
PB-237 360

FAST PATTERN MATCHING IN STRINGS

Donald E. Knuth, et al

Stanford University

Prepared for:

National Science Foundation

August 1974

BIBLIOGRAPHIC DATA 1 ,. R;'f~;~ ~S -7 4 -440 12• PB 237 360 SHEET
... Tit'" .• nJ Suht" I. 5. Repon Date

FAST PATTERN MATCHING IN STRINGS 6.
Augtl~t 1,274

7 udw,h) 8. Performinlt Orllanjzal~on Rt:"pt.

Donald E. Knuth, JWl'Ies H. Morris, Jr. and Vaughan R. Pratt No. STAN-CS-74-440
9. t)(.'rformin~ ()r~.lnlz.Hion !\ mt· olnJ AJJrt's ... 10. I'roi"<t/Task/Work UOlt No.

Stanford University
Computer Science Depa.rtment 11. ContractlG,anr No.

;;)tanford, California 94305
GJ 36473X

12. 'p'\n~()rin~ Or~.lnj],dliun ~am(' .loJ AJd.f(·s!-. 13. Type 01 R~port &< Period

National Science F'oWldation Cuvered

1800 G Stree:, N.W. technical, Aug. 1974
\Oiashington, D. C. 205~O 14.

15. ~uppk'm"-'ntary No(('s

16. A~~"ac, s

An algorithm is presented which finds all occurrences of one given string
wi thir. another, in running time proportional to the sum of t.he lengths of the
strings. The constant of proportionality is low enough to make this algurithm
of practical use, and the procedure can also be extended to deal with some
more general pattern-matching problems. A theoretical application of' the
algorithm shows ~a. the set of concatenations of even palindromes, i.e.,
the language bo') , can be recognized in linear time.

17. K,')' \I'o,Js and Ilocum<'nt An~I)',is. 17a. I>t .. s" .. tiptor~

pattern, string, text-editing, pattern-matching, trie memory, searching,
period of a string, palindrome, optimum algorithm, Fibonacci string, regular
expression.

17'" IJenuficrs 'Open·End,·J Terms

~ .. ' ;111 I r1 b\.,

NATIONAL TECHNICAL
INFORMATIO"l SERViCE
I; c,. Or-p Id",,'r'f r"lf Cornn-,("r(f"

Springfield VA 22151

'7c. COSA TI Fit> Id/Group

II. Availability Statement 19. Security Class (This 21. 1\0. of p,,/t.·s
Repor') 35 Approved for public release; distribution unlimit Id. 'lJNC I.AS~IF IF.n . 120. ~ecurlty (lass (I hIS

'!J~~1~~ ~~ ~ 5 I. Page
UNCLASSIFIED

.7 FORY ~4TI51' (Aev. 3 2;
THIS FORM MAY BE REPRODUCEO

Fast Pattern Matching in Strings

by Donald E. Knuth (Stanford university),V

James H. Morris, Jr. **' (Xerox Palo Alto Research Center),;;.::.J

and Vaughan R. Pratt (Massachusetts !nst. of Technology) . ***/

Abstract

An algorithm is presented which finds all occurrences of one given

string within another, in running time proportional to the sum of the

lengths of the strings. The constant of proportionality is low enough

to make this a~orithm of practical use, and the procedure can also be

extended to deal with some more general pattern-matching problems.

A theoretical application of' the algorithm shows that the set of

concatenat ions of even palindrOOles, i. e., the language tJ} '* , can

be recognized in linear time.

Keywords: pattern, string, text-editing, pattern-matching, trie memory,

searching, period of a string, palindrome, optimum algorithm,

Fibonacci string, regular expression.

CR Cate~nr1es: 4.40, 5.25, 5·23, ,.89

The reses.rch reported here was done at Stanford UniverSity, supported
in part by National Science Foundation gra.nt GJ 36473X and by the
Office ;Jf Naval Research contract NR 044-402. Reproduction in whole
or in part is pe:nnitted for any purpose of the United States Government.

The research reported here was done at the UniVErsity of California,
Berkeley, supported in part by National SCience FO\Uldation grant
number GP 7635.

The research reported. here was done at the University of California,
Berkeley, supported in part by National SCi.ence Foundation grant
GP-6<)4;; and at Stanford University, supported in part by National
Science Foundation grant ~T-992.

Fast Pattern Matching in Strings

Text-edi ting pr~rams are often required t;:> search through a string

of cbara~ters looking for instances of a given 'pattern' string; we

wish to find all positions, or perhaps only the leftmost position,

in which the pattern occurs as a. conti~.lous substring of the text.

For example, ~ ~ ~ ~ ~ ~!"i. contains the pattern ten, but we do not

regard ~ ~ ~ ~ ! ¥. as one of its substrings-

The obvious way to search for a matching pattern is to try searching

at every starting position of the text, abandoning the search as soon

as we find cha.racters that don't match. But this approach can be very

ineffiCient, for example when we are looking for an occurrence of

aaaaaaab in aaaaaaaaaaaaaab When the p6.ttern is a~ ------.- ---------------
and the text is ~~ . we will find ourselves making (n+l)2 canparisons

of characters. Furt'1ermore, the traditional approach involves 'backing up'

the inp.lt text as we go through it, and this can add annoying complications

when we consider the buffering operations that are frequently involved.

In this paper we describe a pattern~atching algorithm which finds

all occurrences of a pattern of length m wi thin a text of length n

in O(m+n) units of time, and without 'backing up' the input text.

The algorithm needs only O(m) locations of internal memory if the

text is read fran 8.l' t:.A.:'.:r::-l file, a.nd on1y O(log m) units of time

elapse b~ween consecutive sin~le-character inT"..:i;s. All of the constants of

proportiOnality implied by these " v -- Ionnulas are independent of the

alphabet size.

We shall fint consider the algorithm in a conceptuall¥ simple but

SOllewha.t ineffiCient form. Sections ~ and 4 of this paper discuss sane

1

ways to improve the efficiency and to adapt the algorithm to other

problems. Section 5 develops the \Ulderl:ying theory, and Section 6

uses the algorithm to disprove the conjecture that a certain context-free

l.angu.age cannot be recognized in linear time. Finally, Section 7

discusses the origin of the algorithm ~~d its relation to other recent

work.

