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Abstract

Denote by G(p,q) a graph of p vertices and q edges.

Kr = G(r, (,r,) is the complete graph with r vertices and K,(t) is

the complete r chromatic (i.e., r-partite) graph with t vertices

in each color class. G,(n) denotes an r-chromatic graph, and 6(G)

is the minimal degree of a vertex of graph G . Furthermore denote
i

by f,(n) the smallest integer so that every G,(n) with

6(Gr(n)) > f,(n) contains a Kr l

It is easy to see that

lim f,(n)/n = cr exists. We show that c4 > 2+$ and
- n+a

Cr > r-P+; -- for r>4 . We prove that if s(G$n)) 2 n-tt

- then G contains at least t3 triangles but does not have to contain

more than 4-t 3 of them.
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On Complete Subgraphs of r-chromatic Graphs

B. Bollobas, P. Erdb's and E. Szemer6di
. .

1. Introduction

Denote by G(p,q) a graph of p vertices and q edges.

Kr = G(r,(E)) is the complete graph with r vertices and K,(t)

is the complete r-chromatic (i.e., r-partite) graph with t vertices.

in each color class. f(n; G(p,q)) is the smallest integer for which

every G(n ; f(n ; G(m))) contains a G(p,q) as a subgraph. In 1940,

Turan [g] determined f(n ;Kr) for every r > 3 and thus started the

theory of extremal problems on graphs. Recently many papers have been

published in this area ([1],[2],[3],[4],[5],[6]).

In this paper we investigate r-chromatic graphs. We obtain some

results that seem interesting to us and get many unsolved problems

that we hope are both difficult and interesting.

G,(n) denotes an r-chromatic graph with color classes Ci ,,

1 I'i
=n, i = l,...,r . Here and in the sequel 1x1 denotes the

d number of elements in a set X . A q-set or q-tuple is a set with q

elements. e(G) is the number of edges of a graph G and 6(G) is

the minimal degree of a vertex of G . As usual, [x] is the largest

integer not greater than x .

At the Oxford meeting on graph theory in 1972, P. Erdijs [7]

conjectured that if 8(Gr(n)) > (r-2)n+l then G (n) contains a
r

Kr ' Graver found a simple and ingenious proof for r = 3 but for

r > 4 counterexamples were found.- This discouraged further

investigations but we hope to convince the reader that interesting and

fruitful problems remain.
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We prove that if 6(G3(n)) 2 n+t then G contains at least t.';

triangles but does not have to contain more than 4t3 of them. For

n 2 Tt probably &t? is exact-but we prove this only for t = 1 .

It is probably true that if 6(G3(n)) > n+C nl/2 CC is a

sufficiently large constant) then G contains a

74

K5(2) . We can

prove only that S(G3(n)) > n+C n ensures the existence of a

K3(2) subgraph of G3(n) l More generally we obtain fairly accurate

results on the magnitude of the largest K3(s) which every GT(n)

with 6(G
3 -
(n)) > n+t must contain, but many unsolved problems of a

technical nature remain.
--

L

1
L

Our results on G,(n) 's for r > 3 are much more fragmentary.

Denote by f,(n) the smallest integer so that every G,(n) with

S(Gr(n)) > f,(n) contains a K . It is easy to see that
r

Em f,(n)/n = c
r exists.

n-+a
We show that c4 2 2+$ and

cr > r-2 + $ -- q-i+ for r>4 . We conjecture lim(cr-r+2) = $ .
r---

It is surprising that this problem is difficult; perhaps we overlooked

a a simple approach. We can not even disprove lim(c,-r-t2) = 1 .
r--+m

Analogously to the results of [6], though we can not determine cr ,

we prove that every G,(n) with d(Gr(n)) > (c +e)n
r contains at least

Tin
r

Kr's. We do not obtain interesting results for 6(Gr(n)) > n+t ,
-

t = a(n) for r 2 4 though we believe they exist. As a slight

extension of TurarPs theorem, we determine the minimal number of edges

of a Gr(n) that ensures the existence of a KQ , 5,_<1<r.
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2. 3-chromatic Graphs.

