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An algorithm is presented which finds all occurrences of one given 
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lengths of the strings. The constant of proportionality is low enough 
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Fast Pattern Matching in Strings 

Text-edi ting pr~rams are often required t;:> search through a string 

of cbara~ters looking for instances of a given 'pattern' string; we 

wish to find all positions, or perhaps only the leftmost position, 

in which the pattern occurs as a. conti~.lous substring of the text. 

For example, ~ ~ ~ ~ ~ ~!"i. contains the pattern ten, but we do not 

regard ~ ~ ~ ~ ! ¥. as one of its substrings-

The obvious way to search for a matching pattern is to try searching 

at every starting position of the text, abandoning the search as soon 

as we find cha.racters that don't match. But this approach can be very 

ineffiCient, for example when we are looking for an occurrence of 

aaaaaaab in aaaaaaaaaaaaaab When the p6.ttern is a~ ------.- ---------------
and the text is ~~ . we will find ourselves making (n+l)2 canparisons 

of characters. Furt'1ermore, the traditional approach involves 'backing up' 

the inp.lt text as we go through it, and this can add annoying complications 

when we consider the buffering operations that are frequently involved. 

In this paper we describe a pattern~atching algorithm which finds 

all occurrences of a pattern of length m wi thin a text of length n 

in O(m+n) units of time, and without 'backing up' the input text. 

The algorithm needs only O(m) locations of internal memory if the 

text is read fran 8.l' t:.A.:'.:r::-l file, a.nd on1y O(log m) units of time 

elapse b~ween consecutive sin~le-character inT"..:i;s. All of the constants of 

proportiOnality implied by these " v -- Ionnulas are independent of the 

alphabet size. 

We shall fint consider the algorithm in a conceptuall¥ simple but 

SOllewha.t ineffiCient form. Sections ~ and 4 of this paper discuss sane 
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ways to improve the efficiency and to adapt the algorithm to other 

problems. Section 5 develops the \Ulderl:ying theory, and Section 6 

uses the algorithm to disprove the conjecture that a certain context-free 

l.angu.age cannot be recognized in linear time. Finally, Section 7 

discusses the origin of the algorithm ~~d its relation to other recent 

work. 

1. Infonnal developnent 

The idea behind this approacb to patt4!rn matching is perhaps 

easiest to grasp if we imagine placing the pattern over the text and 

sliding it to the r1ght in a. certdoin wa:y. Cons1der for example a. 

search for ~he pattern a.bcabca.cao ---------- in the text 

~ !! ~ = ~! ~ =! ~ = !! ~ = ! ~ S! '2 = ! = ! '2: ; initlall:y we plAce the 

pattern at the extreme left and prepare to scan tbe lef'tmost character 

of the input text: 

abcabcacab 

ba.bcba.bcabcaabca.bcabca.cabe 
t 

The an-ow here indicates the current te.:'<t character; since it points 

to b, which doesn' t match the a, we shift the pattern one space 

right and move to the next input chara.cter: 

a. b e a. b e a. cab 

ba.bcbabeabeaa.bcabca.bcacabc 
T 

}tow we ba.ve a. match, so the pattern stays put while the next several. 

cbara.cters are sca.nned. Soon we come to another mismatch: 

abc abc a cab 

babcbabeabeaabeabcabca.cabe 
T 
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At this point, from the fact that we have matched the first three 

pattern characters but not the fourth, we know that the last four 

character£: of the input have been abc x where x I a. ; we don't 

have to rernemb.:r the previously scanned characters, since our position 

in the pattern yields enough information to recreate them. In this 

case, no matter what x is (as long as it's not ~), we deduce that 

the pattern can immediately be shi!'ted foUl" more pla.ces to the. right; 

one, two, or three shifts can't possibly lead to a match. 

Soon we {,et to another partial match, this time with a fail~re on 

the eihbth pattern character: 

abcabcacab 

b abc b abc abc a abc abc a b ~ a cab c 
r 

Now we know that the last eight characters were ! ~ ~!.~ ~! ~ , where 

Yo ,. c. The pattern should therefore be shifted three places to the 

right: 

abcabcacab 

b abc tab cab c a abc abc abc a cab c 
f 

We try to Ina~ch the new pattern character, but this fails too, so we 

shift the pattern four (not five) more places. That produces a matt"'., 

and we continue scanning untL reaching another mismatch on the eighth 

pattern character: 

abcabcacab 

b abc b abc abc a abc abc abc a cab c 
f 

Again we shift the pattern three places to the right; this time a match 

is produced, and we eventua.lly discover t.he :t\lll pattern: 



abc abc a cab 

b abc b abc abc a abc abc abc a cab c 
T 

The ~lay-by-play description for this example indicates that 

the pattern-matching process will run efficiently if we have an 

auxiliary table that tells us exactly hew far to slide the pattern, 

when we detect a mismatch at its j-th character pattern[j]. Let 

next(j! be the character position to check next af'ter such a mismatch, 

so tha.t WE' axe sliding the pattern j - next[j] places rela.ti-.re to the 

text. The followir.g t.a.ble lists the appropriate values: 

j 1 2 3 l. 5 G 7 8 9 10 

pattenl[j 1 
~[j] 

abc abc a cab 

011 OIl 0 501 

We shall discuss how to precompute thls table later; fortunately, the 

calculations are quite simple, and we will see t.hat they require only 

O(m) steps. 