1. Infonnal developnent

The idea behind this approacb to patt4!rn matching is perhaps

easiest to grasp if we imagine placing the pattern over the text and

sliding it to the r1ght in a. certdoin wa:y. Cons1der for example a.

search for ~he pattern a.bcabca.cao ---------- in the text

~ !! ~ = ~! ~ =! ~ = !! ~ = ! ~ S! '2 = ! = ! '2: ; initlall:y we plAce the

pattern at the extreme left and prepare to scan tbe lef'tmost character

of the input text:

abcabcacab

ba.bcba.bcabcaabca.bcabca.cabe
t

The an-ow here indicates the current te.:'<t character; since it points

to b, which doesn' t match the a, we shift the pattern one space

right and move to the next input chara.cter:

a. b e a. b e a. cab

ba.bcbabeabeaa.bcabca.bcacabc
T

}tow we ba.ve a. match, so the pattern stays put while the next several.

cbara.cters are sca.nned. Soon we come to another mismatch:

abc abc a cab

babcbabeabeaabeabcabca.cabe
T

2

At this point, from the fact that we have matched the first three

pattern characters but not the fourth, we know that the last four

character£: of the input have been abc x where x I a. ; we don't

have to rernemb.:r the previously scanned characters, since our position

in the pattern yields enough information to recreate them. In this

case, no matter what x is (as long as it's not ~), we deduce that

the pattern can immediately be shi!'ted foUl" more pla.ces to the. right;

one, two, or three shifts can't possibly lead to a match.

Soon we {,et to another partial match, this time with a fail~re on

the eihbth pattern character:

abcabcacab

b abc b abc abc a abc abc a b ~ a cab c
r

Now we know that the last eight characters were ! ~ ~!.~ ~! ~ , where

Yo ,. c. The pattern should therefore be shifted three places to the

right:

abcabcacab

b abc tab cab c a abc abc abc a cab c
f

We try to Ina~ch the new pattern character, but this fails too, so we

shift the pattern four (not five) more places. That produces a matt"'.,

and we continue scanning untL reaching another mismatch on the eighth

pattern character:

abcabcacab

b abc b abc abc a abc abc abc a cab c
f

Again we shift the pattern three places to the right; this time a match

is produced, and we eventua.lly discover t.he :t\lll pattern:

abc abc a cab

b abc b abc abc a abc abc abc a cab c
T

The ~lay-by-play description for this example indicates that

the pattern-matching process will run efficiently if we have an

auxiliary table that tells us exactly hew far to slide the pattern,

when we detect a mismatch at its j-th character pattern[j]. Let

next(j! be the character position to check next af'ter such a mismatch,

so tha.t WE' axe sliding the pattern j - next[j] places rela.ti-.re to the

text. The followir.g t.a.ble lists the appropriate values:

j 1 2 3 l. 5 G 7 8 9 10

pattenl[j 1
~[j]

abc abc a cab

011 OIl 0 501

We shall discuss how to precompute thls table later; fortunately, the

calculations are quite simple, and we will see t.hat they require only

O(m) steps.

At each step of the scanning process, we move either the text

pointer or the pattern, and each of these can mcve at most n times;

so at most 2n steps need to be performed, af'tE:r the next table has

been set up. or course the pattern itself doeFn't really move, we can

do the necessary operations s~ply by maintaining the pointer variable j .

4

? . Programming the algor! tlun

The pattern-match process has the general form

place patten. at left;

~ pattern not fully matched

and text not exhausted do,..,...

b~~~,

~ pattern cbaracter differs frOOI

current text character

~ shift pattern appropriately;

ad'rance to next character of text;

For c::Jnvenhmce, let UE assume that the input text is present in an array

t~xt(l:nl , and that the pattern appears in pattern(l:m]. Let j

and k be integer variables such that textlkl denotes the current

text character and pattern[j) denotes the corresponding pattern

character; thus, the pattern is essentially aligned with positions

p+ 1 through ptm of the text, where k = p+ j . Then the above program

takes the following sL~ple form:

j := k := 0;

~j~m~ksn~

be~in

~ j > 0 ~~ltd I pattern[j]

~ j : = next lj 1 ;
k := k+l; j := j-'-l;

If j > m a.t the conclusion of the program, the leftmost match has

been found. in positions k-m through k-l; but if j < m , the text

has been exhausted.

5

The above program is easi~ proved corr~ct using the following

inva.riant relaU::m: "Let p:o k-j (the position. in the text just

preceding the first character of the pattern, in our assumed alignment).

Then e ha\re tex~[p+i] '" pattern[i] for 1 ~ i < j ; but for

1 < t < p .'e have text [t·!- ill patternt i 1 for some i, where

1 < i < m "

The program will :)f C::lUrse be correct only if we can compl.lte the

next table 50 that the above relation r~ains invariant wben we perfonn

the operation j := next[j 1. Let us lock at that cOlnpl.ltation now.

wnen the pr:)gr&m S~t5 j: = next[j J , we know that j > 0 , and that

the last j characters of the input were

pattem[ll ... pattern[j-l) x

· here x, pattem[j) What we want is to find the leas"; amount of

shift for hich these characters car: possibly match the shifted pattern;

in other words, we want ~(j] to be the largest 1 less than j

such that the last i characters of the input we~e

patternllJ ... pattem[i-lJ x

and pattern[i] I pattern[j). (If no such i exists, we let

~[j) = 0.) With this definition of ~[j) it is easy to verify

that text{t+l] ... ~[k] f pattem[l) ... pattem[k-t] for

k-j ~ t < k - !Iext[j 1 ; hence the stated relation is indeed invariant,

and our pr::>gram is correct.

Now we must face up to the problem we have been postponing, the

task of calculating next[j] in the first place. This problem would

be easier if we didn't require pattern[i] f pattern[j] in the definition

of ~[jl , so we shall consider the easier problem first. Let f(j)

6

be the largest i less than j such that pattern[l) ... pattern[i-l]

pattem[j-i+l) pattem[j-l] since this condition holds vacuously

for i = 1 , we always have f(j) > 1 when j > 1. By convention we

let f(1) = 0 The pattern used in the example of Section 1 has the

following f table:

j 1 2 3 4 5 6 7 8 9 10

patt ern [,i] a b c a b c a c a b

f(j) 0 1 1 1 2 3 4 5 1 2

If ~tem[j 1 = pattern[f(j)] then f(j+ 1) = f(j)+ 1 ; but if

not, we can use essentially the same pattern-matching algorithm as

above to compute f(j+l) , with text = pattern! (Note the similarity

of the !(j) problem to the invariant condition of the :natching algorithm.

