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1. INTRCDUCTION ‘

In this dissertation, we will be concerned with the develcpment,
:'anlémentation and application of an algorithm to solve the following
problem:

Compute accurate approximations to the r least

eigenvalues of a large, sparse symmetric matrix A where

r 1is much less than n , the order of A .

Problems of this type oftem arise in mechanics where A represents a
discrete differential operator, the order of A is one thousand or
more, fewer than 5% of its elements are non-zero, aad T is only a
smz2l1 fraction of the value of n .

The more common algorithms for solving general symmetric eigen-
Froblems such as the Householder, QR, bisection, and inverse iteration
methods, can gererally not be applied to the zbove problem beca:use. they
would reguire excessive amounts of storage or computer timé. In contrast
to these methods, our algorithm does not transform the matrix A in any
way, znd therefore any special structure that A mpay possess is preserved.
Rather, the orly way in which A -is used is in computing the product Ay
given a vectdr Y, and if A 1is sparse, even though of large order, this
matrix muitiplication can usually be carried out efficia:.tly.

Cur metkod is organized about 2 Block Lanczos algorithm which is an
extension and generalization of a2 method originally proposed by Ianczos.
In the rzext settion, we will review the historical background of the
Lenczos method. In Section 1.2 we will make some gemeral remarks
céncerning the accuracy of computed eigenvalues and eigenvectors, and’

in Section 1.3,' we will sutline our thesis and summarize our results.
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1.1 His‘toricﬁl Background and Survey of Iiterature

'~ In 1950, Lanczos [13] described an al.g‘;rithm which eould be used
to compute ‘some or all of the eigenvalues a:nd eigenvectoi's of a symmetric
matrix A . Although not a method for computing eigenvalues and eigen-
vectors per ig, it could be used to compute the mirimum polynomial p
of A with respect to a vector x (cf. §2.4) and a seguence of vectors
(xi)?_:l where l<m<n and n is the order of A . Some or all of the
eigenvalues of A could be found by computing the roots of p and
lanczos showed how the X could be combined to form eigenvectors oﬁce
the eigenvalues had beeﬁ found. Although very attractive at first
glance, lanczos' method presented some unforseen difficulties (cf. §2.L)
when implemented and zpplied, and with the development of the Givens and
bisection methods and then the Householder and QR methods, it was soon
set aside as a‘'method of general application.

In recent years, hwev&, interest in Lanczos' method has increased
due to its consideration as a means of computing a few of the extreme
eigenvalunes and eigenvectors of large, sparse, -symmetric matrices.

From a modern viewPoint,: Ianczos' method is a wa:y of 'o'btam:.ngfrom A
a symmetric tridiagonal matrix Tm s Say, where Tm is: of order

m <n - The eigenvalues of T are also eigenvalues of A and the
eigenvectors of Tm can be used. to compute eigenvectors of A . Let

Ts stand for the s-by-s 3leading principal sﬁbma.trix of Tm > 8<m.
‘I.‘$ can be computed by carrying out s steps of the Lanczos method

and stopping short of its normal completion point. In 1966, Kaniel [11]
published a paper containing results which implied that a few of the

eigenvalues of T s at either end of its spectrum will usually be very
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accurate approximetions to the corresponding eigenvalues of A for,,
relatively smell values of s . (Lenczos was also aware of this pheno-
mencn. See [13], p. 270.) Kaniel 2l1so gave bounds on the errors in the
eigenvalues of Ts as approximations to the eigenvalues cf A and
showed that for the extreme eigenvel ues, they decrease rapidly as s
increases. Kaniel's work suggested that for the relatively Asma.'l.l cost
of computing the s-hy-s metrix Ts ard its eigenvalues and eigenvec-
tors, one could obtain accurate appromations to some of the eigen-
values and eigenvectors of A .

During the application of the Lanczos wethod, a sequence of vectors

(= )?

5051 is computed which, although orthogonal in exact arithmetic, in

practice with finite precision arithmetic, lose orth-ogona.]itj very rapidiy.
In order to be sure of the stability of the method, these vectors must
be reorthogonalized with respect to all previously computed vectors as
trey are generated. VWere it not for this shortcoming, Lanczos' method
would De an atiractive approach in general for the solution of the eigen-
praoblem. Motivated by Xaniel's work, Paige [17] carried out a detailed
study of lanczos' method and found that useful results could be computed
even if reorthogonalization is mot carried out. The advantage of thisl
approach is that the entire sequence of vectors (xi)§=l need not be
kept around at 211 times, resulting in = considera:'ble savings in both
storage ahd time. A dGrawback is that, unless this method is carefully
applied, the computed results may indicate that A has multiple roots
evenr though this may not be the case. This same thencomenon was reporsed
by Godunov and Prokopov [6] who applied the lenczos method in the same
way as Paige to :hg_.;solution of the eigenproblem of an elliptic differ-

ential operator.
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Aside from the Lanczos method, one of the princiyal methods of
solving the eigenproblem for large sparse symmetric matrices is the
power method [23]. The method known as simultaneous iteration [19,20]
is based on the power met};od. but iterates simultaneously with severzl
vectors by means of which improved rates of convergence are achieved.

In 1973, Golub suggested to this author that 2 similar improvement might
be realized for the Lanczos methed if it too were extended so as to work
simmltanecusly with several vectors. This thesiz is concerned with the
development and application of a method based on 2 Block Lanczos algorithm
following the suggestion of Golub- ‘

Cullum and Denatk {k] have alse developed and applied a Block
Lanczos algoritbhm but their use and implementation of the method differs
from ours. Kahan and Parlett [10] have recently given an error analysis
cf Lanczos' method which is based on Kahan's work with a Block lLanczos
method dating back to the late 1950's.

‘The papers mepntioned previously deal primarily with the use of
the Lanczos method as an iterative algorithm in 2 fashion suggested
by Kaniel's paper. For more general discussions of Lanczos®' method
see Willkinson [23], Golub [ 8 ], Golub, Underwood, and Wilkinson [7 1,
and Paige [15,16].

1.2 The Accuracy of Computed Eigenvalues and Eigenvectors

If A 4is a symmetric matrix of order n , then the eigenvalues

Xi and eigenvectors q. satisfy

1
Aqi-liqi = & > i =1,---,n >

wh;are 6 is the zero vector and the q eare orthonormal. Generally
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and il-ii2 denotes ihe spectrel norm. By Weinstein's inequality [21],

we can be sure vhat there [is an eigenvalue i of A such thet

;

-l <o - (1.3.3) )
However, we can nob be sure that the computed vector x5 is close to :ig
an eigenvector of A , and this is an inherent limitation in our it
compubtations- The most that we can say is that x, is close to the ?
subspace spanned by the. eigenvectors corresponding 'i;:o the‘eigenvalues
which arxe near to A . If A is =2 single or multiple eigenvalue which
is isolated from the other eigenvelues, +hen x5 will be close to an
eigenvector. If A is one of a2 cluster of very close but distinet
eigenvalues, then x, may nct be close to an eigenvector even if the :

corresponding ¢; in (1.3.3) is very small.

Example. Let

¥
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X
i
5
4
&
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n
1
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It follows that

e

B - 0
A:{-p,!{ =

-

so that
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=10
¢, =10 .

We can conclude that there is an eigenvalue A o2f A such that

Ao < 070

10 -10

(In fact, the eigenvelues of A are 1+10 ~ =and 1-10 .) However,

the eigenvectors of A are

and x 1is close to ne-ther vector.

Hence, th;oughout this thesis, sta.teménts to the. effect that we
will compute accurate approximations to the eigenvectors of a matrix
are made with this limitation in mind. Our goal will be t¢ find
scalars u, and vectors x; vhich satisfy (1.3.2) with ¢; relatively
small. How close these computed scalars and vectors are to the actual
eigenvalues and eigenvectors of A will depend on the spectrum of A

a2nd the magnitudes of the ¢ 3 -

Note: It is often possible to compute a posteriori bounds on
the errors in computed values and vectors which are much smaller than
those indicated here. See, for example, Wilkinson [23], Paige [16],

Stewart [22 ], Davis and Kahan [ 5 ], and Ortega [14].

1.5 Cutline of Thesis and Summary of Results

In Chapter 2, we will present = theoretical develomment of our
algorithm. We will review the notion of a restricted operator and show
that the extreme eigenvalues and vectors of a matrix A restricted o

a oarticular subspace will be accurate approximations to the corresponding
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eigenvalues and eigenvectore of A . We will review lLanczos' meizod
and see how it cun be used to compute Lhe eigenvalucs and eipgenvectoss
of the above restricted operator. We then gereralize these notionc to
work Wwith several vectors simulitazneously. In partienlar, we will ertend
Feniel's besic result on the rate of convergence of the lezst eigenmvalue
computed using the lanczos method to the least eigenvalue o A . Ve
will also develop z Block Lanczos algorithm which is an extension of
Lanczos' original algorithm. We will then construct & new sligorithm
Which utilizes our Block Lanczos algorithm to compute 2 specified number
of the least eigenvalues and corresponding eigenvectors of a symmetric
matrix to 2 given accuracy. :

In Chepter 3, we consider the p‘ra.ctical aspects of implerenting '
the a2lgorithm ﬁ.eveloped in Chapter 2. The nmber of vectors we cnoose
to iterate with at each application of th= Block Ianczos algorithm
affects the number of overations required to compute a given mumber of
vectors. In Chapter 3, we will consid;r some of the problems associated
with the choice of block size and suggest Some strategies based on our
theoretical knowledge of the algorithm and ocur computational experience.

An impor:tant issue relating to the use of the Lanezos method is
whether reorthogenalization is carried out. In our current apolication,
we do reorthogonelize the vectors generated by our Block Lanczos elgorithm.
In Chapter 3, we discuss this issue and indicate why we have decided on
this course. .

Also in Chapter 3, we consider various aspects of the program
implementing our method. We discuss program and datz organization,
how £0 estimate the accuracy of computed results in the context of

the lanczos method, the effects. of round-off errors, and give operation

counts.
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Finally, in Chapter 4, we present the results of mumerical experiments
on a number of problems comparing our method with the method of
simultanecus iteration. We wiil see that in most ceses ocur method
is superior to the latter method in terms of the amount of work required

to coxpute & given number of vectors to a specified accuracy.
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2. THECRETICAL DEVELOPMENT

Tn this chapter we will be concerned with the develomment of an
algorithm to solve the following problem:

Given a symmetric metrix A of order an with eigenvalues
)\.l < Ay S -en < ?.n and corresponding eigenvectors 975955 -2, »
and given an integer r greater than zero and less than or equal to n ,
corpute accurate zpproximations to l.i and q for i =1,...,r .

We will define the notion of a restricted operator in Section 2.2
and show in Section 2.3 that the least eigenvaliue of A restricted to
the subspace spanned by the set of vectors (x,Ax,-..,As_lx) where X
is a vector and s is an integer less than rn , will usually be a very
accurate approximation to the least eigenvalue of A itself. In
Section 2.4 we will show how Lanczos' method can be.used to compute the

eigenv'a.lﬁes and eigenvectors of the restricted operator described avdove.

In Sections 2.5 and 2.6, we will extend this basic idea by rep]gcing the ,:{é*

vecbor x with a matrix X . The basis of our algorithm will be a fg .
; Block Lanezos method which is an extension ?i‘ an algorithm originally I: 4
5 proposed by lLanczos. In Secticon 2.7 we 'm.ll develop a Block Lanczos r%

[RIE i

A
HE

AT s e e

algorithm and show how it can be used to compute the eigenvaiues and

ﬁiﬁ

€ eigenvectors of A restricted tc a space cimiler to the space suggested
above. Finally, in S=ctions 2.8, 2.9, and 2.10, we will integrate our
Block lanczos method inte & complete algorithm for solving the above
Tt problem. | |

2.1 DNntation, Definitions, and Basic Results

In this section we will give the notation and bvasic definitions and

o

lemmas which will be used elsewhere in this chapter.
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b if X Xp ..V.,'xm are m vectors of order n , then

X = (%% ---5%) /

will mean that X is the n-by-n /' matrix whose j-th ¢olumm is %, -

Y J

Similarly, if xl,xg,... ,Xm a.7’ n-by-p matrices, tken

X = (Xl:Xe, . "Xm)'
will mean that X is an n-by-p X m matrix whose frst p columns are

X, , whose second p c¢olumns are

= ” X2 » ete.

If K = (x]-,ng--".}xm) E tha:.
S‘p(xl,xe,,, .. ,xm) or Sp{X)

will denote the subspace spanned by the columns of X .

it xl,,x, '...,hm are scalars, then
dié.g(hl,kz, ceesh) .

will stand for the diagonal matrix of order m whose j-th diagonal

- element is )'.j .

// Let p be a polynomial of degree m . TLet e be the coefficient

of aM  in the expansion of pfA) in powers of A . That is,

m
o(A) = co+cl7\.+..-+cm7\ .

For any matrix A , p(A) is a matrix defined as foilows:

I3 _ " * Ik .. -
pl{a) = ol -_I-t_:lA"' ceste A .. )

.

Note that if x is'a. vector, then

o,
pla)x= ¢ X+e Ax+...+c X .

Q
Furthermore, if A = diag(ﬁ_:}\-e:---:?\n) > themn

p(0)-.= aiag(e(r),B(0)s---5B00)) -

- 10

-

"
a
R
=
b
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Let A De 2 symmetric matrix of order n with eigenvalues

L_L,A. >~ ..,A.n and orthonormal eigenvectors Gy:9p7 -2, 5 and let

Q

(915 ---59,)

and

A

dias(kr---,ln) .
By definition,
A =Qr -

If p is the polynomial defined above, then it can be shown that
p(a)a = QpiA) .
Lemma 2.1.1. let A be a symmetric matrix of order n with eigenva:_h;es

N SXA Lo SN 5 then

k-

A = min max LAY
{¥20-7_ 1} vEe 3"
VpreeeoVpad | vy
Ty = 0
where the mirimm is taken over all subsets of n-k vectors

[yl,...,yn_k} and the maximum over all vectors y such that ¥y #6

and yty:.—:o > i =1,-o-,n"k - Si.milu].y, we have
t
}"n-krl-l = max min LtA! .
{yys -7y 3 ty;ée Ty
¥ yi=o

Proof. This is the Courant-Fischer theorem. For a discussion
and proof, see Wilkinson [23], pp. 98-101.

For our purposes, we restate this resuvlt as follows.

v
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Lemma 2.1.2. Let A be a symmetric matrix of order n with

eigenvaluecs hl SN, € een T h.n 5 Lhen
S TR =

t
A = min max Y Ay
k t
E. £ vy
JeE,

_

vwhere the minimum iIs taken over all subspaces Ek of Rn. of dimension

at least k and the maximm over all non-zers vectors y in Ek -

Similarly,
max  min Ty
n-k+1 t -

Ve,

Proof. This is a direct consequence of the previocus theorem.

Let S be a subspace of Rn of dimension m . The projection
metrix for S , denoted by PS y is definl.ed. +to be that matrix such that
for any vector xeRn y ¥ = PsxeS and yt(x-y) =0 .

Intuitively Psx is the vector in S which is closest to x if
the vector norm ||-fl, is used to measure distance. Note that for amy
xXeS , Psx =X .

If @ is an orthonormal matrix whose columms form a besis for S,
then

t
PS = QQ .

The projection operator onto the space orthgonmal to S , denoted by P; ,

is given ﬁy

t
Pg = I-B = I-Q .
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If x _1is a vector, the Euclidean norm llx]]2 of x is defined

as follows:
ux\\e = (xtx)i” .

We will usually omit the subscript and write simply ||| -
If A is a matrix, then IIA.II2 or |lAll denotes the spectral

norm of A induced by the Euclidean norm. That is,

T
Wl = 2o% ol

It is easy to show that
2 ot
”Aug = )";a_x(A A)

where A ax(AtA) is the largest eigenvalue of ata .

The Frobenius nom [[All, of a matrix A of order n is defined

as follows:

n £
“'A'“F = ( iz-—gl a-; a.i )

where a.i is the i-th coluum of A .

The singular values of a matrix A are the square roots of the

eigenvalues of AtA . That is,

3 ¢
o = M@ 5 1=1...m ,

where A, is an eigenvalue of A"A . TNote then that
lally = oppn(a)

vhere o__ (A) 1is the largest singular velue of A .
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If A is a symmetric matrix and ~
L 4
ll-“-x-i-'-xll = € o8
vhere is a secalar and x is a vector with [lx|] = 1 , then Weinstein's
¥ ] inequality [23] states that there is an eigenvelue 2o of A such that
lh-pl S [ -
2.2 Restricted (Operators
Let A De z symmeiric matrix of order n which maps the real
e n-dimensional Buclidean vector spsace Rn into R!:l - Let S bean
m-dimensional subspace of Rn where m <n .
Definition 2.2.1. The restrictijon of A to S, demoted by A , ic a
d linear operator (matrix) which maps S onto S as follows: For any
vector xeS ,
Ax = PAx
®
Where Ps is the projection matrix cmto S .
et Q@ be an n-by-n orthonormal matrix whose columms are a basis
o for S ; then
P
PS = QQ
and for amy x<S ,
' -
Ax = PsAx
= PS.APSx since x = Psx
t +
” = (QQA@R)=x
= & ]
Ct
p 1k :
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t
B = QA
and o
+ .

v =Qx .7

B is a symmetric matrix of order m and is essentially the matrix

reprecentation of A . Let ""1 Swp < --- Sy, De-the eigenvalues

of B with eigenvectors VyrVpreeesVy o Let .

qi = Qvi F) i-= 1,2,.--,11'1 .

It follows thet By and 51 are an eigenvalune and eigenvector,

respectively, of A for i =1,2,...,m . Tkis can be seen as follows:

Ag; = @Bv, since v, =Qt'ai »
= p.iqui since Bvi = wgVs s
= p.ia_l .
Thaus, .
A, =wd » 1=1L2.-m -

A therefore has m eigenvalues and efigenvectors which can be camputed
using ¢ and B . It can also be shown that if S is an invarjant
sobspace of A , then the eigenvalnes and eigenvectoers of A will also

be eigenvalues and elgenvectors of A .
By Lemme 2.1.2, we have

T By
= min
" Ek;;trty

vy

or k = 1,2y.--,m , wWhere the minimm is taken over all subspaces of Rm

/
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is dimension at least k . 3By observing that

t t.t t
YyBY | yeAy _ fay) Aley)

:.'tzr :rtQtQJ' (ay) *(ay)

and that for any subspace E,{ _of Rm s+ the set of vectors

{zlz =qy, yeE}

is a subspace of 5 of the same dimension, we have the following result.

Lemma 2.2.1. For k =1,2,...,mn,

t ;
b, = min max LH (2.2.1)
" B, FFe vy

Y<E,
where the minimum is taken over all subspaces I of dimension at least

k¥ cf S and the maximum over all non-zero vectors y  in F.y - Similarly,

we have for k = 1,2,...,m ,

t
- max min Etﬁ ] . (2.2.2)
E, YF® ¥¥

v,

Mmookl

Proof- This result is a straightforward application of Lemma 2.1.2.

In Equg.tion 2.2.1, the minfmm is achieved Wwhen

Ek = SP(ql:---;qk) 2

where qi' is the i-th eigenvector of A , and the maximum in Equation 2.2.2

when

Ek = Sp(qm,,k_l,---,qm) -

16
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Combining this observation with Lemma 2.1.3 gives us the following
result.

Lemma 2.2.2. For k = 1,2,...,m
MN S 2 N
A simple conseguence of Lemma 2.2.1 is the following.

Lemma 2.2.5. Let By be the least eigenvalue of A restricted to

a subspace S ; then

t
b= min 'L:I
YEO ¥ ¥
yes

vwhere the minimum is taken over all non-zero vectors ¥y in S .

2.3 The Basic Tdea

Let A De a symmetric metrix of order n and let x be a given

vector.

Definition 2.3.1. The Krylov sequence of x with respect to A is

the sequence of vectors

x,Ax,Azx, maw .

For any & greater than zero, we will denote by X(s,x,A) the

subspace spanned by the first s elements of the above sequence. That is,

K(s,x,4) = sSp(x,Ax, ---:As-lx) -

Keniel [11] showed that if we consider A , the restriction of &

to K(s,x,A) for a relatively smell value of s , then a few of the

I7

o e e



B Y e Gd R T

e a1 A i Ty p A TRRY v

N

P T T ~

least

’
'
\

and greatect) esigenvelues of A will usuzally be good zpproximz-
tions to the sigenvalues of £ and showed that they decrease rapidly
as s jincreasss.

The phenomenon descrived in the last paragraph is the basic idea
behind our eigorithrm. In the next section we will describe and discuss
Lanezos' method and show now it can be used to compute tne eigenvaiuss
and eigenvectors of £ . We will see that for the relatively smell cost
of cumputing the eigenvalues and eigenvectors of L , we often obtain
remarzzbly accurate Q.pproz:mations i1c some of the eigenvaliues and eizen-
velues of A . From the standpoint o7 lzrge sparse matrices, this
zpproack will prove to be particularly effective since no transzformation
of A& itself is reguired.

