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In 'this dissertation., .....e will be concerned 'with the deveJ.o!Jllen't,

implementation and application of an algorithm to solve the following

problem:

Compute accurate approXimations to the r least

eigenvaJ..ues of a large, sparse symmetric !1latrix A where

r is much less than n, the order of A.

Problems or this t;yJle often arise in mechanics .....here A represents a

discrete differential operator, the order of A is one thousand or

more, fever than 5~ of i.ts elements are non-zero., a.u.d 'I' is only a

small f'raction of the value or n.

The more common algorithms ror solVing general symmetric eigen-

problems such as the Householder, QR., bisection, and inverse iteration

methods, can ger.era.J.1y not be applied to the above problem because they

would. require excessive amounts or storage or computer time. In contrast

to these methods, our algorithm does not transrorm the matrix A in any

way" and therefore any special structo.1Te that A may possess is preserved.

Rather, the only way in whi.::h A is used is in compu.ting the product Ay

given a vector y., and if' A is sparse., even though or large order., this

matrix :mu1tiplica~ion can usua1l:y be carried out efi'icient];y.

Our method is orga.!li.zed about a Block Lanczos algorithm which is an

extension and general.ization of' a method originally proposed by Lanczos.

In the next seCtion, .....e W'ill reView the historical background of the

Lanczos metbod. In Section 1.2 we will make some genei-a:L remarks

concerning the accuracy ot: comptd;ed eigenva.lnes and eigenvectors;, and:

in Section l.3;, we will ou:tllne' our thesi:; and summarize our results.
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bisection methods and then the llouseholder and QR methods" it was soon

] ,

.~~~•• :•• ,--,' .... ,. -. :~'-' ,:~~.~." ,,,',17-, ,;r-•. ,J,

Some or all of the

,_... ", _ ••••,.,_', .~ __.... ,_ .. _ ..... ~... , •••,,1 .... ; ,:', .':.

m
(xi) i=1 where 1 < m <. n and n is the order of A

eigenvalues of A could be found by comptlting the roots of p and

the eigenvalues had baen found. Although very attractive at first

glance" La:aczos' method presented some uni'orseen difficulties (cf. 92.4)

when implemented and a.pplied" and with the development of the Givens and

La.nczos showed. how the :<. could be combined to form eigenvecto:!:S once
J.

m < n· The eigenvalUes of Tm are a.J..so eigenvahes of' A and the

eigenvectors of T can be used to com:pute eigenvectors of A. Letm

'In recent years" however" interest in Lanczos' method has increased

set aside as a -'method of general application.

eigenvalues and eigenvectors of large" sparse" -s;ymmetric mattice,s.

due to its consideration as a means of computing a few of the extreme

vectors per se" it could be used to comptlte the minimum polynomial p

of A With respect to a vector x (cf. §2.4) and a sequence of vectors

Fran a modern viewpoint" Lanczos' method is a way of ?btain;ng, frau. A, ,

a "'"'"""'~tric tridiagonal matrix T "say" where T is of order
~J- m m

matrix A. Although not a methoc.' for comptlting eigenvalues and eigen-

1.1 Histotica.lBackgr:mnd and Survey of Literature

In 1950" Lanczos [1.3] described an algoritbm which could be used.
I

to compute 'some or all of the eigenvalues and eigenvectors of a s,ymmetric

,,".~.c,:,,"_~...,..,~.~,:: ....._~_"j~." -~ ..._ .' .....' '\~ _..... ,_: ,_. .- ...._ ..... "":' ~•.,_ ••"~?.;:

"'4 .;
"'f
~~,:i\~':-'~j~~~."~"'-_-""--:l"'_' __"_'~ .. ,'- ., _~~- - '.

,-

stand for the s-by-s leading principal. submatrix of' T " s < mm

can be comptlted by carrying out s steps of'the Lanczos method

and stopping short of its normal completion point. In 1966" Kaniel ell]

pc.blished a paper containing resu1.ts which implied that a few of' the

eigenvalues of Ts a-t either end of its spectrum will usuaJ..Jy be very

2
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In order to be sure of the stability of the method, these vectors must

tt.ey are generated. l'l1'ere it not for this shortcoming, Lanczos' method

The ad~tage of this

s
(Xi}i=l need not be

even i~ reorthogonalization is not carried out.

approach is that the entire sequence of vectors

applied~ the computed resul.ts may indicate that A has multiple roots

kept axound at all times~ resu1.ting in a considerable savings in both

storage and time. A drawback is that, unless this method is earefuJ.l.y

study of Lanczos' method and found that useful. results could be computed

be reorthogonalized with respect to all previously computed vectors as

increases. Kaniel.' s -'10rk suggested that for the rel.atively sma1.J. cost

s
(xi \=1 is computed 'Which, al.tho;Jgh orthogonal in exact arithmetic, in

practice with finite precision arithmetic, lose orthOgonality very rapid1.y.

During the application of the Lanczos ~ethod., a sequence of vectors

values and eigenvectors of A.

of computing the s-by-s matrix T
s

and its eigenw~ues and eigenvec­

tors ~ one could obtain accurate approximations to some of the eigen-

eigenvalues of T
s

as approx:i.II:a.tions to the eigenvalues cf it and

showed that for the extreme eigenval ues, they decrease rapidly as s

accurate approximations to the corresponding eigenvalues of A £o~

re1atively small. values of s. (Le.nczos was also aware of this pheno-

wou1.d be an attractive approach in general for the solution of the eigen­

proble!!!. Motivated by Kaniel's work, Paige [17] carried out a detailed

!!lenon. See [13]~ p. 270.) Kaniel. also gave bounds on the errors in the

:.&

..,.

even though this may not be the case. This same phenomenon was reponed

'.\
by Godunov and Prokopov [6] "Who applied the Lanczos method in the same

way as Paige to -:-he .sol.ution of the eigenproblem of' an el.liptic di1'1'er-
:.

ential. operator.

:3 ".

\. .........
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Aside f'ran the Lanczos method~ one of: the principal methods of:

so1.ving the eigenprob1.em f:or large sparse symmetric matrices is the

power method [23]. The method known as simul.taneous iteration [1.9"20]

is based on the power method but iterates simul.taneously with several.

vectors by means of which improved rates of convergen-::e are achieved.

In 1.973, Go1.ub suggested to this author that a s;m;lar improvement might

be realized for the Lanczos methcd if' it too were extended so as to work

simul.taneously with several. vectcrs. This thesi~ is concerned with the

deveJ.opnent and application of a method based on a -Block Lanczos aJ.gorithm

fol.J.owing the suggestion of Go1.ub.
"

Cullum and Donate [4] have a1.s~ devel.oped and applied a Bl.ock

Lanczos a.l.gt;ritbm. but their use and iJnpl.ementation of the method differs

from ours. Kahan and Parl.ett [1.0] have recently given an error ana1¥sis

of La.nt:zo~' me~od which is based on Kahan's work with a Bl.ock Lanczos

method dating back to the late 1.950' s.

The papers mentioned previously deal. primarily with the use of

the Lanczos method as an iterative algorithm in a fashion suggested

by Kaniel.· s paper. For more general. discussions of: Lanczos' ~ethod

If A is a. s;ymmetric matrix of order n, then the eigenvalues

see Wilkinson [23]" Go1.ub [8], Go1.ub, Underwood, and W:ilkinson { 7 ],

,

are orthonormal..

i = 1~ ...~n,

and Paige [1.5, J.6] •

)",i and eig~vectors qi sa.tisfy

1.2 The Accuracy of Compu:tedEigenval.ues and Eigenvectors

where A is the zero vector and the

4
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we can o:::oly compute values \.L. and vectors x. with IIx.1I 1 such that.
J. J. J.

•
Axi - ~ixi Pi , i 1, ... , n (1.).1)

we can be sure that there .is an eigenvalue " of Po. such that

(1.;'.2)

will be close to anX.
J.

