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Abst r act

Denote by G(p,q) a graph of p vertices and q edges.
K. = a(r, (;)) is the conplete graph with r vertices and K, (t) is
the conplete r chromatic (i.e., r-partite) graph with t vertices
in each color class. G (n) denotes an r-chromatic graph, and 6(G
is the mniml degree of a vertex of graph G. Furthermore denote
by f,(n) the snmallest integer so that every G (n) with
8(G.(n)) > £.(n) contains a K It is easy to see that

. _ _ ]
lim £ (n)/n = c_ exists. W& show that ¢ > 2+5  and

N —c

c >r—2+%—2—<?l_~2—)- for r >4 . W prove that if 6(G5(n))2n+t

“then G contains at least 3 trj angl es but does not have to contain

nmore than lu;3 of them
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On Conpl ete Subgraphs of r-chromatic G aphs

B. Bollobds, P. Erdds and E. Szemerddi

1. [ ntroduction

Denote by G(p,q) a graph of p vertices and q edges.
K. = G(r,(;)) is the conplete graph with r vertices and K (t)
is the conplete r-chromatic (i.e., r-partite) graph with t vertices.
in each color class. f(n; G(p,q)) is the smallest integer for which
every G(n; f(n; G(p,q))) contains a G(p,q) as a subgraph. |n 19ko,
Turdn [9] determ ned f(n ;k,) for every r >3and thus started the
theory of extremal problems on graphs. Recently many papers have been
published in this area ([1],[2],[3],[41,[5],(6]).

In this paper we investigate r-chromatic graphs. W obtain some
results that seeminteresting to us and get many unsol ved probl ens
that we hope are both difficult and interesting.

G (n) denotes an r-chromatic graph with color classes G ,
lcil =n, | =1,...,r. Here and in the sequel |x| denotes the
number of elenents in a set X . A g-set org-tuple is a set with g
el ement s. e(QG is the nunber of edges of a graph G and 6(G is
the mniml degree of a vertex of ¢ . As usual, [X] is the |argest
integer not greater than x .

At the Oxford neeting on graph theory in 1972, P. Erdds([7]
conjectured that if S(Gr(n)) > (r-2)n+ 1 then GI(n) contains a
K. G aver found a sinple and ingenious proof for r = 3 but for
r > L4 counterexanpl es were found. This discouraged further

i nvestigations but we hope to convince the reader that interesting and

fruitful problems remain.



W prove that if B(GB(n)) > n+tt then G contains at |east &

triangl es but does not have to contain nore than k> of them For

n > 5t probably % s exact-but we prove this only for t =1 .

It is probably true that if 8(G;(n))>n+cC nl/e (¢ isa
sufficiently large constant) then G contains a K3(2) W can
prove only that 8(Gs(n)) > n+C n3/%  ensures the existence of a
K5(2) subgraph Of Gy(n). Mre generally we obtain fairly accurate
results on the magnitude of the |argest KB(S) whi ch every Gi(n)
with 5(G3(n)) > n+t nust contain, but many unsol ved problens of a
technical nature remain.

Qur reSLItS on G(n) 's for r > 3are much nore fragmentary.
Denote by f,(n) the smallest integer so that every G (n) with

5(G,(n)) > f,(n) contains a K. It is easy to see that
r

: _ . 1
tim £ (n)/n = C_ exists. Ve show that ¢, > 2+5 and

n-—cw

1 1
c.>r-2 + = - i . _ 1
r =~ 5 " Blr? for >4 | W conjecture lim (e -r+2) = 3 .

I -

It is surprising that this problemis difficult; perhaps we overl ooked

a sinple approach. Ve can not even disprove 1im(c -p+2) = 1 .
r

r —o
Anal ogously to the results of [6], though we can not determ ne C,
we prove that every G (n) with 8(c (n)) > (Cr+€)n contains at |east
M n” K. 's. W do not obtain interesting results for 6(Gr(n)) > ntt
t = a(n) for r >4 though we believe they exist. As a slight
extension of Turdn's theorem we deternine the mninal nunber of edges

of a G (n) that ensures the existence of a K, , =z o, o, |



2. 3-chromatic G aphs.