Our program calculates the largest j less than or equal to k such

that pattern[l] ... pattern[j-l) = text[k-j+l] ... ~[k-ll , so we

can transfer the previous technology to the present problem.) The

following program will canpute f(j+l), asswning thaI;

next[l] ... n~:t[j-l) and f(j) have already been calculated:

t ::f(j);

while t > 0 and pattern[j) f pattern[t] ----- ~
do t : = next [t J ; -- --

f(j+l} := t+l;

The correctness of this program is demonstrated as before; we can

imagine two copies of the pattern, one sliding to the right with

respect to the other. For example, suppose we have established that

f(8) = 5 in the ~bove case; let us consider the computation of f(9)

The appropriate picture is

7

abc abc a cab

abc abc a cab

Since patt ern [8] F b , we shif't the upper copy right, knowing that the

most recently scanned characters of the lower copy were ~ ~ ~ ~ ~ for

x f b. The next table tells us to shif't right four places, obtaining

abc abc a cab

abcabcacab
T

and again tr.ere is no match. The Jlert shif't makes t = 0 , so f(9) = 1 •

Once we understand how to c~mpute f, it is only a snort step to

the computation of next[j) . A comparison of the definitions shows

that, for j > 1 ,

~[jl
{

f(j) ,

next[f(j) 1

if patternlj] 1= ettern[f(j)]

if pattern[j] = pattern[f(j))

Therefore we can compute the next table as follc"lo's.

j : = 1; t : = 0; next [1] ~ = 0;

~j<m~

be~in camnent t = f(j);

end. -

~ t > \) and pattern[j] 1= :E!,.ttern[t]

do t := next[t 1;,., --
t : = t+ 1 ; j : = j+l;

II pattern[j] = pattern[t J

then next[j] := next[t] --- --
else next[j) := t; ---

This program takes O(m) units 01" time, fer the same reason as

the matching program ta.kes o(n) : tile operation t := ~[t] in

8

the innermost loop always shifts the upper copy of the pattern to the

right, so it is performed a total of m times at most. (A slightly

different way tu prove that the running time is b'JUllded by a constant

t~nes ~ is to obsprve that the variable t starts at 0 and is

increased. m-l times, by 1; furtherreore its value r~mains nonnegative.

Therefore the operation t .- next[t.) , which always decreases ~, can

be -!Jerformed at most m-l times.)

To summarize what we have said so far: Strings of text can be

:-u:mncd 0f!'icie:1t1~,' by makinG use of tw" idea~. (1) A +,able of

":::hii'::::", sp0cif:,Tin,~ h:Ji.' to move the gi'Ten pat-:;ern when a mismatch

:,ccurs at its ,i -t!'. c!J.aracter, can be precomp'.lted. (2) This computation

:-:1' ":::l:ift:::" can be performed efficiently by usinb the same principla,

shif'ting the pattern against i.tself.

7, Gaining efn ciency

We have presented the pattern-matching algorithm in a form that is

rather easily proved correct; but as so often happens, this form is not

very efficient. In fact, the algorithm as presented above would probably

9

not be competitive with the naivp. algorithm on realistic dat~, even

th~~ the naive algorithm has a worst-case time of order m times n

instead of m plus n, because the chance of this worst case is rather

slim. On the other hand, a well-implemented fo:nn of the new algorithm

should go noticeably faster because there is no backing up after a

partial match.

It is not difficult to see the source of ineffiCiency in the new

algorithm as presented above: When thE' alphabet of chal'acters is large,

we will rarely have a partial match, and the program will waste a lot

of time discovering rather awkwardly that text[kJ ~ pa:t;tern[1] for

k:: 1,2,),... Wher. j = 1 and ~[k] f pattern[l] , the algorithm

spts j :~ next(lj = 0 then discovers that j:: 0 , then increases k

by 1, then Gets j to 1 again, then tests whether or not 1 is < m ,

and later it tests whether or not 1 is greater than O. Clearly we

w0uld be much better off making j = 1 into a special case.

The algorithm also spends WU\ece~sary time tet:tlng whether j > m

or k > n. A fully-mat.ched pattern can be accounted for by setting

;pa.ttern[m+l] = ,~, for sane tmposslble character @ that will nevel

be matchoed, 1Uld by letting ~[m+1] = -1 ; then a test for j < 0 can

be inserted into a less-frequently executed part of the code. Similarly

we can set ~[n+l]:= 'oL' (another impossible character) and

~[n+21 = pattern(l] , so that the test for k > n needn't be made

very often.

The follOWing form of the algorithm incorporates these refinements.

10

k :r. OJ a :- pattern[l)j

pattern[m+1] := 'II'; ~[m+11 :- -1;

text [n+11 := '.l.'; text[n+2) :- aj

advance: caament j = 0 in previ0\l8 program;

r~ee:.t k := k+1 ~~[k) .. aj

!!. k > n ~ £ ~ inp,lt exhaustedj

j :- 1;

char matched: j := j+1; k := kHj

loop: ccmnent... j > 0 j

!!. text[k] = pattem(j] ~ £ ~ char matclledj

j ::; next [J] ;

.!! j = 0 ~ £ ~ advance;

.!! j = 1 ~ be..lin

.!! text(k] , a ~ .£ ~ advance

.!1:!.t .£ ~ char matched e:r!.d;

.!! j > 0 ~£~ loop;

C~!lPt ~(k-tD) through ~[k-1) matchedj

ExCept that ve are now uaum1ng a non-null pattern (m > 0) , this

program preserves the robuatness of the origina.l. It will uaual.l.y run

faster than the naive algorithm; the vorst case occurs when trying to

find the xattern ! ~ in a long strins of a's. SlIIllar ideas can be

used to speed up the prosram which prepares the ~ table.