At each step of the scanning process, we move either the text 

pointer or the pattern, and each of these can mcve at most n times; 

so at most 2n steps need to be performed, af'tE:r the next table has 

been set up. or course the pattern itself doeFn't really move, we can 

do the necessary operations s~ply by maintaining the pointer variable j . 
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? . Programming the algor! tlun 

The pattern-match process has the general form 

place patten. at left; 

~ pattern not fully matched 

and text not exhausted do ....,..,... 

b~~~, 

~ pattern cbaracter differs frOOI 

current text character 

~ shift pattern appropriately; 

ad'rance to next character of text; 

For c::Jnvenhmce, let UE assume that the input text is present in an array 

t~xt(l:nl , and that the pattern appears in pattern(l:m]. Let j 

and k be integer variables such that textlkl denotes the current 

text character and pattern[j) denotes the corresponding pattern 

character; thus, the pattern is essentially aligned with positions 

p+ 1 through ptm of the text, where k = p+ j . Then the above program 

takes the following sL~ple form: 

j := k := 0; 

~j~m~ksn~ 

be~in 

~ j > 0 ~~ltd I pattern[j] 

~ j : = next lj 1 ; 
k := k+l; j := j-'-l; 

If j > m a.t the conclusion of the program, the leftmost match has 

been found. in positions k-m through k-l; but if j < m , the text 

has been exhausted. 
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The above program is easi~ proved corr~ct using the following 

inva.riant relaU::m: "Let p:o k-j (the position. in the text just 

preceding the first character of the pattern, in our assumed alignment). 

Then .... e ha\re tex~[p+i] '" pattern[i] for 1 ~ i < j ; but for 

1 < t < p .'e have text [t·!- ill patternt i 1 for some i, where 

1 < i < m " 

The program will :)f C::lUrse be correct only if we can compl.lte the 

next table 50 that the above relation r~ains invariant wben we perfonn 

the operation j := next[j 1. Let us lock at that cOlnpl.ltation now. 

wnen the pr:)gr&m S~t5 j: = next[ j J , we know that j > 0 , and that 

the last j characters of the input were 

pattem[ll ... pattern[j-l) x 

· .... here x, pattem[ j ) What we want is to find the leas"; amount of 

shift for .... hich these characters car: possibly match the shifted pattern; 

in other words, we want ~(j] to be the largest 1 less than j 

such that the last i characters of the input we~e 

patternllJ ... pattem[i-lJ x 

and pattern[i] I pattern[j). (If no such i exists, we let 

~[j) = 0.) With this definition of ~[j) it is easy to verify 

that text{t+l] ... ~[k] f pattem[l) ... pattem[k-t] for 

k-j ~ t < k - !Iext[j 1 ; hence the stated relation is indeed invariant, 

and our pr::>gram is correct. 

Now we must face up to the problem we have been postponing, the 

task of calculating next[j] in the first place. This problem would 

be easier if we didn't require pattern[i] f pattern[j] in the definition 

of ~[jl , so we shall consider the easier problem first. Let f(j) 
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be the largest i less than j such that pattern[l) ... pattern[i-l] 

pattem[j-i+l) pattem[j-l] since this condition holds vacuously 

for i = 1 , we always have f(j) > 1 when j > 1. By convention we 

let f( 1) = 0 The pattern used in the example of Section 1 has the 

following f table: 

j 1 2 3 4 5 6 7 8 9 10 

patt ern [ ,i ] a b c a b c a c a b 

f(j) 0 1 1 1 2 3 4 5 1 2 

If ~tem[ j 1 = pattern[ f( j)] then f( j+ 1) = f( j)+ 1 ; but if 

not, we can use essentially the same pattern-matching algorithm as 

above to compute f(j+l) , with text = pattern! (Note the similarity 

of the !(j) problem to the invariant condition of the :natching algorithm. 

Our program calculates the largest j less than or equal to k such 

that pattern[l] ... pattern[j-l) = text[k-j+l] ... ~[k-ll , so we 

can transfer the previous technology to the present problem.) The 

following program will canpute f(j+l), asswning thaI; 

next[l] ... n~:t[j-l) and f(j) have already been calculated: 

t ::f(j); 

while t > 0 and pattern[j) f pattern[t] ----- ~ 
do t : = next [ t J ; -- --

f(j+l} := t+l; 

The correctness of this program is demonstrated as before; we can 

imagine two copies of the pattern, one sliding to the right with 

respect to the other. For example, suppose we have established that 

f(8) = 5 in the ~bove case; let us consider the computation of f(9) 

The appropriate picture is 
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abc abc a cab 

abc abc a cab 

Since patt ern [ 8] F b , we shif't the upper copy right, knowing that the 

most recently scanned characters of the lower copy were ~ ~ ~ ~ ~ for 

x f b. The next table tells us to shif't right four places, obtaining 

abc abc a cab 

abcabcacab 
T 

and again tr.ere is no match. The Jlert shif't makes t = 0 , so f(9) = 1 • 

Once we understand how to c~mpute f, it is only a snort step to 

the computation of next[j) . A comparison of the definitions shows 

that, for j > 1 , 

~[jl 
{

f(j) , 

next[f(j) 1 

if patternlj] 1= ettern[f(j)] 

if pattern[j] = pattern[f(j)) 

Therefore we can compute the next table as follc"lo's. 

j : = 1; t : = 0; next [ 1] ~ = 0; 

~j<m~ 

be~in camnent t = f(j); 

end. -

~ t > \) and pattern[ j] 1= :E!,.ttern[ t ] 

do t := next[t 1; ....,., --
t : = t+ 1 ; j : = j+l; 

II pattern[j] = pattern[t J 

then next[j] := next[t] --- --
else next[j) := t; ---

This program takes O(m) units 01" time, fer the same reason as 

the matching program ta.kes o(n) : tile operation t := ~[t] in 
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the innermost loop always shifts the upper copy of the pattern to the 

right, so it is performed a total of m times at most. (A slightly 

different way tu prove that the running time is b'JUllded by a constant 

t~nes ~ is to obsprve that the variable t starts at 0 and is 

increased. m-l times, by 1; furtherreore its value r~mains nonnegative. 

Therefore the operation t .- next[t.) , which always decreases ~, can 

be -!Jerformed at most m-l times.) 

