
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-241

STAN-CS-74-446

LCFsmaIl: an Implementation of LCF

BY

LUIGIA-AIELLO

and

RICHARD W. WEYHRAUCH

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 2495

AUGUST, 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Scrences

STANFORD UNIVERSITY

A R T I F I C I A L I N T E L L I G E N C E L A B O R A T O R Y
M E M O A I M N o . 2 4 1

C O M P U T E R S C I E N C E D E P A R T E M E N T R E P O R T
S T A N C S 7 4 - 4 4 6

LCFsmall: an implementation of LCF

by
Luigia Aiello

and
Richard W. W eyhrauch

Abstract :

A U G U S T 1 9 7 4

I 7‘.

.
This is a report OII a c o m p u t e r p r o g r a m imp)ementing a s impl i f ied version of LCF.
It is writterl (with minor exceptions) entirely in pure LISP and has llone of the user
oriented features of the implemeutatiou described by Milner. We attempt to represent
directly in code the metaurathematical rlotious necessary to describe LCF, We hope
that the code is s imple enough aud the metamathemat ics is c lear enough so that
properties of this particular program (e.g. its correctness) call eventually be proved,
The program is reproduced in full.

Authors’ addresses

L. Aiello, Istituto di Elabaraaione dcll’lnformazione, via S. Maria 46, 56100 Pisa, Italy;

R. Weyhrauch, A.I. Lab. Computer Science Dept., Stanford University, Stanford, California 94305.

This research is supported (in part) by the Advanced Research Project Agency of the Office of the Secretary
of Defense (DAHC 15-73-C-0435).

The views and conclusions contained in this document are those of the authors and should not be interpreted
as ne_ccssarily representing the official policies, either expressed or implied, of the Advanced Research
Project Agency, or the U.S. Government.

Reproduced in USA. Available from the National Technical Information Service, Springfield, Virginia 22151,

L’

1

1
h

LCFsmalf

TABLE OF CONTENTS

1 Introduction

2 Description of LCFsmall

2.1 Infcrcnce commands

2.2 Auxiliary commands

2.3 Messages from LCFsmall

2.4 How to use LCFsmall

2.5 Examples of proofs

3 Description of the program

3.1 The Parser

3.1.1 Scanning primitives

3.1.2 The wff parser

3.2 Top level driver

3.3 Printing routines

3.4 Commands

3.5 Auxiliary functions

3.5.1 Predicates on free and bound occurrences of variables

3.5.2 Functions used in INCL, CIJT, CASES, SHOW

3.5.3 Conversion and substitution routines

3.6 The Data Structure

References

Appendix 1 THE PARSER

1.1 Special variables

1.2 Scanner for LCFsmall

1.3 Parsing primitives

1

4

4

8

8

9

9

12

12

12

13

14

14

14

15

15

15

15

16

18

19

19

19

20

c

‘c

1

LCFsmall

1.4 Parser

Appendix 2 TOP LEVEL ROUTINI~S

Appendix 3 PRINTING ROUTINES

Appendix 4 INFERENCE COMMANIX

Appendi S AUXILIARY COMMANDS

Appendix 6 AUXILIARY FUNCTIONS

6.1 Predicates on Free and Round Occurrences of Variblcs on Terms, Awffs, etc.

6.2 Misccllancous Functions Used in INCL, CUT, CASES, SHOW

6.3 Conversion and Substitution Routines -

Appendix ‘2 MANIPULATION OF THE DATA STRUCTURE

7.1 Constructors

7.2 Selectors

7.3 Predicates

7.4 Miscellaneous Functions

. Index

i

20

23

25

27

34

35

35

36

37

39

39

39

40

40

42

L

LCFsmall 1

S E C T I O N 1 In troduct iou

LCFsmall is a case study. It was designed to shed light on several aspects ‘of current research in the
mathematical theory of computation and representation theory. As a side benefit it is a program
which can be used to do experiments using the typed X-calculus to interpret programming languages.
This approach was first discussed by D. Scott in 1969. For us it was also an exercise in writing such
a system without the aid of the MLISP2 extendible parser (Smith and Enea 1973).

LCFsmall is an implementation of a proof-checker for the unadorned logical calculus. LCF itself
augments this basic logic with additional rules and user aids in an attempt to make the actual
checking of proofs more feasible. These include the simplification rule, a facility for using theorems,
and the subgoal structure. LCFsmall has an entirely different motivation. First, a natural question
about LCF has always been “but who c/tech the chedw?“, i.e. have you proved that LCF is correct?
This task is simply too big to be considered given our present capabilities for proving the
correctness of programs. LCF uses backtracking and- is about 35 pages of MLISPZ code. With no
extra free storage, it is a 48K (PDPIO 36 bit word) program. We think that is the long run the
reliability (or correctness if you wish) of such large programs needs to be considered.

Several things happened to make us look at this task at different levels. First we had learned a lot
about constructing proof checkers while experimenting with LCF and a new cleaned up version was
envisioned. Secondly, M. Newey 1974 has presented an LCF axiomatitation of LISP, and done
several extremely large proofs. This led us to consider the idea of writing a new version of LCF
entirely in LISP, which had some hope of being proved correct. Moreover, using pure LISP
increases its portability. In actual fact it is written and printed here in. MLISPZ. The translation
into pure LISP, however, is straight forward and we felt this was easier to read. A copy of the LISP
code can be gotten by writing to Richard Weyhrauch.

1 In order that a proof of correctness be at all feasible we decided only to include those rules originally
suggested by D. Scott in 1969. These are explained in detail in Milner 1972 and Weyhrauch and
Milner 1972. For the purpose of this note we expect familiarity with one of these papers.

Another motivation was our interest in seeing just how straightforward it was to translate the
“metamathematical description” of LCF directly into code. That is we tried to write the program in
terms of the notions involved.

L

A typical metamathematical description of a logical calculus involves some general inductive
definitions of. sentences in the language; together with a description of the rules and an inductive
definition of derivations. These definitions suggest code directly. A reasonable question is: is this
“code” usable and does it do the job, i.e. is it correct? The problem of changing inductive
definitions (i.e. most frequently context free grammars of one sort or another) into parsers has been
discussed a lot. We do not go into it here. One result of this work, however, was the recognition for
a kind of control structure which we would have found very helpful. It is related to the notion of
updaters for data structures (see Hoare 1973).

Consider the following description of substitution of a term t for a variable v, in an expression 8.

c

LCFsmall 2

sub~t(t,v,e) = IF i@efor(t,v,e) THEN replace(t,v,e) ELSE e

isfreefor(t,v,e) = IF afomic(e) THEN true
ELSE IF isquantwff (e)

THEN IF boundvarofle)=v THEN true
ELSE IF bounRvarof(e)cfreeuarof(l)Aoccursfreein(v,e) THEN false
ELSE VxtPART(e).isfreefor(t,v,x)

ELSE VxfPART(e).isfreefor(t,v,x)

occwsfreein (v,e) 3 IF v=e THEN true
ELSE IF atomic(e) THEN false
ELSE IF isquantz~ff(e)Abounnoarof(e)~v THEN false
ELSE 3xcPARTS(e).occursfreein(v,x)

replace(t,v,e) p IF v=o THEN t
ELSE IF a&w&(e) THEN e
ELSE REBUILD e USING replace(t,v,x) FOR xcPARTS(e)

L This code is almost a direct translation of the first order description of the notions involved,
However, there appear constructs which are not generally available in existing programming
languages and are not implementable simply or efficiently by a macro facility,

Consider for example the following four constructs:

Vx@A.B[x]
Ix(A.B[x]
PARTS(e)
REBUILD e USING F(x) FOR xCPARTS(e)

I Each of them represents a kind of mapping function on different data structures.

F
L VxtA.B[x]

L

is interpreted as: if A is a “set” then for each element of A, bind it to x and evaluate B. When you
are finished return the value of the conjunction of the results. In MLISPZ this function can be
realized by

FOR NEW X IN A DO :AND B[XJ
.

but we do not use this construct in the code below as its translation into LISP is not immediate.

IxcA.B[x]

is the same as above replacing disjunction for conjunction.

The other two constructs are more difficult as they require a new look at the definition of data
structures. For PARTS(e), the program must be able to decide what kind of thing e is, and how to
canonically take it apart. In our example REBUILD returns the homomorphic image of e with respect
to replace and the basic constructors of e. This type of updating data structures is considered in
Hoare 1973.

LCFsmall 3

The above examples show that the direct translation of metamathematics into code requires
programming language features not yet generally available, and show that these features arise
naturally in applications. These examples of course do not use assignment statements to “remember”
certain facts and possibly are computed several times, making this code inefficient. We do not
believe, however, that it is too bad. This kind of redundant computation can be detected by a
compiler.

The code below is a compromise using only those features available in pure LISP, rather than
defining these constructs in LISP and then writing code in terms of them.

In all cases the code has been written abstract syntactically and the actual data structures are not
mentioned. The ones we have chosen are found in appendix 3.

LCFsmall 4

SECTION 2 Description of LCFsmall

t
i

In this section we describe LCFsmall and compare it with LCF as described in Milner 1972. In
LCFsmall no restriction has been imposed on the logrc, all the inference rules described in Milner
1972, section 2 are included m it. On the contrary, restrictions have been imposed on the
commands. LCFsmall has none of the facilities included in LCF to help the user in making proofs.
It has no subgoaling mechanism, no simplifications facilities, no possibility of declaring axioms and

L using theorems.
their stepnumber.

Steps of the proofs cannot be labeled, so the only way of referencing them is by
Proofs can only be carried out by a forward deduction without any abbreviation.

In addition, restrictions have been imposed on the syntax of terms. In LCFsmall parentheses can
never be omitted.

LCF has no CASES and INDUCT commands, because the corresponding subgoaling tactics are
more useful in making proofs. We have included these commands in LCFsmall since it has no
subgpaling mechanism. Moreover, LCFsmall has a ALPHACONV command absent in LCF. It is
used for changing names to bound variables. This command is not included in LCF, since it
automatically renames conflicting variables,

c
Sectioli 2.1 Inference commalids

L In the description of commands, as well as in the code presented in the appendices, the following
metavariables. will be used:

”

t L, Ll, L2... denote stepnumbers,

N, Nl, N2... denote nonnegative integers,

L V, Vl , V2... denote identifiers,

‘i
TRM, TRMl... denote terms.

AWF, AWFl... denote atomic well formed formulas (awff),

1 WF, WFl . . . denote well formed formulas (wff),

P

I

To facilitate the comparison with LCF, commands are listed in the same order as in Milner 1972. As
a general remark, note that commas are never used as delimiters in LCFsmall, blanks are used
instead.

Without worrying about the data structure (it will be described in 3.6) we note that a LCF proof is a
sequence of steps. Each of them is generated by one of the following commands and it consists of a
stepnumber, a wff (possibly consisting of only one awff), the list of stepnumbers it depends upon,
and the reason, i.e. the command by which it has been obtained.

ASSUME AWF;

generates a new step in the proof. The AWF is added to the proof as a new step depending
on itself.

LCFsmall . 5

INCL Ll N;

generates a new step whose awff is the N-th awff in the step Ll, and whose dependencies are
the same as Ll.

CONJ Ll L2;

the wffs in Ll and L2 are unioned and put in a new step whose dependencies are the union
of those of Ll and L2.

CUT Ll L2;

c if Ll and L2 are steps in the proof and if each awff appearing in the dependencies of L2
appear in Ll, then a new step is generated. Its dependencies are those of Ll and its wff is

. that of L2;

HALF Ll;

I If the first awff in Ll contains the “g” symbol, then a new step is generated. Its awff is
obtained from the first awff of Ll replacing ‘k” by “c”,
are those of Ll .

The dependencies of the new step

L.

SYM 11;

This command is similar to the previous one. In this case the two terms of the first awff in
Ll are interchanged.

