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I. INTRODUCTION

Computer systems with multiple, i{ndependent memory modules and
multiple, independent processors have been available for a number
of years. Recent proposals for systems with a large number of
primary processors as well as a large number of memory modules
(Be11, 1972; Flynn, 1972], give added importance to the general
question of the amount of memory interference caused by independent
processors., In a system with N CPUs and M memory modules,
independent programs may make simultaneous requests to the same
memory module and interference will occur. If the memory modules
are selected by low order bits of the addresses, as in typical
interleaving, the memory interference could be severe. Our aim is
to develop an abstract model of the operation ot'n.nultiple
processor, nultiple memory module system, determine the degree of
memory interference in that model, and to assess the degree to

which results from the model would correspond to actual system

behavior.



11. SIMPLE MODEL

A simple model of N processors using K tinterleaved memory
modules i8 the following Markov chain. All processors and memories
are synchronized. At the b;ginaing of each memory cycle, all the
processors whose memory request from the previous memory cycle were
satisfied make a new memory request. The request of each processor
is directed to a particular memory module choser at random, with
a1l memory modules being equally likely to be chosen. Several
requests may be for the same memory module. Each module will
service exactly one request during the memory cycle if it has any
requests before it. Any remsining requests are held for future
memory cycles. . X

It should be clear that w; are considering s system that is
bound by the speed of its memory; that is, each processor always
has a req.cst waiting for the memory as soon as the memory is able
tc accept it, The system in question is also synchronous; all N
processors make requests at the same time, and receive their data
;t the same time. Although such an organization will exactly
describe only a minority of current or proposed multiprocessor
systems (e.g., the Honeywell 645 has a slower processor cycle time
than memory cycle time, and does not run its processors in
synchrony [Sekino, 1972 and p?tvate communications] ), it
will be shown that one can use the res:lts in this paper to obtain

very close approximations to the true degree of memory interference

in ¢ther systems,



We can define s complete set of states as follows: a 2N-tuple

(my,0ep om0k, 1

reference from processor i 1s directed, and k

ces ‘N’kﬂ) where m, 1s the memory at which the

N is its position
in the queue at that memory. Since ail processors are assumed to
have thc same reference pattern (uniform random over the set of
integers 1 ... M), and since we are interested solely in the overall
rate of memory access, not in the relative performance of one
processor over another, both the queuing discipline and the position
of each processor in each memory queue become irrelevant, Nor is
1t important to specify which processor isqueued for which memory,
rather we need specify only how many processors are queued for each
memory. The state can now be represented as an M-tuple
K= (k ... k"), where k, 1s the number of requests queued for

- memory i . |

The number of such states K = (k1 cos kl) is the same as

the number of ways of distributing N balls (processors) into M

n+m-1

m-1 ) . At the end of a

boxes (memories) [Feller, 1966] (
memory cycle, (before new memory requests are issued), the state
of the system is represented by H = (h1 ...hu) where

hy =k -1 12 k >0, Ootherwise. Another state G = (g - &)

is reachsble in one step fromu (k1 kl) if g, > h, for all i .

It d, =k -h , and x= )i? d then P(X,G), the probability

i 1’

of transition from state K to state G is

)

x! (l
P(X,G) = — T T %
a7 dy; d3. .du. M



as discussed by Bhandskar and Fuller [1973].

It should be clear without proof that this stochastic system
i8 a Markov chain, since the choice of next state is affected
only by the current state, is aperiodic, since from any state a
transition to itself in onc step is possible, and is irreducible,
since any state can reach any other state in a finite number of
steps. ,

It is possible to reduce the number of states again without
losing useful information. Because the memory modules are identical,
1t is not necessary to associate queue lengths with spacific memory
modules. For example, a state (3,2,1,1) is equivalent to a state
(1,2,1,3). We can thus deal with equivalence classes, where, for
exsmple, (2,1,1) would represent the states (1,1,2), (2,1,1) and
(1,2,1). The number of states is now equal to the number of ways
to partition N objects into M groups, where one or more of the

groups may be empty. There 18 no closed form expression for this

number, but for large N, M (M > N) , it is asymptotic to

l -
: exp n:(JEN

hx v 3 3
[Beckenbach, 1964] , which grows much less quickly for large M,

vl

Baskett has devised a method of enumerating all of these

R than does

(equivalence class) states and calculating the transition proba-
bilities in an efficient manner, This calculation has been

performed and described elsewhere [Chewning, 1973; Fuller and



Bhandarkar, 1973); the results for a number of cases are displayed
in Figures 1, 2, and 3,
It is easy to solve either the N x 2 or the 2 x M cases

for all Nor M .

