
ST ANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM 249
COMPUTER SCIENCE DEPARTMENT REPORT NO. CS-463

ADA002261
11

OCTOBER 1974

GEOMETRIC MODELING FOR COMPUTER VISION.

Bruce Guenther Baumgart

ABSTRACT:

The main contribution of this thesis is the development of a three dimensional geometric modeling

system for application to computer vision. In computer vision geometric models provide a goal for

descriptive image analysis, an origin for verification image synthesis, and a context for spatial problem

solving. Some of the design ideas presented have been implemented in two programs named GEOMED

and CRE; the programs are demonstrated in situations involving camera motion relative to a static

world.

This rt'SNlrcli was .mpporll'd ill part by tile I1dvallct'!d Re.~t'!arcli Projl'cts I1g(mcy of the
O//ict'! 0/ till' S('!(~rl'tary 0/ J)t'!f(m.~l' ulldt'!r COlltract No. DI1/1C 15-73-C-0135 TIll! vieu)s and
condusion.~ conlaint'!d ill tlds dOCU/lWllt arc tllo.~e of the autllor alld should not I)e interpreted as
JI(!ccHaril.y rcprl'sclltillJ(tllC official policies, eitlter cxprcs.~ed or implil'd, of tile IJdvanced
R(!.~l'arcIt Pro jl'ct 11J((!lIcy or tltl' UllitC'd StalcB Govt'!rJllltcllt.

Page Intentionally Left Blank

TABLE OF CONTENTS.

SECTION O. INTRODUCTION. PAGE 1.

SECTION 1. GEOMETRIC MODELING THEORY. PAGE 6.

1.0 Introduction to Geometric Modeling .. 6
1.1 Kinds of Geometric Models ... 7
1.2 Polyhedron Definitions and Properties .. 12
1.3 Camera, Light and Image Modeling .. 13
1.4 Related Modeling Work .. 14

SECTION 2. THE WINGED EDGE POLYHEDRON REPRESENTATION. PAGE 15.

2.0 Introduction to the Winged Edge .. 15
2.1 Winged Edge Link Fields ... 17
2.2 Sequential Accessing ... 19
2.3 Perimeter Accessing ... 19
2.4 Basic Polyhedron Synthesis ... 21
2.5 Edge and Face Splitting ... 23
2.6 Coordinate Free Polyhedron Representation .. 26

SECTION 3. A GEOMETRIC MODELING SYSTEM. PAGE 27.

3.0 Introduction to GEOMED ... 27
3.1 Euler Primitives ... 30
3.2 Routines using Euler Primitives .. 34
3.3 Euclidean Routines .. 37
3.4 Image Synthesis: Perspective Projection and Clipping ... 43
3.5 Image Analysis: Interface to CRE ... 44

SECTION 4. HIDDEN LINE ELIMINATION FOR COMPUTER VISION. PAGE 46.

4.0 Introduction to Hidden Line Elimination .. 46
4.1 Initialization and Culling .. .48
4.2 Hide Marking a Coherent Object .. 51
4.3 Edge-Edge and Face-Vertex Comparing ... 52
4.4 Recursive Windowing .. 55
4.5 Photometric Modeling and Video Generation ... 58
4.6 Performance of OCCULT and Related Work ... 59

• SECTION 5. A POLYHEDRON INTERSECTION ALGORITHM . PAGE 60.

5.0 Introduction to Polyhedron Intersection ... 60
5.1 Intersection Geometry .. 62
5.2 Intersection Topology ... 63
5.3 Special Cases of Intersection ... 65
5.4 Face Convexity Coercion ... 66
5.5 Body Cutting ... 66
5.6 Performance and Related Work .. 67

TABLE OF CONTENTS.

SECTION 6. COMPUTER VISION THEORY. PAGE 68.

6.0 Introduction to Computer Vision Theory ... 68
6.1 A Geometric Feedback Vision System ... 68
6.2 Vision Tasks .. 71
6.3 Vision System Design Arguments .. 74
6.4 Mobile Robot Vision ... 77
6.5 Summary and Related Vision Work .. 79

SECTION 7. VIDEO IMAGE CONTOURING. PAGE 82.

7.0 Introduction to Image Analysis .. 82
7.1 CRE - An Image Processing System ... 84
7.2 Thresholding ... 86
7.3 Contouring ... 88
7.4 Polygon Nesting .. 89
7.5 Contour Segmentation .. 92
7.6 Related and Future Image Analysis ... 94

SECTION 8. IMAGE COMPARING. PAGE 95.

8.0 Introduction to Image Comparing .. 95
8.1 A Polygon Matching Method ... 97
8.2 Geometric Normalization of Polygons ... 98
8.3 Compare by Recursive Windowing .. 1 00
8.4 Related Work and Work Yet To Be Done .. .100

SECTION 9. CAMERA AND FEATURE LOCUS SOLVING. PAGE 101.

9.0 Introduction to Locus Solving ... 101
9.1 Parallax and the Camera Model .. 1 02
9.2 Camera Locus Solving: One View of Three Points .. 104
9.3 Object Locus Solving: Silhouette Cone Intersection ... l09
9.4 Sun Locus Solving: A Simple Solar Ephemeris ... 1 14
9.5 Related and Future Locus Solving Work .. 115

SECTION 10. RESULTS AND CONCLUSIONS. PAGE 116.

10.1 Results: Accomplishments and Original Contributionsl16
10.2 Critique: Errors and Ommissions .. 118
10.3 Suggestions for Future Work .. 119
10.4 Conclusion .. 122

SECTION 11. ADDENDA. PAGE 124.

11.1 Referer:tces .. 124
11.2 GEOMED Node Formats .. 131

• ii •

SECTION O.

SECTION I.

SECTION 2.

SECTION 3.

SECTION 4.

SECTION 5.

SECTION 6.

SECTION 7.

SECTION 8.

SECTION 9.

SECTION 10.

LIST OF BOXES.

INTRODUCTION

GEOMETRIC MODELING THEORV
1.1 Ten Kinds of Geometric Models .. 7
1.2 Desirable Propertios for a Geometric Model.. ... II
1.3 Properties of Polyhedra ... 12

THE WINGED EDGE POLVHEDRON REPRESENTATION.
2.1 Winp,ed Edge Structures and Links ... 17
2.2 Lowest Level Winged Edge Routines .. 21

A GEOMETRIC MODELING SYSTEM.
3.1
3.2

33
3.4
3.5
3.6

The Euler Primitives .. , " .. , .. 31
Routines Using the Euler Primitives .. , , 34
Euclidean T ransformations , , ... , , .. , , 38
Tram Routines , ... , , , , .. , , , 39
Mt't ric Rout int's... , , , , , , , , .. , , "' 42
Simple Space Routines , , , .. , , ... , 42

HIDDEN LINE ELIMINATION FOR COMPUTER VISION,
4.1 Five Hidden Line Elimination Techniquet .. , , , , , ,48
4.2 Status Bits for Occult Marking , , , , , .. : , , , , .. 49
4.3 Normalized Face and Edge Coefficients , , , .. , , .. , , .. 50
4.4 Edge-Edp,e Compare Steps , .. , , , , , , 53
4.5 Recursive Windowing routines ... , , , 56

A POL VHEORON INTERSECTION ALGORITHM.

COMPUTER VISION THEORV.
6.1 Vision System Hierarchy ... , , .. , , , .. , .. , .. , , 69
6.2 Three Basic Modes of Vision , .. , , , , .. , , , .. , , 69
6.3 Basic Feedback Vision System Oe8ign , .. , , , .. , , , .. 70
6.4 Processors of a 3-D Vision Sy.tem , ... , .. , , , 71
6.5 Six Examples of Computer Vision Tasks , , ... , 72
6.6 Alternatives to 3-0 Geometric Modeling , .. , 75
6.7 Cart Vision Mandala .. , " , , , .. , .. , ... , .. ,77
6.8 A Possible Cart Task Solution, .. , .. , , , , .. , ... 78

VIDEO IMAGE CONTOURING.
7.1 CRE Desip,n Choices ... , .. 84
7.2 CRE Data T ransformations .. 86

IMAGE COMPARING

CAMERA AND FEATURE LOCUS SOLVING.

RESUL TS AND CONCLUSIONS.
10.1 Accomplishments and Original Contributions , , , , , 116
10.2 Suggestions for Future Work , .. , .. , , , ... 119

- iii -

Page Intentionally Left Blank

LIST OF FIGURES.

SECTION O. INTRODUCTION
0.1 Horse Shaped Polyhedra Derived from Video Imag .. 2
0.2 Model of Water Pump ... 3
0.3 Example of Predicted Video and Perceived Video .. 4
0.4 Example of Predicted and Perceived Contour Imag .. 5

SECTION I. GEOMETRIC MODELING THEORY.

SECTION 2. THE WINGED EDGE POLYHEDRON REPRESENTATION.
2.1 Winp,ed Edp,e Topology .. 16
2.2 Three Kinds of Perimeters ... 20
2.3 ESPLIT and KLEV ... 24
2.4 MKFE and KLFE ... 25

SECTION 3. A GEOMETRIC MODELING SYSTEM.
3.1 The 24 Displays of Example .1 ... 28
3.2. The 24 Displays of Example .2 ... 29
3.3 Five Kinds of Non-Solid Polyhedra ... 32
3.4 Examples of MKCUBE, MKCYLN and MKBALL. ... 34
3.5 Creation of a Solid of Rotation by Sweeping a Wir ... 35
3.6 Sweep and Glue ... 35
3.7 Icosahedron by Prisrnoid sweep and pyramid .we.p .. 36
3.8 Three Cut Torus Dissection into Thirteen Parts ... 36

SECTION 4. HIDDEN LINE ElIMINATION FOR COMPUTER VISION.
4.1 Example of Hidden Line Elimination ... 47
4.2 Front Faces and Folded Edp,es .. 50
4.3 Front Faces and Folds of. Conclve Corner .. 51
4.4 T ·Joint Diar.ram ... 52
4.5 EE and FV Undetected Hidden Objecl Cases .. 55
4.6 Example of Video Synthesis .. 58

SECTION 5. A POLYHEDRON INTERSECTION ALGORITHM.
5.1 Polyhedron Intersection, Union and Subtraction ... 61
5.2 F ace Piercing Geometry .. 62
5.3 Surface Edges and Interior Edr.es of Interseclion .. 63
5.4 Fetch OlhN Piercing Vertex of a F ate .. 64
5.5 Example of a Face Hole Fixup .. 65
5.6 Examples of Face Convexity Coercion ... 66

SECTION 6. COMPUTER VISION THEORY.

SECTION 7. VIDEO IMAGE CONTOURING.
7.1 Video Image and Contour Image .. 87
7.2 Saw Tooth Dekinkinp, Illustrated .. 90
7.3 Conlour Segmenlation , .. 93

SECTION 8. IMAGE COMPARING.
8.1 Example of PolYP'on Fusion Compare .. 96
8.2 Example of Vertox Matching ... 98

SECTION 9. CAMERA AND FEATURE LOCUS SOLVING.
9.1 The Iron Triangle and Tripod ... 104
9.2 Five Iron Trianle Diagrams .. 105
9.3 Four Views of a Baby 0011. .. " 110
9.4 Four Turntable Silhouette Cones " ... 1 I I
9.5 Result. of Silhouette Cone Inter8eclion , ... 1 12
9.6 High Horse Silhouette Cone Intersection ... 113

SECTION 10. RESUL TS AND CONCLUSIONS.

- iv -

Page Intentionally Left Blank

ACKNOWLEDGEMENTS.

The following people personally contributed to this work:

Thesis Adviser: John McCarthy
Readers: Donald E. Knuth, Alan C. Kay, Ken Colby.

Jerry Agin, Leona Baumgart, Tom Binford, Jack Buchanan, Whitfield Diffie, Les Earnest,
Jerome Feldman, Tom Gafford, Sieve Gibson, Ralph Gorin, Carl Hewitt, Jack Holloway, Tovar Mock,

Andy Moorer, Hans Moravec, Richard Orban, Ted Panofsky, Lou Paul, Phil Petit, Dave Poole,
Lynn Quam, Jeff Raskin, Ron Rivest, Rod Schmidt, Clem Smith, Irwin Sobel, Robert Sproull,

Dan Swinehart, Russell Taylor, Marty Tenenbaum, Larry Tesler, Arthur Thomas, Fred Wright.

TYPOGRAPHY

The orginal copy of this document was produced on a Xerox Graphics Printer with a resolution of
two hundred points per inch. The principal font is News Gothic Boldface, 25 units high, which
originated at Carnegie Mellon University. The page layout, text justification, boxes, halftones and line
drawings were done using the author's documenl-formating program, XIP. .The source files were
prepared using the text editor, E, created by Dan Swinehart and Fred Wright.

- v •

Page Intentionally Left Blank

INTRODUCTION.

SECTION O.

INTRODUCTION.

"For the pllrpo~e of pre~cnting my argument I must first explain the hasic premise of sorcery as
don Juan pref;entcd it to me. He ~aid that for a sorcerer, the world of everyday life is not real, or out
there, as we believe it is. For a sorcerer, reality or the world we all know, is only a description. For
the ~akc of validating this premise don Juan concentrated the hest of his efforts into leading me to a
genuine conviction that what I hcld in mind as the world at hand was merely a ~escription of the world;
a dc!;cription that had heen pounded into me from the moment J was horn."

- Carlos Castaneda. Journey to Ixtlan.

This thesis is about computer techniques for handling 3-D geometric descriptions of the world;

the world that can be visually perceived with a television camera. The overall design idea may be

characterized as an inverse computer graphics approach to computer vision. In computer graphics, the

world is represented in sufficient detail so that the image forming process can be numerically simulated

to generate synthetic television images; in the inverse, perceived television pictures (from a real TV

camera) are analysed to compute detailed geometric models. For example, the polyhedra in Figure 0.1

on page two were computed from views of a plastic horse on a turntable. It is hoped, that visually

acquired 3-D geometric models can be of use to other robotic processes such as manipulation,

navigation or recognition.

- 1 -

INTRODUCTION.

FIGURE 0.1 - HORSE SHAPED POLYHEDRA DERIVED FROM VIDEO IMAGES.

- 2 -

Once acquired, a 3-D model can be used to

anticipate the appearance of an object in a scene,

making feasible a quantitative form of visual feedback.

For example, the appearance of the two machine parts

depicted in Figure 0.2 can be computed and analyzed

(top halves of Figures 0.3 and 0.4) and compared with

an anaylsis of an actual video image of the parts

(bottom halves of Figures 0.3 and 0.4). By comparing

the predicted image with a perceived image, the

correspondence between features of the internal model

and features of the external reality can be established

and a corrected location of the parts and the camera

can be measured.

FIGURE 0.2

INTRODUCTION.

Finally by way of introduction, I wish to emphasive that the kind of vision being attempted is

metric rather than linguistic and that the results achieved to date are modest. Feature classification

and recognition in terms of English words is not being attempted, rather a system of prediction and

correction between a 3-D world model and a sequence of images is contemplated. The chapters of

this thesis proceed twice from theory through an implementation, with the first five chapters dealing

with modeling and the last five chapters dealing with vision. Theory on geometric modeling is in

Chapter 1 and theory on computer vision in Chapter 6. The implementation consists of two main

programs named GEOMED and CRE. GEOMED is a system of 3-D modeling routines with which

arbitrary polyhedra may be constructed, altered, or viewed in perspective with hidden lines

eliminated; and CRE is a solution to the problem of finding intensity contours in a sequence of

television pictures and of linking corresponding contours between pictures. Auxiliary programs

perform top level task control, comparing and locus solving.

- 3 -

INTRODUCTION.

FIGURE 0.3 - PREDICTED VIDEO t AND PERCEIVED VIDEO J..

- 4 -

INTRODUCTION,

FIGURE 0.4 • PREDICTED IMAGE t AND PERCEIVED IMAGE .1"

·5·

Page Intentionally Left Blank

1.0 Introduction to Geometric Modeling. GEOMETRIC MODELING THEORY.

SECTION 1.

GEOMETRIC MODELING THEORY.

1.0 Introduction to Geometric Modeling.
1.1 Kinds of Geometric Models.

1.2 Polyhedron Definitions and Properties.

1.3 Camera, Light and Image Modeling.

1.4 Related Modeling Work.

1.0 Introduction to Geometric Modeling.

In the specific context of computer vision and graphics, geometric modeling refers to the

construction of computer representations of physical objects, cameras, images and light for the sake of

simUlating their behavior. In Artificial Intelligence, a geometric model is a kind of world model;

ignoring subtleties, geometric world modeling is distinguished from semantic and logical world modeling

in that it is quantitative and numerical rather than qualitative and symbolic. The notion of a world model

requires an external world environment to be modeled, an internal computer environment to hold the

model, and a task-performing entity to use the model. In Geometry, modeling is a synthetic problem,

like a construction with ruler and straight edge; modeling problems require an algorithmic solution

rather than a proof. The word IF'o1tH?lric is an appropriate adjective to this kind of modeling in that it

is a combination of the Greek words "Y!70 (world) and lAu'pla (measuring) which is exactly the activity to

be automated.

- 6 -

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

1.1 Kinds of Geometric Models.

The main problem of geometric modeling is to invent methods for representing arbitrary

physical objects in a computer. For the present discussion, the class of physical objects is restricted to

objects that are solid, rigid, opaque, and macroscopic with a mathematically well behaved surface. Such

objects include: the earth, chairs, roads, and plastic toy horses; other objects, for which models will not

be attempted, include glass, fog, hair, Jello, liquids and cloth. Physical objects can move about in space

with the restriction that two objects can not occupy the same space at the same time. The scope of the

modeling problem can be appreciated by examining the models listed in Box 1.1.

BOX 1.1 TEN KINDS OF GEOMETRIC MODELS.

Space Oriented:
1. 3-D Space Array.

2. Recursive Cells.
3. 3-D Density Function.

4. 2-D Surface Functions.

5. Parametric Surface Functions.

Object Oriented:

6. Manifolds.

7. Polyhedra.

8. Volume Elements.

9. Cross Sections.

10. Skeletons.

For a naive start, first consider a 3-D array in which each element indicates the presence or

absence of solid matter in a cube of space. Such a 3-D space array has the very desirable properties

of spatial addrcuing and spatial tLniqtLcll(!ss in their most direct and natural form. Spatial addressing

refers to finding out what the model contains within a distance R of a locus X,Y,Z; spatial uniqueness

refers to the property that physical solids can not occupy the same space simUltaneously. A first

drawback of the space array idea is illustrated by the apparently legal FORTRAN statement:

DIMENS ION SPACE (100000,100000,100000)

The problem with such a dimension statement is that nO present day computer memory is large enough

to contain a 10 15 element array. Smaller space arrays can be useful but necessarily can not model

large volumes with high resolution. A further drawback of space arrays is that objects and surfaces

are not readily accessible as entities; that is a space array lacks the property of object cohercnce. In

computer graphics, the term co/wrllt denotes both the quality of holding together as parts of the same

mass and the quality of not changing too drastically from one point to the next. The meaning of

cohercnt approachs the mathematical notion of topologically connected and locally continuous. The word

is used to refer to the frame coherence of a film as well as to the object coherence of a model.

- 7 -

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

The space array idea can be salvaged by grouping blocks of elements with the same value

together; the addressing process becomes more complicated but the overall memory required is

reduced and the two desired properties can be maintained. One way of doing this (which has been

discovered in several applications) is r(lclLr.~iv(! c(![[Sj the whole space is considered to be a cell; if the

space is not homogeneous then the first cell is divided into two (or four or eight) sub cells and the

criterion is applied again. This technique allows the spatial sorting of objects when the object models

can be subdivided at each recursion without losing their properties as objects.

Another salvageable naive modeling idea is that arbitrary objects can be expressed as algebraic

functions. In physics, physical objects are frequently referred to as three dimensional density functions

W=p(X,Y,Z). Unfortunately such density functions can not be written out for objects such as a typing

chair or a plastic horse without resorting to a programming language or an extensive table (which is

equivalent to the space array model). Objects that are essentially 2-D can be approximated by a

surface function Z = F(X,Y). For example landscape may be represented by geodetic maps in such a

2-D fashion.

By definition, a function is single valued; consequently the description of even modestly

complicated objects cannot be expressed by giving one coordinate, e.g. Z, as a function of the other

two, e.g. X and Y. It is necessary either to adopt parametric functions or to subdivide the object into

portions that can be described by simple functions of Cartesian variables. The former course involves

establishing a system of surface coordinates (U,V), latitudes and longitudes, on the object in which

functions for the X,Y,Z locus of the object's surface are expressed. The advantage of parametric

functions is that extended arbitrary curve surfaces can be expressed; some of the disadvantages are

that parametric curves may be self intersecting, they are not easy to modified locally, and the functions

become impractical before the shapes of mundane artifacts can be achieved. Consequently parametric

representations are combined with object subdivision, which is called .~(!gm(!fJtatioll. The process of

usefully segmenting an object without destroying its coherence is a major problem requiring the

combination of spatial, functional and objective representations.

- 8 -

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

In passing from space oriented models to object oriented models, I wish to note that

sophisticated representation of time is beyond the scope of this work. Although an advanced problem

solving robot will need to run world simulations along multiple time paths, the discussion will

concentrate on representing the geometry of the world at a single moment in time.

After existence in space and time, another general property of physical objects is that they can

be enclosed by an unbroken two dimensional surface with an unambiguous inside and outside; which

touchs upon the mathematical topic (celebrated in song by Tom Lehrer) of the algebraic topology of

locally Euclidean transitions of infinitely differentiable oriented Riemann manifolds. A manifold is the

mathematical abstraction of a surface; a Rit!lnallll manifold has a metric function; an oriented manifold

has a unambiguous inside and an outside; the phrase illfillitt!ly differelltiable Can be taken to mean

that the surface is smooth; and the phrase locally Euciidt!tlll trtlluitions refers to the process of

segmenting the object into portions that can be approximated by relatively simple functions. In

particular, the 2-D Riemann submanifold embedded in 3-D Euclidean space is the mathematical object

that comes closest to representing the shape and extent of the surface of a physical object; such

manifolds are conveniently approached through the topology of surfaces which in turn is

computationally approached by means of polyhedra.

One way to describe the topology of a 2-D Riemann submanifold embedded in a 3-D Euclidean

space is in terms of three kinds of simplex: the O-Simplex (or vertex), the I-Simplex (or edge), and

the 2-Simplex (or triangle). In topological analysis 2-D Riemann submanifolds may be divided into

faces, edges and vertices such that Euler's equation F-E.V=2-2*H is satisfied (where F is the number

of faces, E is the number of edges, V is the number of vertices and H is the genus or number of

handles of the manifold); and such that the s'Urfa~e of the manifold can be approximated by local

functions over each face which are Euclidean and which fit together smoothly at all the edges. By

introducing a sufficient (but finite) number of triangles the manifold Can be approximated to within any

epsilon by constant functions, yielding the geometric object called the polyhedron.

One advantage of a polyhedral model is its connected surface topology of faces, edges and

vertices. Such a surface can be subdivided without losing its coherence or the coherence of the object.

- 9 -

1.1 Kinds of GeoMetric Models. GEOMETRIC MODELING THEORY.

The disadvantages of polyhedra include the lack of spatial uniqueness and spatial addressing which

necessitates cOMputation to be done to detect and prevent spatial conflict and to find the portions of an

entity occupying a given voluMe. Another feature of polyhedra (which can be an advantage or

disadvantage) is that all the (Gau.~.~ian) curvature happens suddenly at the vertices; however by

associating higher order approxiMation functions with each face the Model of a continuous 2-D Manifold

can be made which is a more conventional curved object representation. Nevertheless, polyhedra are

intrinsically a general curved object representation.

Returning to the survey, arbitrary objects can also be described by listing a set of cross

sections taken at a sufficient nUMber of cutting planes; this is how the shape of a ship's hull or an

airplane's wing is specified. Cross sections have the interesting feature of good space Modeling on one

axis. Forsaking arbitrary shaped objects, large classes of things can be described in terms of a small

set of basic volume elements. For exaMple, Roberts (63)* and others have built models of familiar

objects using only rectangular and triangular right priSMS. Arbitrary solid polyhedra can be

constructed out of tetrahedra (the 3-siMplex); however no significant general modeling system exists

using this potentially interesting approach.

Skeletal models are based on abstracting an object into a stick figure and by associating a

diameter or set of cross sections with the sticks. In particular, spine cross section models have been

pursued at Stanford by Agin (72) and Nevatia (74). Spine cross section models have the advantage of

being able to express many objects in a concise forM suitable for recognition, but they canttot be used

directly for arbitrary shapes.

Finally, it is often useful to represent physical objects by weak geOMetric Models such as by

sets of spheres or by sets of unconnected surface pOints. It is interesting to note that the reality that

the robot in Winograd's thesis (Winograd 71) could talk about, was a blocks world based on a geometric

model consisting only of points, size of block, and a two page LISP subroutine naMed FINDSPACE.

* Parenthesized naMes and nUMerals are references listed in Section 11.1

- 10 -

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

Beyond the particular kinds of geometric models, four general purpose modeling techniques

deserve special mention and isolation: prototype instance structure, parts tree strutture, resolution

limited strutture, and procedure generated structure. Superficially, the prototype instance strutture is

a memory efficiency technique based on storing generalizations (prototypes) which can be bound to

specific cases (instances) as the occasion demands. Parts tree structure is a memory management

technique of organizing the whole universe of discourse as a tree data structure, where objetts are

composed of subobjects. Resolution limited structure is a memory accessing technique, where

depending on a specified scale of interest different models are retrieved or even generated. Finally,

procedure generated strutture concerns the trade-off between storing and recomputing a model;

namely recomputing the details of a model as they are needed is a good idea for extending

computational resources.

The danger to be avoided is to mistake the general modeling techniques for the geometric model

itself. Given a modeling regime it can be improved by prototyping, parts-treeing, resolution-limiting

and procedural-generating; without a good basic geometric model the general techniques amplify the

background noise.

BOX 1.2 DESIRABLE PROPERTIES FOR A GEOMETRIC MODEL.

1. Spatial addressing. 6. Large extent with high resolution.
2. Spatial uniqueness. 7. Easy modifiablity.
3. Object coherence. 8. Suitability for physical simulation.
4. Surface coherence. 9. Efficiency of memory and computation use,
5. Shape generality. 10. Suitability for automatic model acquisition.

To the best of my knowledge, this survey is complete. As of this year, 1974, there are no

other significantly different kinds of simple geometric models. The desirable properties that have

turned up in this survey are listed in Box 1.2. The final desirable property is that there be some hope

that the computer can derive the model by measurements it can make itself, although it is quite likely

that one model will be best for input and another model will be best for simulation.

- 11 -

1.2 Polyhedron Definitions and Properties. GEOMETRIC MODELING THEORY.

1.2 Polyhedron Definitions and Properties.

In cOMputational Modeling, definitions are not used forMally, but are rather eMployed pieceMeal

in terMs of individual properties which Mayor May not be present as polyhedra are generated and

processed. In particular, the properties listed in Box 1.3 (given in order of relevance) can be taken as

a working definition of a polyhedron for Modeling a physical object.

BOX 1.3 PROPERTIES OF POLYHEDRA.

1. Eulerian .. Satisfies the Euler equation: F-E+V=2-2*H.

2. Surface HOMogeneity The polyhedron does not intersect itself.

3. Trivalence .. AII vertices and faces have three or More edges.

4. Face Planarity .. AII vertices of a face are coplanar.

5. Solidity .. The voluMe Measure is nonzero, finite and positive.

6. SiMply Connected Faces Face periMeters have one loop of edges.

7. Face Convexity .. All the faces are convex.

8. Edge Aplanarity Faces which share an edge are not coplanar.

Topologically, the surface eleMents of a polyhedron forM a graph that satisfies Euler's

F-E+V=2-2*H equation; where as before F, E and V are the nUMber of faces, edges and vertices of the

polyhedron; and where H is the nUMber of holes in (or genus of) the polyhedron. However, not all

Eulerian graphs of faces, edges and vertices correspond to the usual notion of a solid polyhedron

without the surface hOMogeneity and trivalence restrictions. Surface hOMogeneity is the property that

for any point on the polyhedron a SMail enough sphere will cut frOM the surface a region

hOMeoMorphic to a disk; this restriction iMplies that the surface cannot intersect itself and that an edge

can belong to only two different faces. The trivalence restriction insures that there are no degenerate

two edged faces or one edged vertices; although a two edged vertex has a reasonable interpretation it

is excluded by trivalence for the sake of face-vertex duality and canonical forM. The last property, of

aplanarity of faces with a COMMon edge, is also for the sake of canonical forM and is sacrificed to face

convexity when necessary.

GeoMetrically, the faces of a polyhedron are planar, that is lie in a plane. It is also frequently

relevant to further restrict the faces of a polyhedron to be convex, that is to require that every

possible line segMent between points of a face is contained within the face. To assure solidity, the

volUMe measure must be restricted to be finite and positive; this restriction orients the surface to have

• 12 •

1.3 Camera, Light and Image Modeling. GEOMETRIC MODELING THEORY.

an exterior and an interior in the expected fashion. This restriction excludes non-orientable structures

such as Mobius bands and Klein bottles for which the volume measure is undefined; however the

restriction will be relaxed in Chapter 5 in order to exploit the concept of negative volumes.

The working definition was derived from more formal definitions such the following which defines

a polyhedron as a special kind of a two dimensional manifold:

"A polyhedron is a connected, unbounded two-dimensional manifold formed by a finite
set of non-re-entrant, simply·connected plane polygons."

- Coxeter, Regular Polytopes (Coxeter 1963).

In a cOIlIlr.cud manifold there exists a path between any two points that does not leave the manifold.

An ILllholLlldr.d manifold is one with no cuts or gaps in its surface, that is no boundaries. A polyhedral

manifold is composed of planar, simply-connected, non-re-entrant polygons; t~at is flat polygons with a

perimeter of edges that form one loop that doesn't intersect itself. The polyhedron restrictions and

properties are directed towards modeling physical objects and are maintained by computational

mechanisms; consequently the word polyhr.droll comes to represent an intent, rather than tbe

fulfillment of any particular set of defining properties.

1.3 Camera, Light and Image Modeling.

Common to both computer graphics and vision is the necessity to model cameras, light and

images so that pictures may be synthgsized or analyzed. The basic camera model has eight degrees of

freedom, three in location, three in orientation and two in projection:

Location: CX, CY, CZ
Orientation: WX, WY, WZ
Projection: AR, FR

Vector to camera lens center.
Orientation vector.

Aspect Ratio and Focal Ratio.

The orientation vector is explained in Sectron 3.3, the perspective projection is defined in Section 3.4,

and the derivation of the camera parameters is the main topic: of Chapter 9. In modeling light and

physical objects, the most important and difficult property to simUlate is opacity. Techniques for

modeling opaque objects are presented in Chapter 4.

- 13 -

1.4 Related Modeling Work. GEOMETRIC MODELING THEORY.

Finally, an image is a 2-D geometric object representing the content of a rectangle from the

pattern of light of light formed by a thin lens on a television vidicon. The video image is the interface

to the external reality. Image modeling is analogous to 3-D geometric modeling, since the same

tradeoffs between spatial structure and object structure arise. A 2-D image may be represented as a

video raster, which is a 2-D space array; Or as a set of feature loci, which is an object oriented

description. Image structures and processors for generating and comparing image representations are

discussed in Chapters 7 and 8. Together camera, light and image modeling are the essential elements

required to apply a geometric modol to computer vision.

