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UlfCLASSIFIED 

block 20 

This paper discuaaes a certain graph, called the "dependence 
graph" ("the DPG"), that can be defined na.tural.l¥ for a given independent 
set in a matroid. We are mainly concerned with the DFG of bases, lind 
we study what the DPG of a base tells about the matroid. We show that 
there is a nice connection between the DPG and dual1 •• y, and between 
the DPG and connectivity for matroids. This last fact leads to an 
algori thm for determining the connected components of a matroid and 
also to one for canputing a circuit conta1ni~ two given cUatinet 
elements in the same such c~nent. A simple algorithm using 
depth-first search is given for solving this last problem for ~hic 
matroids. 



rbe Depeo:l'3nce GraJtl tor :aue. 1D Matrold1 

st ein JCltoS4ahl 

Abstract 

This paper d1BCU .... a certain gl'&Jil, called. the "depeD4ence gr&Jil" 
("the DPO"), that CaD be cletined n&t~ tor a Siven 1Ddepend.1Dt .et 
in a matroid. We are ~ concerned ;rith the DPG ot bue., and w. 
at.wt, wbat the DIU ot a bue teJ.lB about the atrold. V. abDIr that 

there 1a a nice connection betvec the DPG &lid dualIty, aDd between 

the DRJ and connectIvIty tor ... troida. . Thia lut tact ~ to an 

algorltb111 tor determ1D1Ds the CODnected. coiplllenta ot a II&tro1c1 aad 

al80 to one tor COIDpat1ng a circuit cClIltainiDc tva given dUt:lJ\et 

element. in the B_e such caaponeot. A 81aple &J.aor1tba waiD& 
clepth-t1rBt .earch 1a siye tor aol.viDs this l.aat pzoobl._ tor srapb1c 

_troida. 

lCeyvord8: bue8 in _tro1cl8, bipartite g:r&]IU, _tzo14 oc:muotirl\J' 

al&o!'ltbu, ..troid ~e. 
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1. ~~_ 

This ~~r ~~SQUS8e, a certain bipartite graph that can naturally 

be defined for an independent set in a matroid. This gra!i' i..: here 

called the "depE'lldence graIh" of the independent det, but it occurs 

in [I)J under the name "simple border gl"&Ih". 

'i'he dependence gra}il of an independent set eltpOses to a certain 

extent bow this set is loca.ted within its "env1.1'Onment", the set it 

spans. This graph is important in Lawler' f' matroid intersection 

algorithm [7], and its properties maltf' up the f\mdamentals for the 

combinatorial proof given for the algorithm in [6]. Lavler has also 

conjectured that the "matroid parity problem" is solvable in polynomial 

time, anti dependence-graJh8 'f'JJ&Y well turn out to be important also 

here. (The "matroid parity problem" is to find the greatest set of 

pairs constituting an independent set in a matroid where the elements 

are partitioned into pairs.) 

An 1nter-.at1ng property of the dependence graJb of any base of a 

matroid is that it very n1cel,t reflects the structure of connec·".1 vity 

in the matroid. Th1. leada to a .1aple algorithm for fSnd1Dg the 

connected COIIlpODent8 of a aatroid, that il delcribed in Section 6. 

As the title of thil paper iDd1cates, we shal.l ~ be concerned 

with the dependmce gr8lb of bue8. This i8, however, oat a very Itroag 

restr1ction, as any result obtained for thi. special cue direot4 

applies to any indepEllldeftt set cond4ered .. a bur" of it. spul. 
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The dependence sraJlh or a. bUe 1a cloase~ nlated to Whitney' B 

concc!Pt of a. "strict tun..iaaental .et or ci!'cuit." in (10], and Leam& 10 

in Section 7 is more or less a. translation of one of hir theorems tor 

such circuit-se"ws into the language of this pe.pe:r. 'i'be proof, however, 

is different. 

2. lJa.8ic ~onc~ 

In th~ following we will conaider the basic properties of matroicla 

as known. However, to settle the terminology we give a brief survey of 

:':1IIe definitions and theor811S f'raD thia theory below. A nice introduction 

to mE.trol~. thoory is given in Whitney" original paper {9]. 

T~lOut the paper we will take the f'reedom ofnitiDg e 

instead of {e J when thiB is obvious :t'raa the context. The cardinality 

of a set A rill be denoted lA l . 
A matroid is detined on a finite set E ~ a. tamUy ot subsets 

of E, called the "independent" tubseta ot E, that obey the :f'ol.l.ow1Dg 

axioms: 

(1) _ is tDdepeD4emt; 

(11) arry sub.et ot an 1D4epea4ent .et i. iIldepeDdeat; 

(iii) tCJr 8lfY aet A £ E , allux1m&l 1D4ependent aub.et. ot 

The ~ carcl1aal1t7 _.t1oDed 111 (111) 1. calle4 the "!'Ulk" ot J., 

written " rCA) ". 

A aet whlch is not 1nclepeDdent 11 831d to be "depeadeDt". The 

1Il1n1llla:. dependent set. are call eel "cirCu1te". 10 c1rcu1t 1.8 properl¥ 

contained in uothar, aD4 if C1 ad C2 are c1z'ov.lt. ncb that 

e €c1 nc2 and e1 EC1~2 ' thea there 1. a cUcu1t in C1 UC2-e 

eoDtainSDg ~. 
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For all A ~ E the maximal set S such that A£; S £; E and 

r( A) = reS) is well defined, and this set is called the "span" of A, 

written" sp(A) If. The elements 1n sp(A)-A are exactly those 

e € E-A lUeh tnat there is p, circuit 1n AU e conta1nini e. If 

I ~ t: is independent and e ( sp(l) -I , then I U e contains a unique 

circuU, which we shall denote" C( e, I) " 

A maximal independent set Is ca.lle1. a "base". All bues have the 

same cardinality r(E) , and if Bl and B2 are different bases, then 

for each e
1 

(Bl -B
2 

there is an e
2 

(B2-B1 such that Bl U e
2
-e

1 
is 

also a base. 

A matroid is obviously de~ermined if its set of bases 1s giver-. 