(a) & Processors, M memories

1l
p o= 2-—

(b) N Processors, 2 Memories

All attempts to find a simple closed form solution for the
system described with finite M , N (M > 2, N > 2) have failed, and
the authors are of the opinion that such a solution is unlikely.

Two items lend support to this opinion -~ the failure of the
decomposition method (see Section IV), and the disproval of the
following conjecture -- "that the throughput of an N x M

(N processor , M memory) system is the same as the throughput of
sn M x N (M processor , N memory) sys}e-." This conjecture holds
for either M =2 o0or N =2, for M = N, and in the limit as
N—oow , Mo , with M/N constant. It fails to hold, however,
for the next most complicated case, the 3 x 4 system,

It should be noted that the model above is similar to a model
proposed and partially analyzed by Skinner and Asher [1969] . They
use a larger collection of states; since they are interested in

which processor's memory request is satisfied, the model contains

6



tie breaking prvoabilities in the case of memory usage conflict,
This more detailed model only allows them to solve a very small
number of cases, unfortunately. Other authors that have considered
the memory interference problem (although with sowewhat different

wodels) are Budnick and Kuck [1971] and Flores [1964],



I1I. ASYMPTOTIC RESULTS

A. The Simple Model

A9 N~® Mo N/M- L, aconstant, there exists an
exact solution., We can view each memory as the server in a queue,
which operates in discrete time, At the end of each time interval,
one service is completed if eny customer is waiting for service
(1.0., if any processor is waiting for the contente of a location
in this memory). At the same time zero or more customers arrive.
let L1 be the equilibrium probability of heing in state 1 ,
i.,e,, with 1 customers in the queue, and let le be the probability

of having j customers in the queue, given 1 customers there

during the previous interval, Then, in equilibrium

‘\

1=0
For very large M and N , pu becomes a function of Jj-1 ., Let
Ai be the probability of 4 customers arriving at the end of
an interval.

Then



Thus

1
LJ BZ LiAJ—1+1 + LOAJ
i=]
Define
-« » ’
A(zZ) = AJZJ , L(Z) = ELJZJ_
-3=0 . 3=

as the generating functions of the arrivals (per interval) and the
queue length, respectively. We then have

®© J+l

L(z) = Z E LiAJ_“lzJ + LOA(Z)

30 1=1

By interchanging the order of summation and simplifying, we

obtain
LoA(Z) (2 - 1)
By differentiating this expression with respect to Z , and
evaluating at Z = 1 , we obtain L , the mean queue length.
-1
L(z) = LyA(z)(z-1)(z-A(z)) (3)

= 1(2) LOA'(Z)(Z—I)(Z-A(Z))-I

+

1.0.;;(z)(z-m(z))"1

.LOA(Z)(Z-l)(z-A(z))-e(l-A' (z)) . (%)

As this expression is undefined at 2 = 1 , we collect terms and

then apply L'HOpital's rule twice ,




We obtain

sy | aapea)-an?a)
2-4A (1)+24' 2(1)

) (5)

A reader familiar with queueing theory will have noticed that the
equations above are exactly the same as those used in obtaining
results for the M/G/1 (Pbisson arrival, general service time,
single server) queue [Cox and Smith, 1961] . We can thus replace
lb , the fraction of time that the queue is empty, by (1 - p) ,
where p 1s the symbol for the utilization of a server.

When N and M are finite, and the number of Busy servers
(memories) is known (and equal to b ), the arrivals sre binomiamlly

distributed as

P {d arrivals) = (:)(%)" (1 i %)b-a
0sasb

When N, M - « , the number of busy servers will become a constant
fraction of the total number, equal to p . The distribution cf
the number of arrivals will become Poisson in the limit [Feller,
1966], i.e.,

i -pt

P [{ arrivals] = 2o (6)

10



and the generating function of this distribution is

A(Z) = ep(z-l)
We can obtain an expression for L etther directly from equation
(5) or by referring to any queueing theory text [Saaty, 1961],

which gives

2

L = p+¢+ T-p , \7)

From the structure of the problem, we know L , the mean
queue length (1) , it is simply N/M; since every processor is
queued at exactly one memory, there are N customers among M

servers, Thus

2

N p

Solving for p , we obtain

o= b ) ((2) ) (®)

The fraction of time then that a given memory is idle (due to

interference between processors which are queued elsewhereo.is;

' 2 \1/2
idle time = 1 - p =((i’!) +1) -

| {F ]

We will show later that this asymptotic result is quite accurate
even for systems in Which N and M are as small as 8 or 16. We will
also shown in Section IV that a slight modification of this expression

will yield even more accurate expressions for finite N and M.