1.4 Related Modeling Work.

Although geometric modeling per se has a long history and a rich literature in mathema~ics,

physics and engineering, very little such modeling has been done using a computer at the level of

detail required for visual perception. This level falls between the generality typical in physics and

mathematics and the specificity typical of engineering. Computer science research in geometric

modeling has already been cited in Section 1.2; similar ideas are available from computer graphics

sources (Newman and Sproull 73). In computer graphics, the typical modeling paper invariably has a

long discussion about the implementation of a node/link modeling language (CORAL, LEAP, ASP, and

others) and very little discussion on how the actual geometric modeling is to be done in the given

language. In mathematics, I have found the work of the Canadian geometer Coxeter, (Coxeter 61) and

(Coxeter 63) to be my best source of ideas relevant to modeling; along with the observations from

recreational mathematicians (Gardner 59), (Gardner 61) and (Stewart 70); and geometry textbook

authors (Eves 65), (Snyder 14) and (Grauslein 35). The translation of Hilbert's book (Hilbert 52)

presenting Geometry for the non-mathematician is also a good source of ideas. From Physics, material

on classical mechanics is useful in modeling rotation and inertia tensors (Goldstein 50), (Feynman et al

63) and (Symon 53). In engineering, books on geodetic surveying, mechanical drawing and

architectural drawing contain ideas relevant to modeling particular classes of objects; I have selected

(Luzadder 71) and (Muller 67) almost at randol'll, as introductions to enginoering and architectural

drawing, respectively.

- 14 -

Page Intentionally Left Blank

2.0 Introduction to the Winged Edge. WINGED EDGE.

SECTION 2.

THE WINGED EDGE POLYHEDRON REPRESENTATION.

2.0 Introduction to the Winged Edge.

2.1 Winged Edge Link Fields.

2.2 Sequential Accessing.

2.3 Perimeter Accessing.

2.4 Basic Polyhedron Synthesis.

2.5 Edge and Face Splitting.

2.6 Coordinate Free Polyhedron Representation.

2.0 Introduction to the Winged Edge.

In this chapter, a particular computer representation for polyhedra is presented and some of its

virtues and faults are explained. The representation is implemented as a data structure composed of

small blocks of words containing pointers and data in the fashion usual to graphics and simulation. An

introduction to such data structures can be found in Chapter 2 of Knuth's Art of Computer Programming

(Knuth 68). Quickly reviewing Knuth's terminology, a node is a group of consecutive words of memory,

a field is a named portion of a node and a link is the machine address of a node. The notation for

referring to a field of a node consists simply of the field name followed by a link expression enclosed

in parentheses. For example, the two faces of an edge node whose link is stored in the variable named

"edge", are found in the fields named NFACE and PFACE, and are referred to as NFACE(edge) and

PF ACE (edge). Although my latest language of implementation is PDP-IO machine code, examples in

this chapter will be given in a fictional programming language which combines ALGOL with Knuthian

node/link notation. (As an exercise, the energetic reader should write out a possible representation

for general polyhedra, before reading any further.)

- 15 -

FIGURE 2.1 - Winged Edge Topology.

NF ACE(edge) edge PFACE(edge)

FIGURE 2.1 - Winged Edge Topology.

The orientation of links is as viewed from the exterior side of the surface.

The eight mnemonics in the figure, were derived as follows:

NFACE(edge) Negative Face of edge.

PFACE(edge) Positive Face of edge.
PVT(edge) Positive Vertex of edge.

NVT(edge) Negative Vertex of edge.

NCW(edge) edge in Negative face Clockwise from edge.

PCW(edge) edge in Positive face Clockwise from edge.

NCCW(edge) edge in Negative face Counter Clockwise from edge.

PCCW(edge) edge in Positive face Counter Clockwise from edge .

• 16 •

WINGED EDGE.

2.1 Winged Edge Link Fields. WINGED EDGE.

2.1 Winged Edge Link Fields.

A polyhedron in made up of four kinds of nodes: bodies, faces, edges and vertices. The body

node is the head of three rings: a ring of faces, a ring of edges and a ring of vertices. In this context,

a ring is a doubly linked circular list with a head node. Each face and each vertex points directly at

only one of the edges on its perimeter. Each edge points at its two faces and its two vertices.

Completing the topology, each edge node contains a link to each of its four immediate neighboring

edges clockwise and counter clockwise about its face perimeters as seen from the exterior side of the

surface of the polyhedron. These last four links are the wings of the edge, which provide the basis for

efficient face perimeter and vertex perimeter accessing. Finally, the links of the edge nodes can be

consistently oriented with respect to the surface of the polyhedron so that the surface always has two

sides: the inside and the outside.

BOX 2.1 WINGED EDGE STRUCTURES AND LINK NAMES.

Data Structures Link Names

1. Face Ring of a Body. NFACE PFACE

2. Edge Ring of a Body. NED PED

3. Vertex Ring of a Body. NVT PVT

4. First Edge of a Vertex. PEO

5. First Edge of a Face. PEO

6. The two faces of an edge: NFACE PFACE

7. The two vertices of an edge: NVT PVT

8. The four wing edges of an edge: NCW PCW NCCW PCCW

Observe that there are twenty-two link fields in the basic representation: bodies contain six

links, faces three links, vertices three links and edges ten links. If we allow a link name such as PED to

serve different roles depending on whether it applies to a body, face, edge or vertex; then the

minimum number of different link field names that need to be coined is ten. The data structures and

the link fields comprising the structures are listed in Box 2.1. The ten link names include: NF ACE and

PFACE for two fields that contain face links in edges and the face ring, NED and PED for two fields that

contain edge links, NVT and PVT for two fields that contain vertex links, and NCW, PCW, NCCW and

PCCW fOr the four fields that contain edge links and are called the wings.

- 17 -

2.1 Winged Edge Link Fields. WINGED EDGE.

By constraining the arrangement of links in an edge node both the surface orientation (interior

and exterior) and a linear orientation of the edge as a directed vector can be encoded. Figure 2.1

diagrams the arrangement of the links comprising the topology of an edge of a polyhedron as viewed

from the exterior side of its surface. Although the vertices in Figure 2.1 are shown with only three

edges, vertices may have any number of edges; the other potential edges would not be directly linked

to the middle edge of the figure and so were not shown.

To complete the representation, space is allocated to contain the 3-D coordinates of each vertex

in fields named XWC, VWC and ZWC; the initials "we" stand for World Coordillat(l.~. For the sake of

vision and display, three more words are allocated to hold the p(lr~pective Projected coordinates of

each vertex in fields named XPP, YPP and ZPP. Also a word of thirty six status bits is carried in every

node: permanent status bits specify the type (body, face, edge, vertex, etc.) of every node, temporary

bits provide space for operations such as hidden line elimination that require marking. Passing now

from necessities to conveniences, faces carry exterior pointing normal vectors and several words of

photometric surface characteristics. The face vectors are derived from surface topology and vertex

loci, and so they are not basic geometric data as in some representations. Bodies carry a print name,

as well as four link fields (DAD, SON, BRO, SIS) for implementing a parts tree data structure; and two

link fields (CW and CCW) for a body ring of all the bodies in the world model. Node formats are given

in Section 11.2 for an implementation based on fixed sized (twelve word) nodes.

The Winged Edge Polyhedron Representation as just presented is complete. Edge nodes carry

most of the topology, vertex nodes carry the geometry, face nodes carry the photometry and body

nodes carry the linguistics (nomenclature) and parts tree structure. The point that remains to be

demonstrated, is that the appropriate subroutines for creating, maintaining and exploiting edge

orientation execute efficiently and provide good primitives for solving such geometric problems as

hidden line elimination and polyhedral intersection.

- 18 -

2.3 Perimeter Accessing. WINGED EDGE.

2.2 Sequential Accessing.

An immediate consequence of the ring structures is that the faces, edges and vertices of a body

are sequentially accessible in the manner illustrated by the following lines of code:

COMMENT RPPLY A FUNCTION TO RLL THE FRCES, EDGES RND VERTICES OF A BODY;
PROCEDURE APPLY (PROCEDURE FN; INTEGER Bl;
BEGIN

END;

INTEGER F,E,V;
F .. B; WHILE B.(F .. PFIlCE(Fll DO rN(t);
E .. B; ~JHILE B~(E+-PED(E» DO FN(E);
V .. B; WHILE B~(V .. PVT(Vll DO FN(Vl;

COMMENT APPLY FUNCTION TO FACES OF A BODY;
COMMENT APPLY FUNCTION TO EDGES OF R BODY;
COMMENT APPLY FUNCTION TO VERTICES OF A BODY;

The rings could of course have been traversed in the other direction by invoking NVT, NED and NFACE

in place of PVT, PED and PFACE. The reason for doubly linked lists (i.e. rings) is rapid deletion.

Finally, observe that the face and vertex rirtgs could be eliminated at tlie cost of having a more

complicated face/vertex sequential accessing method requiring a visitation marking bit in the status

word of face and vertex nodes. The idea might be coded as follows:

COMMENT RPPLY R FUNCTION TO RLL THE FRCES OF R BODY WITHOUT USING THE FRCE RINGS;
PROCEDURE RPPLY (PROCEDURE FN; INTEGER Bl;
BEGIN

END;

INTEGER F,E,M;
E .. B;
M .. MRRK(PFACE(Ell;
DO FOR F .. PFACE(El,NFACE(El DO
BEGIN

END;

IF M=MARK(F) THEN FN(Fl;
MARK (F) .. ~M;

UNTIL B.(E .. PED(Ell;

2.3 Perimeter Accessing.

COMMENT FIRST EDGE OF BODY;
COMMENT READ INITIRL STATE OF MARKING BIT;
COMMENT FOR BOTH FRCES OF ERCH EDGE, .. ;

COMMENT APPLY FUNCTION TO "UN-RE-MARKED" FACE;
COMMENT FLIP THE MARKING BIT;

COMMENT RLl THE EDGES OF THE BODY;

The perimeter of a face is an ordered list of edges and vertices, the perimeter of a vertex is an

ordered list of edges and faces, and the perimeter of an edge is an ordered list consisting of exactly

two faces and two vertices. The perimeter definitions are caricatured in Figure 2.2. One virtue of the

winged edge representation is that both vertex and face perimeters can be traversed in either

direction (clockwise or counter clockwise) while being dynamically maintained in "Olll! rillg",

- 19 -

2.3 Perimeter Accessing. WINGED EDGE.

FIGURE 2.2 - Three Kinds of Perimeters.

E FACE

A Vertex is surrounded
by Edges and Faces

An Edge is surrounded
by Faces and Vertices

A Face is surrounded
by Edges and Vertices

Given one edge of a face (or vertex) perimeter, the next edge clockwise (or counter clockwise)

from the given edge about the particular face (or vertex) can be retrieved from the data structure

with the assistance of two subroutines called ECW and ECCW. The idea of the edge clocking routines is

to match the given face (or vertex) with one of the faces (or vertices) of the given edge and to then

return the appropriate wing. A possible coding of ECCW and ECW might be as follows:

COMMENT FETCH EDGE CC~ FROM E RBOUT FV;
INTEGER PROCEDURE ECC~ (INTEGER E,FV);
BEGIN "ECC~"

IF PFRCE(E)=FV THEN RETURN(PCC~(E»;
IF NFRCE(E)=FV THEN RETURN(NCC~(E»;
IF PVT(E)=FV THEN RETURN(PC~(E»;
IF NVT(E)=FV THEN RETURN(NC~(E»1
FRTRL;

END "ECC~";

COMMENT FETCH EDGE CLOCK~ISE FROM E RBOUT FV;
INTEGER PROCEDURE EC~ (INTEGER E,FV);
BEGIN "WJ"

IF PFRCE(E)=FV THEN RETURN(PC~(E»;
IF NFRCE(E)=FV THEN RETURN(NC~(E»;
IF PVT(E)=FV THEN RETURN(NCC~(E»;
IF NVT(E)=FV THEN RETURN(PCC~(E»;
FATAL;

END "ECII" I

The first edge of a face or vertex is (of course) immediately available from the PED field of the face or

vertex. For example, the two procedures below can be used to visit all the edges of a face or all the

edges of a vertex, respectively.

COMMENT RPPLY FUNCTION TO EDGES OF R FACE;
PROCEDURE RPPLY (PROCEDURE FN; INTEGER F);
BEGIN

END;

INTEGER E,EO;
E .. EO .. PEO(F);
DO FN(E) UNTIL E9=(E .. ECC~(E,F»;

COMMENT APPLY FUNCTION TO EDGES OF A VERTEX;
PROCEDURE APPLY (PROCEDURE FN; INTEGER V);
BEGIN

END;

INTEGER E,EO;
E .. Ee .. PED (V);
DO FN(E) UNTIL E9=(E .. ECC~(E,V»;

Using the same idea as in the edge clocking routines, a face or vertex can be retrieved relative

to a given edge and a given face or vertex. These routines include: FCWand FCCW which return the

- 20 -

2.4 Basic Polyhedron Synthesis. WINGED EDGE'.

face clockwise or counter clockwise from a given edge with respect to a given vertex; VCW and VCCW

which return the vertex clockwise or counter clockwise from a given edge with respect to a given

face; and OTHER which returns the face or vertex of the given edge opposite the given face or vertex.

Together the seven routines: ECW, ECCW, VCW, VCCW, FCW, FCCW and OTHER exhaust the possible

oriented retrievals from an edge node; they also alleviate the need to ever explicitly reference a wing

field when traveling the surface of a polyhedron. With node type checking the primitives can be made

stronger, for example ECCW(vertex,face) is implemented to return the edge counter clockwise from

the given vertex about the given face. With node type checking and signed arguments the seven

perimeter accessing routines could even be replaced by a single routine perhaps named

PERIMETERJETCH or PGET. On the other hand, I favor having the proliferation OT accessil'lg names for

the sake of documenting the clocking direction and the types of nodes involved.

Two remaining surface accessing routines, of minor importance, are BGET(entity) and

LlNKED(entity,entity). BGET of a face, edge or vertex merely cycles the appropriate ring to retrieve

the body of the given entity. The LINKED routine determines whether its two arguments (faces, edges

or vertices) are adjacent; there are six LINKED cases: (i) Face-Face, returns a common edge or

FALSE; (ii) Face-Edge, returns boolean value F=PFACE(E) v F=NF ACE(E); (iii) Edge-Edge, returns a

common vertex or false; (v) Edge-Vertex, returns boolean value V=PVT(E) v V=NVT(E); (vi)

Vertex-Vertex, returns common edge or FALSE. (As in LISP, zero is false and non-zero is true).

2.4 Basic Polyhedron Synthesis.

BOX 2.2

Node Makers:

Node Kith'rs:

Willa MUllau.~:
Surface l<'etcll('r.~:

LOWEST LEVEL WINGED EDGE ROUTINES.

MKNODE, MKB, MKF, MKE, MKV, MKTRAM.

KLNODE, KLB, KLF, KLE, KLV.

WING, INVERT, EVERT.

Parts Tree Routil1(,s:

ECW, ECCW, OTHER, VCW, VCCW, FCW, FCCW, LINKED.

BDET, BATT, 8GET.

There are sixteen routines for node creation and link manipUlation which when combined with the-

nine accessing routines of the previous section form the nucleus of a polyhedron modeling system.

These routines are very low level in that the final applications user of winged polyhedra will never

- 21 -

2.4 Basic Polyhedron Synthesis. WINGED EDGE.

explicitly need to make a node or mung a link. The word mung (meaning to modify an existing

structure by altering links in place) is LISP slang that deserves to be promoted into the technical

jargon; traditionally, a mung routine is one which makes applications of the LISP primitives RPLACA and

RPLACD. The twenty five routines listed in Box 2.2 are the bedrock foundation for the Euler

primitives presented in Chapter 3.

Node Maker.~ and Killer.~. The MKNODE and KLNODE are the raw :;iorage allocation routines

which fetch or return a node from the available free storage. Ths MKB routine creates a body node

with empty face, edge and vertex rings; the body is placed into the body ring of the world model. The

MKF, MKE and MKV each lake one argument and create a new face, edge or vertex node in the ring of

the given entity; with type checking these three primitives could be consolidated. Finally the MKTRAM

node creates a tram /lode, which consists of twelve real numbers that represent either a Euclidean

transformation or a Cartesian frame of reference depending on the context. (Tram nodes are explained

in Section 3.3.) The corresponding kill routines KLB, KLF, KLE and KLV remove the entity from its

respective ring and return its node to free storage.

Wing MUIIgcrs. The WING(edgel,edge2) routine finds which face and vertex the arguments

edgel and edge2 have in common and stores the wing pointers between edgel and edge2 accordingly;

the exact link manipulations are illustrated in the example coding of the WING procedure immediately

following this paragraph. Recalling that edges are directed vectors, the INVERT(E) routine flips the

direction of an edge by swapping the contents of the appropriate fields as follows:

PFACE(E) .. NFACE(E); PVT(E) .. NVT(E); NCW(E) .. NCCW(E) and PCW(E) .. PCCW(E). Finally, the EVERT(B)

routine turns a body inside out, by performing the following link swaps on all the edges of the given
\

body: PFACE(E) .. NF ACE(E); NCW(E) .. PCCW(E); and NCCW(E)++PCW(E).

PROCEDURE WING(INTEGER E1,E2';
BEGIN

END;

IF PVT(E1'=PVT(E2'~PFRCE(El'=NFRCE(E2'THEN BEGIN PC~(E1'~E2;NCCW(E2'~El;END;

IF PVT(El':PVT(E2'~NFRCE(El'=PFRCECE2'THEN BEGIN NCC~CE1'~E2; PC~CE2'~El;END;
IF PVT(El'=NVTCE2'~PFRCE(El'=PFRCE(E2'THEN BEGIN PCW(El'~E2;PCCW(E2'~El;END;

IF PVT(El'=NVTCE2'~NFRCECE1'=NFRCE(E2'THEN BEGIN NCC~(El'~E2; NCW(E2'~El;END;
IF NVT(El':PVT(E2'~PFRCE(El'=PFRCE(E2'THEN BEGIN PCCW(Ell~E2; PC~(E2l~E1;END;
IF NVT(E1l=PVT(E2'ANFRCECEll=NFRCE(E2lTHEN BEGIN NC~CEll~E2;NCC~(E2'~El;END;

IF NVT(El).NVTCE2'APFRCECEll=NFRCECE2lTHEN BEGIN PCC~CE1l~E2; NC~(E2'~EIIENDI
IF NVTCEll=NVT(E2lANFRCE(E1'=PFRCE(E2'THEN BEGIN NC~CE1'~E2;PCC~CE2)~ElIENDI

- 22 -

2.4 Edge and Face Splitting. WINGED EDGE.

ParI Tr('(' RorLli/l(,.~. As mentioned before, body nodes can be grouped into a tree structure or

parts. The parts tree consumes four link positions (DAD, SON, BRO, SIS) and is maintained in body

nodes by the following primitives: BDET(body) detachs a body node from the parts tree,

SA TT(body 1 ,body2) attachs body 1 to the ring of children belonging to body2, and BGET(entity) returns

the body node at the head of the given face, edge or vertex ring. The SON field of a body may contain

a pointer to a headless ring of subpart bodies, the ring of subparts is maintained in the BRO (brother)

and SIS (sister) fields, and each subpart contains a pointer back to its parent in its DAD field. At

present, the notion of a body is coincident with the notion of a connected polyhedron; however by

allowing several bodies to be associated with a single polyhedral surface, a flexible object such as an

animal could be represented.

2.4 Edge and Face Splitting.

One of the most important properties of the winged edge representation is that edges and faces

can be split using subroutines that make only local alterations to the data structure; and the splits can

easily be removed (since the doubly linked rings allow rapid deletion of nodes from a body). The edge

split routine, ESPLlT, makes a new edge and a new vertex and places them into the surface topology as

shown in Figure 2.3; the kill edge-vertex routine, KLEV, undoes an ESPLIT. The face split routine,

MKFE, creates a new edge and a new face and places them into the surface topology as shown in

Figure 2.4; the kill face-edge routine, KLFE, undoes a MKFE.

The rest of this section concerns implementation; it may be skipped by the applications oriented

reader. The split and kill routines are examples of a pattern which applies to the coding of operators

that alter winged edge structures. In a typical situation, there are five steps: first, get the proper

kinds of nodes into the body rings using the MKF, MKE, MKV primitives; second, position the vertices

by setting their XWC, YWC, ZWC fields; third, connect each vertex and face to one of its edges by

setting face/vertex PED fields; fourth, connect each edge to its two faces and its two vertices by

setting the NFACE, PFACE, NVT, PVT fields of the edge; finally, set up the wing perimeter pointers by

applying the WING primitive to the pairs of edges to be mated.

- 23 -

2.4 Edge and Face Splitting. WINGED EDGE.

FIGURE 2.3 - ESPLIT AND KLEV.

BEFORE: VNEW ... ESPLlT(EDGE);
AFTER: EDGE'" KLEV(VNEW);

INTEGER PROCEDURE ESPLIT (INTEGER EDGE);
BEGIN "ESPLIT"

INTEGER VNE~,ENE~;

COMMENT CRERTE R NE~ EDGE RND VERTEX;
VNEW ~ MKVCPVTCEDGE»;
ENEW ~ MKECEDGE);

COMMENT CONNECT VERTICES & FRCES TO EDGES;
PVTCENE~) ~ PVTCEDGE);
NVT (ENElll .. VNElI;
PVTCEOGE) ~ VNElI;
PFRCECENEW) ~ PFRCECEOGE);
NFRCECENEW) ~ NFRCECEDGE);

COMMENT CDNNECT EDGES TO VERTICES;
IF PEDCPVTCEDGE)=EDGE THEN
PEDCPVT(EOGE»~ENEW;

PEDCVNEW)~ENEW;

COMMENT LINK THE WINGS TOGETHER;
NCWCENEW) ~ EDGE; PCCWCENEW) ~ EDGE;
PCWCEDGE) ~ ENEW; PCCWCEDGE) .. ENEW,
WINGCNCCWCEDGE),ENEW),
WINGepCW(EOGE),ENEWI;
RETURN (VNEWI;

END "ESPL IT";

AFTER: VNEW ... ESPLlT(EDGE);
BEFORE: EDGE'" KLEV(VNEW);

INTEGER PROCEDURE KLEV (INTEGER VNEW);
BEGIN "KLEV"

INTEGER EDGE,ENEW,V,F,B,
ENEW .. PEoeVNEWI;
EDGE .. ECcweENEW,VNEW);

COMMENT ORIENT EDGES RS IN DIRGRRM;
IF NVTCENE~) • VNE~ THEN INVERT(ENEW);
IF PVTeEDGE) • VNEW THEN INVERT(EDGE);

COMMENT TIE E TO ITS NEW UPPER VERTEX AND WINGS,
V ~ PVTCEOGE) ~ PVTCENEW),
WINGepC~CENEW),EDGE);

WING(NCCW(ENEW),EDGE);
COMMENT ELIMINRTE OCCURRENCES OF ENEW IN F AND VI

IF PEO(V)=ENEW THEN PEDeV) .. EDGE
IF PEDCPFRCECEDGE»=ENE~ THEN

PED(PFRCE(EOGE» .. EDGE,
IF PEDCNFRCE(EDGE»=ENEW THEN

PEDCNFRCE(EDGE» .. EDGE;
COMMENT REMOVE NODES FROM RINGS RND RETURN EDGE,

KLV(VNEIH,
KLE(ENEW),
RETURN (EDGE) I

END "KLEV";

The actual routines differ slightly from those given above in that they do argument type

checking and data structure checking; nevertheless, a diagnostic trace of the implemented version

reveals that the ESPLIT routine executes an average of 170 PDP-I0 instructions and the KLEV routine

executes an average of 200 instructions.

- 24 -

2.4 Edge and Face Splitting. WINGED EDGE.

FIGURE 2.4 - MKFE AND KLFE.

BEFORE: ENEW .. MKFE(V I,F ACE,V2);
AFTER: FACE" KLFE(ENEW);

INTEGER PROCEDURE MKFECINTEGER Vl,FACE,V2);
BEGIN "MKFE"

INTEGER VI,V2,FNEW,ENEW,E,EO,B,V;
COMMENT CREATE NEW FACE & EDGE;

FNEW ~ MKF(FACE); ENEW ~ MKECPEoCFACE»;
COMMENT LINK NEW EDGES TO ITS FACES & VERTICES;

PEO CF) ~ PEO CFNEW) ~ ENnl;
PFACECENEW) ~ F; NFACECENEW) ~ FNEW;
PVTCENEW) ~ VI; NVTCENEW) ~ V2;

COMMENT GET THE WINGS OF THE NEW EDGE;
E2 ~ PEo (Vi) ;
DO E2~ECW(CEl~E2),Vl) UNTIL FCWCEl,Vl)=FACE;
E4 .. PEo(VI);
DO E4~ECWCCE3~(4),V2) UNTIL FCWCE3,V2)=FACE;

COMMENT SCAN CCW FROM VI REPLACING F'S WITH FNEW;
E ~ E2;
DO IF PFACECE)=FACE THEN PFACECE)~FNEW

ELSE NFACECE)~FNEW;

UNTIL E4 = CE~ECCWCE,FNEW»;
COMMENT LINK THE WINGS;

WINGCEl,ENEW); WINGCE2,ENEW);
WINGCE3,ENEW); WINGCE4,ENEW);
RETURN CENEW) ;

END;

AFTER: ENEW" MKFE(V I ,FACE,V2);
BEFORE: FACE" KLFE(ENEW);

INTEGER PROCEDURE KLFE CINTEGER ENEW);
BEGIN "KLFE"

INTEGER FNEW,FACE,Vl,V2,E,El,E2,E3,E4;
COMMENT PICKUP ALL THE LINKS OF ENEW;

FACE ~ PFACECENEW); FNEW ~ NFACECENEW);
VI ~ PVTCENEW); V2 ~ NVTCENEW);
El .. PCWCENEW); E2 .. NCCWCENEW);
E3 .. NCW(ENEW); E4 .. PCCWCENEW);

COMMENT GET ENEW LINKS OUT OF FACE, VI AND V2;
IF PEoCVl) = ENEW THEN PEDCVl) ~ El;
IF PEO(V2) = ENEW THEN PEOCV2) .. E3;
IF PEOCFACE)=ENEW THEN PEoCFACE) .. E3;

COMMENT GET RIO OF FNEW APPEARANCES;
E .. E2;
DO IF PFACECE)=FNEW THEN PFACECE) .. FACE

ELSE NFACECE) .. FACE;
UNTIL E4 = CE .. ECCW CE, FNEW»;

COMMENT LINK WINGS TOGETHER ABOUT FACE;
WINGCE2,El);WING(E4,E3);
KLFCFNEW);KLECENEW);
RETURNCFACE);

END;

Again, the actual routines differ from those given above in that they do argument type checking

and data structure checking. The above two routines typically take about twice as long to execute as

the previous pair; notice that the execution time is dependent on the length of face perimeters, which

are mostly three or four edges long.

- 25 -

2.5 Coordinate Free Polyhedron Representation. WINGED EDGE.

2.5 Coordinate Free Polyhedron Representation.

As in general relativity, all geometric entities can be represented in a coordinate free form. In

particular, the vertex coordinates of a polyhedron can be recovered from edge lengths and dihedral

angles (the angle formed by the two faces at each edge). Having the geometry carried by only two

numbers per edge rather than by three numbers per vertex does not necessarily yield a more concise

representation because edges always outnumber vertices two for one, and in the case of a triangulated

polyhedron edges outnumber vertices by three to one.

One application of a coordinate free representation arises when it is necessary to measure a

shape with simple tools such as a caliper and straight edge. For example, one way to go about

recording the topology and geometry of an arbitrary object is to draw a triilngulated polyhedron on its

surface with serial numbered vertices and to record for each edge its length, its two vertices and its

signt!d dillt!dral [mIa/II. The dihedral length is the distance between the vertices opposite the edge in

each of the edge's two triangles; the length can be given a sign convention to indicate whether the

edge is concave or convex. The required dihedral angles can then be computed from the signed

dihedral lengths.

- 26 -

3.0 Introduction to GEOMED. GEOMED.

SECTION 3.

A GEOMETRIC MODELING SYSTEM.

3.0 Introduction to GEOMED.

3.1 Euler Primitives.

3.2 Routines using Euler Primitives.

3.3 Euclidean Routines.

3.4 Image Synthesis: Perspective Projection and Clipping.

3.5 Image Analysis: Interface to CRE.

3.0 Introduction to GEOMED.

GEOMED (Geometric Editor) is a system of subroutines for manipulating winged edge polyhedra.

The system has two manifestations: first, it appears as an interactive 3-D drawing program and second,

it appears as a geometric modeling command language. It is the latter manifestation along with some of

the details of implementation that is the subject of this chapter; the interactive drawing program is

documented in (Baumgart 74). As a language, GEOMED is all semantics with no particular syntax of its

own; there are about two hundred subroutines which take from zero to four arguments, return one or

no values and which usually have considerable side effects on the data structures. The subroutines can

be grouped into five classes: utility routines, Euler routines, Euclidean routines, image synthesis and

image analysis routines. The utility routines include input/output, trigonometric functions, memory

management, a command scanner, and device dependent display routines; the utility routines will not be

further elaborated. The Euler routines perform topological operations on links, the Euclidean routines

perform geometric computations on data, and the image synthesis routines perform photographic

simulations on the model as a whole. The fifth class, image analysis routines, consists at present solely

- 27 -

3.0 'ntroduction to GEOMED. GEOMED.

of an interface between GEOMED and CRE, the fifth group lacks the completeness of the other parts of

the system.

As in the previous chapter, the programming notation used will continue to have an ALGOL

appearance with specific examples of actual GEOMED code being given in the language SAIL (Stanford

ALGOL) as is example -1 immediately below. The program in example III creates two cubic prisms and

BEGIN "EXRMPLE ONE"

BEGIN

END;

REQUIRE "GEOMES.HDR£GEM,HEJ" SOURCE_FILE;
DEFINE PI="3.1415927";
INTEGER Bl,B2, I;
MKUNIV;
Bl ~ MKCUBECS,1,O.5);
B2 ~ MKCUBEC1,2,4);
TRRNSLCB2,-7,1.5,O)j
FOR I~l STEP 1 THRU 24 00

GEODPY;
PLOTOC"TMP."&CVSCI»;
ROTRTECBl,PI/10,PI/12,PI/13);
ROTATE(B2,e,2*Pl/23,0);

END "EXAMPLE ONE";

COMMENT DECLRRE GEOMED EMBEDDED IN SRIL;

COMMENT T~O BODIES RNO RN IMRGE COUNTER;
COMMENT INITIALIZE THE DATA STRUCTURES;
COMMENT CRERTE R COUPLE OF CUBIC PRISMS;

COMMENT OISPLRCE ONE OF THEM;
COMMENT MAKE 24 IMAGES;

COMMENT DISPLAY REFRESH;
COMMENT OUTPUT LATEST OISPLRY TO DISK;
COMMENT ACTION ~ITH RESPECT TO ••• j

COMMENT .•• ~ORLO COORDINATES)

FIGURE 3.1 - THE 24 DISPLAVS OF EXAMPLE 11.

Irq i I~~ Im./ IrrD/ ILDJ 1 cr 1 cp 1 p 1

1 o[]1 ~aol -~I '~I ~I ==91 ~ 1 ~ 1
I ~ 1 f 11 11 1 D\ I []u 10] ~ I~ - 1
displays them rotating. The header file, GEOMES.HDR, is kept on a disk area [GEM,HE] and contains the

names of the necessary load modules, the declarations of all the modeling routines and SAIL macros for

accessing GEOMED data structures. After the header, the first routine to execute is MKUNIV (make

universe), which initializes the data structures. Next two polyhedra are created using the MKCUBE

routine which takes three arguments: width, breadth and height for specifying a rectangular right

parallelepiped. All such creation routines return an integer which is the machine address of the node

of the entity created. The first routine of the FOR-loop is GEOOPY which refreshes the display of the

·28 •

3.0 Introduction to GEOMED. GEOMED.

model. Finally, the example calls TRANSL and ROTATE which perform translation and rotation. TRANSL

takes four argument: the thing to be moved followed by the three components of a translation vector;

similarly ROTATE takes four arguments: the thing to be moved followed by the three components of a

rotation vector; there are several other ways to specify translation and rotation.