To summarize what we have said so far: Strings of text can be 

:-u:mncd 0f!'icie:1t1~,' by makinG use of tw" idea~. (1) A +,able of 

":::hii'::::", sp0cif:,Tin,~ h:Ji.' to move the gi'Ten pat-:;ern when a mismatch 

:,ccurs at its ,i -t!'. c!J.aracter, can be precomp'.lted. (2) This computation 

:-:1' ":::l:ift:::" can be performed efficiently by usinb the same principla, 

shif'ting the pattern against i.tself. 

7, Gaining efn ciency 

We have presented the pattern-matching algorithm in a form that is 

rather easily proved correct; but as so often happens, this form is not 

very efficient. In fact, the algorithm as presented above would probably 
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not be competitive with the naivp. algorithm on realistic dat~, even 

th~~ the naive algorithm has a worst-case time of order m times n 

instead of m plus n, because the chance of this worst case is rather 

slim. On the other hand, a well-implemented fo:nn of the new algorithm 

should go noticeably faster because there is no backing up after a 

partial match. 

It is not difficult to see the source of ineffiCiency in the new 

algorithm as presented above: When thE' alphabet of chal'acters is large, 

we will rarely have a partial match, and the program will waste a lot 

of time discovering rather awkwardly that text[ kJ ~ pa:t;tern[ 1] for 

k:: 1,2,),... Wher. j = 1 and ~[k] f pattern[l] , the algorithm 

spts j :~ next(lj = 0 then discovers that j:: 0 , then increases k 

by 1, then Gets j to 1 again, then tests whether or not 1 is < m , 

and later it tests whether or not 1 is greater than O. Clearly we 

w0uld be much better off making j = 1 into a special case. 

The algorithm also spends WU\ece~sary time tet:tlng whether j > m 

or k > n. A fully-mat.ched pattern can be accounted for by setting 

;pa.ttern[m+l] = ,~, for sane tmposslble character @ that will nevel 

be matchoed, 1Uld by letting ~[m+1] = -1 ; then a test for j < 0 can 

be inserted into a less-frequently executed part of the code. Similarly 

we can set ~[n+l]:= 'oL' (another impossible character) and 

~[n+21 = pattern(l] , so that the test for k > n needn't be made 

very often. 

The follOWing form of the algorithm incorporates these refinements. 
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k :r. OJ a :- pattern[l)j 

pattern[m+1] := 'II'; ~[m+11 :- -1; 

text [n+11 := '.l.'; text[n+2) :- aj 

advance: caament j = 0 in previ0\l8 program; 

r~ee:.t k := k+1 ~~[k) .. aj 

!!. k > n ~ £ ~ inp,lt exhaustedj 

j :- 1; 

char matched: j := j+1; k := kHj 

loop: ccmnent... j > 0 j 

!!. text[k] = pattem(j] ~ £ ~ char matclledj 

j ::; next [J ] ; 

.!! j = 0 ~ £ ~ advance; 

.!! j = 1 ~ be..lin 

.!! text( k] , a ~ .£ ~ advance 

.!1:!.t .£ ~ char matched e:r!.d; 

.!! j > 0 ~£~ loop; 

C~!lPt ~(k-tD) through ~[k-1) matchedj 

ExCept that ve are now uaum1ng a non-null pattern (m > 0) , this 

program preserves the robuatness of the origina.l. It will uaual.l.y run 

faster than the naive algorithm; the vorst case occurs when trying to 

find the xattern ! ~ in a long strins of a's. SlIIllar ideas can be 

used to speed up the prosram which prepares the ~ table. 

In a text-editor the patterns are uaua~ short, so that it is most 

efficient to translate the pattern d1rect~ into machine-language code 

which 1apl.1cit~ containa the next table (cf. [2, H&ck 179).) For 

example, the pattern in Section 1 cou1d be canplled into the machine-

l.aJl8U.age equi V&lent of 
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La: k:= k+l; 

Ll: !£ text[k] I a ~ £ ~ La; 

k := k+l; 

12: .!! text[k] I b ~ £ ~ Ll; 

k := k+l; 

L~: !£ text(k] I c ~ e ~ Ll; 

k := k+l; 

1.4: !! text[k] I a. ~ e ~ 10; 

k := k+l; 

L5: !!~[k] I b ~e~Ll; 
k := k+l; 

L6: !!.~[k]/c~£~Ll; 
k := k+l; 

L7: !! text[k] I a ~ e ~ W; 
k := k+l; 

~: !!.~[k] I c ~ e!2. L5; 

k := k+l; 

L9: !£ text[k] I a ~ e ~ W; 

k := k+l; 

IJ.O: !! text[k] I b ~ e ~ Ll; 

k := k+l; 

Thi8 will be 811gbtly ruter, since it essenti&l.ly makes a special case 

for !:y:. values of j 

It 18 8. curious fact that people otten think the new ~oritbll 

will be slower than the naive one, even though it does leBs work. Since 

the new alsori tbm is conceptUAlly hard to understand a.t first, by 

comparison with other algorithm8 of the same length, we feel somehow 

that a ~caplter will have conceptual ditt1cultles too! 
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4. Extensions 

So far our programs have only been concerned with finding the 

lef'tmost match. However, it is easy to see how to modif'y the routine 

so that all matches are found in tum: We can calculate the next table 

for the extended pattern of length m+l using pattern[m+l] = '@' , 

and then we set resume :== next[m+l] before setting next[m+l] to -). 

Atter finding a match and doing whatever action is desired to process 

that match, the sequence 

j : = resume; .i2. ~ loop; 

will restart things proper1¥. (We assume that text has not changed 

in the meantime. Note that resume cannot be zero.) 