11



B. MXlternate Models

It is interesting to note that we have obtained exactly the
same results as for an MW/D/1 (Poisson arrivals, constant service
tine) queue which differs from the current problem in two important
respects;

(a) arrivals are Poisson distributed, but srrive rontinuously,

not in batches at the start of an interval, and

(b) service starts st exactly the time of an arrival to an

empty queue, not at the beginning of an interval.

This model is almost equivalent to that of a paging drum with
one sector and an infinite source Poisson arrivel procees. The
differcnce is that the drum model has arrivals occurring continuously
in time, rather than at discrete intervals, although services are
synchronized in time and constant in duration. This drum model
has been analyzed [Coffman, 1969; Skinner, 1967], and the result,

using our previous notation is

o(3)* iy

L =
Letting
L= -Ir-z as before,
N N Y@ N
p = 3+2i -j}+-—i)‘-16i' L (9)

Another variant of this model is to view it as a queueing
-network, Custonmers (processors) are served at a server (nenory)

end then branch with equal probability to one of the other servers,

l2



Since every server 1s identical to every other, every branching
probability is the same (uniform over all servers), and all
customers are identical, in two special cases we can obtain a
result. If either the service times are exponential (with mean 1
as before) [Jackson, 1963; Gordon and Newell, 1967] or constant,

with LCFS preemptive service [Muntz and Baskett, 1972], we have

1,1_2_.’_' .
-P M
M
P = T+ (10)

This approach has also been exsmined in Bhandarkar and Fuller
[1973] for finite numbers of customers. As ghould be clear,
as N, M - o , each server in the queuing network becomes indepen-
dent of every other; thus if each server is FCFS with constant
service time, the previous M/D/1 queue result holds.

In Table 1 the results for a few simple examples using

formulas 8, 9 and 10 are shown,

13
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1.5

TABLE 1

MEMORY UTILIZATION (p) FORM — @, N — =,

N/M = L, A CONSTANT

OUR MODEL

M/D/1 MODEL DRUM MODEL
-hol55 .29289
58579 5
6972 63397
.7639 .T192

14

'

QUEUEING ~
NETWORK MODEL

3333

l6



IV. APPROXIMATIONS

Because it is extremely time consuming in terms of computer
time, as well as in programming effort, to calculate exact values
for our simple model for finite M and N , it was considered
desirshle to find a useful approximation., A number of different
appronches arce considered and are discussed below; thke binomial
approximation jg found to work well in all cases and is displayed
in several tables and illustrations. .

A. Balls and Boxes

The simplest and most obvious spproximation to the simple
model discussed in Sections II and III was used by Strecker [1970].
In his model the probability that K processors are queued for

P

a specific memory is . .
: : L %

roen - (OGS 63 an)

This is equivalent to the probability of a box having K balls,
given that N balls are distributed randomly among M boxes.

The probability that a memory is busy is just

1-P{K=0}] = 1-( -%)N -p

The value obtained here is consistently low compared to the correct
solution, and it is not hard to see why, Initfally, the processor
requests are described as indicated. 1In the next cycle, those
processors serviced during the first cycle generate requests

randomly, but those requests may find substantial queues in front

15



of them. Thus longer queues tend to build up, lowering the

overall utilization

B. The Decomposition Approximation

It was suspected that the model under consideration could be
decomposed and analyzed piecemeal in some manner, Specilically;
we tried analyzing a single (Ienory) queue, based on the nasumﬁ-
tion that all customers, (totsling K ) nmot queued.nt the memory
in question were distributed among the other (M - 1) memories
with precisely the same distribution that would occur at equili-
brium in a K x (l -.1) system., Results for some N x 3 systems
were calculated in this manner and are compared with the exact
results in Table 2, The numbers are ‘rery close,'but not exact.
These results are only marginally essier to obtain than the exact
results. The failure of the system to decompose in this manner
does add weight (as mentioned above) to our feeling that a closed

form solution to this problem (if any such exists) will be very

complex,

C. The Binomial Approximation

Esrlier, in equation 5, we obtained an expression for the mean
queue length L » 88 a function of the moments of the arrival

distribution, A(n) .