3efore oroceeding, however, t2e vesic result of #zrniel concerning
the least eigenvalue of A will be stated and its proof reviewed to

provide some iIntuitive bacxgrownd Ior these ideas.

EHote: Some of RKaniel's results were incorrect 2s stated in his
paper. Peige [17] redeveloped this theory, correcting the errors in the

process. It is essentialiy Paige's result whick is stated here.

Theorem 2.3.3. Let A be 2 symmetric metrix of order n , and let x

be a vector such thet xif =1 . Let A <X, < ... <A be the

eigenvalues of A with corresponding orthorormal eigenvectors gg . <-2q,

Let 5 be an integer greater than zero and less than n . Suppose that

g <k2 ané

DlEaix=cosO;40 »

where & 1is the angle between g and x ; then Wy o2 the least eigenvelue

of A , the restriction of A to the subspace K(s,X,A) satisfies

18
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(Kn -?s.l) tan” ©

€ =
1 by ?
. (3%)

is the (s-1) -st Chebyshev polynomial of the first

kind, and

(M =N)
= W -

Example. Suppose n =500, A, =0.0, A, =0.10, kSOO =1.00 ,

s =20, and x is such that bl = 0.0k . We then have
ten® § = (1-b§_)/bi = 62k.0 -

y = .10/1.00 = .10 ,

ey
1-r

Hry 2 -5
Tlg(l—y) = 1.27x10

= 1.222 , and

= 1':}(10 »

implying that By is accurate to at least seven significant digiis. The
2bove bound is an overestimate and if we computed ., {using the Lanczos
method, say,) it would actually be far more accurate than the bound

indicetes.

19
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Tndication of proof. We will only ocutline tke proof here. ror
the details, refer to Paige [17], po- Lh-51.

We lknow by Lemmas 2.2.2 end 2.2.3 that

t v
M S 28 Agfg'z

for any non-zero g in X(s,x,4) . Our stratezy ic to pick a vector

p)|

in X(s,x,.) for which
t t 2
ghefeg < Mrey

where s?_ is as given in the statement of the theorem. (nce we have
e-tablished this result, the theorem is proved.

Chcose g as follows: Let c© be a2 polynomizal such that
A) =
c(x) = T__,(2)

where T__, is thne {s-1) -st Chebyshev polynomial of the first kind and
for any A,
(A' = ?\,)
z = 1=2 = .
Ay "“25

Note that by the properties of the Chebysnev polynomials,

]c(z\i)l <1 for i=2,3...,n, and

1+
e(ry) = Ts-l(l-;) > 1
where ¥ is as defined in the theorem. We now leb.

g = c{A)x . .
Since ¢ is of Jdegree s-1, g is a linear cimbination ol ihe vectors -

- 2 s-1 - s - - .
X, fX,AX, ... ,A” "x and thus is contained in X{s.x,A) . Furtkrermore,

ifwe let b=4°x, ther x = Qb and

20
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g = c(d)x ﬂ:
= e(a)Qb
= Qe(A)b where A = dia.g(?\l, ...,hn) »
= 'blc(?sl)ql-i- bec{ka)qe + ... +bnc(kn)qn u

where bi is the i-th component of b . Note that in comparison to x , :}
the component of 95 corresponding to 7\1 in g has been amplified :?3 3
wiile the components of the other eigenvectors have been decreased. If .1
we now form thé Rayleigh quotient gtAg,/ gtg s we will find after some :
algebraic manipulation that f

£, st 2
ehgfee < M+e

m-1 1 g

which establishes the thecrem. , | B
o
2.4 ILanezos! Algorithm for Symmetric Matrices s
. ;\

Let A Ybe a symmetric mabtrix of order n and let x be a vector. H
b

Iet m be the first velue for which the vectors l v
)C,Ax,Azx, ...,Amx ; 7

&

are dependent. Since each of these vectors is of order n , it must be [
5

the case that m <n . TFurthermore, since m is the first value for E z
o &2

. i

which the above vectors are dependent, 2% must be a linear combination :‘%
3

of the vectors X, AX, .-., 2l e is, “““;E :
m - ; m-1, %: ’

AX = ex+CAx+...4c ATTX (2.k.1) « & P

=

for some scalsr values CyrCqr et ’cm-l . Denote by P %3A +the E
- s

polynomial e
s A

I

m- € &

D) = Nae AL len-c, . =

X3A° -

P L R e RPN

———




Note that by Equation (2.k4.1),

M=

0. - =
Px;A(A)x = Ax-cm_lﬁ. X=-- -cle-co:a. =9 .
Definition 2.%.1. Pein is the minimum polynomial of x with respect

to A .

It can be shown that the zeroes of Py_ 2
=2

In 1950, Lanczos published z paper [13] on camputing solutions to

are eigenvalues of A .

the eigenprobiem which contained a deseription of an alsorithm for
computing Px; A His approach, althcugh very attractive at first
glance, presented some numerical problems in implementation and
zpplication {cf. Section 5.1} and with the development of the Givens
and Householder methods [23], was soon set aside as a method of general
appiication.

In recent years, however, some researchers, notably C. Paige of
MeGill University and G. Golub of Stanford University, have proposed
that Lanczos® method be used as means of computing solutions 'Eo the
symretric eigenproblem when the matrix is of large order and sparse for
the following reasons: (1) Many methods such as Householder's method
and the QR method, carry out sﬁnilarity"iransfomations of the ma.trix:
Such transformetions generally dectroy sparse structure. By contrast,
Lanczos' method does not trensform the matrix and, therefore, any sparse
structure can be preserved throughout the application of the algorithna.
In particular, the only way in wnich the matrix A is used in Lanczos'
method is in computing the product Ay given a vector y , and if A
is sparse, even though of large order, this multiplication can generally

e accomplished efficiently. {(2) Although originally intended to be

22
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used to compute the minimm polynomial of a vector, Lanczos® metﬁod can
be used to achieve other ends. As we will soon see, it can be used as
means of computing the eigenvalues and eggenvectors of A restricted to
the space spanned by {x,Ax,Aax,... ,As-lx} for some s less than
. As We saw in the previous section, the least eigenvalue of this
restricted operator will generally be an accurate approximation to the
least eigenvalue of A ibself.

We will now review Lanczos' method and same of its properties.

Iater on we will extend Iznczos! method and the ideas of the previous

section to work with a matrix of vectors X dinstead of a single vector x .

This genere.]iza.tign will afford us certain advantages computationally over
the single vector approach.

The results stated here will be given without proof. For a more
complete discussion of Lanccos®™ method, refer to the following sources:
Wilkinson [23], Golub [8 ], Golub, Underwoed and Wilkinson [ 7], and
Faige [17,18]. | |

Lanczos' method can take many different forms depending on the
application, but for present purposes, it is as follows:

Iet A be a symmetric matrix of order n . Let x be a vector
of unit lemgth (|ix]j =1) .

Compute sequences of scalars (ai)I;:l and (si)';' o » and a sequence

of orthonormal vectors (xi)g.l:l as follows:

Step 1. Iet x.l=x and i =1 .

Step 2. Compute y; =&, @ = x".:'y. (= x:Axi) s and Zie1
where
zi+l _ yl-ozlxl ) it 1 =1, or
y.-aixi-sixi_l it i>1 .
23
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. ; S A T R R : .
r ;. Step 3. Compuate B, . = ‘lizi+1ﬁ .
v‘ ; Step L. 1T Bi4y = O 5 then stop. ::-_ (
‘ : Step 5. Compule “.  JB.. ., - % _'[
ﬂ j+1 i+)’ Tiddl % _f
. 3 Py Step 6. TIncrease the value of i by one and go to Step 2. %; -i
: f This algoritmm will stop for some value of i <n - Let m be ﬂ;:';a: *
f . the final value of i . :,
g . As we will see, Lanczos' method _is not a methold for cmnpl.rti.ng “.31 t
u eigenvalues and eigenvectors per se. Rather it is a wey of transforming 'f“:‘: “
: ( the eigenproblem into 2 problem in a different form and it must be 5‘:
! A cambined with an algorithm to solve the second problem to produce a é "
3 complete method for computing eigenvalues and eigenvectors. For example, 'ﬁ ‘!
ﬂ lanczos used the sequences (czi:);'f:i and. - (Bi):.;l to Iform Px’ A the ?‘-T‘ _
! ’ o minimum polynomial of x with respect to A . Computing the zerces ;
of Px, A yielded eigenvalues of A s and once thke eigenvalues had been *
found, Lanczos showed how the x; could be combined to form eigenvectors. ““3 .
3 The more modern viev@omt is that Laiiczos' nmethod is a way of tra.nsfoming ,fg w
P _ A
a general symmetric matrix into 2 symmetric tridiagopal mabrix T - C:é
n The eigenproblem for T can then be solved in z variety of ways, e.g. % “
i" , : +the QR method or a bisection method based on Sthuwrm sequences [23], and ? . ”
‘ the resulting solution can be used to find the eigenvalnes and eigenvectors ‘ ;
. of A& - :
- Farthermore, there is a practical difficulbty with Lanczos' method
- as described above. Although the sequence of vectors XyrererX, generatea_
by the gbove slgorithm in exact arithmetic will be orthonomal, in '
v rractice they will generally lose orthogonality after a few steps of
24
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following equations:

the algorithm have been carried out. The main cause of this phenomenon
is the loss of accuracy czused by cancellation when Zi01 is computed

in Step 2. Since for meny applications of the method, this is a serisus
souﬂ:e of error, it is usually modified so that after Step 5, X1
reorthogonalized with respect to xl,xz, - ..,:-:i and then renormalized.

is

Since reorthogonalizing X541 is such a time comsuming operatiom, it
was this shorteoming that originally caused many to disregard Lanczos'
method. From the standpoint of the wey we intend to use Lanczos' method,
i.e., 85 a means of computing & few of the least eigenvalues and eigen-
vectors of a large, sparse symmetric matrix, it is still a relatively
efﬁcien“t ‘method even if a reorthogonalization step is included.

C. Paige has su:ggested [17] that reorthogonalization is unnecessary

if ILanczos' method is used as we intend to use it. He argues that,
rather than being a lisbility, loss of orthog\onality is actually =a
blessing in disguise since it is indicative of convergence of some of
the eigenvalues of the restricted operator to eigenvaluss o'f‘_‘the matrix A .
We will discuss this issme further in Section 3.1. For the time being,
we will igmore this aspect of the algorithm and deal with its theoretical
properties. For this purpose, the above description of the algorithm is

adequate.

To begin with, observe that the <. , B; , and X, satisfy the
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"
o T
” e

25

P -




- oa -

Lot w4

e

4

“

[}V
h

s
A}

=14 = Z =
mm m
S =

Ay -0, =B%y s

Az

FxX =2 X =5 %
m mom bmm-l

We can rewrite these eguations as follows:

&

i
1

3

Con

.

for any &k beiween one and m where z = &

b

w

e

GFEy T S

+ £,
Ctaxe ;:Jx

Wl

T T R " N |

+1

= (xl’xz'. .- -’xk)

-z ox - ¥ L
m-l ‘m~l'm=1 "m-1l"m-2

1 ..!,,.

&,

r

(2.L.2)

Define

for k = 1,2,....m . (M# s & symmetric tridiagonel matrix with

01,-..,% along its diagonal znd 132, ”"’Ek along/fits off-diagonals.)

/
Using this notation we can write Equations (2.k -%Y as

LY
\

\
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R = T (95550 5)

where the last matrix is n-by-k with zeroes in its first -

o

ceolumms

»
W

and zla-l in its last ¢olomn. In particular, for k =m ,
Ay = mem i

From this equation we see that xm spans an invariant subspace of A .
Therefore, the eigenvalues of Mm are eigenvelues of A and if v iz
an eigenvector of M, then xmv is an eigenvector of A (¢f. Section
2.2.)

Also, by Equation {2.L.3), we have

XK =

since lexy. =6 . Referring to> Section 2.2, we conclude that My
is the representation of the matrix A restricted to the space spamned
by the columns of xk . FPurthermore, we can show that xk is a linear
combination of the vectors X,AX,ASx,..,ANYx , for k = 1,2,...,m -
Therefore, for k = 1,2,..-,m , the colums of xk form an orthonormal
basis for the space K(k,x,A) spammed by the vectors x,i’nc,}\'?:rc,...,A.k
and Mo is the representaticn of A réstricted to K(k,x,A) - The work
of Keniel and Paige suggest that for relatively small values of k , the
least (and greatest) eigenvalues of M, will usually be very good
approximations to the least (and greatest) eigenvalues of A .
Computational experience verifies this idea. See, for example,
Paige [17] and Godunov and Prokopov [ 6 ].

This suggests that instead of carrying out the algorithm until
;‘m_,_l = 0 as described tefore, we stop after a fixed number of steps,

szy s steps, and use the resulting matrices Ms and xs to compute

7
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accurate approximalions tc zome: L Lhe slrenvntucs ang e Lvenrectors
of A . For this use, Lanczos' method can be desceribed as follc

let 2 be a2 symmetric matrix of order n =znd let = be u vector
such that

4%} = 1 . Let = be an integer greater than one and less

than or equal to n . Compute ceguences (ai)z=l > (E_i) » &8nd

s
i=2
s
fxi)i.:l as follows:
Step 1. et X, =% and 1 =1.
Step 2a. Compuate yi = Ax, rand & =X
. Step db. If i = s , stop.
tep 2¢. Compute z,
Step 3. Compute Bis1 = I‘izi-rlh .
Step L. If B,., =8, stop.
Step 5- Compute x_ . = zi+1/5-1+1 -
Step 6. Increase i by ome and go to Step 2.

If the finael valune o5 i 4is less than s , Wwe decrease = to

this value.

Note:, If.p and v are an eigenvalue and eige:wector, respeci-

. ively, of ﬁk and if we define

»

a=M8v ,
then Equation (2.4.3) implies that

Ag - g =77 (2.h.4)
where Vi is the k-th component of v . 7ror the extreme eigenvalues
of Mk » the corresponding vk's are often extremely small regzrdless

28
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of the magnitude of Zpay which serves to explain partly why the
extreme eigenvalues of Mk are often very good approximations to the
cigenvalues of A . Haqoation {(Z2.3.%) cun in facl. b uzmed Lo estimmte

the crror in eigenvalues and eigenvectors compuled using lhe Lanczos

‘method. We will develop & similar formuls for our Block lLanczos

algorithm.

¥While an efficient and viable algoritim for computing eigenvalnes
end eigenvectors could be bullt arowrd Lanczos® method as described
gbwe,prelimﬁnmm&imtsbythismhorindicated,hm,that
some advantages could be gained by extending the ideas of the last two
sections te work with a matrix of vectors X instead of a single vector
x as above. In particular, these experiments indicated that Jess work
wuﬂlmsrequiredifweit&ratedwithablockofvectorsmherthan
a sirnwle vector. Furthermore, with the standard Lanczos method, at most
opne eigenvalue and vector corresponding to & multiple e:r.ge:rva.'l.ue can
be computed at & time. This shortcoming is overcame partly or wholely
by working with several vectdrs simmltanecusly.

For this reason, we will move on at this point to the development
of a Block Lanczos method.

2.5 Extending the Basic Idea

et A be a symmetric matrix of order n and let x be & vector
of unit length. In the last two sections we saw that the least eigen-
nluuandeigmctei-sof ﬂ,therestrictionof A to the space spammed

by the vectors (x,Ax,...,As'lx) where s is an integer value such that

1_<_sgn,wereusuallygoodapprmdmtionstothel&steigmalues

i ———_—
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and eigenvectors of A . We 2lso szw how the Lanczos method could te
used to compute the eigenvelnes and eizenvectors of A . In this and
the next two sections we will extené these ideas so that instead of
worring with a single vector x , we will work with an orthonormal
matrix X - ‘This generalization will zlliow us 1o compute ceveral
eigenvalues and elgenvectcrs simultaneously and will lead us to an
algorithm for computing solutions to the syrmetric eigenproblem which '
will require & fewer mumber of operations overall when compared with an
algorithm based on a single vector approach. With this éctended approach,
we will also be able to compute multiple eigenvalues and eigenvectors
at the same time.

In the remainder bf this s-e-ction, we will outline this idea and
establish basic definitions and notation.

Let A be defined as above and let p and s be integer v*a.lue#
such&:a.t s>, p>l,and 1< pXs<n. Let X bean n-by-p

orthonormal matrix.

Definition 2.5.1. Let K(s,X,A) be the space spammed by the pxs

columms of the matrices X,AX, ---,As.lx .

If the set of vectors comprised of the columms of the matrices
XoAXy ---,A5" X 1is independent, then the dimemsion of K(s,X,A) will
be pXs . Otherwise, it will be less than pxs .

We now redefine XA . |

Detinition 2'.5.2. - Let A denote the restriction of A to a subspace

L(s,X,A) of dimension pXs containing K(s,X,A) .

- ) 50




L(s,X,A) will be determined by means of a Block Lanczos algorithm
to be described in Section 2.7. for the moment it is important to know
only thet L{S,X,A) contains the colums of the matrices X,AX,...,A5 X .
We now proceed as before. Let Xg be an n-by-pxs crthonormal

matrix whose columns forn & basis for L(s,X,A} - Let

t
7/‘3 = stxs .
77%' is the matrix representation of A . Let B Sup S -ee 5""pxs and
Vyr¥pr---r¥ s be the eigervalues and eigenvectors respectively of %, -
Let

3 = Xy
for i =1,2,...,pXs - It follows that (cf. Section 2.2) b and §
are an eigenvalue and eigenvector Tespectively of A for i = 1,2,...,DXS -
In the next section we will show that the p least eigenvalues of
A will usually be accurate approximations to the P least eigenvalue:s
of A and give bounds on the errors. In Section 2.7 we will describe
& Block Lanczos algorithm which can be used to compute ‘IIL” and p S
The results of this and the next two sections indicate that the least
eigenvalues of ﬂg will be accurate appraximations to the eigenvalues

of A . We will base our algorithm on this idea.

2.6 The Error in the Least Eigenvalnes of A Restricted to L(s,X,4)

Let A be a symmetric matrix of order n . Let p and s be
integer valnes such that s >1, p> 1, and 1 <pxs<n - Let X
be an n-by-p orthonormal matrix.

Let A be the matrix A restricted to a space L(s,X,A) of
dimension mxs containing K(s,X,A) -
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In this section we will give bounds on the errors in the p lezst G
eigenvalues of E as approximations to the p least eigenvalues of 3% . 3‘5

Tas poumds will be stated as & theorexr and derived in the course of 2
proof of the theocrem.
First. however, we will eztablish some lemmns which will be used

in the proof o the itheorenm.

Lemme 4.7 0. Let g S an € cee € be the eigenvalues of E ; then
1=r2 = = “pxs
t
. vV Ay
;,!,“ S man T
vFe ¥
where 5, is any k-dimensjonal subspace of L(s,X,A) and the maximm

is tzken over zli non-null vectors y in E, -

Procf. This lemma is a direct conseguence of Lemma 2.2.1.

Lermz 2.¢..2. Let ¥, be a subspace of L(c,X,A) of dimension & .

Let Gk be an n-by-k matrix whose columns form a basis for El' ; then
=
max Y AY . A 4
vAo Ty %
yeEk .
E@
where A] is the largest eigenvelue of the generalized eigenproblem ;‘ﬁ

t __ arat
A6, A6y = MGGy -

Proof. In general it can be shown that if C and F are symmetric

matrices of order k and F 1is positive definite, then




ey T e R . s P L

B e L L T S,

’ +os i
L max z:Cz
3 z£e z Fz

8

H'rlﬁrre"*ﬁm‘ m“‘*‘

zeRk

is egqual to the largest eigenvalue of the generalized eigenproblem

Cz = AFz .

vemy ey

oy

and the lemme follows directly from this equation.

. .
¥
'3, e
§ Observe now that any vector y in E_ zan be written )
g 4
E 5
1 ¥ = G2 &
H IB)
-F where z is in Rl: . ‘Therefore, =
1 3
4 ' t t &
3 B z G, AG, 2 !
¥ vk vy z246 2z G,G, 2 o4
:_ ? - e
i

R

=\

a1 Lemme 2.6.3- Let v; <v, < --- <v, Dbe the eigenvalues of the -
! generalized eigenproblem T

Erait i

Cz = vFz {(2.6.1)

where C and F are symmetric matrices of order k and F 1is positive

g v

TR ALRI LY
- H’?' , 5

definite. Then V=02 V5"05 - -3V "G are the eigenvalues of

A b

AR e AR e <

(C-oF)z = vFz (2.6.2)
for any real o -

. ny

Proof. Subtract oFz from both sides of Equation (2.6.1) and we have

e MR Y o 0 e AT Y

{C=-6gF)2z = (v=-g)Fz -

Thus, if v is an eigenvalue of Equation (2.6.1), then wv-g 1is an

eigenvalue of Equation (2.6.2_) .
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Temme 2.€.L. Iet ¢ end T be sirmetric matrices oI xmder K
Suppose T is negative semi-definite and [ 1s posizive IolIinlie.
let E be a symmetric matrix. The largest eigenvalue A° of

(C+E)z = AFz . (2.5.2°
satisfies ) s

SRS e BE
Froof. Let § be the Cholesky Jactor of F [22]. The sigenvaluec
of the generalized ejigenproblem (2.5.3) are the same &= the eigenvalues
of the standard problem

, steiE)s T = (2.4.1)

where:

ss* = F ead w=s's
Note thas

s7Heem)s™t - sThesTPesTEsTt
Since C is negative semi-definite, S US™C must elso be negevive .
semi-definite and all of its eigenvalues must be less than or equal tc
zero. By Weinstein's inequality, the eigenvalues of Equsticn (2-.6 1) :"-:
can differ from those of S TS C by guantities which ere bounded by
is™lEs V]| . Tuus the largest eigenvalue of Equation (2.6.3) mast 3
satisfy -

A< lisTlesTh
By Lemme 2.6.5,

L -t I B AT

Is™es™ < s sVEL -
Since S is the Cholesky factor of F ,

TN N P
s S ]l = IiF i 5

and the lemma is proved.