Recall t hat G3<n) is a 3-chromatic graph with col or classes Cy
le;l =n. iez; . For xec, .let p'(x) (resp. D-(x) ) be the set
of vertices of Citp (resp. C_.*JJ) that are joined to x . Put
+ + -

d (x) = D (x)|, d-(x) = |p7(x)] . d(x) = d+(x)+ d-(x) is the
degree of x in GB(n) .

VW shall frequently nake use of the follow ng trivial observation

that we state as a |emm.

Lemma 1.  Suppose X eC. yeCi | » and. % s an edge. Then there

are at least-
+ -
d (x)+d (y) -n
triangles containing the edge xy . There are at |east
+ -
2 (d (x)+ a (y) -n)
v eD!

triangles with vertex x , where D' cD

Theorem 1. Let G = G§(n) have m ninmal degree at least ntl . Then

G contains at |east min(k,n) triangles and this result is best possible.

+ - -
Proof. Put d, = max{d+(x): xeCi} , 4 = max{d (x): X€C4l} -\ can

suppose without loss of generality that d“; > d; and d”i > de_
Let x,eCy , d+(xl) = dJi . Note that d'(x)+ d-(x) > n+tl for every
vertex x .
+ -
Suppose d; < n-1 and let z eD (xl) . If d+(z) = n-1 then by

Lemma 1 there are at least 2 triangles with vertex z .If
d+(z) < n-1 then again by Lemma 1 at least 2 triangles of G contain

the edge x.z . Thus at least 2 triangles contain each vertex of

1
D™ (x;) so G has at |east Q[D'(xl)l > L triangles.

3



+
Suppose now that d; =n and the theorem holds for smaller val ues
of n . Let us assume that G does not contain triangles Ty 5 To  such
+
that 4 (xi) =n foravertexof T, » 1 =12 . Then Lemma 1 inplies

that D (xl) consists of a single vertex, say D (xl) = {zl} ~and

+ _ - -

d(z;) =n, d(z))=1. Let D(z)) = {y;} . Then sinilarly

+ -

d (y;) =n and D (y;) = {x;} > otherwise we have 2 triangles with
the forbidden properties. Let g' = G5(n~l) = G- {xl’yl’zl} In ar
every vertex has degree at least n, SO G' contains at |east n-I
triangles and G contains at least n triangles. Thus, in proving

the theorem we can suppose without loss of generality that G contains

triangles Tl,T2 such t hat d+(xl) =n for a vertex X of T.,
|

i =1,2. Analogously, we can assune that Gcontains triangles LR
TS such that d (xi) = n for a vertex xi: of T, i=12.

Let us show now that either these 4 triangles are all distinct
or Gcontains at least n triangles. This will conplete the proof

of the assertion that G has at |east min(k,n) triangles.

Let x lxex,5

n then for every edge yz , ycc

be a triangle of G, x; €C; d*(xl) =n. |If

d (%) = o7 ZECy, xyzisa

triangle. As there are at least n such edges, ¢ contains n
triangles. If a"(x,) = n then ¢ contains at least n triangles

with vertex Xq Finally if d—<X5) =n, Ghas n triangles

containing the edge xlx5

that Ghas at |east min(k,n) triangles.

This conpletes the proof of the fact

Let us prove now that the results are best possible. For n =1

the triangle is the only graph satisfying the conditions. Suppose

G.| = G’B(n-.) ) has mnimal degree at least n (( >2) and contains



exactly n-1 triangles. Let the color classes of G, . be c
1525 . Construct a graph G, = G5(n) as follows. pyt c, =Cyu {X‘i}
and join X, to every vertex of Civq - Then G, has the required

properties and contains exactly n triangles.

Figure 1

To complete the proof of Theorem|we show that for every 4
and n > 5t there exists a tripartite graph Hn,t) = G5(n) Wi th
mnimal degree et that contains exactly 4t triangl es. (For the
proof of Theorem 1 the existence of the graphs H(n,1), n > 5, is
needed.)

