier is the most common reason for a syntax error- Second is that when 21
is applied to LINEs 3 and 7, LINE 3 has been removed from the list of dependencies of the new LINE.
This corresponds 1o the description of this rule given on each of the pievious two pages. The
exact format of the commands a user must type to the computer is explained in section 4.
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Section 3.2 Implementation - user oriented features of FOL

There are several differences between the machine implemention of FOL and the Jescription
given above 2ud in Appendix 1. These differences are usually for the purpose of making life
easier for the user. The description in the Appendix presents a clean version of (he logic so that
the metamathematics can be discussed in a straight-forward way. The w>~jor differences are
described briefly below; more detailed descriptions occur in the app.opriate sections of the

sequel,

Section 321 Individual symbols

In Prawite’s logic, individual variables (INDVARs) may only appear bound, and individual
parameters only free. In FOL, this restriction is relaxed, and INDVARs may appear free as well as
bound in well-formed formulas. INDPARs, however, wmust always appear free. Additionally,
natural nuimbers are automatically declared to be INDCONSTs of SORT NATNUM.

Section 3.22 Prefix and Infix notation

FCOL allows a user to specify that binary predicate and operation symbols are to be used as
infixes. The declaration of a unary application symbol to be prefix makes the parentheses
around i's argument optional. The number of arguments of an application term is called its
ARITY. Section 4.1 describes how to make such declarations.

Section 3.23 Extended notion of TERMs

In addition to ordinary application terms, FOL accepts TERMs representing finite sets,
comprehension terms, n-tuples and LISP s-expressions. A detziled description of the syntax of
these terms is to be found in Appendix 2.

Section 24 The Equality of WFFs

The description of subsitution given in Section 4.35 is consistent with FOL's notion of
equivalence of WFFs. The proof-chiccker always considers two WFFs to be equal if they can both
be changed into the same WFF by making allowable changes of bound variables. Thus, for
example, the TAUT rule will accept Vx.P(x)>Yy.P(y) as a tautology.

Section 3.25 V0s and subparts of WFFs and TERMs

FOL as impleincnted offers very powcerful and convenient techniques for referring to ob jects in
a proof: essentially, any well-formed expression has a name, and can be manipulated as a single
entity. A VL is a name of a part of a derivation. There are several kinds of Vis: for example, a
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label represents a line-number, the WFF on that line, and a list of the dependencies of that line in
the derivation.

The syntax of VLs is very extensive and a review of it will be left to Appendix 2.

- Section 3.26 Axioms and Assumptions

FOL allows the specification of certain WFFs as AXIOMs. The difference between these and
ASSUMPTIONS is that the foriner are not :nentioned explicitly as dependencies of any lines of the
derlvation. Thus every proof chiccked by FOL tacitly depends on a set of AXIOMs.

Section 3.27 FOL derivations

As opposed to a tree, a deduction in FOL consists of a collection of AXIOMs and a linear sequence
of lines, each line represeniing either an ASSUMPTION or a DEDUCTION frown the previous lines
(and axioms).

Section 3.28 SORTs

The addition of SORTs, and specification of a partial order over them, constitutes a major

extension of FOL froin a computational point of view. Their meaning and use is discussed in
the sections on declarations and the quantifier rules.
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Section 4 USINGTHE PKOOF CHECKER

FOL is invoked at the Stanford A.l Lab by typing R FOL to the manitor. A backup file is
automatically opened onto which input is saved: the name of this file may be altered by means
of the BACKUP command (vide infra). To save an entire core image type the command ‘EXIT;
and SAVE <filename>: to restart type RU <filename> and you will be where you left off.

The commands fall naturally intn several classes:

I. Commands for defining the first-order language under consideration: that is to say,
commands for making declarations:

2. Commands for defining avioms:

3. Commands for maling assumptions and applying the rules of inference to generate
new steps in a derivation;

4. Administrative commands, which do not alter the state of the derivations, but enable
various book-keeping functions to be carried out.

In this mannal the syntax of FOL will be deseribed using 8 modificd (orm of the MLISP2 nation of pattern.
These form the bacie conctrucis of the FOI, parser.

1. Idenuifirrs which appear in patternk are to he taken literally,
2. Patterns for rynlatic types are surrounded by angle hrackete. Thus <wff> is a WFF,
3. Patterus for repenitions are designated by
REFn[ <pattern> ] means n or more repeated PATTERNe.
If a REPn has twa arguments then the recond argument ik a pattern that acts ax & separator. So
that REPI[ <wfl>,, ] means ane or more WEFs seperated by commas,
4. Alternativee appear ac ALT{ (PATTERND | .. | (PATTERN® )
ALTL <wif> | <term> ] meanc esither a WFF or ¢ TERM,
S. Optinnal things appear as OP1] <patiernd ]
REP2[<wf>,0/1],]] means a sequence of two or mare WFFs optionally reparated by commas.
These conver Lians are eombined with the comparstively standard Backus Normal Farm deseription.
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Section 4.1 System S pecification

The first step in specifying a first-order theory is the description of the language which is to be
used. This is done by defining the symbols uf the language, using the declaration commands.
These commands specify which symbols are to be variables, constants and predicate or function
symbols.

Section 411  Declarations

As we mentioned above, one of the first things that a user of FOL must do is to define the FOL
language to be considered. Every identifier in a proof must be declared to have a SYNTYPE,
Only nine of these types can be declared by the user. They are:

1. SYNTYPE|

a) INDVAR  (individual variables)
b) INDPAR  (individual parameiers)
¢) INDCONST (indiuidual constants)
d) SENTPAR (sentential parameters)
e) SENTCONST (sentential constants)

2. SYNTYPE2

a) PREDPAR (predicate parameters with one or more arguments)
b) PREDCONST (predicate constants)

c) OPPAR  (opcration parameters or function parameters)

d) OPCONST (operation constants or function constants)

Declarations are fixed withia a2 proof and once made they cannot be changed.
DECLARE ALTI[ REP] l<simpldec> OPT(,)] | REPl{<applidec> OPT(,)) )

There are two kinds nf SYNTYPEs, those of symbols which take arguments, SYNTYPE2s, and those
which do not, SYNTYPEIs.

amyntypel> te ALT{ cindsym> | csentaym }
<syniypel> 1o ALTI cpredsym> | copsym> )

The idea of SORTs is to allow a uscr of FOL to restrict the ranges of function to some
predetermined set. This correspond fo the ususl practice of mathematicians of saying fet f be a
function which maps integers into integers. 1n FOL a SORT is just a PREDCONST of ARITY I, i.e.
a property of individuals. The effect of this informal restriction to Integers is achieved in FOL
by

oo0ooDECLARE PREDCONST INTEGER 1,
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followed by
*00+sDECLARE OPCONST o (INTEGER, INTEGER) « INTEGER;

A PSEUDOSORT is an identifier which has net yet been declared but is assumed to be a PREDCONST
of ARITY | and is declared such because of th- context in which it appears. [If INTEGER had
not been separately declared above, in its appearance in the second command it would have been
considered to be a PSEUDOSORT and declares accordingly. There is one special PSEUDOSORT, i.e.
the PREDCONST UNIVERSAL. This represents the most general SORT and is the default option
whenever SORT specifications are optionzi. In declarations it can alsc be abbreviated by "+,
The MOSTGENERAL command explaincd in the next section, can be used to change the name
of the MOSTGENERAL SORT,

<pseudosort> 1o ALT[ cidentitiors | o)
Simple declarations
«simpldec> 1o «syniypel> <idlists O0PTL ¢ <psoudenerts )

Examples of simple declarations:

s000sDECLARE INOVRR x y 2;

oeossDECLARE INOVAR g b ¢ ¢ Sot, A B C ¢ Cisesy

Application declarations

«sppidec> 1o <ayntype> cidlist> corgdec> BPTL [ «hpdec> ) )
<orqdec> te ALT( cargtorts | enatmums )
<srgsori> te AMLT( ¢ esortrepy M Tle|s) <psoudosorts |

( csortrep> ) MT(e|s) <psevdesort> )
«sortrops 19 REPIL <psoudesert> , OPTIALT{e},]] )
«bpdec> te ALY( crbp> | «rbps <ibp> | <lbp> <rbp> | INF | PRE )
«rbp> te R o <nadlnum
<ip> 1e L o «natowm

Examples of application declarations:
e0soeDECLARE OPCONST EXP(Int, Intlelnt (LoOS R-000) ;