-- [10]IJ. = 1 ; aI:l.d x

By Weinstein's inequality [21],

,

x. may net be close to an eigenvector even if the
J.

A = [1 10-

10 J
10-10 1

Exampl.e. Let

It f"ollows that

eie;envector. If X. is one of a cluster of very close but distinct

I:>.. -IJ.'\ < E. (1.'.3)
J. - J.

eigenvalues, then

corresponding €:i in (1.3.3) is very small.

co:::putations. The most that 'We can say is that Xi is close to the

subspace spanned. by the; eigenvectors correSllOnding to the eigenvalues

is isolated f'rom the other eigenvalues, then

where

a.'1d Ii· ii2 d.enotes t.he spectraJ. nonn.

Howe-rer, we can not be suxe that ~he computed vector xi is close to

an eigenvector of A, and this is an inherent :Li:adtation in our

which a:-e near to X.. If X. is a single or multiple eigenvalue which

.-

c.

" I
~.

e·
r

::1
e

so that

5
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E. = 10-10
J.

,. ....... ,~"", .... ,. "..... . ~ - '! -~',":,.. ','.

We can conclude that there is an eigenvalue '!I. of A such that

(In fact~ the eigenvalues of A are 1+10-10 and 1_10-10 .) However~

the eigenvec-tors of A are

and x is close to ne~ther vector.

Hence~ throughout this thesis~ statements to the effect that we

will comptIte accurate approx:imations to the eigenvectors of a matrix

are made 'tnth this limitatio!1 in mind. Our goal will. be to find

scalars ~_ and vectors x. which satisfy (1.;.2) Wi.th E. relatively
J. J. J.

small. How close these compu.ted scalars and vectors are to the actual

eigenvalues and eigenvectors of A will depend on the Sllectrum of A

and 'the magnitudes of the E••
J.

the errors in com:puted values and vectors which are much smaller than

Note: It is often possible to compute a posteriori bounds on

·1

;J
.j
;1
'I

.those indicated here. See~ for exa.mple~ Wilkinson (23]~ Paige (16]~

Stewart [22 ] ~ Davis and Kahan [ 5 ] ~ and ortega. [14].

1.3 outline of Thesis and Summary of Results

In Chapter 2~ we 'Will present a theoretical developnent of our

algorithm. We will review the notion of a restricted operator and show

that the extreme eigenval.ues and vectors of a matrix A restricted to

a :?SXticular subS);l8.ce will be accurate approximations to the corresponding

6
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this course.

counts.

Lanczos' original algorithm. We ...."ill then construct a new algorithm

II
.•:"'1.', ••. , •.. _.-,.." ••,:"~. -:,'~'~ •. _;'\'._-".-""i" '.r '~." ,~ .........~ ... ' .~ ...~'f:,,:::""

eie:er:.values and eige.'1.vectors 0:: A. We ·...ill !'e"Jiew Lanczos' method

:implementing our method. We discuss program. and data organi.zation~

JUso in Chapter 5, we consider various aspects of the prograJIl

the Lanczos method, the effects· of round-off' errors, and give opere.tion

how to estimate the accuracy of compu.ted results in the context of

Jln ilIlportant 'issue relating to the use of the Lanc~os method is

7

vectors. In Chapte!' 3, we will consider some of the :Problems associated.

we do reorthogonalize -the vectors generated by our Block Lanczos algorithm •.

In Chapter 3, we discuss this issue and indicate why we have decid.ed o:t

to iterate ..r:ith at each application of tho: Block Lanczos algoritbI:;

compt:.-ced. using the Lanczos method to tn.e least eige:n"JaJ..ue of A. ile

~f 'the above restricted operator. We then e:;er:eralize these noti:::.n::: to

and see how it ca.'1. be 1.:.sed to cOl:lpute tho::: eiG:e..''1v<:'.!.u(::: and ".::ie~nv~ctrjr::

of -che least eigen,~lues and corresponding eig~vec'Cors of a s.ymmetric

In Chapter 5, we consider the practical. aspects of implementing

theoretical knowledge of the algorithm and our computational experience.

....o~k .,;ith several vectc!'s simultaneously. In pa.!'"ticular, we will exte!ld

a:ffects the nUl.'lber of operations requir~ to compute a given number o~

the aJ.goritbm developed in Chapter 2. The ~umb€:!' of" vecto!'S we choose

::a."l.iel' s basic re::;ult on the rate of conv€:!'gence of the leas-c eigen:.raJ..ue

whether reorthogonalization is carried out. In our current. application,

with the choice of block size and suggest some strategies based on our

which U'tilizes O"..u:- Block Lanczos algo!'itbm to compute a specified. numb€:!'

..rill a.l.so develop a Block Lanczo::; algo!'itbm ;,rnich is an extension of

matrix to a given accuracy.

~ '", -- ~ --.~'-: ,.' .,,....... ,... --.".' ~, .' .

••
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Finally" in Chapter 4" we present the res-.llts of numericaJ. experiments

on a number of problems cOIIl!laring our method with the method of

s:imultaneous iteration. We Will see that in most cases our method

is superior to the latter method in terms o'f th~ amount of work reqUired

to canpute a. given number of' vectors to a specified accuracy.
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algoritbm to solve the f'olloW"lng problem:

In tbis chapter we w"...ll be concerned with the deV"elopnent of' an

i = 1, ... ,rf'orandA.
~

coltpute accurate approximations to

ei~envaiues and eig~vectors of' the restricted operator described a~ove.

algorithm and show how it can be used to compute t:!:l.e eigenvalues and

eigenvectors of' A restricted to a space cimile.r to the space suggested

above. Finally, in S~tioDS 2.8, 2.9" and 2.10, we will i.D.tegriLte our

Given a s~~etric matrix A ~f' order n with eigenv-~~es

is a vector and s is an integer less than n" will usually be a very

we will G.8f'ine the notion of' a :!'estricted operator in Section 2.2

vector x with a matrix X. The baf:is of' our algorithm will be a

proposed by Lanczos. In Section 2-.=7 we will. develop a Block Lanczos

Section 2.4 we will show how Lanczos' method can be used to compute the

Al :s "'2 :s ... :s )--n and corresponding eigenvectors qI" Q2" ••• "~ "

and gi\"~ an inte,;e:r r greatt;r than zero and less than or equal to n"

Block Lanczos method. which is an extension of" an algoritbm Origi-D~T

accurate approximation to the least eigenvalue of" A itself". In

and show in Section 2.3 that the least eig~va1ue of A restricted to

s-l
the subspace spanned by the set of" vectors (x,Ax" ... "A x) where x

In Sections 2.5 and 2.6" "Ie will extend this basic idea by repla~ing the

2. THEORETICAL DEVELOPM8NT

•

•
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Block Lanczos method into a complete algorithm for solving the above

f problem.

2.1 N0tation, Def'initions, and Basic Results

In this section we Will give the notation and basic def"initions and

lemI!las vlb.ich 1till be used elsewhere in this chapter.
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•J

be the coef'ficient

That is,

m. Let c.
J

in powers of ],. .

Sp(X)or

is a vector, theL

/1
X is the n-by-nj/matriX whose .j-th column is

Xl 'X2 ' •.• 'Xm 7' n-by-p matrices, teen

(X
l

,X2 , .•• ,X
m

),

peA)

').. - .
J

p be a Il0l:ynomiaJ. of degree

p(A.)

in the expansion of pCA.)

If' "l.: x2 ' ... ,.xm are m vectors of' ordeT n, then

/
/ Let

whose second p columns are X2 ' etc.
I

If' X = (~,x2'·· .,r~xm) , then

element is

For a.ny matrix A, peA) is a matriX defined as foilows:

Furthermore, if A = diag(~'],.2'": ·,A.n) , then
,

p(AL..,= dia.g(p(A.1 ) ,p(A.,}, •• ·,p(A.n )

10

Note that if x

x =

will stand f'or the diagonal matrix of' order m whose j-th diagonaJ.