It turns out that the set of base-compl.ements (in E) for a matroid M 

fonn the base-set of another matroid, which is called the "Ilu&l" matroid 

of M • 

We also need aVIDe elementary gralh-theory and we use the folloving 

terminology. A graph is a finite set of "nodes", together with a set 

of "1U'C3", each being an unordered pair of distinct nodes, called its 

"endnodes". A subset P of the nodes of a graIh G is said to be a 

"partiti')ning set of G" it each arc ot G has t)Jle endnode in P and 

one outside. If lO. graph baa a partitiOlliDg set P then it is said to 

be "bIpartite", and then th~ set of DOdea oatside P alao tOJ'1118 a 

partitioning set. 

A "match'lDg" in a graph 11 a aubset L ot its arc. such that ncb 

node occurs a.s an endDode of at JII08t one arc of L. A set 11 of DOcies 

i8 8ald to be "covered" b)' a _tch1Dg L it each DOde in • occurs &8 

an endDocle ot an arc in L. In 8ectiOl1 .. we vlll ue the tol.l.ov1ns 

well-known theorem due to P. Hall (at. [?-]): 



Theonm. It G il a bl}m'tite graph mel F 11 a ~1t1oD1Dg set 

"r G, then therf' is & mat.chiDg in G coveriDg F it IDd o~ if' for 

each P' ~ P the ~et Q' of node. reachable by toll?ving an arc fran P' I 

is such that IF'I S \Q'I· :J 

~. 'Jefin1t1on of the Dependence Grapt. 

Let M be a matroic. over a set E J and assume that I ~ E is 

independent. The "dependence-graJ,h of I" (vritt •. -n "the DFG of I", 

or on~y " Dffi(I) ") is defined. as the following bipartite gra}il G • 

The nodes of G are (in one-to-one correspondence with) the elements 

of E, and I 1s a -partitioning set ot G. There is an arc in G 

between e 1 € I and e2 € E-I if and only it e2 € sp(I) and el E C (e2, I) • 

Whp.ll we draw a dependence graph we rill U8U&1ly have the nodes 

f'rt"..GI. I at the bottClll. M an example let M be the graphic matroid 

defined on the arc set ot the graph below, and let I a [a,b,c,d,e} , 

which is marked by double line •• 

It· 

o 
& 

A graphic matroid and the DM ot (a,b,c,d,e}. 

t 

b 

g h 

c d e 



... The 010 or a bue, and. what it tella about otber bues 

The tol.l.ov1ne: rather obvioul l..a sboVI tbat the DR; ot a bue could 

have been defined 1'ul.q v1tb1n the O"'l'WOrk ot bues. 

I.-a 1. It B is a bue of & ... tro14 aDd e1 £ B Im4 e2 € E-B , then 

there 1s 8ll arc betveen -1 aDd -2 m DJIG(B) it and. caq if 

B U e2 -e
1 

1s also a baae. 

~ . It there is an arc betvee e
1 

g4 e
2 

in DJIG(B) , then ve 

Vlll destroy the 0Dly c1rCN1t 1D B U e2 b7!'81OV1D1 e1 • Tbua 

B U e2 -e1 1s 1nd~, aDd theretore alao • bue. 

CODverse~, ir there 1s ftC) &J"C betvHll e1 and e2 'then B U e2-e1 

vUl cOI1tam the circuit C(e2'B) UJd ca. theretore DOt be & bue. D 

L..a 1 tell.8 us that the OM of & bue B delcrt'bu, md 1. 

described by, the set of bue. tbat d1t'ter:trca B 1D ~ one elaeat. 

'!'hat th1s 1n general 1s not eno\I&b to clet;em1De all bu .. (ud thus the 

&ll structure) of the ... tro14 1. ~e4 b7 the toll.ow1Dg .....:ple. 

We <lenDe two .. u.ro14a OA the s.t {a-b,c,d]. ~ s..: the gr&J:b1C 

mat.roid of t.he SZ'&JIb p1c:tvecl below, _ ~ 18 tbe -voU vbere all 

sets of C&I"CHD&l1t7 10 •• tMD or eta-.J. to 2 are ~. In 'bC1th 

I"I. and. ~, 'the • .to {a, b} 11 a 'bue aDd the DJIG of (., b)' i.e the 

eme p1cture4 'below ill beth _tzooida. Bwwer, M:L tm4 ~ are ~ 

equal as {c,d} 18. 'bue m ~ but DOt SA II:L • 

, 



C d 

l><! 
a b 

The eraIil def1n1J\g Ml • 

We may obta~l a feeling for how "little" the DFG of a base says 

abot;.t the matroid by observing that the number of different DFGs 011 n 
2 

nodes ~!'ow:; not faster than O(2n ) • However" D. Knuth has shown 18 [5} 

that 'the n'Ulllber of essentially different matr.>lds over a set with n 

n -~ l~ n+ O(log log n) 

elements is as big as 22 , Which grows 

considerably ras~er. 

In spite of these tacts it turns out thl\t the DIU ot a baae poiuta 

out a. much larger class at set. that IIWSt be baaes tbnn those covered 

by Lemma 1, and exact4 hew large this clu. 1., 1. described in te.ia 6. 

However, the proof of the tact tbat Ul7 let not covered by this l .... 

1s "Wll'eliable .. a bue" 11 tor C<lIlveDience po8tponed to Section 7. 

We will also (and t1r1rt) de.crib. tboae .et. tbat UDIJer DO c1rcna­

stances can be bases, by glv1Dg a cO!ld.1tioa that all baa .. mat obe7. 

This condition liill ,1=ecUate~ be 8bDIm to be as atl"ODS .. pl •• lble. 

In the folJ")1I1ng 1 __ , _tch1 .... in tbe DIU ot a bu. rill be 

:lJDportant. If L i8 a atchlng ill the DIU of' a bUe B, thtD ve vUl 

• .ncl the aet 

of' those inside B as It D(L) •• ftle.et B UOUT(B) - DCB) wUl 'be 

denoted· L(B) • Obvioual¥ lotJT(L) I • IDI(L) I aad IL(B) , .. lBI • 

6 



We Itart out with the condition which all bue ... t obe'y, aDd we 

fult prove a .l.1gbt:q lIOn general rewlt thaD ve need. 

1.-. 2. Let B be a bue aDd I c 1D4epeadent set. of a matro1d.. 