TRANS Ll L2;

i

I

If the first awff in Ll is of the form TRMkTRM2 and the first awff in L2 has the form
TRM2%TRM3, a new step is generated. Its awff is TRMkTRM3 and its dependencies are the
union of those of Ll and L2. If in one (or both) of the above awffs the symbol “c” appears,
then “c” will appear in the new step.

L APPL Ll TRM;

APPL TRM Ll;

.
In the first case, both sides of the first awff of Ll are applied to TRM. In the second case TRM
is applied to both sides of the first awff of Ll. The dependencies of the new step are those of
Ll.

ABSTR Ll v;

If V is an identifier not occurring free in the dependencies of Ll, then a X-abstraction is done
on both terms of the first awff of Il. The dependencies of the new step are those of Ll.

CASES Ll L2 L3 TRM;

LCFsmall 6

. ,

CrL --

Given 3 stepnumbers LI, L2 and L3 with the same wff, if one of the dependencies of Ll is
TRMzTT, one of the dependencies of L2 is TRMzUU and one of the dependencies of I.3 is
TRMZFF, then a new step is generated. Its wff is that of Ll and its dependencies are those of
Ll, L2 and L3 after having removed the three above dependencies regarding TRM.

INDUCT Ll L2 L3 L4 Vi;

Given four stepnumbers Ll, L2, L3 and L4, if the first awff of Ll is a fixpoint definition, i. e.
if it has the form FIX+&FUN(G)], if the wff of L2.is obtained replacing UU for Vi in the wff
of L3, if the wff of L4 is obtained replacing FUN(W) for Vl in the wff of L3, and moreover,
L.3 appears in the dependencies of L4, then a new step is generated. Its wff is obtained
replacing FIX for Vi in the wff of L3. The command fails if one of the above conditions is
not met or if there is some variable conflict in one of the substitutions. The dependencies of
the new step are the union of those of Ll, L2, L3 and L4, minus L3.

cord Ll;

CONV TRM;

The conversion command has two forms: in the first one it takes a stepnumber Ll as
argument. In this case, both terms of the first awff of Ll are converted and the resulting awff

_. becomes a new step in the proof. Its dependencies are those of Ll. If the argument of CONV
is a term TRM a new step wlthout dependencies IS generated. Its awff is TRMECONVT(TRM).
CONVT is a function which converts terms. Its definition is given in appendix 6.3.

L LCFsmall has no automatic mechanism for changing the names of conflicting bound
variables. If there is some variable conflict, X-conversions aren’t performed. So the term
[~y.[xx.y(x)]](x) is not converted in LCFsmall, while it is converted to [Xx1.x(x1)] in LCF.

ETACONV TRM;

TRM is etaconverted. Suppose TRM has the form [Xx.F(x)] with x not free in F, then a new step
is generated, without dependencies, whose awff is [Xx.F(x)J:F.

ALPHACONV Ll Vi V2;

ALPHACONV TRM Vi V2;

If the first argument of ALPHACONV- is a stepnumber Ll, then Vl replaces V2 in its first
bound occurrence in the first awff of Ll. The resulting awff is put in a new step whose
dependencies are those of Ll. If the first argument is a term, then a new step is generated,
without dependencies. Its awff IS TRMgTRMl, where TRMl is obtained from TRM by replacing
Vi for V2 in its first bound occurrence.

EQUIV Ll L2;

Given two step numbers Ll and L2 if the first awff of Ll has the form TRMlcTRM2 and the
first awff of L2 has the form TRM2cTRM1, then a new step is generated. Its awff is
TRMlsTRM2 and its dependencies are the union of those of Ll and L2.

LCFsmall 3

REFL 1 TRM;

REFLZ TRM;

The first command generates a new step whose awff is TRMsTRM, .without any dependency,
The awff generated by the second command is TRMcTRM.

MINI TRM;

MIN2 TRM *

c

In the first case a new step is generated, without dependencies, whose awff is UUcTRM. In the
second case the awff is UU(TRM)4JU.

CON.DT TRM;

L’

If TRM has the form TT+TRMl,TRMZ then CONDT generates a new step whose awff is
TRMzTRMl with no dependency.

CONDF TRM;

If TRM has the form FF+TRMl,TRM2 then CONDF generates a new step whose awff is
TRMzTRM2 with no dependency.

CONDU TRM;

1 If TRM has the form UU+TRMl,TRMZ then CONDU generates a new step whose awff is
TRM4JU with no dependency.

FIXP Cl;

I

L

If the first awff in Ll is a fixpoint definition, i.e. if it is of the form FIX+&.FUN(G)], and if
FIX may be substituted for G in FUN(G) without variable conflicts, then a new step is
generated. Its awff is FIXsFUN(FIX) and its dependencies are those of Ll.

. SUBST Ll OCC N IN L2;

SUBST Ll OCC N IN TRM;

SUBST has two forms. In the first one, if the first awff of Ll is TRMlsTRM2, then TRM2 is
replaced for the N-th free occurrence of TRMl in the firt awff of L2. The resulting awff is put
in a new step, whose dependencies are the union of those of Ll and L2.

In -the second form the command SUBST operates on a TRM. If the above hypotheses hold
for Ll, a new step is generated. Its dependencies are those of Ll and its awff is
TRMaSUBSTTT(TRM1 ,TRM2,TRM,N). The function SUBSTTT, defined in appendix 6.3,
substitutes TRM2 for the N-th free occurrence of TRMI in TRM.

c

Section 2.2

LCFsmall

A u x i l i a r y cornmatlds

8

Besides the commands for carrying out deductions, LCFsmall has the following commands:

SHOW LINE Ll;

SHOW LINE Ll: L2;

In the first case the step Ll is printed. In the second case all the steps between Ll and L2 are
printed.

FETCH FILENAME;

All the LCFsmall commands contained in the file FILENAME are executed. Each command
. is treated exactly as if typed at the console. So- the user may prepare all the commands on a

file and then generate a proof by fetching this file.

CANCEL;

CANCEL Ll;

In the first case the last step in the proof is deleted. In the second case all the steps from the
last one to L 1 (included) are deleted. If Ll is less or equal to one, the entire proof is cancelled!

F
b‘ .

L

I
!I

t

L

Section 2.3 Messages from LCFsmall

The following list includes all the messages printed by LCFsmall:

SYNTAX ERROR; TRY AGAIN

This is printed whenever a command is improperly typed.

NASTY COMMAND

This error message is printed by any command whenever it cannot be executed because some
condition isn’t satisfied. For instance, if ‘you are trying to FIXP a nonexisting step or a step whose
first awff is not a fixpoint definition you will get NASTY FIXP.

THE LAST LINE IN THE PROOF IS N

YOU HAVE DEMOLISHED YOUR PROOF

One of the above sentepces is the answer of the system after executing a cancel command.

You may also obtain something like

3246 ILL MEM REF’FROM ATOM

LCFsmall

if you have messed up something with LISP! However this shoudn’t happen.

S e c t i o n 2 . 4 H o w t o u s e LCFstnall

If you want to prove something use LCF! Anyway, if you really want to use LCFsmall type:

R LCFSML

you are at LISP level and you will get a star. If you type

(INIT)

you ‘11 get some stars and then you are ready to prove. To stop a proof type

#

You’ll receive the message END OF PROOF. Now you are again at LISP level. Typing

(RESUME)

will make you to go on with the old proof. If you want to start a new proof, type

I

I
c

(INIT)

Your core image may be saved for later use by the command

tc
SAVE FILENAME

Section 2.5 . Examples of proofs

TWO sample LCFsmall proofs are given here. They concerns the CASE and INDUCT commands.
The corresponding LCF proofs are very different. In fact, they are done using the subgoaling
mechanism.

The first statement we have proved is the following property of conditional expressions:

Pow(Pw~cI ,CZ),(P(X)41 ,C2))~(P(X)4zl,C2)

All the commands have been typed in the file TSTCS. They are:

CONDT- (TT+(P(X)+CI ,CZ),(P(X)+c1,cz));
CONDU WU+(P(X)+Cl ,C2),(P(x)+c1$2));
CONDU (UWC l,C2);
COf’JDF FF-W’(X)-Cl ,CZ),(P(x)+c1 ,c2));
SW 3;
SUET 5 OCC 2 IN 2;

LCFsmall

ASSUME P(X)sTT;
ASSUME P(X)%U;
ASSUME P(X)sFF;
SYM 7;
SYM 8;
SYM 9;
SUBST 10 OCC 1 IN 1;
SUBST 11 OCC 1 IN 6;
SUBST 11 OCC 1 IN 14;
SUBST 12 OCC 1 IN 4;
CASES 13 15 16 P(X);

The file is then fetched and the proof is done. The printout of LCFsmall is

L R LCFSML
(INIT)
FETCH TSTCS;

****1
****2

(TTW’(WC1 ,C2),(P(X)-ci ,c2))q~(x)+cl,C2)
(UU+(p(xwl ,C2),(P(X)-cl ,C2))qJU

****3 (UlJ+Cl ,C2)~lJU
****4 (FF+(P(X)+Cl ,c2),(P(x)+c1 ,c~))=(P(x)-+c~,c~)
****5 uuqJu+c1 ,C2)
****6 (UU+(p(W+Cl ,~~),(P(~)~cI,c~))~(uu~c~ ~2)
****7 P(X)sTT (7)
m*m8 P(X)3JU (8)
****kg P(X)=FF (9)
****lo TTzP(X) (7)
*a**11 U & P (X) 03)
****12 FF-IP(X) (9)
****I 3 (p(X~+(P(x)+cl ,C2),(P(X)+Cl $2))qP(x)+cl,c2) (7)
****14 (P(X)+(P(X)+Cl ,C2),(P(X)+Cl ,c2))~(uu+cl,c2)
****I 5
****I 6

(P(Xb(P(XbC1 ,C2),(P(X)+Cl ,C2))qP(X)+Cl,c2)
03)

(PtX)+(P(X)+Cl ,c2),(p(x)+c1 ,c~))=(P(x)+cI ~2)
(8)

****I 7

(P(X)+(P(X)-cl ,C2),(P(X)+Cl ,C2))E(P(X)+Cl,C2)
(9)

*****$

END OF PROOF

i

NIL
* t c
?C

c The next example is taken from Milner 1972, section 3. I. The statement to be proved is:

. FcG A S S U M E Fm[ocF.FUN(F)], G-=FUN(G). ’

b The commands, typed in the file TSTIND are:

10

r
c

ASSUME F+cF.FUN(F)];
i . ASSUME GsFUN(G);

ASSUME Fl cG;

L

I-

t

LCFsmail 11

MlNl G;
APPL FUN 3;
SYM 2;
SUBST 6 OCC 1 IN 5;
I N D U C T 1 4 3 7 F l ;

The printout of LCFsmall is:

R LCFSML
(INIT)
FETCH TSTIND;

**** 1 Fz[dF.FUN(F)] (1)
a***2 GsFUN(G)
****3 Fl cG (3) 12)
f***4 UUcG
****5 FUN(F 1)cFUN(G) (3)
*tri<*s6 FUN(G)=G (2)
****7 FUN(FI)cG (2 3)
WC**~ FCC (1 2)

*ca*caa$

END OF PtiOOF
NIL
* t c
tc

The length of the two above LCFsmall proofs is comparable with that of their corresponding LCF
proofs. However, as soon as the proof becomes more complex and a considerable amount of
substitutions and conversions have to be done, the subgoaling mechanism and -more important- the
simplification algorithm of LCF become vital.

LCFsmall 12

1. S E C T I O N 3 D e s c r i p t i o n ’ o f t h e p r o g r a m

The MLISP2 program for LCFsmall is coflpletely listed in the appendices 1 through 7. In the
following sections, the various components of the program are described. They are:

1) parser
2) top level nriver
3) printing routines
4) commands
5) auxiliary functions
6) functions manipulating the data structure

t
Section 3.1 The Parser

3.1 .1 Scanning pr imit ives

c. This code implements a backupable scanner.
are scanned.