In a text-editor the patterns are uaua~ short, so that it is most

efficient to translate the pattern d1rect~ into machine-language code

which 1apl.1cit~ containa the next table (cf. [2, H&ck 179).) For

example, the pattern in Section 1 cou1d be canplled into the machine-

l.aJl8U.age equi V&lent of

II

La: k:= k+l;

Ll: !£ text[k] I a ~ £ ~ La;

k := k+l;

12: .!! text[k] I b ~ £ ~ Ll;

k := k+l;

L~: !£ text(k] I c ~ e ~ Ll;

k := k+l;

1.4: !! text[k] I a. ~ e ~ 10;

k := k+l;

L5: !!~[k] I b ~e~Ll;
k := k+l;

L6: !!.~[k]/c~£~Ll;
k := k+l;

L7: !! text[k] I a ~ e ~ W;
k := k+l;

~: !!.~[k] I c ~ e!2. L5;

k := k+l;

L9: !£ text[k] I a ~ e ~ W;

k := k+l;

IJ.O: !! text[k] I b ~ e ~ Ll;

k := k+l;

Thi8 will be 811gbtly ruter, since it essenti&l.ly makes a special case

for !:y:. values of j

It 18 8. curious fact that people otten think the new ~oritbll

will be slower than the naive one, even though it does leBs work. Since

the new alsori tbm is conceptUAlly hard to understand a.t first, by

comparison with other algorithm8 of the same length, we feel somehow

that a ~caplter will have conceptual ditt1cultles too!

12

4. Extensions

So far our programs have only been concerned with finding the

lef'tmost match. However, it is easy to see how to modif'y the routine

so that all matches are found in tum: We can calculate the next table

for the extended pattern of length m+l using pattern[m+l] = '@' ,

and then we set resume :== next[m+l] before setting next[m+l] to -).

Atter finding a match and doing whatever action is desired to process

that match, the sequence

j : = resume; .i2. ~ loop;

will restart things proper1¥. (We assume that text has not changed

in the meantime. Note that resume cannot be zero.)

Another approach would be to leave ~[m+l] untouched, not

Changing it to -1, and to define integer &rr6.}S head[l:m] and

~[l:n] initiaJ.l¥ ze:: .. o, and to insert the code

~(k] := ~[j]; ~[j] := k;

at label 'char matched' . This foms linked lists for 1 ~ j ~ m of

all places where the first j characters of the pattern are matched

in the inp1t.

Still another straightforward modification will find the longest

initial match of the pattern, i.e., the maximum j such that

pattern[1] ... pattern[j] occurs in text .

In practice, the text characters Il.l'e o:f'ten packed into words,

with say b characters per word, and the machine architecture often

ma.kes it inconvenient to access individual characters. When efficiency

tor large n is important on such machines, one alternative is to

carry out b independent searches, one for each possible alignment

of the pattern's first character in the word. These searches can treat

entire words as 'supercharacters', with appropriate masking, instead

of working with individual cha.racters and Wlpacking thElll. Since the

algorithm we have described does not depend on tile size of the alphab.;;t,

it is well suited to this and similar alternatives.

Sometimes we want to match two or more patterns in sequence,

finding an occurrence of the first followed by the second, etc.; this

is easily handled by consecutive searches, and the total running time

will be of order n plus the cum of the individual pattern lengths.

We might also want to match two or more patterns in parallel,

stopping as soon as any one of thElll is fully matched. A search of this

kind could be done with multiple next and pattern tables, with one j

pointer for each; but this would make the running time 1m plus the sum

of the pattern lengths, when there are k :p3tterns. Hopcroft and Karp

have observed (unpublished) that our pattern-matching algorithm can be

extended so that the running time for simultaneous searches is propor­

tional simply to n, plus the alphabet size times the sum of the pattern

lengths. The patterns are combined into a "trie" whose nodes represent

all of the initial substrings of one or more patterns, and whose branches

specifY the appropriate successor node as a function of the next

character in the inIUt text. For example, if there are four patterns

{! ~ ~ ! ~ , ! ~! ~ ~ , b c a c , ~ ~~} , the trie is

14

node substring if a. if b if e

i) 1 7 0

1 a. 1 2 0

2 a.b 5 10 ;

:3 a.be 4 1 0

4 abca. 1 a.bea.b bcac - - - - -
5 aba 1 6 0

6 a.bab 5 10 ababc - ----
1 b 1 10 8

g be 9 1 0

9 bca 1 2 bcac

10 bb 1 10 bbe

Such a trie can be constructed efficiently by generalizing the idea we

used to ca.lculate next[j] ; details are lett to the reader. (Note that

this algorithm depends on the alphabet ~ize; such dependence is inherent,

if we wish to keep the coefficient of n independent of k, since for

example the k patterns might each consist of a single unique character.)

5. Theoretical considerations

If the input file is being read in "real time" I we might obj ect to

long delays between consecutive inputs. In this section we shall prove

that the number of times j : = next [j] is peri'omed, before k is

advanced, is bouncied by a function of the approx1mate form l~ m I

15

where ¢ = (1+/5)/2 ~ 1.618 ... is the golden ratio, and that this

bound is best possible. We ~hal~ use lower case Latin letters to

represent characters, and lower case Greek letters o,~, ... to represent

strings, with (the empty string and lal the length of a Thus

la\ = 1 for all characters a; 1Gr$1 = 10\+ \~\ ; and :r\ = 0 .

We also write a[\<.1 for the k-th character of ex .

As a warmup for our theoretical discussion, let us conside~ the

Fibonacci strings [9, exercise 1.2.8-;6], which turn out to be especially

pathological patterns for the above algorithm. l'he de1'inition of

Fibonacci strings is

a. • , for n 7: ;. (1)

For example, ¢3 = ~ ~ , ¢4 = ~ ~ ~, ¢5" ~ ~ ~ ~ ~. It follows that

the length i¢n l is the n-th Fibonacci number Fn' and that ¢n

consists ~~ th~ first Fn characters of an infinite string ¢~ .

Consider the pattern ¢8' which has the following functions

frj) alld next~j 1

j ,. 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 lq ?O 21

pattel'!![j] ;:: a b a a b a b a a. b a. a rJ a. b a a b a b

f(j) ,., 0 1 1 2 2 7 4 ~ 4 5 6 7 5 6 7 8 9 10 11 12 ~

~xt[j] ~. 0 1 () 2 1 0 4 0 2 1 0 7 1 0 4 0 2 1 0 12

I!' we extend r-rJ s pattern to ¢ ~ , we obtain infinite sequences f(j)

and next[j) having the s8llle general character. It is possible to

prove by induction that

f(j) = j - Fk _l for Fk ~ j < Fk+l (2)

a

<3

0

because of tlle following remarkable near-camnutative property of

Fibonacci strings:

for n?;) ,

where c(a) denotes changing the two rightmo~t characters of cx

FC"r example, ¢6 = abaab ·aba and c(~6) = ahi ·abaab

Equation (3) is obvious when n = ., ; and for n > 3 we ha.ve

c(~n_2 ~n-1) = ¢n_2c (¢n_l) = ~n-2~n-3¢n-2 = ¢n-~n-2 by induction,

hence c(¢n-2¢n-l) = c(c(¢n_l¢n_2» = ~n-l~n-2 .