Then there 18 a matching L in nro(B) such that OUT(L) - I-B and 

meL) c B-1 • 

Proof. By P. Hall's theor_ It Is eDO\I8b to shoY that, tor ~ 

I' <: I-B , the set JI or nc4es in B-1 that are reachab~e t'rom 

l' by arcs in DPG(B) will satisfY II' \ ~ \J'I . 
For each I' we have 

J' = (»-1) Ii ( U C( e,B) ) 
e E I' 

This implies that I' U (B n I) s: sp(J' U (B n I» • 81nce both I' U (B f"1 I) 

cd J' U (BIi I) are 1ndepeDdeat we IIIWIt have 

,I' U (B Ii I) \ ~ IJ' U (B n 1)\ • 'Dd8 Japl.1es ,I' I ~ IJ" , vbich i8 

vhat we wanted. 0 

As all bans bave the .... cardinality, ve ,....,iateq obtaill tbia 

1.-. ,. ret B &Dd B' be two bu .. of a atro14. ~ til ... 1& & 

match1ng L 1D DlO(B) IUCh tat ruf(L) - B' -B IUI4 D(L) • B-D' • 

To IIboY that thll CCID41t1c.A 18 til. ~ ~.t.ble •• e pro," 

the 1-. below. IIote tbIIt the t'ol.1oIf1Dc l..a &lao JII'Oft8 tbat m 

arry bipartite graJlb G nth a _1..,.84 ,.niti,., •• et B, til .. 

1s a vell-c1e:tiJled bue-riObeat .vo14 0ftI' tile .... of G, ... t.III* 

B is a baa. ot th1a .atJocd4 IUI4 G 18 tile DIG ot B • 

7 



LealIa ~. Let G be a bipartite graph and let B be one o~ ita 

}Brlitioning sets. Then the set B .. {L(B) 'L is a matching in oJ 

tom.s the set ot bues at a matroid over tbe node-eet of O. (Here we 

allow L to be anptY', so that B ~ B .) 

Proof. We could here prove directl¥ that the a.xians ~or bues are 

true. However, the constructions needed have been done once and for &.ll 

in a more general setting by Edmonds and Fulkerson in [1]. Here they 

prove that it H il a graph aDd E is a subset ot its nodes, then 

the subsets of E that can be covered by a matcbing in H wU1 tOl"ll 

the independent sets of a matroid on E . 

:'11e appropriate H tor our case is obtained from G by adding an 

lU"C witt. enQnode b' from each node b ~ B. Further we let E be all 

nodes in this graph except the old b-nodes, letting b' be their new 

representa" .. ive.. '!'hat the EdIIIoDda/Fullterson conatruct1on on tbil grapb 

yields the ~tro1d in tbe 1 .... is nov tairly euy to see, and the 

details are left to the ~er. '!'he fol.loviDg illustration II&'y claJ'lt'y 

the ~OD8truotlon: 

~ ~ .., a~ a
5 

b' 1 b' 2 b' , b4 

G H 

'lbe matcb1.Dg indicated 1D G sbon that (~,~b2,b~lb5) is in IS. 

i 
b' 
5 

a6 
0 

'lbe _tchlDg 1Dc11aatecl 1D B 8bGn boW the correap0D41Dt1 set {~,~b2,b4.b5} 

occurs ... a bue o~ the .t1'014 ~ above. CJ 
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We DOW turn to the poobl_ ot cbaNcteJ1.a1Da tho.e .et. that the 

DIG of a baa. B poiDta out as bueB. Let I' be a set such that 

IB'I = 'BI . By I.-a , ve mow that it B' hU ~ chance ot 

being a base, there IIlU8't be a matching L in DM(B) such that 

B' ~ L(B) . It tUl'll. out that the o~ tiae ve e_ reaJ.q conclude that 

B' i8 a bue 18 when there 18 ~ one matching L such that L(B) ... B' • 

A matoh1Dg L which 1a ~ that no other aatch1ng has exactly 

the a._ lB- aDd OUT- aet v111 be called "clean". However, aiDce ve 

want to uae thi. ccmd1t1on in ditterent toma, ve vill first define 

cleanne81 in a rather obacure 1AI¥, _d then prove tbat thb is equiftleat 

to the above condition, _d alao to a third tom Vh1cb v1ll tum 0IJt to 

be perhaps the lICit usefUl one. 

Let L be a match1D& in the DIU ot a bue B. We will 88¥ tbat L 

i8 "oleu" it ever:.' aubaatchiDs L' ot L 18 IUCh that there exilts 

a node in m(L') whoae 0Illy arc to D04ea in OUT(L') 1a the one 

in L' • A aSllple qcle in DlIG(B) vbicb ia au~ 'that exactly eacb 

aecODd uc ia in L i. called an "L-alteru.t1Dg cycle". (In [6] tb1a 

1. c.11 ad a "am c,cle iD4ucec1 '" I.".) We prove the foll.oIr1D8 1-... 

~ 5. Let L be .. -.t"h1II& in the DM ot aea. 'bue B ot a atI'D14. 

!lac tile toUaw1DC three iitattMDta ~ equ1wl.at: 

(a> L 1a c~. 

(b) 1'here 18 DO .atcbizll I.' 11l DPG(B) nab tbat D(L). D(L') , 

OUT(L) • our(L') aDd L ~ I.' • 

(e) 'l"Ile DIG ot B baa DO L-altenatS. a,01e. 

9 



P.root. 

<a) • (b). By the definition ot cleumes8 v~ C8.l'1 see that if' 

meL) and M(L) are given, then tbe process ot choosing arc by arc 

a matching that covers exactly these sets can o~ be done in one way, 

sinee there is a.l~s an arc in the remainiDg set that baa to be ClhoBU1. 

(b) ~ (c). SUppose there were an L-alternating eyele in DPG(B) I 

with arc-set C . Then (LUC) - (L('IC) vould be &nather matching 

obeying all the requIr_ents ot L' in (b). 

(c) ~ <a>. SUppose L is not clean. Then there 1s a Bubm&tching 

L' of' L such that each node ill DeL') has arcs to at least two 

nodes in OUT(L'). Start at IU2Y node in Ot1l'(L') and f'ollow the arc 

in L' f'raD here to the "corr_plDdiDa" node in INCL') • Then 

take aq other arc to UlOther node in OUT(L') I and repeat the process 

again. By the f'1nitene88 ot L' ve JII.l8t event~ cOIle back to a 

node in OUT(L') whIch ve have .een betore, 8Ild then an L-altemat1ng 

cyele 1. 1'o1'llecl. CJ 

w. are DOW r~ to prove the relUlt cla1aed above. 