The meaning of this declaraion is thai EXP is an OPCONST, it has two arguments (ARITY 2), both
of which are of SORT Int. It also has a value of SORT Int, and is to be used as in infix operator
with a right binding power of 800 and a left binding power of 850. This could also be decizred

by

s000oDECLARE OPCONST EXPiIntolntelnt (L-8%30 Re§OO)
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Simpler declarations can be made if you don't wish to specify so much information.
#¢+04DECLARE OPCONST EX™iintelntelnt CINF) 4

declares EXP the same as above but uses the default infix bindings R+500, L~550.
¢++0oDECLARE DPCONST EXPCint, Intdalny)

simply makes EXP an ¢ dinary applicative function, so you must type EXP(a.b) rather than (a
EXP b). Further siir, \:.{:21ion can be made if less sort information is wanted

ee2eDECLARE OPCONST €. 7 .int, Int)y

makes the value of EXP have the SORT UNIVERSAL (the MOSTGENERAL SORT), and
seseeDECLARE OPCONST EXP 2,

just says it has ARITY 2. Of course

sooesDECLARE OPCONST EXP 2 (INF) ,

09¢0+DECLARE DPCONST EXP 2 [Lo0SH ReBOD)
have the obvious meaning. This section has illustrated most of common ways of making
declarations. There sre some other examples scattered throughout this manual.
Section 4.12 SORT manipulation

There are several commands which affect the SORT structure:

Section 4.121 NOSORT declaration

NOSORT 3

The NOSORT command turns off SORT checking. If any SORTs have aiready been declared, an
error message will be given.

Section 4122 MOSTGENERAL, NUMSORT, SETSORT, SEXPRSORT

MOSTGENERAL <sart>
NUMSORT <sor t>
SETSORT <sort>
SEXPRSORY  <sort>

o es we oo
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In FOL certain TERMs come with predeciared SORTs: ni.merals become INDCONSTs of SORT
NATNUM, comprehension terms, set terms and n-tuple terms have SORT SET, quote-terins have
SORT SEXPR, and the default MOSTGENERAL SORT is the PREOCONST UNIVERSAL. The effect of
the above commands is to replace these default SORTs with those specified by the user. For
example, in the case of Goedel-Bernays-von Neumann set theory, the MOSTGENERAL SORT is called
CLASS.

Section 4123 MOREGCENERAL declaration

MOREGENERAL <sort> 2 { <sort_list> } 3

For example,

s0esoNOREGENERRL chesapioce 2 lwhitepioce,blackplecel;
Is equivaient to the axioms

¥Yx. (whitepiece(x) o chesspiece(x))
¥x. (blackpiece(x) o chesspiece(x))

where chesspiece. whitepiece and blackpiece are understood to have been previously declared
PREDCONSTs. Although these axioms do not appear explicitly. the quantifier rules behave as if
they did (this is explained in detail in section 4.327). This establishes a partial order among the
SORTs. Another typlcal example wouid be the declaration of classes to be MOREGENERAL than sets.

Section 4.124 EXTENSION declarations

EXTENSION <predconst> <ext_set> ;

<axi_set> te <«primext> REPO{ MTIVIN|/) <primexi> )
<primexiy 19 AT <sert> | | cindconstitat> | )

where each of the SORTs in the <primext> aiready has an EXTENSION defined. For example,
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oesesDECLARE TNOCOMST 8K ¢ BEINGS, UK « WKINGS;
s90sDECLARE PREDCONSY KINGS })

o4000E XTENSION BKINCS 18K}

Extension of BKINCS s (BK)

*0de:EXTENSION WK INGS UK,

Txtunginn of WFINGS is (WK)

se0e-EXTEMSION LINGS WKINGS U BKINGS;

Evtengion of KINGS is (UK BK)

The initial declaration declarss BK to be of SORT BKING, and WK to be of SORT WKING. The
command 'EXTENSION BKiNGS {BK}' says that BK is the only object which satisfies the
predicate BKINGS: similacly, the command 'EXTENSION KINC ™ 3KINGS U WKINGS' says
that the only objects which satisfy the predicate KINGS are those in the union of the extensions
of BKINGS and WKINGS, i.e. BK and WK. This is equivalent to the introduction of the axioms:

vx. (RKINGS(x) * (x«BK))

¥x. (WKINGS(x) s (xsWK))

¥x. (KINGS(x) ® (xsBK v xsWK) A {BKsWK)))

By itself. this command has no effect, but the semantic simplification mechanism (see Section
4.4) uses these axioms.

Section 4.13  Predeclared Systems
THEORY <sysename> ;

The THEORY command may be used to csll up several pre-declared systems. If no THEORY
command is given, the basic FOL system is generated, i.e. ‘he full natural deduction system for
classical logic with the extended inference rules. The options which are available are

esysname> te LT { PRAUITZ | 2F | GBN | S4 | 5 | XKBK | K8 )

where PRAWITZ is the system described by (Prawitz 1965), i.e. without SORTs or any of the
extended inference rules such as TAUT; ZF is Zermelo-Fraenkel set theory (as defined in
Appendix 3) GBN is Goedel-Bernays-von Neumann set theory (as defined in Appendix 4% S4 and
$5 are Lewis’s classical systems of possibility and necessity (as defined in Appendix 5% and KBK
and KBB are Hintikka's systems for Knowledge and Belief cespectively (see Appendix 5).

Reproduced from
bhest available copy
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Section 4.2 Axioms

Axioms are only briefly mentioned in the description of FOL. In the machine implemented
version they play the same role as assumptions, but they do not appear in the dependency list of
any step of a deduction, nor are they printed when you show the proof. Thus derivations are
always relative to an unmentioned theory. When a theorem creating mechanism is availabie this
will change. The syntax for defining an axiom is:

AXIOM <axiom>

where

«aniom> ta REPIL coaxnam> 1 «duiist> ;)
<oxiists 1m LT cuttiist> | REPI[caxiom] ]

This sliows for a block structured way of naming sets of axioms, so they can be referred to
either by some particular name, or as part of a group. Each WFF in WFFLIST is given a name by
FOL. This name is generated by taking the AXNAM and concatenating an integer to it. For
example if the AXNAM is GROUP then they will be given the names GROUPI, GROUP2,... .
These can then be used to refer to each axiom. An AYNAM is like 8 LINENUM and may be vsed in
any context that requires a LINENUM. If WFFLIST only contains one WFF that axiom is called
AXNAM,

NOTE: The syntax calls for multiple semicolons!

Examples:
oo0ooRXION A1 o VK. -K(X,
VY.~ {XeYaYe XD 4
G WM. el

This creates twe axioms A and C. Axiom A contains two subaxioms Bl:vX.-X¢X and
B2sVY.~(X¢YAY¢X). If you prefer to think of coliections of axioms as theories, ther the syntax
allorvs arbitrary nesting of theories, cach followed by 2 semicolon. At the moment no checking
is done for the consisiency of axiom names. You lose if you create conflicting ones. Axioms
cannot be got rid of, so be careful. Numbers are not legitimate AXNAMs,
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Using axioms as axiom scheimas.

There are no special rules for axiom schemas, merely an extension of the use of the rules already
given. Namely, an aviom schema is simply an axiom with a predicate parameter (PREDPAR) in it.

An axiom can be wsed anywhere a step can by using an AXREF. This is of the form
AXNAM(PP XX ,,..PP XX ] and its syntax is described in the section on Vie. An AXREF can

appear anywhere a Vi can. In the form AXNAMPP XX, .PP-XX,] the ©P, are predicate
parameters (PRECPARS) appearing in the axiom, and the XX, are propositional functions assigned
to these parameters. The assigniments are done successively rather than simultaneously.

An XX, is a WFF preceded by A any number of INDVARs and a "" (period). Thus c.g. A X y z<wff>,
The ARITY, p. of the PREDPAR must be less than or equal to the number of variables following the
A. The indicatcd X-cnnversion on the first p variables is done automatically. The crror message
"NOT ENOUGI 1AMBDA VARIABLES® means p is too large. The remaining variables are
treated as parameters of the entire axiom. and the instance of the axiom returned is the
universal closure of the axiom with respect to these parameters.

The :» (SUBPART) mechanism (see Appendix 2) can be used to take pieces out of the resulting
formula in the usual way.