Lemma 2.6.5. For any matrices C and F ,

" t E
< fiF rli-ilel

t. .
f|Fcrl

Proof. By the generwl properties of matrix nomms,
_dieerll < it - bel -
For the ‘spgctra.l norm, we also have
o I W o

and the lemma follows fxrom the last two equatioms.

Note: Iemma 2.6.5 was also established by Crawford [3], but

the proof given here is different.

Lemma 2.6.6. If C is an n-by-n symmetric matrix and C, 1is the

-

leading k-by-k principal submatrix of T , then

e i < el

for 1‘: = 1,2,---,:1 -

Droof. For any symmetric metriz F , say, |[[F]] = mgxlhi(F)] . The
- . i

lammz foliows from the fact that the eigenvalues of Ck must lie witoin

the interval containing the eigenvalues of C [ .

Temrz 2.6.7. TIf D = ﬁiag(ﬂl,de,---:du) > then

"Di - a.
iiD} m;-xl ;|
Irool.
inil = mgx[hi(n)l = max|d, |
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L
Lermma 2.6.3. Let E be a positive semi-definite symmetric matrix;
® ~shen '
)™ <1 .
& Proof. This lemma follows from the cbservation that all the eigenvalues T
of (I+E) are greater than or egual to one, and therefore, all ihe ‘
eigenvelues of (I+E) 1 ere greater than zero and less than or egual 5'.'" B
. to one. S
0 .
M ;\
Lemma 2.6.9. Let W be an n-by-p orthonormal matrix. Let
a
Wl :
W =
WQ ¥
! where Wl and W2 are composed of the first p and last n-p rows
of W , respectively. TLet Cpin be the least singular value of wl - )
If o . >0, then :
4.t .-l 1 s
Wy "WoW W = -1 to
“min N
Proof. Since W is orthonormal, ,
W?.qu'WEWQ =1 - i
;% -
Since Omin >0, W;_l exists. Therefore, after multiplying the last "é ,5
. 1 £
equation by W] on the left and by W~ on the Tight, and then ‘E s
rearranging terms, we have %
t t. -1 _ _~t_-1 -3
- Wy WpWpWy =Wy Wy -1 - % .
36 -
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e =t,-1 P, N 2
Since the largest eigenvalue of (wltwl Y = U.lel) is I/Gm.in R

-t_.-1 1
ElWl “Tl - IH = GT— -1 »
min

and the lemma follows from the last two equations.

We will now state and prove the theorem giving the bounds on the

€Xrrors.,

Theorem 2.6.1. ILet A be a symmetric matrix of order n with

eigenvalues A <A, < ... <A and orthonormal eigenvectors

9s952---29, - Let p and s be integer values such that p> 0,

s>0,and l<pXs<n. Assume that A_< - Iet X be an
’ SPES : p = tpr

n-by-p orthonormal matrix, and A , the restriction of A to a sub-

space L(s,X,A) of dimension mxs containing K(s8,X,A) . Let

By Spp S eee 5"’9(5 be the eigenvalues of A . Define

Q = (ql,qzs---’?n)
and
W
1
W o= =™ ,
Wy

where W. and W2 are composed of first p and last n-p rows of W,

1
respectively. Ilet o .. be the smallest singular value of Wl -

If g . >0, then for k = 1,2,...,D ,

N S St

where

[ S e O R —— o mm - — ey e e e

e — g s o

1
-

.



(¥

o - - e - o
)‘k) ta.n o
T 7 7.\
S— l_/k
® = arc cos Opin > . -

(N =2/ Oy =h) e

T, = (s-1) -st Chebyshev polynomiel of the first kind.

Proof. we will show that there are p vectors gl,gz,..-,gp in

L(s,X,A) such that if E, = Sp(gl,...,gk) » then

N < max & < N €§ . (2.6.5)
i YeB, '.'f ¥y ’
Y#0

By Lerma 2.2.2 and Lemma 2.6.1,

)H{ = Hx = ;\‘]:-_ . . (2°6'6)

Combinine {2.4.5) and {2.6.6) will complete the proof of our theorem.

Let P be the polynomial such that

P()\.) = TS _1(2)
wnere
oy q =)

1
2= l-2 Bl

rl o
and T 3 is the (s-1} -st Chebyshev pclynomial of the first ldnd.
Note that, oy the propverties of Chebyshev polynomicls,

201 < 1 (2-5.7)
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for 1 = P'l'l,-'-,n » and

P(N) > P(A) > ... > P(hp) >1 . . 2.0.3)

Let €.yC ,e00sC be the coefficients in the expansion of P(A) in
[ 1ge & s-1

powers of A . That is,

P(N) = c0+cl7~.+...+c$_l7\s'l .
Let
s-1
H = P(A) X = (c01+clA+...+cs_lA Yx .

Note that the columns of E are linear combinations 9f the eolumns
of X,AX,-.-»ASIX and hence are in TI(s,X,A) . Since § is the
matrix of eigemvectors of 4,

P(R) @ = Q 2(A)

where A = diag(hl’ h2, . o’hn) -

From the definitjon of W,

X = GW .
Thus,
E = P(A)X
= P(A)QW
= QP(AW .

Now let A, = diag(My,---,M) and A, = dias(Kp,_l,n-,?»n) . Thus,

P(Al)
) = ' »
P(A,)
P(I\l)Wl
P(AYW =
P(na)w2

SR L

e -



- ® P{A, W,

P(Az)wz

.

lote that g ¢ L{s,i:A) . k =1,2,....p , since it is a linear

combination of the columns of H . By Equation (2.4.9)

1
I

(9]
1]
O

4

where

¢~
i

Now let

(3
I

® = (81:82:°--:Z~ﬁ) ,

(51352’ .- "E’k) s and

.an“
.',;P

o |
n

Sp(Gk) .

i We now want to bound

t.
. t = ma:'. y_ﬂ;\{
2 ves, ¥y
. ="k
: Y#6

3y Lerma 2.6.2, )Ll:t is the largest eigenvalue of the generalized

eigenproblem

. (GAG)Y = MESIY -

k9

L

{I -

P nefins

’." e (= - ) — -W-L-(
: v = \5_1;2’-'-:817 = & 1__-"\1'

1

)-l

- -1
(511 52: .- "51)) = P(P?)WEWlJT(ﬁl) o
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E Now,

[1]
B
]

% t
WO T Dt AL
£ L

GG, = T+A 8

CLEY T S SO I

o
n

Thus, ?i is the lergest eigenvelue of

(D + 85 A, 8y = MI+ oy )y

By Lemma 2.£.3, the largest eigemvalue of

D+ by Ay b - AT+ 87 8))Y = MI+a¥a)y

is Kl'c-hk - (bserve that

Oy * 88y B - NIT+ £80) = (O A + 80y =1 T)2)

and that
B ]
(o -A\T) = .
] ;
is negative semidefinite. By Lemma 2.6.k,
Mo-Ay < N+ oy a) nag(n, - A DA - (2-6-10)
. By Lemma 2.6.8,
nr+aa) < . (2-6.11) ’
- 3y Lemmas 2.6.5 and 2.56.7,
b, -A Dl < et ity -A D < O -AJital - (2.6.12)
“ %
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Note that

where (WM, Iy stands for the fir

Three applica

%,

By lemma 2.4.7 and Fcuations (2.4.T

S
* P

and

)
[
s~
e
[a]
)
(=
'D
nS
1A
[

3y Leomma 2.4.7,

O S Wi

1A

fpr- -
,f.-¢2wl

N RS -1 -1
iiﬂ-_u: cﬂ,_‘: = ;IP"D[{) P(D?{) i 7l (WP_wl

-1 i

)2

1,
Y iw

. -1
ch % eolumns of w2w., . Thus

£, =1, - t Y
) (T )i PR B (2.4002)
) ané (2.£.8)

{2.4.24)

(2-€.15)

e T N

-

bl

Since ¥ is orthomormal, W is orthonormal and therefore, by Lemmo 2.4.9,

i,w; .4;’:_’.-«1 o= 21 - . (2.6.18)
Cin
By the definition of & ,
cos 8 = & .
nin
s0 that
2
lee . . 2
,-l -1 = min _ sin 8 - ta.n2 G . (2.6.17)

“min min :

k2
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By combining Equations (2.6.10) through (2.6.17), we get

(N =2
A< =B L oy 9 -
R S ()
Finally
_7\)
P(n) =
ané
r - - — -
1-2 Py =) _ Mo "M =Py VBN
(hp._l-hn) L?l-hn
=2 ) -
} (RK ) "'(?‘-k hp'*l)
(A =2 ) = (N -
1+ -\
= 1-7k vhere 7y = E_-%ﬂ . -
k HS n :
Therefore,
. =-n)
. M- hk 2 i
)q‘ S ).k+ Ta l+7k tan- 9 . 1
=i T,
x5
and the proof of the theorem is complete. i
Exarple. Suppose A of order 1000 1is such that ).l=o.o, E
h2=0-1,7~3 0.5 and?&ooo 1.0 . Suppose g =10 and X is ‘;
such that ¢, = -Ob 3 then %
_ 0.0-0.5 _ 1 F
71 T 5.0-10 T 2 °? g
_ 0.1-0.5 _ &
72 < 5.1-10 - 9

L3




.
i
»
{
Kl

)

b
}'

v.c

R M T ) AT T AT

&
o
& = are cos{.ck) , and
 J b
tan” @ - S2h .
We have
o

6
2.5 » 10 » ant

r T+ : 1
( 2) = T,(2.9) - SSx10°

A
0
/—\
1~
.!+
|~
=
e/
I
&
o
AS,]
—
I

A v e by A

Thus > [T and sy satis fy, . -:
'3 : :
M oS ST 20 L 59x10° = 5.+ 2.4x107
F l.5x 10 :
£ and )
: : . =T
" S ey £yt i s 500107 <y e sma0T
H

The thegren and the example cuggest that s will tend t©o conversge
!

A L L R

= o )\.i more repidly than Msal to h +1 7 for 1 = 1,2,..4;,1:-1 : This R )
does, in fact, occur in practice. ; g . , ‘:
: In the next section we will develop a Block Lanczos algorithm
- which can be used to compute the eigenvalues u;,-.- s of A
restricted to L(s,X.A)} . f
= 2.7 A Block Lanczos Algorithm
In this section we will develsp an algoritam which is an extension
of Lunczos' original algorithm presented in Sectiom Z2.Lh. ; Rather than
Py start with & single vector X , we will begin witn a block of vectors X
I and generate sequences of matrices ;'Mi) » (Ri) » and (Xi) which play =

Lk




R

foles s:milar to those played by the sequences (ai) R (ﬁi) s and  (x.)
respectively, in Lanczos' method.

Lamczos developed his method as follows:

Let A be a2 symmetric matrix of order n . Given a vector x
such that |jx]] = 1 , compute Ax and choose @, such that iz ll is
minimized where 2, = AXx-0uX - It cen be chown thet « = x'Ax and
that with this choice for Q'.l s Zp is orthogonel to x . ‘Note that
if 2, = 8 , then x would be an eigenvector and 4 , an eigenvalue.
Define X, = 2,/iiz,ll and x; =x . At the j-th step, we bave vectors
xl,xe,...,xj and we chocose cra. and 713’723""!73‘-1,;5 such that

"zj+l“ is winimized where Z;, = AX;=OX;=Y5 3 Xg g =.e-=7y K -

Lanczos showed that, in fact, {fz_ .l need only be minimized with

respect to c:z‘i and )y

these optimal choizes for o, and ¥ . Z. is orthogonal to
j nj-l,-_' J+l

5-1,5 (7g,5=0 for i<J-1) and that with

XpsXgs v or¥y - It 2541 £0, we let X5y = zj+1/'1‘.z +li\ . For some

veiue m less than or equal to n , Ze1 will be egual to @ and tke

m m ‘ m : .
sequences (ak)l'.:l » (7k—1,k)k=2 » and (xk)k=1 can be used to compute

some oY all of the eigenvalues and eigenvectors of A .

Kote: If we let Bk = Te-l.k * then the sequences generaied by
. >
the above procedure are the same as those computed by the algorithm in
Section 2.k4.

We also saw in Section 2.k that if we stopped the algorithm after

computing czs in Step 5, then usefxl informetion could be obtained from

the sequences (ak);___l » (5]‘)2:2 and (xk)i=l . Namely, by cbserving

L5
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b
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that the VASLOrS X,:...,%_ Wwere an orthonormal basis for the space

. . s-1 ey Y- s-
B(c.7z,8) = Spim,hr. .. ,27 "x) and thzt the (.1?_;:_::.1 and (5:{)?;1

14
ct
iy
(1]
o]
o
ty
g
a
]

[}
s

cculd be used e obtazin tne matriy reprecentalion o

a mind. Jur £2&l is an algoritmm which, stzrting from an n-by-»

srthonsrmal matrix X, computes 3 segquence o mutuelly orthogonal

n-by-p oriaonormel matricer X ,%.:...,%_  and sequeirces of D-bLy-p

&
L -2

mutricec r-'.l,.r-'r soo-sk_ wnd F.?,R,, .-+3R.. such thet the columncs of
Pas & ~ o o

. ” {::'1-"-':»'_-""_':‘:5)’ {2.7.1)

.

o~

form an orihomormal baszis for a suace L{s,<,4) which contains tae

¢ slumne of thie matrices EK.AN. ... LA ¥ . a2nd

-
hhs ?t' T
20 .2
R. M. -
2 <
Ty (2.7.2)
. bed S
R K
=
- —

is the matriz: representation of I , now Gefimed 1o be thc cperator A
resiricied to L{s,{,A} -
In order oo reduce somevwhal lhe complexity cof the development, we

restrict slightiy The range of values the parameters in the problem may

assirze. In particular, we assume that the mumber p of"colurms in X




P

and the number of steps s satisfy

l<gpks<n . (2.7.3) ‘

This restriction implies, for example, that if we start with an
n-by-p matrix X where 1 <Pp <n , then we can carry through the . i
Block Lanezos method at most s steps where s satisfies é
1<s <nfp - ?;

. 4

From the standpoint of the problems to which this method will usually ¥
be applied, i.e., problems of very large order n for which, because ’
of limited storage, p << n and mxs << n , Equation (2.7.3) does not ,
represent a real restriction. > '
We will follow 2 path similar to that followed by Lanczos in z
developing his 2igorithm. To begin, let A be a symmedric matrix f
of order n and let X be an n-by-p orthonormal matrix X. Let ; - \
compuse ‘
%

1"1 = .nxl ’ 1[

and let z, te the result of projecting Yl onto the subspace orihogonal ) 3
to X, . That is, 2 1

Z, = (I-%E)aK
KX -X My (2.7.4)

4
where
t
Ml = Xlel .

By definitionm, )(J:ll:_z2 =8 . BStrictly speaking, choosing 22 in this

manney does not follow Lanczos' develomment. It can be shown, however,

b7
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o
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that choosing Z, a5 in Equation (2.7.1) minimizez !IZ with recpsch

it
bs

n

to =11 possible choices of Ml -

Z, is an n-by-p matrix. Assume for the moment tnet Z, Fe,

and let be the ranx of Z, . Bince Z £ 0 ; >0, zad b

“2 2 S

definition, 8o <P - ractor 22 into the product of en =-by-p

orthoncrmal matrix ):? and & p-dy-p metriz R, . Thel is,

wheye

% = I .

' ){2 I
It o5 * P s then Z{P is orthogona!l to X, since 2.2 is orthogonal
to Kl . If s <1, than this may not necessarily ve¢ the c¢ase, oo

we add the orthogonality condition as an zdditionzl ceriterion for

choosing X, - In any event.

p=d
I (2.7.5)
271 .
Note that Xz and Re can be computed using a Gram-Schmidt method

or & QR factorization method based on Housebolder transiormavions.
If p, <P, then {p- 02) colums of X, will not be determined 'by-‘
either of these methods. However, both methods can be programmed in
such a way that the additional p- o columns can be chosen so that -1(2 ‘
is orthonormal and Equation (2.7.5) is satisfied.

Thus, at the end of the first step, starting from Il =X 5 we

have computed matrices M, , R, and X, such that

2

X R, = 22 = A:{l-x_‘-_Ml

where




t
Ml = .‘ClAXl

and :(2 is orthonormal and orthogonal to xl .
Assume now that we are at the beginming of the j-th step where
J < s ., and that we have a sequence of muitually orthonormal matrices

Xl, . -,:{j and sequences of matrices Ml’ME’ .o "Mj-l and Re,R3, - "R,j

such that
X Ry = Zy = AXy XMy
) _ _ vy v ot
AsRz = Zy = Ay -H My -XiR,
. ' (2.7.6)
X.R, = 2, = AX_ . -X. .M, . -X. _R
N5 T % r IR R S B B
where
M, = XUAX i=1 §-1
R e TR T -l :

Compute Yj = MJ and let Z:j +1 be the result of projecting '!j onto

1
1
the spece SP(xl, ...,}(J) orthogonal to that spenned by X ,X,,---,X; -

Since the projector omto si';(xl, . ..,Kj) is

t + £
P = (T-XX, X, X. o ~eeu- )y o,
N -1"j=-1
Sp(xl’x2""’xj) J4d d d ylxl
we have
t T t
T R R o e R e L
= AX_-X M.-X. _N. e= nee=X-N_ .
J JMJ J-XJ-1L,3 11,3
where
M. = xij’Ax
Jd
and
t
Ni,,j = XiAX.
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Tor i+ 1,2,...,3-1 . Yowever, for i < j-1 , we have

N, ., - &
1,4
since
t
e = ¥ B .+ X M.+
PRy = F5aRe PEM T R R,

for ¥=4-1, k=31, cr k= itl if 1 <« j-1 . Thus,

Zipg = AR, SHgL-K W oo -

Hote thet by Bouation (2.7.6),

t

= 3 4+ M. L +X.R.
pxj_l ;{J__ERj_l T,j-lr‘}—l XJRJ
so that
- t
N, . = X.AX, =R, .
S=L,J 371 J

Thus.

Note also that in computing 32, 4 2 We need only project ij onto the
J
space orthogonal to Xj_., and X. , and Zj+l will automatically be

orthogonal to }:l o= ’Xj 2

Z... is an n-by-p metrix. Assume for the moment that Zs,q Fe

and let be the rank of 2. - As we 4id for 22 s Tactor Z. .

Pi+1 +1 J+1

into the product of an n-by-p orthonormal matrix X_ , and a2 p-by-p

J+L
mairix Rj+l . That 1is,
2341 = R3eaByer 7

where }Ij +1 Ij +1

ot
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to be orthogonal to xl’xe""’xj .