Equation () implies that

next[Fk-l) = F, 1-1 , for k ~ 3
-- It-

Therefore if we h:we a mismatch when j =0 F8-1 = 20 , our algc/rithm

might set j := next[j j for successive ·.ralues 20, 12,7, 4, 2, 1, 0

of j Since Fk is (¢kjI'5) rounded to the nearest integer, it

is possible to have up to - lO~ m consecutive iterations of the

j := ~[jl loop.

We will now show that Fibonacci strings actually are the worst

(4)

case, i.e., that lO~ m is also an upper hound. First let us

consider the concept of periodicity in strings. We say that p is a

period oft if

aliJ = a{HpJ for 1 S 1 S \a\-p

It is easy to see that p is a period of a if and only if

for some k ~ 0 , where I a 1 cx21 = p and <l2 f. €. Equ1 valently,

p 1s & period of <l if and only it

17

(5)

(6)

for sene gl and Q2 with /91 1 = IQ2 1 = p. Condition (6) impJ.ies

(7) with ~1 = °2(%1 &ld 92 = a1a2 · Condition (7) im~1ies (6), for

we define k = L lal/pJ and observe that if k > 0 then a = 92i3

implies ~Ql = Q2i3 and L '~l/pJ = k-l ; hence, reasoning inductively,

a = Q~al for sene (Xl witt lall < p , and a l
Ql = Q2al' Writing

Q2 = a
1
02 yields (6).

The relevance of periodicity to our algorithm is clear once we

consiJ.er what it means to shirt a pattern. If

pattern[l] ... pattem[j-l] = 0 ends with pattem[l) ... pattern[i-l] = t3 ,

we have

(8)

where \Ql\ = j-i , so the amount of shift j-i is a period of 0 .

The construction of i = ~[j I in our algoritbn implies further

that the first character of Q
1

is unequal to pattern [j]. Let us

assume that i3 itself is subsequently shifted leaving a residu~ 1,

80 that

where the first character of '1 differs from that of Ql' We shall

now prove that

(10)

For if \~\ + \11 ~ lexl , there is an overlap of d = I~\ + \1\ - lal

characters between the occurrences of a and ~ in i3Q
l = ex = Q2t21 ,

henc e the first chara.cter of 9
1

is 1 [cit-!] . Similar J.;y there is an

overlap of d characters between the occurrences of i3 and 1 in

18

Q2~ - a ::: r.1i:11 ' hence the first charact(!r of '1 is i3[d+l] °

Since thefle characters are distinct, we ab· ... ain r[d+l] F /3[d+1) ,

contradicting (9). This establishes (10), and leads directly to the

announced res~lt:

1Jleorem o The nUlliber of consecutive times that j:= next[j j is

performed, while one text character is being scanned, is less than

log¢ m + K !'or sene constant K °

~: Let Lr be the length Qf the shortest string a as in the

above discussion such that a sequen~e of r consecutive shifts is

possible. Then L1 = 0, L2 = 1 , and we have lei ~ Lr _l '

Irl ~ Lr _2 in (10), hence Lr ~ Fr+l-l by induction on r.

The subject of periods in strings has several interesting algebraic

properties, but a reader who is not mathematically inclined may skip

to Section 6 si:1.ce the following material is primarily an elabora.tion

of some additional structure related to the above theorem.

Lemma. 1.
:w ..

:.f p a.nd q are periods of a, and ptq:s lal + gcd(p,q) ,

then gcd(p,q) is 8. period of a.

Proof: Let d::: gcd(p,q) , and assume without loss 0:: generality that

d < P < q = p+r ° We have a[lj = a[i+p] for l:5 1 S lal-p and

ali] ::: a[i+q) for 1::S i :5 \al-q ; hence ex[l+r) :: ex[l+q] ::: ali)

for l+r S i+r :5 la\-p I i.e.,

a[l] = a[i+r) for 1:S i :s I~I-q
FUrthennore ex:o: 1391 = Q2/3 whel.°e IQ11::: p , and it follows that p

and r are periods of t3 I where p+r::s I~I + d = I~I + ged(p,r) . By

19

induction, d Is a period of t3. Since 1t3\ = \exl-p ~ q-d ? q-r

= p = I Q1 1 , th~: stringL; Q1 and Q2 (which have the r~spective foms

t32t31 and t31t32 by (6) and (7» are substrings of t3 ; so they also

k+1
have d as a period. The string ex = (~1~2) ~1 must now have d

as a period, since any characters d positions apart are contained

The result of Lemma. 1 but with the str~.lger hypothesis ptq 5 lal

was proved by LYndon and SchUtzenberger in connectivn with a problem

about free groups [il, Lemma 4]. The weaker hypothecif: in Lemma 1

turns out to give the best possible bound: If gcd(p,q) < p < q we

can find a string of length p+q - gcd(p,q)-l for which gcd(p,q) is

no~ a period. In order to see why this is so, conF-1der first the

following example showing the most general strings of lengths 15

through 25 having both 11 and 15 a.s periods. (The strings are

'most general' in the sense that any two character positions that car

be different ~ different.)

a b cdefgh1 j kab c d

a b cdafghi j kab c d a

abc dabghij k abc dab

ab cdabch1j k abc dabc

ab c dab c d i j kabc dabc d

a b c dab c d a j kabc dab c d a

a'b cdab cdab k abc dab c dab

ab cdab c. dab c abc dab c dab c

ab caab c a abc a b c a abc a abc a

a a c aaacaaac a a c a a a c a a a c a a

aaaaaaaaaaaaaaaaaaaaaaaaa

20

Note that the number of degrees of freedcm, i.e., the number of distinct

symbols, decreases by 1 at each step. It is not difficult to prove

that the m.ur;-('er cannot decrease by ~ than 1 as we go from

I,xl = n-l 1,0 lal = n , since the only new relations are

c1[n 1 = ct[n-q J = a[n-p] we decrease the number of distinct symbols

by one if ~d only if positions n-q and n-p contain distinct symbols

in the most general string of length n-l The lemma tells us that

we are left with at most gcd(p,q) symbols when the length reaches

p+q -gcd(p,q) ; on the other hand we always have exactly p symbols

when the length is q. Therefore each of the p - gcd(p, q) steps must

decreas~ the number of symbuls by l, and the most general string of

length p+q - gcd(p,q) -1 must have ex.actly gcd(p,q)+l distinct

symbols _ In other words, the lemma gives the best posflible bound.