Example of using axiom s~hemas:

sososDECLARE PREDPIR F §;

seeve INDOVRR X;

ecossRNION INDUZTION: F(8)AVX. (F IK)3F (Xa 1) YR, F (X}

INDUCTION: F Q) -¥X, (F(X)OF (Xe1) VWK, F(X)

000ssDECLARE INOVAR 2 &;

secssn]l INOUCTION(Felb 0.0+00bes),;

1 Va. (as®e(Ben) s¥X. ((gak)e tXag)a(as(Xal)al(Nal)an))oVX, (aeX)u (Xap))
o0ee0r]l INDUCTION(FerD.Va, 84bebes) )

2 Vo. (0s0)m (Ben) AV, (Va. (asX)a(Xen)dVa. (as(Xe]1) Vo ((XelDen)}oVE a. (BeX)uiNand
osseenl INOUCTION(FoAD X.XsboboX];

3 W (XD n 10aXIAVEL. ({XeX1)m(X1aX) > (Xa {XLal))m((NT0])eX) ) aVX2 (NeX2}u{X2eX))
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Section 4.3 The generation of new deduction steps

Note: when the varinhles A and C ace mentioned in this seciion, they refer 10 the description af the
basic Prawitz logic in rertion ).

Section 4.31 Assumptions

ASSUME  <ufflist>

The ASSUME command makes an assumption on a new line of the deduction for each WFF in
WFFLIST. Note that the dependencies of a line appear in parentheses at the end of a line, and
that assumptions depend upon themnselves

Examp los!

000e0ASSUNE Yu. xexy

1 ¥Yeoxex (1)

s008sRSSUNE Yy.ycy, “Wy.yey)
2 Wowy ()

3 AWy B

Section 4.32 Introduction and Elimination rule:

The general form of a RULE JAME is
crulensme> 1= «logconst» RIL T } €}
where [ stands for introduction and E for elimination. The format of a command is:

<rule_of_infarances te <rulensmer <linamminies

The LINENUMINFO is different for each rule. This is explained below. We will use o to stand for
an arbitrary VL (see section 3.25).  In the description of some of the rules it is necessary to
distinguish among several VLs. In this case we write 81,82,... . We will write

Al sas

rather than

Al evl> A <vi>
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Alternative alphabetic RULENAMEs will be given in parentheses after the standard ones. These
usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or
UG (universal generalization) can be used, instead of ] or VI.

All commas in these rules are optional. This will not be mentioned explicitly in the following
sections. Thus a °,” appearing in a rule specification it is to be thought of as OPT([,).
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Section 4.321 AND /A) rules

troduction_rule

Al (AD) (8an) A0 H

The LINENUMINFO for Al is any parenthesized con junctive expression in which all conjurets are
Vis. If no parcntheses appear (even in a subexpression) association is to the :ight, thus

wA(sAsAs)AB means sA((sa(eas))as). AND is always a binary connective. The "&" and "." are
alternatives to the "A” symbol. The dependencies of & line are those LINENUMs mentioired.

imination rule
AECAE) o OPT( ALT{,1:) ] ALTI{1I21 <subpart> ]

1 picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the
appropriate subpart. For the definition of SUBPART see Appendix 2.  The dependencies of the
result are the same as those of 8. The first command in the example could have also been
written "AE 4 I:i" or "AE 4:1:" or "AE 413",

evoresk 4,1

S (¥x.Class {x)aVe, ~{a(AT))

saeseRE 10102,

6 Va. (o)

sheaeRE G1 710101,

The main symbo! o Vx.Clogsix) iu net an A
spesnrl G103

In the «subperi> 183 , 3 is tes lorge
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Section 4.322 OR (v) rules

Intraduction rule
vl (0l) (Wvenfisvenffs) s

OR’s may be parenthesized just like AND's, but at least one disjunct must be a VL. Any Vis
given will cause the dependencies of that line to be included in those of the conclusion. As with
AND, association is ta the right and OR is binary.

Elimination rule

VE(OE) e , ® , 2

® is the VL on which a disjunction AvB appears ol and 82 are both VLs wuch that s): and e are
both equal ta the WFF .. The conclusion of this rule is the WFF C. The dependencics of the
conclusion arc those of » along with those of @1 which are not equal 1o A and those nf 82 not
equal to B. Remember two WFFs are equal if they differ only by a change of bound variable In
the example twa different commands are given. Note how the dependencies are treated in each
case.

et + 2 rRSSUNE 1:vide,

9 V. xexnvaVWy.ycy (9)
ceoesOl Ivd: 01 2:vd;
10 ¥x.wexvavVy.yty (1)

[ 221 ]
11 Yy.ytyvaVy.yry (3}

steonvl 9,10,1);
12 VaoronVy.yey  (9)
ccornvk 8,180,185
13 Wxoxtxv=Wy.ycy (3
eensnrvkE 9,11,18;

14 Va,xenvaVy.yy (139

Reproduced from
best available copy
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Section 4.323 IMPLIES (2) rules

Introduction_rule

S1(DED)  ALT( woe | <uff>oe ]

The differcnce between s and (wff>aw is that in the former case dependencies of the

conclusion which are rqual to the hypothesis are deleted. A comma is an alternative ta the ">
symbol. 1n other styles of presenting first order logic this rule is called the deduction theorem.

srese3] 1ol

15 VY. wowd¥x, wex

<92 :0€0 lioly

16 Y xevd¥u. v {])
sreee 21 2,14

17 Yy yoyo¥n. v
Elimination_rule

SERP) = , » :

The order in which the arguments are specified is irrelevant. This is the classical rule modus
ponens. The dependencics of the conclusion are the union of the dependencies of hoth Vis.

s:0000f 1,17,

18 Vu.en (D)
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Section 4324 FALSE (FALSE) vules
Introduction_rule
FI el |, 2 :

If wl is of the form A, then 82 must be of the form -A (or the other way around). The
conclusion is just ihe WFF "FALSE". Its dependencies are the union of those of »1 and 2,

seecef] | 3,

I9FALSE a1 1

Eliminatinn rule
FE o , ALT{ ®] | <uff> )

@ must be of the WFF “"FALSE". A new line is created with either 81: or the WFF specificd by the
alternative. This rule says that anything follows from a contradiction. The depeadencies (there
had better be some) are just those of ».

veee:FE 19 618 lasn)y

0 ~tu(AT) an



FOL Manual Page 26

Section 4.325 NOT (=) ules

Introduction_rule

~1(NI) ® , ALT( ®] 1 <uttés) :

» must be the WFF "FATSE". The conclusion of the rule is the negation of #1: or the WFF. The
dependencics nf the conclusion are thase of 8 minus the anes equal tn #1: of WFF.

cceceal 19,3
clo~=Wy.yey 1)
2s0e9DED 1521

22 V. wgudmaVy.yiy

Elimination_rule

~E (NE) L I ALTE o] | cutes> ) :

8 must be the WIf "FALSE". sl or WFF must have the form -A. The conclusion is A. The
dependencies are thawe af o, minus any equal 10 ~A. if this rule is amitted (or Simply not used)
and only the intraduction and climination sules are used the proof is intuitionisticly valid.

+e0tcASSUNE  <3:y
23 ~Vygy @0
savech| 23,

S4 FALSE (3 290
ceecr-f 24,

S5 Wy.yy 23
¢teeDED 23229,

26 ~<VWy.ycyoVy.yoy

Reproduced from
best available copy
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Section 4.326 EQNICALENCE (8) rules
Introduction ritle
s] (E]) s , e

Either #l is of the form A2B aand #2 is of the form B5A or vice versa. The condlucion i« A°B.
The dependcicies are the union of the dependencies of ®] and ¥2.

cieess] 76,204

S1 aaVyoyrya¥y.yry
Elimination nile
=E (EE} (] . ALTL ALTIoI1) + ALT(ecI2] ) s

If o is of the form A=B then 1he first alternative produces ASB. the sccond BoA. The
dependencies are those of »

ceriE 27 ¢

JB Wy yrywaaWy.yey

Reproduced from
best available copy
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Section 4227 QUANTIFICATION rules

This is an example of a proof using all the quaatification rules.

cteseDECLARE INDVAR x y; DECLARE INDPAR a b; DECLARE PREDPAR P 2,
+o22eRSSUNE Wi, Jy.P(x,y)aVx y. (Plx, yloPly,x));
1 ¥ 3. PO,y aWy y (P Ux,gdoPly,xd) (1)
ceonn-€ | 1y

P78 TR TR Y

seeeeb | 2

3 ¥a gyl (Pl ghaPlg, ) (1)

senveV¥E 2 ay

4 3.Pla,y) (D

tc2:2¥E 3 8 b3

S Pta,b)oPlb,a) 11)

2030 4 by

6 Pa,b) (6)

seseedl 8,6;

7 Ptb,8) (1 6)

ceeosn] € 7y

8 Pla,b) Plh,a) (16

tesrell 8 bey,

9 3y.(Pla,y)aPiy, e (1)

scoeeV] 9 aen;

18 Va. 3y, (Pl ) aPly,x)) (D)

sseeed] 1518;

11 (. 3y. Pl gl sV y. (P (n,y)oP Gy, x) ) D3¥x. Jy. (P, y) aPly,»))

Reproduced from
best available copy
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Section 4.3271 UNIVERSAL QUANTIFICATION (¥) rules

Introduction rule

viuGl & , REPLT OPT{ALT [cindvar~>i<indpar>) « 1 cindvar> . OFT(,)]

Several simuliancous universal genalizations on ¢ can be carried out with this command.  For
each element of the dist (cither x or a~x) a new universal quantifier (VX) is put at the froat of e
(with x far all free accurrences of a in the second case) and a new line of the derivation is
created.