Another approach would be to leave ~[m+l] untouched, not 

Changing it to -1, and to define integer &rr6.}S head[l:m] and 

~[l:n] initiaJ.l¥ ze:: .. o, and to insert the code 

~(k] := ~[j]; ~[j] := k; 

at label 'char matched' . This foms linked lists for 1 ~ j ~ m of 

all places where the first j characters of the pattern are matched 

in the inp1t. 

Still another straightforward modification will find the longest 

initial match of the pattern, i.e., the maximum j such that 

pattern[ 1] ... pattern[ j ] occurs in text . 

In practice, the text characters Il.l'e o:f'ten packed into words, 

with say b characters per word, and the machine architecture often 

ma.kes it inconvenient to access individual characters. When efficiency 

tor large n is important on such machines, one alternative is to 

carry out b independent searches, one for each possible alignment 



of the pattern's first character in the word. These searches can treat 

entire words as 'supercharacters', with appropriate masking, instead 

of working with individual cha.racters and Wlpacking thElll. Since the 

algorithm we have described does not depend on tile size of the alphab.;;t, 

it is well suited to this and similar alternatives. 

Sometimes we want to match two or more patterns in sequence, 

finding an occurrence of the first followed by the second, etc.; this 

is easily handled by consecutive searches, and the total running time 

will be of order n plus the cum of the individual pattern lengths. 

We might also want to match two or more patterns in parallel, 

stopping as soon as any one of thElll is fully matched. A search of this 

kind could be done with multiple next and pattern tables, with one j 

pointer for each; but this would make the running time 1m plus the sum 

of the pattern lengths, when there are k :p3tterns. Hopcroft and Karp 

have observed (unpublished) that our pattern-matching algorithm can be 

extended so that the running time for simultaneous searches is propor­

tional simply to n, plus the alphabet size times the sum of the pattern 

lengths. The patterns are combined into a "trie" whose nodes represent 

all of the initial substrings of one or more patterns, and whose branches 

specifY the appropriate successor node as a function of the next 

character in the inIUt text. For example, if there are four patterns 

{! ~ ~ ! ~ , ! ~! ~ ~ , b c a c , ~ ~~} , the trie is 
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node substring if a. if b if e 

i) 1 7 0 

1 a. 1 2 0 

2 a.b 5 10 ; 

:3 a.be 4 1 0 

4 abca. 1 a.bea.b bcac - - - - -
5 aba 1 6 0 

6 a.bab 5 10 ababc - ----
1 b 1 10 8 

g be 9 1 0 

9 bca 1 2 bcac 

10 bb 1 10 bbe 

Such a trie can be constructed efficiently by generalizing the idea we 

used to ca.lculate next[j] ; details are lett to the reader. (Note that 

this algorithm depends on the alphabet ~ize; such dependence is inherent, 

if we wish to keep the coefficient of n independent of k, since for 

example the k patterns might each consist of a single unique character.) 

5. Theoretical considerations 

If the input file is being read in "real time" I we might obj ect to 

long delays between consecutive inputs. In this section we shall prove 

that the number of times j : = next [j ] is peri'omed, before k is 

advanced, is bouncied by a function of the approx1mate form l~ m I 
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where ¢ = (1+/5)/2 ~ 1.618 ... is the golden ratio, and that this 

bound is best possible. We ~hal~ use lower case Latin letters to 

represent characters, and lower case Greek letters o,~, ... to represent 

strings, with ( the empty string and lal the length of a Thus 

la\ = 1 for all characters a; 1Gr$1 = 10\+ \~\ ; and :r\ = 0 . 

We also write a[\<.1 for the k-th character of ex . 

As a warmup for our theoretical discussion, let us conside~ the 

Fibonacci strings [9, exercise 1.2.8-;6], which turn out to be especially 

pathological patterns for the above algorithm. l'he de1'inition of 

Fibonacci strings is 

a. • , for n 7: ;. ( 1) 

For example, ¢3 = ~ ~ , ¢4 = ~ ~ ~, ¢5" ~ ~ ~ ~ ~. It follows that 

the length i¢n l is the n-th Fibonacci number Fn' and that ¢n 

consists ~~ th~ first Fn characters of an infinite string ¢~ . 

Consider the pattern ¢8' which has the following functions 

frj) alld next~j 1 

j ,. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 lq ?O 21 

pattel'!![j] ;:: a b a a b a b a a. b a. a rJ a. b a a b a b 

f(j) ,., 0 1 1 2 2 7 4 ~ 4 5 6 7 5 6 7 8 9 10 11 12 ~ 

~xt[j ] ~. 0 1 () 2 1 0 4 0 2 1 0 7 1 0 4 0 2 1 0 12 

I!' we extend r-rJ s pattern to ¢ ~ , we obtain infinite sequences f( j) 

and next[j) having the s8llle general character. It is possible to 

prove by induction that 

f(j) = j - Fk _l for Fk ~ j < Fk+l (2) 

a 

<3 

0 



because of tlle following remarkable near-camnutative property of 

Fibonacci strings: 

for n?;) , 

where c(a) denotes changing the two rightmo~t characters of cx 

FC"r example, ¢6 = abaab ·aba and c(~6) = ahi ·abaab 

Equation (3) is obvious when n = ., ; and for n > 3 we ha.ve 

c(~n_2 ~n-1) = ¢n_2c (¢n_l) = ~n-2~n-3¢n-2 = ¢n-~n-2 by induction, 

hence c(¢n-2¢n-l) = c(c(¢n_l¢n_2» = ~n-l~n-2 . 

Equation () implies that 

next[Fk-l) = F, 1-1 , for k ~ 3 
-- It-

Therefore if we h:we a mismatch when j =0 F8-1 = 20 , our algc/rithm 

might set j := next[j j for successive ·.ralues 20, 12,7, 4, 2, 1, 0 

of j Since Fk is (¢kjI'5) rounded to the nearest integer, it 

is possible to have up to - lO~ m consecutive iterations of the 

j := ~[jl loop. 