Thus, during the j-th set, we have cumputed matrices M, , xj+l »
and R;j+1 such thet

+
X. -R. = 2. = . - -X. .
jrafyer = By = Ay XM -Xs 4Ry
where
t
M. = X_AX.
d J J

and xj+l is orthogonzal to xl,xe, ...,xj -
Assume now that we are at the begimning of Step 5 and that we have
s n-by-p mnutvally orthonormzl matrices xl,xa, “-- ,KS and sequences

of matrices Ml’ME’ .o "Ms-l and R2,R5, .- "Rs such that

xRy = 2, = M) -XM)
%
EsRs =Ty = B, =X M, —X3Ry
xR —; = AX X_ .M X_ RS
ss  “s ~ “ts-1"s-1's-1 “s-27s-1 °

As before, we now compute Ys = Axs and let 2z s+ be the result of

s
Frojecting ¥ s ontc the space orthogonal to that spanned by xl’xa’"' ’xs .
However, as we saw above for the j-th step, Axs need only be projected
onto the space corthogonal to Xs and X s-1 and it will be evtometically

orthogonal to Xl,}( ,...,Xs_2 + That is,

2
Z = (I-X xt-x Xt YAX
s+1 s's s=1"5~-1""""8
= AKX -X M -xs—le-l,s
where
+
Ms = XSAXS

Sl
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for ¥ = 1,2,...5s . That is, g, is an n-by-pXi orthonormal matrix
formed from the sequence (xl,xz, —..,x,{) and 5’?;_( is a symmetric block
tridiagonal matrix of order ©v-k formed from the sequences (Ml, wew ,M2)

and (32,...,.5_) . We will now show that

M= xghxg | (2.7.10)
and that

L{s,X,A) =Sp(x.) (2.7.12)
contains

K(s,X,A) = Sp(X,AX,...,&5 X)) . (2.7-12)

We will then give a precise description of an algorithm for computing

(Xl, ...,xs) > (M;.”"’Ms) s and (Rz,...,Rs) - This algorithm will be
based directly or{ the preceding develomment and in light of Equatioms

(2.7-9), {2.7.1D), and (2.7-11), is osur goel in this sectiom

Observe that Equations (2.7.7) can be rewritten ’
i = XMy * X%

t
le2 + K2M2 + K335

: (2.7-13)

5

t
X = Ay gRe o+ XM+ Xo R %
AX_ = X__.RC + XM_+Z .
s -~ Ts-l's § s “stl

In matrix notation, these equations can be written

BX, = X M +Z_, (2.7-1k)

s 1

where

Z_.. = (8,65.--38,

s+L Zova)
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g is an n-by-pxs matrixz all of whote columns are zerd except the last p ]
g‘ which are the coluans of 2 41 - By definition, Z 1 is orthogonal . "
% to :-’.1,.--,165 - Therefore, “ ,
t
X'z, = & ) v
s 57 i
; and since T
by - I
§ Xs '<s =1 o 2 :
e oL
! we have by Sguation [2.7.1L}, ;
X_AX, = W, - &
= Thuc, % _. 3Ic the reprecentation of A ;s the restriction of A <o : :
- F 20
the space L{s,X,A) . ‘3 R
5.
We also have the following result. W
Theorem 2.7.1. L{s,X,A} , the spece spenned by the columns of ;
(X sXy5---5X,) , contains the colwms of the matrices X,AX, oA L 3 a
- Proof. We will show incductively that ;;‘
: = -
1 ) k- L
, (Kol - - BE) = (RppKoy - o0 X )T (2.7.15) I
. 4 1
; | S g
e for k = 1,2,.-.,5 , where U, .S matrix of order pk - This will g =
- &y
. imply that each column of the matrices X,AX, .-.,Ak lx is 2 lineaxr g
f combination of the columns of (Xl, .e- ,Xk) and, therefore, that each 5
R
!
if_‘, columm is constained in L(s,X,A) -
A Clearly, Equation (2.7.15) holds for k = 1 since
X = )L.L
=T .
7 and Ul I
'4 51}.
Iz
“
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Assume that Equation (2.7.15) holds for some k <5 .

both sides of Equation (2.7.15) by A gives us

(MJA%C’ .- .,AIS() = (Axlrﬁxgl -~ -’Axk)Uk
from which ye can conclude that

- - I e
(X, A%, .. ,A%) = (xl’Axl""’Axk)( ) .
e Uk

By Equations (2.7-13) with s replaced by k,

T
o

W W
\.Nwrf'

il

(xl"Axl’ ve -:Axk) = (Xl’xa’ .- "xkl-l) * -

Moitiplying
{2.7.18)
(2.7.17)

Let V, denote the last matrix in Equation (2.7.18) . By coambining

Equations (2.7.17) and (2.7.18), Wwe have

(X,AJC, - :AXS() = (xl’xz" --- ’xki-l)Uk'l'l

(I , )

U. = V. - -
I+ k ‘
e Uk

This completes the indnective step and the proof of the theorem.,

Before deseribing our algoritim, one point needs to be cleared up.

Nemely, our assmption that 2, £© for § = 1,25 ...,5-1 . Suppose

that we intend to carry through s steps of ocur algorithm, computing

55

. (2.7-18)
t
B
M
Biv1

g ow s

vhum

et



L8]

sequences (I-{i)'z=l R (Ri)i'-Q ; and (Xi}f=l » but for some valme j <s

z'-+_1 =6 . In this circumstunce, we replace.the value = by J and

use the patrices % ; and XJ 1o compute oxact elgenvaiucs and
eigenvectors of £ . This can be ceen by considering Equation (2.7.1h).
If we replace s by J , the eguation is still valié, and since

Z.

41 = 9

X, = X. 7

3 -

J 3
Thus, the eigenvalues of 77‘]. are eigenvalues of A and its eigen-
vectors can be used to cqmpute eigenvectors of A {cf. Section 2:‘2) .

It woxﬂd also be possible to continue computing if ZJ. 1 = & for

5 < s by simply choosing X such that

g+1

+ s
XXspy =@ > 123 5

and letting Rj"rl =8 . An algorithm incorporating this idea is of
little interest considering the applications we have in mind. Further-

more, it is extremely unlikely in practice that Z.

3+l=g for any j

even if exact arithmetic operations are assumed.
We now describe a Block Lanczos algorithm which can be used to

s s s
£ -
compute the seguences (Mi)i= » (Ri)i=2 » and .‘X.)i_] H

Iet A Dbe a sympetric matrix of order n - ILet p and s Dbe

integer valunes such that p >1 and
I1€£<Xs<n -

et X be an n-by-p orthonormal mabrix.

Step L. Let X__L=X exd i=1.

Gt 2. .= R M. =X¥. -
Step Comprrte Y1 Axl and 'N[:L X:;_Yl
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Step 5- If i =s , stop-

Step k. Compute Z;,, Wwhere

AX - Xy if i=1
Z,,, = . .
AX; -X M, =X, RS if i>1

Step 6. Compute X;,; aod R, . such that
Zs41 = Xie1fenn
and., xi+1 is orthomormal. If the rank of Zi+1 is ‘
less than D , we require X, . to be orthonormal.
to X., J<i.
1 J - :

Step T- Increase the value of i by one and go to Step 2.

The only time 5 will be different from its original value is if

zi+1=e for some i < s . As noted before, this is an extremely un-

¢

“ i
P L ERAETCR oyt E-F I B DR LV R D SR et it L

likely circumstance.

As the devdmen'l._'. preceding the above description suggests, the

metrices (X,) i _y compited using this algorithm will be mitually

: orthonormal end if

I
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]
' / e P.;
i- -
; R, My, -
- . 4=
P i
ar t
- Moy Rs
. M
L s s
E . then
I ms - XzAxn
i and
A ;
: L{s,X,A) = sP(xl,:{z,...,xs) )
? contains the space
Ty
¥ K=
e K(s,X,4) = SPOGAX, --,A7 ) .
y If we compute the eigenvalues 2f M s ? then the results of the previous
* section indicate thav the p least eigenvalues of ‘ms will usually be
¥
i ¢ accurate approximetions to the p IJeast eigemvalues of A . Computational
'“ experience has shown this to be the case.
In the case of the standard Lenczos algorithm, we saw that the
U e
3 sequence of vectors (xi) generated by the method would lose orthogonality
unless the vectors z, were reorthogonelized with respect to a1l
previously computed JCJ. s J4<i . The same problem arises in the Block
F Lanczos method. Namely, the seguence of matrices xi » although
] theoretically orthogonal with respect to each other, will in practice
b | lose orthogonality unless the metrices Z, are reorthogonalized with

respect to all matrices X 5 2 i<j . The reorthogonalization

can be combired with the computation of X.pq 20d Ri+l in Step 6.
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Ac with the standard Lanczos method, there is z question ac to
whether reorthogonalization is actually needed. That 3z, loss of
orthogonality implies convergence of some of the eigenvalues of the
restricted operator to those of the orizinal metrix. Contimuing the
computation beyond the point that orthogonality is lost, however, will
result in eigenvalues being computed more than once ever if they are
not multiple. Thus, for a reliable algorithm, we must either
reorthogonalize or develop a criterion for determining whem orthogonality
is lost. We have chosen the former path which, although more time
consuming, is more streightforward than the latter. We will discuss

this point further in Section 3.1.

Note: If p and v are an eigenvalue and eigenvector, respectively,

of M, , then . =nd

q =st

are eigenvalne and eigenvector of A , the restriction of A to

L(s,X,A) =ISP(XS) . By Equation (2.7.1k), we have

Aa'i-’-a = z&lv(S)

where v(s) denotes the vector composed of the last p components of + -
This equation implies by Weinstein®s inequality that there is an

eigenvalue A of A such that
Ir-ul <z, U < Bl

The eigenvectors corresponding to the extreme eigenvalues of 7;25 are
often such that “v(s)“ is very smell. This seems to explain partly

why the eigenvalues of M s &xe often good approximations to the

59
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eigenveliuez of L . Note that if we computed K‘_+l and R__, such
that

Loy: x:,+1;::+l ’
then we have

. ST ‘s) G

ilzs+lv( )L = |=Rs+l") H
since the spectral norm iz wnitarily invariant. Thus,

i (s),

Iyewl < Iro 0l -

2.8 Tterating to Improve Accuracy :
Let A be 2 symetric matrix of order n and let X be an 7

n-by-p orthonormal matrix-. Let <& be an integer greater chan or
equal to 1 and Suppose that p and s sztisfy

1 <ps <n .

Let 7_ be the represemtation of A , the restriction of A to the
space spanned by the columns of Xg = (Il,}:e,...,xs} which contains
the space sP(x,A}c,Azx,...,.n.s'lx) where iz I— and. X_ have been
computed using the Block Lanczos method of Secti..on 2.7T- Finally, let
Bysbps = rkpg M2 51,52,-..,5105 be the eigenvalues and eigenvectors,
respectively, of A computed using M s &and X -

Theorem 2.6.1 suggests that the first P eigenvelues and eigen-
vectors of A +ill usually be accurate epproximations to the corresponding
eigenvalues of A . However, the expression bounding the errors in the
eigenvalues contains a term tan & where & 1is essentielly the angle

between Sp(X) and Sp(q_l) where @, is the orthonormal matrix
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camprised or the first p eigenvectors of A . If we let

q = (E;l,c'lg,...,ap) and & be the angle between Sp(§,) and spiQ.) >

then we might remsonably expect that 5 < 9 and therefore that

tan 6 < ten 6 since the vectors m 5_1 wild usually be more accurate

approximations to eigenvectors of A than X . Thus, we might -

reasonably expect to compute more accurate approximations by re-applying

the Block Lanczos methed to 6’1 .

This discussion suggests the following algorithm for computing

approximations to the p Jleast eigenvalues and eigemvectors of A %o

a specified accuracy:

Tet A, P, s, and X De as defined above.

i‘ Step 1. Using the Block Lanczos method, compute x_ . end M »
V:s -
: i the representation of A restricted to the space spanned
iy by X_ which contains the space SP(X, A%, - --,4571x) .
s Step 2. Compute the eigenvalues By and eigenvectors v, of M_ -
Compute Ei =X¥; » 1=12..,p.
Step 3. TEstimate the accuracy of by and 61' as approvimations
to the P least eigenvelues and eigenvectors of A .
[ R R
T If they are all sufficiently accurate, stop.
Step B. Iet X = (51,62,...,61’) and go to Step 1-
5 Wa will discuss how to estimate the accuracy of computed results in

Chapter 3.
The above algorithm contains most of the essential features of our
 final method. We will modify it however for the following reasons:

/{3) The block size p will usually be different from the mmber of

61
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g .
| ~
fF eigenvalues we are attempting to compute. In fact, we will want to
K 3 A
i L vary the block size as the computaiizon ‘pracecd:. (2) A5 weoszw in
] Gection 2.4, the errors in ithe compuled cipenvalues deereuse aul virying
j rates. l{ence, some of the eigenvalues, usualliy those least in value;
£ ® will converge sooner than otners. ror Lals reason, we Willi want o

E .

_ continue computing after we have zccepted and stored some eigenvaliue

‘1 ané eigenvecior approximaiicrns, witbhour recomputing the seme eigenvalues '
i ‘
2 ® and eigenvectors. Some modification of our current method Is tmis

Ny rejuired since it will =2lways tend to compute the least eigenvelues.

F In the next section, we will see how to o this.

4 P
. [ 2.¢ Restricting A %o 2 Space Qrthogonal to Computed Eigenvectors
‘“ Let A be 2 symmetric madrix. Let A <A, < ... <A De the
« eigenvalues of A with eigeuvectors 'gl,qe, --e2q, - Let

x <77.25...5im znd ‘%1"‘32"--’5

. = 1. be approximate eigenvelues

and eigenvectors, respectivély, of A4 in the sense trat

3

and the ai are orthonormal where “plﬂ =€ <1 and m is some

Vi integer greater then zero and less than n .

'{g How ¢an we use the algorithm of the previous section to compute
] :

approxizations to eigenvalues and eigenvectors different from those
it we have already commuted without recomputing these lstter velues anc

vectors? For instance, if the ii and Eli were computed by means

4
of this method, then they will most likely correspond to the m least
] & eigenvalues and eigenvectors of A . Re-applying the method to A

; without taking these already computed approximations into account in

62




some fashion would result in cur recomputing the same eigenvalues and
eigenveciors.

The answer to the above question is to apply our method to an
operator which is different from A but, nonetheless, related to A .
in particular, we apply our meLhoé to f\-, tThe restriction of A to
the space orthogomal <o Sp(§1 ,c'ge,-.-,am) . & lLas n-m eigenvalies
and eigenveciors wWhich are approximations to the eigenvalues and
vectors of 4 different from those already approximated. To see this,
let 5n+1’5;+2-""-'in be an orthonormal basis for the space (of

dimension n-m ) orthogonal 1o Sp(il,ie,-..,am) . Let

Ql = (qls---:qm) >

Sy = (i,qr--a) >

M, = 37aAG, », and ~
i, = 402G, -
» 272
Let "Z\.:;_;+ 1 ’lr.-.+2" ...,h.n denote the n-m eigenvalues of :-:2 - Note

~

<hat ‘.2 is the representaction of A and, hence its eigenvalues
are the aigenvalues of 2 .
We now wani o show that if each - d2fined in Bquation (2.9.1)

35 smell, then KA _,..-,~ will be accurate approximetions to {he

Y n
remzining eigenralues of A& . Note that if 21l the €5 = 0 , then

th2 eigenvelues of 4 would also be eigenvelues of 4 .

and
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t,s st,z
+ - thQl ang-e B
B = Q AQ = . ;
=t ,= =t,= :
CphQ) QA% i
liote thet B is similer to A . Let
5ta3 s ] 5
it Rl ¥ My j
C = = ”
e &tag, | 5 -
2%%2 s
and -
r o] ﬁt AT s
1772
A = -
£ =
G988, ¢
Thus,
B =C+a .
Since B is similer t0 A , the eigenvelues of B =zre the seme as the :7;'.
eigenvalues of A . By the theory of perbturvations for symmetric '
matrices, (see, for example, Wilkinson [23]. Chapter 3), the eigenvalues ‘
of ¢ @&iffer from those of B (and hence A ) by amounts that are “ i

bounded by ||A]| - This quantity can in turn be bounded as follows:

Tt can be shown tThat

Let
R = [;‘l:{Je:---:_Dm} £
vhere p, is the residual vector defined in Equation (2.9.1). 3By the

dafinition of Py 2




My -9h = R _ (2.9.2)
where 3‘1 = diag(il,iz,...,im) . Since

-t =

Qe =96

we have

%tﬂél = Q-.ER y ‘*

and therefore,
1 t =t .
ol = iegaqll = Ia;Rj -

Since the spectral norm is invariant with respect t. orthogonal

transformations, and 5,1 is orthogonel,
sl = i3 =l = IRl -
If all the e np | are small, then /Al will be small also. For

example,

R < (2r 342

iSlU > i=l’2’..o,9, th@-

"Aﬂ d 3'10- ’
and the eigenvalues of € differ from those of B , and hence A,

by quantities which are less in modulus than 5_10-10 .

The set of eigenvalues of C is the union of the sets of eigen-

values of M, ard M, - From Equation (2.9-2) we can conclude that
= =t
= Al-I-QlR -

Th.us,

,Xe,..- ’im differ from the eigenvalues of M, by amounts
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bounded by R . Purthermove, the sigenwiniues o7 M. are the sase
2s the eigenvelues of A . Taken together, (hi y 1 =1y...,m) andé

the (p-n) eigenvaluez of 3. a2pprovimete the entire spectrum of A -

£ oA, .,}:F zpyprorinate the m least eigenvaluec

1

Thus. for example,

)'l’ ,..,?\.m of A , then the p lesst eiganvalues of A will approzimate
] cee3A

hnrrl’\mE’ ?oeep
The Block Lanczos algorithm of Section 2.5 can be applied directly

with errors bounded by R| -

1o A 0 compute approximations to its least eigenvalues. The initizl
orchonormel matrix ¥ must lie in the domzin of A . That is, X mst
lie in the space orthogoral to the vectors 51,6_2, ...,:';'m . Note aliso

that

By = (1-38%ay

so that Te multiply by A , we first multiply by A and then project

the result onto tke space orthogomal to 51,5_ Furthermore,

2’ .. 0,6-m -
referring to Section 2.7, we 2dd the extrs requirement that Xj be

computed so thet it is orthogonal to ql’a‘E

Z‘_i is of less thax full remk. Note that this will sutomatically be

R ,am in the event that

the case if Zj is of full rank.

The a2lgorithm of the previous section, when nmodified +o take into
account '_previousl;\r.camputed eigenvalne approXimations, can be described
as follows:

Iet A be a symmetric matrix of order n . Let 61,52,...,6:3
be orthonormal vectors with m <n . Let p and s be integer values

such that p>1. s>1 and

1< pks <n-m .
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let X be an n-by-p orthonormal matrix which satisfies

(z-9.%)

where §Q, - (E,,.-.,ap) .
Compute approximations to the p least eigenvalues of A » the
restriction o & to the space orthogonal to Sp(il, ---q,) » a5 follows:
Step 1. Using the Block Lanczos algorithm, compute Xg and ms s
the representation of A restricted to the spece spanned

by X_ which contains the vectors (x,ﬁx,--.,is']x) .

Step 2. Compute the eigenvalues By and eigenvectors yi
of 'ﬂzs . Compute %ﬁ-i =msyi for i=1,--.,p -

Step 5. Fstimate the accurucy of By ood ii as approximationc
to an eigenvalue and cigenvector, respectively, of A .

If they are all sufficiently accurate, stop.-

Step k. let X = (anri-l’amz""’q- ) and go to Step 1.

Note that, by earlier comments, each colmmn im X, will be orthogonal
to Q; and, hence, each 6m+i will be orthogonal to cil > i=1..D .
Therefore, each time Step 1 is executed, the matrix represented by X
will satisfy Equation (2.9.3).

If fil, E,a,-..,cim are accurate approximations to some of the
eigenvectors of A in the sense of Equation (2.9.1), then ocur discussion
suggests that the above algorithm will compute approximations to
eigenvalues and eigenvectors of A different fram those already computed.

In the next section, we will integrate this method into a complete

algorithm which will also allow us to vary the block size D -

&1
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2.10. A Complete Iterative Biock Lanczos Algorithm
] Let A be a symmetric matrix of order n with eicenvalues
. L.L < he < ... Shn end orthonormal eigenvectors ql,q2,..-,qn . Let
r bYe an integer greater than zero and lesc than or equal to n . In
ie this section we will cutline an algorithm to solve the following 3
h problem: Compute accurate approximations 77-1 and Ei to A, and q %
for i = 1,..-,7 - Qur algorithkm will! incorporate the idea of the "*é ‘
:ﬁ. previous section arnd have as its basis the Block Ianczos method. ;,5“; o
Basically, the plan of the algorithm is as follows: Compute approxi- % i
mations to the least eigenvalues and eigenvectors of A . When some ;:é
;3 of them, say m , ave sufficiently sccurate, compute approximations to %3 #
; the least eigenvalues and eigenvectors of a » the restriction of A to ;-_;
the space orthogonel to those vectors already computed. ‘% “
x Qur method cen be described as follows: ,% ‘
o5 i
: Stepl. ILet m =0 - Pick values for p and s such that gg ‘
E p>1l, s5>2,end 1<pxs<n . Choose an n-by-p § X
-~ 3
- orthenormal metrix X . 4
y Step 2. Starting with X , apply the Block Lanczos method
1a to A, the restriction of A to the space orthogonal
to d5,859---2, - (If m =0, then A=A.) Let
it M, and X  be the matrices camputed by the Block
: . Lanczos method.
Step 3. Compute the eigenvalues p, and eigemvectors y, of 7 »
is= q.,...,pcs . Compute am-l—i =Xy: » i=12...,p -
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Step L. Estimate the accuracy _of km_i =p; @& g . as
arproximations to an eigenvelmne and eigenvector,
respectively, of A for i = 1,2,..-,p - Suppose the

first k of these approximations are accepted. (If

A
1

none is accepted, k=0 .) 1

Step 5. Choose pew valunes for p and s such that p>1,

§>2, and 1< pxs <n-(mtk) . ITet

X = (1 Yergere? -2 Tpriery)

Step 6. TIncrease the valueof m by k. If m<r, go to

Step 2. Otherwise, stop.

An unfortumate choice for the in:.t.La.l X can cause this algorithm
to fajl. For instance, if none of the columns of X contains components
corresponding to eny of the eigenvectors for one of the initial
eigenvalnes A, , 1 <31 <r , then the above algorithm will fail to
caunpute J\.i . In practice, however, such a circumstance is unlikely
t0 occur so we overlook this possibility and accept the above algoritim
as a solution to the problem posed at the start of this sectiom.