Remember there ic a redriction on the application of this rule, namely the newly quantified variahie
musl nat appear [ree in any of the dependencies of o,

In the example ¥1 accurs on line 2. There is nothing free in the WFF on tine | (line 9 only

dependency) so the generalization is legal. Notice that the “a” was changed to an "x". "a” cannot
be generalized. as it is an INDPAR,

Elimination rule

VE(S) s |, <termiist>

Universal specification uses the terms in the dtermbisi to instantiate the universal quantifiers in
the order in which they appear. If a particulae term is not free for the variable tn be
instantiated a bound variable change is made and then the substitution is made. The variable

crealed is declared to he an INDVAR of the correct SORT.

Line 4 and 5 of the exampie were created by this rule.

Reproduced from
best available copy
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Section 4.3272 EXISTENTIAL QU ANTIFICATION (3) rules

Introduction rule

31{EG)Y & , REPIIOPT (. trrm> &} <indvar> OPTlcocclint>) ,OPTL(,})

The list following @ tclls which TERMs are to be gencralized. If the optianal <termd is present, it
is first replaced by dndvan at cach occurrence mentioncd in the <scclist>. The WIF on » is then
generalized and the next thing in the Jist is considercd. Notice that 10 use can be made of an
<occlist> if there is no TERM present.  The machine will ignore such a list in this case. The
dependencies of the conclusion are just those of ».

cocclisty := OCC  (ordernatnummlisty
The <ordernatnumlist> is a list of natural numbers in increasing order.

In the cxample existeatial introduction is done on line 9 nf the proof. Thic is the mnst
interesting line of this example. Vou will note that the dependencies of thic line are not as
described above bhecause of the previous existential elimination. This is explained below,

+2¢1:DECLARE PREDCONST F 1) TRUT £ {x)v-F (r);
acee

ctee

27 Fa)v-F ()

sreew I 27,vey OCC 2y

8 Iy, (F(edyF ()

eeeee V] 08,

19 W3y FixdvFiyh)

Elimination rule

3EES) ® , HKEPLIALTL <zindvar> | <indpar> ),0PT(,])

The implementation of this rule i« the most radically different from the formal aatement given
above. This rale corgecposuds in iziormal reasoning 1o ihe following Lind of acgnment. Suppoce
we have shown that comething exids with same particulac property, e ¢ v 'yt Then we <ay
“call this thing b". This is Jike saying ASSUME P(al). Then we can tcason abaut b A« coon as
we have a sentence, however, that no lnnger mentions b, it is a theorem which doce nmt depend on
what we called “y™ but only on the dependancies of the existential statement we staried with.
Thus we can climinate P(ab) from the assumptions of this theorews and replace them with those
of the assumptions of 3y.P(a.y)

Reproduced from
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The machine implementation thus makes the correct assumption for you, remembere it and
automatically removes it at the first legitimate opportunity. Several eliminations can be done at
once.

In the example an existential elimination was done creating step 6. This line actually has as its
REASON that it was ASSUMEd. Line 8 thus depends on it. When the existential generalization
was done on the next line, b no longer appeared and so line 6 was removed from the
dependancics of line 9. A user should try to convince himnself that this is equivaient to the rule
stated at the beginning of this manual.

Reproduced from
best available copy
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Section 4.3273 Quantifier rules with SORT s

The following table describes the effect of the quantifier rules in the presence of SORT and
MOREGENERAL declarations, such that p is of SORT P, q is of SORT Q and r is of SORT R, and R is
MOREGENERAL than Q and Q is MOREGENERAL than P

vE Vq.Rig) Vq.R(g) Vq.RA(g)
e e YR
vi Aty Aty Qlq)
ve.Atp va-ftar Tarrer
3t I4.R1q) 3q.0(q) Jq.Rla)
“error I e
3 LI} Rig) Alq)
P@aleAe) et AT

As an example, it is possible that you might iry to instantiate 2 variable to a terin whose SORT is
MOREGENERAL than the quantified variable. In this case the result of the specialization is to
create an implication asserting that if the term were of the proper SORT then the specialization
holds. If the variable is MOREGENERAL than the term then the usual WFF {s returned.
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Section 4.33 TAUT and TAUTEQ

TAUTOLOCGY rule

TAUT  «<uff> , <viliat> 3

This rule decides if the WFFs follows as a fautelogical conscquence of the WFFs mentioned ir the
VLUIST (the notion of VLLIST is defined in Appendix 2). In this case WFF is concluded zna its
dependencies are the nnion of the dependencies of cach WFF in the VLLIST. We think this
algorithm is fairly efficient ana thus should be used whenever possible.

TAUTEQ rule

TAUTEQ implements a decision procedure for the (heory of equality and w-ary predicates, n0,
Its syntax is the sam a~ the TAUT ruic:

TAUTEQ <uff> , «vllists ¢

This rule decides if WIF follows from the WFFs mentioned in VLLIST in the abavc-mentioned
theory. Thus, anything that can be proven by TAUT can also be proven by TAUTEQ, but
TAUTEQ runs more slowly than the TAUT rule.

ecoe:DECLARE PREDCONST P | Q 1)
oo tDECLARE OPCONST ¢ |)
+¢9+:DECLARE INOVAR & &g
+et e TAUTEQ avbs(P(a)eP (b))}

1 asb>(Pla)ePin))

00044TRUT 2l P L0)aP (b))
TOUGH LuCK

+e0 ¢ TAUTEQ asbY(A)et(B)y

TO0UGH LUC)

The formula a=ha(P(al Pib)) cannot be proven propositionally: TAUT waald simply rename (azb)
to a new PREDPAR with ARITY 0, say P1, P(a) to P2, and P(b) to P'3, and then try (o prove
PI13(P2:P3). The formula (a=b)>f(a)=f(b) cannot be proven by TAUTEQ since TAUTEQ does not
know about the arguments of fuitctions.

Reproduced from
best available copy
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Section 4.34 The UNIFY Command

UNIFY <uff> »

This command tries to establish whether the \WFF is a consequence he VL are

This rule of inference is best described by first presenting some examples:

ce s e cRSSUNE WX, PU(X),
I YX. P(X)
teecWUNIFY PCOLBY) |
2 PLLON
e+~ UNIFY 3X.POOY )

3 P}

1n step 2, the UNIFY mcchianism recngnised that P, applied to any TERM followed frory VX.P(X).
More aggressively, an line 3, it recognised the that YX.P(X) implies that IX.P(N). These are two
simple cases of the use af this command. A more complicated example is:

cees (ASSUME XYY, LPOXVO2(X, YD) 4
O P . QUX, VY (L)
ese2:UNIFY JU.PCIHVIN. V2.Q2(H,2) 1,

¢ W.PHIIMYIQIIN2 (1)

Notice that, in both of the examples above, the propositional structure of WFF was the same as
that of the VL. This rule is designed to handle exactly this case: namely, it is designed to handle
the quantifier manipulations involved in implications between WFFs with similar propositional
forms.
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Section 4.35 SUBSTITUTION rule

SUBST ®] IN #2 O0OPT[{ OCC <ordernatnumlist> ]}

If the major connective in 8l is = or s then (making allowances for bound variable changes) the
occurences of the left hand side of ®l which appear in 82 will be replaced by the right hand side
of sb. If an occurrence list appears only those listed will get substituted.