Similarly, if'

will. denote the subspace spanned by the columns of' X •

will mean that

wi.ll mean that X is an n-by-p X m matrix whose t-:""-st p co1umns are

~

~~
~:J' . ~

"t'
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-,r·



-~ ._,._-.,~,..-.. , . '. ~ !IlII, __• _.:. ,.', ',"
.,".

..,
,

'"':'" -;t,,,. -"'--,_. .:r'. • ,_ " ..... _~. ". , . ........ , ..-.~: ~ :~'\- . ,-~.. ,.' ,-; ... ,,~ .... -
.-~~,

Let A be a. s:vmm~..ric matrix of order n with eigenvaJnes

and

I::

By de:Cinition7

AQ,=QJ\

If :p is 'the :PO~omiaJ. defined above, then it can. be shown that

p(A)Q = Q.p(A)
':...:

, ' Lemma. 2.LL Let Po. be a. s;ymmetric matrix of order n with eigenva.1.ues

~ 5 ~2 S ... < ~n ; then

II

lM.
t

YY

lM.
t

YY
max
YFe

t
Y y. =0

).

For our por:p<>ses, we restate this restilt as follows.

Proof. This is the Courant-Fischer theorem. ,For a. discussion

and proof, see Wjlkinson [23], pp.: 98-lOL

[Yl'·· ·,yn-kl and the max:imam aver all vectors y such that y F e

tand y Yi. = 0, i = l, ••. ,n-k. Simjlarly, we have

where the minimum is taken over aJ.l subsets of n-k vectors

.~.

f
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i
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I

"
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The projectionof d:in!.ension m.

~
t

yy

x€R ,
n

Let A be a. ::ymmetriC matrix of order n With

S be a subspace of R
n

A.
k

min max ~
Ek yl=e t

yy

y€Ek

A.
n-k+l

This is a di:rect consequence of the previous theorem.

Let

for azry vector

Proof.

Lemma 2.1.2.

Intuitively p~ is the vector in S which is closest to x i£

the vector norm II-H2 is used to measure distance. Note that for a:rry

XES, p~ = x .

If Q. is an orthonormal matrix whosE! coltmlIl.s form a basis for S,

matrix for S, denoted by PS ' is defined to be that matrix such that

where the minimum is taken over a.ll. subspa.ces E1t of Rn · of ~ension

at least k and the ma.x:i.mum over all non-zero vectors y i.D ~.

Simi.la.rly,

•

then

The projection operator onto, the space orthgonal to S, denoted by ~,

is given by

,
L

-"-
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where &1 is the i-th column of A.

The singu1.ar values of' & matrix A are the square roots of the

teigenvaJnes of' A A. Tha.t is,

It is easy- to show that

where A. is an 'eigenva1ue of' AtA. Note then that
:1.

If' x. is a. vector, the Ec.clidean norm. "xl~ of x is defined

as ~ollows:

where Amax(AtAl is the largest eigenvalue o~ At A •

The Frobenius nom IIAIIF of" a matrix A of order n is defined

as follows:

We will usuall:y anit the subscripr. and wr:i.te simply \lxn .

If' A is .~a matrix, then IIA112 or !fAil denotes the spectra!

norm. o~ A :indu.ced by the Et1clidean Dorm. Thai; is,

"
_Jft"':.~::::~~:~~'~~:-:- :-:::.~;::.-:::,:,:,,::~ ·~\.:,-,"~-.'1_':'\7"~,'~1.'" .'- ...~...., -~\~.-.:.".-. 'I' ,~"_ ..
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~ is a

For a:trJ

o~ A such that

which maps the real.

Let S be an

...,;......

• ~ ......,.,.-:.- .•. ~. :...... ""~. '"--. _f."_~.: (.\I", '. ,:"::- ; •••,

x is a vector with fI xII = 1. ~ then Weinsteint s

The restriction of' A to S 7 d~:'lted by A

is the projection matrix onto S •

• _.: ., ~ '-1" .

is a scaJ.ar and

!lAx -1J.X1l = ~

I:f A is a s;ymmetric matrix and

Let ~ be an n-by-m orthonorma1. ma:trix whose colmms are a basis

P _ tV'It
S--

Let A be a symmetric matrix o:f order n

vector

= PgAx

linear operator (mattix) which maps S onto S as :follows:

:for S; then

inequality [23] states that there is an eigenvaI.ue >..

2.2 Restricted apera.tors

Derinition 2.2.l.

n-dimensional. Etlclidean vector space R
n

into R
n

m-dimensionaJ. subspace o:f Rn where m < n

'Where ~

",~ '., r- ~.:.

.;,'.-

~
t

:' f,
•
I,

- I
i

~':.

,
and :for arry xeS 7

, .~.

.'

,

,

.~ = P.j'-X

PgAP?, since x = p~

= (QQ't)A(QQt)x

= QlW ,

l.~
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where

and

B = ~tAQ.

·t
v '7- ~ x "'...

. !
.-.. ....-

B is a. symmetric matrix of order ill and is essentially the matrix

representa:tion of A. Let ~ ~ ~ ~ ••• ~ "'m be -the eigenvUues

of B lw-'i:th eigenvectors vl' v2 ' ••• , vm • Let

i=1.,2, ••• ,m

.1

1
.1
.:

..J
:1

-~

-It follows 'the.t lJoi and qi are an eigenvalne and eigenvector,

respectivel:3', of A for i = 1,2, •••,m. Tl::.i.s can be seen as foll.ows:

Aqi = QBvi

i therefore has m eigenvalues and eigenvectors which can be caapated

usiDg ~ aud B. It can aJ.so be shoWn 1;hat if S is an iDva:riaDt

subspace of A.1 then 'the eigenvaJ.ues and ~vectors of A will also

be eigenvaJnes and e1ger1Veetors of A •

By Lemma 2.1.2, we have

15
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(2.2.1)

1:' o~ diinen::iol:1 at least'""k

(o..y) tMO.Yl

(Qy) t(Q.,Y)

'.:)f R , the set of vectors
m

r
.....k-

i:!:Y.
tyy

y-:E.} .
Yo

For k = ~.. 2.......m ..

[z I z = Qy ,

is dimension at least k. "3y observing that

Lemma. 2.2.1.

is a subspa.ce of S 01" the same dimension.. we have the follow-l-ng result.

and that for a:n-J subspace

k of S and the maximcm over a.lJ. non-zero ·".ectors y. in F'k. ::iil:lila.rly,

we ba-~ for k = 1,2, ••• ,m ,

Where the min:imu:n is taken over all. subspace::

•

•

; ...,
.>.

• (2.2.2)

..
~'

• P:roo~. This result is a stra.:ightf'orward 8.Plllication of Lemma. 2.1..2.

In Equation 2.2.1, the mjn;mmn is a.cb.i.eved when

•

•

where qi is. the i-th eigenvector o~ A:.7 and the maJdmum in Equation 2.2.2

when
".

• 16
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Combini.!:g thi.s observation with Lemma 2.1.; gives us the following

result.

Lemma. 2.2.2.

A simp1.e consequence 0'£ LemaIa 2.2.1. is the following.

",

Lemna 2.2.;. Let ~ be the least eigenval.ue 0'£ A restricted to

a. subspace S; then

~
tyy

,
.'

Where the mi.nimum is 'taken over' all. nOD-zero vectors y in S •

.'--
2.; The Basic Idea.

Let A be a. symmetric matrix 0'£ order D and 1.et x: be a. given

vector.

Detin1tion 2.;.1.. 'lhe Kryl.ov sequence of x wi:th respect. to A is

'the sequence of vectors

For any s grea.ter than zero, we will denote by K(s,x,A) the

subspace spanned by the f'irs't s el.emen'ts of 'the above sequence. That is,

)
s-1.K(s,x,A = Sp(x,.Ax, ••• ,A x}

Kani.el. [n) showed tbat if we consider A" 'the re....-t;rtction 0'£ A

to K(s,x,A) for a. re1ati.vely" smal.l. vaJ.ue of s, 'then a. few of 'the

1.7

."
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!
i
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least (and grcate::t) eiee.'1value:: of: A "dill usuall:r be <:;ood appr:-xima-

tions to the eieenval'.les of: J.. and showed that they decrease rapidly

as s increases.