Note that in Step 5, if k =0 , then X is chosen as in the last
section. Tbet is, X is chosen to be the eigemvectors corresponding
to the p least eigenvalues of A . Otherwise, if k >0 , then X
is choser to be the next p eigenvectors following the k +that were
accephed.

Also, each time Step 2 is executed afber the first, X will be

suck that
XUax = aiag(h % x
‘ - A 2~ m-l-p)
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vhere XA r Y ere the eigenvaluzes of A computed dmring

o+l w2’ T T T mep

the previous ctep. This can be seen as Jollows:

We have
- t
JWS "(: ’\.'X.g -

where Y = (ym.rl,y o7 oY, m'l'p) . By definitiom,

4 nyY = diag(xml’im-l-z"',"imp)
Therefore,
?(tAX = thzaxsrr i
= ¥'m_ ¥
= dtag(h R ore iy ) -
Since sdvantage can b:a teken of this property, the initial X we

choose in Step 1 will, in practice, also e chosen so that xtAx is

a diagonal matrix.
Note, in addition, that each time Shtep 2 is execubed, X will

be orthogonal to all previcusly computed vectors. This allows us to

use the Block Lanczos algorithm to compute the eigenvalues and eigen-

vectors of Ik .

Finally, the range of values for p and s will in practice be

restricted scmewhat more than :.nd:Lcated in Steps 1 and 5. Jn our
implementation, We require basiecally pxs vectors in which to carry
out the Block Lanczos method. In practice, we will generally have
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much fewer than n vectorss for this purpose znd the values of p
and s must be chosen with this limditation in mind.

In the next chapter, we will consider the problems associatea
with the implementation of the above a&lgorithm. In particular, we will
consider strategies for choosing values for p and s .

consider the probiem of estimating the accuracy of coamputed eigenvalues

and eigenvectors.

We will alss .
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3. IMCIEMEWTATION " 1‘
In this chapter we will consider the problems associated with ‘
implementing and applying the algorithe devreloped in the previcucs (
chater.
In Seetion %.1, we will diseucs the nedd for reorithogonalizing A
the sequence 57 matrices {_}:i) _computed in the Block Tanezos method.
In our use of this method, we do recrthogonalize these matrices and
in this section we will discuss our reasons for talking this path. :
Estimating the accuracy of corputed eigenvelues ané eigenvectors '
will Pe the subject matter of Section *.2. We will see how information ;
on the accuracy of computed results can be obtained in the comtext of
our method and how it can be used to stop the rrogram when a specified
accuracy has been obtained.
In Section 5.3, we will exsmine the problem of choosing a blocx *
size for the Block Lanczos method. 3y considering some examples, we ,
will see that this is pot 2 simple problem. We will then suggest sme
guidelines by which an informed choice nmight be made.
Finally, in Section 3.% we will consider certain practical matters i
£
such as prograx and storage organization, storage requirements and g
operation cownts. ' §

3.1 Reorthogonalization in the Bloeck Lanczos Method

Reczll that in the Block Lanczos method we compute a sequence of
matrices xl,xa, '“’xs which theoretically form a basis for the space
Sp(X, 8%y --- ,As’l.’{) where A 1is a2 symmetric matrix of order n and

X is an n-by-p orthonormal matrix, where p and s are integers

T2
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such that p>1, s>1, and pxs < r . While theoretically the

sequence of matrices (Ki) is orthonormal, in practice taey depart

from orthomommzality after a few steps of the method. From the standpoint

of the standard lanczos method (P = 1} . this Zoss of orthogonality was
& serious shortcoming. To remedy this :itua.iion, an ortasgonalization
step was added to-the algorithm whereby each vector X5 iz

reorthogonalized with respect to all previcusly computed xJ. s d<i .

‘Paige {17] however found that useful recults could be cbtained even if

a reorthogonalization step is not included since loss of orthogonality
implies convergence of scme of the eigenvalues of the tridiagonal matrix
to those of the original matrix A - The major drawback with Paige's
aporsach is that eigenvalues of A will often appear more than once
when the eigenvalunes of the tridiasonal matrix are computed. The reason
for this is that once orthogonality ic Iost, the meihod eccemtially
restarts and recomputes eigenvalues it has alrsady camputed. Thus, the
validity of resulis computed using the Lanczos method without
reorthogonelization is gquestionable.

The same problem arises with the Block lLanczos method. That is,
it we apply the method without reorthogonalizing the xi then accurate
results can be computed but their validity is questioneble in the stme
sense as before =+ we can not determine which of the eigenvalues we
compuate are reel aad which are images.

Adding reorthogonalization to the Block Lanczos method stabilizes
it and we can pe sure of the results we compute, but the cost. of this

insurance is considerable. (The stability of the method with

reorthogonalization is not something we hzve proved, but is an observation
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tzsed on oLr COMPUTETIsnal experience.) 0T oniy does reorthonmalisatisn
add 2 largse nuwber ¢f operztions 1o the method, but necessitates Tue
precence oF ezeh matrix xi in memory Guring each step of the Block
lanczces method.  If reorthoponalizatisn could be zafely eliminated,

then not only would there Le o consicdercble redustion in the zmount oF
eompatation, but at mosy two elements of the segquence | Ja:i) would need
¢ he Drezent in memory abl any time allowing the others to be stored on
magnetic dick o» Tape.-

However, even with reorthagonaﬁzatic_’:n, our early experirents
indicated thet the Elock Lanezos methad eould coupete eflectively in
terms of reliability, efficiency, andé storage requirements with the
method of simmltanecus iterat’ion, previously the most effective method
in general for the solution of large sparse eigenproblems. For this
reason, we chnse originally o remedy the above problem with the Block
Lanczos methed by adding reortiogonalization.

Since this time, Professor W. XKahan of the University of California
at Berkeley has related some of his results and conclunsions cbtained
from experiments using a Block Lancezos method in the late i950%s, whickh
have rever veen publisked. He concluded that a Block Lanczos
method cowld be applied in an iterative fashion (as we have used

+) without reorthogonclizetion as lorg a5 the sequence of matrices (xi) ]
retained "nealthy independence™. He also discovered a way of determining
when independence is lost and used this test as a means of stopping the
method. The work of Cullum [ 4 | appears to reflect Xshan's ideas and
approach. The reader is urged to consult Cullum’'s work for more details

or this slternate approach.
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3.2 Estimating Accurscy and Convergzence Criteria

Given a symmeiric matrix A , the goal of our algorithm is to

compute scalars -, and vectors X (where we assume 1\xiﬁ =1 ) such
that

Axg mwsXy = 0y - (3.2.1)
and

”05_“ = €i <% (:--‘2.2)

where T is some tolerence (to be determined). In this section we
are interested in determining when the eigenvalue and vector approximations
canputed using the iterative Block Lanczos method satisfy Equation (5.2.2).

et X be an n-by-p orthonormal matrix. Suppose that

t e _
XA =M = dﬂ-a-s(ulﬁu,‘-::'-',].kp) (3-2-5)
where
t )
X_AX, = - 5.2.4
5 A% s {5 )

and x_j is the j-th columm of X . If X 3is used to start the Block

Lanczos method (refer to Section 2.7 for notation), then X =X and

Zy = By -XMy (3.2.5)

and the j-th column of zz is

. o= _ - = . . 5.2.
2y = Bymegy =Ry (5-2-6)

Thus, the Block Lanczos method immediately provides estimates of the
form (3.2.1) for the columns of X and the Rayleigh quotients By
defined by Eguation (3.2.4) provided X sstisfies (5.2.3). However,
for the method we have developed, the X used to start the Blcock Lanczos
method each time will satisfy (5.2.3) where the o are the eigenvalues

computed during the previous step (cf. Section 2.10)-
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Note: Since (cf. Section 2.7)

2 = X,

-

and X is crthonormal; we also have

2

where rj is the j=th column of 1’.2 « In our progrem, however, we hzve
found it easier to use Z'E than Ry to compute the values of “j .

The tolerance T we use is hesically relative errcr for eigenvalues

greater than one in modulus and absolute error for eigenvelues less than

or equal %o one in modulus. That is,

Iuilx‘-’-‘PS if lp,i] >1 , and

T = , (z.2.7)

eps if ]p,i] <1 ,

where By is the eigenvalue approximation corresponding to <. and

He

eps 1is some specified precision.

However, in determining the accuracy oFf computed results and
es‘ba‘tblishing & stopping eriterion, the error in previously computed
eigenvalues and eigenvectors must aiso be tzken into account. Recall
{cf. Section 2.9) tkhat if we have already computed m eigenvalue and
eigenveetor spproximations i_L,ie,-.-,?T.m and &l,ie, ,Gm » then
additional aprroximations may be obtained by computing the eigenvalues
and eigenvectors of A » the restriction of A to the spéca orthogonal
to Sp(&l, ..-,am) - However, the eigenvalues and ejigenvectors of )
will differ from those of A by amounts that depend on the magnitudes

Of TysEy-esE, where

Ei = lh-:*.;__ll
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Do i 1.0ea,m o For instancoe i one evtreme, 1fF bhe ., nre luoree

g the g, dwar =0 re.ationship o Vhee eigenvectors of A, thien we
- - - -~
4 not expect ihe eijjenvalues and eirenvectors of & 1o be usetful
tiins o those of & . At the other extrene, if all the <
is anr eigenvecior of & =ad the sigenvelues
ané eigenvectors oI A will alssn be eligenvelues and eigenvecidrs oFf A
When applying our aigorithm, the eigenvalues and eigenveciors we
are computing are converging to those oF .2 and not £ and, therefore-

-

n Zouwabion (3.2.2) with respect to 4 and not A ,

i

if we compuie the

P

then there is =2 lower limit €3 the vaiues of the ‘4 veyond which we
can not reasconably expect them to deccen..

Our progran takes this errcor into account as fHllows:

is
- _ f‘.‘: "? l 2 T
Tm = g‘ufl-l- — cr.": / ‘_)-2-8)

then we accept a2 velus o and 2 vector X if their corresponding ci
satisfies

<. < <+ 7
i o

(5-2.9)
where ¢ is ziven by Equation (3.2.7). (Ve will add one more term to
T later on to zccoummt for round-off error in computing &y .) Ome way
o»f losking at this eriterion is that it is & way Of estimating when the
computed eigenvalue o  has converged to an eipgenvalue 4o of K -  Retall

from Section 2.2 that there is an eigenvalue A of A such that

- -2 =2,1/2
I~-a) =< (e1+ ...+ c.m)/ =T -

&

3
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i we let

then
= el
s = Ax-ox
-T., e ~
= (I-9,97) A~ ux) oy definitiecn of £,
- = =%, 3 = A
= {I=2 Qi): wWhere g5 = Ak =X
= 3 -Ql‘J,-',' s .
Thus.
it Mol - @ 5 L
wlil 2 sk~ ':‘.Ql Ly B3 .
It can be choun that
5 o=t =
\ o -
R T
T™us. As long &s
S
i~ = 7

ané we can imprsve on the accuracy of [ relative to T . Basically,
once (3.2.9) has been satisfied we have reached the obtainable accuracy
allowed by the errors in A, and . » i1=1,.-..m .

Note: The eigenvalues g,.j computed by oSur program are Rayleigh
guotients computed using the vector X - ‘We assume that 1;.131; =1.)
That js;

t
1. = X, AX_ -
%3 3705 :

It is well kmown that the Rayleigr quotient is oftten twice as accurate
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an approximation to an eigenvalue of A as the vector used to form it.

Thet is, if

AX.-p.X. = g.
FoHsNE T %

ll°,j=| =5 s

then there is an eigenvalue X of A such that

‘l-!‘-'j‘ < '{?/6

where B is the minjripe sezparation betwean =3 and the remaining
eigenvalues of & [23, p. 185]. Thus, for well separated eigenvalues,
‘he error in :,j will be approximately -:2 rather than . . .

Purthermore, the errbr in the eigenvalues of A as approximations
to the eigenvalues of A will often be far lesc b the bound suggested
by Fouation (2.2.8). The results of Paige [14] in fact suggest that the
exrror for well seperated eigenvalues will be proportional to
(?§+ -'§+ cee ¥ ?,:‘f:) rather than the square root of this term.

Therefore, we eyxpect the computed eigenvaluesz Lo be twice as
accurate 2s the norms <5 of the residmals - indicate. Computational
experience verifies that this is usually the case.

The error in the computed value of €5 arising from round-off
errors will generally be umimportant in estimating the accuracy of computed
results and determining vwhen convergence bas occurred. That is, while <
may be somewhzt imprecise in terms of mumber of sipnificant digits, its
order <f magmitvde will usually be correct and this is what is importent

in determining convergence. The exception to this statement occurs when

almost complete cancellation takes place when cH is computed. This will

T
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happen when the gquantity =ps ip Zcuation

{3.2.7) is chosen close to

the limits of the precision obteinzble on the xzachine the progra=m is

being executed on.

Lccept

where n

floating

Program is being executed on.

precision cowputation cn I.3.M4. System/340 somputcerss.)

new tem

computaci

zetuaily

x

4o

= and .
1

when the norm - of

e

x

e, < TH"
1—

P

is now cefined to de

le; l{eps + 30m x machess)

(eps + 10n xmacheps)

iz txe order of A 2nd macheps

point velue such Lthat 1+ macheps

Te remedy this cituation, we modify 1 as f5llows:

their recidual caticfiec

it i;‘.i > 1

iz L'—i! = .

is the smellest positive

>~ 2 on the machine the

-3z
{ti.g., macheps = 1% ~ for doudble

The form o7 the

is5 suggested py the [loating point error anslysis of the

oz 92 inner products {cee Willkiwss

-. {23], Chepter Z) and

is z considerable overestimate (Ly 2bout = Tactor of 10 which

o

s arbitrarily chosen) o7 the errvors that actuzlly occur. ¥Xowever, as

we pointed out above, this new terzm will usualdly be insignificent in

K

comparison to eps in most zppiications.

-



R T L T

3.3 Choice of Block Size

One of the problems we have not discussed up to this point is
b= to choose the block size for the Block Lanczos method during each
iteration of the algorithm of Section 2.10. A good choice for the
block size can often considerably reduce the number of iterations
reguired to compute 2 given mmber of ejgenvaiues and eigenvectors.
The diffiecnlty is that the best intormation 1:or Ichoosing the block size
is cecurate kmowledge of the spectrum of the problem matrix which iz,
of course, the information we are trying to determine. Fven for the
same matrix, however, the best block size will also depend on tre nusber
of eigenvalues and eigenveriors we are irying to compute and the number
of steps s of the Block Lanczos method we can carry out for a2 given

block size Db .

Sxomple. Let A = -H & where H is the discrete biharmonic
operator of order 25€ [1]. Suppose we are given g = 12 vectors in
which to apply the Block Lanczos method. This means {cf. Section 3.L)
that at any point in our computetion,; the number m of eigenvalues

we have already compated, the block siz¢ P , and the mmber of steps

[4]

for the Block Lanczos method must satisfy =+ pXs €12 . Guppose also
that we are trying to campute r = £ eigenvelues and eigenvectors.

IT we apply the program of Appenaix A to this problem, we arrive at
the results given in Table 3.35.l1, where an iteration basically involves
an execution of steps two through six of the iterative Block Lenczos
algorithe of Section 2.10, end the mmber of matrix multiplies is the
mumber of times the matrix-vector product Ay is computed where y is

a given vectcr.
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Table 2.3.1

initial block size iterations matriy muitiplies

1l 10 93
&S
(5
ao

”
—
-

AV I R ST
Q@ @ =3 =l

Note: The strategy used in these tests is at each point to choose

the block size egual To the previous block si 2 p unless there are

)

egual {0 the number of vactors lefl to be carputed.

3 -

If we inerease the reguired numder of yvectors T to 1

we have The resuits of Table =.5.2.

Table 3.2.2

initial biock size °  iterations matrix mlcinlies

LACYRRN b S
SR MY
]

Q
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Q
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0
5
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fewer than p vectors %0 be cumputed in whick cese it is chosen
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Note that with q = 12 , the largest block size allowed is
P = 6 . Note also that it is inefficient to choose p = 5 since
-with this block size, only two steps of the Block Lanczos method
can be carried out as is the case with p =6 . -

Finally with q increcsed to 2% and r equal to 10 , we
have the results of Table 3.3.3. :

Table 5 - 5 ’3
initial block size iterations matrix multiplies
1 1 219
2 8 158
3 I 8 156
IN T 140
6 T 128
8 7T 139
12 8 166

It would eppear from this example that the best block size when
g=12 is p=2, and when q =2k , it is p = 6 . This exsmple alsc
demonstrates that there sre advantages to be geined by using a Block
Lanczos method in comparison to o standeard Lanczos method (p =1) .

The point of this example is that it is difficult in advance to
predict-what the best block size will be. Therefore, rather than
attempt to describe specific strategy for choosing the block size, we
will establish some guidelines that we can use to make informed decisions
in particular problems.

In our program, we are assuming that there is an upper bound on the

wroduct pxXs Imposed by storage limitations. Thus, if we increese the
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value of p , the value of s must usually decrease. Thié generaliy
impliés that each individual vector in the block will converge at 2
slower rate. These clower rates of convergence are compensated for by
the fact that we are corputing more vectors at once. Ome conclusSion we
can draw, however, is that it seldom pays to choose a2 block size larger
than the number of eigenvalues we are trying to compute. Tor example, if
we are interested in computing two eigenveluss, then while it might
sometimes prove sdvantageous to choose p =1 , it will scarcely ever
pay to choose p =3 .

Cullum and Donath (k] choose the block size egual to the
momber of vectors that remain to be computed znd, thus, initially
equal to the reqnired number of eigenvalues. There is much 1o recommend
this approach. There is no difficulty in restarting after some eigenvalues
have converged since the hlock size can only decrease. All useful
information is retained from one iteration to the next. However, as
the above example indicates, choosing the block size in this way doec
oot always lead to theé best choiée, end it also means that we can only
compute a number of vectors less than or =quael to one-half of tShe total
mmber ¢ of vectors available to the Block Lanczos method. While this
strategy can be utilized with the progrem we have included in the Appendix,
the program has been deszgned 1o compute as many as g-1 eigenvaluee and
eigenvectors. In s1tuat1ons where the value of g 1is several tzmec that
of r , the required number of eigenvalues, &nd where there is no informa-
tion about the metrix ;o indicate otherwise, Cullen's approach is a good
strategy-

For problems which are known to have multiple eigenvalues, it is

best to choose the block size at least as large as the greatest
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miltiplicity, or if this is not possible, at least\greater than one. :
For exsmple, the biharmonic operator in the above le is known to I
have mmltiple eigenvalues with multiplicities at most tho tecaunse of
symmetries in the physical problem it models. This suggedts a block

size of at least two. As the results indicate, a block size\ of one

was clearly less efficient than a block sizZe greater than oune. |

Theorem 2.6.1 gave bounds on the errors in tie least eigenvalues

corputed using the Block Lanczos method. These bounds contained a term

l+;v
- (1_7K) where Y T (’\c l)/(?‘w ?\-) s P 1is the block size,

s is the number of steps, and A, kpi-

fptl) -st, and n-ith eigenvalues of A , the problem matrix of order n .

17 and }\.n are the k-th,

While our attempts to focrmmlate a precise stretegy for choosing the

block size vsing this term a2s a relative measure of effectiveness were
largely msuccessful, it d.oes y1eld some gualitative information about
how to choose the bhlock size. Thzt is, we try to ¢hoose p such tna.t.

the difference LK— is 2as large as possible and s is not top

hpd'l p——’
small. This suggests, for instance, that if severz]l eigenvalnes are
clustered at one end of the specirum with a gap between-then and the
remaining eigenvalnes, that we should attempt to choose the block size
at least as large as the number of eigenvalues in the celuﬁter.

In conclusion, we suggest that simple strategies chosen along
the lines suggested above will usuelly prove to be completely adeguate

in most applications.
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5.4 Progrem and Storege Organization

It will be convenient to relate our discussion to the actual

Fortran program contained in Appencéix A. In particular, we will refer

10 the varisusc parts of the program through the names of the subroutines.

There are certain auxilliary functions performed in the program

which we will dezl with firsi. During ezch iteration of the iterative

Block Lanczos method, it Is necessary ©n solve tize eigenproblem for 7%, »

_the matrix oFf the resturicted operator cagputed by the Block Lanczos

method {cf. Section 2.7). This is zccomplished viz the subroutine FIGER

which simply restores 7

d
.
£

in sueh a menmer thet it is acceptable to
the subrgutines TREDZ and TQi2 . These latter subroutines are
designed to solve standard syrmetric eigenprcblems and are Fortran
impiementations [21]) of Algel 96 procedures of the same name Jdesexribed
in [2L]. Kote that M, is also a band symmetric matrix with 2xp+l
dizgonalis. Although tuere are special Technicues and programs available
for the solution of eigenprovlems for band symmetirie mairices, we foumd
that their use did not conveniently a.];ow us to reduce the amount of
necessary time or storage. However, it is relatively unimportant which
method is used to solve the eigenproblem for ms as long as it is
mmerically stable.