When p and q are relatively prime, the strings of length

p+q-2 on two symbols, having both p and q as periods, satisty a

number of remarkabl~ properties, generalizing what we have observed

earlier about Fibonacci strings. Since the properties of these

patho10gical patterns may prove useful in other investigations, we

shall summarize them in the following lemma.

Lemma 2. Let the strings a(m,n) of length n be defined for all

relatively prime pairs of intp.gers n > m > 0 as follows:

a(O,l) = a

O'(m,m+n)

a(n,m+n)

0'(1,1) = b a(1,2) =- ab

a(n mod m, m)a(m,n) }
if 0 < m < n

a(m,n)a(n mod m, m)

21

(11)

These strings satisi'y the following properties:

i) o(m,ym+r) o(""-r,m) ;; ty(r,m) a(rn,qm+r), for m > 2

ii) a(m,n) has ~eriod m, for m > 1

iii) c(a(m,n) = o(n-m,n), for n > 2 .

[The 1Unction c(u) w~s defined in connection with Equation (5) ab~ve."

!-'l-~;::l': I-[e havt:, for ,) < m < n and q? 2 ,

o(m+u, q (m+n)+rn)

a(m+n, q (m+n)+n)

J(mT n,2m+n)

0'(m+n,m+2n)

a(m,m+n) a(~n,lq-l)(m+n)+m)

a(n,r.l+n) a(m+n, (q-l) (m+n)+n)

o(m,m+n) o(n mod m,m)

a(n,m+n) a(m,n)

.. if' - (..) nence, _~ e
l

= cr n mo~ m, m and ~2 o(m,n) and q.? 1 ,

It follows that

a(mTn,q(m+n)+m) o(n,m+n)

0'(m+n,q (m+re)+n) cr(m,m+n)

o(m,m+n) o(m+n,q(m+n)+m)

n(n,m+n) a(m+n,q(m+n)+n)

w:.ich :!o:nbine to prove (i). Property (11) also follows immediately

fro!!". l u), except for the case m = 2, n = 2q+l, o(2,2q+l) = (ab)qa ,

which may be verified directly. Finally, it suffices to verity

1
propert:, (iii) f':Jr r; < m < 2' n , sinc.; c(c(a» = a ; we must show that

c(a(m,m+n» = cr(m,n)a(n mod m, m) , for 0 < m < n

When m::; 2 this prop.:rty is easily checked, and when m > 2 it is

equivalent by induction to

a(m,m+n) = a(m,n)a(m-(n mod m),m) for 0 < m < n J m > 2 •

Set n mod m '" r, Ln/mj; q , and apply property (1).

22

" ...

By properties (ii) and (iii) of this lemma, a(p,p+q) ~inus its

last two characters is the string of length p+q-2 haVing periods p

and q. Note that Fibonacci strings are just a very special cast',

since ¢ = oCF 1,F) n n- n
Another property of the a strings appears

in [10]. A c::mpletely different proof of Lemma 1 and its optimality, and

a completely different definition of cr(m,n), were given by Fine and

Wilf in 1965 [4].

If a is any string, let pea) be its shortest period. Lemma 1

inIlies that all periods q which are not multiplies of pea) must be

grEater than lexl - pea) + gcd(q,P(.l». This is a rather strong

coriit1')n in terms of the pattern matching algorittJn, because of the

fol1owin~ "'esult .

•
~~a 3. Let a ~ pattern[l] ... pattern[j-l] and let a = pattern[j] .

• I

Itl the pattern matching algorithm, f(j) = j-p(a) , and next[j J = j-q ,
.I

/",here q is the smallest period of a which is not a period of aa

(If no such period eXists, next[j] = 0.) If pea) divides p(aa)

and p(aa) < j , then PCa) = p(as.)

or if p(aa) ~ j , then q = pea)

If pea) does not iivide p(aa)

Proof: The characterizations of f(j) and next[j] follow inmediately

fran the der-r.itions. Sblr.e every period of aa. is a period of a, the

only nonobvious statement is that~(a) = p(aa) whenever pea) divides
.... "

P(aa) and P(aa) 1= j • Let pea) = p a.nci "'~L = mp , then the ~- ---..... ~.-....--~ ""
(mp)-th character fran the right of a is a, as is the (m-l)p -th, ... ,

as iD the p-th, hence p is a period of aa. . o

Lemma 3 shows that the j : = nWlot [j 1 loop dll almost always

terminate quickly. If pea) = P(aa) , then q must not be a multiple

23

of p(a) ; htlnce by LeDIII& 1,

1
hence q >:2 j

p(a)+q ~ j+l. On the other hand q > p,a) ,

1 and next (j) <:2 j. In the other case q = P(a) , we had

better not have q too small, s:lJlce q will be a period in the residUAl

pattern after shifting, and ~(~[j 1] will be < q. To keep the

loop running it is necessary for new small periods to keep popping up,

l'elati vely prime to the previOUS periods.

It appears to be extremely difficult to analyze the 'average'

behavior of this algorithm instead of the worst case behavior. However,

average behavior on random strings is surely unrealistic because there

would only rarely be a match in a random string.

6. Palindromes

One of the most outstanding unsolved questions in the theory of

cClrlputational ccmplexi ty is the problem of how long it takes to

det~rmine whether or not a given string of length n belongs to a

given context-tree language. For many years the best upper bound for

this problem was o(n') in a general context-tree language as n ~ ~ ;

L. G. VaUant baa recently lowered this to o(nl~ 1) • On the other

hand, the problem isn't known to require more than order n units 01' time

for 8IlY particular l.anguage. This big gap between O(n) and o(n2 •81)

deserves to De closed, and ~ anyone belleves that the final answer

will be Oen) •

* Let t be & finite alphabet, let t denote the strings CNer t,

and let

24

Here cl- denotes the revers&.l of c¥, i . e.,

Each 'string ft in P is a ~1ndrame of even length, and conversely

every even palindrane over I: 1s in P. At one time it was popularly

* believed that the lAng'l~'l6e P of "even palindranes starred", namely

the set of all palstars Itl ··· "'n where each "1 is in P, would be

~sslble to recognize in O(n) steps on a randan-access canputer.