SUBSTR e] IN a7 QPT{ OCC <ordernatnumlist> ]

does the same as SUBRST but substitutes the left hand side of 8] far the right hand vide of #1 in
»2

Ordinarily. f(x) cannot be substituted for y in Yx.F(Ny) as the x in f(x) would then become
bound, i.e. f(x} is not free for y in Vs F(x.y). FOL automatically handles this conflict of bound
variables in a wibstitution; those nccurences of a bound variable which will cause a conflict are
changed. Thus. if one trics to substitute f(x) for Yx.F(x.y) the generated subetitution instance
will be VX LF(NL(f(x)} llere iiie newly created variable will have the same SORT as x if SORTs are
being used.

The 'new’ variable is crcated by considering the ‘old’ variable 1o have two parts: a prefix which is
the identifier up to and including its last alphanumeric character, and an index, cither empty or
a positive integer. The new variable which is generated will have the same prefix, and an
incremented index. For this purpase, an empty index is considercd to be ‘0",
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Section 44 Semantic Attachment and Simplification

FOL is concerned with chiecking theorems in a first-order language, which the user specifies by
making declarations. This language is then a structure Le<PF.Co, whete P i a st of predicate
symbols, F a <ot of functinn symbols, and C 2 set of constant symbnls. A medel of L is a
stencture Mo I F' (D, with D a aau-cmpty set, P* a set of n-ary predicates on D, F' a set of
fuactions mapping D" inta D, and €« subset of D. Aw interpreration of L oin M is a map which
specifies which symbols in P correspond to which predicates in M, similarly for F aud €. The
implementation of semantic artachment has two aspects:

(a) the atrachment mechanism which allows the user tn specify the ohjects in the model which
correspond to <ymbals in the languaye and vice versa, and

{b) the simptifior which tries to compute, in the model, the values of FOI exprestions ie it uses
the notion of satisfiatiliry.

For uamplc we might associate with function symbels the corresponding LIS functions, The
OPCONST *+" migzht be scimantically attached to the LISP function, PIUS, and the THICOHGTF
and ' (oc the wumerals) attached to the numbers | and 2, so that an rvalination of ‘12" in the
model would give the momber 3 as an answer - the smlphhcr would thea return the THRCONTT ‘3,

Note carefully that the map from I into M and that from M back to L wmay “e partial, ic. these
may be symbols in b which have no defined interpretation in AL and the pracess of
simplification with respect to M may generate abjects in M which have no cavonical symbol in
L. The FOL simplificr simplifics sentences to the maximal possible extent, using the results of
computation within the medel, as well as any refevant information abowt the EXTENGION and
SORT steuctuces which the user has defined on L.

FOL allows the assignment of arbitrary LISP functions or lambda-expressions as the
interpretations of predicate and function symbols.
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Section 44] The ATT ACH command

ATTACH OPT(s] ALT( <predconst> | <opconst> | <indconst> ] «<s_expr>

<8_expr> = ALT( <atom> | ( <s_expriist> OPT(<dotend>) ) J;
<s_exprlist> :e REP1[ <s_expr> )

<dotend> tm ., <Sexpr>

<atom> sw ALT{ <identifier> | <natnums

This command allows for the definition of the wmaps from the FOL language that 1he user hias
defined into the LISP cnvironment which he wishes to take as the model of his language (and
vice versa if the ATTACH? option taken).

PREDCONSTs and (FCONSTs way be attached either 1o atoms which are the names of already-
defined LISP functions (i.e. ones which have a SUBR, EXPR or MACRQ property, including of
course all the standard ILISP functions) or Jegal LISP function, lambda-expression or macro
definitions. The attachment mechanisin checks that the functions (except SUBRs) being
attached have the correct number of arguments corresponding to the ARITY of the FREDCONST or
OPCONST to which the attachment is being made. INOCONSTs may be attached to any S-
expression.

ovesvDECLARE INDCONST ZERO, ONE ¢ INTEGEN
2+0soDECLARE OPCONST o CINTEGER, INTEGER )« INTEGER (INF);
2e0esATTACH Z2ERO 8;

ZERO attached te §

*eo0sRTTACH ONE I;

ONE attached o |

+900vDECLARE OPCONST CAR CORCLISTISLIST;
++ve:DECLARE OPCONST TONS {SEXPR,SEXPR)«SEXPR;
scoosRTTRCH CAR CAR;

«o+ssATTRCH CONS CONS§

*009+0ECLARE [NOVRR R B L ¢ SEXPR;
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Section 442 The SIMPLIFY command
SIMPLIFY [ALT «uffs | <vi> | <term> ]

This cr. mand effects the simplification of an FOL scatence by computing within its model,
i.e. the simplification mechanist attempts to find, in the model, ab jects (LISP S-rxpressions)
which enrrespand to syntactic symbalcin the sentence. If any are found, they are FVALuated in
the normal way. The simplificr thea attempts to find 2 term in the langnage which correcpands
to this evaluated entity. In the case nf VLs and TcRNs the origina) expresann ic returned,
together with it mavimally simplificd form: if a term exists in the hinguace for the
simplification, then that ferms the right hand of the equality. (The <implifier i aware 1hat
NATNUMs and ISP numbers correspoml te each othier). In the case of L8« additionalle, if the
result of simplification is a truth-value, the WFF or its negation iv retwned, whichever is
appropriate. ‘The simplification is cairied out to the maximal extent.

If a LISP error it encountered during simplification, an error message is given.

In the model defined by the attachments made above, the following accurs:

2 eesSINPLIFY TCRO o ONE,
TtPOONES]
e:eesSIMPLIFY CAR * (R B);

CRR(* (A B))sR

In addition, the simplification mechanisim takes into account any inforimation that is available
about the SORT and [XTENSION declarations that have been made. For example. remembering the
example on extensions given in section 4.124:

¢o-<:DECLARE INDCONST B% ¢ BKINGS, WK « WY INGS;

Evtension of BHINGS 15 (BK)

111 EXTENSION Wb INGS TWK 1y
Extansion of WHINGS s (MK)
+++etEXTENSION § INGS W INGS U BV INGS,
Extansion of FINCS is (WK BK)
teessSINPLIFY WY eBry

~ (Ut eBX)

Reproduced from
best available copy
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Section 4437 Auxilimy FUNCTION definition

FUNCTION <function-<_cxpr> ;

This allows the definition of <function-s expr> as an auxiliary LISP function. If the function
definition is a legal s expr> which is not a legai LISP function definition of the DE or

DEFPROP sort, an crror imessage will be given.
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Section 4.5 Admimnistiative Commands

These cammands manipulate the proof checker but do not directly alier the current deduction,

Section 451 Thel ABRFI corimand
LAREL  ALTL ~iclent | cident. - <linenum>)
In the first case the nest line the pronf checher generates will get the labed 1 11T In the seennd

the LINENUM mentioncd will hbecome labeled by IDENT. Labels are alternatives ta Vis and can be
used in any place that the syntax expedts them.

Section 452 File Hawdling commands

Section 4521 The FET( H command

FETCH ~-filename~ HPTT FRIM cmark]l> ) OPTL TO «markls )

The FETCH command reads the file <filename>, and executes any FOUL commands in this file.
FOL accepts standard Stanford file designators. If mark specifications are present, the file is
only read within the limits which they specify. The default FROM/TO are the beginning and
the end. respectively, of the file. The commands read during a fetch are nol printed in the
backup file. FETCHes may be nesied to a depth of 10.

Section 4522 The MARK command

HARK <token» ;

This command has na cffect on the proof, but simply places a mark in the file which the
FETCH command can use to delimit scading of the file.

Secrion 4523 The BAC KIVP command

BACKUIP ~file names

When FOL is initialized. a file called BACKUP.TMP is antomatically created. Al console input

from the user is saved on this file. This command clases the current backup file. and npens a
new one with the specificd file name.

Reproduced from
best available copy
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Section 4.524 The CLOSE command

CLOSE :

This closes and reopens the backup file. Normally the backup file is written every five steps in
the proof. but this command enables the user to save the state of his deduction at any poiii.
Section 4525 The COMMENT command

COMMENT <delimiter> <text> cdeiimiters>

When typed at the top-level, this inscrts any text between the delimters into the backup file: if it
appears in a FETCHed file, the text is ignored. Of course, the dzlimiter must not appear in the
text.