FIGURE 3.2 - THE 24 DISPLAYS OF EXAMPLE 1t2.

BEGIN "EXAMPLE TWO"
REQUIRE "GEOMES.HDRIGEM,HE1" SOURCEJILE;
DEFINE D."COMMENT"; DEFINE PI."3.1415927";
INTEGER Bl,B2,Jl,J2,J3,J4,JS,JS,Cl,CHR,I;

a GEOMED EMBEDDED IN SAIL;
a DECLARE COMMENT PREFIX;

MKUNIV;GEODPY;
Bl .. INB3D C "RRM [DRT, BGBI "l;
B2 .. INB3DC"TRBLE[DRT,BGB1"l;
Jl .. FDNRMEC"JOINT1"l;
J2 .. FDNRMEC"JOINT2");
J3 .. FDNRMEC"JOINT3");
J4 .. FDNRMEC"JOINT4");
JS .. FDNAMEC"JOINTS");
J6 .. FDNRMEC"JOINT6");
Cl .. INCRMC"RRMCAM[OAT,BGB1"l;

FOR 1 .. 1 STEP 1 UNTIL 24 DO
BEGIN

END;

SHOlJ2 CO, 0);
PLOTOC"PLTX2."&CVSCI»;
ROTRTEC-Jl,O,O,PI/40);
ROTATEC-J2,O,O,-PI/89l;
TRANSLC-J3,O,O,O.96l;

END "EXAMPLE TWO";

a MODEL OF THE YELLOW ARM;
a MODEL OF THE HAND/EYE TABLE;
a SHOULDER - RBOUT VERTICAL;
a RRM - ABOUT HORIZONTRL;
a SLIDE;
a WRIST TWIST;
a WRIST FLAP;
a HAND;
a INPUT A PARTICULAR CAMERA MODEL;
a TWENTY FOUR IMRGES FOR FIGURE 3.2;

a HIDDEN LINE ELIMINRTION DISPLRY REFRESH;
a OUTPUT LRTEST DISPLRY FILE TO DISK;
a RCTION WITH RESPECT TO BODY COORDINRTES .•. ;
a ••• WHEN BODY RRGUMENT IS GIVEN NEGRTIVE;

In example 1t2, the model of an actual robot arm is read in and the first three joints are run

through a simulated arm motion. The routine IN83D reads a 83D polyhedron file from the disk. The

arm was drawn from measurements using the interactive form of GEOMED. The FDNAME, find name,

routine retrieves a body by its print name; FDNAME returns zero when a name is not found. The

routine INCAM reads in a camera file. Finally, the routine SHOW2 calls the hidden line eliminator;

when SHOW2's arguments are zero, default options are assumed. The arm model was originally made

- 29 -

3.1 Euler Primitives. GEOMED.

to illustrate an arm trajectory for a thesis on arm control (Paul 69) and has been used two times since

in projects concerning arm trajectory planning and arm collision avoidance.

GEOMED is a hierarcy of several levels of routines that are finally invoked by syntactically trivial

subroutine calls. The point illustrated by the examples is that some applications level GEOMED code

has a quite ordinary appearance that does not require mastery of the many underlying primitives which

are explained in the next several sections.

3.1 Euler Primitives.

The Euler routines are based on the idea that an arbitrary polyhedron can be created in steps

that always maintain the Euler relation: F-E.V=2*(B-H). Topologically, a connected Eulerian polyhedral

graph can be built up with only four creation primitives: MKBFV, MKEV, MKFE and GLUEE or taken

apart with four kill primitives: KLBFEV, KLEV, KLFE and UNGLUEE. The prefixes "MK" and "KL", stand

for make and kill; the initials "B", "F", "E" and "V" invariably stand for body, face, edgc and vcrtex

and tend to appear in that order. The notion of CLUB is associated with the process of forming (or

removing) a handle which increases (or decreases) the topological genus of the surface by one unit.

The MKBFV primitive takes no arguments and creates a degenerate point polyhedron of one vertex,

one face and one body which is the minimal non-zero binding satisfying the Euler relation. The MKEV

creates a new edge and a new vertex, the new edge is attached to the old vertex as a spur in the

perimeter of the given face. The MKFE creates a new face and a new edge, the new edge is placed

between the two given vertices. And the GLUEE routine creates a handle or kills a body node by

placing a new edge between two given vertices and by removing the second of two given faces.

Completing the set, the ESPLIT routine (explained in Section 2.5) is included as a form of MKEV.

In principle, the advantages of the pure Euler primitives are that they assure valid topology, full

generality, reasonable simplicity and they achieve a semantic level slightly higher than that of

manipulating the nodes and links directly. However, the Euler primitives only satisfy the first of the

conditions defining a solid polyhedron; imposing no particular restrictions on surface orientation,

face/vertex trivalence, face planarity, face convexity or surface self intersection. Furthermore, even

- 30 -

3.1 Euler Primitives. GEOMED.

some low level topological operations (such as body intersection, Chapter 5) are inconvenient to

specify in term of the Euler primitives. Nevertheless in practice, the Euler primitives perform a useful

role as a topological foundation for coding routines which embody more algebra and geometry and

which lead to higher semantic levels.

BOX 3.1 THE EULER PRIMITIVES.

EULER MAKE PRIMITIVES:

1. BNEW .. MKBFV;

2. VNEW .. MKEV(F,V);

VNEW .. ESPLlT(E);

3. ENEW" MKFE(VI ,F,V2);

4. ENEW" GLUEE(Fl,Vl,F2,V2);

EULER KILL PRIMITIVES:

1. QNEW .. KLBFEV(Q);

2. FACE" KLFE(E);

3. EDGE" KLEV(V);

VERT" KLEV(E);
4. FNEW .. UNGLUE(E);

Makes point polyhedron.

Makes new edge and vertex.

. Makes new edge and vertex.

Makes new face and edge.

Makes new edge, kills F2,

and makes a hole or kills a body.

Kills bodies, faces, edge and vertices.

Kills E and NF ACE(E). Returns PF ACE (E).

Kills V and PED(V). Returns other E of V.

Kills E and NVT(E). Returns PVT(E).

Kills E, makes F. Returns the new face,

and kills a hole or makes a body.

The remainder of this section consists of more explanation and examples of the Euler primitives

and may be skipped by the reader who does not need an elaboration of this level of modeling.

NOII-.~olid Ilolylu!dra: Intermediate between Eulerian and solid polyhedra are the wire, dangling-wire

(or spur), lamina, sheet and wasp-edged polyhedra which are transition states for creating and altering

polyhedral solids. The wir(' polyhedron consists of one face, N edges and N+ 1 vertices. A lamilla is a

two faced polyhedron with no interior edges or dangling wire. A dallalilla wir(' or sIJur is made when

a MKEV is applied to a vertex of an already closed simply connected face perimeter; dangling wire

spurs are ultimately "closed" or "lied down" by a MKFE application. A .~h(!('1 is an array of lamina, with

the exception of ruled surfaces of rotation, commands for folding and manipulating sheets have not

been developed. Finally, a wa,~p polyhedron is a transition state formed by the GLUEE primitive; this

degenerate polyhedron is named for the wasp waisted face perimeter which (like a spur) is eliminated

by appropriate MKFE applications.

- 31 -

3.1 Euler Primitives. GEOMED.

FIGURE 3,3 - FIVE KINDS OF NON-SOLID POLYHEDRA,

COQ~oo
WIRE LAMINA DANGLING WIRE SHEET WASP WAIST

The use of the Euler primitives is limited to the above transition states. MKEV sweeps a MKBFV

point body into a wire, the wire may be continued (at only its newest end) by additional MKEVs until it

is closed into a lamina by MKFEing the first and last vertices of the wire. The MKFE is oriented such

that if the wire is planar and the resulting lamina is homogeneous (non-self-intersecting); then the

exterior vector of the newly created face points into the counter clockwise halfspace of the lamina, the

halfspace from which the order of creation of the vertices appears to be counter clockwise. This

particular generation by Euler sweeping from point, through wire and lamina, to solid is illustrated by

the make hexahedron example 113 and by the make tetrahedron example 1t4; the final example of this

section, example itS, illustrates the use of GLUEE.

Example 3 - Make Hexahedron.

BEGIN "EXRMPLE THREE"
REQUIRE "GEOMES.HDR!GEM,HEl" SOURCE_FILE;

INTEGER PROCEDURE MRKECUBECRERL DX,DY,OZ);
BEGIN "MRKECUBE"

INTEGER B,F,E,Vl,V2,V3,V4;

D GEOMED EMBEDDED IN SAIL;

DEFINE D-"COMMENT"; D COMMENT DELIMITER;
D MAKE RECTRNGULRR LRMINR;

B ~ MKBFV; F ~ PFRCE(B); Vl ~ PVT(B); D MRKE POINT POLYHDERR;
XWC(Vl) ~ DX/2; YWC(Vl) ~ DY/2; ZWC(Vl) ~-D2/21 D POSITION FIRST VERTEX;
V2 ~ MKEV(F, Vl); XIlC (V2) ~ -DXI2; D MRKE RND POSITION 2ND VERTEX;
V3 ~ MKEVCF,V2); YWC(V3) ~ -DY/2; D MRKE RND POSITION 3RD VERTEX;
V4 ~ MKEVCF,V3); XWCeV4) ~ DX/2; D MRKE RND POSITION 4TH VERTEX;
MKFE(Vl,F,V4); F ~ PFACEeF);

D MRKE FOUR SPURS ON THE LRMINA;
Vl ~ MKEV(F,Vl);V2 ~ MKEV(F,V2);
V3 ~ MKEV(F,V3);V4 • MKEV(F,V4);
ZWC(Vl) ~ ZWC(V2) • ZWC(V3) • 2WC(V4) ~ 02/2; D POSITION LAST FOUR VERTICES;

D JOIN SPURS TO FORM FINAL FACE;
MKFE(Vl,F,V2); MKFE(V2,F,V3);
MKFE(V3,F,V4); MKFEeV4,F,Vl);
RETURN eB);

END "MAKECUBE";
MKUNIV; MAKECUBEe19,8,S);

END "EXAMPLE THREE";
D TEST CALL ON MAKECUBE;

- 32 -

3.1 Euler Primitives.

Example 4 - Make Regular Tetrahedron.

BEGIN "EXAMPLE FOUR"
REQUIRE "GEOMES.HDR[GEM,HE1" SOURCEJILE;
DEFINE a."COMMENT";DEFINE PI."3.1415927";

INTEGER PROCEDURE MKTETRA (REAL R);
BEG I N "Mf~TETRA"

INTEGER B,FI,F2,Vl,V2,V3,V4;
B .. Mt:BFV; F I .. PFACE CB); VI .. PVT CB);
nlC CV1) .. RBS CR"O. 942809); ZllC CVll .. -RBS CR/3);
V2 .. MKEVCF1,Vl); ROTATECV2,0,9,2*PI/3);
V3 .. MKEVCF1,V2); ROTRTECV3,0,O,2.PI/3);
V4 .. MKEVCF1,V3);
XWCCV4) .. YWCCV4).0;ZWCCV4) .. RBSIR);
MKFE(Vl,Fl,V4); F2 .. PFRCECF1);
MKFECV1,Fl,V3); MKFECV2,F2,V4);
RETURN CB);

END "MKTETRA" i
MKUNIV; MKTETRR(6);
GEOOPY;

END "EXAMPLE FOUR";

Example 5 - Glue two N-edged faces together.

BEGIN "EXRMPLE FIVE"
REQUIRE "GEOMES.HDR[GEM,HE1" SOURCEJILE;
DEFINE a."COMMENT"; DEFINE PI."3.1415927";
INTEGER Bl,B2;

INTEGER PROCEDURE GLUEFFCINTEGER FACE1,FACE2);
BEGIN "GLUEFF"

INTEGER V,Vl,V2.E,EO, I; REAL DMIN,O;
VI .. VCCWCPEDCFACE1),FACEI);

a FIND VERTEX OF FRCE2 THAT IS CLOSEST TO VI;
DMIN .. 10elO; E .. EO .. PED CFRCE2);
DO BEGIN

V .. VCCIJCE,FACE2);D .. DISTRNCVI,V);
IF D<DMIN THEN BEGIN DMIN.D;V2 .. V;ENO;

END UNTIL EO • IE .. ECCI.J(E, FACE2»;
a MRKE THE WASP EDGE;

E .. GLUEE(FACE1,Vl,FACE2,V2);
a CLOSE OTHER EDGES;

V .. OTHERCNCCWCE),Vl);
DO BEGIN

VI .. OTHERCPCW(E),VI);
V2 .. OTHERIPCCW(E),V2);
E .. MKFE(Vl,FACEI,V2);

END UNTIL V.Vl;
RETURNCBGETCE»;

END "GLUEFF";
MKUNIV;
Bl .. MKCUBE(2,2,2); B2 .. MKCUBE(3,3,3);
ROTATE(Bl,0,-PI/2,O);TRANSLCB1,-3,O,O);
ROTATECB2,a,+PI/2,O);TRRNSLCB2,+4,O,O);
GLUEFF(PFRCE(Bl),PFRCECB2»;
GEODPY;

END "EXAMPLE FIVE";

- 33 -

a GEOMED EMBEDDED IN SAIL;

a MRKE TETRAHEDRON;

a MRKE POINT POLYHDERA;
a POSITION FIRST VERTEX;
a MAKE AND POSITION 2ND VERTEX;
a MAKE AND POSITION 3RD VERTEX;
a MRKE ~ND POSITION 4TH VERTEX;

a CLOSE SKEW aURDRILATERRL;

a RETURN THE CRF.ATION;

a INITIALIZE AND TEST MKTETRA;
a DISPLAY REFRESH;

a GEOMED EMBEDDED IN SRIL;

a TWO TEST CUBES;
a DEMO GLUE FACE TO FACE;

a PICK ONE VERTEX OF FACE1;

a INITIALIZE MINIMAL DISTANCE;

GEOMED.

a SCRN FACE2 FOR VERTEX CLOSEST TO Vl;

a FACE2 AND BOOY RRE KILLED;

a LAST VERTEX, TO STOP SCAN;

a FETCH NEXT PAIR OF VERTICES;

a CLOSE AN EDGE;

a RETURN THE SURVIVING BODY;

a INITIALIZATION;
a TWO TEST CUBES;
a ORIENT CUBES SO FIRST FACES •.. ;
a .•• ARE OPPOSITE;
a TEST THE FUNCTION;
a DISPLAY REFRESH;

3.2 Routines using Euler Primiiives. GEOMED.

3.2 Routines using Euler Primitives.

Further methods of polyhedral construction can readily be coded using the Euler primitives. For

example, the routines listed in Box 3.2 illustrate the direct generation of simple prototypical polyhedra,

as well as contruction by sweeping, cutting, glueing, copying and duality.

BOX 3.2 ROUTINES USING EULER PRIMITIVES.

1. BNEW +- MKCUBE(DX,DV,DZ); Create right rectangular prism.

2. BNEW +- MKCVLN(RADIUS,N,DZ); Create cylinder approximation.

3. BNEW +- MKBALL(RADIU5,M,N); Create sphere approximation.

4. FACE +- SWEEP(F ACE,FLAG); Make prism on face (or sweep wire).

5. FACE +- ROTCOM(F ACE); Rotation sweep wire face completion.
6. PEAK +- PVRAMID(FVl; Make pyramid on a face (or vertex).
7. BODY +- GLUE(FACE1,FACE2); Removes face 1 and face2.
8. BNEW +- MKCUT (BODY ,X, Y ,Z); Divide body at cutting plane.
9. QNEW +- MKCOPV(ENTITV); Copy an entity.

10. BODY +- FVDUAL(BODV); Apply face/vertex duality to a body.

The first three routines make cubic prisms as well as polyhedral approximations to circular

cylinders and spheres; or more accurately, MKCUBE creates rectangular right prisms, MKCYLN creates

regular polygonal right cylinders and MKBALL creates hedrons faceted by two N-sided regular polar

polygons and N*(M-l) trapezoidal polygons with all vertices lying on the surface of a sphere of a

given radius.

FIGURE 3.4 - Examples of MKCUBE, MKCYLN and MKBALL.

MKCUBE Results MKCVLN Results MKBALL Results

Although, the implementation of curved edges and curved faces in GEOMED has always been

jU&t around tilt! r-ornt!r, I have balked at the idea because it would require additional nodes connected

to edges and faces or it would require expanding the node size, which I have always before taken as

- 34 -

3.2 Routines using Euler Primitives. GEOMm.

an omen for restarting from scratch. There have so far been four cold starts: GEOMED I, 1969, was

based on sweep primitives and was written in LEAP ISAIL; GEOMED II, 1970, was based on winged

edge primitives and was written SAIL without using LEAP; GEOMED III, 1971, was written SAIL and

FAIL; GEOMED IV, 1972 to present, is written in FAIL. Future mythical GEOMED's include export

GEOMED V, coded in simple international ALGOL for export; a big GEOMED VI, larger nodes for curved

object representation of smooth manifolds rather than polyhedra; a small GEOMED VII coded for a mini

computer; and finally a 4-0 GEOMED VIII for four dimensional modeling.

FIGURE 3.5 - Creation of a Solid of Rotation by Sweeping a Wire.

Initial Wire After four SWEEPs After ROTCOM

The three sweep primitives SWEEP, ROTCOM and PYRAMID involve the non-solid Euler

polyhedra: wire, lamina and sheets. A lone vertex body can be swept into a wire, a wire can be

closed to form a lamina or a wire can be swept into a sheet, and a sheet can be closed to form a solid

polyhedron. Figure 3.5 illustrates the creation of a solid by sweeping a wire-face, using

SWEEP(F ACE,O), to form a sheet. Figure 3.6 illustrates the creation of a solid by sweeping a normal

face as well as the use of the GLUE(FACE1,FACE2) primitive to close a torus.

FIGURE 3.6 - Sweep and Glue.

o
~.J

Initial Face Lamina After twelve SWEEPS After GLUE

- 35 -

3.2 Routines using Euler Primitives. GEOMED.

The sweep flag argument determines whether triangles (flag non-zero) or rectangles (flag zero)

are to be formed as the sweep of the edges of the face. Sweeping out rectangles forms prisms,

sweeping out triangles forms prismoids. The PYRAMID routine when applied to a face creates a peak

vertex at the average locus of vertices of the face and connects ail the vertices of the given face to

the peak vertex. PYRAMID applied to a veri.ax coerces all the faces of the vertex to be triangles, the

interpretation being that the given vertex is to be made like a peak of a pyramid. Prismoid sweep and

face pyramiding are illustrated by the construction of an icosahedron in Figure 3.7; the icosahedron can

be changed into a dodecahedron by the DUAL routine. The DUAL routine mungs face nodes into vertex

nodes and vertex nodes into face nodes; the new vertices are placed at the arithmetic mean of the

vertices of the old faces, consequently the dual is not its own inverse since objects tend to shrink.

FIGURE 3.7 - ICOSAHEDRON BY PRISMOID SWEEP AND PYRAMID SWEEP.

The MKCUT(BODY,X,Y,Z) primitive divides a body at cutting plane into as many pieces as

necessary. Figure 3.8 illustrates how to cut a toroidal polyhedron into thirteen pieces using only three

cutting planes, after Figure 63 of (Gardner 61). The action of MKCOPY should be obvious - a new

polyhedron is returned that has the same topology, geometry and photometry as the given polyhedron.

More routines using Euler primitives could be coded for particular applications in architecture,

computer animation, mechanical design, numerical machine control, assembly diagraming and so on.

FIGURE 3.8 - THREE CUT TORUS DISSECTION INTO THIRTEEN PARTS.

- 36 -

3.3 Euclidean Routines. GEOMED.

3.3 Euclidean Routines.

The Euclidean routines of GEOMED fall roughly into four groups: transformations, metrics, tram

routines and space simulators. The Euclidean transformations are translation, rotation, dilation and

reflection following Klein's Erlangen Program, 1872. The Euclidean metric routines compute distances,

angles, areas, volumes and inertia tensors. The tram routines create or alter tram nodes which are the

main topic of this section. The final group of routines perform spatial simuilltions such as collision,

intersection, propinquity, occupancy and occultation.

Tram Nod(?~. A tram node contains twelve real numbers. Fundamental to all the Euclidean

routines is the curious fact that tram nodes have two interpretations: they may represent a coordinate

system or they may represent a Euclidean transformation. As a coordinate system, the tweive numbers

contain a location of the origin of the coordinate system as well as the three components of each of the

three unit vectors of the axes of the coordinate system. As a transformation, the application of a tram

node to a vertex is defined by the procedure named SCREW, given below.

Tram as a Coordinate Systom: Tram Node f)ala Field Nam(>.~
location of origin of coordinates:

components of X-axis unit vector:

components of V-axis unit vector:

components of Z-axis unit vector:

Tram as a Transformation:
COMMENT APPLY TRAM a TO VERTEX V POSTFIX;
PROCEDURE 5CRE~ (INTEGER V,a);
BEGIN RERL X,Y,Z;

XWC, VWC, ZWC, LOCATION VECTOR.

IX, IV, IZ,

JX, JV, JZ, ORIENTATION MATRIX.
KX, KV, KZ.

X .. X~C (V) ; Y .. YWC (V) I Z .. Z~C (V) ;

END;

X~C(V) .. x*IX(a> + Y*JX(Q) + Z*KX(a) + X~C(Q);

Y~C(V) .. X*IY(Q) + Y*JYCQ) + Z*KY(Q) + Y~C(a);

ZWC(V) .. X*IZ(Ql + Y*JZCQ) + Z*KZ(Q) + Z~C(Q)I

Generalizing, the procedure APTRAM(ENTITY,TRAM) applies a tram to an arbitrary entity. The

APTRAM procedure is formed by surrounding the SCREW procedure with suitilble type checking and

data structure tracing mechanisms so that a tram can be applied (pOstfix) to almost anything: bodies,

faces, edges, vertices, as well as to other trams, camera models and window nodes.

·37 •

3.3 Euclidean Routines. GEOMED.

To repeat for emphasis, a tram node has two interpretations; a tram node may be interpreted as

a coordinate system and the very same tram node may be interpreted as a Euclidean transformation. A

source of confusion, is that a coordinate system tram is a definition of one coordiate system (call it the

body coordinates) in terms of another coordinate system (call it the world coordinates). The application

of a body coordinate system tram to an entity in body coordinates brings the entity down into the

world coordinate system in which the tram is defined. To say it another way, the rule is that

APTRAM(BODY,TRAM) converts from body coordinates to world coordinates, whereas

APTRAM(BODY,INTRAM(TRAM» converts world coordinates to body coordinates. The procedure

INTRAM inverts a tram node in the manner given below. As alluded to in example 112, body nodes

carry a pOinter to a tram defining a system of body coordinates so that Euclidean transformtions can be

relocated relative to arbitrary coordinate systems.

BOX 3.3

INTEGER PROCEDURE INTRAN (INTEGER a);
BEGIN "INTRAM"

RERL X,Y,Z;
x .. xwceal; Y .. y~c(a); Z .. zucea);
XI-lC(Q) .. -ex,~lxea) + Yt,IYCQ) + ZoI2ea»;
YWcea) .. -lx,Jxea) + Y,JY(a) + ZoJzea»;
ZI-ICla) .. -(XoKX(a) + Y,KY(a) + ZoKZla»;
1 Y (0) .. JX (a) ; 12 (a) .. KX (a) ; J2 (a) .. KY ea) ; COMMENT TRANSPOSE;
RETURNea);

END "INTRAM";

ENTITY
TRAM
RESULT
RESULT
RESULT

EUCLIDEAN TRANSFORMATIONS

.. APTRAM(ENTITY,TRAM);

.. INTRAM(TRAM);

.. TRANSL(XWD(TRAM,ENTITV),DX,DV,DZl;

.. ROTATE(XWD(TRAM,ENTITV),WX,WY,WZ);

.. SHRINK(XWD(TRAM,ENTITY),SX,SV,SZ);

Pragmatically, the creation, relocation and application of a tram node are invoked all at once by

an appropriate Euclidean transformation routine. The transformation routines are listed in Box 3.3 with

APTRAM and INTRAM. As a further pragmatic device, the first argument of the Euclideans is

"microcoded" using the XWD notation which packs two links into one word. The expression XWD(A,B)

is equivalent to the expression (A*211 8 • (8 MOD 2118», where A and 8 are positive integers. When

the entity of the first argument of the Euclidean routines is zero, the transformations create and return

a tram node; when the entity of the first argument is nonzero, the transformations create a tram, apply

·38 •

3.3 Euclidean Routines. GEOMED.

it to the er.tity, kill the tram node and return the entity. When the first argument tarries a tram as

well as an entity (using the XWD notation) the desired transformation (or creation) is done with respect

to the coordinate system defined in the given tram, (this is called coordinate relocation). When the

first argument is negative the body coordinates tram is retrieved and used for relocation of the

transformation. Most bodies carry a tram pointer (in the link field named TRAM) which defines body

coordinates; the body coordinates of a face, edge or vertex are taken as the TRAM of the BGET of the

face, edge or body; a zero TRAM link is mapped into a zero translation, unit rotation matrix tram by all

the Euclidean routines. Finally, the actual transformation is specified by giving three components of a

vector; the meaning of a translation vector is obvious, rotation vectors are explained in a subsequent

paragraph and a scale vector is a triple of factors which are multiplied into the corresponding

components of all the vertices of an entity with respect to the axes of transformation. Reflections are

specified as negative shrinks; a reflection on one or on three axes will evert a body's surface

orientation.

Further routines to create and alter tram nodes are listed in Box 3.4. The MKTRAM routine

simply returns an identity tram with zero translation and zero rotation (that is a unit rotation matrix).

The MKTRMA routine creates a tram from the Euler angles pan, tilt and swing; see (GoldstQ;" 1950).

The Euler angles come conveniently close to the rotational degrees of freedom of automatic: camera

mounts, but unlike a rotation vector the Euler angles are discontinous at zenith and nadir.

BOX 3.4 TRAM ROUTINES

TRAM'" MKTRAM;

TRAM'" MKTRMA(PAN,TlLT,SWING);

TRAM'" MKTRMF(F ACE);

TRAM'" MKTRME(EDGE);

TRAM'" MKTRMV(WX,WV,WZl;

TRAM'" NORM(TRAM);

TRAM'" ORTH01 (TRAM);

TRAM'" ORTH02(TRAM);

Returns an identity tram.

Makes a tram from Euler angles.

Makes a tram from a Face.

Makes a tram from an Edge.

Makes a tram from a rotation vector.

Normalization to unit vectors.

Orthogonalize by wor5t case

Orthogonalize by two cross products:

K'" (I CROSS J) and J ... (K CROSS I).

The Rotatioll Matrix. The nine elements named IX, IV, IZ, JX, JV, JZ, KX, KV and KZ form what

is know as a three by three rotation matrix. By virtue of the definition of rigid object rotation, the

tram rotation matrix must be maintained orthonormal. (The trams created by SHRINK are tolerated as a

·39 •

3.3 Euclidean Routines. GEOMEO.

special case which are not considered to be rigid rotations.) Orthonormality is maintained with the aid

of three routines: NORM(TRAM) which normalizes the row vectors of a tram rotation matrix; ORTHOl

which orthogonalizes a rotation matrix by comparing the sums of pairs of dot products of pairs of the

three unit vectors; the unit vector that is most out of allignment is recomputed by crossing the other

two (ORTHOl performs its check twice and then exits); and ORTH02, which coerces orthogonality by

. setting row vector K to the cross product of rows I and J, followed by setting row vector J to the cross.

product of rows K and I.

The Rotatio/l Vector. All 3-D rotations can be expressed as a vector where the direction of the

vector specifies the axis of rotation and where the magnitude of the vector specifies the amount of

rotation in radians. Given such a rotation vector WX, WY, WZ with direction cosines CX, CY, CZ and

magnitude W in radians; let CW be cosine(W) and SW be sine(W); and let a function called SIGN return

positive or negative one depending on whether its argument is positive or negative; then the relation

between a rotation matrix and a rotation vector can be listed:

Rotation vector to Rotation matrix:

IX = (l-CW)*CX*CX • CW;
JX = (l-CW)*CX*CY - CZ*SW;

KX = (l-CW)*CX*CZ + CY*SW;

Rotation matrix to Rotation vector:

IY • (l-CW)*CY*CX • CZ*SW;
JY = (l-CW)*CY*CY + CW;

KY = (l-CW)*CY*CZ - CX*SW;

IZ = (l-CW)*CZ*CX - CY*SW;

JZ = (l-CW)*CZ*CY • CX*SW;
KZ = (l-CW)*CZ*CZ • CW;

WX = SIGN(JZ-KY)*ACOS(O.5*(lX.JY.KZ-!))*SQRT(+IX-JY-KZ)/(3-IX-JY-KZ));

WY = SIGN(KX-IZ)*ACOS(O.5*(lX·JY·KZ-!))*SQRT(-IX.JY-KZ)/(3-IX-JY-KZ));
WZ = SIGN(lY-JX)*ACOS(O.5*(lX+JY+KZ-!))*SQRT(-IX-JY+KZ)/(3-IX-JY-KZ));

lIomolr(,ll(,ou,~ Coordillal('.~. The Euclidean routines involving trams could be written out in

terms of the 4-0 homogeneous coordinates frequently found in computer graphics, by prefixing a

column to each tram and a fourth component to each vertex.

TRAM4D =
o
o
o

XWC

IX

JX

KX

YWC

IY
Jy

KY

ZWC

IZ

JZ

KZ

I did not use homogeneous coordinates in GEOMED for three reasons: first, the computer at hand, (a

POP-lO) has floating point arithmetic hardware so that homogeneous components were not needed for

- 40 -

3.3 Euclidean Routines. GEOMED.

numerical scaling; second, the homogeneous representation requires more coordinates per vertex and

more multiplications per transformation than the GEOMED representation; and third, my intuition is

stronger in affine metric geometry than it is in homogeneous projective geometry.

Stalldard Cotlt'rlltioll.~. There are several nettlesome details related to rotation, translation and

projection among which a computer geometer must distinguish: (i). matrix vs. algebraic notation; (ii).

postfix vs. prefix transformation application; (iii). row vs. column vertices; (iv). 4-0 homogeneous vs.

3-D affine coordinates; (v). rotation vector vs. Euler angles and so on. At the moment, I favor

algebraic notation, postfix transformations, row vertices, 3-D coordinates and rotation specification by

vector; a demonstrably superior natural set of standard conventions probably does not exisl.

In GEOMED, tram nodes were until recently called frame nodes, however I wish to abandon all

use of the word frnmr for three reasons: first, the term is ambiguous and overused (even within

graphics alone); second, the term does not include the notion of transformation; and third, the term

risks confusion (or association) with the connotations of (Minsky 74) and (Winograd 74); i.e. the

connotation of a Framr Sy.l/rm as a modular mental universe of stereotyped world situations. In

geometric modeling, the word frame can be replaced in all three of its usual graphics applications: the

frame of referellce or coordillatr frame is now a coordillate $y.~tem, the framr of a movie film is

now an imal(e, the frame of a display screen is now a willdow or bordrr.