We will now show that Fibonacci strings actually are the worst 

(4) 

case, i.e., that lO~ m is also an upper hound. First let us 

consider the concept of periodicity in strings. We say that p is a 

period oft if 

aliJ = a{HpJ for 1 S 1 S \a\-p 

It is easy to see that p is a period of a if and only if 

for some k ~ 0 , where I a 1 cx21 = p and <l2 f. €. Equ1 valently, 

p 1s & period of <l if and only it 
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for sene gl and Q2 with /91 1 = IQ2 1 = p. Condition (6) impJ.ies 

(7) with ~1 = °2(%1 &ld 92 = a1a2 · Condition (7) im~1ies (6), for 

we define k = L lal/pJ and observe that if k > 0 then a = 92i3 

implies ~Ql = Q2i3 and L '~l/pJ = k-l ; hence, reasoning inductively, 

a = Q~al for sene (Xl witt lall < p , and a l
Ql = Q2al' Writing 

Q2 = a
1
02 yields (6). 

The relevance of periodicity to our algorithm is clear once we 

consiJ.er what it means to shirt a pattern. If 

pattern[l] ... pattem[j-l] = 0 ends with pattem[l) ... pattern[i-l] = t3 , 

we have 

(8) 

where \Ql\ = j-i , so the amount of shift j-i is a period of 0 . 

The construction of i = ~[j I in our algoritbn implies further 

that the first character of Q
1 

is unequal to pattern [ j]. Let us 

assume that i3 itself is subsequently shifted leaving a residu~ 1, 

80 that 

where the first character of '1 differs from that of Ql' We shall 

now prove that 

(10) 

For if \~\ + \11 ~ lexl , there is an overlap of d = I~\ + \1\ - lal 

characters between the occurrences of a and ~ in i3Q
l = ex = Q2t21 , 

henc e the first chara.cter of 9
1 

is 1 [ cit-!] . Similar J.;y there is an 

overlap of d characters between the occurrences of i3 and 1 in 
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Q2~ - a ::: r.1i:11 ' hence the first charact(!r of '1 is i3[d+l] ° 

Since thefle characters are distinct, we ab· ... ain r[d+l] F /3[d+1) , 

contradicting (9). This establishes (10), and leads directly to the 

announced res~lt: 

1Jleorem o The nUlliber of consecutive times that j:= next[j j is 

performed, while one text character is being scanned, is less than 

log¢ m + K !'or sene constant K ° 

~: Let Lr be the length Qf the shortest string a as in the 

above discussion such that a sequen~e of r consecutive shifts is 

possible. Then L1 = 0, L2 = 1 , and we have lei ~ Lr _l ' 

Irl ~ Lr _2 in (10), hence Lr ~ Fr+l-l by induction on r. 

The subject of periods in strings has several interesting algebraic 

properties, but a reader who is not mathematically inclined may skip 

to Section 6 si:1.ce the following material is primarily an elabora.tion 

of some additional structure related to the above theorem. 

Lemma. 1. 
:w .. 

:.f p a.nd q are periods of a, and ptq:s lal + gcd(p,q) , 

then gcd(p,q) is 8. period of a. 

Proof: Let d::: gcd(p,q) , and assume without loss 0:: generality that 

d < P < q = p+r ° We have a[lj = a[i+p] for l:5 1 S lal-p and 

ali] ::: a[i+q) for 1::S i :5 \al-q ; hence ex[l+r) :: ex[l+q] ::: ali) 

for l+r S i+r :5 la\-p I i.e., 

a[l] = a[i+r) for 1:S i :s I~I-q 
FUrthennore ex:o: 1391 = Q2/3 whel.°e IQ11::: p , and it follows that p 

and r are periods of t3 I where p+r::s I~I + d = I~I + ged(p,r) . By 
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induction, d Is a period of t3. Since 1t3\ = \exl-p ~ q-d ? q-r 

= p = I Q1 1 , th~: stringL; Q1 and Q2 (which have the r~spective foms 

t32t31 and t31t32 by (6) and (7» are substrings of t3 ; so they also 

k+1 
have d as a period. The string ex = (~1~2) ~1 must now have d 

as a period, since any characters d positions apart are contained 

The result of Lemma. 1 but with the str~.lger hypothesis ptq 5 lal 

was proved by LYndon and SchUtzenberger in connectivn with a problem 

about free groups [il, Lemma 4]. The weaker hypothecif: in Lemma 1 

turns out to give the best possible bound: If gcd(p,q) < p < q we 

can find a string of length p+q - gcd(p,q)-l for which gcd(p,q) is 

no~ a period. In order to see why this is so, conF-1der first the 

following example showing the most general strings of lengths 15 

through 25 having both 11 and 15 a.s periods. (The strings are 

'most general' in the sense that any two character positions that car 

be different ~ different.) 

a b cdefgh1 j kab c d 

a b cdafghi j kab c d a 

abc dabghij k abc dab 

ab cdabch1j k abc dabc 

ab c dab c d i j kabc dabc d 

a b c dab c d a j kabc dab c d a 

a'b cdab cdab k abc dab c dab 

ab cdab c. dab c abc dab c dab c 

ab caab c a abc a b c a abc a abc a 

a a c aaacaaac a a c a a a c a a a c a a 

aaaaaaaaaaaaaaaaaaaaaaaaa 
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Note that the number of degrees of freedcm, i.e., the number of distinct 

symbols, decreases by 1 at each step. It is not difficult to prove 

that the m.ur;-('er cannot decrease by ~ than 1 as we go from 

I,xl = n-l 1,0 lal = n , since the only new relations are 

c1[n 1 = ct[n-q J = a[n-p] we decrease the number of distinct symbols 

by one if ~d only if positions n-q and n-p contain distinct symbols 

in the most general string of length n-l The lemma tells us that 

we are left with at most gcd(p,q) symbols when the length reaches 

p+q -gcd(p,q) ; on the other hand we always have exactly p symbols 

when the length is q. Therefore each of the p - gcd( p, q) steps must 

decreas~ the number of symbuls by l, and the most general string of 

length p+q - gcd(p,q) -1 must have ex.actly gcd(p,q)+l distinct 

symbols _ In other words, the lemma gives the best posflible bound. 