The phenomenon dezcribed i~ the last })a--ra.graph is the basic idea

• behind O~ ~orit~-r:- In "the :ll::.:t section "de "dill describE.: and discu.ss

Lanczos r ~oethod a.."ld show no;.; it ca."l be used to cOClpute the eigenvalues

remar}:ably accurate approxi::lations to some of' the eigenvaJ.t:es and ei;:;e.'1-

-"-'-

oriJ2 be stated. and. its l'roof reviewed to"J"".

Let A be a symmet:ric matri.--: of: order .'1, and let x

?rot'l t~e sta.."ldpoi."lt 0:' :.arge ~se matrices, this

Some of: KanieJ.' s results were :Ulcorrect as stated in hisIiote:

~pproac=. ...."ill pro..-e to be p8-..-ticul2.rly ef'£'ec-ci-J"e :;:ince no 'tran::1'orma:tion

pr:l'.ride some i.."'ltuitive b2.c~.::ld i'or these ideas.

Let s be a.."1 intege:c greater th:m zero and less than n, Suppose that

01' .n. itself' is required.

3efo!,:, proceecii.."lg, however, thE: basic result of :.a.niel concerning

or 1i:~..ting 'the eigen-.-aJ.ues and eige."lvectors o'f J..., we o:f'te:l. obte.i."l

a.'1d eige.·nrectors of' J.... i-le will see t:::w.'C 'for ~he r~lative1.y small cost

be a vector such that \Ix\! = l. Let ~ ~ ""2 ~ -'. :s A.n be the

eigenvaJ.ues o~ A "'"i'th corres:poncii!1g orthOI:O!Tl!al eigenvectorS ql" •. , 0-n

process. It is essentia.lly Paige's result whi~h is stated here.

Theorec 2.3 .l.

the least eigem,.a.J:.;,e of:

pape::-. Paige [17} !"eC!.eveloped this ~heory, correcting '&he errors i..'1 the

•

•

•

•

•

...
01. - qi x -= cos Q f: 0 ,

,.,
~

I.

where ~ is the angle between q and x; then iJ.l ~ the least eigenvaJ.ue

cf .e... 1;hE: restriction of' A to the suospace KC s,x,A) satisfies

• 18
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2
~ < IJol 5 "-1 + c1

'," ~_.'. '. - .~".- .

'Where

Ts_~ is the (s-l) -st Chebyshev polynomial 01' the first

kind~ and
, .

Example. SUIlPOse n = 500 ~ A1 = 0.0 ~ "-2 = O.lO, "'500 = 1-00 ,

s = 20 ~ and x is such that b. = 0.04. We then have
.L

624.0 .,

f,

1 = .10/1.00 = .10 ~

~ and

Thus~

2 1.00 x 624 ~.x 1:0-8
E:1 = 5 2 =

(1.27xI0)

and

implying that IJol is accuxa.te to at- least seven signif'icant digi:ts. The

above bound is an overestimate and i1' we computed IJol (using the Lanczos

method~ say~) it would actuaJ.1:y be 1'ar more accurate than the bound

indicates.

19
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g is a. linear cC!:lbi:la.tion 0': ~:he .....ector::: .

> 1

Let c be a polY!1omia.l S".lch that

We will only outline the proof' here. For

for i = 2,3~ .•. ~n ~ and

(s-1) -st Chebyshev polynomial of the first" ~i."ld. and.

= T (1+7 )
s-1 1:.')"

= T l(z)s-

(;t.. - iI... )
1- 2 (A. _ -: )

n 2

is the

z

g = c(A)x

c(t..)

Indication o~ proo~.

Choose g as ~ollows:

We know by Le:IlI!ias 2.2.2 and 2.2., that

t t
il.1 =5 ;':'1 =5 g Ag/g g

t t 2
g Ag/g g =5 t..1 +E1 ~

for any non-zero g in K( s,x,f..) . OUr strategy is to pick a -,rector

where 7 is as de~ined in the theorem. We noto.- let

e~:tablished this result, the theorem is proved.

20

Since c is of .legree s-l,

. 2 s-1
x ~ 1;X ~ A x ~ ••• ~ A x aIld thus is contained in K(S~X~A)

if we let b == Q.t x ~ then x = Q:b and

in K(s~x~A) ~or which

the detai1s~ re~er to Paige [1?]~ pp. 44-51.

where ~i is as given in the stateme.'lt of' the theorem. Once we have

Note that by tb,e properties of' the Chebyshev polynomials,

•

'.~
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g = c(A)x

= c(A)Qb

....:;

QC(lI.)b where A = dia.g()l.l~·· .,)l.n) ,

blc()I.~hl+b2C()lo2)Q2 + ... +bnC()l.n)1ln

the com~()Dent of q~ corresponding to ;>..~ in g has been amplified

"Ih:iJ.e the :::omponents of the other eigenvectors have been decreased. If

we now form the Rayleigh quotient gtAg/gtg , we will find after some

where b. is the i-th component of' b
J.

Note that in comparison to x

...•.
:,,:<,.....,;'

ugebraic ma.n:ipuJ..3.tion that

wb.ich establishes the theorem.

:'!.

,,'
i,

-/

'~}
_.~
.; .~

(2.4.1)

Denote by PX;A the

u--------~--~~:_:::~-~--....~'lCRill.. ~<i-,;;.- .." .~,

2. ~ Lanczos' Algorithm. for S]mmetric Matrices

are de~endeJlt. Since each of' these vectors is of order n., i"t must be

:POlynomiu

Let m be the first vp~ue for which the vectors

2l

Let A be a symmetric matriX of order n and let x be a vector.

2 mx,Ax,Ax, ••• ,Ax

the case that m < n. Furthe2:lllore, since m is the first vaJ.ue for

vili..ch the above vectors are dependent, Amx must be a linear combination

m-~of the vectors x, Ax., ••• ~ A x. That is~

.....



'. :.. ~-..... .. ,-~ ... '. '" .•. I' ••..,,"_ •.- .• , .... ,: ':.. .~ ... , .~ r,' - ,I~ • 1:'-·..·,·]······-_·· -_·.r~... ~t~"."':' J
.,::r,
t-

the eigenproblem which contained. a description of an algorithm f:er

SUch transformations generally dectroy s~se structure. By contrast"

with respect

22

(2) Although originally intended to be

(1.) Many methods such as Householder's method

m m-:;'
Ax-c 1"- x- ... -cAx-cxm- 1. 0

PX;A is the minimtml. poJ;inomial. of x

His 3.p:Proach" although very attractive at firstcomputing

Lanczos' method does not tr2.Ilsf:orm the matrix and" theref:ore, a:ny sparse

and the QR method" carry out similarity' transfonnations of the matrix'.

structure can be preserved throughout t-he application of the algoritb::!l.

McGill Unive..""Sity and G. Golub of Stanford University" have proposed

In recent years" however" some researchers" notably C. Paige of'

awlication.

is sparse, even though oo£' large order" this mu1.tiplicatio:::J. can gen.erally

It can be sho.:wn that the zeroes of P are ei~~va1.ues of: A .x;A

In 1.950, La::J.czos :PUblished a paper [1.3] on computing so1.u.tions to

the following reasons:

symn:.etric eigenprob1.em when the matrix is of J.a.rge order and sparse for

P .x;A

g1.ancl:" presented some numerical. problems in iJ:n];llernentation and

that Lanczos 'method be used as means of: computing solutions to 'the

In partieuJ.a.r" the only way in which the matrix A is used in Lanczos'

I:lethod is in computing the produ,ct A:Y given a veCtor y" and if A

be accomplished efficiently.

application (cf. Section 3.1) and lo"ith the deve1.op:1ent of: the Givens

and Householder methods [231" was soon set aside as a I:1ethod of general.