Section 453 The CANCEL command

CANCEL OPT{ <linenum> ];

This cancels all steps of a deduction with LINENUMs greater than or equal to LINENUM. Thus you
can remove unwanted sicps from a deduction provided they are ail at the end of the PROOF. If no
LINENUM is specified, only the last line is cancelled.

Section 4.54 The SHOW command

The SHOW command is used to display information generated by FOL. The intent of the
present command s to allow you to display information about a derivation at the console and

save it on a file. The integer after the FILENAME becomes the linelength while this command is
active.

SHOW <shoutype> TPTI( <filename> OPT( <inteaer> }) ;
<shoutype> tv RLT( PROOF OPT( <rangeldisty ) |
STEPS OPT( «rangelist> ) |
RX10M OPYD «axnsmiist> ) |
DECLARATIONS OPT! «dacinfe> ) |
CENERALITY  OPT( «geninte> ) |
LABE! S OPT( <labelinfe> ) }

crpngel igt> 1= RCPllcrangespacs,0PTL,1]
<rangespec> ta ALTE OPT( <linenuma> ) 1 OPTL <linonums 3 | <l inenumy )
«decinto> te REPLL ALTI <syntype> OPTL ¢ <serts) |

<folsym> |

SORTS 1, oe7L,))
<goninio> te REPL( «sort>, OPT(,) )
<labaiinto> 1o REPLL ALTL <label> | <rangespec> ) , OPT(,] )
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RANGESPEC may be of the form 23 nr 23:65 or :65 or 34: ar cven = Bts meaning is eithier a4 vingle
LINENUM or a range of LINFNUMs. I a number stands alene it simply means this pumbes, I
there are two pumbers separated by a colon, the range is from the first 1o the econd.  If
numbers do aot appear on either side of the colon then the default ot 0 oc the laa line is
assumed. An FOLSYM is any declared identifier and show retarns it SR adentificr and chow
returns appropriate syntactic information,

Examples are:

t+es<5HOM PROOY 1, 0:%, 061 FDO.RAZILET RUN) 02

this writes lines 1, 2 to 5, 16 to the last line of the proof onto the file FOO.BAZ[SET RW W] with
a Jinelength of 22.

se¢t«:SHOW PPOOF ;
displays the proof ou the console,

The next exawmple, takea fram an actual test file, shows the kind of syntactic information
displayed by a "show declarations”™ command.

e2¢::5HOM OECLHRATIONS EMPTY x o £ carry tront Binaryplus;
EAPTY p INDCON»Y of sort BYTZS
v 18 INDVAR of gort INTEGER

o is OPCONST
The domain s INTEGER o INTEGER, ann tha tange o8 INTEGED [1 . hOh DRI

< 18 PRECCONST
The domain s INTEGER o INTEGERIL. Y0 R.300)

carey g OPCONST
The domain ss BYTES e BYTES, and the ranas 15 BYIFS

front g OPCONST
The doma(n is BYES, and the range is BYTESIR.5D)

No declaration for binaryplus
“r0¢:3H0N DECLRRAYION SORTS;
shows all the PRENCONSTs of ARITY | (i.e. all of theSORTs)

SHOW commands do the ohvinus tlung in conjunction with the display features turned on by
DISPLAY.
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Section 435 The DISPLAY command

DISPLAY OPT( <displaytype> )

«displaytype> 1o RLYI PROOF
STEPS
RXJoN
ATTACHNENTS
OECLARAT IONS
LRBELS
STATUS )

FOL may take advantage of the display features of the Stanford DataDisc system by means of
this command.

For example:

vosveDISPLAY
creates a display window of full-screen width, into which the steps of the proof are displayed as
the derivation continues. The page-printer is restricted to the bottomn eight lines of the screen. If
ihe argument is non-null then the ‘proof’ window is restricted to half-screen width, and a second
window, appropriately labelled, occupies the other half of the screen eg.

seree(ISPLAY AXIONS ,

causes an ‘axiom’' window to be opencd, and ail axioms are printed to that window, rather than
to the '‘proof’ window or the page-printer.

Whatever the current state of the display, ‘DISPLAY <null>’ causes the ‘proof’ window to be

regenerated. together with the last five lines of the proof, if any. Any other windows wiich may

be present are flushed. This method is slow and cannot be used from teletypes, but provides a

much more convenient way of displaying the steps of the proofs and other information.
serrtUNDISPLAY |

restores the screen to normal teletype mode.

Section 4.56 The EXIT command
EXIT 3

‘This command returns the user to the monitor in a state sppropriate for saving his core-image.
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Section 4.58 The SPOOL Command
SPOOL <filename> ¢ YSPOOL <filennme>

These cause the filename> to be sponled an the appropriate device (LPT or X"

Section 458 The TTY « ommand
TTY
This resets the printing coutines sn that they are teletype rather than display oriented  En this

mode, the logical connectives are represented by NOT, OR, & or AND. = ar IMP, « ar FOINV,
FORALL. EXISTS.
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Appendix 1
FORMAL DESCRIPTION OF FOL

The non-descriptive symbols of FOL divide Into SYNTYPEs as follows:

1. Individual variables - INOVAR. There are denumerably inany individual variable symbols. We
use x.y.z as meta-variables for themn;

2. Individual parameters - INDPAR. There are denumerably many individual parameter symbols.

As meta-variables we use ab.c

8. n-place predicate parameters - PREOPAR.  For each n there are denumerably many predicate
parameter symbols. An n-place PREDPAR is said to have ARITY n;

4. Logical constants:
a) Sentential constants - SENTCONST: FALSE and TRUE.
b) Sentential connectives - SENTCONN: ~Av,Ds,
¢) Quantifiers - QUANT: ¥V and 3

5. Auxillary signs - AUXSYM: parenthesis ()

A particular FOL language is distinguished from a pure first order language by declaring
certain constant symbols. These have the SYNTYPEs:

1. Individual constants . INDCONST:
2. n-place predicate constants - PREDCONST. Each n.place PREDCONST has ARITY n:

8. n-place operation symbols - OPCONST. Like PREDPARs each has an ARITY. Some aunthors call
OPCONSTs function symbols;

Each SYNTYPE is assumed to be disjoint from all others.

TERMs

tis a TERM in FOL if either
1. ¢ is an INDPAR, INDVAR, or an INDCONST, or
2. tis f(tyita...t,) where f is an OPCONST of ARITY pn and t, is a TERM.
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WFFs

A s an atomic well-formed formula or AWFF if
1. A is one of the symbols “FALSE® or “TRUE",
2. A is P(t,,...t;) where P is a PREDPAR or a PREDCONST of ARITY a.

The notion of weil-formed formula or WFF is defined inductively by:
1. An AWFF is a WFF,
2. If A aud B are WFFs, then so are (AAB), (AvB). (A2B). (AsB). and <A).
- 3. If A is a WFF, then 5o are ¥x.A and 3x.A provided that x is an INDVAR.

The usual sefinitions of free and bound variables appiy and can be found in any standard logic
text (eg. Mathematical Logic by S.C. Kleene). Below the usual comventions for omitting
parentheses will be used.

FORMULAS

The notion of SUBFORMULA is defined inductively
I. A is a SUBFORMULA of A.
9. If BAC, BvC, BaC, BtC, or -B is a SUBFORMULA of A so are B and C.
3. If vx.B or Ix.B is a SUBFORMULA OF A, so is B[tex)

The notations Aftex] and A{t-u), where A represents a8 WFF, t, u TERMs and x an INDVAR are
used to denote the result of substituting x or u, respectively, for all occurrences of t in A (if
any). In contexts where 4 :iotation like A(te-x] is used, it is always assumed that t does not occur
in A within the scope of a quantificr that is immediately followed by x. The notation A[x«t].
denotes the result of subsiituting t for all free occurrences of x.