" OHar |2
o] oy ST 0

Z=)

16



TABLE 2

DECOMPOSITION APPROXIMATION IN THE N PROCESSOR,
3 MEMORY SYSTEM

FRACTIONAL MEMORY IDLE TIME

DECOMPOSITION
PROCESSORS APPROXIMATION SIMPLE MODEL
2 N1 Jhibily
3 .3162 3175
4 2426 <2433
5 .1962 , .1966
6 1644 1647
7 <1415 16
8 12406 L1242

17



A'(1) 1is simply the mean number of arrivals per interval,

or p . Lb =1« p and L = N/M as before. Thus

N A1) +aat(a) - 2at2n)
2(1 - A'(1))2

(13)

If we assume that the arrivals are binomially distributed

{(instead of Poisson distributed), i.e.,

P {K arrivals} = A_ -‘(:) p* (1- p)”-K
with
P(z) = (1 -p+ pz)N , and mean np = p

then
A'(1) = o(n- l)p2 and A'(1) = np .
p here is simply 1/M , the probabilfty of an arrival entering

the queue in question. Solving for np = p , the mean arrival

-Q?"i ) J6-3-9 ok )

It is possible to extend the use of the binomial approximation

rate, we obtain

pgnp=

beyond the simple model. In the simple model each CPU issues a
memory request immediately on the completion of service by the
memory of its previous request., Consider instead a CPU which,
after receiving the desired information, "thinks” for a period of

time with mean T and arbitrary distribution. The binomial

18




approximation can be used for this model also, provided we are
able to obtain an expression for the mean queue length at the
memories, which is no longer N/M .

The mean cycle time of a customer (processor request) in the
system will be F(L) + 1 + T, wvhere T is the mean think time
of the processor, 1 is the memory service time, and F(L) 1is
the mean queue length observed by a customer arriving at a memory,
given that L 1is the equilibrium queue length as measured at an
arbitrary time. Note that F(L) 1s not necessarily equal to L,
since the arrival of a customer is not independent of the state
qt the system. For example, an erriving customer will never see
more than N - 1 customers in the queue shead of him, although
measured at arbitrary times, the queue‘length wfli at times be
equal to N .

An expression for L then ‘s

F(L) + 1
F(L) +1+ T

(15)

i

In general, an expression for F(L) is very difficult to

obtain, and as a simple approximation F(L) will be set equal to

N-1

N L . Then

L - (- T%’-)\@ T't-‘l)e“‘(";"'l) (16)
2 (452)

19



and

-.(.;-z.-e)-j(r’.-a'z)a'“ (1)

2

Comparisons of the binomial approximation to measured trace

driven simulation results and/or simple model results are shown

in Figures 1, 2, 3 and 4, and also in Table 3. As can be seen in

these figures and tables, formulas (14) and (17) provide very accurate

estimates of the interference we can expect in a real multiprocessor

system with interleaved memory.
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TABLE 3

INTERFERENCE WITH CPU'S USING THINK TIME

% MEMORY IDLE

THINK TIME
CPU'S MEMORIES MEASURED BINOM. APPROX. MEAN  DISTRIBUTION
2 2 4081 .3738 .5  Exponential
2 2 .3906 .3738 5 Constant
2 2 4109 .3738 .5 Hyper Exponential
+ (cvel)
2 2 4079 .3738 5 Erlang 2
2 2 4065 .3738 .5  Erlang 3
2 2 4050 .3738 .5  Erlang b
h b 1519 4392 5 Exponential
4 4 k31 4392 5 Constant
b L 4540 4392 5  Hyper Exponential
(cval)
L b 4505 4392 5  Erlang 2
4 b 4506 k392 .5  Erlang 3
b b k87 4392 5 Erlang 4
8 8 L7304 4654 .5  Exponential
16 16 L4848 A 5 Exponential
32 32 k921 .1883 5 Exponential
32 32 .4905 .4883 .5 Constant
32 32 4923 .4883 .5  Hyper Exponential
(cv=t)
32 32 .4908 4883 5 Erlang 2
32 32 .1,888 4883 | .5 Erlang 3
32 32 4916 4883 5 Erlang 4
4 b .3255 3560 01  Exponential
Y L 3479 3727 .1 Exponential
b Y 3717 " 36895 2  Exponential
[ Y 1269 4230 N Exponential
4 [ .5160 4876 .8 Exponential
b Y 5530 5176 1 Exponential
b b 6265 5842 5 Exponential
b b .6823 .6385 2 Exponential