It uses an array, TSTACK, to store “tokens” as they
Actually the scanner returns both a type and a value, where “value” is the atom

scanned and “type” is:

I

IDENT If the value is an identrfier
NUMBER if the value is a number
DEC if the value is a delimiter.

TWO global variables are used to keep track of what token we are looking at in the input stream,
They are PC and ENDSTACK. PC points into TSTACK at the place the LCFsmall scanner is
looking. ENDSTACK is the last location in TSTACK that has been filled from the current input,
TSTACK is necessary because scan destroys the input stream, and the LCFsmall parser, being top
down, needs to back up over the input. The main accessing routine for TSTACK is the function
tstack which calls scan if not enough tokens have been read.

scan(): returns a pair consisting of the token scanned and its type.

setupo: sets PC=0 and ENDSTACK= and declares the array TSTACK.

i token: simply advances the LCFsmall scanner.

tokenv(): advances the scanner and returns ehe value of the new thing pointed to.

h. tokento: advances the scanner and returns the type of the new thing pointed to.

tstack(n): finds the n-th element of TSTACK, if its not there it calls scan until it is.

peekv(n): returns the n-th token ahead of PC.

peekt(n): returns the type of the n-th token ahead of PC.

LCFsmall 13

flusho: starts the LCFsmall scanner over by setting PC-O and ENDSTACK=O.

nextv(x): returns T if the value of the next token is x, NIL otherwise.

nextt(x): returns T if the type of the next token is x, NIL otherwise.

The function scan was not written with efficiency in mind. It uses ordinary LISP functions whose
properties we know about. This is because we hope someday to prove the correctness of this
program. Note that the only functions not definable in pure LISP are READLIST, ASCII, TYI,
and TSTACK. Arrays could easily be eliminated in favor of lists. The array TYPE stores the type
of a character, 0 for letters, 1 for digits, 2 for delimiters, 3 for characters to be ignored when
building tokens (like form feeds). The special global variables can be eliminated from the code in
favor of pure LISP in the standard way.

3 . 1 . 2 T h e w f f p a r s e r

Rather than describing everything in detail we will explain the parser by explaining some examples.
Consider

EXPR TERMO;

A;

BEGIN NEW START,REP,X,Y;START*PC;
IF X+SIMPLTERM() THEN REP+X ELSE RETURN NIL;
START+PC;

IF LPAR()A(Y+TERM())ARPAR() THEN REP+(‘?!APPLY CONS REP CONS Y) ALSO GO A;
PCcSTART;
R E T U R N (R E P) ; E N D ;

The local variable START is to remember where the global variable PC was pointing when the
function was entered, i.e. START+PC. The convention for a parsing function is that either it exits
successfully with a non NIL value and leaves PC pointing to the next token to be looked at or it
returns NIL and leaves the value of PC as it was when the function was entered. The code

IF X+SIMPLTERM() THEN REP+X ELSE RETURN NIL;

checks if a SIMPLTERM is scanned. In this case REP gets it as a value. If not (by our convention)
SIMPLTERM returns NIL, and PC is left as it was, so TERM returns NIL and PC remains unchanged.
If we have found a SIMPLTERM, TERM has succeeded and we enter a loop, update the place in the
input stream we backup to when we exit TERM and look for repetitions of a left parenthesis (LPAR),
followed by e TERM, followed by a right parenthesis (RPAR).

A; START+PC;
IF LPAR()A(Y+TERM())ARPAR() THEN REP+(‘?!APPLY CONS REP CONS Y) ALSO GO A;

.
After each successful repetition REP gets the internal representation of an application term, i.e.
F(x)G(APPLY! F x). When the loop test eventually fails we restore PC and return the term stored in
REP.

‘c Sect ion 3 .2 Top leve l dr iver

t

1
L

LCFsmall 14

LCFsmaii is started by the INIT function. This and the other top level functions are listed in
appendix 2. INIT sets the base for numbers to 10, initializes the scanner and then initializes the
proof. PROOF, the global variable which keeps record of the proof, is set to NIL and PFLENGTH,
the proof length, is set to 0. Then RESUME is called. It takes into account the fact that the input
commands may be read from the console or from a fetched file. It calls the function LCFPROOF
which builds up the proof by a rend-execute-write loop.

LCFPROOF .makes a test on the content of the input buffer. If its first character is $, then an end
of proof message is typed and the proof is stopped. If a command is parsed and executed the loop

goes on. The function LINE controls the execution of LCF commands. After a command has been
successfully parsed and executed, if the value returned is a proof step, then it is added to the proof.

If none of the expected command is parsed, the input buffer is scanned by the function BADLINE
until the first semicolon is met. Then an error message is printed.

Section 3.3 Printing routiues

The printing routines are Ilsted in appendix 3. They depend on the internal representation of terms,
awffs, wffs and proof steps, which IS described in section 3.6.

PRINTAWFF is the printing routine for terms and awffs. They are transformed from the internal
prefix form to a parenthetized form.

PRINTMES prints messages, it takes the string to be printed as argument. PRINTM is used to
print a message when some steps in the proof have been canceiled. The string to be written is fixed,
the argument of PRINTM is the proof-length after the cancellation.

PRINTNEWLINE prints the newly generated line, whenever a command is successfully executed.
The stepnumber, the wff and its dependencies are printed. PRINTLINE is like PRINTNEWLINE,
but it may print any step in the proof, not necessarily the last one. It prints also the reason of the
step.

PRINTLST is an auxiliary printing routine which prints a list of awffs separated by blanks.

Sectiorl 3.4 Commands

The commands are shown in appendices 4 and 5. They are listed in the same order as they are
describd in sections 2.1 and 2.2. Every command is realized by two functions. The first one performs
a check on the syntax of the input sentence. If the expected command is successfully parsed then the
corresponding semantic function is called, otherwise the pointer is restarted in the input buffer. This
allows the input sentence to be tested again to see if we are faced with another command or if there
is a syntax -error in the input. Each semantic function performs a series of tests to see whether or not
the conditions for the applicability of the corresponding rule are met. In this case it returns a new
step to be added to the proof, otherwise it returns the message NASTY COMMAND.

We think that ail the syntactic and semantic functions realizing the LCFsmail commands are
sufficiently clear, after having read the description of the commands given in sections 2.1 and 2.2.

LCFsmall

Section\ 3 . 5 A u x i l i a r y functions

15

The auxiliary functions and predicates used in defining the commands are listed in appendices 6
and 7. Appendix 7 contains the predicates and functions directly dealing with the data structure,
they will be described in the next section. The functions and predicates listed in appendix 6 have
been divided into three groups and will be discussed in the three following subsections.

3.5.1 Predicates 011 free and bound occurrences of variables

NOTBNDVT(V,TRM) is a predicate true if V has no bound occurrences in TRM. BOUNDV is its
negation.

NOTFRVT(V,TRM) is a predicate true if V has no free occurrences in TRM. FREEV is its negation.

NOTFREVW(V,WF) is true if V has no free occurrences in the wff WF. NOTFREE(V,LN) is true if
V doesn’t occur free in the wffs associated with the stepnumbers in the list LN.

ISFREEFORT(X,V,TRM) is true if X (a term or a variable) may be substituted for V in the term TRM
without conflicts of bound variables. ISFREEFORW(X,V,WF) is the anaiogue for wffs.

3.5.2 Functiorls used in INCL, CUT, CASES, SHOW

The functions described in this section are listed in appendix 6.2. -

PICKUP is used in the command INCL for selecting the n-th awff in a wff.

INCLTEST(LN,WF) uses TESTM. It is used in CUT to check if every wff associated with the
stepnumbers in the list LN appears in WF.

TESTCASES and TESTC are used in testing the applicability of the cases rule. FIND and
REMOVE are used in building up the dependency part of the step generated by the CASES
c o m m a n d .

OPT is used in the SHOW command to parse an optional part in the input string.

3.5.3 Conversion and substitution routines

The conversion and substitution routines are listed in appendix 6.3.

CONVT(TRM) performs ail the possible lambda-conversions on TRM. If it is an identifier, no
conversion can be done. If it is composed of various parts, then the conversion is recursively done
on them. If it is an application term, then tests are performed to see if a conversion can be done and
if the resulting term can be further converted.

SUBSTG(TRM,X,Vl) is the “general” substitution routine. X, a variable or a term, replaces Vl in all its

LCFsmall 16

free occurrences in TRM. A test is done on TRM and X is recursively substituted in all the components
of TRM. When faced with a lambda-term or a mu-term a test is done to detect conflicts of variables.

ACONV(TRM,Vl,V2) performs an alpha-conversion on TRM. Vl replaces V2 in its first bound
nonconflicting occurrence.

SUBW(AWFI,AWF2,N) is an auxiliary function used in the command SUBST, when it is applied to
two stepnumbers. AWFI is the awff in which the substitution takes place. The term at the left hand
side of AWF2, denoted as TRMI, replaces the term at the right hand side of AWFZ, denoted as TRM2,
in its N-th occurrence. The global variable SUBCOUNT is set to N, it will mark the occurrence
where the substitution must be done. The substitution is first attempted on the term at the left hand
side of AWFl. If not performed there, then it is attempted in the term at the right hand side of
AWFl.

SUBSTTT(TRMl,TRM2,TRM3,N) is used by the command SUBST when its last argument is a term,
TRM2 replaces TRM3 in its N-th occurrence in TRMl.

DOSUBST(TRMl,TRM2,TRM3) is the auxiliary function that performs the substitution of TRM2 for
TRMl in TRMl. A test is done on TRMl and the substitution is recursively attempted on its various
parts. SUBCOUNT is decremented whenever an occurrence is found and, when its value is 0 the
substitution takes place. Occurrences where conflicts arise among .variables are not counted.

Sectioll 3 . 6 T h e D a t a S t r u c t u r e

-All the functions directly manipulating the data structure are listed in appendix 7.

In appendix 7.1 all the constructors are listed. By constructor we mean a function that assembles
structured data.

.
.

MKCONDTERM, MKAPPLTERM, MKLAMBDATERM and MKMUTERM define the internal
representation of terms. They are represented as LISP S-expressions whose first element denotes the
nature of the term and is followed by the components of the’ term. Awffs are assembled by
MKAWFF. They are S-expressions whose first element is the relation symbol f or c. MKWFF
assembles wffs of just one awff. In general wffs may be lists of more than one awff. For instance
those produced by the function UNIONW (see appendix 7.4) used in the command CONJ.’

The proof is represented as a list, iriitially it is set to NIL. Each step is added to this list by the
function ADDLINE (see appendix 7.4) and is assembled by the constructor MKPROOFSTEP.
Proof steps have the form of a list of three elements: a wff, a list of dependencies and a reason
assembled by the constructor REASON. The function ADDLINE puts the stepnumber in front of
each proof step.

Appendix 7.2 contains the list of all the selectors used in retrieving the various components of the
terms, awffs and the proof.

Appendix 7.3 contains a list of predicates used in the program. These predicates are tests on the
nature of terms, awffs etc.

--

LCFsmall 17

Some miscellaneous functions are listed in appendix 7.4: UNIONOF is the set theoretic union for
lists of numnbers, UNIONW is the set theoretic union for wffs, manely for lists of awffs. ADDLINE
(see above) increments the variable PFLENGTH (proof length) by 1 and adds a new step to the
proof. SEARCH is used to search steps in the proof, LNT gives the length of a list and finally
SUBWV(WF,X,V) substitutes X for each occurrence of V in WF. It is used in the cornman; INDUCT.