The notation Afaex,xet) means the result of first substituting x for a and then t for x. To
denote simultancous substitution we use Alaexixet)
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Appendix 2
THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In this mannal the . ntox of FOIL will be described using a modificd form of 1he MLISP2 notion of
pottern. These form the hasie ronstructs of  the FOL. parser,

1. ldentifiere which appear in patterns are to b taken literally.
2, Patierna for symtactic types are surrannded by angle brackets,
3. Patterrs for repetitions are designated by:
REPO/<patiern>] means 0 or more repeated PATTERN,,
REPn{<patiern>] means n or more repeated PATTERNs,
I1f a REPO ar n REPn has two arguments then the second argument is a pattern that acts as a
separator. So that REP1[<wff> ,] mcans one or more WFFs separated by commaa.
4. /ilternatives appear as MIT[<PATTERND|J<PATTERNn> ).
ALT/<wff>|<term>] means cither a WFF or ¢ TERM.
S. Optional things appear as OPT[<patiorn>)
REP2]<wf[>0PT].]] means a sequence of two or more WFFs oplionally separated by
commas,
These convantns are comhined swith the ssandard Beckus Normal Form notation.

Basic FOL symbols

In an attempt to make life easier for users, the FOL parser makes more careful distinctions
about the kinds of symbols that it sees than the previous description indicated.

<indsyms 1a ALY cindvary | «<indpar> | <indeonst> )

cindvary te cidentitior> sdeclared INDVRR

<indpar> ta  cldentitiers jdeciored INOPOR

cindconst> t1a RLT{ cidentifior> | tdeciarea INOCONST
<infeger> ) 1o declaratien necessary

<0pSym> 1s ALT( <oppar> | copeonst> )

<oppars» 1s <identitiors 1dec |argd OPPAR

«ppcongt> te «<identitior> 1decisred OPCOKST

«preop» ts <opsym 1ARITY 1 and decipred PREFIX

«infop» 1a  copsym> JARITY 2 and deciared INFIX

«oppiop> 18 copsym {ARITY n and not declared

- } INF or PRE dec

cpredsys> 1e ALT{ <predpar> | <predconst> )

<predper> 1s <identifior> jdeclared PREDPAR
«preodconsi> 1» <identifier> jéaclared PREDCONST
cpropred> 1a  «predsyr> jARITY 1 and declared PREFIX
<infpred> 13  «<pradsym> ARITY 2 and declared 1WFIX
<appiprod> 18 <prodsym» IMRITY n and not deciored

) INF or PRE doc

<sontsym> 1» ALTL <sentpar> | c«sentcenst> |
<tontpar> 1o <identifior> jdeciared SENTPAR
<sonicenst> 1 ALTL FALSE |

™E |
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<identifior> ] ydectared SENTCONST
3 INF or PRE dec

«gontconn> e ALT( I jnegation

] jdisjunction
& | AND | jconjunction
- | 1w ] jimplication
-

|

£V ) joqui valence

«prelog> tm ALTEL < | NOT ) .
<inflog» te ALTL v | OR | A | & | AND | 2|« | IWP || = | EQUIV]

«wvant> ve RALTL ¥ | FORMLL | 3 | EXISTS ]

The FOL syntax for TERMs allows for both prefix operators and binary infix operators, as well
as the usual function application notation. Any undeclared identifier can be declared an
operation constant (OPCONST) using the DECLARE command. With proper declaration the
following are TERMs:

f{xe-y,gixeyer))

CAR

eor(x,y)

IROBOT,B0X1,000R1U (y|Vx.Pligix,y)))
pouerset(-A,A,(>)

<term> te ALTL cindsym>
<app | term>
epratixtierms
<inl ixterm>

«solterm>

<n_tupleterm

<compiorm»

t ctermy )
<opp | tormy 1o copplop> ( ctormiist> )
<prolixterms ts  c<preopr ctermr
cintixtorm te <lerm> <infop> c<torm»
csatiorns 19 | «termlist>
entupiotersy 1o ¢ ctormligi> >
ccompiore> te | cindvar> | «uit> |
<tormiist> 1o REPLL <torms , MPY(,) )

These are illustrated above and may be used at any cime. Other sdditions may occur from time
to time.

Of course, the appropriate restrictions on the SORTs of the arguments of the OPSYMs must be
met.

AWFFs

AWFFs are formed similarly, but cannot be nested.
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<outi> ;e ALY <basaufi> |
capplantt> ]
cpreautis |
cinfauti> ]

cbosedutt> 1o ALTL «sentsym> |

«predpar> ) gwith RRITY O
<applauti> 1o <opplpred> { ctarmlist> )
cproasuifs 1= cprepred> <term»
cintonit> te  ctegrm> <infpred> <lerm

Examples of AWFFs are

10,8, HIIX[32.H2Za2eX)
<,b> a 18, 1a,0})
tix,yle *car(conslx,y))

Equality is treated as any other predicate constant, but the system Lnews about the
substitution of equals for equals. It does not know that A¥B is usually interpreted as ~(4+B), but
treats it as any other predicate symbol.

WFFEs

«wff> 1o ALY «xisndard tirst order logic forsuia> |
«vi> 1 10PT «gubpartsl IDPY <subst _oper>l |}

The syntax for WFFs allows the following abbreviations and options.

The primitive logical symbols are:

<«tf> 1e RALTL eprimmtts | cproutts> | <intutt> )

«primifi> 1e ALTL coults | «quantuif> | { <uft> ) ]

«aprenti> i «prelog> «<primstis

cintul 1> 1e cprimii> cinflog> <primti>

cquantutl> e cquantprelins  <nalinit>

cquantpretiz> 1a ALTE cquant> REPI{ <indvar> ) . |
C cquant> REPLL <indvare> ) ) )

csmal luff> 1e REPBI <prulog> ) «primit>

Parentheses may bhe ontitied and then assaciation iz to the right. As is usual conjunciion binds the
strongest, followed hy disjunciion, implication end equivalence, Negation, as well as both quantifiera,
bind to the shorteas WFF ox their right. Thus Yx.P(x)oP(x) will perse as (Vx.Pi{x))>P(x) not as
Vx.(P(x)oP(x))]

We can write adjacent quantifiers of the same type together, 30 Vx.¥y.P(x,y) can be weitten vx
y.P(x.y). FOL also accepts (VxXVy)P(x.y) or (Vx ¥)P(xy) for Yx.Vy.P(x.5).

Subparts of WFFs and TERMs

Within a Jdeduction there is a completely general way of specifying any subpart of any TERM or
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WFF alveady mentioned. We accomplish this by means of a SUBPART designator. Derivations
consist of WFFs, each of which has a LINENUM. The WFF which appears on this line is designated
by following it with a colon. If

18. ¥ y. (PUHUx) 150 hEx, y)))

is line 10 of some derivation then 10: represents the WFF on that line, i.e. Vx y.(P{f(x))>Q(h(x.y)).
Furthermore. subparts of such a WFF can be designated by a SUBPART designator.

«gubgort> 1s REPI( 8 <integer> |

The integer denotes which branch of the subpart tree you wish to go down. Quantified formulas
and negations have only one immediate subpart, called sl. The other sentential connectives each
have two. For predicates and function symbols the number of immediate subparts is
determined by their ARITYs. Any conflict with these will produce an ercor. Thus

10:21 Yy. (P10 )R M x,y)))

18:02 o ERROR
10:01010200 «  hix,y
10:01010192 + ERROR (P hes ARITY ).

Substitutions in WFFs and TERMs

Onte you have named a WFF, you can use a substitution operator to perform an arbitrary
substitution.

«subsi_oper> 1o [ REPL{<substlist}>,OPT[ 1) 1}
<substtistl> ta ALTI cterm> « <torm> | <wfi> o <uff> )

Examples:

18101 Ix-ROBOT) = Vy. (P({(ROBOT))>Q (hCROBOT,y)))
101012114 (x)+ROBOT1Q(h(x,y))eP(x)) « P{ROBOTIIP(x)
101 #121058111 (18: 41#1£22181)-ROROT) = ROBOT

1001 Ixettg)) & Wyl (POHUI(Y SRR LTIy g},

Notea: the substitution operator changed the bound variable in the lan example. This prevonted the y in
J(y) from becoming hound. See sectin on substitutions.

WFFs and TERMs thus have the following alternative syntax:

«utl> te <viz 1 OPTL <aubpart> OPT( «subst_oper> ))

ctorm> 1o «<vi> 1 OPT[ cavbpart> OPT( <subst_oper> )}

There is an ambiguity as SUBPART may produce only a WFF where a TERM is necessary (or the
other way around). FOL checks for this and will not ailow a mistake. Such a subpart
designator can be used whenever the syntax calls for a \WFF or TERM.
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Another label for handling well-formed expressions is the Vi

«vi> 1o ALYl <integer> | <label> OPTIRLTL #|-) cinteger>) |
<axrat> | REPL(-]1 1

The optional + or - Cinteger> after a label designates an offset from the mentioned label by the
amount designated.