M elric Routille.~. Given one or several geometric entities, the Euclidean metric routines listed

in Box 3.5 compute length, area, volume, angle or moments of inertia. The DISTANCE routine computes

the distance between two any things in a reasonable manner; the measure routine returns the volume,

area or length of bodies, faces or edges respectively (by a pragmatic argument hack, the measure of a

negative body is its surface area). The ANGLE routine computes the angle between two entities by

returning the arc cosine of the normalized inner product of two vectors: vertices are interpreted as

vectors from the origin of the body in which they belong, edge are vectors from their NVT to their

PVT, faces are taken as their normal vector and bodies are represented by the K unit vector OT th.eir

body coordinates tram; trams and cameras also are mapped into K unit vectors.

- 41 -

3.3 Euclidean Routines. GEOMED.

BOX 3.5 METRIC ROUTINES

VALUE ... DISTANCE(ENTITY,ENTITY);

VALUE ... MEASURE(ENTlTY);
RADIANS ... ANGLE(ENTlTY,ENTlTV);
RADIANS ... ANGL3V(Vl,V2,V3);
RADIANS ... ANGLCW(EDGE);
RADIANS ... ANGLCCW(EDGE);
VALUE ... DETERM(TRAM);
NODE ... INERTIA(BOpY);

Since the arc cosine function returns an angular value between zero and pi; the routines ANGL3V,

ANGLCW and ANGLCCW employ the arc tangent to compute an angular value between negative pi and

positive pi. The ANGL3V return the angle between the vector (V3-V2) and (V2-Vl), the ANGLCW(E)

returns the angle between E and PCW(E), ANGLCW(-E) returns arctan of E and NCW(E); likewise

ANGLCCW returns values for E and PCCW(E) or E and NCCW(W). The DETERM of a tram is the

determinate of the rotation matrix of a tram. Finally, the INERTIA of a body is a sixtuple: MXX, MVV,

M11, PXY, PX1, PY1 packed into the first six words of a node and representing the moments and

products of the intertia tensor of a polyhedron of uniform (unit) density associated with the given body.

The inertia routine takes the liberty of updating the origin of the body coordinates to correspond to

the center of mass and to orient the K unit vector of the body parallel to the principal axis of inertia.

Spatial Simulatio/l. The difficult space routines perform occultation and intersection and are

explained in Chapters 4 and 5 respectively. The simple space routines, listed in Box 3.6, perform

propinquity, collision detection and spatial compare.

BOX 3.6 SIMPLE SPACE ROUTINES

HEXAHEDRON ... MKBUCK(BODY);
V-PIERCE ... COMPFE(FACE,EDGE);
FLAG ... COMPEE(EDGE,EDGE);
FLAG ... WITH2D(FACE,VERTEX);
FLAG ... WITH3D(BODY,VERTEX);
FLAG ... COLDET(B 1 ,B2,EPSILON).

The MKBUCK routine returns a hexahedron that buckets the given body. The COMPFE compares a face

and an edge in 3-D for intersection, if the arguments are disjoint then zero is returned, if the

- 42 -

3.4 Image Synthesis: Perspective Projection and Clipping. GEOMED.

arguments intersect then the edge is split and the new vertex is positioned at the locus where the

edge pierces the face. The COMPEE routine determines whether two edges cross in a given

perspective ~iew. The within 2-D routine, WITH2D, determines whether a vertex appears to be

interior to a given face in a perspective view and the WITH3D determines whether a given vertex falls

interior to a body in 3-D. The COLDET routine compares all the vertices and faces of two objects for

propinquity within an epsilson as well as all the edges of the two objects. Temporary collision pointers

are left between vertices and the nearest alien collision face as well as between temporary collision

vertices. Collision vertices are formed at the foot of the shortest line segment between the skew lines

of two edges that pass within the epsilon distance of each other.

3.4 Image Synthesis: Perspective Projection and Clipping.

Image synthesis is the process of generating various kinds of images: vector display, video,

contour map or mosaic. Independent of the final image representation the process always requires the

operations of perspective projection and clipping. The perspective projection takes the 3-D world

locus of every potentially visible vertex and computes a 3-D camera center coordinate locus followed

by a perspective projection in the fashion illustrated in the PROJECT procedure given below.

INTEGER PROCEDURE PROJECT (INTEGER V,CRMERR);
BEGIN "PROJECT"

INTEGER TRM; RERL X,Y,Z,XCC,YCC,ZCC;
COMMENT TRRNSFORM FROM UORLD COORDINRTES TO CRMERR COORDIRTES;

TRM ~ TRRM(CRMERR);
x ~ XWC(V) - XWC(TRM);
Y ~ YWC(V) - YWC(TRM);
Z • ZWC(V) - ZWC(TRM);
xee ~ X*IX(TRM) + Y*IY(TRM) + ZoIZ(TRM);
yee ~ X.JX(TRMI + YoJY(TRM) + Z.JZ(TRM);
2ee • XoKX(TRM) + YoKY(TRM) + ZoKZ(TRM);

COMMENT PERSPECTIVE PROJECTION TRRNSFORMRTION;
COMMENT NOTR BENE: 2PP (V) is pos iii ve when ver lex is in view 0 f camera ! ;

XPP(V) • SCRLEX(CRMERR).XCC/ZCC; COMMENT (SCRLEX = -FOCRL/POX);
YPP(V) • SCRLEY(CRMERR),YCC/ZCC; COMMENT (SCRLEY • -FOCRL/POY);
2PP(V) • SCRLEZ(CRMERR) /ZCC; COMMENT (SCRLEZ • -FOCRL/POZ);
RETURN (V);

ENO "PROJECT";

The perspective projection transformation is a 3-D to 3-D mapping; the third component, ZPP, allows

the hidden line eliminator to perform orthographic depth comparisons. The perspective projection

- 43 -

3.5 Image Analysis: Interface to CRE. GEOMEO.

quite literally is taking the whole world model and crushing it into a slanty space between the camera

lens center and the camera focal plane. The camera scales are defined in terms of the ficticious 3-D

pixel dimensions POX, POV, PDZ and the physical camera focal plane distance, FOCAL. The pixel

dimensions are arbitrarily defined as PDV=PDZ=40 microns and PDX=AR*PDV where AR is the aspect

ratio of the camera; the aspect ratio can be directly measured by taking the ratio of the width to

height of the image of a large black sphere on a white background, AR is usually almost one. The focal

plane distance is typically between 10 and 50 millimeters and is derived from definition

(FOCAL=FR*PDV) of the focal ratio, FR, which can be simply measured as explained in Section 9.1.

The term clipping refers to the process of computing which parts of the world model are in view

of the camera. In GEOMEO there are several clipper routines: one for fast transparent refresh, three

for hidden line elimination and one more for clipping the contents of 2-D display windows that may be

scrolled about. Three dimensional clipping can be factored into a Z-clipper and an XV-clipper. The

Z-clipper determines which portions of the model are in the visible 3-D halfspace and splits edges and

faces that cross the focal plane. The XV-clipper determines which portion of a 2-D perspective edge

is within a given 2-D rectangular window (with sides parallel to the coordiate axes). The XV-clip is

done by first applying an easy outsider test: endpoints of the edge both belOW, above, left or right of

the window; followed by an easy insider test: endpoints of the edge both inside the window; followed

by the evaluation of four polynomials of the form A*X.B*V.C where A,B,C are the edge coefficents

and X,V are the locus of corners of the clip window. If all four polynomials have the same sign the

edge is a hard outsider, otherwise the intersection of a side of the window and the edge can be

detected from alternating signs and the locus of intersection can be computed from the edge

coefficients.

3.5 Image Analysis: Interface to eRE.

Although there are no actual honest image analysis routines currently implemented in GEOMEO,

the internal GEOMED environment was designed for image based model synthesis and model

verification. The routine INCRE(FILENAME) inputs from a disk file a CRE node structure that consists of

a film of contour images, contour images consist of levels, levels consist of polygons and polygons

- 44 -

3.5 Image Analysis: Interface to CRE. GEOMED.

consist of vectors. In GEOMED, the CRE polygons become two-faced lamina bodies; the contour levels

hierarchy becomes a parts tree structure; and a new kind of GEOMED node called an image is

introduced.

The root of the GEOMED data structure is a universe node, which is the "'ead of a ring of world

nodes. World nodes have a ring of body nodes and a ring of camera nodes each camera represents a

physical camera so that there might be at most three or four camera nodes. Each camera has two rings

of images: a ring of perceived images and a corresponding ring of simulated images. The perceived

image ring is created by INCRE and the simulated image ring is created by the hidden line eliminator,

thus providing a environment for the development of polygon based im~ge analysis. This completes the

general description of the geometric modeling system called GEOMED.

- 45 -

Page Intentionally Left Blank

4.0 Introduction to Hidden Line Elimination. OCCULT

SECTION 4.

HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.0 Introduction to Hidden Line Elimination.
4.1 Initialization and Culling.
4.2 Hide Marking a Coherent Object.
4.3 Edge-Edge and Face-Vertex Comparing.
4.4 Recursive Windowing.
4.5 Photometric Modeling and Video Generation.
4.6 Performance of OCCULT and Related Work.

4.0 Introduction to Hidden Line Elimination.

Hidden line elimination refers to the process of simulating the appearance of opaque three

dimensional objects. The phrase hiddell lille elimillatioll dates from when the problem only involved

deleting the undesired, that is the hiddclI lines, from a line drawing (Figure 4.1); today the phrase

persists but connotes the wider problem of synthesizing realistic images using a computer. The

present discussion is about techniques which have been implemented in a particular hidden line

eliminator named OCCULT, from the Latin word occuitarc meaning to hide. OCCULT illustrates novel

solutions to the graphics problems of exploiting object coherence and image coherence, of combining

image space with model space techniques, and of sorting faces, edges and vertices in two dimensions.

OCCULT is further characterized by its intended application to computer vision and robotics. The

distinguishing design requirement of a hidden line eliminator intended for vision is that it must maintain

back pointers from the final 2-D images to the initial 3-D models so that the identity of features can be

recovered. In computer graphics, the results of hidden line elimination are intended for human viewing

·46 -

4.0 Introduction to Hidden Line Elimination. OCCULT

sO the correspondence between the image and the model is not usually retained (unless image based

model editing is being attempted). Another design goal for OCCULT was to output a connected graph

01 regions, edges and vertices that COvers the image with no holes missing, no regions overlapping and

1\0 dangling edges. It was naively assumed that such a highly structured image representation, called a

mo.~air: image, would provide a suitable basis for deriving features such as the location and orientation

of high contrast edges without having to generate video images.

FIGURE 4.1 - EXAMPLE OF HIDDEN LINE ELIMINATION.

BEFORE AFTER

Hidden line eliminators appear in two previous vision systems: one by Roberts (63) and the

other by Falk (70); the present system is a direct heir of the work of Falk in that the last version of

tnti F alk system contained one of the first versions of OCCULT (installed by Richard Orban). As with

image analysis, image synthesis (i.e. hidden line elimination), is a perennial research problem because

it cannot be fully isolated from physical modeling. Metaphorically, hidden line elimination is the visible

tip of the iceberg of physical simulation. The weaknesses of the underlying model literally show up in

passing through the process of image synthesis. The present day collection of techniques is still quite

lacking in realism, economy, flexibility and even reliab!lity.

OCCULT is not a simple hidden line eliminator. In overall structure it is a combination of five

techniques, Box 4.1. The first method, called cullillg, eliminates portions of the model which are

hidden because of some easy to compute heuristic reason. The cull heuristics (detailed in Section 4.1)

1nclude: elimination by clipping planes, elimination by face vectors, elimination by inspection of concave

- 47 -

4.1 Initialization and Culling. OCCULT

corners, and elimination by previous occultation. After the culls have been applied, the next three

techniques are arranged in a three level heirarchy which comprises the main part of OCCULT. At the

outermost level there is a Warnock (68) like recursive windowing method, which calls an edge-edge

comparing method on small enough windOWS, which in turn calls a coherent object tracing method to

split off and mark the portions of an object that are hidden. The methods are explained in bottom-up

order: hide tracing in Section 4.2, edge-edge comparing in Section 4.3 and recursive windowing in

Section 4.4. The fifth technique is a face-vertex compare method that is occasionally required to solve

a particular class of cases that are missed by the edge-edge compare. The difficult part in building an

OCCUL T like hidden line eliminator lies in getting all the unruly beasts in harness together; the

mystery being that no one beast is sufficiently strong to carry the whole burden by itself.

BOX 4.1 THE FIVE HIDDEN LINE ELIMINATION TECHNIQUES OF OCCULT.

1. Initialization Hide Culling.

2. Recursive Windowing.

3. Coherent Object Hide Tracing.
4. Edge-Edge Comparing.
5. Face-Veriex Comparing.

4.1 Initialization and Culling.

A substantial part of sophisticated hidden line elimination lies in careful attention to initial

proparations. As it has now stood for the past two years, OCCULT has two input restrictions imposed

for the sake of execution speed: no conflicting bodies are allowed and no concave faces are allowed.

Conflicting bodies are those that occupy the same space at the same time; concave faces are faces with

interiors containing a pair of points such that the line segment between the points is not contained in

the face. The rational for both these restrictions is based on the optimization technique of getting

computations out of inner loops; conflicting bodies and concave faces can be eliminated by employing

certain polyhedral construction primitives prior to hidden line elimination. The restrictions are not

inherent limitations of any of the techniques in OCCULT, so that a less restricted but slowor

implementation is feasible.

- 48 -

4.1 Initialization and Culling. OCCULT

OCCULT is a marking algorithm, the temporary marking bits are listed in Box 4.2. The

combination (POTENT and .. VISIBLE) means potentially visible; (.. POTENT and VISIBLE) means actually

visible; (... POTENT and ... VISIBLE) means hidden; and the combination (POTENT and VISIBLE) is an unused

state that happens to be interpreted as VISIBLE.

BOX 4.2 STATUS BITS FOR OeeUL T MARKINGS.

POTENT Potentially Visible Entity.

VISIBLE Actually Visible Entity.

PZZ .. 8ehind the camera image plane, Positive Zcc.

NZZ .. Before the camera image plane, Negative Zcc.

TMPBIT Temporary Split edge of vertex.

FOLDED Edge with only one POTENT face.

JOTBIT.. Joint over T vertex.

JUTBIT.. Joint under T vertex.

The initialization is performed in three steps: (l). vertex marking and vertex perspective

projec:tion; (2). face marking, face Z-clipping, and computation of face coefficients; and (3). edge

marking and computation of edge coefficients. Two cull heuristics are done during the initialization:

clipping and backside face elimination; and the other two culls are done immediately afterwards:

concave corners check and the hide last hidden check.

Vertex initialization includes the prespective projection of every vertex in the model and the

marking of every vertex that is in front of the camera as POTENT (potentially visible) if its perspective

projected Z coordinate, ZPP(V), is greater than the simulated image plane distance, FOCAL. iwo

further status bits, named PZZ and NZZ, indicate positive zee (camera coordinates) or negative zee
are inclusive ORed into all the faces and edges of each vertex for the sake of the Z-clipper.

F ace initialization consists of Z-clipping: if a face has only its NZZ bit turned on, then it is

completely behind the camera and is immediately dropped from all futher condsideration (Le. culled

out); if the face has both its PZZ and its NZZ turn on then it is Z-clipped by using the camera's image

plane as a cutting plane. Next for faces in view of the camera, the 3-D perspective projected face

coefficients are computed (equations given below) and the faces with their backsides towards the

camera are culled out (Figure 4.2); faces surviving to this point are marked as POTENT and are placed

into a list of faces of the first window of the recursive window sort.

·49 •

4.1 Initialization and Culling. OCCULT

Edge initialization consists of computing the normalized 2-D edge coefficients (equation given

below) and of marking the edge as FOLDED or .. FOLDED depending on whether it has one face POTENT

or two faces POTENT, respectively. FOLDED edges are then inverted if necessary so that the POTENT

face is the PF ACE. Folded edges are illustrated in the rightmost panel of Figure 4.2. The folded

ed«(!.~ are called cOlltour ('d{«'s by Appel(7l) and Sutherland(73). The folded bit is passed along to

(inclusive ORed into) the vertices of folded edges.

BOX 4.3 Normalized 3-D Face Coefficients:
E • PEDIF);Vl • veWIE,F);V2 • veeWIE,F)i E • EceWIE,F);V3 • vee~IE,F);
KKIF) • XPPIVl)eIZPPIV2)oYPPIV3)-YPPIV2)oZPPIV3»

+ YPPIVl)oIXPPIV2)~ZPPIV3)-ZPPIV2)oXPPIV3»

+ ZPPIVl)oIYPPIV2),XPPIV3)-XPPIV2),YPPIV3»;
RRIF) • IZPPIVl),IYPPIV2)-YPPIV3» + ZPPIV2).IYPPIV3)-YPPIVl» + ZPPIV3).IYPPIVl)-YPPIV2!»);
BBIF) • IXPPIVl).IZPPIV2)-ZPPIV3» + XPPIV2)*IZPP(V3)-ZPP(Vl» + XPP(V3)*(ZPP(Vl)-ZPP(V2));
CC(F) • IXPP(Vl)*(YPP(V3)-YPP(V2» + XPP(V2).(YPP(VII-YPP(V3» + XPP(V3).(YPPIV2)-YPP(Vli»;
TMP • 1/SQRT(RRIE)t2 + BBIF)t2 + eCIF)t2);
RRIF) • TMP*RRIF);BBIF) • TMP*BB(F);CC(F) • TMP.eC(F);

Normalized 2-D Edge Coefficients:
RRIE) • YPPIPVTIEl) - YPPINVTIE»;
BB IE) • XPP INIIT IE» - XPP IPVT IE)) ;
CCIE) • XPPIPVTIE»,YPPINVTIE» - XPPINVTIE»*YPPIPVTIE»;
TMP • SQRTIRRIE)t2 + BBIE)t2);
RRIE) • RRIE)/TMP; BBIE). BBIE)/TMP; eCIE). CCIE)/TMP;

FIGURE 4.2 - FRONT FACES AND FOLDED EDGES.

After face, edge and vertex initialization two culls are applicable. The concave corner cull

checks folded vertices of valence four or more for edges of the vertex that are hidden by a face of the

same vertex; the corner marked by a heavy dot in Figure 4.3 is a concave corner with two folded

- 50 -

4.2 Hide Marking a Coherent Object. OCCULT

edges that are easily discovered to be hidden (i.e the end of the edge that is connected to the corner

is hidden by a face of that corner). The second cull is applicable when hidden line elimination is being

done on a sequence of images which are not changing very much from one picture to the next. By

saving a pointer to the O1Jcrfacc that covered each hidden vertex in the immediately preceding hidden

line elimination, the previous overface can be quickly checked to see if it still covers the vertex. In the

case of arm animation (example 112, Section 3.0) this form of exploiting framc-colwrcllcc realized a

twenty-five percent savings in computation time (under timesharing, but with no other user programs).

FIGURE 4.3 - FRONT FACES AND FOLDS OF A CONCAVE CORNER.

Inspite of the complexity explained so far, still further measures could be taken to make the

hidden line eliminator even faster, For example more 3-D clipping or spatial recusive cell sorting would

allow the earlier elimination of objects that are out of sight.

4.2 Hide Marking a Coherent Object.

OCCUL T marks the faces, edges and vertices of a polyhedral scene as being either visible or

hidden with respect to a simulated camera. Edges that were at first partially visible are split into

pieces sO that each piece is either fully visible or fully hidden. All splits are undone and all OCCULT

bits are cleared by a fixup routine named UNCULT. In a modeling environment that provides coherent

polyhedra that can be easily traveled and mOdified, the simple technique of hide marking the neighbors

of entities already hidden can be used to do almost all of the actual hiding, once a starting place has

been found.

In OCCULT, the two innermost routines, EHIDE and VHIDE, perform this kind of marking and

splitting. The routine VHIDE takes two arguments: the vertex, V, which is to be marked as hidden and

the face, F, that is known to hide V; the rou'iine then simply calls EHIDE for each potentially visible

- 51 -

4.3 Edge-Edge and Face-Vertex Comparing. OCCULT

edge of V's perimeter. EHIDE in turn takes three arguments: an overface, F, an edge, E, and one

vertex, V, of that edge which is known to be hidden by F. EHIDE then checks to see whether or not E

leaves its overface, F, there are three basic cases: (i) E does not leave F, so it is marked as hidden

and VHIDE is applied to the vertex OTHER(E,V); (ii) E does leave overface F by crossing under a

.,FOLDED edge which provides a new overface for EHIDE to check; or (iii) E leaves F by crossing under

a folded edge, so EHIDE splits the original edge, E, and the folded edge to form a T-joint (explained

below) marking the hidden portion of E as hidden and leaving the remaining portion of E potentially

visible.

A T-joint occurs in the image, when a folded edge hides a second ed~e that it; further away

from the camera. When OCCULT discovers a T-joint, both edges are ESPLIT and two t1RW v~rt1ces are

created the further one is called the JUT, Joint-Under-T, vertex the nearer one is called the JOT,

Joint-Over-T, vertex. Juts and Jots point at each other using a temporary link field named T JOINT.

FIGURE 4.4 - T -JOINT DIAGRAM.

(The diagram is a view from slightly to the left and below the camera from which JOT and JUT appear coincident.i

FOLD

JOT
o.:.:ED:;.;G::.;E=---___ -t-------o

JUT

There are several techniques for finding hidden starting places, the major techniques involve

doing an edge-edge or a face-vertex compare using all the potentially vit;ible faces, edges and

vertices; the minor techniques include the concave corner cull and the hidden on last hide cull.

4.3 Edge-Edge and Face-Vertex Comparing.

In OCCULT, two particular compares stand out as most basic, the edge-edge compare ar,d the

face-vertex compare which are implemented in procedures named COMPEE and COMPFV, respectively.

·52 •

4.3 Edge-Edge and Face-Vertex Comparing. OCClJL T

The edge-edge compare routine, COMPEE, determines whether or not two edges intersect in the 2-D

image coordinates, XPP and VPP. The basic edge-edge intersection test requires passing two

opposition conditions: the ends of one edge must be in the opposite halfplane with respect to the line

containing the other edge and vice versa. Halfplane opposition is checked by two evaluating the normal

equation of the line using the edge coefficients AA, BB, CC and the vertex coordinates XPP and YPP.

Consequently, it can be assumed that the two edges cross if the following expressions both return

negative values:

FLRGl ~ (RR(El)*XPP(PVT(E2)) + BB(El)*YPP(PVT(E2)) + CC(El))
XOR (RR (E 1) *XPP (NVT (E2)) + BB (E II *YPP (NVT<E2)) + CC (Ell) ;

FLRG2 ~ (RR(E2)~,XPP(PVT(E1)) + BB (E2)*YPP (PVT<El)) + CC(E2))
XOR (RR(E2)*XPP(NVT(El)) + BB(E2)*YPP(NVTCEl)) + CC(E2));

The infix operator XOR (exclusive OR) is for toggling the sign bits in the same fashion as a

multiplication would in more conventional ALGOL. When the crossing condition is true, the locus of

intersection can be computed by solving two equations in two unknowns:

TMP
xpp (V) ~

YPP (V) ~

(RR(Ell:BB<E2) - RR(E2)~'BB(Ell);

(CC(El)*BB<E2) - CC(E2)cBB(El))/TMP;
(RR(El)*CC(E2) - AA(E2)oCC(El))/TMP;

An alternate edge-edge compare method would be to solve the tW9 equations in two unknowns

first and then to see whether the intersection locus is interior to the line segments of both edges.

Since, disjoint pairs of edges occur much more frequently than intersecting edges, the alternate method

requires more floating arithmetic on the average than the first method which can discover about half of

the disjoint cases by computing FLAGl. Furthermore the alternate method does not lend itself to

distinguishing the almost touching cases which must be nudged to be disjoint. The OCCULT design

depends on coercing edges to intersect at one unique point or not at all, the steps listed in Box 4.4

handle the special cases requiste to such a crossing discipline. The nudge is done in image coordinates,

so the accuracy of world coordinates is maintained.

BOX 4.4

i.
ii.
iii.

iv.

v.

Edge-Edge Compare Steps.

Test for Identity: same edge twice.

Test for Topological connection: Edges with vertex or T-joint in common.
Test for span Overlap in XPP and VPP: To prevent nasty collinear cases.

Compare for crossing: Opposition Tests and Crossing Solver.
Nudge (Move off line, towards right and down).

- 53 -

4.3 Edge-Edge and Face-Vertex Comparing. OCCULT

The face-vertex compare routine, COMPFV has two parts: Z-df'pth comparf' for vertex under

the plane of the face, and 2-1J withi" compar(1 for vertex enclosure by the face perimeter. The first

compare is done by evaluating the Z-depth of the vertex with respect to the plane of the face. The

second compare tests whether the vertex falls outside of the face with respect to any of the edges of

the face perimeter, since faces are convex and since polyhedra are oriented the properly directed

edges coefficient are available. The Z-depth test is performed first because it is quicker.

Two very simple but important kinds of hidden line eliminators (that almost work) are based on

combining edge-edge comparing or face-vertex comparing with coherent object hiding. In the

edge-edge compare method all the edges (or even merely all the folded edges) of the image are

compared with each other, N*(N-I)/2 compares, for crossings; when a crossing is found a T-joint is

made and the hidden portion of the under edge is given to an EHIDE routine. In the face-vertex

compare method all the vertices are compared with all the faces, (face count)*(vertex count) compares,

for enclosure and covering; when a vertex is found hidden under and within a face it is given to a

VHIDE routine. Together the EE-compare method and the FV-compare method form one slow but sure

hidden line elimination algorithm; alone the EE-method fails to de tee! hidden objects with edges that

don't intersect any edges of the occluding objee! as in the left panel of Figure 4.5 which shows two

bricks of the same size but one behind the other. Likewise the FV-melhod fails 10 detect hidden

objects in scenes where no vertex of the object is surround or covered by a face, right panel of

Figure 4.5.

In OCCULT, the edge-edge cOmpare is done after recursive windowing has isolated a reasonably

small number of edges (twelve). A face-vertex compare is done only if any potentially visible vertices

remain after all the other techniques have finished; in particular face-vertex comparing is only done

when the case illustrated in the left panel of Figure 4.5 actually occurs and the set of faces that are

used are only the faces that intersect the recursive window that contains the vertex.

- 54 -

•

4.4 Recursive Windowing. OCCULT

FIGURE 4.5 - EE AND FV UNDETECTED HIDDEN OBJECT CASES.

....... /'

ceo
./

EDGE-EDGE FAILURE CASE. FACE-VERTEX FAILURE CASE.

4.4 Recursive Windowing.

Recursive Windowing is a two dimensional spatial sorting technique for partitioning the faces,

edges and vertices associated with a rectangular region called a window into two subwindows. The

technique is applied recursively until a desired condition is achieved. The usual termination condition is

that the population of entites in the window becomes sufficiently low or that the window becomes

extremely small. The idea is implement in a routine called ESORT which resembles the hidden line

eliminators of (Warnock 68) and (Sutherland 69). However ESORT is unique in that it maintains a data

structure which allows edges to be split during the sort. The potentially nasty fixups are accomplished

using a data structure that maintains a coherent image of both windows and edges. Metaphorically, the

data structure is a cloth with a warp of windows and a woof of edges, where each warp thread is

bound to a woof fiber by a bead.

IV i"doUJ Struclurl'. The sort window itself is a twelve word node which contains data fields

named XLO, XHI, YLO and YHI which specify the boundary of the window and data fields named

PENCNT, SURCNT, EDGCNT and VCNT which specify the number of faces that penetrate the window,

the number of faces that surround the window, the number of edges that pass through the window and

the number of vertices that fall within the window, respectively. The window contains link fields to

- 55 -

4.4 Recursive Windowing. OCCULT

hold pointers to the head of the pen-face list (penetrating faces), the sur-face list (surrounding faces),

the vertex list, the head and tail the edge list and a pointer to its antecedent window.

Bead Stmrtl1.rc. A bead is a two word node that contains four pointers and which represents

one instance of an edge passing through a window. Each edge has a list of beads representing an

ordered list of the windows through which it passes; and each window has a list of beads representing

a list of the edges it contains. The link fields named WND and EDG of a bead, point to the particular

window and the particular edge to which the bead belongs. The link fields named WNBL and EDBL of a

bead contain the necessary links for the window's bead list and for the edge's bead list.

BOX 4.5 RECURSIVE WINDOWING ROUTINES.

1. MKSWN Make Sort Window.

2. PSHSWN Push Sort Window.

3. PENSUR Update penatrator and surrounder lists.

4. POPSWN Pop Sort Window.

5. BLED Bead List Edit.

The actual sort is composed of five routines (Box 4.5) which perform all the necessary creations

and alterations to the window/edge/bead data structure. Initialization is done by the make sort window

routine, MKSWN, which places all the potentially visible faces, edges and vertices into the first sort

window along with the population counts and the extreme location of vertices in the positive and

negative, XPP and YPP directions.

If the popUlation counts of the window are too large, the pushdown sort windowing routine,

PSHSWN, creates a new window node, places the node into the sort-window pushdown list, halves the

original window's rectangle (spliting the longer sides) leaving the left (or upper) half of the rectangle

in the old window node and allocating the right (or lower) half to the new window node. Next the

vertex list is partitioned, each vertex falls into only one or the other window. Next the original

window's bead list of penetrating edge is scanned, each edge must fall into one or the other or both

windows. If an edge falls into both windows then a new bead is made and is placed in order into the

bead list of the edge so that the beads of every edge indicate window penetrations in order from

upper-left-most to lower-righi-most. Finally PSHSWN applies PENSUR to each of the two windows.

- 56 -

4.4 Recursive Windowing. OCCULT

The penetrator and surrounder face routine, PENSUR, scans the new bead lists of penetrating edges of

the two subwindows and marks the faces of those edges as penetrators and places them on the pen-list

of the new window; next the routine scans the old penetrator list of the parent window and tests (and

clears) the markings. Unmarked faces must be either surrounders or outsiders; the surrounders are

placed in the sur-list of the new window.

If the populations of the window are sufficiently low the hidden line eliminator (or the body

intersector, Chapter 5) processes the window (does the edge-edge compares) and calls the pop sort

window routine, POPSWN. POPSWN zeroes the window field, WND, of beads of the window as an

indication that the window is dead and so are its beads; dead beads are returned to free storage by

the BLED routine explained below. Next the POPSWN scans the vertices or the window and places the

pen-list and sur-list pointers of the window into temporary fields of each vertex; this trick preserves

the results of the recursive window sort for the sake of possible face-vertex comparing. Finally the

window node is popped off the pushdown window list and returned to free storage.

During both hidden line elimination and body intersection, edges are split in order to isolate the

portion that is hidden or in order to create face piercing points. When an edge is split its bead list of

windows is also split by means of the bead list edit routine, BLED. Since beads of an edge are ordered

upper-left to lower-right; the BLED routine scans the beads for the window into which the newly

creClted split vertex falls within; the vertex is then placed on that window's vertex list and a new bead

is created (since both the old and the new edges must have beads in the window that contains the split)

and the old bead list is split. Dead beads that are found while scanning the bead list are returned to

free storage.

Although the link manipulations are complicated to recite, the essential point is that both

windows and edges can be split without losing their topological connectedness, which gives one a tool

for reducing an N-squared spatial computation into an N-Iog-N computation. The present

implementation is coded in PDP-lO machine code, an ALGOL publication version will appear in a

forthcoming technical report which is beyond the scope of this paper.

- 57 -

4.5 Photometric Modeling and Video Generation.

FIGURE 4.6 - EXAMPLE OF VIDEO SYNTHESIS.

'1I111'lllIlllllilllllll
111111111,1111111111111 ,;.. , .. ,,,, .