Vi construct a graph H(N,t) as follows. Let the color classes

be C, , |Ci] =n, iegz

i 3.
Let A, cC,, (A.11= n-2k , Bi = Cy-A; » :Lez3 , and
B, = ByUB; Ile =k, | =2,3.

Join every vertex of A, to every vertex of A UA; | join every
vertex of 1§J. to every vertex of C. 1 j =2,35, and join every
vertex of Bi to every vertex of C. for i =2, j =3 and

J

| [

Z=3, J=2. Finally, join every vertex of éi to k arbitrary



vertices of Aj for i=2,j =3 and i=33_o (In
Figure 2, a continuous |ine denotes that all the vertices of the

correspondi ng classes are joined, and a dotted |ine means that every

vertex of }§i Is joined to k vertices of the other class.)

It is easily checked that the only triangles contained in H(n,k)

are of the formx.vy. 2 . .
iyizj’ XieBi, yieBi, zJ_eAJ., i=2, =3

and i=3,] =2. This shows that H(nk) contains exactly 7

triangles. The proof of Theorem 1 is conplete.

Figure 2

It is very likely that every graph Gﬁ(n) " n>5t, with nininal
= 2
degree nrt contains at least Lto triangles, i.e., that the graphs
H(n,t) have the minimal nunber of triangles with a given ninimal
degree.  Though we can not show this, we can prove that £ is the

proper order of the mnimal nunber of triangles.



Theorem 2. Suppose every vertex of G . Gy(n) has degree at |east
mt, £ <n . Then there are at least (2 trjiangles in G .
Proof. W can suppose without loss of generality that for some subset
T, of Cq T, =t , we have
S= Lada®@x > 2 4y
XCTl yeT

forall Toc, , || -t, jegz, .

Note that da™(x) > n+t -d-(x) for every vertex x . For x EC
- 1
let T < D(X) , |, =t . Then by Lemma 1 the nunber of triangles

of G contagining one vertex of Ty is at |east

Z Z (d+(x) + a"(y)-n)

xeTl yeTx

> et d(x) - dvy)) > L (8% tdt(x) - T at(y))
X€T1 yeTX xeTl y eTX

> L (t2+td+(x)-s) > t7+88 -8 =
X€Tl

Theorem 2 will be used to show the existence of |arge subgraphs
K5(s) in a Gs(n) , provided 8(G5(n)) > ®t . First we need a sinple

| emma.

p
Lemd 2. Let X . {1, . . LN} . . . X, dieY={l,...,p}, 2la,] = puw
1
and (1-)wp >q, 0 <a <1, where N p,qand r are natural

nunbers.  Then there are g subsets A.Hl, Lk such that
a

q
Na ] > MW
t=1 "t



e

Proof . For iex |et Yi = {3: i eAJ,, eyl , v. =Y. | . we say
1 A

that a g-set v of Y belongs to iex

q 1

1

if ienN A, Cearly
j€T l] .

-5 =

¥ - NE
g-sets belong to iex. As y. > pwN

T 2000 = UYL = ot

Thus at |east one g-set of Y belongs to at |east N(aw)?

elements of X and this is exactly the assertion of the |enmma.

The follow ng inmediate corollary is essentially a theorem of

Kovari, Sés and Turdn [ 8].

Corollary 1.  Let IRESVE

> S . Then every graph Gwith n vertices

o~ :
and at least n°~L/s edges contains a K,(s).
Proof . Let X be the set of vertices of G, let A be the set of
1
vertices joined to the i-th vertex. put w = gn'lls , a=1/2, q=s,

and apply the |emm.

Theorem 3.  Suppose 8<G5(n)> >ntt , and s is an integer and

| og 2n 1/2 .
s < [(Iog n- log t +(15*g—2)/5-) . Then Gi(n) contains a

Ki(s) .