Recall that G3(n) is a 3-chromatic graph with color classes Ci ,

1 I'i = n , ieZ
3 . For xeCi.. let D"(x) (resp. D-(x) ) be the set

of vertices of C i+l (resp. Ci 1 ) that are joined to x . Put

d+(x) = ID+(x)I , d-(x) = ID-(x;/ . d(x) = d+(x)+ d-(x) is the

degree of x in G3(n) .

We shall frequently make use of the following trivial observation

that we state as a lemma.

Lemmal. Suppose x fCi , YEC
i-l ' and. xy is an edge. Then there

are at least-

d+(x)+ d-(y) -n

triangles containing the edge xy . There are at least

c (d+(x)+ d-(y) -n)
yeD'

triangles with vertex x , where Dr CD- .

Theorem 1. Let G = G3(n) have minimal degree at least n+l . Then

m G contains at least min(4,n) triangles and this result is best possible.

Froof. Put dl = max(d+(x): xt.Ci] , di = max{d-(x): XEC.] . We can
1

. suppose without loss of generality that d; > d; and dl 2 d' .
3

Let xlfCl, d+(xl) = d; . Note that d'(x)+ d-(x) 2 n+l for every

vertex x .

Suppose d: 5 n-l and let z ED-(xl) . If d+(z) = n-l then by

Lemma 1 there are at least 2 triangles with vertex z l If

d+(z) < n-l then again by Lemma 1 at least 2 triangles of G contain

the edge xlz . Thus at least 2 triangles contain each vertex of

D-(x1) so G has at least DID-(xl)) > 4 triangles.-
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Suppose now that dl = n and the theorem holds for smaller values

of n . Let us assume that G does not contain triangles Tl, T2 such

that d+(xi) =n foravertexof Ti, i=1,2 . Then Lemma 1 implies

that D-(x1) consists of a single vertex, say D-(x1) = {z,]

d+(y)

, and

= n , d-(zl) = 1 . Let D-(zl) = CY 3

d+cY$ = n

1 . Then similarly

and f(Yl) = (x13 9 otherwise we have 2 triangles with

the forbidden properties. Let Gr = G3(n-1) = G - (xl,yl,zl} . In Gt

every vertex has degree at least n , so Gr contains at least n-l

triangles and G contains at least n triangles. Thus, in proving

the theorem, we can suppose without loss of generality that G contains
--

triangles Tl,T2 such that d+(x ) = n for a vertex
1 x

i of T
i'

i =1,2 . Analogously, we can assume that G contains triangles Ti ,

T; such that d-(x;) = n for a vertex x*
i of T!

1'
i =1,2 .

Let us show now that either these 4 triangles are all distinct

or G contains at least n triangles. This will complete the proof

of the assertion that G has at least min(k,n) triangles.

Let x x x
123 be a triangle of G , xi&!

i ' d+ (x1) =n. If

d-(x1) = n then for every edge yz , yEC2 J z EC
a 3 '

x y z  isa

triangle. As there are at least n such edges, G contains n

triangles. If d-(x2) = n then G contains at least n triangles

with vertex x
3

l Finally if d-(x3) =n, G has n triangles

containing the edge x x
13

. This completes the proof of the fact

that G has at least min(k,n) triangles.

Let us prove now that the results are best possible. For n = 1

the triangle is the only graph satisfying the conditions. Suppose

Gn-l = G3 (n-l ( 22) and contains,) has minimal degree at least n
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exactly n-l triangles. Let the color classes of Gn 1 be C'i '
ie2

3
. Construct a graph Gn = G3(n) as follows. Put ci = cp (x.3

1
and join xi to every vertex of Ci+l . Then G. . n has the required

properties and contains exactly n triangles.

and n ,> Tt there exists a tripartite graph H(n,t) = G$n)

To complete the proof of Theorem lwe show that for every t>1

with

(For the

5 ,, is

minimal degree n+t that contains exactly 4t3 triangles.

proof of Theorem 1 the existence of the graphs H(n,l) , n >

-
needed.)

Figure 1

We constructagraph H(n,t) as follows. Let the color classes

L

-be ‘i t 1C.I
1 = n , 9c.Z

3 l

Let Ait Ci f (A.1 = n-2k ,
1 B

i = Ci-Ai ) i.cZ
3 ’

and

Bl = G2u3 ) 15.1
3

=k, j =2,3.