It isn't especially easy to spot members of this language. For

example, aabbabba is a palstar, but its decanposition into even

palindranes might not be immediately apparent; and the reader might

need several minutes to decide whether or not

baabbabbaababbaabbabbabaabbabbabbabbaabababbabbaab

* is in P We shall prove, however, that palstars can be recognized in

O(n) 'Wllts of time, by using their algebraic properties.

Let us say that a nonSllpty palstar is priJDe if it cannot be written

as the product of two nonepty pa.l8tars. A prime palstar !!lUst be an even

pa.lindranc J but the converse does not hold. B~- repeated decaflposit10n,

it 18 ea.sy to see that every pa1star ~ is expressible as a product

131 .•• ~t ot prime ~tars, tor sane t:? 0 ; what is less obvious is

tha.t 8'.1ch a decamposition with prime factors 1s unique. This "fundamental

theorem of palatars" 18 an immed.1a.te consequence of the following basiC

property.

LeIIIII& 1. A prime palat.ar cannot begin with another prime ;palsta.r.

Proot: Let eel- be a. prime palst.ar such that a:l = ~l). tor came

nor.empty even pa11ndrane ~R anti sane .,,.. € ; turthennore, let !3f3R

25

ha.ve minimum lengtb emong all such counterexamples. If I~fll > lexl
then J = ~~R'Y = C4i'f for sane 5 f € ; hence cl = ~'Y , and

•
R RR R RR R-

~t:I = (~) = (~) = 5 eX'" = 8-~1 , contradicting the minilllality

of I~~RI . Therefore Itst!RI ~ letl , hence ct = t3,,~ for some 5,

a.nd ~~R'Y := eel = j3j3~5R~tsR. But. this implies that. r is the palstar

55
Rt3t3R

, contradicting the pl'imality of J .

~oro~. (Le:rt cancellAtion property.) If ~ and ex are pe.lstars,

so is j3.

Proof: Let ct = ~ •• ·:lr and ~ = t!l ... ~ s be prime factorizations

of ex and ~. If ~ ..• exr = ~l .•. ~r then t3 = ~r+l ... t!s is a

;:.lstar. Otherwise let j be min1mt..l with ct
j

1= t3
j

; then CX
j

begins

With ~j or vice versa, contradicting Lemma 1.

,Lemma. 2. g ex is a st ring of length n, we can determine the length

of the longest even Jl!LLlldrane t!€p such that ct = j37 , ~ O(n) steps.

Proof: Apply the pattern-matching algorithm with pattern = a and

text = cJ. When k = n+l the s.lgorithm wiD. stop with j ma,xblal

such that Jl!Lttern[l] ••• patternlj-l] = text[n+2-j] .•• ~[n] • How

perform the following iteration:

~ j ? , ~ j even ~ j : = f(j)

By the theory developed in section 3, this iteration terminates

wi tb j ~ 3 if and only it ex begins wi t~ a nonempty even pal1ndrCllle,

and j -1 will be the length of the lArgest sueh pa.l1ndrane. (Hote

26

that f(j) must be used here instead of ~[j] ; e.g. consider

the ca.se ex = !! ~!! ~ . But the pattem matChing process takes O(n)

time even when f(j) is used.)

...
Theorem. Let L be any language such that L has t.be left

cancellation property and such that, given any string ex of length n,

we can find a nonempty ~€L such that ex begins with ~ or we can

prove that no such ~ exists, in O(n) steps. Then we can determine

in O{n) * time whether or not a given string is in L

Proof: Let ex be any string, and 'lUppose that the time required to

test for nonempty prefixes in L is ~ Kn for all large n . We begin

by testing a's initia.l subsequences of lengths k 1,2,4, ... ,2 , ...

and fina.lly ex itself, until finding a prefix in L or until

establishing that a bas no such prefix. In the latter case, C' is

* not in L , and we have consumed at most

(IC+Kl) + (21C+~) + (41C+~) + ..• + (laIK+K1) < 2Kn + IS. l~ n units of

time for sane constant Kl . But if we find a nonflllpty prefix ~€L

where a == ~7 , we have UJled at most 41~IK+ K (1~1~\) units of time

* * so t'ar. By the left cancellation property, <lE::L if and onl¥ if 7Et ,

and since \11 = n-I~I we can prove by induction tha.t at most
...

(4K + Kl)n units of time a.re needed to decide membership in L ,

when n > 0 .
D

I'orollary. * P can be recognized in Oen) time.

Note that the related language

cannot be handled by the above techniques, since it contains both

aaabbb and a a a b b b a ; the fundamental theorem of palstars fuils

* with a vengeance. It is an open problem whether or not PI can be

recognized in O(n) time, although we suspect that it can be. Once

the reader has disposed of this problem, he or she is urged to tackle

another language which has recently been introduced by S. A. Greiba.ch [6],

~ince the latter language is known to be as hard as possible; no context-

free k"lguage can be harder to recognize except by a constant factor.

7. Historical remarks

The pattern-matching algorithm of this paper was discovered in a

rather interest~ng way. One of the authors (J. H. Morris) was

implementing a text-editor for the CDC 6lK)o conrp'..l.ter during the summer

of 1969, and since the necessary but:t:ering was rather complicated he

sought a method hat would avoid backing up the text file. Using

concepts of fini'·.e automata theory as a model, he devIsed an algorithm

equivalent to the methcd presented above, although his original form

of presentation made it unclear that the running time was o (m+n) .

Indeed, it turned out that MorriS'S routine was too complicated for

other implementors of the system. to understand, and he discovered

r-eve":'r-ll months later that gratuitous "fixes" had turned his routine

into a shambles.

28

In a totally independent development, another author (D. E. Knuth)

learned early in lCJTO of S. A. Cook's surprising the.;)rem about two-wa:1

deterministic pushdown automata [3). According to Cook's theorem,

any language rec.;)gnizab:'e by a two-way deterministic pushdown automaton,

in any am01lDt of time, can be recognized an a randan access machine in

O(n) units of time. Since D. Ghe£ter had recently shown that the set

of strings beginning with an even paJ.1ndrane c::l\1li be recognized by

such an automaton, and since Knuth couldn't imagine how to recognize

2
such a language in less than about n steps on a conventional cc:mputer,

Knuth laboriously went throlAgh all the steps of COOK'S construction as

applied to Chester's autcrnatan. His plan was to "distill off" what was

happenin~, in order to discover why the algorithm worked so efficiently.