In tae Block Lanczos method we compute matrices zJ. and for each

matrix, it is netessary to compute its orthogonal factorization:

Z. = X.R,
- d

e

where :{J_ is orthogonal and Ri is upper trianguiar. This is accomplished

through the subroutine ORTHG which implements a steble variant of the

Gram-Schemidi orthogonalization method. ORTHG wes ferived from the
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Algel €0 procedure ORTHOG contained in the progranm for simultaneous
iteration described by Rutishauser [20]. CRTHG has also been designed
to carry out the functions of re-orthogonalization of the Xj (ef-
Section 3.1) and projection of the '.\{J. onto the space orthogonal to
praviously computed eigenvectors (cf. Section 2.9). OFEEEG is also
used to generate the initial matrix X wused in the Block Lanczas
method .

RANDOM is a2 subroutine used to £ill the columns of an array with
a pseundo-random sequence of real values. The resulting matrix of random
elements is orthogonalized (using ORTHG) and sent to the subroutine
SECTN. SECTN rotates the orthonormal matrix X , say, so that XtAX
is diagonal as follows: X is multiplied or the right by U where
U is the orthonormel matrix of eigenvectors of C = KAX . If X

is n~by-p and dl’de""’dp are the eigenvalues of C , then
ooy bac) - xTtax - LELCH IR D

The rotation of X can be accamplished through the subrootine ROTATE
which is also used to compute the eigenvectors of the restricted operators
(cf. Section 2.5) in the main subroutine using the matrices X, and V¥
where Xs and 'ﬂzs are computed by the Block Lanczos method and V is
composed of same of the eigenvectors of 'ms . That is, if Vs is an
eigenvector of M_ , then ROTATE is used to compute ii where c‘;i = My,
for several values of 1 .

The principal part of the vrogram is contained in the five
subroutines called CNVIST, ERR, FCH, BKLANC, and MINVAL. CNVIST and
ERR are fairly simple subroutines whick implement the ideas of Sectiom 3.2.
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ERR is called in BKLANC, the subroutine for the Block Lanczos method,

ke
i
iy

®

after Z2 has been computed and before it has been orthogonalized with
respect to previously computed eigenvectors end reorthogonazlized with

respect to X , the matrix used to start the Block Lanczos method.

EER simply computes the lengths £ of the columms of Z2 which are
the residual vectors for X . CNVIST is called from MINVAL, the main

subroutine, and determines whith of the ¢

5 satisfy the convergence

criterion described in Section 3.5.

B Tan it P L Rt

The purpose of PCH is to choose = new block size for the Bleck
p Lenczos method during the nexc iteration of the program it another

iteration is necessary. The strategy of the specific subroutine
contained in Appendix A is fairly simple: The block size ¥ during
each step will be the same a2s it was during the previous step unless
fewer than 1 eigenvelues remain 4o be computed. In the latter case,
P 1is set equal 1o the mumber of eigenvelmes left to be computed.
ECE also chooses 2 value for s , the mumber of steps the Bilock iosmczos
method is carried out. The value 9f s is chosen so a2s 10 maximize
the use of the storage available io ithe Block Lamczos method. I the

bloct size p is such that fewer than two steps of the Block lanczos

. metod can be carried owt because of storage limitatioms, ther p is
rednced to the point that s can be assigned a2 value of two.

The subroutine SKLANC implements the Bloclk lLanczos methed of

Section 2.7 with reorthogonalization. If p is the block size, s is
: . the mmber of steps, an 1is the order of the matrix A whose eigenvalues
! . are being computed, and X is an n-by-p orthorormel matrix, the main

purpoese of BKLARC is to compute X and ms , the repmesenta:fion of A
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restricted to X_ where Sp(x s) contains Sp{X,AX,-.. ,As-lx) .

Recall, also, that ms is 2 pXs-by-pxs symmetric block tridiasonal
motrix with p-by~-p matrices M:I.’Mzz""’Ms along its diaponal and
p~by-p upper-triangular p-by-p matrices R?.’Hj’ .-.,Rs on its first
Jower diagonal. The matrix Xs is n-oty-pxs so an array T , say, with
at least pxXs colums of length n 3is supplied to BKLANC to store X
in. However, as we will see, previously computed eigenvector approximations
arealsostored in T . If m snch approximations have been obtained,
they are stored in the first m columms of T , and BKLANC stores Xq
in columns m+l through m+mXs of T . Nete that if the actual
dimensions of T are n-by-g where ¢ is some integer value greater
than one, that at amy point in the cxecution of the program, m , P ,

and s must satisfy

m+pXs < q .

KH chooses values for p and s with this restriction in mind. The
initial p~by-p metrix X is stored in cclumpns =+l through omt+p
of T .

The compuotation performed by BKLANC is comprised of s major )

Steps. During the j-th step, M; , Ry, » and X, are couputed

except that during the s-th step, only M is computed. The matrix X
is assumed to be such that Ml = xtAX is diagonal. Advantage is taken

of this in the first step. R. and X, ., are obtainsd by first

J+1l 1 _
forming Z,j+1 (cf. Section 2.7) and storing it in, T in the same-

location that Xj 47 Will occupy. ORTHG is tL 1 executed which

1

orthogonalizes Z 541

in T and decomposes the result into x-:+1 and Rj-l—l' The

L H

with respect tc all previous vectors stored

3
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orthogonalization with respect io previous vectors in T accomplishes
two ends: ‘ {1) Orthogonalization with respect to the first m colums
implies that we ave applying the Block Lanczos method to & , the
restriction of A 1o the space orthogonal to previously computed
eigenvector approximations {ef. Secticn 2.9)3 {2) Orthogomalization
With respect 1o the remeining columms of T =za2ccamplishes the
re-orthogonalizetion of za.+l with respect to X. s 1<j (ef. .
Section 7.1). M_ s stored in rows and colums m+l through
m+ pXs ¢f an ayvay C , say. Since ‘ms is band symmetric, only
its lower p+tl diagonals are stored in C .

Pinally, the subroutine MINVAL is the main subroutine which

combines the functions of the azbove subroutines into an implementaZion B

of the iterative Block Lanczos method of Sectiom 2.10. An n-by-g

R T P

array T is suprplied to MINVAL which iz used by BKLANC as described
above and 2150 10 store the eigenvector aprroximations as they are
computed. A variable r©« 1is used to count the number of computed values
and vectors and when its velue exceeds r , the reguired mmber of
eigenvalues mnd vectors being sought, the pregram stops.

The initial size of the block size p is supplied to the program.
In the preliminary phase of the program, the number of steps s is
selected and tre initial orthonormal matrix X 1is compuoted and rotated
so that XUAX is dfagonal. The main part of the subroutine is e sequence

of staimmemts whick carries out steps two through six of the algoritom

sl T

descxribed in Section 2.10. The main difference between the prograx
and the description of Section 2.10 is that the compuiation of the

eigenvectors g. is puv of umtil the end of the ioop. This is becar—e

e AR o A
N aqgazﬂ_g'a‘:‘u.<



both the eigenvectors which have conver,gr:é_d and those that will ‘S‘e used
to form the orthonormal matrix X for the next iteration must be
computed simultaneously. Since the new block size is ca.eputed at the
end >f the iteration, the computalion of the eipenvectors must be
_deleyed until this poiat.

Information on the matrix A 3is passed into MINVAL through the
name of a subroutine with three arguments. Wher the subrdutine iz
called, Sne of the arguments will be an array containing a vector v,
say. The éubrowbime computes the product A xv and stores it in a
second arrzy paraﬁeter. This is the only way the matrix A is refererced
in the entire program.

The storage requirements of the program are as fcllows:

1. An n-by-q array T . T 1ic used in BKLANC and alco 1o
store the computed eigenvectors. This array is supplied to
MINVAL by the program wpich calls it. The value of q should
be as large as possiole, but, in aziy event, it should be at
least one greater than r , the required mumber of eigenvalues

and eigenvectors.-

2. An arrey D of length at least q elements for storing the
conputed eigenvalues. This array is also supplied exterpally.

2

3. n array C with at least a elememts. € is used to

store ms in BKLAWC and also to store the eigenvectors of

7115 in ETIGEN.

L. inarray E with at least g elements for storing the nomms

of the residuals in ERR.
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In addition to the above sturage, the program also includes two arrays
in the subroutine REIGEN with at least g elements for use with TREDZ
and TQL2. Also, two arrays of lenglh n are provided which are used
with the subroutine for computing the matrix-vector product Ay where
v is a vector. All these arrays were provided to make the program
more flexible znd usable and zre {o 2z certair extent, optional.

By far the bulk of the computation is performed by the subrcutines
BKTANC, EIGEN, and ROTATE so we will confine our operation count '
arnalysis to these three subroutines. The counts given below are for
either additive and muitiplicative operations and are for one step -
of the iterative Block Lanczos method. The terms n , m, P, s =zare
the order of A , the number of previously compubed vectors, the block

size and the number of steps for the Block Lanczos method, respectively.

1. BEKLANC :
Computation of M. 's: np(p+l)(s-1)
i 2
n(30° + p(s-1)
Computation of Zi 's: np + 5

Computation of Xi 's and Ri 's: 2nmps+np252+nps_
2. EIGEN (using TRED2 and TQL2): approx. 2(p.'.~‘.)3
2
3. ROTATE: =np s .
In ition, there are pxs matrix-vector products computed in BKLAKC.
This computation is performed externally and devends on the matrix A .

Depending on the problem, it may completely overshadow the rest of the

computation or it may be insignificent in comparison.
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Example. Suppose n=1000 , v =5,8 =4, 308 m=-3. We

then have the following counts:

1. BEKLANC:
Computation of Mi 's: k5,000;
Computation of Zi 's: 120,000;
Computation of X's and R's: 540, 0003
2. EIGEN: 24,000. '

3. ROTATE: 100,000.
»

To addition, there are 25 matrix-vector products involving A
which is of order 1000 .

From this example, we’ s__.‘ee that the bulk of the computation takes
place in BKIANC, and in pé.:;:'ticular, in the computation of the xi 's
and Ri 's which involves the orthogonalizatisn of the Zi 's . This
exemple is fairly representative of the situation in general. '

The above operation counts don't really sy anything about the
cverall mg time of the progrem since this depends on how fast the
computed eigenvalues and vectors converge to those of A . The rates
of convergence in turn depend on the spectrum of A . In the next
chapter, we will consider some specific examples and compare our

algorithm with the method of simumltaneous iteration.
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L. NUMERICAL EXAMPIES

In this chagpter, we will consider the results of applying the
iterative Blocx Lanczos algoritbm to a number of examples. We will
also compare some of our results with those cbtained using the method
of simultanecus iteration describtied by Rutishauser [20].

For the purposes of testing o:.u- method and the methad of
simultaneous iteration, diagonal matrices are sufficiently general and
particulariy convenient. That they are sufficiently genersl arises
from the fact that neither of the above methods transforms the matrix 2
whose eigenvalues are being computed or in any other way attempts to
take into account the structure of A . Rather. the only way A is
referenced is through a subroutine which computes v = Au where u

is a given vector. If
A = diag()'lxhgs -- -!}‘n)
vhere n is the order of 4 , then

Vi o= MY .
where u, and v; are the i-th components of u and v , respectively.
This can be easily programmed and a large number of different examples
can be quickly generated whose exact eigenvalues and eigenvectors are
known. More important than knowing the spectrum is the fact that we

can specify the spectrum of A and therefore can study the behavior

of our method from the standpoint of test examples whose spectrums very
according to the separations and rultiplicities of their eigenvalues.

All but one of our examples will be chosen from this class of problems.
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It is somewhat difficult to compare the iterative Block Ianczos
method to the method of simultanecus iteration since the computations
they perform are differcnt. One mearurce is the total Lime each requirc:
to solve & particular problem but this standard is rather crudc and
uninformetive. There are two ai-eas, however, in which the computations
performed by the two methods coincide -- the computation of matrix-vector
products Ay where y 1is a vector, and the orthogonalization of the
columns of e matrix which involves computing z large number of vector |
inner products. As we saw (cf. Section 3.4) a major pert of the compu-
tation time in the iterative Block Lanczos method is spent in these two
areas .a.nd the same is true of simultaneous jiteration. Thus, for the

purposes of comparing the two methods, we will report the following:

1. The computed eigenvalues By -

2. The magnitudes €5 of the residual vectors Axi - By Xs
where xi is the eigenvector corresponding to By *

3. The number of matrix=-vector products computed.

4,  The number of vector inner products computed in the

orthogonalization routines.

5. The total execution time for the entire program.

Additionally, for the iterative Block Lanczos method, we will report
the number of iterations required which is also the nuwsber of times
the Block ILenczos method per se is carried out.

A listing of our iterative Rlock Lanczos program is contained in
Appendix A. The output statemenss ué-ed to print out program statistics

have been deleted from this listing.
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Our progrem for simultaneous it_.eration is a Fortran tran‘slation
of the Algol 60 procedure ritzit deseribed by Rutishauser [19,20].
This procedure is actually & combination of simultancous iteration
end a Chebyshev type iteration. The biggest difficulty in using this
program as a standard for comparison is. that it often overshoots its

]
goal. That 1s, it either computes gesults far more accurately than

desired (taking more time in the process) or it computes more eigenvalues

and eigenvectors than asked for. With sur method, it is far easier to
control both the precision and number of resulbs computed. Thus, our
plan has been to perform a computation with the simvitaneous iteration
vrogram and then attempt to mateh its resulis in some sense using our

iterative Block Lanczos program.

Note: While our version of simultaneous iteration is a nearly
literal transiation of the Algol €0 procedure, there are some minor
differences between the two. The differences arise from our zttempts
to rectify some errors in the published version of the Algol €0
procedure, and to clarify the structure of the program which was very
complicated at the start. No essential change weas made in the
algorithm, however, which would compromise its efficiency.

We now proceed to the examples. In each example, we will specify
values for 1 , the required number of eigenvelues and eigenvectors to
be computed, and 4q , the number of columns of length n in an array X
which is vused in ‘::;oth the iterative Block Lanczos method and the method
of simultuneous iteration. For both methods, the valune of g must be
greater thar that of r . In addition, for our method, we will give

values for eps , the approximate precision desired in our computed
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results, and p , the block size to be used in the Block Lanczos
method. The strategy used for choosing the block size is as described
in Section 3.4k. That is, the block size is chosen to be the least of
the two following values: (1) The initial block size p ; and,

(2) the number of eigenvalues left to be computed. This strategy is
jmplemented by the program listed in Appendix A.

In Examples 1, 2, and 35, we will compare our method with the
method of simultanecus iteration when both are applied to problems
with characteristic types of spectre. Tn Examples 1 and 2, we will
consider probvlems for which our method is more effective. Example 3,
in contrast, favors similtaneous iteration. In Examples L and 5, we
will consider the hehavior of ocur method on matrices with multiple
eigenvalues. Example & involves 2 matrix with very close eigenvalues.
Finally, in Example T, we will consider the results of applying both
programs to the problém- of computing the least eigenvalie s and eigen-

vectors of the discrete biharmonic operator.

Example 1.

A is a (diagonal) matrix of order LSk with eigenvalues
A, =-10.00 , A, =-9.99, Ay = -5.98 , and Ay = -9-00+ .02 X (i-k)
for i =154,5,...,454. With q =15, r=3, p=3, and eps =:Lo‘8 R

the iterative Block ILenczos program computed

by = -9-99 999 999 999 9% , & = LT3xWC
hp = -9:98 999 999 999 99k , ¢, = 2.85x107
by = =9.97 999 999 999 991 , 5 = 2.11x107 .
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Note that |e./u.| < 1078 in each instance. Eleven iterations were

required for this computation.

In contrast, the program for simultanecus iteration computed

by = 999 999 999 999 995 , <, = 3.09x107C ,
hp = -9-98 999 999 999 999 , <, = 1.09x107° ,
by = <997 999 999 999 992 , e =2.21x107° .

LS 1]

Note that the values of the ¢ 5 are greater in this case.

Table L.l summarizes the comparative statistics for the

two
programs .
Table 4.1

matrix-vector  vector inmer time relative

: products products (sec.) precision
-8

Block Lanczos 165 1265 L5.95 approx. 10
Sim. Iter. T50 1560 69.03 approx. 1076

Times, unless otherwise indicated, will be total execution times for
programs compiled using the University of Waterloo Watfiv Fortran
compiler and executed on an I.B.M. System 370/168 computer.

This example is typical of those problems in which the iterative
Block Lanczos aigorithm can be used to best advantage. In particular,
problems in which the eigenvalues to be computed are separated from the
remaining eigenvalues by a relatively large gap-

Note in each case that the eigenvalues are about twice as accurate

as the ei indicate.
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Example 2.

The matrix in this example is the same as in Example 1 except that
the gaps between the digenvalues have been decreased by a factor of 10 .

That is, My = -10-00, A= -9.999 , Ay = -5.998 ,

' N = -9-900+ (i-B)x.002 , 1 = h,s,ﬁ...,hsh - As before, r = 5 and

qg =15 .
With p =3 and eps = lO-8 » the iterative Block lanczos program

computed in 10 Iiteratisms the following results:

by = =9-99 999 999 999 996 , €, = 8.96x107 ,

By = -9-99 000 000 000 002 , e, = 1.9rx10'8 s

by = -9-99 799 999 999 999 , €5 = LI9x10TC .
The s:‘:gultaneous iteration program computed

by = -9-99 999 999 97 L5 , < = T.9Lx10T

b = =9:99 899 999 997 082 , ¢, = 1.92x107° ,

ps = -9:99 799 999 920 753 , =; = 9-61x107° .

In each case, the errors in the computed eigenvectors were approximately
the size of the € 's.

This example produced the results given in Table L4.2.

Table 4.2
matrix-vector vector immer time relative
products products {sec.} precision
Block Lanczos 149 11ko L1.80 1078
Sim. Iter. 1785 1800 82.9h 10‘6
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L 14

The behavior of the iterative Block ILanczos mrogram was virtually
wiaffected by the reduction in the spread of the eigenvalues. This
exsmple serves to illustrate the point that the rates of convergence
of the approximstions depend on the gaps between the eigenvalues
relative o the spread of the eigenvalues. This is suggested by
Theorem 2.6.1 in which the bounds on the errors in the g depended

on the eigenvalues through the quantities 75 where

7
1
(A, -A)

Decreasing the gaps between all the eigenvalues by & constant factor

does not arffect the valuep?‘ 75
The simultanecus iteration program, however, suffered by this change

since the results it computes converge at rates that depend on the

ratios A p*l/hi which increase when the eigenvalues were brought closer

together.

Example 3.

A is a {diagonal) matrix of order 101 with eigenvalues equally
spaced in the interval [-1.0,0.0] . That is, Ay = -(101-3)/100 ,
i =1,2,--+5101 . In this example, we have T =6 =2nd g =10 . In
addition, we choose p =2 and eps = 1077 for the Block Lanczos method.

The jterative Block Lanczos program then computed six eigenvalues:

100
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b1
Ly
B3
By
®s

He

Note that the residuals exceeded 10

U

--999 999 993 T-..

--989 999 998 3...

-.980 000 000 3...
-.970 000 C0O0 T...
--959 999 999 6...

--9%9 999 998 T-.-

o

5

in the

This was because of the allowance made for the

eigenvalue and eigeunvector.

T T L = R R Yo

-925 x 10-5 »

d¢

1.404kx 1077

1.29x 1070,

1.55x107° ,
2.07x2077

1.75%x107° .

last five eigenvalues.

error in the firsi

The simulteneous iteration program computed seven {even though

only six were asked for):

L
Bo
k3
By
s
kg

l-l-T

The comparative statistics for the two programs a.ré given in

Table Lk.3.

~1.000 000 000 000
~-989 929 999 999
=-979 999 999 999
--969 999 999 99k
-.959 999 999 Lé6
--9k9 999 999 993

-.939 999 999 959

101

2

G.?

2.13 x 1072 >
2.56x1077 ,

6.75x107° ,

2.21x 10-8 2

1.91x10°7

2.02 x l()-8 »

h.shx107° .
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matrix-vector vector time
products inner-products (sec.) - precision

B

-

Block Ianczos 350 © g7k 17.96 approx. 1077

Sim. Iter. 625 795 9.15 appro:g_ 10'7 “
’ or less '

P

2 kT

' 8 This example is typical of the type of problem for which simuitapeous

., % iteration performs better than the iterative Bleck Ianézos metho&... :
! g That is. problems for which the spectrum is feirly dense with 1it't1e.