Note that by Equation (2.4.1)"

to A

Def'inition 2.4.1.•

••

•

•

•

•

•

.'
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used to compute the minimum polynomial 0'£ a vector, Lanczos' method can

be used to achieve other ends. As we will soon see, it can be used as

means 0'£ cccputing the eigenvalues and eigenvectors of A restricted to

{ 2 s-~ -the space spanned by x,Ax,A x" •.. ;>A xj '£or some s less than

n • As we saw in the previous section, -l;he least eigenvcUue 0'£ this

restricted operator will generaJJ.y be an accurate approximation to the

least eigenvalue of A itsel..f.

We will now review Lanczos' method and sane 0'£ its properties.

Later on we will extend Lazlczos' method and the ideas of the previous

section to work with a matrix of vectors X instead of a si.ng.le vector x

This genera.li.zation will afford us certain advantages computationa.ll.y over

the single vector approach.

The results stated here ..."ill be given ..."ithout proof. For a more

complete discussion of Lanc~os' method, refer to the following sources:

v-lilldnsoD. [23], Golub [8], Go1:ab, Underwood and. Wilkinson [ 7], and

Paige [17,18].

LanCzos' method can take man"v dif'ferent '£orms d~pend.ing. on the

application., but for present purposes, it is as follows:

Let A be a S"JIlIIIletric matr:i..x of order n. Let x be a vector

of unit length (lIxll = 1) •

Compute sequences of scalars (ai)~=l and (13i)~=2' and a sequence

of orthonormal vectors (xi)~=l as '£ollows:

.~" I

"",

"'.~.

",
\.

Step 1. Let x.. '= x and
.L

i = 1

step 2. ComplIte Yi = Axi '

where

23

if i=l,or

ifi>l
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of A •

Furthermore;, there is a practical difiicuJ.ty with Lanczos' methoo.
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Let m be

~', '.' • '''~', J ".. • .......... ...:". ~I~'.r::.:

T can then be solved in a .-ari.ety of ways;, e.g.

step 3. Compate ~i+l = lIz i +1 1\ .

:;tep 4. 11' l3i + l 0 ;, then rtop.

:;tep ~. eompu1..e >:5+1 ~i+jt\+l

step G. Increase the "lra.1ue 01' i by one and go to Ctep 2.

This algoriti::an wiJ.1 stop for some ...-aJ.ne of i < n

eigenvalues a.!ld eigenvectors per se. Rather it is a. way of transforming

As we 'Will see, Lanczos' method is not a methoc. "£or computing

of P A yielded eigenvalues of A;, and once the eigenva.J.ues had been
x;,

a general s;}'Ili!Iletric ~trix into a. s.vmmetric tridiagonal. matrix T

combined with an algoritbm to solve the second problem to produce a

the eigenproblem into a. problem in a. cii1ferent form and it :must be

the resulting solution can be used to find the eigenva.1ues and eigenvectors

The eigenproblem. for

the final value of i

f"ounci;, Lanczos showed how the Xi could be combined to form eigenvectors.

The more modern viewpoint is that Lanczos· method is- a way of transfor.ting

the Q.R method. or a bisection method based on Sturn: sequences [23];, and

complete method for COlnpl1ting eigenvalues and eigenvectors. For example:,

La:1CZOS used the sequences (ai)~=l and - (~i)~=l to. fona Px,A' the

minimum :POl.vnOEUial of" x with respect to A. Computing the zeroes•

­...

".

f'.,:,.
"

as described above. Although the sequence of vectors :;';' •.. ;,x
s

generated

bY' the above a.lgoritbm in exact aritbmetic will be orthO:::l.o:rma.l., in -

practice they will genera.lly lose orthogonality after a few steps of

24
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the ~oritbm have been carried. out. The main cause of this phenomenon

is the l.oss of accuracy caused by cancell.a.tion when z. 1. is computed
1.+

in step 2. Since for many applications of the method, this is a serious

s~e ot' error, it is~ modified so that after Step 5, xi +
1

is

reorthogonal.i.zed with respect to ~,x2' ... ,xi and then renormalized.

Since reorthogonal.izing x
i
+1 is such a time consuming operation, it

was this shortcoming that originally caused many to disregard Lanczos'

method. Frcm the standpoint of the way we intend to use Lanczos' method,

i.e., as a means of computing a few of the 1.east eigenvalues and eigen-

vectors 0:£ a large, sparse ~etric matri.'C, it is stil.l. a relatively

efi"icient "method even if a reorthogona.lization step is inc1.uded.

C. Paige bas suggested [1.7] that reorthogona1 i mtion is unnecessary

if Lanczos' method is used as we intend to use it. He argu.es that,

rather than being a lia:bili:ty, l.oss of orthogonality is actua.1J¥ a

b1.essing in disgaise since it is indicative 0'£ convergence of some 0'£

the eigenvalues of the restricted operator to eigenvsJ..ues o'£:-the matrix A.

We Will discuss this issue 1'nrther in Section 3.1.- For the time beiDg,

we wil.l. ignore this aspect of the algoritbm and deal. with its theoretical

properties. For this purpose, the above description of the a.lgoritbm. is

adequate.

To begin with, observe tha't the <Xi' ~i ' and Xi satisfy the

following equations:

25
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? A:/. - (1. ~: - ~ x ,
-m m-l. m-I m-l rn-1 m-~

;. = JoY. - '.t. Yo - P Yo 1m I!l In m m-

tole can rewrite theze equations as follows:

.~

~ ':.,

(2.1..2)

Define

8

'.

Ax. =2

k between one and re where

and

for any

..
"

•

J OJ. :32

:32
CX2 :3,

-
0::0: Q!...,

~ == ./' ;>

.: e

26
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(1$'k is a symmetric tridiagonaJ. l:Ia:trix With

off-diagonaJ.s • )0).' -. --,0Jc along its diagonal. 2nd /32 -, .'- --'~ aJ.ong/its
J

/
Using this notation we can write Equations (2.4 .2Y as

I

/
I

l

/
//

..,

...~. '''' .
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where the l.ast matriX is n-by-k with zeroes in its first k-l c~lumns

and zl&l in its last colmm. In partie:ular~ f'or k = m ~

AXm=XMmm

From this equation we see that X spans an invariant subspace ~f' A.
m

Therefore,. the eigenvaJ.ues of' M are eigenvalues of' A and if' v i::
m

an eigenvector ~f M ~ then X v is an eigenvector of' A (cf'. Sectionm m

2.2.)

Also,. by Equation (2.4.3),. we have

0.
since t

~1~ = e . Referring t~ Section 2 .2~ we conclude that l\;

'.,,
~ "

\'.

is the representation of the matriX A restricted to the space spanned

by the columns of' X
k

• Furthermore~ we can show that "It is a linear

combination of the vectors X,.Ax,.A2
X,. •••~Ak-lx ~ f'~r k = 1,.2, ••• ~m •

Theref"ore~ f'or k = l~ 2~ •••~m ,. the cohmms of' X
k

f'orm an orthonormal

2 k-1
basis for the space K(k~x,.A) spanned by the vectors x,Ax,A x~ •••~A x,.

and ~ is the representation of A restricted to K(k,.x,.A) - The work

of' Kanie1 and Paige suggest that f'or re1.atively sma11 values ~f' k, the

least (and greatest) eigenvalues~:r r~ WZ...ll usual:l¥ be very good

approximations to the least (and greatest) eigenvalnes of' A •

Compc:ta.tional experience veri..f'ies this idea. See, f'or example,.

Paige (17] and Godunov and Prokopov [ 6 ].

This suggests that instead of' c:a.rrJing out the algorithm tmtU

~...+1 = 0 as described. 'tefore,. we stop af'ter a fixed number of' steps,

s~.y s steps, and use the resulting matrices Ms and Xs to CQll1PU.te

'.~

;.