When p and q are relatively prime, the strings of length 

p+q-2 on two symbols, having both p and q as periods, satisty a 

number of remarkabl~ properties, generalizing what we have observed 

earlier about Fibonacci strings. Since the properties of these 

patho10gical patterns may prove useful in other investigations, we 

shall summarize them in the following lemma. 

Lemma 2. Let the strings a(m,n) of length n be defined for all 

relatively prime pairs of intp.gers n > m > 0 as follows: 

a(O,l) = a 

O'(m,m+n) 

a(n,m+n) 

0'(1,1) = b a(1,2) =- ab 

a(n mod m, m)a(m,n) } 
if 0 < m < n 

a(m,n)a(n mod m, m) 
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These strings satisi'y the following properties: 

i) o(m,ym+r) o(""-r,m) ;; ty(r,m) a(rn,qm+r), for m > 2 

ii) a(m,n) has ~eriod m, for m > 1 

iii) c(a(m,n) = o(n-m,n), for n > 2 . 

[The 1Unction c(u) w~s defined in connection with Equation (5) ab~ve." 

!-'l-~;::l': I-[e havt:, for ,) < m < n and q? 2 , 

o(m+u, q (m+n)+rn) 

a(m+n, q (m+n)+n) 

J(mT n,2m+n) 

0'(m+n,m+2n) 

a(m,m+n) a(~n,lq-l)(m+n)+m) 

a(n,r.l+n) a(m+n, (q-l) (m+n)+n) 

o(m,m+n) o(n mod m,m) 

a(n,m+n) a(m,n) 

.. if' - ( .. ) nence, _~ e
l 

= cr n mo~ m, m and ~2 o(m,n) and q.? 1 , 

It follows that 

a(mTn,q(m+n)+m) o(n,m+n) 

0'( m+n,q (m+re )+n) cr( m,m+n) 

o(m,m+n) o(m+n,q(m+n)+m) 

n(n,m+n) a(m+n,q(m+n)+n) 

w:.ich :!o:nbine to prove (i). Property (11) also follows immediately 

fro!!". l u), except for the case m = 2, n = 2q+l, o(2,2q+l) = (ab)qa , 

which may be verified directly. Finally, it suffices to verity 

1 
propert:, (iii) f':Jr r; < m < 2' n , sinc.; c( c(a» = a ; we must show that 

c(a(m,m+n» = cr(m,n)a(n mod m, m) , for 0 < m < n 

When m::; 2 this prop.:rty is easily checked, and when m > 2 it is 

equivalent by induction to 

a(m,m+n) = a(m,n)a(m-(n mod m),m) for 0 < m < n J m > 2 • 

Set n mod m '" r, Ln/mj; q , and apply property (1). 
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" ... 

By properties (ii) and (iii) of this lemma, a(p,p+q) ~inus its 

last two characters is the string of length p+q-2 haVing periods p 

and q. Note that Fibonacci strings are just a very special cast', 

since ¢ = oCF 1,F) n n- n 
Another property of the a strings appears 

in [10]. A c::mpletely different proof of Lemma 1 and its optimality, and 

a completely different definition of cr(m,n), were given by Fine and 

Wilf in 1965 [4]. 

If a is any string, let pea) be its shortest period. Lemma 1 

inIlies that all periods q which are not multiplies of pea) must be 

grEater than lexl - pea) + gcd(q,P(.l». This is a rather strong 

coriit1')n in terms of the pattern matching algorittJn, because of the 

fol1owin~ "'esult . 

• 
~~a 3. Let a ~ pattern[l] ... pattern[j-l] and let a = pattern[j] . 

• I 

Itl the pattern matching algorithm, f(j) = j-p(a) , and next[j J = j-q , 
.I 

/",here q is the smallest period of a which is not a period of aa 

(If no such period eXists, next[j] = 0.) If pea) divides p(aa) 

and p(aa) < j , then PCa) = p(as.) 

or if p(aa) ~ j , then q = pea) 

If pea) does not iivide p(aa) 

Proof: The characterizations of f(j) and next[j] follow inmediately 

fran the der-r.itions. Sblr.e every period of aa. is a period of a, the ........ 

only nonobvious statement is that~(a) = p(aa) whenever pea) divides 
.... " 

P(aa) and P(aa) 1= j • Let pea) = p a.nci "'~L = mp , then the ........... ~- ......... ---..... ~.-....--~ .... "" 
(mp)-th character fran the right of a is a, as is the (m-l)p -th, ... , 

as iD the p-th, hence p is a period of aa. . o 

Lemma 3 shows that the j : = nWlot [j 1 loop dll almost always 

terminate quickly. If pea) = P(aa) , then q must not be a multiple 
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of p(a) ; htlnce by LeDIII& 1, 

1 
hence q >:2 j 

p(a)+q ~ j+l. On the other hand q > p,a) , 

1 and next ( j) <:2 j. In the other case q = P(a) , we had 

better not have q too small, s:lJlce q will be a period in the residUAl 

pattern after shifting, and ~(~[j 1] will be < q. To keep the 

loop running it is necessary for new small periods to keep popping up, 

l'elati vely prime to the previOUS periods. 

It appears to be extremely difficult to analyze the 'average' 

behavior of this algorithm instead of the worst case behavior. However, 

average behavior on random strings is surely unrealistic because there 

would only rarely be a match in a random string. 