: : » or no distance between those eigenvalues being sought and the remainin, : &

eigenvalues, and for which r is a large frectiocn of g .

oo $ 2

Example k.
A is a (diagonal) matrix of order 180 with eigenvalues

M =X, =0.0, 73 =% =0.1, and ?\.i = 25+ (i-5)x.01 ,

i=5,6...,180 . Thus, )‘180 = 2.00 . No comparison with simul‘baneous

iteration was made as the simulbanecus iteration program canputes the.

eigenvalues of greatest modulus which are different in this case from.

the least eigenvalues. - .t

For this example we chose g =10 , r =4, eps =10

p=2,2, 3 and 4. For each of the four Talnes of

L b Block Lanczos method computed four eigenvalues with residuals on he :
. order of 10_1} . For instance for p = 2 , we computed ‘
-;:r. 2
e 4
;B ’ E
102 ¥
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b, = 5.38 x 1072 s ug = -383x10T
by = 1.57x107° s kp = Ghx107Y
wy = -100 000 000 9... , g = 1. l'rxlo'l‘ ’
W, = 999 999 99T 9., w, = -628x107

The results for the other three -ca.ses are similar. The largest residual
in any case was approximately 1.59 >clf.)-l‘L . Note that for this case,
the error is absolute and not relative errcr. The eigenvectors for

£y and By, were primarily linear ccmbinations of ey and e and
the errors-in the remaining componexnts were 3in all cases apprcximately
the size of the residual or less. Similarly for K3 and ) -

The comparative stabtisties for the four values of T are as

follows:
- mabrix-vector vector inner time
iterations products products (sec.)
p=1 20 158 99T 15.19
p=2 i5 125 725 .15
P=>5 a7 1ko 699 12.50
p=1 33 317 1330 29.53

Note that there was a definite improvement from p =1 to p=2 .
Multiple eigenvalues tend -to slow down the standard Iarczos algorithm
(p = 1) since the eigen‘ra.lue; of the restricted sperator will converge
to oniy one of a set of multiple roots. With q = 10 , effective use
of al1 the ﬁorlcing storzge could not bepade with p=3% or p =14

{since neither djviages 10 evenly). However, with the program listed
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in Appendix A, a biock size of 5 was chosen after the first iteration

W

with p = 4 . FEven though this change made better use of storage,

more time was reguired here than in the other three casec.

Examzle 5. L

A is a (diagonal) matrix of order 300 with eigenvalues
M =00, k=03, A =01, M =01, A= 1-3/(i-1) for ¥
i = 5,6,...,300 . For this example, we choose r =3, gq =12 , and J ‘

eps = 10-5' - We tried p=1,2,35 . Of the three values, the fastest

A

execution was achieved for » =3 . In four iterations, the following

results were canpubed:

by = -000 000 002 922 313 , & = .32 X107
= .100 000 000 000 0Ok , e, = .149x107°

110 1070 .

o]

an

.1G0 000 000 090 S5T1

m
N
|

H'5=

e

The statistics for this computation are as follows:

A

matrix-vector produets: 36

. .
VT ST

vector inner produects: 285

time (secs.): 7.85

The eigenvectors for p, and s Were primarily combinations of e,
and e, , the unit vectors with omes in the second and third positions,
respectively. The errors in these vectors are again proportionzl to the
sizes of the residuals € -

The fact that for =3, A =A shows that Theorem 2.6.1

P ptl
on the rates of convergence does not adequately explajn all situstions.
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In fact, )»2 converged much more rapidly than J\.l » leading us to

conjecture that the -rate of convergence for 7\2 involves ?\5 = .25
rether then hP"'l = ?"L} = .1 . We have, however, found no way of
establishing this conjecture.

Example O.

A is the same matrix as in Example 5 except that 7L2 = .0999999 ,

7\3=.1000000,a.m1 A, = .1000001 . In this example, r =%, q =12,

and eps = 10.5 . Qur iterative Blcck Lanczos program computed

py = -000 000 057 , ¢ = 9.12x10™F

up = <099 999 926, ; =1.93x107

by = +200 000 008 , e = 9.7 x107
¢

w, = -100000 078 , ¢, =1.412x10" .

Note that in the case of ) , the error is approximately of order

i

rather than ei - Furthermore, the eigenvectors for Bp 2 B3 and ),

each contained significant ccﬁpcnents of the eigenvectors. corresponding

to 7\2,7&3,&:1& Kh. Pasically, the progrem regards A ,)\5,a.nd.

)"h. as muitiple roots and any combination of their eigenvectors as an

eigenvecitor also. Each compubed eigenvector of Bo > Bz 2 and N

was very close, therefore, to the space spanned by the eigenvectors

corresponding to A, , 73 s and ?‘.,_l_ .

These results are not indicetive of z defect in our algorithm but

represent inherent limits in the accuracy obtainable for eigenvectors

corresponding to very close hut distinet roots (ef. Section 1.2).
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The statistics in this ¢ase wre as follows:

1. matrix-vector products: Sk
2. vector immer products: %08
3. time {segs.): 11.29

4. iterations: 6

Example 7-
The natural modes of vibration of & square clamped elastic plate

can be solved by the following partial differential egquation for w

and A :
Y "' )
dw 20 w o m
22, £ + = A(x,¥) (k.1)
x° a‘xaey i ?

in the interior of the plate with
@ = 0 = ncrmal derivative of o

on the boundary. If we attempt to compute a discrete approximation to
the solution of the above eguation a2t the points of a mesh superimposed

cn the plate, then we are led to a symmebric eigenproblem

1
Hx = AX
B

where h is the mesh width and H 3is a symmetric block pentadizgonal
matrix derived using a 13-point fﬁ_:i'te differen.ce approximation to the
differential operator in Equation L.2 [1]. Rather than compute the
eigenvalues of H , we will compute the eigenvelues of A = HL . Note

that if 7\157\.25 e Shn are the eigenvalues of H , then

o
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V] S vy £ -rr Sy, Vhere v, = - 1/7~-:.L are the eigenvalues of A .
Thus, if we compute the least eigenvalues of A , their negative

reciprocals will be the least eipgenvalues of 1 with the same

clgenvectors. ''o compute ¥y - Ax given x , we colve

Hz = x T (k.2)
and set

Yy = -2 -

To solve Equation (4.2), we use a program provided by Dr. Fred Dorr of
the Ios Alamos Scie.ntii‘:i.c: Izboratory. This program is based on an idea
of Buzbee and Dorr [2] and computes a solutior to Equation (4.2)
by a direet method.

For a unit square and a mesh width of h = 1/33 , the order of A
is 5:!9' or 1072h . Four this problem we choose q 10, r 12 .
With p =5 and eps = 10")l , our program computed the results piven
in Teble 4.k where for each eigenvalue v of A , the corresponding

frequency f of vibration of the plate satisfies £ =1 / ’J-hll'v .

&4
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Table L.k
eigenvaliue of residual fregquency of
i A e ribration
1 ~92%5.91655 G.65 % 16577 35.8270%
2 -223.7599% 0.21x 107t 72.80252
-225 74991 G.25 ¥ 1077 72.80252
L -195,22k29 0.90 % 10'1‘ 107.18577
5 ~70.42548 1.03x 1077 129.76346
6 ~(9. 75160 1.82 x 157" 150.51065
7 -4k 77957 1.29x107° 162.75760
4477956 3.06x 1077 162.75760
g -27.908k0 1.52x 1077 206.13913
10 | -27.90839 2.05x10°° 20€.13917
1 -25.29523 1.87x 1072 216.52528
12 -21.06754 5.85 x 1072 2557 .2580k

Because of the allowance made for error in previously canputed

eigenvalues and vectors, the relative error in the last four

-

eigenvalues exceeds 10

approximately

2 x10'3 .

and for the last eigenvalue is

The frequencies computed from the eigenvalues of A correspond

closely to those reported by Bauer and Reiss in [ 1]. Note that

eigenvalues 2 and 3>,

multiplicity 2 -

7 and 8, and 9 and 10 are multiple with

Rough graphs of the eigenvectors verify that they

describe fundamental modes of vibration very similar to those reported

xnf{1l].
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The simultaneous iteration prorram could not complete its

F
N

e T 7EI P

computation in the two minutes of time allotted to it. Thus, we
increased the mesh width to 1/25 which lowered the order of A
to 576 . The program then computed the 13 least eigenvalues of A&

1k to 107Y . 4

to relative precisions ranging from approximately 107
Both the frequencies and fundamental modes of vibration described by

the eigenvectors computed herc are what one would expect based on the i
results reported in [ 1]. z

Tzble L.5 summarizes the resultc of the two programs.

Table 4.5 :
matrix- vector no. of
Order vector inner time eigen- rel.

of A oproducts products (sec.) values precision

APPToxX -
Block Lanczos 1024 1ks 1233 . 835.52 12 10’6 to 1077
approx.
. P - - -1k A
Sim. Iter. 574 223 1752 69.92 13 10 to 10

A total of 19 iterations were required for the iterative Block Lanczos
method.

As we pointed out at the start, it is difficult to use the
similtaneous iteration progrem as a standard of comparison since it is
hard to control the number and precision of the results it combutes.
Howevey. we would say that our program did a better job of completing
its assigned task of camputing a specified number of cigenvalues to a

specified precision.
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This Appendix contains a listing of the prograz for the iterative

Block Ianczos method. See Section 2.4 for a discuzsion of the program.

A sample driver program is included with a tect problem.
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;
’

SUBROUTINE MINVAL (N,C,PIKIT,R,MIAX, £PS,09,M,D, X, IECODE]
IMPLICIT ReALsS (a-6.0-2) ;
INTEGER N0, PINIT,R, bk

i

EXI‘ER‘NAL op i
DIMENSION D(SS) +X(N,Q) 4
INTEGER IECUCE ‘

TIIS SUBROUTINE IS THE MAIN SUBROUTINE
IMPLEMENTING THE ITERATIVE BLOCK LANCZOS METHOD
FOR QOMPUTING THE EIGENVALUES AND EIGENVECTORS OF
SYMMETRIC MATRICES.

DESCRIPTION OF PARAMETERS:

N: INTEGER VARTABLE. THE ORDER OF THE SYMMETRIC
MATRIX A WHUSE EIGENVALUES AND EIGENVEX'.'IU ARE
BEING COMPUTED. THE VALUE OF N SHOULD BE LESS THAN
OR EQUAL TO 1296 AND GREATER THAN OR EQUAL TO 2.

Qs INTEGER VARIASLE. THE NUMBER OF VECTORS OF LENGTH
N CONTAINED IN THE ARRAY X. THE VALUE OF Q SHOULD
8 LESS THAN OR EQUAL TO 25, AT LEAST ONE
GREATER THAN THE VALUE OF R AND LESS THAN OR
OR EQUAL TO N.

PINIT: INTEGER VARIABLE. THE INITIAL BLOCK SIZE TO BE
USED IN THE BLOCK LANCZOS METHOD. IF PINIT IS
NEGATIVE, THEN —PINIT 1S usen FOR THE BLOCK SIZE
AND COLUMNS M+L, . -pmrr oF 'I‘HE ARRAY X
ARE ASSUMMED TO BE mnhu
MATRLX USED ‘0" START THE Bm mnczos umaoo. IF

THE SUBHOUTINE TERMINAGES WITH A VAUE OF MOpSss
THAN P, TheN PINIT IS ASSIGNED A VALUE —P WHERE P
IS THE FINAL BLOCK SIZE CHOSEN. 1IN THIS
CIRCUMSTAY

NCE, COLUMNS M+l
THE MOST RECENT SET OF ET
wiICH CAN BE USED TO RESTART THE SUBROUTINE
DESIRED.

R: iNTEGER VARIABLE. THE NUMBER OF EJGENVALUES AND
AND EIGENVECTORS BEING COMPUTED. 1S, MINVAL
ATTEMPTS TO COMPUTE ACCURATE ONS

IGENVECTORS
OﬁiERhISE MMAX SHOUID BE GIVBH A VERY LAKGE VALUE.

H REAL*8 VARIABLE. INITIALLY, EPS SHOULD CONTAIN A
VALUE INDIC&TING THE REIATIVB P%ISIW TO VEIGI

MINVAL WILL ATTEMPT TO COMPUTE GENVALUES
EIGENVEC’IO!EOFA. FOREIGBWVAIUELESSINH(IIJLUS
N 1, EPS wWILL BE AN ABSOLUTE TOLERANCE. BECAUSE
OE'THEVRYIHISHE‘BODGORKS.ITHAYHAPPEN'IHAT
THE LATER EIGENVALUES CANNOT BE COMPUTED TO THE
Same RELATIVE PRECISION AS THOSE LESS IN VALUE.
OP: SUBR)UTINEWE THE ARGUMENT CORRESPONDING
OP SHQULD ZE THE OF A SUBROUTINE USED TO

NAME

nepms THE mmx A. THIS SUBROUTINE SHOULD HAVE
ARGUMENTS N , AND V, SAY, WHERE N IS

Imak VARIABLE é IVING THE ORDER

ARE TWQ ONE-DIMENSIONAL ARRAYS OF LENGTH N.

LI
R A
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DENOTES THE VECTOR OF ORDER N SIORED IN U, THEN THE
STATEMENT

CALL QP (N,0,V)

SEDUIDRESULTIN’JBE VECTOR A*W BEING COMPUTED AND
STORED IN V. THE CUNTENTS OF U CAN BE MODIFIED BY
THIS CALL.

Me INTEGER VARIABLE. M GIVES THE NUMSBER OF

EIGENVALUES AND EIGENVECIDEG ALREADY COMPUTED.

1HUS, INITIALLY, M SHOULD ZERD. IF M IS GREATER

'IHAN "ZERD, THEN'COLUMNS ONE THROUGH M OF THE ARRAY
ARE ASSUMED TU COWTAIN THE COMPUTED

APPK))C[HATICNS TO THE M LEAST EIGENVALUES AND

EIGENVECTORS OF A. AT EXIT, M OONTAINS A

VALUE. TO THE TOTAL NLMBBR OF BIGFNVALUES AND

EIG RS COMPUTED INCLUDING ANY ALREADY

QOMPUTED ENTERED,

‘IHEE‘IRST M ELEMENTS OF D AND THE FIRST M

OF X WILL CDN'I‘AIN APPROXIMATIONS TO THE M LEAST
EIGENVALUES OF

D: REAL*S8 ARRAY. D CONTAINS THE COMPUTED EIGENVALUES.
D SJOULD BE A ONE DIMENSTONAL ARRAY WITH AT LEAST Q

X: KEAL*8 ARRAY. X CONTAINS

‘THE FIRST N ELEMENTS, THE SECOND IN THE SECOND N
ELEMENTS, ETC

IECODE: INTEGER VARIABLE, THE VALUE OF IECLDE DICATES
WHETHER MINVAL TERMINATED SOCCESSEU AND IF T,
THE REASON WHY.

IECODE=0
IECODE=]1
JECODE=2
IECODE=3
IECODE=4

SUO:ESSHJL'H:.‘RSINATI
THBVAUJEOE‘NIS "PHAN TWO.
NEXL'EEDSIZ%
THEVALUEOE‘RIS THAN ONE.
THEVA[D‘IOEOFQISLESS'IEANOR

EQUAL R

THE VALDE OF Q IS GREATER THAN 25.
TdE vALUE OF Q EXCEEDS N,

THE VALDE

:
:

1]
DXIXL

RESTART I
OF PEVICX}S

DIMENSTON B{E&C vdzs&)
INTEGER P,S.PS

‘%@hﬂnﬂ‘m- s
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1é8
129
154

208 1

300 IF

CHECK THAT THE INITIAL VALUES OF THE SUBROUTINE
PARPMETERS ARE IN RANGE,

IF (N.LT.2) GO TO 921

IP (N.GT.1295) GO TO 982
Ir R.LT.IL & TO 993

IP (Q.LE.R
IF (B.CT.2
IF (O.GT.N) GO T0 986

CHOOSE INITIAL VALUES FOR THE BLOCK SIZE P, THE NUMBER
OF STEPS THE BLOCK LANCZOS METHOD IS CARRIED OUT, AND
CHOOSE AN INITIAL N-BY-P ORTHONORMAL MATRIX X1 USED 10
START TBE BLOCK LANCZOS METHOD.

P=PINIT
IF (P.LT.@8) P=—P

S={ P

gz?g.‘ .2) GO T0 ¥

P={/2

IF gmrr L%‘ .8) G0 TO 158

CALL RANDOM (N,Q,K,X)

IF (M.GT.B) GO TO 208

CALL ORTHG(N,QM,P,C,X)

ROTATE THE INITIAL N~BY-P MATRIX X1 SO THAT
X1 “*A*X1 = DIAG(D1,D2, ... , DP)

WHERE DI IS STORED IN D(I), I=1, ... , P.

CALL SECTN(N,Q.M,P,OP,X,C,D,U,V)

ERRC=#.8D0

Twica

THE MAIN BODY OF ‘THE SUBROUTINE STARTS HERE. IMM

ERRC E ACCUMOLATED ERROR IN
THE EIGENVALUES AND EIGENVECTORS.

‘H.GB R} GO ‘10 900
GT.MMAX) GO TO 997

ITER=ITBR 1 »
PS=p*S

RES ES
APPROXIMATIONS IN D ARE-COMPUTED AND STORED IN E.
CALL BKLANC (N,Q.M,P.S,0P,D,C,X,E,U,V)
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EL
941
992
993
904
905
906
997

EIGEN SOLVES ‘I‘HE EIGE'NPR)BLEM FOR MS, SIORING THE
EIGBWALUEb ELEMENTS M+1 THROOGH M+PS Or D
AND THE EIGENVECTORS IN THE FIRST P*S ROAS AND
COLUMNS OF C (OVERWRITING MS, POSSIBLY.)

CALL EIGEN({Q,M,P,PS,C,D)

ONVIST DETERMINES HOW MANY OF THE EIGENVALUES AND
EIGENVECTORS HAVE CONVERGED USING THE ERROR ESTIMATES
STORED IN E. THE NUMBER THAT HAVE CONVERGED IS STORED
IN NCONV. IF NCONV=@, THEN NONE HAVE CONVERGED.

CALL CNVTST(N,Q.M,P.ERRC,EPS,D,E,NCONV)

PQH CHOOSES NEW VALUES FOR P AND S, THE BLOCK SIZE AND
THE NUMBER OF STEPS FOR THE BLOCK MCSSUBPWH,
RESPECTIVELY.

CALL PCH({N,Q,M,R,NCONV.P,S)

ROTATE COMPUTES THE EIGENVECTCRS OF THE RESTRICTED
OF THE RESTRICTED MATRIX USING XS STORED IN X AND

VECTORS
CALL ROTATE(N,Q,M,PS,NCONV4P,C,X)

M=M+NCONV
IMM=IMH-P*S
GO TO 320

?&SIS'IHEENDOFMHAINWOFWESUMINB NOw

THE VALUE OF IECODE AND EXIT
IECODE=@

11k
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SUBROUTINE BKLANC (N,Q,M,P s,op,n,C,X%,.E,0,V)
IMPLICIT REAL*S a-H,0-2)

INTEGER N
Dol Biaf i, x(n,0)

THIS SUBROUTINE IMPLEMENTS THE BLOCK LANCZOS

REORTHOGONALI ZATION.
A BIOCK TRIDIAGONAL MATRIX MS WHICH IT STORES IN
ROWS AND QOLUMNS M+]1 THROUGH M+P*S OF THE c,
AND AN ORTHONO MATRIX XS WHICH IT STORES

» IROUGH M+P*S OF THE -Q X.

SYMMETRIC MATRICES M(1), ... , M{S) ON ITS
DIAEI)NAL AND p-a!-p ISPLER ‘IRIAhG(S[AR

xS)mERBxl xscxvmamsaoum
STORED THROUGH M+P OF X.

FURTHERMORE X(1 ASSUMED TO

x(l) *A"Xél) i %M{D(Wl%é&(&lg)h... 6!!13%
‘IO TEE éﬁb 1 THROOGH M

OP IS THE NAHB OF AN Emm SUBHII‘I'INE ‘.[0

DEPINE‘IEEHA’I‘RIXA. wmusmsmsmp.m
SUBHIJTINE ERR IS XIJ

PUTED WHERE E\I !
IS THE J-’I‘ﬂ COLUMN OF X(%&
‘ZIHB EUCLIDEAN NORM. J=1.

f 55 ! P. U AND V ARE AUXILL
MP1=M+1
MPPS=M+P*S
DO 98 L=1,5
LL=M+ (L~1) *P+1
Li=M+L*P

DO 78 K=LL,LD
Do 18 I—]
T

iF (L-G‘l‘.l) @ 1O 19
K, LU

gl&s"éf’ DK *X(I,K)

DO 38 I-K,LU
‘=0

DO 28 J=]1,N
T=T+V{J) *X(J, 1)
C(IIK)—

IT=R-P
DO 60 I=1,N

?ﬂxu J)*C( J)
Ir (K Sty ‘&5 o

KP1=K 1
DO 58 J=KPl,LO

R 1
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5¢ T=T+X I.J)'C(J'K)
6y V{I)=V(I)-T

61 IF (L.EQ.S) QU TO 7@
DO é3 %2112'.

63 X(I K+P)=V(I)

79 CONTINUE

L-EQ.1) CALL ERR(N,Q.M,P.X.E
L.EQ.S 9 !