Join every vertex of Al to every vertex of A2UA3 , join every

vertex of 5
3

to every vertex of C. , j = 2,3 , and join every
J

vertex of Bi to every vertex of C
, 3

for i = 2 , j = 3 and

: r="_ 3 f j=2. Finally, join every vertex of Bi to k arbitrary



vertices of A
j

for i=2, j =3 and i=3 ', 3=2. (1n

Figure 2, a continuous line denotes that all the vertices of the

corresponding classes are joined, and a dotted line means that every

vertex of E
i is joined to k vertices of the other class.)

It is easily checked that the only triangles contained in H(n,k)

are of the form x.y.z
llj xi Eiii' Yi EBB Y

'j EA* 'J
i=2, j -3

and i=3, j =2. This shows that H(n,k) contains exactly 4k3

triangles. The proof of Theorem 1 is complete.

Figure 2

.
It is very likely that every graph G3(n) ,

n>5t,_ with minimal

degree n+t contains at least 4t 3 triangles, i.e., that the graphs

H(n,t) have the minimal number of triangles with a given minimal

degree. Though we can not show this, we can prove that t3 is the

proper order of the minimal number of triangles.
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Theorem 2. Suppose every vertex of G = G3(n) has degree at least

n+t , t<n. 3- Then there are at least t triangles in G .

Proof. We can suppose without loss of generality that for some subset

T1 of c
1' I IT1 =t , we have

s = Ld
xc:T1

for all T c Ci , IT

Note that d-(x)

( >x >- 2 d+(Y)
YET

=
t ’ iE2,.

2 n+t -d-(x) for every vertex x . For x EC
1

let TX c D-(x) , ]T~/ = t . Then by Lemma 1 the number of triangles

of G contd;ining one vertex of Tl is at least

L
x&T

xX (d+(x) + d-(y)+)

1 yETx

> G-
XET

z (t+ d+(X) - d+(y)) > tl; (t2+ td+(x) - x d+(y))
1 ycTx

-
XET1 y cTx

>- % (t2+td+(x)-S)  > t3+ts-ts = t3 .

Theorem 2 will be used to show the existence of large subgraphs

K3(s) in a G3(n) , provided 6(G3(n)) > n+t .- First we need a simple

lemma.

Lemma 2.
Let ⌧ = {l, . l .,N]  , A. c X

1
� icy = (l,...,p] , &,,I = pwN

1

and (1-@w-p > q , 0 < a < 1 , where N, p,q and r are natural-

numbers. Then there are q subsets A.
"1

, . . ..A
i such that
q

I :A
t=1 it

1 2 N(aw)' .
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Proof. For idc let Yi = {j: i ~-4~' jc-Y} , yi = IY. 1 .
1 we s:i-J-

that a q-set T of Y belongs to ieX if ie n A Clearly
,' -.-e ☺ lJtL

N
q-sets belong to ieX l .. As cy. > pwN

11--
'

Thus at least one q-set of Y belongs to at least N(Qw)'

elements of X and this is exactly the assertion of the lemma.

The following immediate corollary is essentially a theorem of

Kb'v&i, S&s and Tur&n [ 83.

Corollary 1. Let rP1/' > s

2-1/s -

. Then every graph G with n vertices

and at least n edges contains a
K=,c )s .

Proof. Let X be the set of vertices of G , let Ai be the set of

vertices joined to the i-th vertex. Put w=2n -l/s
' cz=1/2, q=s,

and apply the lemma.

Theorem 3. Suppose 8(G3(n)) 2 n+t , and s is an integer and

s < log 2n l/2
- log n - log t + (log  2)/3 > 1

. Then G3(n) contains a

Proof. Let Y = Cl = {l,...,n} and let X be the set of n2 pairs

(x,y) , x ECU ' DECO . Let Ai be the set of pairs (X' y) E X for

which (i,x,y) is a triangle of G3(n) . As by Theorem 2 the graph

contains at least t 3 triangles, Lemma 2 implies that there exist s

vertices of Cl , say 1,2,~..,s , such that



S
2 3IEI = I yAil 2 n (t /(Pn')>S ,> (2n)"+ .