,:-..'"1oc... /'
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be ~ -.r-::ctor

i = ~ .and

1 is ~ess than s, we decrease

by ::me aDd go to Step 2.

=x

as be:fore.

s , stop.

Increase i

Let

Co::Ipute

COI:lpute

I~ the final. valne or

Let ;. be a S"'Jll'IIIletri<: matrix. of" order n &nd let

Note:. If'. ~ and v are an eigenval.ue and eigenvector, respe<:t-

Step 5.

Step 6.

Step 2c.

Step 1.

Step 2a.

Step 4.

Step ,.

Step 2b. If' i

ive1¥, o-r .~ and if we define

than or equal to n _ Compute sequences

s
(x.). 1 as :follows:

J. J.=

St.lCh t.hat. ::x.il = 1 _ LeT. z be an integer ?e&ter tb:an one and les=

this -.ral.ue.

•

•

~ ~
III ,,-
, ",-

then Equation (2.4..3) implies that
..,

(2.4.4)

:~ ,

'.,.J"

'Where v
k

is the k-th caaponent of v. For tne extreme eigenval.ues

o-r ~, the corresponding vk' s are often_extreme1¥ small. regardl.ess

28
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of the magnitude 0'£ ~...~ which serves to explain part.ly' why the

extreIIIe eigenval.ues o£ 1\ are often very good approximatioas to t..he

cip;cnv:L1ues o~ A. I-:r;oaUon (~.JJ.") (;:,U'l in fact. b(: u:-.ed t..o est.imat.l:

the error in eigenvalues tmd e1genvect.ors t:OIlIptlt.ed using Lhe Lanczos

method. tie will devel.op a similar f."ormul.a. for our Bl.ock Lanczos

algorithm.

"hUe an efficient and ...-'-ab1e algorithm for computing eigemalues

and eigenvectors coal.d be 'bui1t arotmd Tanczos' method as described
~

above~ prelimimrrY' experimerrt.s by this sc:thor indicated~ bowever7 that

some ad:vantages coal.d be gained by' extending the ideas 0'£ the la.st two

sections to work with a matrix af vectors X instead or a single vector

x as above. In part.ietilar~ these experiJ:1ents iniiicated that less work

overall. was reqaired 1£ we iterated with. a block of." vectors rather than

a siru9-e vector.. Furthermore7 nth the st."lDdard Lanczos metbocI~ a1. most

ODe e1genva1.ue and vector corresponding to a mal.tip1e eigenvaJ.ue can

be ccmpated at e.. time. This shortccming is avere:aae partly or who1e1y"

by wor1dJ:lg with several. vectors simULtaneonsly.

For this reascm~ we Will. move on at this point to the devel.opmen1;

0'£ a BJ.ock Lanczos method.

2.5 Extending the Basic Idea.

Let, A be a s3mwetric matrix of order n &Del. l.et x be a. vector

0'£ -anit J.ength. In the last two sections we saw that the l.east eigen­

values and eigetl\leet.ors 0'£ A, the restriction of A to the space spanned

by the vectors (x"Ax, .... ,As-~X) were s is an integer va1ue such that

~ ~ s ~ n , were usua1l:y' good apprcx:ima;:;io!1S to the .1ea.st eigenvaJ.ues

I
j-
I

!
I

!
L,1

4
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used. to compute the eigenvelnes and eigenvectors o:f A. In this and•
and eie;envectors 01" A . We also saw W..: 'ti:le Lanczos cetbod. coaJ.d h~

at the sal!le til:le.

Let K(s"X"A) be the space spamled by the.JKS

Let A be defined as above and let p and s be in'teger values

coltmms of" the JZlatrlces X"AX" ••• ,As-lx •

orthonormal JZlatriX.

such that s ~ 1, P ~ 1 , and 1. ~ pXs ~ D. Let X be an n-by-p

the next two sections 'Ie wi..lJ. exte:1d these ideas so tbat instead o:f

eigenvalue:: and eigemrectcr:; zimulta.'1eou.:;ly and will lead us to a.'1

In the r~der bf" this :o.eetion" we will outline this idea and

establish basic definitions and notation.

Definition 2.5.1.

working with a. single ·.rector x. ~ we will. work 'Iolith an orthonormal

algorithm ror computing solutions to th<: s;yt:metric eigenproblem ....hich

we will aJ.so be able to compute ::r.u1.tiple eigenvalues and eigenvectors

algorlthl:l ba..:;ed on a single vector approach. With this extended approach~

....i.lJ. require a :rewer nUClber of' operations o;.-erall when compared ;d~h an

a

'.

'u 11" the set of" vectors canprised of" the co1.mlms of the matrices

s-~_
X,AX, .....A A is independent" then the dimension of K(s,X"A)

be pXs. Otherwise" it will be l.ess than pXS

We DC1\{ redefine A.

'-

c...

De.1'ini.tion 2;,5.2.' Let A denote the restriction of" A to a. subspace

L(s,X"A) of" dimension pKs containing K{s,X"A) •

,..

c
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"''s = Xs A Xs

It follow's thai; (cf'. Section 2.2)for i = 1:t2, ••• :tPKS

~ - is the matrix representation of A Let IJ.]. ~ Uo:2 ~ ••• ~ ~p><s and

YiY2:t •••:tY~s be the eigeI:-..alues and eigenvectors respectively of' '7r,::

Let

L(s:tX:tA) will. be determined. by means o-r a BJ.ock Lanczos algorithm

to be described in Section 2.7. For the moment it is important t.:> know

only i;ba.t L(S:tX:tA) COIrtains the collmms or the matrices X,A."<, •••:tAs-~

We now proceed as before. Let Xs be an n-'ty-pXS erthonormal

mai;rix whose columns f'onn a basi.s f'or L(s,X:tA) • Let

.,
0"

are an eigenvalue and eigenvector respeet.ive]y of' A for i = 1,2, ••• , pXS •

In the next section we will show that the p least eigenval.u.es of'

A wi.ll. usuaJ..l:r be accurate approx:ima.tions to the p least eigenvaJ.ue::

•

The resu1"ts of' this and the next two sections indicate that the 1ea.st

of A and give bolmds on. the errors. In Section 2.7 we will. describe

2.6 The Error in the Least Eigenvalues of A Restricted to L(s,X,A)

•

Let P and s beLet A be a s;ymmetric matrix or order n

a lUock Lanczos algorithm which can be used to compute ~ and x.. .- ..

intep;er vaJnes such that S? 1:t P ~ 1 :1 and 1 ~ lKs ~ n. Let X

be an. n-by-p orthonorma1 matrix.

Let A be the matrix A reR'tricted to a spa.ce I.(s:tX:tA) of

eigen:va1.ues of '\ will be accurate appralCimations to the eigenvalues

of' A. We will base our a.lgoritbm 0:1 this idea.
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and the maxi.c.um

ytAy
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YY

Let

"~k

L"1 the proof OI' t.ne theorel:l.

In this sec-tion ....E: :.:ill gi-.e bo~ds en the e-'>TOrs in the l' le:::.:s~

Lerr..a ;.:: _:: .1_

eige."'l".talues of' A as approximations to ,;he p least eigenvalues o'E .":.

where :;k is any k-dimensional subspace of L(S-,X,A)

proof' of' the "theorem.

Tne Do;mds .nll be stated as a th~ore:r. and derived in the cou...-se of' a

•

•

•

,-
'.

'!'his lemma is 3. direct conseque:lce of' Lemma 2.2.1.
...•

is taken over ali no~-nclJ. vectors

Procf' .

y in

G be an n-by.-k matrix whose columns fo::m a basis for
k

~ is the largest eigenvalue of' the generali.zed. eigenproblem

t t
(GkAGk)Y = 'A(GkGk)Y

,0"

.'1.

then

=

Let !-:k ~c 3. subspace of L(:.; -,X,A) ot: dimension J.:.Lernm~ 2.(.2.