CALL ORTHG m,o.w,r,c.x’
IL=Li+1
IT=LU
DO 89 J=1,P
IT=11+]
DO 88 1
80 C(I IT—P)zé(I,m
9% CONTINUE

RETURN
END
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SUBROUTINE Pﬂiéﬂ Q,H R, HCONV,P.,S)
> IMPLICIT REAL* 0— )
INTEGZR N,0O.M,R, NCONV

C
¢ BASED OGN THE VALUES op N, Q, M, R NCONV.
c CHOOSES NEw VALUES FOR ASD rér-: BLOCK SIZE AND
¢ NUMBEE OF SIEPS FOR THE smcn{ LANCZOS METHOD. THE
C STRATEGY USED HERE IS TO CHOOSE P TO BE THE
¢ SMALIER OF 1HE TWO FOLLOWING VALUES: 1) THE
C PREVIOUS BLOCK SIZE: AND 2) THE I\IJMBER OF VALUES
¢ FT TO BE COMPUTED. S CBOSEN AS
c POSSIBLE SUBJECT TO ‘ma cousrmms mms..o BY TEE
¢ LIMITS OF STORAGE. IN ANY EVENT, 5 IS GREATER
C THAN OR EQUAL TO 2. NISTH.EORDEROFTHEPROBLEM
¢ Q_IS THE NUMBER OF VECTORS AVAILAEL
< STORING BIGENVBCIORb AND APPLYING THE BLOCK
¢ METHOD. M IS THE NUMBER OF EIGENVALUES
¢ AND Excmvacmms THAT HAVE ALREADY BEEN COMPUTED
C AND R IS ‘THE REQUIRED NUMBER. FINALLY, NCONV IS
c THE NUMBER OF EIGENVALUES AND EIGENVECTORS THAT
E HAVE CONVERGED IN THE CURRENT ITERATION.
c INTEGER PT,ST
MT=M+NOONV -
PT=R-MT
IF {PT.GI'.P PT=pP
IF (PT.GT.0) GO 1O 181
B=p
c RETURN
181 oou-nnus)/PT
g ;gf.cr.zi GC 10 110
c PT=(Q~MT) /2
11¢ P=PT
c S=5T
RETUIRN
END
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SUBROUTINE ERR M,P,X,E
mpmcm' REGTS N(giﬂ o~z }
INTEGER N

OIMENSION g(N.Q) E{Q)

ERR COMPUTES THE OF THE
STORED OOLUMNS M+P+1l THROUGH M+P4+P OF THE
THEM ELEMENTS M+

IN
N-BY-0 ARRAY X AND STORES
MiP OF E,

MPI-H+P+1
50 200 KeMP1 MEP
T=g.AD0
DO 198 1=1,N
108 T=T#(1 K )

B;&(G = [T)
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183 K=I

200

300

SUBROUTINE ONVTST Q.M,P,.ERRC ,EPS,D,E NOONV
IMPLICIT REAL*8 (A -é 6-%) !
INTEGER

M,
REAL*S P
DIMENSION D{Q) ,E{(Q)}

QNVTST DETERMINES WHICH OF THE P EIGH\'N’AL[]ES
STORED IN ELEMENTS M+l THROOGH Mi+P OF D HAVE

AL IN ELEMENTS M+1
THROUGH M+F OF E. EPS IS THE PRECISION TO WHICH
COMPUTING

THE APPROXTMATIONS. FINALLY,
NCONV IS THE NUMBER THAT HAVE CONVERGED. IF

NCONV=@, THEN NONE HAVE CONVERGED.
REAL*8 MCHEPS / 2.22D-16/

K=0@

DO 168 I1-=1,P

T=DABS (D(M+1))

g T.LT.1.8DP) T=1

lam
E{M+]I) .GT.T* (EPS + 10DG*N*MCHEPS)+ERRC) GO TO 209

NCONV=K

IF (K-EQ.8) RETURN
T=0.0D8

DO 399 I=1 K

I=THE (MiT) Fe2
QONTINGE o rcra2em)
RETORY
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132
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150

162 D

SUBROUTINE EIGEN {R.M,P.PS «C,D)
IMELICIT REAL*E (A-H,0-Z)
INTEGER

M,P,Q,PS
DIMENSION C(Q:Q) D)
EISEN SOLVES THE EIGENPEOBLEH E'OR ‘THE -
MATRIX MS OF ORDER PS STORED IN ROWS
M+] THROUGH ¥H4PS OF C.
STORED IN ELEHENI‘S M+l
EIGMECIUES STORED IN
‘THROOGH PS

SIMPLY RE~-STORES: MS IN A MANNER
SUBROUTINES TRED2 AND TQL2.

DIMENSION DD{25) ,V(25)

DO 150 I=1,PS

LIM=T-P .
IF (I.[LE.P) LIM= i

Ir Lm:.sneo-mnﬂ

P,
C(Id)=
g?:,%fgciiggﬂ5+n)
CONTINUE

CALL TRED2(Q PS
CALL TQL2(Q,

DO 160 1=1,BS
(n+1)—nn(i)

RETURN
ERD

évigzm
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ROWS AND COLOMNS
OF C POSSIELY OVERWRITTING MS.
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THE EIGENVALUES OF MS ARE
THROUGE M+PS OF D ANDl‘IBE

EIGEN
TO THE

“
v
.
.
s
s

Eoan ey LAY R et

~

g it
e L L A

LYy

s b D e

R

g eana o,

PSS

B

R I RPN A}



<3
1.
a
"

".'\‘\'Hli\)'T”‘j

A

OOOOONICHNNONNN

a0

DO
190

280
300

SUBROUTINE SECTN(N,Q.M,P,0P,X,C,D,U,V)
IMPLICIT REAL*S ,0-2}
INTEGER

Eaabd

EXTERNAL
DIMENSION X(N,Q) ,C(Q,Q) ,D(Q) ,U(N) ,V(N)

SECTN TRANSFORMS THE N-BY-P ORTHONORMAL MATRIX X1,
SAY, STORED IN QOLUMNS Mi] THROUGE M+P OF THE
¢-Q ARRAY X SO THAT X1 *A*Xl = DIAG(D1,D2, ...
DP) ; WEERE  DENOTES TRANSPOSE AND A 1S A
Svmis INED BY THE

SUBROUTINE OP. ‘THE VALDES D1, D2, .., DP ARE
STORED IN M+ miP OF D. SECIN
X1 *#A*X1 = CP, STO CP IN THE
C. THE VALUES D1, D2, ... THE
EIGENVECTO OF OOMPUTED BY EIGEN AND

ARE
ﬁ'OREDINDA%C. RESP. ROTATE THEN
THE TRANSFORMATION X1<=X1*QP.

0O 399 I=1
I00L2=100L2+1
20398

T=T+V (K) *X (K, ICOL2)
C(Icm(,l) ICCSLﬁ

CALL EIGEN(Q,M,P,P,C,D)
CALL ROTATE(N,Q.M,P,P,C,.X)

RETURN
END
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SUBROUTINE RCTATE (N,Q.M,PS,L,C
IHPLICIT REAL*B (ASH'S-Zf rLeCeX)

INTEGER 8 BS,L
DIMENSION €{Q,Q) ,X(N,Q)

ROTATE CUMPUTES THE FIRST L COLUMNS OF THE MATRIX
XSS VEIERE XS 15 AN N-BY-PS JKIHONORMAL MATRIX
STORED IN COLUMNS M+l THROUGH M#PS OF THE N—BY-O
ARRAY X AND (5 1S A ps-ay—ps ORTHONORMAL mmrx
STORED TN AND COLUMNS 1 THROUGH PS OF THE
THE RESULT IS STORED IN comms
mmusa "ML OF X OVERWRITTING PART OF XS.
DIMENSION V(25)
DO 300 I=1,N
m 2‘“ K- - c
100 'r-'r+ I.H-D-J)'C(J.K)
28 vt
c 300 X(I.H+x) =vhc)
RETURN
END
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SUBROUTINE ORTHG(N,Q,F,P,B

IMPLICIT REAL "8( (A-4,50-2) X

eSO B {0

DIMENSION (Q,Q) ,X(N.Q)

ORTHG REDRTHOSONALIZES THE N-BY-P MATRIX Z STORED

IN QOLUMNS F+1 TEROUGH F+P0P1H£N—BY§EARRAY
WI’IHRBPECT'IDTHEVBC‘IOSS‘NEDIN FIRST F
QOLDMNS OF X AND THEN DECOMPOSES THE RESULTING

MATRIX XORTH, SAY, AND A P~BY-P UPPER TRIANGULAR
MATRIX R. XORM fs Z AND THE

OF R IS STORED COLOMNS F+1
THROUGH F+P OF TBE Q-BY-Q ARRAY B, A STABLE
VARIANT GRAM=" ON

ORTHOG
IN THE SIMULTANEOUS ITERATION PROGRAM OF
INTEGER FP)FPP
LOGICAL ORI
If (P.EQ.8) RETURN
I£, ;%00
FEP=F+P
Do 59 K=FP1,FPP
nucx-l ’

Tl?;omw&mmzs

ooa
Do 1
S-S-FCAIéI X(J &.ﬂ B(I,K)S
T=T+

DO 28

X(J,K) =X(J [K)-5*X(J 1)
S5=8.0D2

oo 38 J=1,N

S=5+X{J K} *X(J ,K)

IF g.@.‘l‘/lﬂﬂ) G0 10 46

5s) N
X{J,K)=5*%(J,K)

123
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SUBROUTINE

mpucn RE:A%'B (A—éob-i)

DIHE.'NSICN x(N,Q‘

HANDOM CUMPUTES AND STORES A OF N PSEUDO~RANDOM

mmmsn—mmumor N-BY-Q ARRAY X. RANDOM

cenamm 'ruo ENCES OF NUMBERS, FILLING
Rﬁm AND USING THE SECOND 10 ACCESS

TIE ARRRY I A FASHION.

?m'asefzm 141%/ /FT

INTEGER A/6821/,C/53 57/,1&/5323/,::1

DO 189 I=1,108

X1=A*XP4C

IF (X1.GE.l¢@ed) x1=x1-maea

%_gaxl/%%w—

DO 208 I=1,N

ET=F1+F2

H_g‘r.cs.wma) FT=FT-1¢0080¢

E2=FT ‘

=FT/1D6*19@+1

X(I,L)=T(K)

x1—mxa+c

F (X1.GE.10880) X.l*Xl—lDOBB
%2) =X1/9999D2~.5D8

RETURN
END

124
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SUBROUTINE TREDZ(NM,N,A,D.E,2)

REALTS Al(ﬁaq'ngﬂ'n' é'('ﬁf’g(m.m

spmrmu-. A TRANSLATION OF THE ALGOL Pmcsmms TRED2,

NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
FOR AUTO. .» VOL.II-LINEAR ALGEBRA, 212-226(1971).

THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A

SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING

ORTHOGONA!I, SIMILARITY TRANSFORMATIONS

ON INPUT:

NM_MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENS{ON STATEMENT:

N IS TEE ORDER OF THE MATRIX;

A CONTAINS THE REAL SYMMEIRIC INPUT MATRIX. ONLY THE
LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.

o OUTEUT:
D CONTAINS THE DIAGONAL ELEMENIS OF THE TRIDIAGONAL MATRIX:

E QONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO 2ERD;

A AND Z MAY QOINCIDE. IF DISTINCT, A IS UNALTERED.

GGANDWEIBID DIRECTED 10 B. S. GARBOW,
ED MATHEMATICS DIVISION, ARGONNE NATTIONAL LABORATORY

125
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PR

C s=::2::::: SCALE HI\ {ALGOL TOL THEN NOT NEEDED) z::2::32::2:
DO 126 K =
120 Soarit=tsoats % DABS (Z({1,K))

C
138 GSI{O ZAI NE 9.6D8) GO TU 149
- +
C
140 D1 K=1
Z(I,K) = iil / SCALE
H="H+ 2z(1,K} * Z(I K)
159
T Ezigm
G = ( (8) ,F)
L(I) [SQRI' )
H=1H - F
Z(I,L)y = F - G
c F = 6.8DE
00 S =5(f.0) / (SCALE * m)
G ='9.9D0
C tzszzz::x: FORM ELB!B%T OFf A™) z:zzz:zzz2::3:
PO 180 K =
o 188 G=G+ 2(J ﬁ) * Z(1,K)
JPl =J +1
c IF (L .LT. JPl) GO TO 220
208 & zga-erTxﬁl'*Lz 1,K)
C 2zz2z222:2:22= PORM (SE"P 2%zzz222:2:2:2
226 g( )F=+ E:(J;i * 2{1I,.0)
24¢
BH=F / (#H+H
C sszszzzsss A zzzz:3:3:::
DO 260 J =1, L
F= Z’I,J)
G=E J& - HH * F
¢ E(J) = _—
00 %J,l() = ﬁ(J,K) ~F *E(K) -G * 2(I,K)
c 260 INU['(:

DO 280 K= 1, L
280  z(1,K) = SCALE * 2(I1,X)
290 D(I) =H
ocmr{slxs

= Bl = 4:08



340

380

400

,N

r..'§

I=
I-
D(1

8k

¥J=1,L
G = 8,0D0
Do
G= Z(IoK) “ Z(KnJ)

802

Do

l:sz:::::::: ACCUMHLATION OF TRANSFORMATION MATRICES

{b{I) .EQ. 8.8D3) GO TO 388

éKvJ) = L(KrJ) -G * Z(K,1)

I) = Z(1, I&
lI = 1.5
I! (L) .LT. 1) GO T0 508
DO 48 J =1

2(I.J 6.903
2(3.1) = 9.009
INUE

c
CSBB CQONTINUE

RETURN
ge22zrzz:: LAST CARD OF TREDZ :
END

aassvesss

TS
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SUBROUTINE TOQLZ2(i#M,N,D,.E,Z,IERK)

INTEGER [ L,¥,N,II,L1,1,MML, IERR
RI-_AL'B!)(Nl E )im N)

Dég E‘ [H\Bé &iS,HACHEP

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PHOCEDURE TQL2,
f%mmﬂ. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
w

FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-248(1971).

TH1S SUSPOUTINE FINDS THE EIGENVALUES AND EIGENVECTIORS
UF A SYMMETRIC TRIDIAGJHRL MATRIX BY THE HATR?L METHOD.
‘THE EIGENVECTURS OF A FULL SYMMETRIC X CAN ALSO
BE FOUND IF TREL2 HAS BEEN USED TO REDUCE THIS

FULL MATRIX TO TRIDIAGONAL FORM.

OnN INPUT:

NM MUST BE SET TU THME HOW DIMENSION OF TWO=-DIMENSIONAL
AKRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSIUN STATEMENT;

N IS5 THE ORDER OF THE MATRIX;
D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX;

£ CONTAINS THE SUBDIAGCONAL ELEMENTS OF THE INPUT MATRIX
IN ITS LASy N-1 POSITIONS. E(1) IS ARBITRARY

Z CONTAINS THE TRANSFORMATION MATRIX PRDC‘UCED IN THE
FEDUCTICON 8Y TRED2, IF PERFORMED. IF THE EIGENVECTORS
OF 'IHE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
THE IDENTITY MATRIX.

OUN OUTPUT:

D CONTAINS THE EIGENVALUES ASCENDING ORDER. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES ARE BUT
FOR INDICES 1,2,...,l1ERR=1s

E HAS BEEN DESTROYED;

Z CONTAINS ORTHONORMAL EIGENVECIORS OF THE SYMMETRIC
TRIDIAGONAL OR %mx. IF AN m EXIT IS MADE,
EIGMALUE £ WITH THE

IERR IS SET TO
ZERD FOR NORMAL RETURN
J IF THE o-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS,

%EETINS QMMENTS SHOULD BE DIRECTED TO B. S. GASEOW,
MATHEMATICS DIVISICN, Am NATIONAL LABORATORY

stt:zzziz: MACHEP IS A MACHINE DEPENDENT P ARAHE‘.I.'ERS IFYING
THE PRECISION OF FLOATING POINT ARITHMETIC.
HACHEP 16.0D8%** (-13) FOR LONG EOEH ARITHMETIC

S3608
DATA msp/zuwaouulauaaoﬂ/

VAV



0O 00

IERR = ©
IF (N .EQ. 1) GO TO lewl

DO I8¢ I=2; N°
18 E(I-1l) = E(I}
F = 8.6Dd
B = p.0Dd
E{(N) = 8.8D0
DO §4E 1:6= 1, N
H = MACHEP * (DABS(D(L)) + DABS(E(L
1F (B ,LT. H)B=é ) (E(E)))
z:zez2z2:: LOOK FOR SMALL SUBR~-DIAGOMAL ELEMENT =::3:z:z::::
DO 1l M= L, N
63 (mBS(éig;) L.LE. B) GO TO 128
$3233332:2 E(N) ALWAYS Z » SO THERE IS NO EXIT
THE BOITOM OF THE LOOP :z:::z:::::

119 CONTINUE

120 IF (M . .%Lm'm'zzu
138 IF 3% ) GO 10 1608

J=J+
zc3zz:x:s:z: PORM SHIFT :2::zszzzz:z:
Ll=L+1
G = D(L
P= (D{L1) —G) / (2.8D8 * E(L))
R = mém'(p*w .2
D{L) = E(Ll / (P + DSIGN(R,P))
H=G -~ DML}
DO 146 1 = Ll; N
l42. D{I)=D(I) - B
FE=F+8 ,
23:322:3:2: QL TRANSFORMATION :s::s33:2:3
P = D(M)
C = 1.8D@
S = 2.0D8
MML =M -L .
32z23z::23:: FOR J=M-1 STEP -1 UNTIL L DO == #z:z::z:2:3:2::
DO 200 11 =1,
I=M=1I
G=C* E(I
1F (SaBS(P) .LT. DABS(E(I))) GG TO 150
§ = 5l 7 2C+1,0D0)
E(I+l) = é *p * R
5=C/R
C=1.0D2 / R
GO T 168 -
15% C=PpP/ EfI
R = DSCRT(C*C+1.8D8)
E(I+]l) = S * E(I) *R
S=1.8D0 / R
C=C*§
160 P=C*Dé1)—S*G
D(I¥1) =H+ S * (C* G+ S * D(I))
z3z323s33: FORM VECTOR ::::3::2:33
D) 188 K=1, N
B = Z2(K,I+l)
2(K,I+l) = S * 2(K,I) +C* B
Z(R,I) =C * Z(K,I) - S *H
188 QONTINUE
-CONTINUE

C
200
C




bl

CHLEY . P F P S

-

TR aem i . "
- SR PO N . S
1 v \ 3 . \?;1:";— M e e

e 1 R I
e s WEOWREET AT e e
EéL; =35 *p
D(L) = * p i
F ({ (E(L)} .GT. B) GO TO 132
224 D(L D(L) + F
24@ CONWTIN E
szzzs::::: ORDER CIGENVALUES AND EIGENVECTORS zzz:2:::::
DO 388 I1 = 2, N
I=II-1
K=1
c P = D(1)
uo 268 J II, N
IE‘_(D(J) .GE. P) QU 10 Z6@
P = D(J)
c 260 CONTINUE
IF (K .EQ. I) QU TV 309
DMK) = D(I)
c D{I) =P
DO 28 J =1, N
P = Z(J.I%
Z J.I = (J,K)
ZiJ,K =P
c 280 QONTINUE
c 39 CONTINUE
GO TO 1661
C z:zzzzzz:: SET ERROR — NO CONVERGENCE TO AN
C EIGENVALUE AFTER 3¥ ITERATIONS ss:tsszz::
l¥Eg IERR = L
1981 RETORN
zz=2:z:z::2: LAST CARD OF TQL2 :sszsssces
END
- ""‘"\-.\-‘
yd
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SUBROUTINE PRINTX (N,Q.4,K,X) . K
IMPLICIT REAL*8 (A-H,0-Z) ) b4

INTEGER N, 0,4 ,K
DIMENSION' £{N;0) :
PRINT OUT COLUMNS M+1 THROUGH M+K OF THE
N-BY-Q ARRAY X.

108 E%x%%”lﬁi'“m M+J}) J=1,K)
FORMAT ( =>'~)(¢/ ,8p12.4) '

plglply

1991
X

SUB:‘@UTJ-NE MLN,U'YL
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER N

DIMENSION U(N) ,V(N)

AX WES ¥= A*x WBERE A= DIN;(-‘]."']./Z"‘]./3' wem ,-1/“).
X IS STORED IN U AND AX STORES Y IN V,

DO 108 I=1,H
108 v(I)=-108/f*u(1)
RETURN
END

44

(glplelp]

IMPLICIT REAL*8 (A-~H,0~Z)
DIMENSION D{(25),X(20689) z
EXTERNAL AX

INTEGER Q,PINIT,R

SAMPLE MAIN PROGRAM. MINVAL IS USED TO COMPUTE

THE 4 LEAST EIGENVALUES OF THE MATRIX

A = DIAG(-1,-1/2, ... , —1/308) TO AN APPROXIMATE

PRECISION OF 1&&&3) . ‘TWELVE VECTORS ARE ALLOWED

FOR THE BLOCK QS METHOD AND AN INITIAJ, BLOCK t
SIZE OF 4 IS CHOSEN.

PINIT=4
R=4

M4RX=5003
EPS=1D-03 -4
M=p

(plglnlinislpinlel

CALL MINVAL(N,Q,PINIT,R,MMAX,EPS,AX,M,D,X,1ECODE)

PRINT 1061 ,4,TECODE, (D(I) ,I=1,M) . ;
clﬂﬁl E’OH«IAT(/Q >4, TECOD -(Dfx?;:lx,h}( =>E “,5D23.15))

PRINT 1302 . 4
1992 PORMAT(// EIGENVECTORS ... //)
CALL PRINTX(N,Q.,B,M,X)

STOP
END

PR p I T I

e T o .
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