.
c

t

I
1

LCFsmall

REFERENCES

Hoare, C.A.R.,
1973 Recursive Data Structure

Artificial Intelligence Memo No. ‘223, Stanford University (19’73)

Milner, R.,
1972 Logic for computabh functions, description of a machine imptementation

Artificial Intelligence Memo No. 169, Stanford University (1972).

Newey, M.,
1974 Formal Semantics of LlS P with Applications to Program Correctness

Forthcoming Ph. D. Dissertation, Stanford University, 1974,

Smith, D.C. and Enea H.J.,
1973 MLISP2

Artificial Intelligence Memo No. 195, Stanford University (1973).

Weyhrauch, R.W. and Milner, R.,
1972 Program Semantics and Correctness in a Mechanized Logic,

Proc. 1st USA- Japan Computer Conf., Tokyo (1972).

18

LCFsmall

APPENDIX 1

THE PARSER

1.1 Specia l var iables

PC,
ENDSTACK,
PROOF,
PFLENGTH,
SUBCOUNT;

t

1 . 2 Seamer f o r LCFsmall

EXPR readlist(

EXPR

1 EXPR

A;

.
EXPR

L

1 A;

I EXPR

EXPR

READLI~f~ASCII(OCTAL 57) CONS X);

scan(:X);
IF EQ(X+TYPE(CHAR),O) THEN idscan()
ELSE IF EQ(X,l) THEN numscan()
ELSE IF EQ(X,2) THEN delscan()
ELSE CHAR+TYl() ALSO scant);

dscan();
BEGIN NEW TOKEN,X;
TOKEN+<ASCII(CHAR)>;
IF EQ(X(-TYPE(CHAR~TYl()),O)vEQ(X,l)
THEN TOKEN+ASCII(CHAR) CONS TOKEN ALSO GO A;

RETURN(readlist(REVERSE(TOKEN)) CONS ‘IDENT); END;

numscan();
BEGIN NEW TOKEN;
TOKEN+<ASCII(CHAR)>;
IF EQ(TYPE(CHAR*TYl()),l)
THEN TOKEN+ASCII(CHAR) CONS TOKEN ALSO GO A;

RETURN(readlist (REVERSE(TOKEN)) CONS ‘NUMBER); END;

delscan();
BEGIN NEW TOKEN;
TOKEN+<ASCII(CHAR)>;
CHAR+TYI();
RETURN(readlist (TOKEN) CONS ‘DEL);END;

setup0; .
BEGIN NEW X;
ARRAY (TYPE,36,CONS(O, 127));
ARRAY(TSTACK.T.CONS(O,500)):

LCFsmall

FOR X+0 TO 127 DO TYPE(X)+2;
FOR X&OCTAL 011 TO OCTAL 015 DO TYPE(X)+3;
FOR XtOCTAL 060 TO OCTAL 07 1 DO TYPE(X)*l;
FOR X+OCTAL 101 TO OCTAL 132 00 TYPE(X)+O;
FOR X+-OCTAL 141 TO OCTAL 172 DO TYPE(X)+O;
TYPEtOCTAL 040)+3; fYPE(OCTAL 179~3; TYPE(OCTAL 177)+3; END;

1 . 3 Parsilig prilnitives

% EXPR token(); PC+PC+ 1;

c EXPR tokenv(); CAR tstack(PC+PC*l);
EXPR tokentO; CDR tstack(PC+PC+l);

EXPR tstack(N);
L

t IF ENDSTACK LESSP N
THEN FOR NEW I+(ENDSTACK+l 1 TO N DO TSTACK(l)tscan()

ALSO ENDSTACKtN
L ALSO TSTACK(N)

ELSE TSTACK(N);

i
‘i

EXPR peekv(N); CAR tstack(PC+N);
EXPR peekt(N); CDR tstack(PC+N);

1 EXPR flush(); BEGIN P&O; ENDSTACK+O;END;

EXPR nextvo(); EQ(X,CAR tstack(PC*l));
E X P R nextt(X); EQ(X,CDR tstack(PC+l));

1 . 4 P a r s e r

b BEGIN NEW START,REP,X,Y;START+PC;
EXPR TERMO;

IF X+SIMPLTERM() THEN REP+X ELSE RETURN NIL;
STARTtPC;

IF LPAR()/\(Y+TERM())/\RPAR()
THEN REP*(‘?!APPLY CONS REP CONS Y) ALSO GO A;

PCtSTART;
RETURfV(REP);END;

20

EXPR CONDTERM(); ,
BEGIN NEW START,X,Y,Z; STARTtPC;

LCFsmall

IF LPAR()r\(XtTERM())hRARROW()A(YcTERM())ACOMMA()A(ZtTERM())ARPAR()
THEN RETURN(‘?!COND CONS X CONS Y CONS Z);

PC+START;END;

EXPR LAMBDATERMO;
BEGIN NEW START,X,Y; STARTtf’C;
IF LSQ8RACKET()Alambda()A(XtlDENT())~PERlOD()A(YtTERM())ARSQBRACKET()

L THEN RETURN(‘?!LAMBDA CONS X CONS Y);
PC+START;END;

‘t

EXPR MUTERMO;
BEGIN NEW START,X,Y; STARTtPC;
IF LSQBRACKET()AMU()h(XtlDENT())APERIOD()A(YtTERM())ARSQBRACKET()
THEN RETURN(‘?!MU CONS X CONS Y);

PC+START;END;

EXPR ,SIMPLTERM();
BEGIN NEW START,X;START+PC;
I F (X+lDENT()) v

(XtCONDTERM()) v
(X+LAMBDATERM()) v

t (X+MUTERM()) v
(LPAR()A(X+TERM())ARPAR())

THEN RETURN X;
L. PC+START;END;

EXPR AWFF();

L BEGIN NEW START,X,R,Y; STARTtPC;
IF (X+TERM())A(R*REL())A(Y+TERM())
THEN RETURN(R CONS X CONS Y);

PC+START;END;

EXPR WFF();

A;

BEGIN NEW START,REP,X;START+PC;
IF X+AWFF() THEN REP+<X> ELSE RETURN NIL;
STARTtPC;

IF COMMA()A(X+AWFF()) THEN REP+(X>@REP ALSO GO A;
PCtSTART;
RETURN(REP);END;

EXPR IDENT(); IF EQ(peekt(1),‘IDENT) THEN tokenv() ELSE NIL;
EXPR NUMBER(); IF EQ(peekt(1),‘NUMBER) THEN VALUE(tokenv()) ELSE NIL;
EXPR REL(); IF nextv(‘?~)vnextv(‘?c) THEN tokenv() ELSE NIL;
EXPR CHECK(X); IF nextv(X) THEN token0 ELSE NIL;
EXPR SC(); IF nextv(‘?;) THEN token0 ELSE NIL;
EXPR LPARO; IF nextv(‘?() THEN token0 ELSE NIL;
EXPR RPAR(); IF nextv(‘?)) THEN token0 ELSE NIL;
EXPR RARROWO; IF nextv(‘?+) THEN token0 ELSE NIL;
EXPR COMMA(); IF nextv(‘?,) THEN token0 ELSE NIL;
EXPR COLON(); IF nextv(‘?:) THEN token0 ELSE NIL;
EXPR DOLLARO; IF nextv(‘?t) THEN token0 ELSE NIL;
EXPR PERIODO; IF nextv(‘?.) THEN token0 ELSE NIL;
EXPR LSQBRACKETO; IF nextv(‘?[) THEN token0 ELSE NIL;
EXPR RSQBRACKETO; IF nextv(‘?)) THEN token0 ELSE NIL;

LCFsmall 22

EXPR IambdaO; IF nextv(‘?X) THEN token0 ELSE NIL;
EXPR MUO; IF nextv(‘?oc) THEN token0 ELSE NIL;

EXPR VALUE(X);
(READLlST(CDR(EXPLODE X)1);

EXPR INIT{);
BEGIN
LISPINIT();
SCNINIT();
LCFINITO;
END;

LCFsmall

APPENDIX 2

TOP LEVEL ROUTINES

EXPR LISPINIT();
BEGIN
?wNOPOINT+T;
BASE ~10.;
II)ASE + IO.;
END;

L
EXPR SCNINITO;

BEGIN
CHAR + 40;
PCtI;
ENDSTACKtO;
SetupO;
END;

)L EXPR LCFINITO;
- B E G I N

1

PROOF+NIL;. PFLENGTH t 0;
RESUMEO;
END;

i
i EXPR RESUMEO;

BEGIN NEW X;
A; X+ERRSET(LCFPROOF());

IF EQ(X,‘?$EOF?t) THEN INC(NIL,T) ALSO flush0 ALSO GO A;
L END;

EXPR LCFPROOFO;
BEGIN

A ; PRINC(TERPRl(“nas*“));
IF DOLLAR0 THEN PRINTMES(“EN0 OF PROOF”)

ALSO flush0
A L S O RETURN(PRINC(” “)I;

IF LINE0 v BADLINE THEN flush0 ALSO GO A;
END;

EXPR LINEO;
BEGIN NEW NC:

23

IF (NC+FETCH(j) v (NC+SHOW()) v (N&CANCEL()) THEN RETURN(
I F (NC+ASSUMEO) v (NC+lNCLO) v

(NC+REFLl 0) v (NCtREFL20) v

L

c

t,

i

t

i

LCFsmall

(NC+MINl()) v (NC+MIN2()) v
(NCtALPHACONV()) v(NC+SUBST()) v
(NC+ABSTR()) v (NC+FIXP()) v
(NWCONDTO) v (NC+CONDF()) v
(NC+CONDU()) v (NCtEQUIV()) v
(NC+HALFO) v (NC+SYM()) v
(NWTRANSO) v (NCtAPPL()) v
(NCtCONJO) v (NC+CUT()) v
1NCtCASESO) v (NCtlNDUCT()) v
(NC+ CONVO) v (NC+ETACONVO)

THEN (IF ISLINE THEN ADOLINE ALSO PRINTNEWLINE());
RETURN (NC);
END;

EXPR BADLINEO;
BEGIN

A; IF, wextv(‘?;) THEN token0 ALSO GO A;
PRINTMES(“SYNTAX ERROR;TRY AGAIN”); 1
R E T U R N (PRINC(” “I);
END;

-

2 4

LCFsmall

APPENDIX 3

1 PRINTING ROUTINES

EXPR PRINTAWFF(AWF);
BEGIN NEW CR;
IF ATOM(AWF) THEN RETURN PRINC(AWF);
CR+CAR(AWF);
I F EQ(CR,‘?z) v EQ(CR,‘?c)
THEN BEGIN PRINTAWFF(CADR AWF);

PRINC(CR);
PRINTAWFF(CDDR AWF); END;

IF EQ(CR,‘?!APPLY)
THEN BEGIN PRINTAWFF(CADR AWF);

PRlNC(‘?();
PRINTAWFF(CDDR AWF);
PRINC(‘?)); END;

IF EQ(CR,‘?!COND)
T H E N REGIN PRINC(‘?(1;

PRINTAWFF(CADR AWF);
PRINC(‘?+);
PRlNTAWFF(CADDR AWF);
PRINC(‘?,);
PRINTAWFF(CDDDR AWF);
PRINC(‘?)); END;

IF EQ(CR,‘?!LAMBDA)
THEN BEGIN PRINC(‘?[?X);

PRINTAWFF(CADR AWF);
PRINC(‘?.);
PRINTAWFF(CDDR AWF);
PRINC(‘? 1); END;

IF EQ(CR,‘?!MU)
THEN BEGIN PRINC(‘?[?ac);

PRINTAWFF(CADR AWF);
PRINC(‘?.);

P

L END;

PRINTAWFF(CODR AWF);
PRlNC(‘? 1,; END;

r EXPR PRINTMES(X);
1 TERPRl(PRINC(TERPRi[Xx)));
b

EXPR PRINTM(N);