After pondering the mass of details ~or several hours, he finally

su~ceeded in abstracting the mechanism which seemed to be underlying

the construction, and he generalized it slightly to a program capable

of finding the longest prefiX of one given string that occurs in

another.

This was the first ~ime in Knuth's experience that autc:mata theory

had taught him how to solve a real programming problem better than he

could solve it before. Be showed. his results to the third author

(V. R. Pratt), and Pratt modi:fied Knuth's data structure so that the

running time was independent of the alphabet size. When Pratt described

the resulting algorithm to MorriS, the latter recognized it as his own,

and was pleasantly surprised to learn ~f the O(m+n) time bound, which

he and Pratt described in a memorandum [12). Knuth was chagrined to

learn that Morris had already discovered the algoritlln, without knowing

C;:.ok's theorem; but the t!lt:Jry :;f finite-state machineE had been of use

to !o{orris t:xJ, in his initial. cC)[JceptuaHzaticm of the algorithm, so

it was ~till legitimate to conclude that automata theory bad ~ct~ally

been helpful in this practical problem.

A conjecture by R. L. Ri/esl led Fr~tt to discover the log¢ m

upper bO'..l.'1d :::n p[~ttern 1!.O'/es::er.ts beb;een :.;uc::",::sive input characters, and

* r:."ut~l sl:o'..:ed that this was best possible, Co:;k had proved that P

wa~ recobTIizable in O(n log n) steps on a random-access machine, and

Pratt impr::Ned this to O(n)

It seemed at i'irst that there r:lie;ht be a way to find the longest

common substrinc of two given strings, in time O(~n) ; but the

a li;'; or it h; : of thi s paper does not readily ::upp:::rt any such extens ion,

:::'ll::' Knuth conJt::I,;~,,"red in 1'-17 . tLa: ::'..lch e1'ficiency '.ould be impossible

to aChieve. An algorithm due to Karp, ;-tiller, and Rosenberg [8J

solved the problem in C((~n) log(m+n) step~, and this tended to

support the conjecture (at least in the mind of its originator).

However, Feter Wein",r has recently devt::loped a technique for solving

the l:.ngest cOr.'.rr,on sub::;:rinb pr::..blem in Cim+n) units of time with a

fixed alphabet, by usin~ tree ~t~uctures in a remarkable new way [13].

Furthermore, W"'iner' s a..l.g~rit.hrr. has the following interesting consequence,

pointed out by E. McCreight: a. text file can be processed (in linear

time) so that it is possible to determine exactly how much of a pattern

is necessary to identify a position in the text uniquely; as the vattern

is being typE'd in, the system can interrupt as soon as it "knows" what

the rest of the pattern must be! Unfortunat~ly the time and space

requirements for Weiner's algorithm grow with increasing alphabet size.

30

If we consider the problem of scanning finite-state lang'LBB'_s in

general, it is known [1 J that the language defined by any regular

expression of length m is recognizable in o (ron) units of time.

When the regular expression has the form

the algorithm we have discussed shows that only O(m+n) units of time

* are needed (cohsidering r as a character of length I in the

expression). Recent work by M. J. Fischer and M. S. Paterson {5] shows

that regular expressions of the form

i.e., patterns with "don't care" symbols, can be identified in

O(n log m log log m log t) units of time, where t is the alphabet

size and m:= I ell a2 ..• arl + r . The constant of proportionality in

their algorithm is extremely large, but the existence of their

construction indicates that efficient new algorithms for general

pattern Matching problems probably remain to be discovered.

A completely different appro~ch to pattern matching, based on

hashing, has been proposed by Malcol.lr.:::. Harrison (7]. Tn certain

applications, especially with very large text files and short patterns,

Harrison's method may be significantly faster than the chara.cter-

canparing method of the present paper, cn the average, although the

redundancy of English makes the performance of his met hOt! unclear.

31

References

[1] Alfred V. Al'') 0, John E. Hopcroft, and Jeffrey D. UllJDan,

The Deaign and Analysis of Computer Algorithms (Reading, Mass.:

Addison-Wesley, 1974), Section 9.2.

[2] M. Beeler, R. W. Gasper, R. Schroeppel, "HAKMDtt," M.I.T. Artificial

Intelligence Laboratory Merno No. 239 (February 29, 1972), 95 pp.

[3] S. A. Cook, "Linear time simulation of detenninistic two-way

IUshdo'r.l automata," Proc. IFIP Congress (197 1), 15-80.

[4] N. J. Fine and H. S. Wilf, "Uniquenes s theorems for peri odic

f\mctlons," Proc. ADler. Math. Soc.1€.(1965), 109-114.

{ 5] Michael J. Fischer and Michael S. Paterson, "String matching

and other products," memorandum, M.I.T. Project MAC

(January, 1914); 21 pp.

[6] Sheila A. Greibach, "The h~!'dest context-free language,"

SW! J. '::omputing g, (1~::l73), 304-310.

[7] l..,.,lcolm C. Har1180n, "Implementation of the substring test by

hashing," COIIID.. ACM II (1971), 777-779·

{a] Richard M. Karp, Raymond E. Mll:J..er, and Arnold L. Rosenberg,

"Rapid identification of repeated patt.erns in strings, trees,

and &rrIA.Ys," ACM Symposium on Theory of Computing! (May, 1972),

125-136.

(9] Donald E. Knuth, FUndamental Algorit~, The Art of Computer

Programming 1:. (Reading, Mass.: Ada.ison-Wesley, 1968, 2nd edition

1973), 634 pp.

[10] D. E. Knuth, "Sequen.:es with preCisely k+ 1 k-blocks," Solution

t-> problem E2~07, ADler. Math. Monthly 12 (1972), 773-774.

[11] R. C. Lyndon and M. P. Schiitzenberger, "The equation aM = bNcP

in a. free group," Mict.i§an Math. J • .2. (1962), 289-298.

[12] J. h. Morris, Jr., and Vaughan R. Pratt, "A linear pattern-matching

algorithm," Technical report 40, University of California, Berkeley.

California (June, 1970); 6 pp.

(13] Peter Weiner, "Linear pattern matching algoritmr.," IEEE Symposium

on Switching and Autanata Theory 14 (1973), 1-11--
32