1.- 6. 11' L 18 a cleu _tch1Dg ill the DPG ot a bue B of sOlle 

matroId, theD L(B) 1& a bue. 

~. By the ort.,·, det1lait1cm ot cl ...... ve can piCk an are ad. 

wlth eac1aoc1ea e1 E: D(L) ad e2 E Ol1l(L) II1ICh tbat there 18 DO arc 

t'rca 81 to aa:J node in OO'l'(L) --2' This MU1B tbat -1 does not 

occur ill the cirCuit C(e,l) tor aa:r DOCle e EOU'!(L)~ • 

By 1.- 1 tbe.et B' c BU-2-el 1. alao a bue, aDd .1ftCe the 

c1rcu1t. aentloaecl &bon are DOt toacbe4 _ thU lilt ....... , the U'CS 

10 



fl'OIIl nodes in OUT(L)-e2 are the s_e in DIG(B') aa in DIU(B) . 

Thus the matching L-a reoccurs in DIG(B') and it is clean here aa 

it was in Dro(B) • Thus by an inductive argument on tne lize of' L, 

we can conclude that L(B) is a base. c:J 

Not surprisingl¥, it is alao tl'l1e that if' L is a clean matching, 

then 1 will reoccur "upside down" in nro(1(B» , but we leave the 

proof of this to the interested reader. (A proof' occurs in [6).) This 

is not generally true if 1 is not clean, even if' 1(B) is a baae. 

The remaining question now i. whether IAIIIII& 6 covers all sets that 

must be bases. Unf'ortunatel¥ the set /!J = {L(B) I L is a clean matching 

in DRi(B) 1 does not genera.ll¥ f'orm the baae-set of' a matroid. Thil can 

for example be seen by 8tu~1ng the follow1ng bipartite gra}il: 

d e r 

N><l 
E-B 

B 
a b 

Here Bl = {a,d,e} and B2 = {c,e,t} are both in /!J. However, to 

conform to the baae-axlC1D11, there woW.4 have to be an ~eut in 

B2 -Bl = {c,t) that could repl.ace a :in ~. azt neither {e,d,e) 

nor [t,d,e) are in B, shoving that B 11 Dot the bue let ot a Mtl'Oid.. 

Thus the "base-poorest" _troi4 i. DOt D1ce~ well-det1ned &I 11 

the base-richest. The proot that I.- 6 IItUl 11 tbe beat polsible 

(in a little weaker leIlle) il poatpme4 to 8ectiOli 7, vbere the Decelsar.r 

tools are developed. 
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5. Duality and tbe DfG of' a Base 

The relation between the DPJ ot a base and duality is tbe following 

simple one. 

Lemtna 7. It B 1s a base for a matroid M on E, then the DR; of the 

base E-B in the dual matroid M* is the same as the DFG of B in M, 

considered "upside dOW1". 

~. This is a direct consequence ot L8IlIII8. 1 and the tact that 

the bases of M* are exactly the complements of the bases ot M • 

The relation between the DR; and duality will be investigated 

further in Section 7. 

6. Connectivity 

In this section we will prove a s:!Jllple relation between connectivity 

in matroids, and the u&U&l gralh-connectivity in the DFG ot some base in 

the matroid. This relation will naturally point out a simple a~or1tbm 

for cOIIlpt1ting the connected caaponents of a matroid. 

By using Whitney'. or1.giDal det1nition ot connectivity in matroida 

(in terms ot rank-relat1cma) the relatian we ahall prove would be rather 

evident. We will, however, give a presentation in tenu ot Circuits, 

Which will &180 yield lID algor1tta tor :t1n4:1D8 a CCIIBOIl circuit ot two 

element. it the, 11e in the .- coanected ~ent. 

We will say that tva el_eDta ot a matroid are "CODIlected" it there 

exists a circuit conWntng them botb. This relatioo is obviously 

s,..etric, aDd we vUl deflJle it to be reflexive. That 18, Ul el __ 

t·bat occurs in DO c1reu1t 18 cCIIIIleeted to it.elf' aDd DOth1Dg elae. 

That it alao is transitive ~l.lon trc. tb1a ~: 

12 



Lemma ~. In a matraid let C1 and C2 be circuits such that 

Cl nC 2 I- ¢ , and let el and e2 be elenents such that e
l 

£. C1-C
2 

Then there 1s a c ircul t in C 1 U C 2 containing both 

e, and 
.... 

Proo f . The proof is by induction on Ic 1 U C 21 
vaCUOliSly when 1('1 U C 21 <;; . 

the lemma holds 

~'or the inductive step choose an element e r Cl n~2 ' and a. circuit 

':;3 in C1 "':C2-e containing e1 · If e2 €C~ then we are done. If 

not, we can use the induction hypothesis on C
3 

and C
2

' except when 

C 1-<'2 =: c 5 In this case we pick a Circuit Cl~ in C1 UC
2
-e 

containing e2 
. Then C4 nC

3 2 C4-(~2 I- ¢ , and a.s c
3 

and C4 
roth avoid e we have Ie, uc41 < IC I uc21 . Thus we can use the 

induction hypothesis a.ga.in. 0 

Thus the relation of being cormected is arl equivalence-relation, 

and the equivalence cl.asses with respect to this relation a.re usuaJ.ly 

ca.lled the "connected canponents" ot the rnat::ooid. 

Note that the connected component. ot r~ gra.phic matroid are identical 

to the 2-conn~ted components at the arcs in the under~ing graJlh. 

However, the connected components of a graib as used below are the 

equiv"a.lence-classes of n041es with respee,; to being connected by a 

single path. To avoid confusion we will cal1 this laSt type of 

connectivity :in graJils "G-connectiv1tY"1 whUe connectivity in 

ma.troids is ca.lled "M-connectivity". The corresponding connected 

canponents will be ca.lled "G-component8" and "M-caaponent8" respectively. 

LeJIIIIa 9. If B is a base ot a matroid, then the G-CClIIlPOnent. or 

DRI(B) are identical to the M-caaponwts at the .. troi4. 



~ • Suppo8e e and e'" e" e t , a.re in the I.e G-ccmpooent 

ot DiG(B) • Then. ve can obvioual¥ find & sequence eO,el , ••• ,en tree 

E-B such that e lCCeo,B), e' €C(en,B) and c(ei_l,B) neeel,B) ,,_ 

for 1 .. 1,2,., "n. Thus e and e t a.re in the IUle M-canponent. 