The last alternative has not been previously mentioned. Its meaning Is the n-th previous line,
where n is the number of "-" signs.
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Appendix 3
AXIOMS FOR ZERMELO FRAENKEL SET THEORY

The axioms presented here and in appendix 4 are examples of the expression in FOL of the
conventional Zermels-Fraenkel and Goedel-Bernays-von Neumann set theories. We believe that
the practical use of set theory for mathematical and computer science proofs will require an
extended practical system.

DECLARE PREDCONST ¢ 21INF)y
DECLARE PREDCONST ¢ 2LINF)}
DECLARE OPCONST U 2(iNF)}
DECLARE INOVAR r 8 t u v v x y 3¢
DECLARC PREDOPAR A 2 B 1

RXIO0M 2F:

€xn Yx y. ¥z, (20xwz0ydonny), % Extensionality

EnTy In.Vy. ~ycry X Nl oget

PRIR:  ¥x y.2z.Yu. luczruexvisyl; X Unordered pair

UNION:  ¥x, 3y. ¥z, (zayr 3t (zatatew )y X Sum set

INF: Ix. (Oe ¢aVy, (yoxd(yUlytdexndd; X intinity

REPL:  Wa.Jy.¥z. (Rfw,)sye2) 3 % Replacement

Vu.dv. (¥r, (rev @ 33, (scusRis,r)d) )y

SEP ¥x. 3y, ¥z, taeyszenaBizd )y ¥ Separation

PONER: V¥x.Jy.Vz. (zcyzzer); X Power set

REG:  Wu,3y. txeBviycxa¥z, t2oxd=zey) ) 4y I Reguiarity
7 Replacement is equivalent to z
? ¥, (Jy.Rix, g a¥y 2. (RCx,y) AR(x, 2V oysT)) > 7
¥ Yu,3v. (Yr, (rev 3 35, (scuaRis, r)))) 4
7 or ¥, Iy Rl y) 2 Y Qv ¥ trav o Bs. (squalils,r))) X
7 Separation is a consequence o! and wesker then replacwent. | 4

2 Delinltions ?
DECLARE PREDCONSY FUN i, INTO 2,PSUBSET 2(INF}

NECLARE OPCONST rng | dom 1)
Axion
SUGSET: ¥ y. {xeya¥e, (zexazeyddy
PROPSUBSET: Yoo o (PSUBSET (x,y) excya-nsy)}
POIRFUN: ¥x y 2. (2¢ix,yinzexnveey);
UNITSETFUN, Y.l Iubuin,xb )y
OPA L RFUNY ¥x y. b ex,yreiixd, Ix, 1) )y
FUNCTIONS Yu. (FUN () 8V, (2cwadx y. tzecx,yp))a
Vi y 2. lax,y>cunex, 2ocuayse) 1j
oonAlN- Yo x. (rcdomin) sFUN G AdY 2. (gcuaysex,25))¢
RANGE ¢ Yu v Ceernatu) FUNTIADY 2. (geuayedz,x>) )y
INT0, Wu x. (IN10tu, ¥ irrnglulendy

UNION: Wn y 2. Crevilyzzenvacydy ¢
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Appendix 4

AXIOMS FOR GOEDEL-BERNAYS-VON NEUMANN SET THEORY

ROSYGEMERAL Ctlass;

DECLARE PREOCONST Ciass Set |

DECLARE PREDCONST ¢ (Ciass,Class) LINF);

DECLRRE PREDCONST ci(Set,Class) INFI,;

DECLRRE INDVRR R B € « Class,x yu v v « Sety

DECLARE PREDCONST Empty Onefany(Ciass),DisjointiClass,Class))

AXION NGB
KLRSS: Vu.Clossix);
1SSET: ¥ 8. (A¢B3Set(AY),
EOUAL: va B C. ({C.RaCcB)oRed) )
EPPTY: In.Vy. ayoxg
PAIRS: ¥x y.Ju. Vv, (veulvexvvey) g
CLRSS!t
EPI: 3A.Vu v. (cu, v>cRaucv)
INT: vA 8.3C.Yu. (ueCauc RrucB)y
conp: YA, IB. Yu, (ucBa-ucR))
PRO )1 YR, 3N Yu. fucBodv.cu, vae )y
PRID: YA.JR.Yu v. leu, vaBrucRYy
CONV: YA. 0. Yu v. teu, varBrev,uscR) |
TRIL: VA.IB.Yu v m. leu, v, uxcBuav,u,uxcf)}
TRI2: YA.3B.Yu v w. leu, v, uscBacu,u, v>e¢R)
SET1
INF: Ju. (~Emplylu)a¥y, (vcusdu. (wcuasvenavend))
UNION:  Yu.3v.¥u x. (eexanquongvly
PUNER:  Yu.3v.Vu. (wcuducv)y
REPL: Vu R. (OneMany (R 53v. Vu. lug vadn. Ixcuacn, x3¢R))) )
FND: VA, (~Empty (H)53u. tucR:Disjoint lu,R)));

ACs 3R, (Onefany (R aAVu. (Emptylu)odv. (veuacv,uscfd)) )}

Reproduced from
best available copy

Page 53
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Appendix 5

INTUITIONISTIC MODAL LOGICS

Modal Logic:

The best known moedalities are the so called ‘aleth’ ones, invohing nececora N and
possibiliex{ Mk but many other sentential operatars wanich display maodal chatacteriatics have heen
studied, e.¢. C for cancsdity (Burks (951 K and B for bnowledge and belief tlintikha 1962, P for
perception (Iintikba i), These latter modalities are the subject of intensive 1esearch in logic
at the mmment, and a comprehensive semantics has heen evalved for come of them (Kreiphe )96,
Hintikka, 0969  ‘Fhere are stilt many difficult problems, especially in the case of quantification
into modal contexts, where the traditional rules of <ubstitutability of equivalenms and of
existential geacralization do not seem to hald. Thic has led to a reformulation of wmany
ontological nntions in quantification theary(see, for example, (HintikLa195%) and (Follecdal 196R),

(Note that modal oprraterc are c<entential operators of a eather cpecial kind, nog POTDCONS T [ jx pog
possible to regard modal vpeeatnre ac applving to names of sentences or formular withont losing the
powerful semanmticcisen, for cvample (Montague, 19630)
In the current implementation, the user may define non-standard modal systenss and operatars,
Lewis S4 and S5. Hintibha's KBK and KBB(epcit) are already available, together with the
operators N(necessarily). M(possibly), K(knows), B(believes).
(a) The Classical Systems T, $4 and S5
von Wright's system, T (van Wright 1951 is got from LPC by adding:

AS: Npop

A6 N.aAp=2q)a2(Np=2Ng)

Lewis’s system S4 (LewiskLangford.1932) is got from T by adding:
A7 Np>NNp

Lewis's S5 by adding:
AR: Mp>NMp

(b) Natural Dednctin. Systems of Modal Logic

(1) These are hased on minimal. classical and intuitionistic Ingics:

(3) Necessity systems:

Prawitz has two inference rujes for S4:
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NIl a NE} Na

------ ewscase

N.a a

and a corresponding deduction rule for NI, when the proof or deduction of '3’ depends only on
modal formulas,

In S3. N.asa may be inferred also when every formula in the dependency set is cither a modal
formula or the negation of 2 modal tormula. begin indent 5.0 (4) Possibility systems:

The possibility nperator. M, may be added by means of the rules
M) a ME) Makb

When these rules are added, the deduciion rule for N1 must be modificd to be <imilar to the rule
ME.

In the classical Lewis systems, M and N may be interdcfined, c.¢. M.as-N-.a and N.a > -M-.a, but
in the Prawitz sysicm this is net posible.

The syntax for modal formuiae is ideatical to that of sandard formulae, except that WEHF- may
be preceded by | or more madal aperatars(and imbedded -). followed by a *.". So a perind

emodatutis :m oomoddlprelivy «primull>
ampdatprativy te crdeantifiars ',

For example, NMN-MMNNMNMNM.A  and VX.M.P(x)>MM.p(x) are well-formed.

Whean scanning for modal formulac is turned on using the ‘THEORY' command (see Section
4.13), the following rules then become available:

NECL dine numbery), NECE  dine-numben
POSSI dine-number>, POSSE dine-number>

as defined by the conditions above.(Note carefully the depeadency restrictions)
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