V. VALIDATION OF RESULTS, A TRACE DRIVEN SIMULATION

In order to test both the assumptions upon which our model
is based and the results we have predicted, four different memory
address traces were analyzed., Each of four different programs
were interpreted, and a tape of the memory addresses referenced
was produced. The programs interpreted include WATFIV, a Watfiv
compiler, WATEX, the execution of a "typical” scientific computa-
tion program compiled under Watfiv, APL, the execu;ion of a plotting
program in APL, and FFT1, a fast Fourier transform program written
in Fortran, The memory was assumed to be interleaved, and to be
64 bits (8 bytes) wide in each module, thus if the least signifi-
cant bit of the address is referred to as bit O, then bits 3-5 would
give the module number in the case of an eight way interleaved
memory.

To simulate an N processor system, N different sections
of the same trace were used for each processor. In order to
compensate for a non-uniformity within a trace of the modules most
favored (receiving the largest number of memory requests) a linear
offset was added to each address in a given section of each trace.
Thus, the section of the trace belonging to processor 1 would
have all the module numbers k translated to k+ 41 mod M, As
can be seen in Table 4, the interference observed when no offset
was used was generally considerable higher than with an offset.

A random (uniform [1,M]) offset (instead of linear) was also used,

and as can be seen also in Tablel , when the number of modules M

26



TABLE 4

MEASURED INTERFERENCE USING DIFFERENT OFFSETS

NUMBER OF "NUMBER OF PERCENT IDLE
PROCESSORS MEMORIES IDLE OFFSET
2 2 .2156 None
2 2 .2158 Linear
b 4 .3260 None
4 " 3274 Random
4 b .3252 Linear
8 8 3722 None
8 8 .3703 Linear
8 8 372k Random
16 16 4019 None
16 16 .3932 Linear
16 16 .3928 Random
32 32 k05 None
32 32 .3996 Linear
32 32 4017 Random



was large enough, the effect was indistinguishable from that

of the linear offset, In Table 5 some results when two
different traces were used instead of just one are shown, and no
significant difference between the single and multiple trace
simulations is evident. The remainder of the simulation results
used one trace and a linear offset.

Figures 1, 2, and 3 show the results of trace driven simula-
tions of our simple model structure, using the WATFIV trace, As
can be seen, both the exact solution to the simple model and the
binomial approximation are very close to the simulated measured
results. In Table 6 the fraction of memory idle time in the
N x N system is tabulated for simuletions of each of the four
memory address traces. There is no no?lcenble difterence observed

between the different traces; for this }eason unless otherwise

noted, all simulation results were obtained using the WATFIV

trace. With some confidence we feel that the results are
generally applicable.

Table 3 and Figure 4 show the results of trace driven simula-
tions when the processor uses "think time”. Six different distribu-
tions of think time-were used, exponentlal, hyperexponential with
coefficient of variation 4., constant, and Erlang with parameters
2, 3 and 4. The binomial approximation is again quite accurate,
and the results seem to be insensitive to the distribution of

think time.