Thus, by Corollary 1, the graph with vertex set C2 UC.
3

and edge set E

contains a
%A )S . This K2(s) and the vertices 1 2

. . ' '-'*'s of c

form a K3(s) of G$n)
I-

, as claimed.

Corollary 2. Let n >28
and suppose 8(G3(n)) > n-+2-l/' n3/4 .-

Then G3(n) contains a ~~(2) .

As we remarked in the introduction, it seems likely that already

S(G3(n)) > n+ cnV2 ensures that G (n) contains a
3 K3W l

Theorem 4.
-- SuPPose S(G3(n)) > n+t . Let S = log 2n

- 3(log 2n - log t)
and

L

f
c

s 5 min {g2-=, $j

Then G,(n) contains a K3(s) .

c Proof. The graph G3(n) contains at least t 3

are at least t3

triangles. Thus there

2m edges XY ' xcc 2 ’  YEC3’ such that each of them

e t3is on at least -
2n2

triangles. Let H be the subgraph spanned by

the set E of the edges. Then, by Corollary 1, H contains a

g-= s
%A ) , say with color classes c; c c

2
and C*cC

3 3 ’ since

Let us say that a vertex x ccl and an edge e of K correspond

to each other if a triangle of G3(n) contains both of them. As by the

cons-truct ion at least t’

2'
vertices correspond to an edge of K y there

is a set
*

C
lCC1 ' edges of K .



*
Look at a vertex x ccl and at the endvertices of the edges to

which it corresponds. The set of endvertices can be chosen in at most

22s *ways so there is a set Blc Cl of at least
. .

t3-5 2-2s  > s
4n

vertices which correspond to the same endvertex set B2UB3 ,

B3CC; .

B24 Y

Clearly

mWlB21 ’ IB31) > t3 3
- 3 s2/s = y > s ’

4n 4n -

and G
3
(n) --contains the complete tripartite graph with vertex classes

Bl, B2, B2 .

Corollary 3. Let 6(G3(n)) > n+ c- a , where c>O and a>0

are constants. Then there is a constant C = C(c,a) for which Gj(n)

contains a K3(s) with s 2 C(log n) l-3a
/log log n l

3. r-chromatic Graphs.
w

1 I

Let now G,(n) be an r-chromatic graph with color classes Ci ,

'i = n , i = l,...,r . One could hope (see [7)) that if every vertex

. of a G,(n) is of degree at least (r=2)n+l then the graph contains

a I( .
r However, this is not true for r > 4 and sufficiently large-

values of n .

Let n = qk , k>l- , and construct a graph F4(n) = G4(n) as

follows. Let C 1 = X1UX2 UX3~ I IXl =k, Ix21 = 1x3\ = 4k '

'i = AiUBi , IAil = 8k ,' 113.1 = k y i = 2'3 y and1 C
4 =A4UB4 7

10



1 IA4 = 2k , lB4/ = 7k . Join every vertex of Xl to every vertex o f

A2 UA3 UC4 ; join every vertex of X
i

i,j = 2'3 , i#j

to every vertex of CiUAj UA4 ,

; join every ‘Gertex of A4 to every vertex of

A2 UA3 ; join every vertex of B4 to every vertex of
C

finally join every vertex of Ai
2 UC 3 ; and,

i#j.

to every vertex of B. , i.,j = 2’3 ,

The obtained graph is F4(n) (see Figure 3).
J

i

8k

k

Figure 3

11



Clearly every vertex of F4(n) has degree at least lgk = 2 + '

Furthermore, the triangles in F4(n)-C4
9 n*

are of the form xyz , where

-5’ YCB2Y ZEA or
3 x EX-.3 ’ Y”A3’ zeB2. As no vertex

of c 4 is joined to all 3 vertices of such a triangle, F4(n) does

not contain a K
4 l

This example shows that if the minimal degree in a

G4(n) is at least 2 + $ n then G4(n) does not necessarily

contain a K4

Let now

Fr Cn) = G,(n)

rr5, k 2 1 and n = 2(r-2)k l Construct a graph

as follows. Let Ci = AiUBi , IAil = IBil = (r-2)k = n/2 ,

r-2
let C

r-l =-- U Aj , IAjl
r-2

1
= 2k, Cr = U Bj , /Bjl = 2k ,

1

iA =l,...,r-2 . Join two vertices of 6 C
li

that are in different

classes unless one vertex is in
.