To obtain the lama ve IIlWIt &lao prove that there are DO circuits 

in the matroid containing elements f'raa tvo or more G-cCIIlponents. 

Therefore suppose there exist such circuits, and choose one ot them, C~, 
.-

such that ICl-B\ 1s minimal. Obviousl¥ ICl-BI ~ 1. Suppose Cl baa 

elements from the G-cceponents ot DlU(B) , Kl and ~, such that Cl 

has an element e1 in ~ -B. We know tblt Cl I- C(el,B) sinee a.lJ 

elements of C{e1,B) are in K1 • Choose e2 lel n~ , and choos. a 

circuit C2 in C1 u ... (e1,B)-el conta1n1ng 8 2 , Obv1OU1~ then 

IC2-BI < IC1-BI • However, C2 IIlIlst alao have an elseut in 

C{e1,B)-G1 ~ IS. ' & contradiction. CJ 

Note that through x,..,. r this 1-. gives a nice demonatrat101l ot 

the ·.rell known tact that the M-cc.poneata of & II&troid Uld it. dual are 

the SUle. 

How 8UpJIOle a JB&tJ'014 1a s1 veil over E such that there 18 & 

po~an1al time al80ritllll i'or clecicl1ng whether a given let i. 1ndependeut 

or not, tak1Dg lEI as the "size" ot the probla. 'lbea, given ...., 

dependent set, we CaD t1Dcl olle ot it. c1l'cui:tl by lcarmS,. tbI'cN&b it. 

elalent. once, JWlhtas out. tho .. tbat do DOt alte the renin' •• et 

We can DOW give aD aJaoritta tor cc.pzttns the M-ccepaeatl or a 

.. troid baaed Ql t.e.a 9. The aJ.aorltml IlHda & cia. atractve tMt 

kHpe tbe ~..,.... ot J: 41rt4e4 1Dto c1U.101Dt .,. • .tl, aa4 it IlftCI8 



an operation" f.fERGE(a,b) ", a,b € E , that will Wlite the sublets 

containiDg a and b 1~ the, are in different BUblet., and othervile 

do nothins. There are very efficient data Itructures and algor1tbma 

available for this problem (see [4], page ~54). 

When we start the algorithm, we have each el_ent of E in ita 

own subset. We look at each element of E once in any order, and as 

we proceed we bu1ld up a base for the matro1d in a set B (which 

initia].:i:r 1s empty), by adding to B each element e we meet that 

makes B U e independent. On the other hanci., when ve meet an element 

e such that B U e is dependmt we cOlllpllte C ( e, B) , and perform 

MERGE ( e, e') for eacb et £ C (e,B) -e • 

That the partition o~ E yields the M-cc:mponenta ot the mAtroid, 

when all elements have been treated, is a direct consequence of LeIIIIIA 9. 

We will nov show that the proo~ o~ LeI--. 8 g1ves • poqu0lll1.1 time 

algorithm for finding. circuit cOl1ta1D1ng two given d18t1nct element. 

el and e2 whenever the, are in the .. e M~ent. To decide it 

they are, we tirst use the above algor1t1a to t1Dd the M-ca.ponentl, and 

if e
l 

and e2 are in the s_e cc:aponent, 1t ;\1 &lao ..,~ to construct 

a "chain" ~~ circu1ts CO,Cl ' ••• ,Cn such that 81 € Co ADd e2 E Cn ' aDd 

Ct _1 net I- ;, 1 - 1,2, ••• ,0. It po8l1b1., we also "Uortcut" tbU 

cha1n untU fUrther IbOrtcutl are iIIpoalible. 

The lut Itep 11 DOW to "pIrfbnl· ~ 8 HJ)e&teclq OIl aeilbborlllC 

C
1 

'I to "Ibrink" th_ into one c1rCuit vtthoat brMk'ng tile cba1D, 

untU only one c1rcu1t 1. lett. 

'rbi, obvioua:q 101vel the problta in po~lal tille, it 1.-. 8 

1. "per1'onnable" 111 ~ tt.e. ~ aee tbat it 11, we ftr8t 

deacr1be heY to t1Dd & <:Ucuit 1D & aet AS; B ~'n_ CD. pya 

15 



el_ent e€A. First build a max1Jaal 1Ddepeodeot set I tor A-e 

in the 8a1e va.v lUI we lNilt the bue B in the last algoritbll. It 

rUe i8 dependent, we compute c(e,I) and use this; if' Iue is 

independent, there is no circuit of the type we want. 

With this construction in mind it iB easy to see that th~ proof 

of Lemma 8 directly yields a JI04'nomlal-time algorithm for finding the 

circuit that the lenna itself aBserts the existence. The details are 

left to the reader. 

S1lIlp11:fications ot these algorithlllB in the ease of grapblc 

matr:>lds are discussed in SectIon 9. 

7. Matroids Induced from Vector-spaces 

Suppose Y 18 a vector-space over 8me :f'1eld F 1 usd l.et E be 

a. finite s""lbset of V. It we define a subset of E to be independent 

if and only if it is linearly independent in y, then badc theorems 

:frau l.1near algebr& tell us that these define a III&troid on E. Let 

us call. this the "induced matroid" of E • 

If we 1'1x some iIldepadeat r-tupl.e B - (bl.' b2, ••• , br > t1'ca V 

that spans E then each el._m ed can DAturaJ,q be rep'ueated as 

III el.aaent e' in r. We rill cCM1der the el..t. o~ r .. 
C~., end these colmma al.Io fOl'Il a vector-apace in their own r1&bt. 

In this vector-ape.ee the~. Z' - {e' I et:E} w111 1DduCe tile .... 

matroid u E did in V, quite md~t ot the cboice of the.et B. 

It" G is a bipartIte 1I'&}Ib, we define an -F-labellac ot G - to be 

aD 1U181gmaent ot non-zero val.ue8 tzoc. 7 to tbe arc. ot G • 

Let E be the llOde-.et ot G, l._ B S;; E be a Jl&l"tltlO1atna •• 

ot G IDd n;ppo .. _ 7·l&beliDa of 0 18 st. ..... v. au ta.a SA & 



natun.l way associate el_ents of r, r = IBI I to each node:in G 

such that B is a base ot the matroid 1.nduced by these elements, and 

such t.hat the DFG ot B in this matroid is G, We first arrange 

the nodes of B in some order b l , b
2

, '00, br ' and to node b i we 

associate the column bi with a " 1" in position" i II, and with zeroes 

elsewhere. To each node a € E-B we associate the column 

r 
a' = ~ q ibl' , where q 1 is the label of the arc between a. and 

1=1 a a 

b
i 

if it exists, else it is zero. As Ul example, look at this picture 

(F are the real numbers). 