TABLE 5
MEASURED INTERFERENCE IN SPECIAL CASES

NUMBER OF NUMBER OF PERCENT

PROCESSORS MEMORIES IDLE TIME SITUATION

2 2 2156 No offset

2 2 .2141 No offset, -exact same trace on
each processor

2 2 .2178 No offset, different traces
on each processor

2 2 .2180 Linear offset, different
traces on each processor

b 4 .3300 No offset, exact ssme trace on
all processors

" 4 .3263 " Linear offset, two different
traces

" b .3166 Random offset, ssme trace

8 8 +3593 Random offset, same trace

8 8 «3941 No offset, seme trace on all
processors



TABLE 6

MEMORY INTERFERENCE IN SYMMETRIC N x N SYSTEM

MEMORY IDLE TIME

PROGRAM TRACE

PROCESSORS MEMORIES  WATPIV  WATEX APL  PFT1
2 2 .2158 2332 .2163 .2137

b b -3252 .3362 .3287 3329

8 8 .3703  .3809  .3712  .3664

16 16 3932 .3972 W19 .3832
32 32 ©.3996  .WOTH 4048 3947
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One of the basic arsumptions in our simple model was that
the memory contention effect could be accurately modelled by
assuming that the memory reference strings generated by each
processor were uniiormly random over the set of memory modules
and that each reference was independent of the preceding ong(s).
From the results discussed above (Figures 1-4 and Tables - '
3,' L 5Jand-6), this can be seen to be an adequate’ assumption,
but it was found worthwhile to test this assumption further, A
number of simulations were rum using "sequential” processors.
These processors generated entirely sequential memory reference
strings, i.e., 1,2,3,4,5,6,7,8,9 etc. This, in a four way inter-
leaved memory system would become memory modules 1,2,3,4,1,2,3,4,1 ... .
Although it was expected that the 1nt;}ference would decrease
substantially due to the sequential processor(s) beconing synchron-
ized, it is evident from Table 7 that this decrease is rather small.
These sequential proég;éors operage &g.-?gh the same manner as
input/output de;fces auéﬁ as disks and drums which produce just
such sequential reference patterns; 1/0 devices seldom constitute
a very significant fraction of the load on the memory, however,
Clearly, then, the memory interference i8 not very nensitive to
the degree of sequentiality 1in the memory module traces.

Other authors, such as Burnett and Coffman [1973] and Burmett
[2970) have analyzed the memory interference problem by explicitly
considering the degree of sequentianlity in memory address traces.

In order to measure the degree of sequentiality that did in fact
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TABLE 7

INTERFERENCE WITH CPU'S AND SEQUENTIAL PROCESSORS

cPu's SEQUENTIAL % MBMORY
MEMORIES PROCESSORS IDLE

2 0 .2158
2 1 .1700
" 0 .3252
4 1 .3058
" 2 .2680
" 3 2296
8 0 .3703
8 1 .3605
8 2 -3533
8 3 3419
8 4 « 2904
8 6 - 51
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occur, additional analysis was performed on the memory address
traces. If in the memory address trace, module 1 was referenced,
and then next module j , a trensition of Jj - 1 mod M was
recorded. For all Jj , jAi+l mod M , references were found to
occur reasonably evenly. In Table 8 the fraction of transition

J=1 + 1 mod 32 is shown, and it is clearly larger than any other
transitions. The degree of sequentiality varied substantially
among different programs, though, and no general figure can be
stated.

The autocorrelation coefficient [Cox and Lewis, 1966] of the
memory module trace was computed as a further test of sequentiality
end patterns. It was found that whatever patterns that exist
within each trace ﬁré not common between the traces. First
order autocorrelations of up to .35 were found. This 1s further
confirmed by the results displayed in Figures 5 and 6 where
Fourier transforms of the memory module traces for WATFIV and
FFT1 are shown., Clear and strong patterns are evident in the
FFT program, which has a tight loop structure; that of WATF:V
shows a different set of patterns, which are less prominent.

One further simulation was performed. Two, four, and eight
processors were run, each with exactly the same trace. With a
linear offset, clearly there is zero interference; with random
and no offsets, the effects are comparable to either using
different portions of the same trace or different traces, as

can be seen in Table 5,
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TABLE 8

Probability that if reference J is
to module 1 then reference Jj+1 1s

TRACE to module 1+l mod 32 .
WATFIV ' . 2650
WATEX 1245
APL 2815
FFT1 .1376
FFT2 1349
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VvI. IMPLICATIONS AND OONCLUSIONS

We have proposed a simple model for a multiprocessor system
with interleaved memory, which when modified using the binomial
approximatiion can ;dequately represent many real computer systems.
We have demonstrated with trace driven simulations that .our
analytic results are quite accurate and relatively insensitive to
departures from our model. Such interference has been observed
in resl systems, such as Multics [Sekino, 1972) which running on the
GE 645 lost about 5$ of its memory cycles to interference, and the
Honeywell 6000 series [private communication], One major manu-
facturer uses as a rule of thumb that additional processors are
to be considered as only .9 in processing power due to mewory
interference., Both of these results ;re compatible with our
model.

Many modern computer systems use a cache memory [Conti, 1969],
which 18 not shared between processors. One would'expect that the
address string arriving at the shared memory would have lost almost
all of its sequentiality, and that our model would further improve
in accuracy. -

An issue not addressed here is the problem of mewory lockout
due to contention for serially but not concurrently accessible
system tables. This problem has been considered briefly by Madnick
{1968) and could easily be a problem of substantial magnitude 1if
adequate stops are not taken to guard against it, Multics reports
about the same degree of interference from table lockout as from

memory conflict [Sekino, 1972].
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Also not considered here is the possibility of organizing
the contents of memory in some other manner than interleaving

80 as to minimize interference,
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