6. Palindromes 

One of the most outstanding unsolved questions in the theory of 

cClrlputational ccmplexi ty is the problem of how long it takes to 

det~rmine whether or not a given string of length n belongs to a 

given context-tree language. For many years the best upper bound for 

this problem was o(n') in a general context-tree language as n ~ ~ ; 

L. G. VaUant baa recently lowered this to o(nl~ 1) • On the other 

hand, the problem isn't known to require more than order n units 01' time 

for 8IlY particular l.anguage. This big gap between O(n) and o(n2 •81) 

deserves to De closed, and ~ anyone belleves that the final answer 

will be Oen) • 

* Let t be & finite alphabet, let t denote the strings CNer t, 

and let 
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Here cl- denotes the revers&.l of c¥, i . e., 

Each 'string ft in P is a ~1ndrame of even length, and conversely 

every even palindrane over I: 1s in P. At one time it was popularly 

* believed that the lAng'l~'l6e P of "even palindranes starred", namely 

the set of all palstars Itl ··· "'n where each "1 is in P, would be 

~sslble to recognize in O(n) steps on a randan-access canputer. 

It isn't especially easy to spot members of this language. For 

example, aabbabba is a palstar, but its decanposition into even 

palindranes might not be immediately apparent; and the reader might 

need several minutes to decide whether or not 

baabbabbaababbaabbabbabaabbabbabbabbaabababbabbaab 

* is in P We shall prove, however, that palstars can be recognized in 

O(n) 'Wllts of time, by using their algebraic properties. 

Let us say that a nonSllpty palstar is priJDe if it cannot be written 

as the product of two nonepty pa.l8tars. A prime palstar !!lUst be an even 

pa.lindranc J but the converse does not hold. B~- repeated decaflposit10n, 

it 18 ea.sy to see that every pa1star ~ is expressible as a product 

131 .•• ~t ot prime ~tars, tor sane t:? 0 ; what is less obvious is 

tha.t 8'.1ch a decamposition with prime factors 1s unique. This "fundamental 

theorem of palatars" 18 an immed.1a.te consequence of the following basiC 

property. 

LeIIIII& 1. A prime palat.ar cannot begin with another prime ;palsta.r. 

Proot: Let eel- be a. prime palst.ar such that a:l = ~l). tor came 

nor.empty even pa11ndrane ~R anti sane .,,.. € ; turthennore, let !3f3R 
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ha.ve minimum lengtb emong all such counterexamples. If I~fll > lexl 
then J = ~~R'Y = C4i'f for sane 5 f € ; hence cl = ~'Y , and 

• 
R RR R RR R-

~t:I = (~) = (~) = 5 eX'" = 8-~1 , contradicting the minilllality 

of I~~RI . Therefore Itst!RI ~ letl , hence ct = t3,,~ for some 5, 

a.nd ~~R'Y := eel = j3j3~5R~tsR. But. this implies that. r is the palstar 

55
Rt3t3R 

, contradicting the pl'imality of J . 

~oro~. (Le:rt cancellAtion property.) If ~ and ex are pe.lstars, 

so is j3. 

Proof: Let ct = ~ •• ·:lr and ~ = t!l ... ~ s be prime factorizations 

of ex and ~. If ~ ..• exr = ~l .•. ~r then t3 = ~r+l ... t!s is a 

;:.lstar. Otherwise let j be min1mt..l with ct
j 

1= t3
j 

; then CX
j 

begins 

With ~j or vice versa, contradicting Lemma 1. 

,Lemma. 2. g ex is a st ring of length n, we can determine the length 

of the longest even Jl!LLlldrane t!€p such that ct = j37 , ~ O(n) steps. 

Proof: Apply the pattern-matching algorithm with pattern = a and 

text = cJ. When k = n+l the s.lgorithm wiD. stop with j ma,xblal 

such that Jl!Lttern[l] ••• patternlj-l] = text[n+2-j] .•• ~[n] • How 

perform the following iteration: 

~ j ? , ~ j even ~ j : = f( j) 

By the theory developed in section 3, this iteration terminates 

wi tb j ~ 3 if and only it ex begins wi t~ a nonempty even pal1ndrCllle, 

and j -1 will be the length of the lArgest sueh pa.l1ndrane. (Hote 
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that f(j) must be used here instead of ~[j] ; e.g. consider 

the ca.se ex = !! ~!! ~ . But the pattem matChing process takes O(n) 

time even when f(j) is used.) 

... 
Theorem. Let L be any language such that L has t.be left 

cancellation property and such that, given any string ex of length n, 

we can find a nonempty ~€L such that ex begins with ~ or we can 

prove that no such ~ exists, in O(n) steps. Then we can determine 

in O{n) * time whether or not a given string is in L 

Proof: Let ex be any string, and 'lUppose that the time required to 

test for nonempty prefixes in L is ~ Kn for all large n . We begin 

by testing a's initia.l subsequences of lengths k 1,2,4, ... ,2 , ... 

and fina.lly ex itself, until finding a prefix in L or until 

establishing that a bas no such prefix. In the latter case, C' is 

* not in L , and we have consumed at most 

(IC+Kl ) + (21C+~) + (41C+~) + ..• + (laIK+K1) < 2Kn + IS. l~ n units of 

time for sane constant Kl . But if we find a nonflllpty prefix ~€L 

where a == ~7 , we have UJled at most 41~IK+ K (1~1~\) units of time 

* * so t'ar. By the left cancellation property, <lE::L if and onl¥ if 7Et , 

and since \11 = n-I~I we can prove by induction tha.t at most 
... 

(4K + Kl)n units of time a.re needed to decide membership in L , 

when n > 0 . 
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I'orollary. * P can be recognized in Oen) time. 