I
BEGIN
PRINC(TERPRI(“THE LAST LINE IN THE PROOF IS: “));
RETURN(TERPRl(PRlNC(N)));
END;

EXPR PR!NTNEWLINE();
BEGIN NEW X;
X+PROOF[I];
PRINC(X[I],; IF (X[l]llO) THEN PRINC(” “) ELSE PRINC(”
PRINTLST(X[2 1); PRINC(” “);

“);

RETURN PRINC(IF NULL(X[3]) THEN ” ” ELSE X13]); END;

25

t

LCFsmall

EXPR PRINTLINE(
BEGIN
PRINC(X[1 I); IF (X[1 1110) THEN PRINC(” “) ELSE PRINC’(” “);
PRINTLST(X[2]); PRINC(” “1;
PRINC(IF NULL(X[3]) THEN “ ‘* ELSE X[3]); PRINC(”)*
IF ATOM(X[4]) THEN RETURN PRINC(X[4]) ELSE RETURN”;R,NTLST(X[4]);
END;

26

EXPR PRINTLST(X);
IF NULL(CDR X) THEN PRINTAWFF(X[I]) ELSE
BEGIN PRINTAWFF(X[I]);

PRlNC(” “1;
RETURN PRINTLST(CDR X);END;

LCFsmall

APPENDIX 4

INFERENCE COMMANDS

EXPR ASSUMEO;
BEGIN NEW AWF,START; STARTtPC;
I F CHECK(‘ASSUME) A (AWF+AWFF()) A SC0
THEN RETURN ASSUMESEM(AWF); PCtSTART;

END;

EXPR ASSUMESEM(AWF);
MKPROOFSTEP(<AWF>,<PFLENGTH + I >,‘ASSUME);

EXPR INCLO;
BEGIN NEW Ll ,N,START; STARTtPC;
IF CHECK(‘INCL) A (Ll+NUMBER()) A (N+ilJMBER()) A SC()
THEN RETURN INCLSEM(L1 ,N); PCtSTART; -

END;

EXPR INCLSEM(L 1 ,N :WF);
IF ISPROOFSTEP(L 1) r\lSINCL(N,WF~WFFOF(Ll))

THEN MKPROOFSTEP(PICKUP(WF,N),DEPOF(L 1),REASON(‘INCL,<L 1 ,N>))
ELSE PRINTMES(“NASTY INCL”);

EXPR CONJO;
BEGIN NEW L 1 ,L2,START; START‘-PC;
I F CHECK(‘CONJ) A (LbNUMBERO) A (L2+NUMBER()) A SC()
THEN RETURN CONJSEM(L1 ,L2); P&START;

END;

EXPR CONJSEM(L1 ,L2);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2)
THEN MKPROOFSTEP(UNlONW(WFFOF(L 1),WFFOF(L2)),

UNIONOF(DEPOF(L 1),DEPOF(LZ)),
REASON(‘CONJ,<L 1 ,L2>))

ELSE PRINTMES(“NASTY CONJ”);

EXPR CUTO;
BEGIN NEW L 1 ,L2,START;START+PC;
I F CHECK(‘CUT) A (Ll+NUMBER()) A (L2+NUMBER()) A SC()
THEN RETURN CUTSEM(L1 ,L2); PCtSTART;

END;

EXPR CUTSEM(L1 ,L2);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A INCLTEST(DEPOF(L2),WFFOF(Ll))

THEN MKPROOFSTEP(WFFOF(L2),DEPOF(Ll),REASON(‘CUT,<Ll,L2>))
ELSE PRlNTMES(“NASTY CUT”);

EXPR HALFO;
BEGIN NEW Ll ‘START; START+PC;
IF CHECK(‘HALF) A (Lb-NUMBER()) A SC()
THEN RETURN HALFSEM(L I); P&START;

END;

LCFsmall

E X P R HALFSEM(L1 :AWF);
IF ISPROOFSTEP(L 1) A lSEQUlVAWFF(AWF+AWFFOF(L 1))

THEN MKPROOFSTEPIMKWFF~‘?~,FSTERMOF~AWF),SNTERMOF(AWF)),DEPOF(L~),
REASON(‘HALF,<L I>))

ELSE PFINTMES(“NASTY HALF”);

EXPR SYMO;
BEGIN NEW L1 ‘START; START+PC;
I F CHECKt’SYM) A (Ll*NUMBER()) A SC0
THEN RETURN SYMSEM(L1); P&START;

END;

28

E X P R SYMSEM(L1 :AWF);
IF ISPROOFSTEP(L 1) A lSEQUlVAWFF(AWF+AWFFOF(Ll))

cc THEN MKPROOFSTEP(MKWFF(‘?~,SNTERMOF(AWF),FSTERMOF(AWF)),DEP~F(L~),
REASON(‘SYM,<Ll>))

ELSE PRINTMES(“NASTY SYM”);

EXPR TRANSO;

i.

BEGIN NEW L 1 ,L2,START;START+PC;
I F CHECK(‘TRANS) A (Ll+NUMBER()) A (L2+NUMBER()) A SC()
THEN RETURN TRANSSEM(L1 ,L2); PCtSTART;

END;

L EXPR TRANSSEM(L 1 ,L2 :AWFl ,AWF2,REL);
IF ISPROOFSTEP(L 1) A ISPROOFSTEP(L2)

b
A EQUALtSNTERMOFtAWF 1 +AWFFOF(L 1)),FSTERMOF(AWF2+AWFFOF(L2)))

CL THEN (IF ISEQUIVAWFF(AWFI) A ISEQUIVAWFF(AWF2)
THEN REL + (‘?z) ELSE REL + (‘?c))

1

A L S O MKPROOFSTEP(MKWFF(REL,FSTERMOF(AWFl),SNTERMOF(AWF2)),
UNIONOF(DEPOF(L1),DEPOF(L2)),
REASON(‘TRANS,<Ll ,L2>))

ELSE PRINTMES(“NASTY TRANS”);

i EXPR APPLO:
BEGIN NEW L 1 ,TRM,START; START+PC;
I F CHECK(‘APPL) A (TRMc-TERM()) A (Ll+NUMBER()) A SC()

THEN RETURN APPLSEMl (TRM,LI); P&START;
I F CHECKt’APPL) A (Ll +NUMBER()) A (TRM+TERM()) A SC()

END;
THEN RETURN APPLSEM2(LI ,TRM); PC+START;

i EXPR APPLSEM 1 (TRM,L 1 :AWF);
IF ISPROOFSTEP(L 1) THEN
MKPROOFSTEP(MKWFF(RELOF(AWFcAWFTOF(L1)),MKAPPLTERM(TRM,FSTERMOF(AwF)),

MKAPPLTERM(TRM,SNTERMOF(AWF))),
DEPOFtL 1),REASON(‘APPL,<TRM,Ll>))

ELSE PRINTMES(“NASTY APPL”);

EXPR APPLSEM2(LI ,TRM:AWF); ,
IF ISPROOFSTEP(L1) THEN
MKPROOFSTEP(MKWFF(RELOF(AWFcAWFFOF(L1)),MKAPPLTERM(FSTERMOF(AWF),TRM),

MKAPPLTERM(SNTERMOF(AWF),TRM)),
DEPOF(L 1),REASON(‘APPL,<L 1 ,TRM>))

ELSE PRINTMES (“NASTY ‘APPL”);

LCFsmall 29

EXPR ABSTRO;
BEGIN NEW L 1 ,V 1 ,START;START*PC;
I F CHECK(‘ABSTR) A (Ll+NUMBERO) A (Vl+lDENT()) A SC0
THEN RETURN ABSTRSEM(Ll,Vl 1; PCcSTART;
END;

EXPR ABSTRSEM(L 1 ,V 1 :AWF);
BEGIN
IF ISPROOFSTEP(L 1) A NOTFREE(V 1 ,DEPOF(L 1)) THEN

AWF+AWFFOF(Ll) ALSO RETURN(MKPROOFSTEP(MKWFF(RELOF(AWF),
MKLAMBDATERM(V1 ,FSTERMOF(AWF)),
MKLAMBDATERM(V1 ,SNTERMOF(AWF))),

DEPOF(L 1),REASON(‘ABSTR,<L 1 ,V I>)))
ELSE RETURN(PRINTMES(“NASTY ABSTR”)); END;

EXPR CASESO;
BEGIN NEW L 1 ,L2,L3,TRM,START; STARTtPC;
I F CHECK(‘CASES) A (Ll+NUMBER()) A (L2tNUMBERl)) A

(L3+NUMBER()) A (TRM+TERM()) A SC()
THEN RETURN CASESSEM(Ll,L2,L3,TRM); PC&START;

t -
END;

EXPR CASESSEM(L 1 ,L2,L3,TRM:WF 1 ,WF2,Dl ,D2,D3);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A ISPROOFSTEP(L3) A

L EQUAL(WF I +-WFFOF(L1),WF2tWFFOF(L2)) A

EQUAL(WF2,WFFOF(L3)) A
TESTCASES(D1 tDEPOF(L 1),D2c-DEPOF(L2),03tDEPOF(L3),TRM)

THEN MKPROOFSTEPtWF 1 ,UNIONOF(REMOVE(Dl ,FIND(D 1 ,TRM,‘TT)),
UNIONOF(REMOVE(D2,FIND(D2,TRM,‘UU)),

f REMOVE(D3,FIND(D3,TRM,‘FF)))),
REASON(‘CASES,<Ll ,LZ,L3,TRM>))

ELSE PRINTMES(“NASTY CASES”);

f
EXPR INDUCT(J;

L
BEGIN NEW L 1 ,L2,L3,L4,V 1 ,START; START+PC;
I F CHECK(‘INDUCT) A (Ll+NUMBER()) A (L2+NUMBER()). A (L3*NUMBER()) /j

(L4+NUMBER()) A (VltlDENTO) A SC()
i THEN RETURN INDUCTSEM(L1 ,L2,L3,L4,Vl); PC+START;

END;
L

L

EXPR INDUCTSEM(L 1 ,L2,L3,L4,Vl);
BEGIN NEW AWFl ,WF3,FIX,MT,BV,MAT,FUNVl;
IF ISPROOFSTEP(L 1) A ISPROOFSTEP(L2) A ISPROOFSTEP(L3) hlSPROOFSTEP(L4) A

ISMUTERM(MT~SNTERMOF(AWFl+AWFFOF(Ll))) A
ISFREEFORT(FIX~FSTERMOF(MT),BVcSVAROF(MT),MAT~MATRlXOF(MT)) A
ISFREEFORW(‘UU,V 1 ,WF3+WFFOF(L3)) A

ISFREEFORT(V1 ,BV,MAT) A

ISFREEFORW(FUNV1 *SUBSTG(MAT,Vl ,BV),Vl ,WF3) A
ISFREEFORW(FIX,Vl ,WF3) A

EQUAL(WFFOF(L2),SUBWV(WF3,‘UU,Vl)) A

EQUAL(WFFOF(L4),SUBWV(WF3,FUNVl J/l)) A

MEMQ(L3,DEPOF(L4))
THEN RETURN MKPROOFSTEP(SUBWV(WF3,FSTERMOF(AWFl),Vl),

UNlONOF(UNlONOF(DEPOF(L1),DEPOF(L2)),
REMOVE(UNIONOF(DEPOF(L3),DEPOF(L4)),L3)),

LCFsmall

REASONt’INDUCT, <L 1 ,L2,L3,L4,V 1)))
ELSE PRINTMES(“NASTY INDUCT”);
END;

EXPR CONV();
BEGIN NEW L 1 ,TRM,START;START+PC;
I F CHECK(‘CONV) A (Ll+NUMBER()) A SC()

THEN RETURN CONVSEM 1 (L 1); PC+ START;
IF CHECK(‘CONV) A (TRM+TERM()) A SC()

THEN RETURN CONVSEMZ(TRM); PCtSTART;
END;