Let

where

Proof'. In general it can be shown that if' C and F are symmetriC

matri~es of' order k and F is positive definite, then

32
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(2.6.2)

(2.6.1)

max
ZFe
z~

There£ore,

t
z Cz
-t-
z Fz

Let "1 =5 '\12 =5 ••• =5 "k be the eigenvalD.es of the

(C-aF)z = ("-a)Fz

(C - aF)z = '\IFz

CZ = '\IFz

max
zFe
ZE'~

is in lit
..~

·max t =
YFe YY

YeE1c

SUbtract aFz from both sides of Equation (2.6.1) and we have

Cz = APz

Observe now that any vector y in E
k

~an be written

Proof.

for a:rry real a •

generalized eigenproblem

Thus, if '\I is an eigenvaJ.ue of Equation (2.6.1), then "-0- is an

eigenvaJlle of Equation (2.6.2).

and the lemma. follows directly from this equation•

is equal to the largest eigenvalue o~ the generalized eigenproblcm

where C and F are s;ymmetric ma.trices of order k and F is positive

Lemma 2.6.3.

where z

.,~~

-1'
J_ ~

" ..- ~"

33
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F

and

be the Choleslq :~actor

Le~

s

is negati".re semi-dei"inite 2..."l":'

Lt:t

Let E be a symmetric matrix. The largest eigenvalue A~ 01~

Proof.

satisfies

(C+E) z -== :-.Fz

Suppose

of the generalized eige.."lproblem (2.6.3) are the sarn.e as ":he eigen-./alue::

L~E. 2.~.4.

-7 •
~

~
[
f~

::.: •
"

~.

•
~.

~,

~:

! • ._-
.. !, ...

' ....,
of: the sta.n~d prcbla:l

(2.':'.1.)

where'

and

F ,

by quanti.ties which are bounded b"J

,

Thus the largest eigenva.l.ue of Eql:.a:tion (2.6.3) ll!U.St

• r
.'\,

satisfy .

zero. By \V'einstein's inequality, the eiGenvalues of' EquatiQn (2.L4)

34

semi-de!'inite a!ld all of its eigenva.l.ues must be less than or equal. to

1\ _1 -tl,IS -:ES I

and the lemma is proved.

S-Ls-tcan. differ from those of -c

Since S is the Cholesky factor of

Since C is negati-.re secli-de:finite, S-;:S-t must also be nega.t.i"..re

By Lemma 2.6.5,

Note tha"t-,-
•

-f ' .

~
;~

\-,

,. C:

.'~,
~~

.'
.. ,-,~

,.
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Lemma 2.6.5. For a:a.y ma.trices C and F J

Proof. By the generaJ. pro:perties of matri.."C norms"

For the s;p~tra.l nonn" we also have

and. the lemma f'ollows from the last two equatioIlS.

Note: Lemma 2.6.5 w.'8.S also established by Crawford (3)" but

the proof given here is dif:ferent-

i"

Lemma 2.6.6. Ii' C is an n-by-n symmet:ric ma.trix: and C
k

is the

leading k-by-k })tincipaJ. submatrix of' C "..then

for k = 1,2, •.. ,n •

?!.-ooi' . For any s~etric matriY. F , say" liFii =" maxlJl.. (F) I
i J.

The

lemma follows from the f'act that the eigenvalues of' Ck must lie within

the interval contsiniDg the eigenvalues of' C ] .

Prooi".

maxld.1
i 1.

'''''Ia.'

= maxl~· CD) I
i 1.

mexld·1
i 1.

35
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of (I+E) are greater than or equal to one, and therefore, all the

eigenvalues of (I+E) -1 are greater than zero and less than or equal

S'

....

~ ..'
'C

Let E be a p:Jsitive semi-definite ~etriC matriX;

This lemma follows from the coservation tha.t all the eigenvaluesProof•

Lemma 2.6.8.

to one.

-t.hen

.,

•

•

Lemma 2.6.9. Let W be an n-by-p orthonormal matriX. Let

-
.',

w = [::]

where WI and W2 are composed of the first p and last n-p rows

of W:I respectively. Let c:. be the least singular value of WI •mm

If c:. > 0 , then
nun

1
-2- -1
O"min

..-,

Proof. Since W is orthonormal,

rearrang;.-ng terms, we have

-1
W

l
exists. Therefore, ai'ter multiplying the last

-1
on the left and by W1 on the right, and then-tequation by Wl

Since c:. > 0 ,mm

36
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Since the largest eigen..m!ue of
, ,

1/-·' _
""1Il1l1 ~

,.
1
.'j

"

l.
-2-- 1 ,
a min

and the l.emma. follows from the last two equations.

We 'Will now state and prove the theorem giving the bounds on the

errors.

Theorem 2.6.1.. Let A be a symmetric matrix of order n nth

eigenvalues ~ 5 }..2 5 •.• 5}..n and orthonormal. eigenvectors

ql.'~' '•••,~. Let P and s be integer values such that p> 0 ,

s > 0 , and 1 S pes 5 n. Assume that A < L"I. Let X be an. p --p-t'"

n-by-p orthonormal matrix, and A., the restriction of A to a sub-

space L(s,X,A) of dimension pes containing K(s,X,A). Let

-
~l. 5 ~ S ••• S ~s be the eigenvaJ.ues of A

and

Define

where WI and W2 are ccmposed of first P and last n-p rows 01' W,

respectively. Let O"JIlin be the smallest singul.ar value of WI .

If amiD. > 0 , then for k = 1,2, •.• ,p ,

2
""k5IJ.k5~+~ ,

where

37
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2
(An -~)

tan2 9
€k 2 (l+i'k) :?

Ts _1 I-'ll!.

9 arc cos O'min :? ..
i'k = (""k - }<.P+-1)/(~ - }<.n) :? and

i~

...
l.ijoO-

..'

'r5-1

, "

(s-l) -st Chebyshe·. polynomial of: the first kind.

,
'~,.,...,

,t.' ", ~t

Ti; .~c

'.~,
l'

::~;
, ~;"II.'

:~-''''''j,
, -~:.

~,j"l
':;: -- ';
. ,I..~

~~"~,,

'~:j
,:i

''-.~ ;t
;~

"
,~ .}

:;.10 of"{

.'i

"

~

Proof. We will show that there are p vectors gl:?~'···'~ in

L(S7X,A) such that if Ek = sp(g17"'7Sk) 7 then

t.... < max
it E..

Y€K

YFO

~rtlJ.~r 2
ot......:.:.z. < t... + €

t .it Yoyy

By Lecma 2.2.2. and Lemna 2.6.1"

A.. <~ <A..''le - k -"k
(2.6.6)

Gomb:L."'line; (2.'~.5) ar.d (2.(,.(,) will complete the proof: o-r our theorem.

Let P b~ the polynomial such that

p(}<.) = T l(z)s-

where

a.."ld T
s

_
1

is the (s-l) -st Cqebyshev PC4'nomial of'the first kind.

".,..... -' ....

Note that, by the prope!"ties OI~ Chebyshev polynomials7

IpP... )\ < 1
J. -

38
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f:or i = p+-~, ••• ,n , and

,. . ,. -.. --.... ,....-

I

<,'" .- - ::-

(2.t.>.$)

Let CO,c~" •••,cs_~ be the coef:ficients :in the expansion of p(1\.) in

powers of 11..

pC11.)

Let

That is,

Note that the c01umns 0 f H are ~ear cocr.binations of the columns

s-~_of X,AX, ••• ,A ~ and hence are in L(s,X,A) •

matrix of: eigenvectors or A,

PCA) Q. = Q peA)

where A:. diag(~,11.2 ' ••• , 1I.n ) •

r°'ran the definition of: W,

x = QW

Thus,

H = P(A)X

= P{A)QW

= QP(A)W

Since Q is the

Now ~et

....
i

•
'.... ' .,~ ,.;, .. . "
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Def'ine

•
IJ~~e tha.t k = 1~2: •.. :p , 3ir.ce it is a linear

c'Xl1binati:m ~f' the colU%::."1s of' H. By F.quation (2.()·9)

•
G

,.
where

~ = (5"02: 0.0:5 )- p

Now let.