. 111111111

4.5 Photometric Modeling and Video Generation.

The light scattering properties of ordinary surfaces can be modeled by

thinking of the surface as composed of many little mirrors. The orientation of

OCCULT

each mirror is described by two angles, its tilt from the normal vector of the surface and its pan about

the normal vector with respect to a specified reference vector in the tangent plane of the surface. For

a perfect reflecting surface all the differential mirrors have a zero pan and tilt; for isotropic

conventional surfaces the statistical distribution of pan orientations is flat and the distribution of tilt

orientations is a blip function; and for a perfect isotropic Lambert surfaces both the pan and tilt

distributions are flat.

After the visible faces have been assigned intensity values, a conversion from an OCCULT mosaic

image to a raster image is done by an auxiliary program called MKVID, make video. MKVID resembles

a Gouraud (71) and Watkins(70) hidden line eliminator in that it fills scan line by linear interpolation of

segments between edges of the mosaic which are in their turn linear interpolations between vertices.

- 58 -

Performance of OCCULT and Related Work. OCCULT

4.6 Performance of QCCUL T and Related Work.

Ten hidden line elimination techniques were recently surveyed in (Sutherland, Sproull and

Schumacker 1973), which after omphasing that hidden line elimination can be viewed as a sorting

problem concluded with the remark that future implementations should be based on exploiting frame

coherence, object coherence and combinations of the existing techniques. However the survey paper

might be inadquate for a would-be implementer who should consult the textbook by (Sproull and

Newman 73) for detailed explainations of the Warnock method and the Watkins method. Original

re~earch reports on hidden line elimators include: (Roberts 63), (Appel 67), (Warnock 68), (Warnock

69), (Watkins 70) and (Archuleta 72).

Inspite of all the activity and surveying of the literature, no quantitative commensurate study of

the different methods has been attempted. In particular, the performance tables at the end of

(Sutherland et al 1973) are subjective evaluations rather than experimental results of benchmark

problems, as the authors clearly state. Continuing in the same subjective fashion, OCCULT is fast in

that it can generate simple scenes (200 edges) of blocks in less than a second; the arm animation (524

edges) requires four to six seconds; the starship Enterprise (1230 edges) requires ten to twelve

seconds; and the largest scenes that fit in core (4000 edges) take from thirty to sixty seconds.

(,

- 59 -

5.0 Introduction to Polyhedron Intersection. POLYHEDRON INTERSECTION.

SECTION 5.

POLYHEDRON INTERSECTION.

5.0 Introduction to Polyhedron Intersection.

5.1 Intersection Geometry.
5.2 Intersection Topology.

5.3 Special Cases of Intersection.

5.4 Face Convexity Coercion.

5.5 Body Cutting.

5.6 Performance and Related Work.

5.0 Introduction to Polyhedron Intersection.

The intersection, union, and set differences of two solid polyhedra can be computed by

combining a body intersection procedure called BIN with the EVERT primitive, as Figure 5.1 iilustrates.

The body intersection procedure is important for three reasons: first, it is a general and conceptually

elegant construction operator; second, it can be l.'sed for spatial modeling in collision detection and

trajectory planning for manipulators and vehicles; and third, it can be used to localize an object in 3-D

space from a sequence of silhouotto views. The intersection algorithm consists of two parts: first,

there is a geometric part in which all the faces and edges are compared with each other for potential

face/edge intersections called piercing points; and second, there is a topological part in which the

results are "copied off" of the given polyhedra; the results may consist of zero, one or mlny

polyhedra. In the following, the term "operands" refers to the sets of polyhedra given to BIN I.
arguments and the term "result" refers to the set (possibly empty) of polyhedra produced by BIN.

- 60 -

POL YHEDROr: IITTiY

FiGUf~E 5.1 PULY; if Il\JT[[{'SECTION, UNION i\ SUDTRAC;-

BIN(EVERT(STAR),CYLN)

- 61 -

Reproduced from
best available copy

BIN(ST AR,EVERT (CYlN))

5.1 Intersection Geometry. POLYHEDRON INTERSECTION.

5.1 Intersection Geometry.

Conceptually, the geometric part of the polyhedron intersection algorithm, BIN, consists of

comparing each face of one operand with every edge of the other operand and vice versa. In practice

the potentially N-squared compares are avoided by using the same recursive window partition sort that

was used in the hidden line eliminator, OCCULT, Section 4.3. Ignoring the recursive windowing for a

moment, the innermost face-edge compare of BIN consists of four steps: opposition, intersection,

enclosure and fission.

FIGURE 5.2 - FACE PIERCING GEOMETRY.

Piercing Point Within F. Piercing Point Outside F.

O/JJlMitioll Trst. Given a faco F and an edge E, first, the endpoints of the edge are checked to

see whethor they are in opposite halfspaces with respect to the plane of the face. In terms of vector

geometry, the dot product of the face vector and each vertex vector is taken and the signs compared;

different signs indicate that the vertices are in different halfspaces. The opposition test requires six

multiplications. IlItnrsnrtioll I.or/H. The locus of the point where the edge pierces the plane of the

face is computed (four multiplications). l<:rrdo.mrn Tr.~t. Next the edge is tested to see if it actually

passes thru the interior of the face. In BIN, this test exploits the face convexity restriction. The test

consists of crossing neighboring pairs of vectors radiating from the face-plane piercing-point to each

vertex of the given face and testing for a sign change, Figure 5.2. Since only one component of the

cross product needs to be evaluated, the test requires only two mUltiplications per edge of the face

whoes plane is pierced. Hd gI' FiHioll. If the edge pierces the face, then the edge is split (using the

ESPLIT and BLED routines) forming a new vertex, called a face piercing vertex. A temporary link of

the vertex node (field CW, left half of word 7) is set to point at the face that was pierced and the PED

link of the new vertex is set to point at the one of its two edges that is external to the surface.

- 62 -

5.2 Inhlrseclion Topology. POL VHEDRON INTERSECTION.

5.2 Intersection Topology.

After the face-piercing vertices have been made (assuming no pathological cases, Section 5.3),

the edges and vertices of the result can be created in relation to the faces, edges, and vertices of the

operands. The relation between the operands and the results is established in terms of two kinds of

edges: interior edges and surface edges as illustrated in Figure 5.3. Surface edges correspond to the

intersections of pairs of operand faces and interior edges correspond to edges of one operand that are

enclosed inside the surface of the other operand. Surface edges always form connected loops. In

Figure 5.3, two solid prisms are being intersected, on the left the surface edges of the intersection (a

surface loop) is intensified in heavy lines, on the right the interior edges are intensified.

FIGURE 5.3 - THE SURFACE AND INTERIOR EDGES OF INTERSECTION.

\
/\.

. \

\
Surface Edges of Intersection.

I
I
I

I
J

,
"

' .. ", "'. .' .' '.~

Interior Edges of Intersection.

In similar fashion there are surface vertices and interior vertices of the result. Each

face-piercing vertex of the operands has a corresponding surface vertex in the result which is always'

a trihedral corner. The operand/result correspondence is maintained in a temporary link field named

AL T; the alternate vertices and edges that belong to the result are created by two topological trace

routines: the make surface, MKSURF routine, which creates surface edges and vertices of the result by

tracing surface loops starting from an "un-ALTered" face piercing vertex. At each face-piercing

vertex, MKSURF applies the ETRACE routine to the single interior edge of the trihedral corner.

ETRACE creates edges and vertices interior to the result by tracing the edge graph bounded by

face-piercing vertices. The new result edges are temporarily linked (PFACE and NF ACE) to the old

- 63 -

5.2 Intersection Topology. POLYHEDRON INTERSECTION.

operand faces. The MKSURF and ETRACE routines are followed by three steps that fix up the surface

wings, interior wings and face nodes 50 that a complete winged edge polyhedral result is legally

formed.

The interior trace routine is trivial - all the links are readily accessed using the ECCW and

OTHER primitives on the operand polyhedra. The surface trace routine is made easy by implementing a

procedure, NEXTPV, to retrieve the next face-piercing vertex about a surface loop. The NEXTPV

procedure, given below, is based on the obseravtion that the intersection of two convex faces is one

line segment and either one face is pierced twice by two different edges of the other face; or each

face is pierced once by one edge of the other face, Figure 5.4.

FIGURE 5.4 - FETCH NEXT FACE-PIERCING VERTEX.

Edge of F 1 pierces F2 at V2. Edge of F2 pierces Flat V2.

COMMENT RETURN THE NEXT FACE PIERCING VEXT OF A SURFRCE LOOP;
INTEGER PROCEDURE NEXTPV (INTEGER F2,VI);
BEGIN "NEXTPV"

INTEGER FI,V2;
FI ~ CW(VI); COMMENT FRCE PIERCED BY VI;

COMMENT DOES RN EDGE OF FI PIERCE F2 RT THE OTHER PIERCE-VERTEX V2;
E ~ EO ~ PED(Fl);
DO IF F2 = CW(V2~VCCW(E,FI» THEN RETURN(V2) UNTIL EO = (E~ECCW(E,FI»;

COMMENT DOES RN EDGE OF F2 PIERCE FI RT THE OTHER PIERCE-VERTEX V2;
E ~ EO ~ PED(F2);
DO IF FI ~ CW(V2~VCCW(E,FI» A V2.VI THEN RETURN(V2) UNTIL EO = (E~ECCW(E,F2»;

COMMENT FRTRL CONSISTENCY ERROR - SOMETHING WRONG IN FRCE/EDGE COMPARE PRSS;
RETURN (0) ;

END "NEXTPV";

Fix up step-! places vertex and wing pointers in all the interior edges. An interior edge is

distinguished by its non-zero ALT link. The new vertices are provided with a first edge, PED(VNEW),

jf it be lacking. Fix up step-2 wings together the surface vertex tridedral corners. Since by good luck

- 64 -

5.3 Special Cases of Inter5ection. POL YHEDRON INTERSECTION.

all surface vertices are neces5arily trihedral, the edges can be passed to the WING primitive for

oriented linking, in any order. The two surface wings of a surface vertex were stored in the NED and

PED links by MKSURF; the inward wing can be retrieve as the PED(ALT(U)). Surface vertices are

~istinguished by their ALT vertex being marked as a piercing vertex. Fix up step-3 replaces the alien

faces of the result with native faces. This is done by scanning the edge ring of the body, testing the

two faces of each edge to see if they belong to the result body, and if a face doesn't belong it is

replaced by a new one. Face replacement, as ususal, requires clocking around a face perimeter and

changing the appropriate face link in each edge. A final marking trace assigns one body node to each

separate connected graph of faces, edges and vertices.

FIGURE 5.5 - EXAMPLE OF A FACE HOLE FIXUP.

5.3 Special Cases of Intersection.

In order of difficulty from easy to hard, the four special cases that must be handled are

non-intersection, extremely short edges, face holes and coincident entities. NOII-/ll/crscr.tioll. When

the face-edge compare (by recursive window space sort) returns no piercing points, it implies that the

surfaces of the given polyhedra do not intersect and that a further test is needed to determine

whether the operands are disjoint (and so the intersection be empty) or whether one operand contains

~he other. Forc Holf's. Because EVERTed 50lids are allowed,one polyhedron can cut a hole in a face

of the other without intersecting any of the edges of that face, which would fool the copy-trace. So as

a preliminary step to BIN, all the 5urface loops are traced and checked to make certain they cross

more than one face. If a one face surface-loop is found, the face is pyramided to a vertex interior to

the surface-loop. A face hole fix up is illustrated in Figure 5.5, the middle panel of the figure shows

- 65 -

5.5 Body Cutting. POLYHEDRON INTERSECTION.

that two faces of the cubic prism were pyramided, the right panel of the figure shows the result after

face-convexity coercion. Short [.;rI Gf'·~. An application of BIN can create edges with almost zero length,

~hich require an extra pass to find and delete. COillrir/f'lIt 1(;lItitif'.~. An occasional edge that lies

exactly in the plane of a face can be nudged off the plane a little resulting in extremely short edges

which are later removed. Although it is meaningful to try to intersect polyhedra which have many

faces, edges and vertices that are exactly coincident, the present implementation loses track of interior

and exterior when too many nearly zero length edges are made.

5.4 Face Convexity Coercion.

Since, both the body intersecter, BIN, and the hidden line eliminator, OCCULT, are restricted to

convex faced polyhdera; it is essential to have a routine that detects and subdivides the concave faces

of a given polyhedron. The make convex routine, MKCNYX, reduces the concave faces of a body into

reasonably small number of convex faces. The method consists of two steps: first, the face is broken

down into triangles and second, the longest unnecessary newly made edges are removed. The

reduction to triangles step is recursive: the pointiest extrema vertex of a face, YO, is lopped off, if no

other vertices of the face are on the same side of the line segment between YO's immediate

neighboring verticos: OTHER(ECCW(YO,F),YO) and OTHER(ECW(VO,F),VO). Otherwise the face is split,

MKFE, using the vertex closest to VO that violates YO's potential lop line. An extrema vertex is one

that touchs the smallest circumscribed rectangle whose sides are parellel to the coordinate axes; the

pointiest vertex is the one with the largest cosine.

FIGURE 5.6 - EXAMPLES OF FACE CONVEXITY COERCION.

5.5 Body Cutt i ng.

Body cutting is the operation of dividing an arbitrary polyhedron into sets of parts above and

- 66 -

5,6 Performance and Related Work. POLYHEDRON INTERSECTION.

below a given cutting plane, as has already been illustrated in Figure 3.8. Although body cutting might

be done by subtracting a very large thin rectangular prism, the process is sufficiently important to

merit a separate implementation which nevertheless resembles the subtraction. First, all the edges of

the given body are compared with the given cutting plane and piercing vertices are formed in pairs

(one vertex for each side of the cut). Between the cutting-plane vertex-pairs are zero length edges

which are placed into a special temporary list. Next, pairs of cutting-plane vertices (belonging to the

same face and destined to be in the same half-space) are MKFEed together splitting the faces with

cutting-plane edge pairs (one edge for each side of the cut). Between the cutting-plane edge-pairs

are zero area faces. Finally all the zero length cutting plane edges are KLFEed if their PFACE and

NF ACE are different or UNGLUEed if their PFACE and NF ACE are the same. In this circumstance an

edge having the same NF ACE and PF ACE is a wasp edge. The simplicity of the body cutting

implementation is do to the power of the UNGLUE Euler primitive.

5.6 Performance and Related Work.

Curious to relate, I have found no example in the literature of a general polyhedron intersection

method. Maruyama's (72) method is a collision detector rather than a intersector, because he does not

attempt to genorate the polyhedra of intersection; however, his algorithm does resemble the geometric

first phase of BIN and might have been extended for generating new solids. The intersection methods

of Braid (73) are restricted to particular combinations of six volume elements which comprise a useful

subset of cases for mechanical drawing.

The version of BIN is implemented on a PDP-lO (with 2 microsecond core memory) can

construct the intersection of simple objects such as a pair of cubes in less than a quarter of a second;

the intersection of a couple of twenty sided cylinders in about two seconds; the intersection of two

horse silhouette cones takes (chapter 9) about fifteen seconds; and the intersection of two silhouette

cone intersections can take up to a minute.

- 67 -

6.1 A Geometric Feedback Vision System. VISION THEORY.

SECTION 6.

COMPUTER VISION THEORY.

6.0 Introduction to Computer Vision Theory.

6.1 A Geometric Feedback Vision System.

6.2 Vision Tasks.

6.3 Vision System Design Arguments.

6.4 Mobile Robot Vision.

6.5 Summary and Related Vision Work.

6.0 Introduction to Computer Vision Theory.

Computer vision concerns programming a computer to do a task that demands the use of an

image forming light sensor such as a television camera. The theory I intend to elaborate is that

general 3-D vision is a continuous process of keeping an internal visual simulator in sync with

perceived images of the external reality, so that vision tasks can be done more by reference to the

simulator's model and less by reference to the original images. The word thl!Ory, as used here, means

simply a set of statements presenting a systematic view of a subject; specifically, I wish to exclude the

connotation that the theory is a natural theory of vision. Perhaps there can be such a thing as an

artificial theory which extends from the philosophy thru the design of an artifact.

6.1 A Geometric Feedback Vision System.

Vision systems mediate between images and world models; these two extremes of a vision

system are called, in the jargon, the holtom and the top respectively. In what follows, the word

i,na«e will be used to refer to the notion of a 2-D data structure representing a picture; a picture

- 68 -

6.1 A Geometric Feedback Vision System. VISION THEORY.

being a rectangle taken from the pattern of light formed by a thin lens on the nearly flat photoelectric

surface of a television camera's vidicon. On the other hand, a world model is a data structure which is

supposed to represent the physical world for the purposes of a task processor. In particular, the main

pOint of this thesis concerns isolating a portion of the world model (called the 3-D geometric world

model) and placing it below most of the other entities that a task processor has to deal with. The

vision hierarchy, so formed, is illustrated in box 6.1.

BOX 6.1

The Top ~

The Bottom ~

VISION SYSTEM HIERARCHY.

Task Processor

Task World Model

I
3-D Geometric Model

2-D Images

Between the top and the bottom, between images and the task world model, a general vision

system has three distinguishable modes of operation: recognition, verification and description.

Recognition vision can be characterized as bottom up, what is in the picture is determined by extracting

a set of features from the image and by classifing them with respect to prejudices which must be

taught. Verification vision is top down or model driven vision, and involves predicting an image

followed by comparing the predicted image and a perceived image for differences which are expected

but not yet measured. Descriptive vision is bottom up or data driven vision and involves converting the

image into a representation that makes it possible (or easier) to do the desired vision task. I would

like to call this third kind of vision "revelation vision" at times, although the phrase "descriptive vision"

is the term used by most members of the computer vision community.

Box 6.2 THREE BASIC MODES OF VISION.

1. Recognition Vision - Feature Classification. (bottom up into a prejudiced top).
2. Verification Vision - Model Driven Vision. (nearly pure top down vision).

3. Descriptive Vision· Data Driven Vision. (nearly pure bottom up vision).

There are now enough concepts to oulline a feedback system. By placing a 3-D geometric

model between top and bottom; recognition vision can be done mapping 3-D (rather than 2-D) features

- 69 -

6.1 A Geometric Feedback Vision System. VISION THEORY.

into the task world model with descriptive vision and verification vision linking the 2-D and 3-D models

in a relatively dumb, mechanical fashion. Previous attempts to use recognition vision, to bridge directly

the gap between 2-D images (of 3-D objects) and the task world model, have been frustrated because

the characteristic 2-D image features of a 3-D object are very dependent on the 3-D physical

processes of occultation, rotation and illumination. It is these processes that will have to be modeled

and understood before the features relevant to the task processor can be deduced from the per-ceived

images. The arrangement of these elements is diagramed below.

Box 6.3 BASIC FEEDBACK VISION SYSTEM DESIGN.

Task World Model

f
RECOGNITION

f
3-D geometric model

f J,

DESCRIPTION

f
VERIFICATION

J,

2-D images

The lower part of the above diagram is the feedback loop of the 3-D geometric vision system.

Depending on circumstances, the vision system may run almost entirely top-down (verification VIsion)

or bottom-up (revelation vision). Verification vision is all that is required in a well known predictable

environment; whereas, revelation vision is required in a brand new (tabula rasa) or rapidly changing

environment. Thus revelation and verification form a loop, bottom-up and top-down. First, there is

revelation that unprejudically builds a 3-D model; and second, the model is verified by testing image

features predicted from the model. This loop like structure has been noted before by others; it is a

form of what Tenenbaum (71) called accommodation and it is a form of what Falk (69) called heuristic

1Ji"tOIl; however I will go along with what I think is the current majority of vision workers who call it

Completing the design, the images and worlds are constructed, manipulated and compared by a

variety of processors, the topmost of which is the task processor. Since the task processor is expected

to vary with the application, it would be expedient if it could be isolated as a user program that calls

- 70 -

6.2 Vision Tasks. VISION THEORY.

on utility routines of an appropriate vision sUb-system. Immediately below the task processor are the

3-D recognition routines and the 3-D modeling routines. The modeling routines underlie most

everything because they are used to create, alter and access the models.

Box 6.4 PROCESSORS OF A 3-D VISION SYSTEM.

O. The task processor. 4. Image analyser.

1. 3-D recognition. 5. Image synthesizer.

2. 3-D modeling routines. 6. Locus solvers.

3. Reality simulator. 7. Comparators: 20 and 3D.

The remaining processors include the reality simulator which does mechanics for modeling

motion, collision and gravity. Also there are image analyzers, which do image enhancement and

conversions such as converting video rasters into line drawings. There is an image synthesizer, which

dOOG hidden line lind surface elimination, for verification by comparing synthetic images from the model

with perceived images of reality. There are three kinds of locus solvers that compute numerical

descriptions for cameras, light sources and physical objects. Finally, there is of course a large number

of (at least ten) different compare processors for confirming or denying correspondences among

entities in each of the different kinds of images and 3-D models.

6.2 Vision Tasks.

The 3-D vision research problem being discussed is that of finding out how to write programs

that can see in the real world. Related vision problems include: modeling human perception, solving

visual puzzles (non-real world), and developing advanced automation techniques (ad hoc vision). In

order to approach the problem, specific programming tasks are proposed and solutions are sought,

however a programming task is different than a reseach problem because many vision tasks can be

done without vision. The vision solution to be found should be able to deal with real images, should

include the continuity of the visual process in time and space, and should be more general purpose and

less ad hoc. These three requirements (reality, continuity, and generality) will be developed by

surveying six examples of computer vision tasks.

- 71 -

6.2 Vision Tasks. VISION THEORY.

BOX 6.5 SIX EXAMPLES OF COMPUTER VISION TASKS.

Cart Relntnd Tn.(b. Table Top Rdated Ta.(ks.

1. The Chauffeur Task. 4. Turntable Task.

2. The Explorer Task. 5. The Blocks Task.

3. The Soldier Task. 6. Machine Assembly Tasks.

First, there is the robot chauffeur task. In 1969, John McCarthy asked me to (onsider the vision

requirements of a computer controlled car such as he depicted in an unpublished essay. The idea is

that a user of such an automatic car would request a destination; the robot would select a route from

an internally stored road map; and it would then proceed to its destination using visual data. Tho

problem involves representing the road map in the computer and establishing the correspondence

between the map and the appearance of the road as the automatic chauffeur drives the vehicle along

the selected route. Lacking a computer controlled car, the problem was abstracted to that of tracing a

route along the driveways and parking lots that surround the Stanford A.!, Laboratory using a

television camera and transmitter mounted on a radio controlled electric cart. The robot chauffeur task

could be solved by non-visual means such as by railroad like guidance or by inertial guidance; to

preserve the vision aspect of the problem, no particular artifacts should be required along a route

(landmarks must be found, not placed); and the extent of inertial dead reckoning should be noted.

Second, there is the task of a robot explorer. In (McCarthy 1964) there is a description of a

robot for exploring Mars. The robot explorer was required to run for long periods of time without

human intervention because the signal transmission time to Mars is as great as twenty minutes and

because the 23.5 hour Martian day would place the vehicle out of Earth sight for twelve hours at a

time. (This latter difficulty could be avoided at the expense of having a set of communication relay

satellites in orbit around Mars.) The task of the explorer would be to drive around mapping the

surface, looking for interesting features, and doing various experiments. To be prudent, a Mars

explorer should be able to navigate without vision; this can be done by driving slowly and by using a

tactile collision and crevasse detector. If the television system fails, the core samples and so on can

still be collected at different Martian sites without unusual risk to the vehicle due to visual blindness.

- 72 -

6.2 Vision Tasks. VISION THEORY.

The third vision task is that of the robot soldier, tank, sentry, pilot or policeman. The problem

has several forms which are quite similar to the chauffeur and the explorer with the additional goal of

doing something to coerce an opponent. Although this vision task has not yet been explicitly attempted

at Stanford, to the best of my knowledge, the reader should be warned that II thorough solution to any

of the other tasks almost assures the Orwellian technology to solve this one.

Fourth, the turntable task is to construct a 3-D model from a sequence of 2-D television images

taken of an object rotated on a turntable. The turntable task was selected as a simplification of the

explorer task and is an example of a nearly pure descriptive vision task.

Fifth, the classic blocks vision task consists of two parts: first convert a video image into a line

drawing; second, make a selection from a set of predefined prototype models of blocks that accounts

for the line drawing. In my opinion, this vision task emphasizes three pitfalls: single image vision, line

drawings and blocks. The greatest pitfall, in the usual blocks vision lask, is the presumption that a

single image is to be solved; thus diverting attention away from the two most important depth

perception mechanisms which are motion parallax and stereo parallax. The second pitfall is that the

usual notion of a perspective line drawing is not a natural intermediate state; but is rather a very

sophisticated and platonic geometric idea. The perfect line drawing lacks photometric information; even

a line drawing with perfect shadow lines included will not resemble anything that can readily be gotten

by processing real television pictures. Curiously, the lack of success in deriving line drawings from

real television images of real blocks has not dampened interest in solving the second part of the

problem. The perfect line drawing puzzle, was first worked on by Guzman (68) and extended to

perfect shadows by Waltz (72); nevertheless, enough remains so that the puzzle will persist on its own

merits, without being closely relevant to real world computer vision. Even assuming that imperfect line

drawings are given, the blocks themselves, have lead such researchers as Falk (69) and Grape (73) to

concentrate on vertex/edge classification schemes which have not been extended beyond the blocks

domain. The blocks task could be rehabilitated by concentrating on photometric modeling and the use

multiple images for depth perception.

- 73 -

6.3 Vision System Design Arguments. VISION THEORY.

Sixth, the Stanford Artificial Intelligence Laboratory has recently (1974) begun work on a

National Science Foundation Grant supporting· research in automatic machine assembly. In particular,

effort will be directed to developing techniques that can be demonstrated by automatically assembling a

chain saw gasoline engine. Two vision questions in such a machine assembly task are, where is the

part and where is the hole; these questions will be initially handled by composing ad hoc part and hols

detectors for each vision step required for the assembly.

The point of this task survey was to illustrate what is and is not a task requiring real 3-D vision;

and to point out that caution has to be taken to preserve the vision aspects of a given task. In the

usual course of vision projects, a single task Or a single tool unfortunately dominates the research; my

work is no exception, the one tool is 3-D modeling, and the task that dominated the formative stages of

the research is that of the robot chauffeured cart. A better understanding of the ultimate nature of

computer vision can be obtained by keeping the several tasks and the several tools in mind.

6.3 Vision System Design Arguments.

The physical information most directly relevant to vision is the location, extent and light

scattering properties of solid opaque objects; the location, orientation and projection of the camera that

takes the pictures; and the location and nature of the light that illuminates the world. The

transformation rules of the overyday world that a programmer may assume, a priori, are the laws of

physics. The arguments against geometric modeling divide into two categories: the reasonable and the

intuitive. The reasonable arguments attack 3-D geometric modeling by comparing it to another

modeling alternative, some of which are listed in Box 6.6. Actually, the domains of efficiency of the

possible kinds of models do not greatly overlap; and an artificial intellect will have some portion of

each kind. Nevertheless, I feel that 3-D geometric modeling is superior for the task at hand, and that

the other models are less relevant to vision.

- 74 -

6.3 Vision System Design Arguments. VISION THEORY.

BOX 6.6 Alternatives to 3-D Geometric Modeling in a Vision System.

1. Image memory and with only the camera model in 3-D.

2. Statistical world model, e.g. Duda & Hart.

3. Procedural Knowledge, e.g. Hewitt & Winograd.

4. Semantic knowledge, e.g. Wilkes & Shank.
5. Formal Logic models, e.g McCarthy & Hayes.

6. Syntactic models.

Perhaps the best alternative to a 3-D geometric model is to have a library of little 2-D images

describing the appearance of various 3-D loci from given directions. The advantage would be that a

sophisticated image predictor would not be required; on the other hand the image library is potentially

quite large and that even with a huge data base new views and lighting of familiar objects and scenes

cannot be anticipated. A second alternative is the statistical world model used in the pattern

recognition paradigm. Such modeling might be added to the geometric model; however, alone the

statistical abstraction of world features in the presence of occultation, rotation and illumination seems as

hopeless as the abstraction of a man's personality from the pattern of tea leaves in his cup.

Procedural knowledge models represent the world in terms of routines (or actors) which either

know or can compute the answer to a question about the world. Semantic models represent the world

in term of a data structure of conceptual statements; and formal logic models represent the world in

terms of first order predicate calculus or in terms of a situation calculus. The procedural, semantic and

, formal logic world models are all general enough to represent a vision model and in a theoretical sense

they are merely other notations for 3-D geometric modeling. However in practice, these three

modeling regimes are not efficient holders and handlers of quantitative geometric data; but are rather

intended for a higher level of abstract reasoning. Another alleged advantage of these higher models is

that they can represent partial knowledge and uncertainty, which in a geometric model is implicit, in

that structures are missing or incomplete. For example, McCarthy and Feldman demand that when a

robot has only seen the front of an office desk that it should be able to draw inferences from its model

about the back of the desk; I feel that this so called advantage is not required by the problem and that

basic visual modeling is on a mOre agnostic level.

- 75 -

6.3 Vision System Design Arguments. VISION THEORY.

The syntactical approach to descriptive vision is that an image is a sentence of a picture

grammar and that consequently the image description should be given in terms of a sequence of

grammar transformations rules. Again this paradigm is valid in principle but impractical for real images

of 3-D objects because simple replacement rules cannot readily express rotation, perspective, and

photometric transformations. On the other hand, the syntactical model has been used to describe

perfect line drawings of 3-D objects, (Gips 74).

The intuitive arguments include the opinions that geometric modeling is too numerical, too exact,

or too non-human to be relevant for computer vision research. Against such intuitions, I wish to pose

two fallacies. First, there is the natural mimir.ry fallacy, which is that it is false to insist that a machine

must mimic nature in order to achieve its design goals. Boeing 747's are not covered with feathers;

trucks do not have legs; and computer vision need not simulate human vision. The advocates of the

uniqueness of natural intelligence and perception will have to come up with a rather unusual uniqueness

proof to establish their conjecture. In the meantime, one should be open minded about the potential
I

forms a perceptive consciousness can take.

Second, there is the self introspection fallacy, which is that it is false to insist that one's

introspections about how he thinks and sees are direct observations of thought and sight. By

introspection some conclude that the visual models (even on a low level) are essentially qualitative

rather than quantitative. My belief is that the vision processing of the brain is quite quantitative and

only passes into qualities at a higher level of processing. In either case, the exact details of human

visual processing are inaccessible to conscious self introspection.

Although describing the above two fallacies might soften a person's prejUdice against numerical

geometric modeling, some important argument or idea is missing that would be convincing short of the

final achievement of computer vision. Contrariwise, I have not heard an argument that would change

my prejudice in favor of such models. Nevertheless beyond prejudice, my theory would be proved

wrong if a really powerful computer vision system is ever built without using any geometric models

worth speaking of, perhaps by employing an elaborate stimulus response paradigm.

- 76 -

6.4 Mobile Robot Vision. VISION THEORY.

6.4 Mobile Robot Vision.

The elements discussed so far will now be brought together into a system design for performing

mobile robot vision. The proposed system is illustrated below in the block diagram in Box 6.7. (The

diagram is called a mandala in that a mfllldn[n is any circle-like system diagram). Although, the robot

chauffeured cart was the main task theme for this research; I have failed to date, August 1974, to

achieve the hardware and software required to drive the cart around the laboratory under its own

control. Nevertheless, this necessarily theoretical cart system has been of considerable use in

developing the visual 3-D modeling routines and theory, which are the subject of this thesis.

BOX 6.7 CART VISION MANDALA.