EXPR CONVSEMl (Ll:AWF);
IF ISPROOFSTEP(L 1)
THEN MKPROOFSTEP(MKWFF(RELOF(AWfcAWFFOF(L1)),

CONVT(FSTERMOF(AWF)),CONVT(SNTERMOF(AWF))),
DEPOF(L 1),REASON(‘CONV,<L l>)) _

ELSE PRINTMES(“NASTY CONV”);

EXPR CONVSEMZ(TRM);

L
MKPROOFSTEP(MKWFF(‘?~,TRM,CONVT(TRM)),’NODEP,REASON(‘CONV,<TRM>));

EXPR ETACONV(1;
BEGIN NEW TRM,START;START+PC;

L IF CHECK(‘ETACONV) A (TRMtTERM()) A SC{)
THEN RETURN ETACONVSEM(TRM); PC*START;

END;

b.
EXPR ETACONVSEM(TRM);

i

I F ISLAMBDATERM(TRM) A lSAPPLTERM(MATRlXOF(TRM)) A

EQ(BVAROF(TRM),ARGOF(MATRIXOF(TRM))) A

NOTFRVT(BVAROF(TRM),FNOF(MATRIXOF(TRM)))
THEN MKPROOFSTEP(MKWFF(‘?~,TRM,FNOF(MATRIXOF(TRM))),

F ‘NODEP,REASON(‘ETACONV,<TRM>))

L
ELSE PRINTMES(“NASTY ETACONV”);

EXPR ALPHACONVO;
I BEGIN NEW L 1 ,TRM,Vl J2,START;STARTtPC;

L
IF CHECK(‘ALPHACONV) A (Ll+NUMBER()) A (Vl+lDENT()) A (V2tlDENT()) A SC()

THEN RETURN(ACONVSEM1 (Ll ,‘I1 ,V2)); PCtSTART;
I F CHECKf’ALPHACONV) A (TRMtTERMO) A (Vl+lDENT()) A (V2+lDENT()) A SC()

THEN RETURN(ACONVSEMZ(TRMJ1 $2)); P&START;

L END;

EXPR ACONVSEM 1 (L 1 ,V 1 ,V2 :AWF,FS 1;
IF ISPROOFSTEP(L 1)
THEN MKPROOFSTEP(MKWFF(RELOF(AWF~AWFFOF(L1)),FStACONV(FSTERMOF(AWF),VI ,V2),

IF EQUAL(FS,FSTERMOF(AWF)) THEN ACONV(SNTERMOF(AWF),Vl,V2)
ELSE SNTERMOF(AWF)),

DEPOF(L 1), REASON(‘ALPHACONV, tL 1 ,V 1 ,V2>))
ELSE PRINTMES(“NASTY ALPHACONV”);

30

EXPR ACONVSEMZ(TRM,Vl ,V2);
MKPROOFSTEP(MKWFF(‘?=,TRM,ACONV(TRM,Vl ,V2)),‘NODEP,REASON(‘ALPHACONV,<TRM,Vl ,V2>));

LCFsmall * 31

EXPR EQUIV();
BEGIN NEW L 1 ,L2,START; STARTtPC;
I F CHECKOEQUIV) A (Ll+NUMBER()) A (L2+NUMBER()) A SC()
THEN RETURN EQUIVSEM(L 1 ,L2); PCtSTART;

END;

EXPR EQUIVSEM(L 1 ,L2:AWF 1 ,AWFZ);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2)

A ISLTAWFF(AWF 1 +AWFFOF(L 1)) dSLTAWFF(AWF2+AWFFOF(L2))
A EQUAL(FSTERMOF(AWFl), SNTERMOF(AWF2))
A EQUAL(FSTERMOF(AWF2), SNTERMOF(AWF1))

T H E N MKPROOFSTEP(MKWFF(‘?e,FSTERMOF(AWFl),SNTERMOF(AWFl)),
UNIONOF(DEPOF(L1),DEPOF(L2)),REASON(‘EQUIV,<Ll ,L2>))

E L S E PRINTMEW’NASTY EQUIV”); ’

EXPR REFL 10;
BEGIN NEW TRM,START; STARTtPC;
I F CHECK(‘REFL1) A (TRM+TERM()) A SC()
THEN RETURN REFL 1 SEM(TRM); PCtSTART;

END;,
-

EXPR REFLl SEM(TRM);
MKPROOFSTEP(MKWFF(‘?g,TRM,TRM), ‘NODEP , REASON(‘REFL1 ,<TRM>));

EXPR REFL2();
BEGIN NEW TRM,START; STARTtPC;
IF CHECK(‘REFL2) A (TRM+-TERM()) A SC()
THEN RETURN REFL2SEM(TRM); PCtSTART;

END;

EXPR REFL2SEM(TRM);
MKPROOFSTEP(MKWFF(‘?c,TRM,TRM), ‘NODEP , REASON(‘REFL2,<TRM>));

EXPR MlNl 0;
BEGIN NEW TRM,START; STARTtPC;
I F CHECK(‘MIN1) A (TRM+TERM()) A SC()
THEN RETURN MlNl SEM(TRM); P&START;

END;

EXPR MlNl SEM(TRM);

‘4,
MKPROOFSTEP(MKWFF(‘?c,‘UU,TRM),‘NODEP , REASON(‘MIN1 ,<TRM>));

EXPR MIN2();
BEGIN NEW TRM,START; STARTtPC;
I F CHECKOMINZ) A (TRM+TERM()) A SC()
THEN RETURN MIN2SEM(TRM); PCtSTART;

END;

L
EXPR MIN2SEM(TRM);

MKPROOFSTEP(MKWFF(‘?~,MKAPPLTERM(’UU,TRM),’UU),‘NODEP , REASON(‘MIN2,<TRM>));

EXPR CONOTt);
BEGIN NEW TRM,START; STARTtPC;
IF CHECK(‘CONDT) A (TRM+CONDTERM()) A SC()

F;’.J

L

I‘L

L

i
i

LCFsmall

THEN RETURN CONDTSEM(TRM); PCtSTART;
END;

32

EXPR CONDTSEM(TRM);
IF ISTTCOND(TRM)
THEN MKPROOFSTEP(MKWFF(‘?~,TRM,fRUCASOF(TRM)),’NODEP , REASON(‘CONDf,<TRM>))
ELSE PRINTMES(“NASTY CONDT”);

EXPR CONDFO;
BEGIN NEW TRM,START; STARTtPC;
IF CHECKOCONDF) A (TRM+CONDTERM()) A SC()
THEN RETURN CONDFSEM(TRM);PC+START;

END;

EXPR CONDFSEM(TRM);
IF ISFFCOND(TRM)
THEN MKPROOFSTEP(MKWFF(‘?s,TRM,FALCASOF(TRM)),’NODEP , REASON(‘CONDF,<TRM>))
ELSE PRINTMES(“NASTY CONDF”);

EXPR CONDUO;
BEGIN NEW TRM,START; STARTtPC;
I F CHECK(‘CONDU) A (TRM+CONDTERM()) A SC()
THEN RETURN CONDUSEMtTRM); PC+ST,ART;

END;

EXPR CONDUSEM(TRM);
IF ISUUCOND(TRM)
THEN MKPROOFSTEP(MKWFF(‘?~,TRM,‘UU),‘NODEP , REASON(‘CONDU,<TRM>))

_ E L S E PRINTMES(“NASTY CONDU”);

EXPR FIXP();
BEGIN NEW L 1 ,START;START+PC;
I F CHECKOFIXP) A (Ll +NUMBER()) A SC()
THEN RETURN FIXPSEM(L1); PCtSTART;

END;

EXPR FIXPSEM(L 1 :AWF,MT,FIX,BV,MA);
I F ISPROOFSTEP(L1) A ISMUTERM(MT+(SNTERMOF(AWFcAWFFOF(Ll)))) A

ISFREEFORT(FIX~FSTERMOF(AWF),BVcBVAROF(MT),MA~MATRlXOF(MT))
THEN RETURN(MKPROOFSTEP(MKWFF(‘?%,FIX,SUBSTG(MA,FlX,BV)),

DEPOF(L 1),REASON(‘FIXP,<L 1 >)I)
ELSE RETURN(PRINTMES(“NASTY FIXP”));

EXPR SUBSTO;
BEGIN NEW L 1 ,N,L2,TRM,START;STARTcPC;
I F CHECKi’SUBST) A (Ll+NUMBERO) A CHECK(‘OCC) A (N+NUMBER())

A CHECK(‘IN) A (L2+NUMBER()) A SC0
THEN RETURN SUBSTSEM 1 (L 1 ,N,L2); PC+ START;

I F CHECKt’SUBST) A (LbNUMBERO) A CHECK(‘OCC) A
A CHECK(‘IN) A (TRM*TERM()) A SC()

(N+NUMBER())

THEN RETURN SUBSTSEM2(Ll ,N,TRM); P&START;
END;

EXPR SUBSTSEMI (Ll ,N,L2);

LCFsmall 33

BEGIN NEW AWF 1 ,AWF2,DEP;
IF ISPROOFSTEP(L 1) A ISPROOFSTEP(L2) A ISEQUIVAWFF(AWF1 tAWFFDF(L1))
THEN AWF2+ AWFFOF(L2) ALSO

DEPtUNIONOF(DEPOF(L 1),DEPOF(L2)) ALSO
RETURN MKPROOFSTEP(SUBW(AWF2,AWFl ,N),DEP,

REASONOSUBST,(L 1 ,‘OCC,N,‘IN,LZ>))
ELSE RETURN PRINTMES(“NASTY SUBST”);

END;

EXPR SUBSTSEMZ(L1 ,N,TRM);
BEGIN NEW AWF,REL,SNT;
IF ISPROOFSTEP(L1)
THEN AWFtAWFFOF(L1) ALSO RELc-RELOF(AWF) ALSO

SNT+SUBSTTT(TRM,SNTERMOF(AWF),FSTERMOF(AWF),N) ALSO
RETURN MKPROOFSTEP(MKWFF(REL,TRM,SNT),DEPOF(L1),

REASON(‘SUBST,<L 1 ,‘OCC,N,‘IN,TRM>))
ELSE RETURN(PRINTMES(“NASTY SUBST”)); _

END;

c

c

LCFsmall

APPENDIX 5

AUXILIARY COMMANDS

EXPR SHOWO;
BEGIN NEW Nl ,N2,START;
START+PC;
I F CHECK(‘SHOW) A CHECK(‘LINE) A (NitNUMBER()) A

OPT(COLON0 A (N2tNUMBERW A SC()
THEN RETURN SHOWSEM(N1 ,N2);

PC+START;
END;

EXPR SHOWSEM(N1 ,N2);
BEGIN
IF NULL(N2) THEN N2tNl;
TERPRI(PRINC(TERPRI(” “)I);

A ; IF(Nl,<N2) T H E N
(IF ISPROOFSTEP(N1)
THEN TERPRI(PRINTLINE(SEARCH(N1 ,PROOF))) ALSO Nl+=Nl +l ALSO GO A
ELSE RETURN PRINTMES(“NONEXISTING STEP”))

ELSE RETURN PRINW “1;
END;

EXPR FETCHO;
BEGIN NEW ID, START;
START+ PC;
IF CHECKOFETCH) A (ID+lDENT()) A SC() THEN RETURN FETCHSEM(ID);
PCtSTART;
END;

EXPR FETCHSEM(ID);
INC(EVAL(<‘INPUT,‘FOO,‘DSK?:>(a<lD>),NIL);

EXPR CANCELO;
BEGIN NEW N,START; START&PC;
I F CHECK(‘CANCEL) A OPT(N+NUMBER()) A SC()

THEN RETURN CANCELSEM(
PCcSTART; E N D ;

EXPR CANCELSEM(
BEGIN
IF NULL(N) THEN NtPFLENGTH;
IF (NIlI

THEN (PFLENGTHtO)
ALSO (PROOF+NIL)
ALSO RETURN (PRINTMES(“YOU HAVE DEMOLISHED YOUR PROOF”));

A; IF- (PFLENGTH LESSP N) THEN RETURN(PRlNTM(PFLENGTH));
PFLENGTH +(PFLENGTH-1);
PROOF+CDR PROOF;
GO A;
END;

34

LCFsmall

APPENDIX 6

AUXILIARY FUNCTIONS

i
6.1 Predicates 011 Free alld Bourld Occurrences of Varibles ou Terms, Awffs, etc.