Pr oof . Let Y =c, ={1,...,m} and let X be the set of n° pairs

(x,y) , X €C, ' yeC5 . Let Ai be the

which (i,x,y) is a triangle of GB(n) .
3

set of pairs (xy) ¢X for

As by Theorem 2 the graph

contains at least t- triangles, Lenma 2 inplies that there exist s

vertices of C,» say 1,2,...,s , such that



S
=] = 1 nag] 2 0% /(en?))® > (o) e

Thus, by Corollary 1, the graph with vertex set C, ucC.
3

contains a KQ(S) . This K,(s) and the vertices 1,2,...,s of ¢

and edge set E

‘ 1
form a¥K,(s) of Gz(n) | as clained.

Qorollary 2. Let n >2% ang SUPPOSe (G, (n)) > n+ o7Y/2 /%

Then Gi(n) contains a K5(2) .

As we remarked in the introduction, it seems |ikely that already

1/2
6(G5(n)) > n+ cn/ ensures that G§(n) contains a K}(e) )

Theorem k.  Suppose 8(G,(n)) >.m+t . Let S = [ log 2n ]
- 3 5(log 2n - log t)
and
3 3
S < min { X 528 % S
kn® " hn

Then G (n) contains a KB(S) )

Proof.  The graph G;(n) contains at |east t° triangles. Thus there

W,
b
are at least = edges xy, xecp 'y eCy , such that each of them

3
is on at |east 2—;2 triangles. Let H be the subgraph Spanned by

the set E of the edges. Then, by Corollary 1, H contains a

K = K,(8) , say with color classes CZCCZ and C;C% , since

- 3
(en)?"Y/S _ &7
— 2n

Let us say that a vertex x €C; and an edge e of x correspond

to each other if a triangle of G5(n) contains both of them As by the

. £ .
construct 10N at least 2. vertices correspond to an edge of X , there
2n
. * % £
'saset cico, o 2\332 edges of x .

hn



e

* .
Look at a vertex x €C; and at the endvertices of the edges to

which it corresponds. The set of endvertices can be chosen in at nost

2 .
2=5 ways so there is a set B, c C?[ of at |east

3
%Q-ES > s
4n
: . %
vertices which correspond to the same endvertex set BQUB3 - Bycel
B, C Cr Cearl
5555 y
3 3
. t _ -
min([8,] 5 [B5]) > =5 s%s = 25 .5,
4n 4n-

and G3(n) --contains the conplete tripartite graph with vertex classes

P18y By

Corollary 3.  Let 8(G5(n)) >_n+ c "—H_E , where ¢ >0 and o >0
(log n)
are constants. Then there is a constant C = C(c,a) for which G.j(n)

contains a K,(s) Wth s > C(log n) l‘50‘/|og log n .

3

3. r-chromatic G aphs.

Let now G (n) be an r-chromatic graph with col or classes C,

IC. =n, i =1,...,r. One could hope (see [7]) that if every vertex

~of a G(n) is of degree at least (r-2)n+1 then the graph contains

a K. However, this is not true forr > 4 and sufficiently large
val ues of n .
Let n =9k, k>1, and construct a graph F)(n) = G,(n) as

follows. Let C, = X, ux, UX K =%, [XEI = |X5| = bk ,

5)
Bﬂ.l:k,i = 2,3, and C, = 4, UB, ,

C; = A;UB, , |Ai| = 8k ,

10



|A4| = 2k, IBMI = Tk . Join every vertex of X, to every vertex of

L3 =23, 143 join every vertex of A, to every vertex of
A _ . join every vertex of to every vertex of
5 UAj v Yy Bh y Cg UC5

finally join every vertex of A to every vertex of B. , 1,j = 2,3,

5 and,

i #3 . The obtained graph is Fy(n) (see Figure 3).

2k

Fh(n)

Figure 3

11



Gy(n) is at |east

contain a Kl+ .

Cearly every vertex of Fh(n) has degree at |east 19k =

Furthernore, the triangles in F (n)-C, are of the form xyz

AsS no vertex

Z el

is joined to all 3 vertices of such a triangle,

not contain a K), This exanple shows that if the mniml degree in a

now r >5,

one vertex is in

as follows.
- i J
| et Cr-l = U A |A|
1
. . r
1y.e0r-2 . Join two vertices of QQi that are in different
1

classes unless one vertex isin A and the other in B
i

B.
|

vertex has degree at |east

c F(n) -C

or each Bi

Fbr(n) does

1
2 + g n t hen Gy (n) does not necessarily

k >1 and n = 2(r-2)k.Construct

1 T A UB L Al = (B = (r-2)k = /2,

tlJBj 1B =,

. 'l .
and the other in A qUB™ 1 =1,
In the obtained graph F,(n) clearly every
Furthermore, | f
Lo, r=2)

then either each A (i

contains a vertex of X . As no vertex

1..