................... · ... 4 · ... PlRCflvro ·H RrnllTY PREDICT[D
, WORLD SIMUI.ATOR WORlO I

I
PFRf.[IVfO r.mn PR[DICT[O t

CAMI.P.A lOCUS DRIV[R CAM[RA lOCUS I

, , ,
OOOY CA"I RA
I.OCUS lOCUS
SOlVI R SOl VlR

, ,
RI VI AI VIRIf Y
CO"I'AI'I CO"I'ARr , , , , ,

I

•
THE CART • PREDICTED

SUN lOCUS •

•
IMAGI:

SYNTlIFSIlI V

•
• , •• rlf~eIIVI()· ' t ,· PP.[D1ClfO l

••••• "[JSAIC IM!;[

t
1'1 ReI IVI 0

CONI[JUR IMAG[, .
t ,

1'1 Vel IVI 0
VIOIO IMGI

t ,
t

TlLfVISI[JN
CAMI VA

"OSAIC IMG£ I , . ,
t

PRrOICTrD
CONTOUR IMAGE

t •
PREDICTED

VIDIO IMnGE

The robot chauffeur task involves establishing the correspondence between an internal road map

and the appearance of the road in order to steer a vehicle along a predefined path. For a first cut, the

planned route is assumed to be clear, and the cart and the sun are assumed to be the only movable

things in a static world. Dealing with moving obstacles is a second problem, motion thru a static world

must be dealt with first.

- 77 -

6.4 Mobile Robot Vision. VISION THEORY.

The cart at the Stanford Artificial Intelligence Laboratory is intended for outdoors use and

consists of a piece of plywood, four bicycle wheels, six electric motors, two car batteries, a television

camera, a television transmitter, a box of digital logic, a box of relays, and a toy airplane radio

receiver. (The vehicle being discussed is not "Shaky", which belongs to the Stanford Research

Institute's Artificial Intelligence Group. There are two A.1. labs near Stanford and each has a computer

controlled vehicle.) The six possible cart actions are: run forwards, run backwards, steer to the left,

steer to the right, pan camera to the left, pan camera to the right. Other than the television camera,

there is no telemetry concerning the state of the cart or its immediate environment.

BOX 6.8 A POSSIBLE CART TASK SOLUTION.

1. Predict (or retrieve) 2-D image features.

2. Perceive (take) a television picture and convert into features.

3. Compare (verify) predicted and perceived features.

4. Solve for camera locus.
5. Servo the cart along its intended course.

The solution to the cart problem, begins with the cart at a known starting position with a road

map of visual landmarks with known loci. That is, the upper leftmost two rectangles of the cart mandala

are initialized so that the perceived cart locus and the perceived world correspond with reality.

Flowing across the top of the mandala, the cart driver, blindly moves the cart forward along the

desired route by dead reckoning (say the cart moves five feet and stops) and the driver updates the

predicted cart locus. The reality simulator is an identity in this simple case because the world is

assumed static. Next the image synthesizer uses the predicted world, camera and sun to compute a

predicted image containing the landmark features expected to be in view. Now, in the lower left of the

mandala, the cart's television camera takes a perceived picture and (flowing upwards) the picture is

converted into a form suitable for comparing and matching with the predicted image. Features that are

both predicted and perceived and found to match are used by the camera locus solver to compute a

new perceived camera locus (from which the cart locus can be deduced). Finally the cart driver

compares the perceived and the predicted cart locus and corrects its course and moves the cart again,

and so on.

- 78 -

6.5 Summary and Related Vision Work. VISION THEORY.

The remaining limb of the cart mandala is invoked in order to turn the chauffeur into an

explorer. Perceived images are compared in time by the reveal compare and new features are located

by the body locus solver and placed into the world model. The generality and feasibility of such a cart

system depends almost entirely on the representation of the world and the representation of image

features. (The more general, the less feasible). Four smaller cart systems might be possible using

simpler 3-D models.

A first system might consist of a road map, a road model, a road model generator, a solar

ephemeris, an image predictor an image comparator, a camera locus solver, and a course servo routine.

The roadways and nearby environs are entered into the computer. In fact, real roadways are

constructed from a two dimensional (X,V) allignment map showing where the center of the road goes as

a curve composed of line segment and circular arcs; and from a two dimensional (5,Z) elevation

diagram, showing the height of the road above sea level as a function of distance along the road in a

sequence of linear grades and vertical arcs which (not too surprising) are nearly cubic splines. A

second version, might be made like the first except that the road model, road model generator, and

image predictor are replacod by a library of road images. In this system the robot vehicle is trained

by being driven down the roads it is suppose to follow. A third system also might be made like the

first except that the road map is not initially given, and indeed the road is no longer presumed to exist.

Part of the problem becomes finding a road, a road in the sense of a clear area; this version yields the

cart explorer and if the clear area is found quite rapidly and the world is updated quite frequently, the

explorer can be a chauffeur that can handle obstacles and moving objects.

6.5 Summary and Related Vision Work.

To recapitulate, three vision system design requirements were postulated: reality, generality,

and continuity. These requiremonts were illustrated by discussing a number of vision related tasks.

Next, a vision system was described as mediating between 2-D images and a world model; with the

world model being further broken down into a 3-D geometric model and a task world model. Between

these entities three basic vision modes were identified: recognition, verification and revelation

(description). Finally, the general purpose vision system was depicted as a quantitative and description

- 79 -

6.5 Summary and Related Vision Work. VISION THEORY.

oriented feedback cycle which maintain a 3-D geometric model for the sake of higher qualitative,

symbolic, and recognition oriented task processors. Approaching the vision system in greater detail;

the role of seven (or so) essential kinds of processors were explained: the task processor, 3-D

modeling routines, reality simulator, image analyser, image synthesizer, comparators, and locus solvers.

The processors and data types were assembled into a cart chauffeur system.

Larry Roberts is justly credited for doing the seminal work in 3-D Computer Vision; although his

thesis (Roberts 63) appeared over ten years ago the subject has languished dependent on and

overshadowed by the four areas called: Image Processing, Pattern Recognition, Computer Graphics, and

Artificial Intelligence. Outside the computer sciences, workers in psychology, neurology and philosophy

also seek a theory of vision.

Image Processing involves the study and development of programs that enhance, transform and

compare 2-D images. Nearly all image processing work can eventually be applied to computer vision in

various circumstances. A survey of this field can be found in an article by Rosenfeld(69). Image

Pattern Recognition involves two steps: feature extraction and classification. A comprehensive text

about this field with respect to computer vision, has been written by (Ouda and Hart 73). Computer

Graphics is the inverse of descriptive computer vision. The problem of computer graphics is to

synthesis images from three dimensional models; the problem of descriptive computer vision is to

analyze images into three dimensional models. An introductory text book about this field would be that

of (Newman and Sproull 73). Finally, there is Artificial Intelligence, which in my opinion is an

institution sheltering a heterogenous group of embryonic computer subjects; the biggest of the present

day orphans include: robotics, natural language, theorem proving, speech analysis, vision and planning.

A more narrow and relevant definition of artificial intelligence is that it concerns the programming of

the robot task processor which sits above the vision system.

The related vision work of specific individuals has already been mention in context. To

summarize, the present vision work is related to the early work of Roberts(63) and Sutherland; to

recent work at Stanford: Falk, Feldman and Paul(67), Tenenbaum(72), Agin(72), Grape(73); to the

work at MIT: Guzman, Horn, Waltz, Krakaurer; to the work at the University of Utah: Warnock, Watkins;

- 80 -

6.5 Summary and Related Vision Work. VISION THEORY.

and to work at other places: SRI and JPL. Future progress in computer vision will proceed in step with

better computer hardware, better computer graphics software, and better world modeling software.

Further vision work at Stanford, which is related to the present theory is being done by Lynn Quam

and Hans Morevac. The machine assembly task is being pursued both by the Artificial Intelligence

Group of the Stanford Research Institute and by the Hand Eye Project at Stanford University. Because

the demand for doing practical vision tasks can be satisfied with existing ad hoc methods or by not

using a visual sensor at all; little or no theoretical vision progress will necessarily result from the

achievement of spectacular robotic industrial assembly demonstations (hire the handicap, blind robots

assembles widgets). On the other hand, since the missing ingredient for computer vision is the spatial

modeling to which perceive images can be related; I believe that the development of the technology

for generating commercial film and television by computer for entertainment might make significant

contribution to computer vision.

- 81 -

7.0 Introduction to Image Analysis. IMAGE CONTOURING.

SECTION 7.

VIDEO IMAGE CONTOURING.

7.0 Introduction to Image Analysis.

7.1 CRE - An Image Processing System.

7.2 Thresholding.

7.3 Contouring.

7.4 Polygon Nesting.

7.5 Contour Segmentation.

7.6 Related and Future Image Analysis.

7.0 Introduction to Image Analysis.

Simply put, image analysis is the inverse of image synthesis. From this point of view, the

usually difficult question of "analysis into what ?" is answered by the answer to the question "synthesis

from what 1". Since a 3-D geometric model is adequate (and necessary) for synthesizing digital

television pictures, it is reasonable to suppose that such a model is an appropriate subgoal in the

analysis of television pictures. Such an analysis into a 3-D model would provide a useful data reduction

as well as a convenient representation for solving robotics problems such as manipulation, navigation

and recognition. This approach to image analysis is somewhat heretical, the orthodox method is to

extract features from 2-D images, which features are then used directly for the desired task. On the

other hand, vision by inverse computer graphics may be viewed as an extreme form of feature finding l

involving the extraction of a set of basic geometric features which are combined to form a

superfeature, a 3-D model. The rest of this introduction enumerates some of the kinds of information

available in a sequence of images and some of the kinds of data structures for representing images.

An image is a 2-D data structure representing the contents of a rectangle from the pattern of light

formed by a thin lens; a sequence of images in time is called a film.

- 82 -

7.0 Introduction to Image Analysis. IMAGE CONTOURING.

Three basic kinds of information in an image are photometric information, geometric information,

and topological information. Fundamentally, geometry concerns distance measure. The geometry of an

image is based on coordinate pairs that are associated with the elements that form the image. From

the coordinates such geometric properties as length, area, angle and moments can be computed.

Photometry means light measure, although physical measurements of light may include power, hue,

saturation, polarization and phase; only the relative power between points of the same image is easily

available to a computer using a television camera. The taking of color images is possible at Stanford by

means of filters; however, the acquisition of color is inconvenient and has not been seriously pursued

in the present work. Finally, topology has to do with neighborhoods, what is next to what; topological

data may be explicitly represented by pointers between related entities, or implicitly represented by

the format of the data.

Three basic kinds of image data structures are the raster, the contour map and the mosaic. A

raster image is a two dimensional integer valued array of pixels; a pixel "picture element", is a single

sample position on a vidicon. Although the real shape of a pixel is probably that of a blunt ellipse; the

fiction that pixels tesselate the image into little rectangles will be adopted. For other theoretical

purposes the array is assumed to be formed by sampling and truncating a two dimensional, smooth,

infinitely differentiable real valued function. A contour image is like a geodesic contour map, no two

contours ever cross and all the contours close. A mosaic image (or tesselation) is like a ceramic tile

mosaic, no two regions ever overlap and the whole image is completely covered with tiles. Further

useful restrictions might be made concerning whether it is permitted to have tiles with holes

surrounding smaller tiles or whether it is permitted for a tile to have points that are thinner than a

single pixel.

Given a raster image, the usual visual analysis approach is to find the features. One canonical

geometric image feature is called the r.daa and the places where edges are not found are called

ragioll.~. For a naive start, an edge can be defined as a locus of change in the image function. Edges

and regions are complementary sides of the same slippery concept; the concept is slippery because

although a continuous function of two variables and a graph of edges are each well known mathematical

- 83 -

7.1 CRE - An Image Processing Sub-System. IMAGE CONTOURING.

objects the conversion of one into the other is a poorly understood process that depends greatly on

ones motives and resources. A computational definition of the region/edge notion would include a

procedure for converting a raster approximation of an image function into a region/edge

representation based on parameters which are conceptually elegant.

7.1 eRE - An Image Processing Sub-System.

The acronym CRE stands for "Contour, Region, Edge". CRE is a solution to the problem of

finding contour edges in a sequence of television pictures and of linking corresponding edges and

polygons from one picture to the next. The process is automatic and is intended to run without human

intervention. Furthermore, the process is boltom up; there are nO inputs that anticipate the content of

the given television images. The output of eRE is a 2-D contour map data structure which is suitable

input to the 3-D modeling program, GEOMED. Five design choices that determine the character of CRE

are listed in Box 7.1. The design choices are ordered from the more strategic to the more tactical; the

first three choices being research strategies, the latter two choices being programming tactics.

Adopting these design choices lead to image contouring and contour map structures similar to those of

Krakauer (71) and Zahn (66).

BOX 7.1 CRE DESIGN CHOICES

1. Dumb vision rather than model driven vision.

2. Multi image analysis rather than single image analysis.

3. Total image structure imposed on edge finding; rather

than separate edge finder and image analyzer.

4. Automatic rather than interactive.

5. Machine language rather than higher level language.

The first design choice does not refer to the issue of how model dependent a finished general

vision system will be (it will be quite model dependent), but rather to the issue of how one should

begin building such a system. The best starting points are at the two apparent extremes of nearly

total knowledge of a particular visual world or nearly total ignorance. The first extreme involves

synthesis (by computer graphics) of a predicted 2-D image, followed by comparing the predicted and a

perceived image for slight differences which are expected but not yet measured. The second extreme

involves analyzing perceived images into structures which can be readily compared for near equality

- 84 -

7.1 CRE - An Image Processing Sub-System. IMAGE CONTOURING.

and measured for slight differences; followed by the construction of a 3-D geometric model of the

perceived world. Th. point is that in both cases images are compared, and in both cases the 3-D

model initially (or finally) contains specific numerical data on the geometry and physics of the particular

world being looked at.

The second design choice, of multi image analysis rather than single image analysis, provides a

basis for solving for camera positions and feature depths. The third design choice solves (or rather

avoids) the problem of integrating an edge finder's results into an image. By using a very simple edge

finder, and by accepting all the edges found, the image structure is never lost. This design postpones

the problem of interpreting photometric edges as physical edges. The fourth choice is a resolution to

write an image processor that does not require operator assistance or manual parameter tuning. The

final design choice of using machine language was for the sake of implementing node link data

structures that are processed one hundred times faster than LEAP, ten times faster than compiled LISP

and that require significantly less memory than similar structures in either LISP or LEAP. Furthermore

machine code assembles and loads faster than higher level languages; and machine code can be

extensively fixed and altered without recompiling.

It is my impression that CRE itself does not raise any really new scientific problems; nor does it

have any really new solutions to the old problems; rather CRE is another competent video region edge

finding program with its own set of tricks. However, it is further my impression that the particular

tricks for nesting and comparing polygons in CRE are original programming techniques. As a part of

the larger feedback system, CRE is a necessary, but not entirely satisfactory implementation of pure

bottom up image analysis.

CRE consists of five steps: thresholding, contouring, nesting, smoothing and comparing.

Thresholding, contouring and smoothing perform conversions between two different kinds of images.

Nesting and contouring compute topological relationships within a given image representation. In

summary the major operations and operands are as listed in Box 7.2; the VIC-Images are Video Intesity

Contour Images and the ARC-images are contours that have been smoothed.

- 85 -

7.2 Thresholding. IMAGE CONTOURING.

BOX 7.2 CRE DATA TRANSFORMATIONS.

MAJOR OPERA nON OPERAND RESUL T.

I. THRESHOLDING: 6-BIT-IMAGE, I-BIT-IMAGES.

2. CONTOURING: I-BIT-IMAGES, VIC-IMAGE.

3. NESTING: VIC-IMAGE, NESTED-VIC-IMAGE.

4. SMOOTHING: VIC-IMAGE, ARC-IMAGE.

5. COMPARING: IMAGE & FILM, FILM.

The initial operand is a 6-bit video raster, which in the present implementation is coerced into a

window of 216 row by 288 columns; intermediate operands consist of I-bit rasters named PAC, VSEG

and HSEG which are explained below, as well as a raster of links named SKY which is used to perform

the polygon nesting. The magic window size 216 by 288 was derive by considering the largest

product of powers of two and three that would fit within a video image. The final result is a node/link

structure composed of several kinds of nodes: vectors, arcs, polygons, lamtens (lamina inertia tensors)

levels, images and the film node.

Although the natural order of operations is sequential from image thresholding to image

comparing; in order to keep memory size down, the first four steps are applied one intensity level at a

time from the darkest cut to the lightost cut (only nesting depends on this sequential cut order); and

comparing is applied to whole images. Figure 7.1 illustrates an initial video image and its

corresponding contour image. The contoured image consists of thirteen intensity levels and took 45

seconds to compute (on a PDP-10, two microsecond memory). The final CRE data structure was

composed of 1996 nodes.

7.2 Thresholding.

Thresholding, the first and easiest step of CRE, consists of two subroutines, called THRESH and

PACXOR. THRESH converts a 6-bit image into a I-bit image with respect to a given threshold cut level

between zero for black and sixty-three for light. All pixels equal to or greater than the cut, map into

a one; all the pixels less than the cut, map into zero. The resulting I-bit image is stored in a bit array

of 216 rows by 288 columns (1728 words, 36 bits per word) called the PAC (picture accumulator)

which was named in momory of McCormick's ILlIAC-111. Atter THRESH, the PAC contains blobs of bits.

- 86 -

IMAGE CONTOURING.
FIGURE 7.1 - VIDEO IMAGE AND CONTOUR IMAGE.

- 87 -

7.3 Contouring. IMAGE CONTOURING.

A blob is defined as "rook's move" connected; that is every bit of a blob can be reached by horizontal

or vertical moves from any other bit without having to cross a zero bit or having to make a diagonal

(bishop's) move. Blobs may of course have holes. Or equivalently a blob always has one outer

perimeter polygon, and may have one, several or no inner perimeter polygons. This blob and hole

topology is recoverable from the CRE data structure and is built by the nesting step.

Next, PACXOR copies the PAC into two slightly larger bit arrays named HSEG and VSEG. Then

the PAC is shifted down one row and exclusive ORed into the HSEG array; and the PAC is shifted right

one column and exclusive ORed into the VSEG array to compute the horizontal and vertical border bits

of the PAC blobs. Notice, that technically this is the very heart of the edge finder of CRE; namely,

PACXOR is the mechanism that converts regions into edges. Edge tracing is the only operation CRE

performs on the I-bit rasters; although 800lean image processing has caught the eye of many vision

programmers (perhaps because it resembles an array automata or the game Life) one rapidly discovers

that raster operations alone are too weak to do anything interesting that can't already be done beUer

analytically in a raster of numbers or topologically in a node/link data structure.

7.3 Contouring.

Contouring, converts the bit arrays HSEG and VSEG into vectors and polygons. The contouring

itself, is done by a single subroutine named MKPGON, make polygon. When MKPGON is called, it looks

for the upper most left non-zero bit in the VSEG array. If the VSEG array is empty, MKPGON returns

a NIL. However, when the bit is found, MKPGON traces and erases the polygonal outline to which that

bit belongs and returns a polygon node with a ring of vectors. The MKPGON trace can go in four

directions: north and south along vertical columns of bits in the VSEG array, or east and west along

horizontal rows of the HSEG array. The trace starts by heading south until it hits a turn; while heading

south MKPGON must check for first a turn to the east (indicated by a bit in HSEG); next for no turn

(continue south); and last for a turn to the west. When a turn is encountered MKPGON creates a

vector node representing the run of bits between the previous turn and the present turn. The trace

always ends heading west bound. The outline so traced can be either the edge of a blob or a hole, the

two cases are distinguished by looking at the VIC-polygon's uppermost left pixel in the PAC bit array.

- gg -

7.4 Polygon Nesting. IMAGE CONTOURING.

There are two tomplexities: tontrast attumulation and dekinking. The tontrast of a vettor is

defined as (QUOTIENT (DIFFERENCE (Sum of pixel values on one side of the vedor)(Sum of pixel values

on the other side of the vector» (length of the vector in pixels». Sinte vet tors are always either

horizontal or vertital and are tonstrued as being on the cratks between pixels; the specified

summations refer to the pixels immediately to either side of the vedor. Notite that this definition of

contrast will always give a positive contrast for vettors of a blob and negative contrast for the vectors

of a hole.

The contours that have just been traced would appear "sawtoothed" or "kinky"; the terms

"kink", "sawtooth" and "jaggy" are used to express what seems to be wrong about the lowermost left

polygon in Figure 7 .2. The problem involves doing something to a rectilinear quantized set of

segments, to make its continuous nature more evident. In CRE, the jaggies solution (in the subroutine

MKPGON) merely positions the turning locus diagonally off its grid point a little in the direction

(northeast, northwest, southwest or southeast) that bisects the turn's right angle. The distance of

dekink vernier positioning is always less than half a pixel; but greater for brighter cuts and less for

the darker cuts; in order to preserve the nesting of contours. The sawtoothed and the dekinked

versions of a polygon have the same number of vectors. I am very fond of this dekinking algorithm

because of its incredible efficiency; given that you have a north, south, east, west polygon trace

routine (which handles image coordinates packed row, column into one word); then dekinking requires

only one more ADD instruction execution per vector!

7.4 Polygon Nesting.

The nesting problem is to decide whether one contour polygon is within another. Although easy

in the two polygon case; solving the nesting of many polygons with resped to eath other becomes

n-squared expensive in either compute time or in memory space. The nesting solution in CRE

sacrifices memory for the sake of greater speed and requires a 31 K array, called the SKY. CRE's

accumulation of a properly nested tree of polygons depends on the order of threshold cutting going

from dark to light. For each polygon there are two nesting steps: first, the polygon is placed in the

- 89 -

FIGURE 7.2 - SAW TOOTH DEKINKING ILLUSTRATED.

SAW TOOTHED

SMOOTHED

DEKINKED

·90 •

IMAGE CONTOURING.

DEKINKED

SAW TOOTHED
& SMOOTHED

7.4 Polygon Nesting. IMAGE CONTOURING.

tree of nested polygons by the subroutine INTREE; second, the polygon is placed in the SKY array by

the subroutine named INSKY.

The SKY array is 216 rows of 289 columns of 18-bit pOinters. The name "SKY" came about

because, the array use to represent the farthest away regions or background, which in the case of a

robot vehicle is the real sky blue. The sky contains vector pointers; and would be more efficient on a

virtual memory machine that didn't allocate unused pages of its address space. Whereas most

computers have more memory containers than address space; computer graphics and vision might be

easier to program in a memory with more address space than physical space; i.e. an almost empty

virtual memory.

The first part of the INTREE routine finds the surrounder of a given polygon by scanning the

SKY due east from the uppermost left pixel of the given polygon. The SON of a polygon is always its

uppermost left vector. After INTREE, the INSKY routine places pointers to the vertical vectors of the

given polygon into the sky array. The second part of the INTREE routine checks for and fixes up the

case where the new polygon captures a polygon that is already enclaved. This only happens when two

or more levels of the image have blobs that have holes. The next paragraph explains the arcane

details of fixing up the tree links of multi level hole polygons; and may be skipped by everyone but

those who might wish to implement a polygon nester.

Let the given polygon be named Poly; and let the surrounder of Poly be called Exopoly; and

assume that Exopoly surrounds several enclaved polygons called "endo's", which are already in the

nested polygon tree. Also, there are two kinds of temporary lists named the PLiST and the NLiST.

There is one PLIST which is initially a list of all the ENDO polygons on Exopoly's ENDO ring. Each endo

in turn has an NLIST which is initially empty. The subroutine INTREE re-scans the sky array for the

polygon due east (to the left) of the uppermost left vector of each endo polygon on the PLIST,

(Exopoly's ENDO ring). On such re-scanning, (on behalf of sayan Endo1), there are four cases: No

cliallJ(tl; the scan returns Exopoly; which is Endo 1 's original EXO. Poly capturtls Blldo 1; the scan

returns Poly indicating that endo 1 has been captured by Poly. AI y brot/ltlrs faltl; the scan hits an

end02 which is not on the PLlST; which means that end02's EXO is valid and is the valid EXO of endol.

- 91 -

7.5 Contour Segmentation. IMAGE CONTOURING.

My fate ddaYlld; the scan hits an end02 which is still on the PLIST; which means that end02's EXO is

not yet valid but when discovered it wi!1 also be Endol's EXO; so Endol is CONSed into End02's NLiST.

When an endo polygon's EXO has been rediscovered, then all the polygons on that endo's NLiST are

also placed into the polygon tree at that place. All of this link crunching machinery takes half a page of

code and is not frequently executed.

7.5 Contour Segmentation.

In CRE the term .~cg/llclllillg refers to the problem of breaking 8 1-0 manifold (a polygon) into

simple functions (arcs). The segmenting step, converts the polygons of vertical and horizontal vectors

into polygons of arcs. For the present the term "arc" means "linear arc" which is a line segment.

Fancier arcs: circular and cubic spline were implemented and thrown out mostly because they were of

no use to higher processes such as the polygon compare which would have to break the fancy arcs

back down into linear vectors for computing areas, inertia tensors or mere display buffers.

Segmenting is applied to each polygon of a level. To start, a ring of two arcs is formed (a

bi-gon) with one arc at the uppermost left and the other at the lowermost right of the given vector

polygon. Next a recursive make arc operation, MKARC, is appled to the two initial arcs. Since the arc

given to MKARC is in a one to one correspondence with a doubly linked list of vectors; MKARC checks

to see whether each point on the list of vectors is close enough to the approximating arc. MKARC.

returns the given arc as good enough when all the sub vectors fall within a given width; otherwise

MKARC splits the arc in two and places a new arc vertex on the vector vertex that was farthest away

from the original arc.

The two large images in Figure 7.3, illustrate a polygon smoothed with arc width tolerances set

at two different widths in order to show one recursion of MKARC. The eight smaller images illustrate

the results of setting the arc width tolerance over a range of values. aecause of the dekinking

mentioned earlier the arc width tolerance can be equal to or less than one pixel and still yield a

SUbstantial reduction in the number of vectors it takes to describe a contour polygon.

- 92 -

IMAGE CONTOURING.

FIGURE 7.3 - CONTOUR SEGMENTATION.

- 93 -

7.6 Related and Future Image Analysis. IMAGE CONTOURING.

A final important detail is that the arc width tolerance is actually taken as a function of the

highest contrast vector found along the arc; so that high contrast arcs are smoothed with much smaller

arc width tolerances than are low contrast arcs. After smoothing, the contrast across each arc is

computed and the ring of arcs replaces the ring of vectors of the given polygon. (Polygons that would

be expressed as only two arcs are deleted).

7.6 Related and Future Image Analysis.

In general, robotic image analysis should consist of three steps: first, high quality pictures are

taken continuously in time and space; second, several low level bulk operations (such as correlation,

filtering, histogramming and thresholding) are applied to each image and to pairs of images; third, the

rasters are converted into linked 2-D structures which are further amalgamated into connected 3-D

models. It is clear to me that my present implementation only has fragile toy routines where rugged

tools are needed. Eventually, more kinds of image features and larger coherent structures must be

included. In particular, the contour maps should be bundled into regional mosaics and more features

should be woven into the node/link structure.

Contour image processing is effectively surveyed by Freeman (74) who gives the erroneous

impression that contour images are the best image representation (rasters and mosaics are equally

important). Contours are applied to recognition of silhouettes by Dudani (70) using moments similar to

those explained in the next chapter. Finally, my own acquaintance with the contour image

representation was initially derived from papers by Zahn (66) and Krakauer (71).

- 94 -

Page Intentionally Left Blank

8.0 Introduction to Image Comparing. COMPARING.

SECTION 8.

IMAGE COMPARING.

8.0 Introduction to Image Comparing.

8.1 A Polygon Matching Method.

8.2 Geometric Normalization of Polygons.

8.3 Compare by Recursive Windowing.

8.4 Related Work and Work Yet To Be Done.

8.0 Introduction to Image Comparing.

The image compare process is both the "key.~tolle of the arch" as well as the "wenke." lillk of

the r.haill". By comparing images, the 3-D modeling and the 2-D image processing are finally linked,

however as will be apparent the implementation to date demonstrates only a small part of what is

possible. In the feedback perception design, there are three classes of compare operations:

verification, revelation and recognition which may be applied to each of the three kinds of image data

structures: raster, contour and mosaic. The verify compare finds the corresponding entities between a

predicted image and a perceived image for the sake of calibration measurement lind for the sake of

eliminating already known features from further consideration. In vision for industrial machine

assembly, calibration measurements suddenly seems to be the only kind of vision necessary in a

relatively constrained factory situation. The reveal compare involves finding the corresponding entities

in two perceived images, so that the location and extent of new objects can be solved. Finally, the

recognition compare involves matching a perceived entity with one of a set of prototype entities.

·95 •

8.0 Introduction to Image Comparing. COMPARING.

From the view point of modeling the lowest level compare operation should somehow be

arranged to be a one to one template match rather than a multi dimensional statistical discrimination or

a graph isomorphism test. That is if the ~ntities to be matched are incommensurate, the model

designer censures the model t~at generated an unrealistic prediction rather than the pattern matcher

which cannot see a vague resemblance. Clearly this position should not be taken to an extreme and the

present system could be enhanced by the inclusion of an appropriate collection of traditional pattern

matching techniques. However, two techniques of commensuration that are naturally the responsibility

of a model builder are geometric normalization and topological segmentation. Geometric normalization

involves eliminating the irrelevant geometric: differences such as location, orientation and scale.

Topological segmentation involves subdividing a complex object into pieces, (perhaps even canonical

pieces) so that only simple small parts need be matched (that is the compare becomes recursive). The

remainder of this chapter explains a method for matching structured images consisting of polygons.

The most original part of the method involves finding the correspondence, illustrated in Figure 8.1, for

polygonal figures that fission or fuse from one image to the next.

FIGURE 8.1 - EXAMPLE OF POLYGON FUSION COMPARE.

o

8.1 A Polygon Matching Method. COMPARING.

8.1 A Polygon Matching Method.

The image compare process in CRE, connects the polygons and vectors of one image wi,th

corresponding polygons and vectors of another image. CRE's compare solves the problem of

correlating polygons between two similar images and is composed of four steps:

1. Compute polygonal lamina inertia tensors, lamlcll Ilodn.~.

2. Compare and connect polygons one to one at corresponding levels of the nested polygon tree.
3. Compare and connect polygons two to one at corresponding levels of the nested polygon tree.
4. Compare and connect vertices of connected polygons using recursive windowing.

First, the lamina inertia tensor nodes (called lamtnll's) of all the polygons of an image are

computed. A lamten node contains the center of mass as well as the tensor of a polygon. The meaning

of the inertia tensor is that it characterizes each polygon as a rectangle of a certain length and width

at a particular location and orientation; and of further importance such inertia tensors can be added to

characterize two or more polygons by a single rectangle. It is the lamten rectangles that provide a

basis for normalization.

Second, all the lamtens of the polygons of one level of the first image are compared with all the

lamtens of the polygons of the corresponding level of the second image for nearly exact match. The

potentially (M*N/2) compares is avoided by sorting on the center of mass locations. In CRE, which is

intended for comparing sequences of pictures of natural scenes; match for center of mass location is

tested first and most strictly, followed by match for inertia. Pointers between matching polygons are

placed in two link positions of the polygon nodes and the polygons are considered to be matched.

Third, all the unmated polygons of a level are considered two at a time and a fusion lamlen node

for each pair is made. The potentially (N*N/2-N) fusion lamtens are avoided because there is a

maximum possible unmated inertia in the other image; if there are no unmated polygons in one image

then the extra polygons of the first image can be ignored. In the event where there are unmated

polygons in corresponding levels of the two images, the multi-polygon fusion lamten of one are

compared with the single polygon lamten of the other. The fusion (fission) compare solves the rather

- 97 -

8.2 Geometric Normalization of Polygons. COMPARING.

nasty problem, of linking two contour polygons of one image with a single contour polygon in the next

image.