EXPR NOTBNDVT(V,TRM);
BEGIN
IF ISIDENT(TRM) THEN RETURN T;
IF ISAPPLTERM(TRM) THEN RETURN (NOTBNDVT(V,FNOF(TRM))A

t
NOTBNDVT(V,ARGOF(TRM)));

IF ISCONDTERM(TRM) THEN RETURN (NOTBNDVT(V,PREDOF(TRM))A
NOTBNDVT(V,TRUCASOF(TRM))A
NOTBNDVT(V,FALCASOF(TRM)));

lF(lSLAMBDATERM(TRM) v ISMUTERM(TRM)) -
THEN (IF EQ(BVAROF(TRM),V) THEN RETURN NIL

ELSE RETURN NOTBNDVT(V,MATRlXOF(TRM)));

i
END;

EXPR BOUNDV(V,TRM); qNOTBNDVT(V,TRM);

E X P R NOTFRVT(V,TRM);
BEGIN

IF ISAPPLTERM(TRM) THEN RETURN (NOTFRVT(V,FNOF(TRM))ANOTFRVT(V,ARGOF(TRM)));
IF lSCONDTERM(TRM) THEN RETURN (NOTFRVT(V,PREDOF(TRM)) A

NOTFRVT(V,TRUCASOF(TRM)) A

NOTFRVT(V,FALCASOF(TRM)));
I F ISLAMBDATERM(TRM) v ISMUTERM(TRM)

THEN RETURN (EQ(V,BVAROF(TRM)) v NOTFRVT(V,MATRlXOF(TRlvl)));
RETURN(-EQ(V,TRM));

END;

‘L EXPR FREEV(V,TRM); (qNOTFRVT(V,TRM));

t

EXPR NOTFRVW(V,WF);
IF EMPTY(WF) THEN T
ELSE NOTFRVT(V,FSTERMOF(FSTOF(WF))) A

NOTFRVT(V,SNTERMOF(FSTOF(WF))) A!/ NOTFRVW(V,RMDR(WF));

EXPR NOTFREE(V,LN);
IF EMPTY(LN) THEN T ELSE
(IF NOTFRVW(V,WFFOF(FSTOF(LN))) THEN NOTFREE(V,RMDR(LN)));

L

EXPR ISFREEFORT(X,V,TRM);
BEGlN
IF ISIDENT(TRM) THEN RETURN T;
IF ISAPPLTERM(TRM) THEN RETURN ISF~EEFORT(X,V,FNOF(TRM))A

lSFREEFORT(X,V,ARGOF(TRM));
IF ISCONDTERM(TRM) THEN RETURN ~SFREEFORT(X,V,PREDOF(TRM))A

lSFREEFORT(X,V,TRUCASOF(TRM)) A

tSFREEFORT(X,V,FALCASOF(TRM)) ;

35

LCFsmall

IF ISLAMBDATERM(TRM) v ISMUTERM(TRM) THEN
IF EQ(V,BVAROF(TRM)) v FREEV(BVAROF(TRM),X) THEN RETURN NIL

ELSE RETURN ISFREEFORT(X,V,MATRlXOF(TRM));
END;

EXPR ISFREEFORW(X,V,WF);
IF EMPTY(WF) THEN T
ELSE ISFREEFORT(X,V,FSTERMOF(FSTOF(WF))) A

ISFREEFORT(X,V,SNTERMOF(FSTOF(WF))) A
lSFREEFORW(X,V,RMDR(WF));

6.2 Misce l laneous Furlctions Used in INCL, CUT, CASES, SHOW

EXPR PICKUP(WF,N);
IF EQ(N, 1) THEN <FSTOF(WF)> ELSE PICKUP(RMDR(WF),N-1);

EXPR INCLTEST(LN,WF);
BEGIN
IF EMPTY(LN) THEN RETURN(T);
IF TESTM(WFFOF(FSTOF(LN)I,WF) THEN RETURN(INCLTEST(RMOR(LN),WF));
END;

EXPR TESTM(WF1 ,WF2);
IF EMPTY(WF1) THEN T
E L S E MEMBER(FSTOF(WF1),WF2) A TESTM(RMDR(WF1),WF2);

EXPR TESTCASES(LN1 ,LN2,LN3,TRM);
- TESTC(MKWFF(‘?r,TRM,‘TT),LNl) A

TESTC(MKAWF(‘?-=,TRM,‘UU),LN2) A

TESTC(MKAWF(‘?a,TRM,‘FF),LN3);

EXPR TESTC(WF,LN);
IF EMPTY(LN) THEN NIL ELSE

IF EQUAL(WF,WFFOF(FSTOF(LN))) THEN T
ELSE TESTC(WF,RMDR(LN));

EXPR FIND(LN,TRMl ,TRM2);
IF EMPTY(LN) THEN NIL ELSE
IF EQUAL(MKWFF(‘?s,TRMl ,TRM2),WFFOF(FSTOF(LN)))
THEN FSTOF(LN) ELSE FIND(RMDR(LN),TRMl ,TRM2);

EXPR REMOVE(LN,N);
IF EQ(LN,NIL) THEN NIL ELSE
(IF EQ(N,FSTOF(LN)) THEN RMDR(LN)
ELSE (FSTOF(LN) CONS REMOVE(RMDR(LN),N)));

EXPR OPT(X);
IF X THEN X ELSE T;

6 . 3 Conversiorl arid S u b s t i t u t i o n Routilres

LCFsmall

EXPR CONVT(TRM);
BEGIN NEW BV,MAS,MA,FNEW;
IF ISIDENT(TRM) THEN RETURN TRM;
IF ISCONDTERMiTRM) THEN RETURN MKCONDTERM(CONVT(PREDOF(TRM)),

CONVT(TRUCASOF(TRM)),CONVT(FALCASOF(TRM)));
IF ISLAMBDATERM(TRM) THEN RETURN MKLAMBDATERM(BVAROF(TRM),CONVT(MATRlXOF(TR~)));
IF ISMUTERM(TRM) THEN RETURN MKMUTERM(BVAROF(TRM),CON~T(MATRIXOF(TRM)));
IF ISAPPLTERMtTRM) THEN

(IF lSLAMBDATERti(FNOF(TRM)I
THEN BV+BVAROF(FNOF(TRM))
ALSO MA+MATRlXOF(FNOF(TRM))
ALSO MAS+SUBSTG(MA,CONVT(ARGOF(TRM)),BV)
ALSO RETURN IF EQUAL(MA,MAS) THEN TRM ELSE

CONVT(MAS)
ELSE RETURN IF lSLAMBDATERM(FNEW+CONVT(FNOF(TRM))) THEN

CONVT(MKAPPLTERM(FNEW,CONVT(ARGOF(TRM))))

END;
ELSE MKAPPLTERM(FNEW,CONVT(ARGOF(TljM))));

37

EXPR SUBSTG(TRM,X,Vl);

c
BEGIN
IF ISIDENT(TRM) A EQ(TRM,Vl) THEN RETURN X;
IF ISIDENT(TRM) THEN RETURN TRM;
IF ISAPPLTERM(TRM) THEN RETURN MKAPPLTERM(SUEISTG(FNOF(TRM),X,VI),

i. SUBSTG(ARGOF(TRM),X,Vl 1);
IF ISCONDTERMtTRM) THEN RETURN MKCONDTERM(SUBSTG(PREDOF(TRM),X,Vl),

SUBSTG(TRUCASOF(TRM),X,VI),
.
‘. . I F ISLAMBDATERM(TRM)

SUBSTG(FALCASOF(TRM),X,Vl));

I
THEN RETURN (IF EQtVl ,BVAROF(TRM)) v FREEV(BVAROF(TRM),X)

THEN TRM
c ELSE MKLAMBDATERM(BVAROF(TRM),SUBSTG(MATRlXOF(TRM),X,Vl)));

IF ISMUTERM(TRM)

t

THEN RETURN (IF EQ(V1 ,BVAROF(TRM)) v FREEV(BVAROF(TRM),X)
THEN TRM

END;
ELSE MKMUTERM(BVAROF(TRM),SUBSTG(MATRIXOF(TRM),X,Vl)));

L

EXPR ACONV(TRM,V 132:X);
BEGIN
IF NOTBNDVT(V2,TRM) THEN RETURN TRM;
IF ISCONDTERM(TRM) THEN BEGIN
IF BOUNDV(VZ,PREDOF(TRM)~ THEN RETURN MKCONDTERM(ACONV(PREDOF(TRM),Vl ,V2),

TRUCASOF(TRM),FALCASOF(TRM));
IF BOUNDV(V2,TRUCASOF(TRM)) THEN RETURN MKCONDTERM(PREDOF(TRM),

ACONV(TRUCASOF(TRM),V 1 ,V2),FALCASOF(TRM));
IF BOUNDV(V2,FALCASOF(TRM)) THEN RETURN MKCONDTERM(PREDoF(TRM),

TRUCASOF(TRM),ACONV(FALCASOF(TRM),Vi ,V2));END;
I F ISAPPLTERM(TRM) A BOUNDV(V2,FNOF(TRM))
THEN RETURN MKAPPLTERM(ACONV(FNOF(TRM),Vl ,VZ),ARGOF(TRM));

IF ISAPPLTERM(TRM)
THEN RETURN MKAPPLTERM(FNOF(TRM),ACONV(ARGOF(TRM),Vl Ji2));

I F ISLAMBDATERM(TRM) A EQ(V2,BVAROF(TRM))
THEN RETURN (IF FREEV(V 1 ,MATRIXOF(TRM)) v

EQUAL(X+SUBSTG(MATRlXOF(TRM),Vl ,V2),MATRIXOF(TRM))
THEN TRM

LCFsmall

ELSE MKLAMBDATERM(V1 ,X));
IF ISLAMBDATERM(TRM)
THEN RETURN MKLAMBDATERM(BVAROF(TRM),ACONV(MATRIXOF(TRM),Vl,V2));

I F ISMUTERM(TRM) A EQ(V2,BVAROF(TRM))
THEN RETURN (IF FREEV(V1 ,MATRIXOF(TRM)) v

EQUAL(X+SUBSTG(MATRIXOF(TRM),Vl ,VZ),MATRIXOF(TRM))
THEN TRM
ELSE MKMUTERM(V1 ,X1);

IF ISMUTERM(TRM)
THEN RETURN MKMUTERM(BVAROF(TRM),ACONV(MATRIXOF(TRM),Vl ,V2));

END;

EXPR SUBW(AWF1 ,AWFIZ,N);
BEGIN NEW TRMl ,TRM2;

r, SUBCOUNTcN;
TRMl +DOSUBST(FSTERMOF(AWFl),SNTERMOF(AWFZ),FSTERMOF(AWFZ));
TRM2+(lF EQ(SUBCOUNT,O) THEN SNTERMOF(AWF1)

ELSE DOSUBST(SNTERMOF(AWF1),SNTERMOF(iIWFP),FSTERMOF(AWFP)));
RETURN MKWFF(RELOF(AWFi),TRM1 ,TRM2);
END;

L EXPR SUBSTTT(TRM1 ,TRM2,TRM3,N);
BEGIN
SUBCOUNT+N;

L RETURN DOSUBST(TRM1 ,TRMZ,TRM3);
END;

‘*
EXPR DOSUBST(TRM 1 ,TRM2,TRM3 1;

_ BEGIN NEW AUXl ,AUX2,AUX3;

L

IF EQUAL(TRM1 ,TRM3) THEN (SUBCOUNTtSUBCOUNT-1) ALSO
(IF EQ(SUBCOUNT,O) THEN RETURN TRM2 ELSE RETURN TRMl);

IF ISIDENT(TRM1) THEN RETURN TRMI;
IF ISCONDTERM(TRM1) THEN

I,

L

.