Note that the related language 

cannot be handled by the above techniques, since it contains both 

aaabbb and a a a b b b a ; the fundamental theorem of palstars fuils 

* with a vengeance. It is an open problem whether or not PI can be 

recognized in O(n) time, although we suspect that it can be. Once 

the reader has disposed of this problem, he or she is urged to tackle 

another language which has recently been introduced by S. A. Greiba.ch [6], 

~ince the latter language is known to be as hard as possible; no context-

free k"lguage can be harder to recognize except by a constant factor. 

7. Historical remarks 

The pattern-matching algorithm of this paper was discovered in a 

rather interest~ng way. One of the authors (J. H. Morris) was 

implementing a text-editor for the CDC 6lK)o conrp'..l.ter during the summer 

of 1969, and since the necessary but:t:ering was rather complicated he 

sought a method .... hat would avoid backing up the text file. Using 

concepts of fini'·.e automata theory as a model, he devIsed an algorithm 

equivalent to the methcd presented above, although his original form 

of presentation made it unclear that the running time was o (m+n) . 

Indeed, it turned out that MorriS'S routine was too complicated for 

other implementors of the system. to understand, and he discovered 

r-eve":'r-ll months later that gratuitous "fixes" had turned his routine 

into a shambles. 
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In a totally independent development, another author (D. E. Knuth) 

learned early in lCJTO of S. A. Cook's surprising the.;)rem about two-wa:1 

deterministic pushdown automata [3). According to Cook's theorem, 

any language rec.;)gnizab:'e by a two-way deterministic pushdown automaton, 

in any am01lDt of time, can be recognized an a randan access machine in 

O(n) units of time. Since D. Ghe£ter had recently shown that the set 

of strings beginning with an even paJ.1ndrane c::l\1li be recognized by 

such an automaton, and since Knuth couldn't imagine how to recognize 

2 
such a language in less than about n steps on a conventional cc:mputer, 

Knuth laboriously went throlAgh all the steps of COOK'S construction as 

applied to Chester's autcrnatan. His plan was to "distill off" what was 

happenin~, in order to discover why the algorithm worked so efficiently. 

After pondering the mass of details ~or several hours, he finally 

su~ceeded in abstracting the mechanism which seemed to be underlying 

the construction, and he generalized it slightly to a program capable 

of finding the longest prefiX of one given string that occurs in 

another. 

This was the first ~ime in Knuth's experience that autc:mata theory 

had taught him how to solve a real programming problem better than he 

could solve it before. Be showed. his results to the third author 

(V. R. Pratt), and Pratt modi:fied Knuth's data structure so that the 

running time was independent of the alphabet size. When Pratt described 

the resulting algorithm to MorriS, the latter recognized it as his own, 

and was pleasantly surprised to learn ~f the O(m+n) time bound, which 

he and Pratt described in a memorandum [12). Knuth was chagrined to 

learn that Morris had already discovered the algoritlln, without knowing 



C;:.ok's theorem; but the t!lt:Jry :;f finite-state machineE had been of use 

to !o{orris t:xJ, in his initial. cC)[JceptuaHzaticm of the algorithm, so 

it was ~till legitimate to conclude that automata theory bad ~ct~ally 

been helpful in this practical problem. 

A conjecture by R. L. Ri/esl led Fr~tt to discover the log¢ m 

upper bO'..l.'1d :::n p[~ttern 1!.O'/es::er.ts beb;een :.;uc::",::sive input characters, and 

* r:."ut~l sl:o'..:ed that this was best possible, Co:;k had proved that P 

wa~ recobTIizable in O(n log n) steps on a random-access machine, and 

Pratt impr::Ned this to O(n) 

It seemed at i'irst that there r:lie;ht be a way to find the longest 

common substrinc of two given strings, in time O(~n) ; but the 

a li;'; or it h; : of thi s paper does not readily ::upp:::rt any such extens ion, 

:::'ll::' Knuth conJt::I,;~,,"red in 1'-17 . tLa: ::'..lch e1'ficiency '.ould be impossible 

to aChieve. An algorithm due to Karp, ;-tiller, and Rosenberg [8J 

solved the problem in C((~n) log(m+n) step~, and this tended to 

support the conjecture (at least in the mind of its originator). 

However, Feter Wein",r has recently devt::loped a technique for solving 

the l:.ngest cOr.'.rr,on sub::;:rinb pr::..blem in Cim+n) units of time with a 

fixed alphabet, by usin~ tree ~t~uctures in a remarkable new way [13]. 

Furthermore, W"'iner' s a..l.g~rit.hrr. has the following interesting consequence, 

pointed out by E. McCreight: a. text file can be processed (in linear 

time) so that it is possible to determine exactly how much of a pattern 

is necessary to identify a position in the text uniquely; as the vattern 

is being typE'd in, the system can interrupt as soon as it "knows" what 

the rest of the pattern must be! Unfortunat~ly the time and space 

requirements for Weiner's algorithm grow with increasing alphabet size. 
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If we consider the problem of scanning finite-state lang'LBB'_s in 

general, it is known [1 J that the language defined by any regular 

expression of length m is recognizable in o (ron) units of time. 

When the regular expression has the form 

the algorithm we have discussed shows that only O(m+n) units of time 

* are needed (cohsidering r as a character of length I in the 

expression). Recent work by M. J. Fischer and M. S. Paterson {5] shows 

that regular expressions of the form 

i.e., patterns with "don't care" symbols, can be identified in 

O(n log m log log m log t) units of time, where t is the alphabet 

size and m:= I ell a2 ..• arl + r . The constant of proportionality in 

their algorithm is extremely large, but the existence of their 

construction indicates that efficient new algorithms for general 

pattern Matching problems probably remain to be discovered. 

A completely different appro~ch to pattern matching, based on 

hashing, has been proposed by Malcol.lr.:::. Harrison (7]. Tn certain 

applications, especially with very large text files and short patterns, 

Harrison's method may be significantly faster than the chara.cter-

canparing method of the present paper, cn the average, although the 

redundancy of English makes the performance of his met hOt! unclear. 
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