Fourth, the vertices of mated polygons are in turn compared and mated. To start a vertex

compare, the vertices of one polygon are translated, rotated and dilated to get that polygon's lamten

rectangle coincident with its mate (or mates). Conceptually, each vertex of one polygon is compared

with each vertex of the other polygon(s) and the mutually closest vertices (closer than an epsilon) are

considered to be mated. Actually the potential (N*M) compares are avoided by a recursive windowing

scheme similar to that used in hidden line elimination algorithms. The compare execution takes less

than a second on images such as the pump base (Figures 0.3 and 0.4) blocks (Figure 8.1) and a doll

(Figure 8.2). The doll's silhouette is headless when viewed from the backside because its hair is black.

FIGURE 8.2 - EXAMPLE OF VERTEX MATCHING.

8.2 Geometric Normalization of Polygons.

The lamina inertia tensor of a polygon with N sides is computed by summation over N trapezoids.

The trapezoid corresponding to each side is formed by dropping perpendiculars up to the top of the

image frame; each such trapezoid consists of a rectangle an a right triangle; since the sides of

- 98 -

8.2 Geometric Normalization of Polygons. COMPARING.

polygons are directed vectors the areas of the triangles and rectangles can be arranged to take

positive and negative values such that a summation will describe the interior region of the polygon as

positive. The equations necessary for computing the lamina inertia tensor of a polygon were derived

from material in (Goldstein 1950).

RECTANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS.
MXX" B*B*AREA/12; (B HEIGHT IN ROWS).
MYY" A*A*AREA/12; (A WIDTH IN COLUMNS).
MZZ" MXX + MVV;
PXV" 0;

ORIENTED RIGHT TRIANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS.
MXX" B*B*AREA/18; (B HEIGHT IN ROWS).
MYY" A*A*AREA/18; (A WIDTH IN COLUMNS).
MZZ" MXX + MVY;
PXV" -A*B*AREA/36;

SUMMATION OF LAMINA INERTIA TENSORS.
AREA" (AREAl + AREA2);
XCM" (AREAl * XCMI + AREA2 * XCM2) / AREA;
YCM" (AREAl * VCMI + AREA2 * VCM2) / AREA;
MXX" MXX 1 +VCMl *VCMI *AREAI +MXX2 +VCM2*VCM2*AREA2 -VCM*YCM*AREA;
MYY" MYV 1 +XCM I *XCM 1 *AREA I +MYY2 +XCM2*XCM2*AREA2 -XCM*XCM*AREA;
PXy.. PXV 1 -XCM 1 *VCM I *AREA 1 +PXV2 -XCM2*VCM2*AREA2 +XCM*YCM*AREA;

ANGLE OF PRINCIPLE AXIS
The angle of the principle axis, PHI, lies in the interval -n/2 to n/2.

PHI .. O.5*ATAN(2*PXV /(MVY-MXX))j
PXV" O.5*(MYY - MXX)*TAN(2*PHI);

TRANSLATION OF LAMINA INERTIA TENSOR AWAY FROM CENTER OF MASS.
MXX'.. MXX + AREA*DY*DVj
MYY'" MVV + AREA*DX*DX;
PXV'.. PXV - AREA*DX*DVj

ROT A TlON OF LAMINA INERTIA TENSOR ABOUT CENTER OF MASS.
C .. COSINE(PHI);
S .. SINE(PHI);
MXX'.. C*C*MXX + S*S*MYV - 2*C*S*PXY;
MYY'.. C*C*MVV + S*S*MXX + 2*C*S*PXV;
PXY'.. (C*C - S*S)*PXY + C*S*(MYV - MXX);

- 99 -

8.4 Related Work and Work Yet To Be Done. COMPARING.

8.3 Compare by Recursive Windowing.

The final step in the CRE polygon match (Section 8.1) is to link the corresponding vertices

between two geometrically normalized polygons (or sets of polygons) using a nearest neighbor

criterion. The nearest neighbors are found by recursive windowing, initially all the vertices are

pushed into on. large window which is subsequently split until there w.re few enough vertices

contained in the window to allow exhaustive comparing. To make this windowing technique applicable

to the nearest neighbor problem a distance criterion, delta, has to be declared so that the windows

overlap by that amount. Consequently the windows are no longer disjoint rectangles, but are rather

boxes with rounded corners, the smallest possible window being a circle with radius, delta. The

recursive windowing technique is essentially a two dimensional partition sort, the technique can be

generalized for comparing edges and other entities in 2-D or higher dimensions.

8.4 Related Work and Work Yet To Be Done.

To complete the visual feedback system, there remains yet to be written an image compare that

uses both raster based and polygon based techniques. The two kinds of compares are symbiotic in that

the polygon compare could aim the raster correlator alleviating the need to do bulk correlation over

wide areas, and the raster correlator could verify and improve the measurement of corresponding

vertex loci. At Stanford, image comparison by raster correlation techniques is begin worked on by

Quam(71), Hannah and Morevac. Another approach to comparing polygons is to examine their

curvature, the curvature of a polygon can be expressed as a parametric function of arc length; two

such functions can be normalized and alligned and differenced using statistical techniques (Zahn 66).

- 100 -

9.0 Introduction to Locus Solving.

SECTION 9.

CAMERA AND FEATURE LOCUS SOLVING.

9.0
9.1
9.2
9.3

• 9.4

9.5

Introduction to Locus Solving.

An Eight Parameter Camera Model.

Camera Locus Solving: One View of Three Points.

Object Locus Solving: Silhouette Cone Intersection.

Sun Locus Solving: A Simple Solar Ephemeris.

Related and Future Locus Solving Work.

9.0 Introduction to Locus Solving.

LOCUS SOLVING.

There are three kinds of locus solving problems in computer vision: camera locus solving,

feature locus solving and sun locus solving. Camera solving is routinely attempted in two ways: using

one image the 2-D image loci of a set of already known 3-D world loci (perhaps points on a calibration

object) are measured and a camera model is computed; or using two or more images a set of

corresponding landmark feature points are found among the images and the whole system is solved

relative to itself. After the camera positions are known, the location and extent of the objects

composing the scene can be found using parallax (motion parallax and stereo parallax). Parallax is the

principal means of depth perception and is the alchemist for converting 2-D images into 3-D models.

After the camera and object positions are known to some accuracy, the nature and location of light

sources might potentially be deduced from the shines and shadows in the images. However, in outdoor

situations the primary light source is the sun, whose position in the sky can be computed from the time,

date and latitude by means of a simple solar ephemeris routine.

- 101 -

9.1 An Eight Parameter Camera Model. LOCUS SOLVING.

9.1 An Eight Parameter Camera Model.

In GEOMEO and CRE the basic camera model is specified by eight parameters. There are three

parameters for the lens center location of the camera: CX, CY, CZ; three parameters for the

orientation: WX, WY, WZ; and two parameters for the projection ratios: the aspect ratio, AR; and the

focal ratio, FR. Th. location is given in world coordinates and the orientation is specified by a rotation

vector whose direction gives an axis and whose magnitude gives rotation which when applied to a set

of three axes unit vectors yields a set of unit vectors that determines the camera's coordinate system.

By convention the principal ray of the camera is parallel to the Z axis unit vector and is negatively

directed. The camera raster is alligned such that the rows (vidicon scan lines) are parallel to the X unit

vector and the columns are parallel to the Y unit vector.

The aspect ratio, AR, is the ratio of width, POX, to height, POY, of a single vidicon sample point

called a pixel: AR = POX/POY. The focal ratio, FR, is the ratio of the focal plane distance to the height

of a single pixel: FR = FOCAL/POY. The typical value of the aspect ratio is about one, and the typical

value of the focal ratio runs from 300 to 3000.

The actual physical size of the digital raster of a television vidicon is on the order of 12

millimeters wide by 8 millimeters high with approximately 512 lines of potentially 512 pixels per line.

However, a standard television scans its raster in two phases (odd rows in one phase, even rows in the

next) so that a one-phase pixel is approximately 40 microns by 40 microns (rather than 20 by 20). By

contrast, the cones and rods in a human eye are 1 and 2 microns in diameter respectively.

The aspect ratio and the focal ratio can be measured individually using a spherical calibration

object. I have used plastic toy balls and billiard balls, billiard ball radius RBB=2.125". The perspective

projection of a sphere is an ellipse and the ratio of the apparent width to height of the ellipse of a

sphere that nearly fills the viewing screen is the aspect ratiO. To measure the focal ratio, mount the

sphere on a stick and measure its apparent radii (r 1 and r2) at two positions that are approximately

along the camera's principal axis a measured distance, OZ, apart. Then then the focal ratio FR =

- 102 -

9.1 An Eight Parameter Camera Model. LOCUS SOLVING.

DZ*rl*r2/(R*(rl-r2)) which can be thought of as the FOCAL plane distance in pixels. The beauty of

this is that a naive measuring method yields results as good as measurements obtained by more

elaborate methods such as principal axis relaxation of a camera model in numerous variables (Sobel 70)

and Pingle unpublished.

Camera Resolution. The focal ratio description allows one to have a firm numerical intuition of

camera's spatial resolution in the object space. The smallest distance interval, DELTA, a camera can

measure at a given range, RNG, is merely the ratio of range to FR: DELT A=RNG/FR. The arctan of the

reciprocal of the focal ratio ARCT AN(1 /FR) is the angle subtended by a single pixel.

Lens Center Irrelevancy Theorem. The actual location of the principal axis of the lens in the

image plane is irrelevant because the effect of deviation from the true center is equivalent to rotating

the camera Many camera modelists worry needlessly about the exact location of the camera lens

center; the angular error, ANGERR, of a pixel X units from the center of the image of a camera

modeled with a lens center that is wrong in the X direction by Q pixels is given by the following

expression:

ANGERR = ARCTAN(X/FR) - ARCTAN((X+Q)/FR) - ARCTAN(Q/FR)

Which for the physical parameters of the television hardware at Stanford in 1974; means that the lens

center can be allowed to wander by tens of pixels from its true position without causing a pixel of

error at the edge of the image, (allowing that one camera model is alligned on the same feature by

rotation as the camera that defines a good lens center).

- 103 -

9.2 Camera Locus Solving: One View of Three Points

9.2 Camera Locus Solving: One View of Three Points

- The Iron Triangle Camera Solving Method.

LOCUS SOLVING.

A mobile robot having only visual perception must determine where it is going by what it sees.

Specifically, the position ot the robot is found relative to the position of the lens center of its camera.

The following algorithm is a geometric method for computing the locus of a camera's lens center from

three landmark points.

FIGURE 9.1

The Iron Triangle and Tripod.

L

Consider four non-coplanar points A, B, C and L. Let L be the unknown camera's lens center,

also called the camera locus. let A, Band C be the landmark points whose loci either are given on a

map or are found by stereo from two already known viewing positions. Assuming for the moment an

ideal camera which can see all 4n steradians at once, the camera can measure the angles formed by

the rays from the camera locus to the landmark points. let these angles be called a, (3 and 'Y where a

is the angle BlC, (3 is the angle AlC and 'Y is the angle ALB. The camera also measures whether the

landmarks appear to be in clockwise Or counter clockwise order as seen from L. If the landmarks are

counterclockwise then B is swaped with C and {J with 'Y. A mechanical analog of the problem would be

to position a rigid triangular piece of sheet metal between the legs of a tripod so that its corners touch

each leg. The metal triangle is the same size as the triangle ABC and the legs of the tripod are rigidly

held forming the angles a, (3 and 'Y. The algorithm was developed by thinking in terms of this analogy.

- 104 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

FIGURE 9.2 - FIVE IRON TRIANGLE DIAGRAMS.

In order to put the iron triangle into the tripod, the edge BC

is first placed between the tripod legs of angle a. Let a be

the length of BC, likewise band c are the lengths of AC and

AB.

Restricting attention to the plane LBC, consider the locus of

points L' arrived at by sliding the tripod and maintaining

contacts at Band C.

Remembering that in a circle, a chord subtends equal angles

at all points of each arc on either side of the chord; it can be

seen that the set of possible L' points lie on a circular arc.

Let this arc be called L's are, which is part of L's circle.

Also in a circle the angle at the center is double the angle at

the circumference, when the rays forming the angles meet

the circumference in the same two points.

And the perpendicular bisector of a chord passes thru the

center of the chord's circle bisecting the central angle. Let S

be the distance between the center of the circle and the

chord BC. So by trigonometric definitions:

R " a I 2sin(<<)

S " R cos(<<)

- 105 -

B

L

L

L

L

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLViNG.

The position of l on its arc in the plane BlC can be expressed in terms of one parametric

variable omega w, where w is the counter clockwise angular displacement of l from the perpendicular

bisector such that for wen-a, L is at B and for w=a-n, L is at C. By spinning the iron triangle about the

axis BC, the vertex A sweeps a circle. let H be the radius of A's circle and let 0 be the directed

distance between the center of A's circle and the midpoint of ,~C. By Trigonometric relations On the

triangle ABC:

COS(ACB) = (at2 + bt2 - ct2)/2ab
SIN(ACB) = SQRT(l - COS(C)t2)
H = b SIN(ACB)

o = b COS(ACB) - a/2

Now consider the third leg of the tripod which forms the angles (j and 'Y. The third leg

intersects the BlC plane at point l and extends into the appropriate halfspace so that the landmark

points appear to be in clockwise order as seen from L. let A' be the third leg's point of intersection

with the plane containing A's circle. let the distance between the point A' and the center of A's circle

less the radius H of A's circle be called "The Gap". The gap's value is negative if A' falls within A's

circle. By constructing an expression for the value of the Gap as a function of the parametric variable

w, a root solving routine can find the w for which the gap is zero thus determining the orientation of

the triangle with respect to the tripod and in turn the locus of the point l in space.

Using vector geometry, place an origin at the midpoint of BC, establish the unit y-vector j

pointing towards the vertex B, let the plane. BCl be the x-y plane and orient the unit x-vector i

pOinting into l's halfplane. For right handedness, set the unit z-vector k to i cross j. In the newly

defined coordinates points B, C, and l become the vectors:

B = (-s, +a/2, 0);
C = (-s, -a/2, 0)
l = (R cos(w), R sin(w), 0)

Introducing two unknowns xx and zz the locus of point A' as a vector is:

A' = (xx, 0, zz)

- 106 -

9.2 Camera Locus Solving: One View of Three Points

The vectors corresponding to the legs of the tripod are:

LB = B - L = (-s-Rcos(w), +a/2-Rsin(w), 0)

LC = C - L = (-s-Rcos(w), -a/2-Rsin(w), 0)
LA = A'- L = (xx-Rcos(w), O-Rsin(w), zz)

Since the third leg forms the angles ~ and 'Y:

LA . LC = ILAIILCI cos(8)

LA . LB = ILAIILBI cos('Y)

Solving each equation for ILAI yields:

ILAI = (LA . LC)/lLClcos(~) = (LA. LB)/lLBlcos(..,)

Multiplying by ILSIILCI cos (8) cos h) gives:

(LA. LC)ILBI cosh) = (LA. LB)ILCI cos(~)

Expressing the vector quantites in terms of their components:

ILBI = sqrt((-S-Rcos(w»f2 + (+a/2-Rsin(w»f2)

ILCI = sqrt((-S-Rcos(w»t2 + (-a/2-Rsin(w»f2)

LOCUS SOLVING.

LA . LC = (xx-Rcos(w»(-s-Rcos(w» + (O-Rsin(w»(-a/2-Rsin(w»

LA . LC = (xx-Rcos(w»(-s-Rcos(w» + (O-Rsin(w»(+a/2-Rsin(w»

Substituting:

((xx-Rcos(w»(-s-Rcos(w» + (O-Rsin(w»(-a/2-Rsin(w))) ILBlcosh)

= ((xx-Rcos(w»(-s-Rcos(w» + (D-Rsin(w»(+a/2-Rsin(w») ILClcos(~)

The previous equation is linear in xx, so solving for xx:

xx = P /0 + Rcos(w)

where

P = (-s-Rcos(w»(ILBlcos('Y) - ILClcos(~»
Q = (D-Rsin(w»((+a/2-Rsin(w»ILClcos(8)

- (-a/2-Rsin(w»IL8Icos('Y»

The unknown zz can be found from the definition of ILAI
ILAI = sqrt((xx-Rcos(w»f2 + (D-Rsin(w»f2 + zzt2)

so zz = sqrt(ILAlt2 - (P /0)f2 - (D-Rsin(w»f2)

and since:

ILAI = (LA. LC) / ILClcos(8)

The negative values of zz are precluded by the clockwise ordering

of the landmark points. Thus the expression for the Gap can be formed:

GAP = sqrt((XX+S)t2 + zzf2) - H

- 107 -

9.2 Camera Locus Solving: One View of Three Points LOCUS SOLVING.

As mentioned above, when the gap is zero the problem is solved since the locus of A' then must

be on A's circle, so the triangle touches the third leg. The gap function looks like a cubic on its

interval [cr-n,n-cr) which almost always has just one zero crossing.

Having found the locus of L in the specially defined coordinate system all that remains to do is to

solve for the components of L in the coordinate system that A, Band C were given. This can be done

by considering three vector expressions which are not dependent On the. frame of reference and do

not have second order L terms, namely: (CA dot CL); (CB dot CL); and ((CA x CB) dot CL). Let the

locus of L in the given frame of reference be· (X,V,Z) Bnd let the compon.nts of the pOints A, Band C

be (XA,VA,ZA), (XB,VB,ZB) and (XC,YC,ZC) respectively. Listing all four points in both frames of

reference:

A = (xx, 0, zz) = (XA, VA, ZA)
8 = (-s, +a/2, 0) = (XB, VA, ZA)
C = (-s, -a/2, 0) = (XC, VC, ZC)
L = (Rcos(w),Rsin(w),O) = (X, V, Z)

Evaluating the vector expressions which are invariant:
CA = A - C " (XA-XC. VA-VC, ZA-ZC)
CB " B - C = (0, a, 0) " (XB-XC, VB-VC, ZB-ZC)
CL = L - C = (Reos(w)+s,Rsin(w)+a/2,O) " (X-XC, V-VC, Z-ZC)

The dot products are:
CA . CL " (xx+S)(Rcos(w)+s)+(D+a/2)(Rsin(w)+A/2)

• (XA-XC)(X-XC) + (VA-YC)(V-YC) • (ZA-ZC)(Z-ZC)
CB . CL "a(Rsin(w) + a/2)

" (XB-XC)(X-XC) + (VB-VCHV-VC) • (ZB-ZC)(Z-ZC)

The cross product is:
(CA x CB) . CL = -a zz(Rcos(w) + s)

" ((VA-VC)(ZB-ZC) - (ZA-ZC)(VB-VC)) (X-XC)
- ((XA-XC)(ZB-ZC) - (ZA-ZC)(XB-XC)) (V-VC)
+ ((XA-XC)(VB-VC) - (VA-YC)(XB-XC)) (Z-ZC)

The last three equations are linear equations in the three unknowns X, V and Z which are readily

isolated by Cramer's Rule. The whole method has been implement in auxiliary programs LS 1 V3P and

QBALL which calibrate a camera with respect to a turntable for the sake of the silhouette cone

intersection demonstration in Section 9.3.

- 108 -

9.3 Object Locus Solving: Silhouette Cone Intersection. LOCUS SOLVING

9.3 Object Locus Solving: Silhouette Cone Intersection.

After the camera location, orientation and projection are known; 3-D object models can be

constructed. The silhouette cone intersection method is a conceptually simple form of wide angle,

stereo reconstruction. The idea arose out of an original intention to do "blob" oriented visual model

acquisition, however a 2-D blob came to be represented by a silhouette polygon and a 3-D blob

consequently came to be represented by a polyhedron. The present implementation requires a very

favorably arranged viewing environment (white objects on dark backgrounds or vice versa); application

to more natural situations might be possible if the necessary hardware (and software) were available

for extracting depth discontinuities by bulk correlation. Furthermore, the restriction to turntable

rotation is for the sake of easy camera solving; this restriction could be lifted by providing stronger

feature tracking for camera calibration.

Figure 9.3 shows four video images and the corresponding silhouette contours of a baby doll on

a turn table. Figure 9.4 is an overhead view of the four silhouette cones that were swept from the

contours, the circle in the middle of Figure 9.4 is the turntable. Figure 9.5 gives three views (cross

eyed stereo pairs) of the polyhedron that resulted by taking the intersection of the four silhouette

cones. Like in the joke about carving a statue by cutting away everything that does not look like the

subject, the approximate shape of the doll is hewed out of 3-D space by cutting away everything that

falls outside of the silhouettes. A second example of silhouette cone intersection is depicted in Figure

9.6; the model was made from three silhouettes of the horse facing to the left which can be compared

with an initial video image and a final view of the result of the horse facing to the right - a plausible

(maximal) backside has been constructed that is consistent with the front views.

The silhouette cone intersection method does indeed construct concave objects and even objects

with holes in them - what are missed are concavities with a full rim, that is points on the surface of the

object whose tangent plane cuts the surface in a loop that encloses the point.

- 109 -

FIGURE 9.3 - FOUR VIEWS OF A BABY DOLL.
video images silhouette contours

- 110-

FIGURE 9.4 - FOUR TURNTABLE SILHOUETTE CONES .
... as viewed from above.

- 111 -

FIGURE 9.5 - RESULTS OF SILHOUETTE CONE INTERSECTION

Front View.

Rear View.

To View.

- 112 -

FIGURE 9.6 - HIGH HORSE SILHOUETTE CONE INTERSECTION

- 113 -

9.4 Sun Locus Solving: A Simple Solar Ephemeris. LOCUS SOLVING

9.4 Sun Locus Solving: A Simple Solar Ephemeris.

The location of the sun is useful to a robot vehicle vision system both for sophisticated scene

interpretation and for avoiding the blunder of burning holes in the television vidicon. The approximate

position of the sun in the sky is readily computed from the time, date and latitude using circular

approximations. The longitude is implicitiy used to compute Local Solar Time, since the Stanford A.!,

Lab is 122 degrees 10 minutes we" of the Greenwich meridian, Local Solar time is 8 minutes, 44

seconds earlier than Pacific Standard Time (120 degrees west). The orientation of the earth with

respect to the sun follows from remembering that the sun is highest at noon. The tilt of the earth with

respect to its orbit is 23.45 degrees, so in earth centered coordinates the sun appears to circle the

earth counterclockwise crossing the plane of the equator from south to north on the spring equinox,

March 21. The SUN LOCUS procedure given below computes the local azimuth and altitude of the sun in

the sky, given the number of days since March 21, the time in seconds since midnight and the latitude

in radians.

PROCEDURE SUNI oellS !RFRI DRY, TIME, un I REFERENGfREnL SIJNRZM, SUNRL n;

BEGIN
REAL RHO,PHI,TMP,ECLIPTIC,NORTH,EAST,ZENITH;

COMMENT POSITION OF THE SUN ON THE ECLIPTIC IN THE CELESTIAL SPHERE;
ECLIPTIC ..
RHO ..
EAST
NORTH

1123+27 160);;P \);
2oPI:DAY/36S.2S;
SINIRHO),COSIECLIPTIC);
SINIRHO)oSINIECLIPTIC);

ZENITH.. COSIRHO);
COMMENT LOCAL SOLAR TIME, OVER THE MAST AT NOON;

TIME - 18,;,60 + 44); TIME
PHI
TMP
EAST ..

PIoI1-TIME/112;3600» - ATRN2IERST,ZENITH);
ZENTITH;COSIPHI) - SINIPHI)oERST;
EAST,COSIPHI) + SINIPHI)oZENITH;

ZENITH.. TMP;
COMMENT ROTATE CLOCK~ISE IN lHE NORTH/ZENITH PLRNE TO LOCRL LATITUDE;

TMP .. COSILRT)*ZENITH + SINILRT)oNORTH;
NORTH COSILRT),NORTH - SINILRT),ZENITH;
ZENITH.. TMPI

CONVERT TO ANGULRR MEASURES;
SUNRZM ..
SUNALT ..

END "SUNLOCUS";

ATRN2INORTH,ERST);
PI/2 - ACOSIZENTIH);

COMMENT AZIMUTH FROM DUE EAST;
COMMENT ALTITUDE ABOVE HORIZON;

- 114 -

9.5 Related and Future Locus Solving Work. LOCUS SOLVING

9.5 Related and Future Locus Solving Work.

The camera solving problem is discussed in Roberts (63), Sobel (70) and Quam (71). I have

always disliked the many dimensional hill climbing approach to camera solving and have sought more

geometric and intuitive solutions to the problem. Although the bulk of this chapter concerned camera

solving using one view of three points the multi view camera calibration is probably more important to

continuous image processing.

- 115 -

Page Intentionally Left Blank

10.1 Results: Accomplishments and Original Contributions. RESULTS AND CONCLUSIONS.

SECTION 10.

RESULTS AND CONCLUSIONS.

10.1 Results: Accomplishments and Original Contributions.

10.2 Critique: Errors and Ommissions.

10.3 Suggestions for Future Work.

10.4 Conclusion.

10.1 Results: Accomplishments and Original Contributions.

As a regular feature in a Ph.D. dessertation, it is required to state explicitly what has been

accomplished and what is original. Some of what has been accomplished is itemized in box 10.1; with

the so called original contribution.~ marked by asterisks. Each of the accomplishments has been

elaborated in the indicated chapter.

BOX 10.1 ACCOMPLISHMENTS AND ORIGINAL CONTRIBUTIONS.

O. The Geometric Feedback Vision Theory

*1. The Winged Edge Polyhedron Representation

*2. The Euler Primitives for Polyhedron Construction

3. The Iron Triangle Camera Locus Algorithm

*4. The OCCULT hidden line elimination algorithm

*5. The Polygon Nesting Algorithm

lIC6. The Polygon Dekinking Method

7. The Polygon Segmenting Method
8. The Polygon Comparing Method

*9. Silhouette Cone Intersection

Chapter 6.

Chapter 2.

Chapter 3.

Chapter 9.

Chapter 4.

Chapter 7.

Chapter 7.

Chapter 7.

Chapter 8.
Chapters 5 and 9.

As a whole, the system described in this thesis is the third of its kind, succeeding the systems of

Roberts (1963) and F alk (1970). Although, the modeling routines of the present system are

considerably more sophisticated than were those of its predecessors; improvement in the visual

analysis routines is less dramatic and more open to question. The present image analysis differs from

- 116 -

10.1 Results: Accomplishments and Original Contributions. RESULTS AND CONCLUSIONS.

the earlier systems in that emphasis is placed on the use of multiple images for the sake of parallax

depth perception and in that several spatially connected image representations are combined (contour

image, mosaic image and raster image) to preserve the structure of the scene through feature

extraction rather than following the earlier paradigm of extracting features from the image piecemeal

and attempting to splice them together afterwards.

As a design theory, the present work can be compared with earlier work by comparing the

block diagrams. The charderistically circular feedback vision mandala like diagrams appear in (Falk)

Figure 4-7, page 78; (Grape) Figure 12.1, page 242; (Tenenbaum) Figure 1.13, page 43; as well as in

this work Figure 6.1, page 70. The feedback mandala is conspicuously absent in the best of the

stimulus-response visual parsing work, (Waltz), as well as in statistical recognition work, (Duda and

Hart). The important ideas depicted in the feedback vision mandala are the duality of the simulated and

physical worlds, the duality of description and verification, the dualism of camera and body locus

solving, and the dual opposing flows of predicted and perceived images along a hieracry of

commensurate abstractions. Tenenbaum's figure illustrates the basic feedback loop in the immediate

vicinity of the visual sensor. The diagrams of Falk and Grape are similar mirrors of the overall system

design of the Stanford Hand/Eye group (1969 to 1973) under the leadership of Professor Jerome

Feldman. The two diagrams depict an array of relevant boxes (camera solver, edge finder, world

modeler and so on) all sending messages to each other under the benign direction of a box labeled

"general strategist".

Among the elements composing the GEOMED/CRE system, the most original accomplishment is

the winged edge polyhedron representation. In computer graphics models are based on face perimeter

lists (or arrays), with an awareness that more topological relations exist but with no realization that a

substantial improvement in surface topology modeling is feasible using approximately the same

resources.

Another accomplishment, the Euler primitives was based on a constructive proof of the Euler

relation from (Coxeter 61). Other graphics systems lack this level of abstraction that falls between the

level of node/link operations and operations with solids. The Euler primitives were useful in

- 117 -

10.2 Critique: Errors and Omissions. RESULTS AND CONCLUSIONS.

implementing OCCULT and GEOMED sweep and glue operations, but they were less useful in

implementing the body intersec\or, BIN.

A pre-computer form of the Iron Triangle camera solving method appears in a paper by Berkay

(59). Berkay described the method as an analog procedure to be performed with paper, ruler and

afew other photogrammetric hand tools. (The existence of this paper was pointed out to me by Irwiri

Sobel).

The original accomplishment of the hidden line eliminator , OCCULT lies in its unification of

several methods and in its exploitation of object and image coherence made possible by the Euler

primitives and the Winged Edge Representation.

The last five accomplishments listed in box 10.1 are related to vision. The nesting and dekinking

problems have been stated and solved by others, the present solutions are original only in technical

detail: the nesting for its use of memory to avoid a N-squared number of compares and the dekinking

for its achievement of good results with almost no effort. The recursive polygon segmentation and the

polygon compare idea were accomplishments that were compatible with the contour image approach but

are not necessarily original ideas.

10.2 Critique: Errors and Omissions.

The major weakness in the existing modeling system is that it lacks overall unity - the modeling

and image anaylsis are not yet sufficiently well integrated. The second major weakness is that the

essential subsystems involving comparing, locus solving and recognition are still in a primitive condition.

Consequently, an unambiguous objective demonstation of the relevance of 3-0 modeling to computer

vision is missing; the particular demonstration which I had in mind was to have a robot vehicle drive

outside around the laboratory visually servoing along a trajectory given in advance.

In the course of this work, technical failures have included the attempt to use Euler primitives to

implement body intersection, the attempt to bundle contour images into mosiac images, as well as

- 118 -

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

attempts to make the Euler kill primitives logically air tight without time consuming model checking.

However, the worst errors are of the form of misallocated effort; more time might have been spent on

image analysis and less on image synthesis and so forth. The research suffers from not having a

criterion for deciding which objectives deserves the most immediate effort.

A final barrier to progress in computer vision is the inadequacy of the hardware. It may be true

that "It is a poor workman who blames his tools"; but for me the greatest source of personal

frustration has been the television cameras, the cart and the turntable. At Stanford, these devices

have not been implemented or maintained with sufficient care to make them convenient to use.

10.3 Suggestions for Future Work.

Box 10.2 SUGGESTIONS FOR FUTURE WORK.

SPATIAL MODELING WORK.
1. Combination Geometric Models - Converters.
2. Cellular Space ModElling - Tetrahedral Simplices.
3. Spatial Simulation: Collision Avoidance Problem.
4. Higher Dimensionality, 4-0 GEOMED.

SIMULA TlONS.
5. Mechanical Simulation.
6. Creature Simulations.
7. Geometric Task Planning.
8. Geometric/Semantics Modeling.

MATHEMATICALLY ORIENTED PROBLEMS.
9. The Manifold Resurfacing Problem.
10. The Curved Patches Problem.
11. Prove the Correctness of a Hidden Line Eliminator.

GET RICH QUICK APPLICATIONS.
12. Automatic Machine Shop.
13. Animation for Entertainment Industry.