Is joined to a vertex in each Ai
vertex of Cr is joined to a vertex in each Bi (i
the graph F,(n) does not contain a K. -

Denote by t,(n) the maxi num nunber of edges of a k-chromatic

Turdn's theorem [9] states that f(n,Kp) =

1,...5r-2)

L.oo,r=2),

t
p_l(n) +1 .
result has the follow ng i mediate extension to r-chronmatic graphs.



Theorem 5. max{e(G (n)): G,(n) Kp} =t l(r)ne

TR Suppose G = G (n) does not contain a KP . Let H be a
subgraph of G spanned by r vertices of different classes. Then H
contains at nost tp_l(r) edges. Furthermore, there are n° such
subgraphs H and every edge of Gis contained in nr-2 of them
Thus G has at nost to, (r)n®  edges.

The graph G (n) obtained froma maximl (p-1) -chromatic graph
by replacing each vertex by a set of n vertices has exactly

t l(r)n2 edges and does not contain a g .
b= P

Corollary k.  Suppose 8(G_(n)) >6  .If to, (r)n < ;5 t hen

. . r-2
G (n) contains a K, -In particular, f,(n) < (r-2 +==)n so

(.= limf (n)/n <r-2+ [.52_ .

r

n —-w
Theorem6. Let ¢ > 0 and a(Gr(n)) > (cr+a)n . Then there is a
constant 6, > 0 , depending only on ¢  such that Gr(n) cont ai ns

r

at | east g.n K 's.
r ¥

Proof. Let m >m_(e) be an integer. Ve shall prove that for all
but T](Z)r (N >0 is independent of m) choices of mtuples from
the sets C., the subgraph Gr(m) of G (n) spanned by the r
mtuples contains a K. . (The total nunmber of choices of the mtuples
S (;) ) This assertion naturally inplies that our graph contains
at | east

(-1 (2)7/ (2" = (24 6(1) (1-m)n" / u” (%)

m m

13



K.'s since at least (1-m)( ;ll)r K. 's are obtained and each of them

occurs (rr:}: ) times. The relation (¥) of course proves Theorem 6.
Let xeC, . Suppose X is joined to c§x)n vertices of Cj s

iFi. As cr > r-2 ,J(c\.x>“c > 0 for absolute constant c .

Call an mtuple in C.J bad with respect to x if fewer than
X) _
(cJ

A simple and wel | known argument using inequalities of binom al

%)m of the vertices of our mtuple are joined to x .

coefficients gives that the nunber of bad m-tuples with respect to x
is less than (l-'ﬂ)m(:l) s where N = N(e,e) > 0 is independent of m.
Ve call a vertex x and a bad mtuple with respect to x a

. . r
bad pair. Cbserve that if gAi (A; € Cy, |Ail = n) does not

: . r
contain a bad pair then the subgraph spanned by U Ay contains a
1
K. since each of its vertices has degree greater than
(cr+ e/2)m > fr(m) if m> mo(e) .\ now estimate by an averagi ng

process the nunber of {Ai}i without a bad pair.
If (X,Ai) , X ecn , IS a bad pair there are clearly

n-l,,n,r-2 r : . . .
(1) () sets {Aj}l which contain the bad pair. Thus if

there are DY families (.} , |A.| =m, aA.c 1<j<

j 2

whi ch contain a bad pair then the nunber of bad pairs is at |east

y(F(RT()FE

BB

()

_ n
= v n

On the other hand to a given vertex x there are fewer than r(l-n)m(:l)

bad sets thus the nunber of bad pairs is less than

ne® (1-m)™( 1)

14



Thus

7y < rem(l—ﬂ)m :

whi ch proves our theorem
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