AUXI tDOSUBST(PREDOF(TRM1),TRM2,TRM3) ALSO
AUX2+(lF EQ(SUBCOUNT,O) THEN TRUCASOF(TRM1)

ELSE DOSUBST(TRUCASOF(TRM1),TRMZ,TRM3)) ALSO .
AUX3+(lF EQ(SUBCOUNT,O) THEN FALCASOF(TRM1)

,

ELSE DOSUBST(FALCASOF(TRM1),TRM2,TRM3)) ALSO
RETURN MKCONDTERM(AUX 1 ,AUX2,AUX3);

IF ISAPPLTERM(TRM1) THEN
AUX I+DOSUBST(FNOF(TRMl),TRM2,TRM3 j ALSO
AUX2+(lF EQ(SUBCOUNT,O) THEN ARGOF(TRM1) -

b
ELSE DOSUBST(ARGOF(TRM1),TRM2,TRM3)) ALSO

RETURN MKAPPLTERM(AUX 1 ,AUX2);

I
IF ISLAMBDATERM(TRM1) v ISMUTERM(TRM1) THEN

IF FREEV(BVAROF(TRM 1),TRM2) v FREEV(BVAROF(TRM1),TRM3) THEN
RETURN TRMl ELSE RETURN
(IF ISLAMBDATERM(TRM1)

‘THEN MKLAMBDATERM(BVAROF(TRM1),DOSUBST(MATRlXOF(TRMl),TRMZ,TRM3))

END;
ELSE MKMUTERM(BVAROF(TRM1),DOSUBST(MATRlXOF(TRMl),TRM2,TRM3)));

LCFsmall

I
L

A P P E N D I X 7

M A N I P U L A T I O N O F T H E D A T A S T R U C T U R E

7.1 C o n s t r u c t o r s

EXPR MKCONDTERM(PR,TC,FC); (‘?!COND CONS PR CONS TC CONS FC);

EXPR MKAPPLTERM(FN,ARG); (‘?!APPLY CONS FN CONS ARC);

EXPR MKLAMBDATERM(V,TRM); (‘?!LAMBDA CONS V CONS TRM);
L

EXPR MKMUTERM(V,TRM); (‘?!MU CONS V CONS TRM);

)c

t 7.2 Selectors

t

L

-

t

EXPR MKAWF(X,Y,Z); (X CONS Y CONS 2);

EXPR MKWFF(X,Y,Z); x(X CONS Y CONS Z)>;

EXPR MKPROOFSTEP(X,Y,Z);IF EQ(Y,‘NODEP) THEN <X,NIL,Z> ELSE <X,Y,Z>;

EXPR REASON(X,Y);(X CONS Y);

‘EXPR PREDOF(TRM); CADR TRM ;

EXPR TRUCASOF(TRM); CADDR TRM ;

EXPR FALCASOF(TRM); CDDDR TRM ;

EXPR DEPOF(X:P); BEGIN P+SEARCH(X,PROOF);RETURN(P[3 J);END;

EXPR RELOF(X); CAR X;

EXPR FSTERMOF(X); CADR X;

EXPR SNTERMOF(X); CDDR X;

EXPR AWFFOF(X); (CAR WFFOF(X));

EXPR WFFOF(X:P); BEGIN P+SEARCH(X,PROOF); RETURN(P[2]);END;

EXPR FSTOF(X); CAR X ;

EXPR RtiDR(X); CDR X ;

EXPR FNOF(X);CADR X;

39

40LCFsmall

EXPR ARGOF(X); CDDR X;

EXPR BVAROF(X); CADR X;

EXPR MATRIXOF(CDDR X;

7 . 3 P r e d i c a t e s

E X P R ISEQUIVAWFF(AWF); EQ(RELOF(AWF),‘?q;

EXPR ISLTAWFF(AWF); EQ(RELOF(AWF),‘?c);

EXPR ISINCL(N,WF); (LNT(WF)iN);

EXPR bSTTCOND(TRM); EQ(PREDOF(TRM),‘TT); -

EXPR ISFFCOND(TRM); EQ(PREDOF(TRM),‘FF);

EXPR ISUUCOND(TRM); EQ(PREDOF(TRM),‘UU);

EXPR ISPROOFSTEP(L); (PFLENGTHZL);

EXPR EMPTY(X); EQOVW;

EXPR ISLINE(4ATOM(X));

EXPR ISIDENT(X); A T O M (X) ;

EXPR lSAPPLTERM(TRM); EQ((CAR TRM),‘?!APPLY);

EXPR ISCONDTERM(TRM); EQ((CAR TRM), ‘?!COND);

EXPR ISLAMBDATERM(TRM); EQ((CAR TRM) ,‘?!LAMBDA);

EXPR ISMUTERM(TRM); EQ((CAR TRM), ‘?!MU);

7 . 4 M i s c e l l a n e o u s Fullctiom

EXPR UNIONOF(LN1 ,LN2);
BEGIN
IF EQ(LN1 ,‘NODEP) v EQ(LN1 ,NIL) THEN RETURN LN2;
IF EQ(LN2,‘NODEP) v EQ(LN2,NIL) THEN RETURN LNl;
IF MEMQfKAR LNl),LNZ) THEN RETURN(UNIONOF((CDR LNl),LN2))

END; _
ELSE RETURNtKAR LNl 1 CONS (UNIONOF((CDR LNl),LN2)));

EXPR UNIONW(WF1 ,WF2);
IF EQUAL(WF1 ,NIL) THEN WF2 ELSE

t

L

LCFsmall

(IF MEMBER((CAR WFl),WF2) THEN UNIONW((CDR WFl),WF2)
ELSE ((CAR WFl) CONS UNlONW((CDR WFl),WF2)));

EXPR ADDLINE(
BEGIN PFLENGTH + PFLENGTH + 1;

PROOF+((PFLENGTH CONS X) CONS PROOF); END;

EXPR SEARCH(X) P);
IF EQ(P[1 ,l],X) THEN P[1 J ELSE SEARCH(X,(CDR P));

EXPR LNT(X);
IF EQ((CDR X),NIL) THEN 1 ELSE (LNT(CDR X) + 1);

EXPR SUBWV(WF,X,V:FS);
IF EQ(WF,NIL) THEN NIL ELSE

(MKAWF(RELOF(FStFSTERMOF(WF)),SUBSTG(FSTERMOF(FS),X,V),
1 SUBSTG(SNTERMOF(FS),X,V)) C O N S SUBWV(RMpR(WF),X,V));

41

r
I

i

L

LCFsmall

INDEX

42

is followed by the number of the appendix where the function is defined.
In this index all the functions appearing in the program are listed in alphabetic order. Each name

ABSTR
ABS TRSEM
ACONV
ACONVSEMl
ACONVSERZ
AOOL I NE
APPL
APPLSEMl
APPLSEMZ
ARGOF
ASSUME
ASSUMESEM
AWFF
AWFFUF

4

62
4
4

7.4
4
4
4

7.2
4
4

1.4
7 . 2

BAOL I NE
BOUNDV

2

WAROF
6.1
7.2

CANCEL
CANCELSEM
CASES
CASESSEM
CHECK
COLON
COMMA
C O N D F
CONDFSEM
COND T
CON0 TERM
CONOTSEM
CONDU
CONDUSEM
CONJ
CONJSEM
CONV
CONVSEMl
CONVSEMZ
CONVT
CUT

-CUTSEM

5
5
4

1.44
1.4
1.4

44
4

1.4
4
4
4

44
4
4
4

6.3
4
4

d e l s c a n
DEPOF

1.2

DOLLAR
7.2

DOSUBST
1.4
6.3

L

‘L

i

i

LCFsmall
4 3

EMPTY
ETACONV

7 . 3

E TACON VSEM
4
4

EOUI v
EQU I VSEM

FALCASOF
FETCH
FETCHSEM
FIND
FIXP
F I XPSEM
f lush
FNOF
FREEV
FSTERMOF
FSTOF

HALF
HALFSEM

4
4

IDENT
i dscan
I NCL
I NCLSEM
INCLTEST
INDUCT
I NDUC TSEM
INIT
I SAPPL TERM
ISCONOTERM
I SEW I VAWFF
I SFFCONO
I SFREEFOR T
ISFREEFORW

1 . 4
1 . 2

4

6 . :
4

2”

7 . 3
7 . 3
7 . 3
7 . 3
6 . 1

ISIOENT
6 . 1

IS INCL
7 . 3
1 c\

I SLAMBDATERM i:;
ISLINE
ISLTAWFF

7 . 3

ISMUTERM
7 . 3

ISPROOFSTEP
7 . 3

I STTCOND
7 . 3

ISUUCONO
7 . 3
7 . 3

4”

7 . 2
5
5

6 . 2
4

1.34

7 . 2
6 . 1
7 . 2
7 . 2

.

I ambda 1 . 4
LAMBDA TERM 1.4
LCFINI T
LCFPROOF

2

L I N E
2

-LNT
2

LPAR
7 . 4

LSPINI T
1 . 4

2
L S Q B R A C K E T 1 . 4

MATRIXOF 7 . 2
MKAPPL TERM 7.1

L

c

L

LCFsmall
4 4

MKAWFF 7 . 1
MKCONDTERM 7.1
MKLAMBDA TERM 7.1
M K M U T E R M 7 . 1
MKPROOFSTEP 7.1
MiNl 4
MJNZ a 4
MKWFF 7 . 1
MINlSEM 4
MIN2SEM 4
MU 1 . 4
MUTERM 1 . 4

n e x t t 1 . 3
nextv
NOTBNOVT

1 . 3
6 . 1

NOTFREE 6 . 1
NOTFRVT
NOTFRVW

6 . 1
6 . 1

NUMBER 1 . 4
numscan 1 . 2

OPT 6 . 2

peek t 1 . 3
peekv
PERIOD

1 . 3

PICKUP
1 . 4

PREDOF
6 . 2

PRI NTAWFF
7 . 2

PRINTLINE
3
3

PRINTLST 3
PRI NTM
PRINTMES

3
3

P R I N T N E W L I N E 3

RARROW 1 .4
read1 i s t
REASON

1 . 2

REFL 1
7 . 1

4
REFL2 4
REFLlSEM 4
REFL2SEM 4
REL 1 . 4
RELOF 7 . 2
RMDR 7 . 2
REMOVE 6 . 2
RESUME
RPAR

2
1 . 4

RSQBRACKET 1 . 4

SC 1 . 4
scan
SCNINI T
SEARCH
setup
SHOW

1 . 2
2

7 . 4
1 . 2

5

c

LCFsmall

SHOWSEM 5
S I M P L E T E R M 1 . 4
S N T E R M O F 7 . 2
SYM 4
SYMSEM 4
SUBST 4
SUBSTG 6 . 3
SUBSTSEMl
SUBSTSEM2 :
SUBSTTT 6 . 3
SUBW 6 . 3
SUBWV 7 . 4

TESTC 6 . 2
T E S T C A S E S 6 . 2
TESTM 6 . 2
TERM
token i::
tokent 1 . 3
t okenv 1 . 3
TRANS 4
TRANSSEM 4
T R U C A S O F 7 . 2
tstack 1 . 3

UNIONOF 7 . 4
UNIONW 7 . 4

VALUE 1 . 4

WFF 1 . 4
WFFOF 7 . 2

45