SYSTEMS SOFTWARE AND VISION HARDWARE WORK.
14. Belter Loader and/or Incremental Assembler.
15. Belter Cameras.
16. Image Oriented Number Crunching Computer Hardware.
17. Belter Robot Vehicles.

The application of geometric modeling to vision and robotics raises numerOus interesting ideas

and problems, box 10.3. Future development of Combinatio/l Gcomotric Modd.~ may begin by writing

converters between geometric representations. For example, there is a need to convert polyhedra

• 119 •

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

into spine cross sections, space points into polyhedra, contour maps into faceted surfaces and so on.

Extramural combination models include Gaomelric/Semanlic Modeling which will be needed to cover

the gulf between Minsky's (1974) notion of a visual frame-system (e.g. the expectation of a room

interior) and a geometric prediction of the features to be found in the image. Although the Minsky

Frame-System theory does not explicitly reveal the crucial interface between numerical geometric

modeling and symbolic abstractions, that nexus is a central part of the frame-system idea.

The Cell/Liar Spaca Modr.lill/r idea is that both space and objects should be modeled using a

space filling tesselation of cells; perhaps using the tetrahedral 3-simplex. The difficulty lies in getting

the Euclidean primitives to update the geometry and topology of empty space as an object moves and

rotates. The rewards might include an elegant approach to collision avoidance problems in vehicle

navigation and arm trajectory planning. Other approaches to spatial simulation and colli.don

avoidance problem.~ that might be pursued include the use of simulated viewpoints to see obstacle free

trajectories by means of hidden line elimination, this method is suggested in (Sutherland 69).

In several recent Stanford dissertations, (Falk, Vakimofsky, Grape, and so on) the authors

conclude with the prediction that their essentially 2-D techniques can readily be extended to 3-0 in

future work. In my turn, I seriously wish to propose that my essentially 3-D techniques can be

extended to 4-0. The resulting models could be applied to Regge Calculus for computing the general

relativistic geometric models of such systems as two or three colliding blackholes or on a less cosmic

level a 4-0 GEOMEO could be of service for planning sequences of arm manipulations viewing time as a

spatial dimension. Collision of 3-~ polyhdera moving in time can be described as a static intersection

of 4-0 polytopes.

Geometric modeling is also applicable to future work in simulation. Mechanical Simulation

involves computing the Newtonian mechanics of everyday objects, prot>lems which are immediately

approachable from a GEOMEO foundation include simulated object collision, statics, and pseudo friction.

For example, consider what is needed to predict the outcome of seiting one more block at a given

place on an existing tower or of throwing one block into a tower of other blocks. Geometric Task

Planning problems include the old A.1. favorite of block stacking as well as the newer research

- 120 •

10.3 Suggestions for Future Work. RESULTS AND CONCLUSIONS.

problems related to industrial assembly. Existing solutions to geometric tasks are notoriously

restricted, for example I know of no blocks stacking program that handles arbitrary rotations, all blocks

to date are piled on the square.

Although, it has been recognized (early and often) that the programming of numerically

controled machine teols should be automated, the actual implementation of a system that builds artifacts

directly from a geometric model still lies in the future. As a start, someone at any of the research labs

with a general purpose manipulator could begin by carving models out of soap or other soft material

with a rotating cutting tool.

Advanced mechanical simulations as well as /1ltirnaliolt for RlllcrlaillntCltl quickly run into the

problem of Creaturc Simulatio/l - given a multi legged bug, what control program is required to make

the bug walk through a building. 8arring the darkness of war, it is likely that the greatest potential

future users of robotic simulation will not be found in government, universities, or manufacturing

industries but rather in the entertainment industry. When it becomes economically feasible to create

realistic (and surrealistic) animation by computer graphics, great progress will be made in simulating

visual reality and in representing mundane situations in /I computer.

Theoretical work in geometric modeling will continue to pursue curved representations. Two

problems that I would especially like to see solved involve fitting curved surfaces to form a smooth

object, (a manifold), as well as resurfacing an existing manifold representation. 80th problems I

believe are more a question of automatic segmentation rather than automatic smoothing. It is easy to

fit functions to facial patches of an object, it is hard to subdivide an object into the proper set of

patches. In terms of analysis of algorithms and the mathematical theory of computation, the one

geometric algorithm that seems most ripe for future quantative study and logical analysis is the hidden

line elimination process. There is a wealth of different techniques to be compared and the inputs and

outputs seem to be sufficiently well defined for formal axiomatizing.

Finally progress in computer vision and geometric modeling requires progress in systems

software and computer systems. In my opinion, recent university based research in programming

- 121 -

Reproduced from
best available copy

10.4 Conclusions. RESULTS AND CONCLUSIONS.

languages is over concentrated in very high level language theory and automatic programming. Future

language and systems work should include developing an incremental loader, assembler, debugger and

editor that can handle algebraic expressions, block struelure, node/link storage notation as well as

unvarnished machine instructions. Although special purpose image processi"g hardware has earned a

bad reputation (starting with the IIliac-III); in my opinion a real vision system will be composed of a

large array of computer like elements (4096 by 4096) that pipeline a stream of images into structured

image representations. The perceived images are then compared with predicted images and II detailed

3-D model is altered or constructed in real time (24 images per second) using a small number of

computers (32 or less) which by the standards of our day (1974) would be very large and very fast

(ten megawords main memory and ten megahertz instruelion execution). Assuming the continuation of

civilization with a growing technology over the next one hundred to a thousand years, developments in

Computer Vision and Artificial Intellegence could lead to robots, androids and cyborgs which will be

able to see, to think and to feel conscious.

10.4 Conclusions.

The particular technical conclusions of this work include the methods, system designs and data

structures for geometric modeling which have already been elaborated. Based on the details, one

could make such generalized observations as. that: recursive windowing is a good technique for spatial

sorting, simple geometric representations fall into space oriented and object oriented classes, the

essence of an object representation is its coherence under various operators and that the power of a

vision system might be enhanced by application of 3-D modeling techniques. However in closing, I

would like to draw three rather more general conclusions, conclusions which by contrast to the

technical ones might be construed as scientific conclusions.

1. Tht! Natrut! of Purrlll;o/!. Perception is essential to intelligence as it is the process which

converts external sensations into internal thoughts. There are two kinds of simple perception systems:

stimulus-response and prediction-correction feedback; together they explain perception.

- 122 •

10.4 Conclusions . RESULTS AND CONCLUSIONS.

. 2. Till' Ni'ri's.~ity In II;X/ll'rirlll'1lt. Robotic hardware is essential to Artificial Intelligence as an

experimental science. It is misleading to study only theoretical robotics of plausible abstractions,

mathematics, puzzles, games and simulations. The real physical world is the best test of adaptive

general intelligence. The complexity and subtlety of real world situations, even of a situation as

seemingly finite as a digital television picture, can not be anticipated from a philosopher's armchair or

from a programmer's console .

. 3. 1'1111 Ni'(,i'ssity In "illl/linli' [Ii.~urrl Rmlity. Modeling is essential to prediction-correction

feedback perception. Although simulated robot environments should not be used in place of the

external physical reality, such environmental simulations are an essential part of a robot's internal

mental reality. In the particular case of vision, geometric models should be easy to adapt to the basic

mental abilities of present day computer hardware. To conclude, perception requires two worlds one

that is the external physical reality and the other which is the internal mental reality.

- 123 •

11.1 References. ADDENDA

SECTION II.
ADDENDA

11.1 References.
11.2 GEOMED Node Formats.

11.1 References.

Agin (1972)
Gerald Jacob Agin; "Representation and Description of Curved Objects";
Ph.D. Thesis, Computer Science Department, Stanford Artificial Intelligence
Laboratory, Memo no. AIM-I73, Stanford University, October 1972.

Archuleta (1972)
Michael Archuleta; "Hidden Surface Line Drainwg Algorithm"; University of

Utah, Technical Roport UTEC-CSc-72-121; Salt Lake City, Utah; June 1972.

Baumgart (1972)
Bruce G. Baumgart; "Winged Edge Polyhderon Representation"; Stanford
Artificial Intelligence Laboratory, Memo no. AIM-179, Stanford University,
October 1972.

Baumgart (1973)
Bruce G. Baumgart; "Image Contouring and Comparing"; Stanford Artificial
Intelligence Laboratory, Memo no. AIM-199, Stanford University, October

1973.

Baumgart (1974)

Bruce G. Baumgart; "GEOMED - A Geometric: Editor"; Stanford Artificial
Intelligence Laboratory, Memo no. AIM-232, Stanford University, May 1974.

- 124 -

11.1 R.ferences. ADDENDA

Berkay (1958)

Nedret Berkay; "Determination of Space Coordinates of Photographic

Exposures by a Semi-Graphic Method"; Brausch & Lomb Photogrammetry

Yearbook; 1958.

Coons (1967)

Steve A. Coons; "Surface for Computer Aided Design of Space Forms";

Project MAC Technical Report, MAC-TR-41, Massachusetts Institute of

Technology, Cambridge, Massachusetts; June 1967.

Coxeter (1961)

Harrold S. M. Coxeter; Introduction to Geometry; John Wiley & Sons, New

York, 1961.

Coxeter (1963)

Harrold S. M. Coxeter; Regular Polytopes; Macmillan, New York, 1963.

Duda (1973)

Richard Duda and Peter Hart; Pattern Classification and Scene Analysis; John
Wiley & Sons, New York, 1973.

Dudani (1970)

Sahibsingh Amulsingh Dudani; "An Experimental Study of Moment Methods

for Automatic Identification of Three Dimensional Objects from Television

Images."; Ph.D. Thesis, Department of Electrical Engineering; Communication

and Control Systems Laboratory, Ohio State University; Columbus, Ohio;

August 1970.

Eves (1965)

Howard Eves;A Survey of Geometry;Allyn and Bacon, Boston, 1965.

Falk (1970)

Gilbert Falk; "Computer Interpretation of Imperfect Line Data as a Three

Dimensional Scene"; Ph.D. Thesis, Computer Science Department, Stanford

Artificial Intelligence Laboratory, Memo no. AIM-132, August 1970.

Feldman (1969)

Jerome Feldman, Gilbert Falk and Lou Paul; "Computer Representation of

Simply Described Scenes"; Stanford Artificial Intelligence Laboratory,
SAILON-52; Stanford University, 1969.

Feynman (1963)

Richard P. Feynman, Robert 8. Leighton, Matthew Sands;

'1'''" f'''Ylll1lfl/l Lectures on Physics; Addison-Wesley; Reading,

Massachusetts; 1963.

- 125 -

11.1 References. ADDENDA

Freeman (1974)

Herbert Freeman; "Computer Processing of Line Drawings"; ACM Computing

Surveys, volume 6, number 1; March 1974.

Gardner (1959)

Martin Gardner;
Till' Sr.il'lIti ric Ihtll'!ric(711 Hook 0 r Mathematical Puzzles and Diversions;
Simon and Schuster; New York; 1959.

Gardner (1 961)

Martin Gardner;
Thn 2nd Sr.imllific Ilm('r;cGII flook of Mathematical Puzzles and Diversions;

Simon and Schuster; New York; 1959.

Gill (1972)

Aharon Gill; "Visual Feedback and Related Problems in Computer Controlled

Hand Eye Coordination"; Ph.D. Thesis, Computer Science Department,

Stanford Artificial Intelligence Laboratory, Memo no. AIM-178, Stanford

University, October 1972.

Gips (1974)

James Gips; "Shape Grammars and their Uses"; Ph.D. Thesis, Computer
Science Department, Stanford Artificial Intelligence Laboratory, Memo no.
AIM-231, Stanford University, May 1974.

Goldstein (1950)

Herbert Goldstein; Classical Mechanics; Addison-Wesley; Reading,
Massachusetts; 1950.

Gouraud (1971)

Henri Gouraud; "Computer Display of Curved Surfaces"; Ph.D. Thesis,

Department of Computer Science, University of Utah, Technical Report
UTEC-CSc-71-113; Salt Lake City, Utah; June 1971.

Grape (1973)

Gunnar R. Grape; "Model Based (Intermediate-Level) Computer Vision";

Ph.D. Thesis, Computer Science Department, Stanford Artificial Intelligence

Laboratory, Memo no. AIM-20 1, Stanford University, May 1973.

Graustein (1935)

William C. Graustein; Differential Geometry; Macmillan; New York; 1935.

- 126 -

11.1 References. ADDENDA

Guzman (1968)

Adolfo Guzman; "Computer Recognition of Three Dimensional Objects in a
Visual Scene"; Ph.D. Thesis, Department of Electrical Engineering, Project
MAC Technical Report, MAC-TR-59, Massachusetts Institute of Technology,
Cambridge, Massachusetts; December 1968.

Hilbert (1952)
David Hilbert and S. Cohn-Vossen; translated by Nemenyi, P.;
Geometry and the Imagination; Chelsea Publishing Company; New York;
1952.

Knuth (1968)

Donald Ervin Knuth; The Art of Computer Programming; Addison-Wesley;

Reading,Massachusetts; 1968.

Krakauer (1971)

Lawrence J. Krakauer; "Computer Analysis of Visual Properties of Curved

Objects"; Project MAC Technical Report, MAC-TR-82, Massachusetts Institute
of Technology, Cambridge, Massachusetts; May 1971.

Luzadder (1971)
Warren J. Luzadder; Fundamentals of Engineering Drawing; Printice Hall;
Englewood Cliffs, New Jersey; 1971.

Maruyama (1972)

Kiyoshi Maruyama; "A Procedure to Determine Intersections Between
Objects"; International Journal of Computer and Information Sciences, volume
1, number 3, 1972.

McCarthy (1964)

John McCarthy; "Computer Control of a Machine for Exploring Marsl;

Stanford Artificial Intelligence Laboratory, Memo no. AIM-14, Stanford

University, June 1964.

McCarthy (1968)

John McCarthy and Patrick Hayes; "Some Philosophical Problems from the
Standpoint of Artificial Intelligence"; Stanford Artificial Intelligence
Laboratory, Memo no. AIM-73, Stanford University, November 1968.

Minsky (1974)

Marvin Minsky; "Frame-Systems"; Unpublished Paper, MIT-AI LAB 1974; (cf.
draft version of 27 February 1974; SAIL internal document).

- 127 -

.11.1 References. ADDENDA

Muller (1967)

.Edward J. Muller; Architectural Drawing and Ugltt Con~trru:tion;

Printice-Hall; Englewood Cliffs, New Jersey; 1967.

Nevetia (1974)

Ramakant Nevetia; "Structured Descriptions of Complex Objects for

Recognition and Visual Memory"; Ph.D. Thesis, Computer Science

Department, Stanford University, (Forthcoming) 1974.

Newman and Sproull (1973)

William M. Newman and Robert F. Sproull;

Principles of Interactive Computer Graphics; McGraw-Hili; New York; 1973.

Parke (1972)

Frederic Ira Parke; "Computer Generated Animation of Faces"; Ph.D. Thesis,

Department of Electrical Engineering, University of Utah, Technical Report

UTEC-CSc-72-123; Salt Lake City, Utah; June 1972.

Paul (1969)

Richard Paul, Gilbert Falk and Jerrome A. Feldman; "The Computer

Representation of Simply Described Scenes"; Stanford Artificial Intelligence

Laboratory, Memo no. AIM-I 0 I, Stanford University, October 1969.

Paul (1972)

Richard Paul; "Modelling, Trajectory Calculation and Servoing of a Computer

Controlled Arm"; Ph.D. Thesis, Computer Science Department, Stanford

Artificial Intelligence Laboratory, Memo no. AIM-I77, Stanford University,

November 1972.

Quam (1971)

Lynn H. Quam; "Computer Comparison of Pictures"; Ph.D. Thesis, Computer

science Department, Stanford Artificial Intelligence Laboratory, Memo no.
AIM-144, Stanford University, May 1971.

Quam et .31 (1972)

Lynn H. Quarll, Sidney Liebes, Robert B. Tucker, Botond G. Eross and

Marsha Jo Hannah; "Computer Comparison of Pictures"; Stanford Artificial

Intelligence Laboratory, Memo no. AIM-166, Stanford University, April

1972.

Roberts (1963)

Larry G. Roberts; "Machine Perception of Three Dimensional Solids"; Lincoln
Laboratory Technical Report no. 315; Lexington, Massachusetts; May 1963.

- 128 -

11.1 References. ADDENDA

Rosenfeld (1969)
Azriel Rosenfeld; "Picture Processing by Computer"; ACM Computer

Surveys, volume 1, number 3; September 1969;

Schmidt (1971)

Rodney A. Schmidt; "A Study of the Real-Time Control of a Computer
Driven Vehicle"; Ph.D. Thesis, Department of Electrical Engineering;

Stanford Artificial Intelligence Laboratory, Memo no. AIM-149, Stanford

Uni~'ersity, May 1971.

Snyder (1914)
Virgil Snyder and C.H.Sisam; Analytic Geometry of Space; Henry Holt and

Company; New York; 1914.

Sobel (1 970)

Irwin Sobel; "Camara Models and Machine Perception"; Ph.D. Thesis,

Department of Electrical Engineering; Stanford Artificial Intelligence

Laboratory, Memo no. AIM-121, Stanford University, May 1970.

Stewart (1970)
Bonnie Stewart; Adventures Among the Toroids; Okemos, Michigan; 1970.

Sutherland, Sproull and Schumacker(1973)
Ivan E. Sutherland, Robert F. Sproull, and Rober! A. Schumacker; "A
Characterization of Ten Hidden-Surface Algorithms"; Evans & Sutherland

Computer Corporation, Salt Lake City, Utah; 1973. (also published in: ACM
Computing Surveys; volume 6, number 1; March 1974).

Sutherland (1969)
Ivan E. Sutherland; draft copy of "A Method for Solving Arbitrary-wall
mazes by Computer"; which later appeared in the IEEE transactions on

Computers, 1969.

Sutherland (1970)

Ivan E. Sutherland; "Computer Displays"; Scientific American, volume 222,

number 6; June 1970.

Sutro and Kilmer(l969)

Louis L. Sutro and William L. Kilmer; "Assembly of Computers to Command
and Control a Robot"; Instrumentation Laboratory, Report number R-582;

Massachusetts Institute of Technology, Cambridge, Massachusetts; February

1969.

Symon(1953)
Keith R. Symon; Mechanics; Addison-Wesley; Reading, Massachusetts; 1953.

- 129 -

11.1 References. ADDENDA

Tenenbaum (1970)

Jay Martin Tenenbaum; "Accommodation in Computer Vision"; Ph.D. Thesis,

Department of Electrical Engineering, Stanford Artificial Intelligence

Laboratory, Memo no. AIM-134, Stanford University, October 1970.

Waltz (1972)

David L. Waltz; "Generating Semantic Descriptions from Drawings of Scenes

with Shadows"; MIT Aritificial Intelligence Laboratory, Technical Report,

AI-TR-271, Massachusetts Institute of Technology, Cambridge, Massachusetts;

November 1972.

Warnock (1968)

John E. Warnock; "A Hidden-Line Algorithm for Halftone Picture

Representation," Technical Report 4-5, Department of Computer Science,

University of Utah, Salt Lake City, Utah; May 1968.

Warnock (1969)

John E. Warnock; "A Hidden-Surface Algorithm for Computer Generated

Halftone Pictures"; Technical Report 4-15, Department of Computer Science,

University of Utah, Salt Lake City, Utah; June 1969.

Watkins (1970)

G. S. Watkins; A Real-Time Visible Surface Algorithm"; University of Utah,

Technical Report UTEC-CSc-70-IO I; Salt Lake City, Utah; June 1970.

Winograd (1971)

Torry Winograd; "Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language"; Ph.D. Thesis, Department of

Mathematics; MIT Aritificial Intelligence Laboratory, Technical Report,

AI-TR-17 or MAC-TR-84, Massachusetts Institute of Technology, Cambridge,

Massachusetts; January 197 I.

Winograd (1974)

Terry Winograd; "Frame Representations and the Declarative/Procedural

Controversy"; (forthcoming), 1974.

Yakimovsky (1973)

Yoram Yakimovsky; "Scene Analysis Using a Semantic Base for Region

Growing"; Ph.D. Thesis, Computer Science Department, Stanford Artificial

Intelligence Laboratory, Memo no. AIM-209, Stanford University, June 1973.

Zahn (1966)

Charles T. Zahn; "Two-Dimensional Pattern Description and Recognition via

Curvaturepoints"; Stanford Linear Accelerator Center, SLAC Report no. 70,
Stanford University, December 1966.

- 130 -

11.2 GEOMED Node Format s. ADDENDA.

11.2 GEOMED Node Formats.

The latest (June 1974), public implementation of GEOMED distinguishes sixteen different node

formats at the user level: Tram, Empty, Universe, Sun, Camera, World, Window, Image, Text, Xnode,

Ynode, Znode, Body, Face, Edge and Vertex. Of the sixteen nodes, five are unimplemented, open

ended or trivial and so will not be exhibited: Empty, Text, Xnode, Ynode and Znode. The empty node

contains all zeroes except for a one in the status word and a free list pointer in the PF ACE field. The

Text nodes were implemented in 1973 by Tovar Mock and were taken out. The X, Y and Z nodes are

used for miscellaneous things such as beads, one-word atoms and inertia tensors. Field names printed

in capital letters indicate that the contents of that field have one standard intrepretation; lower case

field names are temporary intrepretations. The machine address of a node points to word zero of the

format diagrams.

TRAM NODE-O FORMAT
The tram node, explained in Section 3.3, represents both Cartesian coordinate systems

and Euclidean transformation. Although the status bits contain data, TRAM nodes are can be

distinguished from other nodes because bits 0 and 9 are either different or the word is all zeroes in

the PDP-} 0 floating number format.

-3

-2

-1

o
1

2

3

4

5

6

7

8

XWC

YWC

ZWC

IX

IY

IZ

JX

JY

JZ

KX

KY

KZ

Location of TRAM origin

or Vector of TRAM translation.

X-axis unit vector

or 3 by 3 rotation matrix.

Y-axis unit vector

Z-axis unit vector

- 131 -

11.2 GEOMED Node Formats. ADDENDA.

UNIVERSE NODE-2 FORMAT
The Universe node is the unique root of the data structure and represents the universe

of discourse. Directly accessible from the universe node are the free storage list, the world ring and

the display ring. The world ring and display rings are headless so two pointers are kept one indicating

a "now" entity and the other indicating the "first" made entity.

-3

-2
-1

o
1

2

3

4

5

6

7

8

STATUS BITS

I AVAIL

NWRLD I PWRLD

NDPY I PDPY

SUN NODE-3 FORMAT

Free Storage List of Nodes.

Now World, First World.

Now Display Ring, First Display Ring.

The sun node represents a very distant point light source. The sun belongs to a ring of

suns that belongs to a world, although handling of multiple light sources is quite premature. Th.

location and orientation of the sun is carried by a TRAM pointed to by the TRAM field.

-3

-2

-1

o
1

2

3

4

5

6

7

8

BRO

alt

nlnk

STATUS BITS

PWRLD

SIS

TRAM

pink

World containing this sun.

Ring of Suns.

Location/Orientation of Sun.

User links.

- 132 -

11.2 GEOMED Node Formats. ADDENDA.

CAMERA NODE-4 FORMAT
The camera node contains the scale constants of projection, the physical pixel size, POX

and PDY; the logical image size, LOX and LOY; and the focal plane distance FOCAL.

-3

-2

-1

o
1

2

3

4

5

6

7

8

scalex = -focal/pdx

scaley = -focal/pdy

scalez = -focal/pdz

STATUS BITS

POX LOX

POY LOY

FOCAL

PWRLO

BRO SIS

alt TRAM

SIMAG PIMAG

nlnk pink

WORLD NODE-5 FORMAT

Perspective Projection Scales.

Physical Pixel Size

and Logical image size.

Focal Plane distance.

World of Camera.

Camera Ring.

Camera location/orientation.

Simulated and Perceived Image Rings.

User links.

The world node has a ring of bodies, a ring of cameras, and II ring of suns which

comprise the totality of existence for image simulation. One world is the reality world whose cameras

correspond to actual video hardware and whoes bodies correspond to the physical objects actually in

the proximity of the cameras. Other worlds are fantasy worlds for planning and learning.

-3

-2

-1

o
1

2

3

4

5

6

7

8

time and date

PNAMEI

PNAME2

STATUS BITS

nface pface

ned ped

NCAMR PCAMR

BRO SIS

NSUN TRAM

CW CCW

nlnk pink

Simulated World Time.

Print Name of World.

Potentially visible face list.

Potentially visible edge list.

Now camera and First camera.

World Ring.

Sun Ring and World Coordinates.

Head links of Body Ring of World.

User links.

- 133 -

11.2 GEOMED Node Formats. ADDENDA.

WINDOW NODE-6 FORMAT
The display window node represents a mapping from a camera's image coordinates

(source image) to a display device's screen coordinates (object image). Window mappings can be

composed. The mapped window is clipped to a border XL, XH, YL, YH in object coordinates after being

dilated by the scale factor MAG. The windows are organized into a ring of displays which each consists

of a ring of windows.

-3 SX SY

-2 OX OY

-1 MAG

o
1

2

3

4

5

6

7

8

STATUS BITS

XL XH

YL YH

NCAMR

BRO SIS

CW CCW

nlnk pink

IMAGE NODE-7 FORMAT

Locus of center of Source Image.

Locus of center of Object Image.

Magnification of Window Mapping.

Object Image Clipping Border.

Now Camera of Window.

Window ring of a display.

Display ring of window rings.

User Links.

Image nodes represent either perceived contour images created by input from eRE or

simulated mosiac images created by the hidden line eliminator, OCCULT. Like a world, images carry a

list of bodies and a time representing when the image was taken. Image nodes also carry a pointer to

a copy of the camera and sun under which they were made.

-3

-2

-1

o
1

2

3

4

5

6

7

8

PNAMEI

PNAME2

STATUS BITS

NCAMR PWRLD

NTIME PTIME

ALT

CW CCW

nlnk pink

Corresponding Video image file name.

Camera Copy and World of this image.

Image ring links to form a film.

Corresponding image.

Head links of image body ring.

User Links.

- 134 -

11.2 GEOMED Node Formats. ADDENDA.

BODY NODE-14 FORMAT
The body node is the head of the face, edge and vertex rings which use word 1, 2, and

3. The body node carries a parts tree structure in word 4 and 5. There is a print name of up to ten

characters carried in words -2 an -1. The links of the eighth word are always left free for linkage to

user data structures.

-3

-2
-1

o
1

2

3

4

5

6

7

8

PNAMEI

PNAME2

STATUS BITS

NFACE PFACE

NED PED

NVT PVT

DAD SON

BRO SIS

alt TRAM

CW CCW

nlnk pink

FACE NODE-15 FORMAT

Ten character print name.

Face ring.

Edge ring.

Vertex ring.

Parts Tree links: up and down tree.

Parts Tree links: ring of siblings.

Body coordinate system TRAM.

Body ring of world.

User links.

The face node carries a normalized face normal vector in AA, BB, and CC; the negative

distance of the face plane from the orgin, KK; photometric parameters are kept in words 4, Sand 7.

-3

-2
-1

o
1

2

3

4

5

6

7

8

AA

BB

CC

STATUS BITS

NFACE PFACE

Ncnt PED

KK
red grn blu wht

Lr Lg Lb Lb Sm Sn

alt alt2

QQ
nlnk pink

Face plane normal vector.

Face ring of a body.

Edge count and first edge.

Distance of face plane from origin.

Reflectivities under four filters.

Luminosities and Spectral constants.

T emporari es.

Video Intensity under four filters.

User Links.

- 135 -

11.2 GEOMED Node Formats. ADDENDA.

EDGE NODE-16 FORMAT
The important fields of the winged edge node are explained in Chapter 2. Th. negative

three words are used for edge coefficients and for clipped display coordinates of the edge. The alt,

alt2 and cw field are used as temporary fields in OCCULT, BIN and so on. The CCW field points at

body of edge and expedites BGET. The nlnk and pink fields are kept empty for developmental work.

-3 xldc AA yldc

-2 x2dc BB y2dc

-1 CC

o
1

2

3

4

5

6

7

8

STATUS BITS

NFACE PFACE

NED PED

NVT PVT

NCW PCW

NCCW PCCW

alt alt2

cw ccw

nlnk pink

VERTEX NODE-17 FORMAT

Clipped Display Coordinates or

2-D Edge Coefficients or

3-D line Cosines.

Two faces of the edge.

Edge ring of the body.

Two vertices of the edge.

Wings: neighboring edges in PF ACE and

Neighboring edges in NFACE.

Temporaries.

Temporary and Body Link.

User links.

The vertex node carries a point's locus in three coordinate systems: world coordinates,

perspective projected coordinates and display coordinates. The first edge of a vertex perimeter is

contained in the PED field. The alt, a1l2, cw, ccw and Tjoint fields are used as temporaries.

-3

-2

-1

o
1

2

3

4

5

6

7

8

XWC

YWC

ZWC

STATUS BITS

XDC YDC

Tjoint PED

NVT PVT

XPP

YPP

alt ZPP alt2

cw ccw

nlnk pink

World Locus

Display Screen Locus.

Temporary and First Edge.

Vertex ring of the body.

Perspective Projected Locus.

... also used for temporaries.

temporaries.

User links.

- 136 -

Page Intentionally Left Blank

"" - . READ INSTRUCTIONS REPORT DOCUMENTATION PJ!GE· BEFORE COMPLETING FORM
I. REPORT NUMBER t. GOVT ACCESSION NO. 3. RECIF>IENT'S CATALOG NUMBER

STAN-CS-74-463 kf~/,4- 002;<~ /
4. TITL E (and Subtitle) 5. T'YF>E OF REF>ORT Be F>ERIOD COVERED

GEOMETRIC MODELING FOR COMPUTER VISION technical, Oct. , 1974
6. PERFORMING ORG. REF>ORT NUMBER

STAN-CS-74-463
7. AU THOR(s) 8. CONTRACT oR GRANT NUMBER(s)

Bruce Guenther Baumgart DARC Ij-73-C-0435

9. F>ERFORMING ORGANIZATION NAME AND ADDRESS 10. F>ROGRAM ELEMENT. F>ROJECT. TASK
Stanford University AREA Be WORK UNIT NUMBERS

Computer Science Department .-

Stanford, California 94305

1 L CONTROLLING OFFICE NAME AND ADDRESS 12. REF>ORT DATE

ARPA/IPT, Attn: Stephen D. Crocker, October, 1974
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF F>AGES

. - .

1't4
14. MONITORIN GAGEN CY NAME Be ADDRESS(if different from ControllinB Office) IS. SECURITY CLASS. (of this report)

ONR Representative: Philip Surra
Durand Aeronautics Bldg. , Rm. 165 UNCLASSIFIED
Stanford University 15a. DECLASSI FICATION/ DOWNGRADING

SCHEDULE Stanford, California
16. DISTRIBUTION STATEMENT (of this Reporl)

Releasable without limitations on dissemination.

PRiCES SUBJ ECT TO CHAt:H.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dlfferenl from Reporl)

18. SUPPLEMENTARY NOTES
-- .-~--.- --_._-----------.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department or Commerce
Springfield, 'vA. 22151

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

20. ABSTRACT (Conllnue on reverse side If necessary and Identify by block number)

The main contribution of this thesis is the development of a
three dimensional geometric modeling system for application to computer
vision. In computer vision geometric models provide a goal for
descriptive image analysis, an origin for verification image synthesis, ,

and a context for spatial problem solving. Some of the design ideas
presented have been implemented in two programs named GEOMED and CRE;
the programs are demonstrated in situations involving camera motion
>:>elative to a static world.

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

:.>
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterr:4)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