E-B 

G 

B 

(~) (~) (~) (~) 
We leave it to the reader to veritt;, that the DPG of B in the 

induced matroid 1s iDdeed equal to G. We further notice that any let 

ot r iDdependent vector. trca any vector-.pace over F UIIed.. bi' 

i = 1, 0 • "r, (CCllllput~ the "at" t. br the aaa. tonula) WOI1l.d induce 

the sae matroid over E • 

CODVU'sel¥, let E be a t1n1te .et ot vectors f'l'OII a vector-apace 

over F, and let B be a bue tor the :lDduced matroid M. Since thell 

fIVer:! el_ant ot E-B i8 a unique linear expression in el._enta fl'OIl B, 

ve lee that the el_tDta ot E 4et1M. natunl. F-l&bel1DI ot tile DIG 
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ot B, such that the matroid M will reoccur by using the construction 

above on this labeling ot the DR; ot B . 

ThUS, tor any F-labeled bipartIte graPl G III1d for any partitIoning 

set B of' G there is a. natural F-1nduced matroid on the nodes of G 

such that B is a base and G = D1U(B) . It is alao possible to 

construct any matroid induced by elements ot a vector-s:paee over F 

in this way (but there are genera.l.l¥ many labeling. inducing the same 

matroid). 

As an F-labeling c~plet.ely determines a ma.troid when G and B 

are given, we should be able to characterIze the rest of this matroid 

direct ly from the labeling. The following lemma should then cane as no 

surprise. 

Lem& 10. Let M be the matroid det'ined over the node. ot the bipartIte 

graph G by a given labeling tram F and a given partitioning set B, 

and let A be a set ot nodes such that \A, = IB\ • Then A IB a baae 

for M if aud only it det(Q.) ~ 0 ,wbere Q. I. the quadratic matrix 

in F fomed by lett1Dg i E A-B inda ita eolmma and oJ E B-A its 

raYS and defining the el_ent qij of Q &I the label ot the edge 

between i and j it it _Ut., and otherwise zero. 

~. Let us associate with NCb node ot G the "natural- eleS 

from r, r. \B' I UlCl let us cia the order1Dg at B that... necesAl7 

f'or this au.ch that the el.eDts at B-A coaes first. Let us further 

order the coJ.uans uBociated With elemeat. or A such that thoae 

associated with elements in A-B ccae 1'1rat and. such tbat the rut 

rollav 10 the Baae order as B n A ... ordered above. 1'he ron ot A 
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B-A Q 0 

1 0 
1 

Z BrA . . 
0 . 

1 

Here Q. is the matrix in the theorem and Z can contain anything. We 

know that the 1'O..,s of this matrix are indeper.dent (which is equivalent 

to A being a base in M) i1' and only if its detem1nant 1s not zero. 

From tbe special structure of the matrix it tollows that tbis is true 

it and onl¥ if' det(Q) Ie 0 • 

It may be instructive to observe bow LenDa8 ~ and 6 could be proved 

tor thi. type of Jl'l&trold1 trail Letaa 10. 

We notice tbat if' A 18 a base and we want to t1nd DFG(A) with 

its labeling, then we mwrt invert the matrix pictured above. We &lao 

notice with lDterest that the concl1t:lall in 1.-& 10 1s invariant with 

respect to replacing B by E-B, since det(Q) = det(QT) • This 

Uaed1at~ leads to the f'oll.awi.Dg 1 ... 

I.-a ll. Let G be a bipa:rUte gralil With & label.1!Jg trail. a 

field F I and l"!'t B be. partltionifts set of G. Then the matroid 

4et'1Iled over the set E of node. in G Yith respect to B 1a the dual 

ot the _tro1d def'1ned on E with reepeet to I-I (b¥ the ... 

labelfDa) • 
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We conclude this section by proving the earlier announced fact 

that LesJIIla 6 h best possible. 'This will follow from the lemma: 

Lemma. 12. Let G be a. bipartite grll.lXl with II. :partitioning set B 

and a. matching L tha.t is n::;.t clean. Then there is a ma.troid over the 

nodes of G such tllat B is a bas~, DPG(B) = G , and such tho.t L(B) 

is not a base. 

Proof. lie will construct a labeling on G f'rom the real numberJ such 

that the matrix q defined "between" the two ::·~ts IN(L) and OUT(L) 

(ind~xing the rows and columns respectively) as in Lemma 10 is such that 

det(Q) == 0 This will be done by making a (nonempty) subset of the 

columns of Q sum to zero. 

Since L is not clean we know by Lemma 5 that G conta.ins an 

L-alternating cycle, and let L' be the subset of L t~t occurs in 

one such o!ycle. We note that from each node in IN(L') there go at 

least two &orCs to nodes in OUT(L'). This is as we want it, but we 

also want L r to be such that all nodes in IN( L) that are reachable 

(by an arc) from OUTeL') are also in m(L') . To obtain this we 

extend L' by repeating the folloving operation untU it no longer baa 

any effect: Let X be the set ot nodes in meL) tbat are reachable 

f'rom. OUT (L') , and extend L' such tb&t IN(L') = X (&Dd such that. L' 

is still a submatch1ng ot L). When this atops, as it must by the 

finiteness of L, ther. L' obviously t\1lf1lls both the requirements 

'We g: .. :e above (see illustration b@'low). We now labe1 each arc between 

m(L') and OUT(L') with a. nonzero number such that for each node in 

DT(L') the labels ot the arcs to :lode. in OUT(L') will BUll to zero. 

(This 18 possible since there are at leut two such arca':trca each nocle 
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in m(L') .) We can now complete the l.a.beling in any way we want, and. 

we observe that the 8UII1 of the colUllllls of Q associated with the nodes 

in OUT(L') will sum to zero. .J 

L 

r~------------------------~~~--------------------------, 

\ J '-----~~~------~ initial L' 

~ ... ------------------- ·------------------~I "","' 

L' after extension 

An example of the construction described in the text above. 