A
i and the other in Bi++A1 , or

one vertex is in
.

B
i and the other in Ai+lUB1 , i =l'***' r , where

A391 'Al, B
r+l s Bl l

In the obtained graph F,(n) clearly every

vertex has degree at least 1 12 - -
r-2 ' mrthermore, if

K = Kr-2 C F,(n) -C
r-lUCr then either each Ai (i = l,...,r-2)

or each B
i (i = 1, l . .,r-2) contains a vertex of K . As no vertex

of cr-l is joined to a vertex in each A
i

(i =l
� l l .� r-2) and no

vertex of C
r is joined to a vertex in each B

i
(i = l,...,r-2) ,

the graph F,(n) does not contain a Kr .

Denote by t,(n) the maximum number of edges of a k-chromatic

graph. Tur&Ps theorem [9] states that f(n,Kp) = tp-l(n)+l . This

result has the following immediate extension to r-chromatic graphs.

12
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Theorem 5. mde(Gr(n>>:  G,(n) $ "p3 = tp #n2 .

P r o o fl Suppose G = G,(n) does not contain a K
P

. Let H be a
. .

subgraph of G spanned by r vertices of different classes. Then H

contains at most t
p-l(l�) edges l Furthermore, there are nr such

subgraphs H and every edge of G is contained in nr-2 of them.

Thus G has at most t
P-l

(r)n2 edges.

The graph G,(n) obtained from a maximal (p-l) -chromatic graph

by replacing each vertex by a set of n vertices has exactly

edges and does not contain a K
P'

Corollary 4. SuPPOse B&,(n)) 2 6  .  If t
P-l

(r)n < r'
2 then

G,(n) contains a K
P

l In particular, f,(n) 5 (r-2 + $)n so

C
r=

r-2
lim f,(n)/n < r-2 + r .
n+a

Theorem 6. Let E > 0 and S(Gr(n)) 2 (cr+s)n . Then there is a

constant 6, > 0 , depending only on E , such that Gr(n) contains

at least 6,nr K 9.
r L

Proof. Let m >mo(s) be an integer. We shall prove that for all

but acy (1'0 is independent of m ) choices of m-tuples from

+ the sets ci the subgraph Gr(m) of G,(n) spanned by the r

m-tuples contains a X l

r
(The total number of choices of the m-tuples

n ris (,> .) This assertion naturally implies that our graph contains

at least

O-17) (; I’/ ( sjr = (l+a(l))(l-7\)nr/mr ( >-3c

13



Kr 's since at least (l-7)( ;)' Kr 's are obtained and each of them

(
n-loccurs
m-l > t imes. The relation (*) of course proves Theorem 6.

Let xeCi b Suppose x is joined to c.~ n vertices of( > C
J j '

jfi* ( >As cr > r-2 , c.~ -.> c > 0 for absolute constant c .
J

Call an m-tuple in C.
3

bad with respect to x if fewer than

( ( >XC.
J

- ")m2r of the vertices of our m-tuple are joined to x .

A simple and well known argument using inequalities of binomial

coefficients gives that the number of bad m-tuples  with respect to x

is less than (l-@"(i) f where 7 = @,c) > 0 is independent of m .

We call a vertex x and a bad m-tuple with respect to x a
--

bad pair. Observe that if rUA
li

(AicC. ,1 IAil = m) does not

contain a bad pair then the subgraph spanned by 6A
li

contains a

Kr since each of its vertices has degree greater than

(cr+ s/2)m > fr(m) if m > ma(s) . We now estimate by an averaging

process the number of {Ai); without a bad pair.

If (X,'i> ) x 'Cn ~ is a bad pair there are clearly

(  _
~$(~)'-' sets (Aj)t which contain the bad pair. Thus if

there are y(i) families (A.lr , IAjl
Jl

= m ,
AjcC’,  _ _

J
l<j<r,

which contain a bad pair then the number of bad pairs is at least

On the other hand to a given vertex x there are fewer than r(l-'@m(i)

bad sets thus the number of bad pairs is less than

nr2(l-a)"(z) .

14
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Thus

y < r2m(l-Qrn  ,

which proves our theorem. . .
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