8. Binary MatroidR 

A matroid is said to be b1n&ry if it is iDduced by .. :finite a.t 

of vectors trom .. v~tor-8p&ce over GF(2) (the field of ilrteger. 

IIOClulo 2 ). A.a WhitDeJ proved 111 19}, auah .. _tro14 u f'a.ll¥ 4etea1M4 

b7 the DM of __ bUe. In our Mtt1Dc tbu i. ev1ct.t, .iDee there 18 

aa.q ODe label.1Dg rrc. GI'(2) ot a giYell 'bi.l1&l'ttt4t peJIl. ftU we c&a 

pft ........ _"'7 _4 n.tftciet OCIIa41ticll lOr .. -tcbSIIa L ill the DIG 

of ... __ • ct ..... _'WoK to .. I1IDh that L(B) 11 .. bale. 

lAP lJ· La 8 M .... fa .. btDu7 ..uo14 8114 Ja L be .. MtaIWII 

ia nJG(.) . !tie 1.(1) 18 .. bue it ... ~ it tor ..,.,. DOI'aeiiIPt1 

aN_ . C; 0U'I'(1o) tMN u .. DaIle in D(L) trc:a wb1Ch tIleft 1. -

oM ••• ~ __ til\<. X. 



Proof. We prove that the negations of the two ztatements are equivalent. 

Firat !m1JPOse there is a set X £: OUT(t) such that from all elements 

in m(t) the number of arcs to X is even. It is then evident that 

the sum (modulo 2) of the columns in Q (as defined in Lemma 10, 

let~ing A = L(B) ) corrpsponding to this set, is zero. Thus det(Q) = 0 , 

and L(B) is not a base. 

Conversely, sqJPose that L(B) is not a base, which by Lemma. 10 

implies det(~) = 0 . Then there must be some subset of the columns 

of Q such that their sum is zero, since 1 is the only nonzero 

constant. It is then easy to verifY that the set X ~ OUT(L) corres­

ponding to this set o~ columns must be such that all ~odes in !N(L) 

has an even number of 8.1'<'S into X. W 

That the condition in Lemma 13 is also invariant with respect to 

turning the graph "upside down" Is not quite transparent, but it must 

be true by Lemmas 10 a.nd ll. This can be considered as a theorem in 

graJil-theory whose proof relies on the fact that det(Q.) ;;: det(Q.T) for 

all square matrices over GF(2) • 

9. GraJhic Matroids 

"Graphic matroids" are binary matroids induced by a set of eolUllll8 

fran GF(2)r, each baving exactly two " l"s and (r-2) "0 "s. We 

uaual~ then identifY each "row" with a DOCie in a graph, UlCl each colmm 

with an arc between the two nodes wbere it baa ita" l"a. Obvi0U8~ 

this grapb (or "mult1grapb", since multiple ares may occur) tully 

determines this matroid (since the order of the rows i8 irrelevant), 

GDd for each grapb tbere is such a II&troid. However, differeDt sraPl8 

III~ corresp:Di to the aeae matroid. 
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It is well known that tht:! Circuits of such a matroid correspond to 

(the arcs in) the simple cycles ot the graJil, which means that an arc-set 

is indepeudent if and only if it cont.ains no cycle. Also, the connected. 

components ot a graphic matroid correspond to the 2-connected components 

ot the gra}il. 

Suppose a graphic matroid ie given by a corresponding graph, and 

suppose we want to find the vill of some base (which we are free to choose) 

ot this matroid (as for example in the !-I-component-algorithm treated in 

Section 6). The best way to do this will generally be to use "depth­

tirst search" ("DFS"), where you search !l.long arcs and always complete 

the search from the latest tound nodes betore you SO back to search trom 

an earlier found one. (See !9].) It is then natural to keep the nodes 

on the path in the search-tree from the start-node to the current one, 

in a stack with the start node at the bottaa. Then, whenever you meet 

an arc e which forms a cycle with the arcs picked for the base B 

(that is, makes B U e de])eDdent) then the "other" endnode ot e wUl 

always be on the stack, and the rest ot the arcs in the cycle tomed 

(tbat is, C(e,B)-e) will be exac:tq those OIl the path fozmed by the 

DOd_ on the stack above (aDd 1Dcluded) the other eDdDocle ot e. 

Thi. makes the ecmstructiOft of a bue ..ni it. DJIG Yer7 Ibrplc, aDd. 

1:t we Ituq 1Ibat fUrther s:bap1.1:t1catiou cu be done with the M-c~­

al&orit_ given in Sect1cm 6 aiDa this cOD8t:ru.ctlO1l, ve .ee that BOJICl'OtIi 

ccaponentl ot a gralil ccaes out rather Daturall;y. 

We IIb&ll also llee tbat we caD .adU'J this algor1tma 10 tbII; it 

:tiDIIa a Ca.QI1 cycle ot two 8iven arcs A ad B (A I- B) trca the 

... 2-aonnected ccap:meat. '1'b1a ""10ft of the al&oritID caa alao .. ~ 



determine if A and B arp. in the same 2-connected component, but for 

the t:!."1~ being, let us e,ssume tha.t they are. In the following description 

we wiLl use the same terminology as '£arjan uses in [9 J • 

To ferce the search to produce a spanning tree that is goo~ for 

our purpose, we u~ethefol1owing simple deviation from r~dom choice. 

We start out the ~earch in an endnode of one of our arcs, say A, and 

we choose arc rl as the f'irst. one to follow. Let us c~l the start-node 

" r" and the oth!r endnode of A "s". Later, whenever we come to a 

new node, we f1rs~ check if it is an endnode of B, and if so, we choose 

to follow B first. We "'ill call the node from where we first see B 

" t II and the other endnode of B we call "u". 

Considerations in [9J then tell UE that we will find B before 

we ba.cktrack along A, whicn IT.eMS that A is the first arc on the 

path fl'om the root r to node t in the spanning tree. We also know 

that B will be included in the spanning ,ree. 

In this version we need no stack ex~ept the one that keeps track 

of the nodes ill the tree between the root and the current node. When 

we see arc B for the first time (in node t) we set up a llnk-cll&1n 

from the rootnode r through the spanning tree to node t by using 

the contents of this stack. For this purpose we have a pointer-field 

ABLINK in each node, which is now set to point towards t for all nodes 

on the sta.ck. Let us call the sequence of nodes f'rCIIl node r through 

the spanning tree to node u (both included) the "AB-chain". 

The nodes also have the integer-fields "NUMBER" and "U>WPr", and 

we fill these exactly as Tarjan does in f 9] as the search proceeds. 

Tbat is, in NUMBER we put consecutive growins numbers Ati we see the 

aoc1ea 1'or the tirst tiae, and in UWPr ot a node x we record the 



lowest NUMBER-field found in a node re&ehable from x by gping turther 

out in tbe spanning tree zero or more steps, and tben following one 

f'rond. In our version we also keep track of the path to the node 

numbereJ. LOWPl', by including and maintaining a pointer-fie1d "lOWLINK" 

that points out the "direction" we followed tc. find this node. 

Tarjan has proved in [91 that for any node x on the AB-chain 

( except r and s) the node y numbered with IDWPl' of x 80180 will 

lie on the AB-chain, y will be nearer the root r than x, and 

there will be at least cne node between x and y on the AB-chain. 

This lea.da to the following obscure strategy for finding a path P 

(with no arcs, but perhaps some nodes, used twice) from node u to 

the root r. 

We start out from node u by first remembering its LOWPl', and then 

foliowing IDWLINKs until we find the node with this NUMBER. Then .... e 

test if we are in node r, and if we are not, we f'ollC'W ABLINK one 

step, notice the lDWPl'-value here, and start out tollowing UlWLIlt'KJ 

again repeatiDg the proce.s. We stop when we find the root r. 

Let UB say xl ( .. u) I~' •••• xn 1s the sequence ot DOd.. where we 

noticed rowpr and started toll.cnring lDWLIBKs, and ~et '11.''12", "Yn(- 1') 

be the correallOllding sequeDce of DOdes where tbe8e searches IUCceeded. 

(We shov below that these sequences really' malte progress towards the 

root at tbe tree so that I' U evaatu.al.ly touDd.) i'hl. proces8 can 

tor exap1e lead to .taeth1Dg Uke thl.: 
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In this picture the LOWLINKs and the ABLINKs we have followed 

are marked with single and double arrows respectively. From earlier 

comments we }~~w that each y., i = l,2, .•. ,n will lie neareT r 
). 

than Y 1-1 (taking YO :: t ). This also iIJplies that when we start 

following WWLINKs from an xi' 1 = 2,~, .•• ,n , we must "leave" the 

AB-chain at the latest at y 1-2 ' for it' we followed. it to X
i

_l we 

would autcmatically be led bnck to y i-1 ' which we are not. 

Thus r must eventually be reached, and it is easy to see that 

it Q. 1s the set ot arcs connecting the AB-chain (including A and B) 

then (PUQ) - (pnQ) is a s:lll1ple cycle containing A and B • 

We finally observe that if' A and B are not in the same 

2-connected component, then this algorithm will either backtrack 

through A without finding B, or the process of constructing P 

vUl go into a loop. Both these situations are easy to det.eet. 

We end this paper by posing IUl apparentJ¥ un.olved problem. 

We Jmov that a binary matroid i. determiDed by the DIG ot one ot ita 

baae., aDd we may ask for an algorithm that determines it a certain 

bipartite gr&Jil G, with a given partitioning.et B, i8 the DR} ot a 

paJlhic matroid, and ii 110 builda a gr&Jh repreamting this III&trold. 
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Obviously we can treat each connected component of G alone, and it 

i8 not diff1.cult to see that the problem Is equivalent to this: Given 

a set of arcs A and a family D of subsets of A. If possible, put 

the arcs of A together to & tree such that each set in D constitutes 

a path in the tree. This is an easily stated combinatorial problem that 

ma~' be interesting in its own right. It' we know that the dual matroid 

is graphic and we know a representing graph (that is, if the problem 

is positively answered and solved for the graph G above, with respect 

to the complement of B) then we know we can solve this problem, as it 

then becomes equivalent tc determine if a. gra.ph is plAnar. For this 

problem a very efficient algorithm exists, see [3]. 

Added in Proofreading 

It turns out that W. T. Tutte has trea.ted the: a.bove problEm in the 

following two papers: 

- "An algorithm for determining whether a given binary matroid is 

gra}ilic," Proceedings of the AMS, II (1960), 905-917. 

- "From _trice. to gra}ils," Canadian Journal ot Math., 16 (1964), 

lo8-lZ7 • 

It also turns out that an aJ.goritbrl for find1ng the M-caaponenta of 

a ma.troid which is essent1ally equal to the one descr1bed OD ~es 14 and 

15 bere, i8 given in ..,. H. Cunu'ngb-'. !b.D. theda, "A caab1rJator1a1 

decomposition theory," Univeraity of Waterloo, 1974, :page 5.16. 



ReferenceE 

[1] .J. EdJr.onds and D. ~. Ful.kersG'~, "Transversals aDd matroid partitions,· 

J. Res. Nat. Bur. standards Sec. B 69 (1965), 147 -153. 

[2] F. lIarary, Graph Theory, Addison-Wesl~', Massa.chusetts (1969). 

[3] J. Hopcroft and R. Tarjan, "Efficient Planarity Testing, It 

Journal of the ACM, 21 (1974), 549-568. 

[ '~l D. E. Knuth, Fundamental Algorithms, voL 1, The Art of Computer 

Programming, Addiaon-Wes1ey, (1968). 

[51 D. E. Knutil, "The asymptotic munber ot gec.etries," Journal ot 

Combinatorial Theory, 16 (1974), }98 -1Klo • 

[61 S. Krogdahl, "A combinatorial base for BaDe optimal matroid. 

intersection algorithms," Stanford ComPllter SCience Department 

Report STAN-CS-74-46B. 

(71 E. L. Lawler, "Opt1m&l matroid intersections, It Combinatorial 

structures and their Applications, Proceeding' _ the Calgary 

Internatioual Conference, Gordon and Breach, New York (1970), 2;;. 

[81 T. L. Magna.ntl, "Independent systems and combinatorial optimization," 

Ih.D. thesis, stanford Univerdty, March 1972, p. 24. 

[ 9] R. Tar jan, "Depth-fi rat aea.:rch and linear gralil algoritllms, It 

SIAM JCNl'D&l OD C5!I,i!1tiDg, 1 (1972), 146-160. 

(10) H. Whitney, "On the abstract properties ot Unear depcd.eace, " 

.AaeriC8ll J. Math., 57 (1935), 509-533. 