(g, :OL.: ••• :6. ) :_ -.,: t:

• : and

We now "~t to bound
••
I
>,'.

m~~

v~T:
~-~k

YF6

ytAy
t

YY

•

•

By Lemma 2.6.2, ~ is the largest eige."1'lralue ot: the genera.li.zed.

eigenproblem

40
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Now~

_ _ '. " ". ~., ~ ~ 'w. __

,

Thus, ""k is the largest eigenvalue oC

By LeD11118. 2.6.;, the largest eigenvalue 01:

.'.
,"

is Ak, -~. Observe that

(Dk + ~!''2 ~ -~(I+ ~~»

and that

-J. .,
) -.

! .

is negative semidefinite. By Lemma 2.6.4,

By Lemma 2.6.8,

(2.6.10)

(2.6.11)

;:

:;

---~-:---------_..... -.-_. ... ~. •• J __ ,,' "

.', • ,. ... , •• " •• r J.' ~ ....,'.,

~:..
.....,~ .. -....~,...
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-,:~'

".

-~.

Thus

<

".

where

By Le:!r:la 2 J.;-7 a."ld Eq-J.ation::: (2 -~.7) and (2 .f.:·.o)

Three applicat.i::m~ 0: L~ 2'.':.5 cive U::

Not<; that

· i.· ,: ~

".

(2.6.1.6)1
= -2--- l

crmin

Since X is ortho:lorr.lal:- W i.s orthonomal and there:rore~ by LeIm:1O. 2.6.9,

.­•

: -· I·· l

:i
· l· ,. f
'.' t ..
-; 1 •
· t
". t:I
:*i

"o·
j

By the de:fini.tion o~ ~ ~

cos ~ =

so that

, .

•

- 1.

21-0" _
!!loW t3:J:i2 g (2.6.2.7)
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By combin1ng Equations (2.6.l.O) throogb. (2.6.11), we get

and

.--. .~ ~ - . ...,

~ -~ -2/.. +?:\..p+1 n p+1-lt
~ -~p+1 n

where

Therefore,

and the proo£' 0'£ the theorem is complete.

Exa-""l)1.e. SUppose A ~:r order 1000 is such that ~ = 0.0 ,

~2 = 0.1, ~ = 0·5 8Z1d ~ = 1.0. SUppose s = 10 and X is

suCh tat cr
min

= .04 ; then

0.0-0.5 1
"1 = 0.0 - 1.0 = '2 '

7
2

= 0.1-0·5 = 94
0.1-1.0

• iI
1

•

•
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•

I
· ,. We have

Q = arc cos( .Oh) and

= ;.9 y.l0
6 ,

.-

.~ ...
- .

In th~ ne~ section we will develop a Block tanczos algoritblll

'.

.~

...
-"~

'1'".:
,,'~'

''!! "j

:'So
.~

~:
il.-"

';i
~

Will tenq. to converge

[
i = 1,2, ••• ,p-1. This

t•

....
:1.

U,1' •• -," of." I.."pxs ;
i
I

A.i + l ' t:ortol:lOre rapidly tha."lA.,
1..

which can be used to compute the eigP.11vaJ.ues

dat":i, in :fact, accu:r in pract ice.

restriC+~ to L(s,X,A) •

Thus,
""1

anfl j.l..-, satisf'y,
'-

1.:')
3-9 y 105 ' ~,

1\.1 < 1-1 < ''"I + 1"
. = "1. .;- 2.{xl.O--'

1.5;.: 10 ...
and

•
"'2 < < A.

2
+ ·9 . :';.0 x 105 = '-2 + :r: 00iJ-7

~2 - 12 -' ~ .... ,
,9f~)'. 10

•
r
l
f
""~,
,

c ,
,

" l

-•
· .,

-
" -, !
· {

i

i
i

:t ;;
,

2.7 A Block Lanc::os A4-or.i tiE

In this sec:.:.ion we lo"ill develop an algotit?J:!l whiCh is lm exte!1Sion

of." L&nczos' original a.li;oritbm presented in Section 2.4. Rather than,
start with. a single vector x, we -w"i1.l.. begin ."'i.tri a. bl.ock of "Teetors X

.­
"which playex.)

J.
ana. generate sequences of matrices

!=
r·.

'I­
.I.
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roles similar 1;0 those played by the sequences «(Xi) ~ (a
i

) , and

respectiVely, :ir. Lanczos· method.

Lanczos developed his method as ~ollows:

Let A be a ~etric matrix of" order n. GiVeIl a vector Y.

(x.) ,
J.

"

such that Hxil = 1. , comp.rte Ax and choose ~ such that "z~1 is

t
minimiZed. where Z2 = Ax - ~x. It can be shoo"'l1 that ~ = x Ax and

that with this choice f"OT ~, z2 is orthogonal. to x. Note t.ha.t

if" z2 = Q , then x would be an eigenvector and ~, an eigenvalue.

{ 'I "Define ~:: z2. hZ211 and ~ = x. At 'the j-th step, we have ve...-tor::

~,~, ••• 'Xj and we choose ex;j and "lj'''2j'·· .~"j-l,j such that

" 'I,IZ-w-l' "is minimized where z. 1 = Ax. -a.x. -". 1 .x. 1- ••• -1l .x.
oJ' J+ J J J J-,J J- ,J .1.

Lanczos showed that, in f'a.ct,

respeC't to a. and.". 1 jJ J- ,

Hz "..,,: II need onJ¥ ~ IIli.n:ilnzed nth
J -

(". j = 0 :for i < j-l) and tba:t with
1,

'these optimal eb.oi.:es f'or Clj and 7'j-l,~j' Zj+l iz orthogonal to

~,x2' ••• ,xj . If' Zj+ll= 9 , we let x j +1 = Zj+ll H;:;j+lll • For sane

value Cl less than or equal to n, zm+1 will. be eq-aal to Q and ~he

sequences
~

("k-1,IJ~=2 ' and ("IJ~1 can be used to compn:.e

SOIlle or &11 01: the eigenvalues and eigenvectors 01: A •

Note: If' ~e 1et 6k :: "k-l.,k ' then "thP. sequences genera"ted by

the above procedure are 't!1e same as those eQliIIlUted by the algor"it1= in

section 2.4.

We &l.so saw in See'tion 2.4 that if we stopped the algorithm. af'ter

%

,
t
~

~
J

~
~

• i"



--=-- .-."- ~ , ,.........-

(2.7.1)

~uch t~t ~he col~~~ ofR2 ,R .. , ••• ,R
o

•

-.) .'

(Z,.x"', .... :·: )_.', • $
0.,
''''::'''

o:..-r.honorr.Al m:::.tri:~ ',. cQ:!\pute~ ;:;. sequence 0:: ::r..:.tually ::.:r.:hogonal

c~t:.ld be o;;,see. r.c obT.a.:'n the ::lat::.-i.'(. !"ep::.-e::en-:a-:ion of tile restriction

•

•

•
·,t ,,-r s-1...(
oo.i"~.~ •• • ,1-. 0" and

, -

.•

eo t
'.' :R~"1 ... eR2 '·'2

""" (2.7.~~)"1:;

e ...
!Ji

. ..
:;-1 R:;

R I-1s -

is the :!1atr:i;-: rep:'esen..ation 0:: A, nev: def'inee. "to be the CI*!"ator A

~_e_~-...'~c~ed t~ T I~ ~ ")
..... - _oJ _",'" .... , ....

In order "t~ reduce sOC!e'"..ha"t t~e compl~'ti.ty ~~ the deore!.op:ent, .-e

re~'!"tict slightly 'the ra.!lge o:~ ·.m.lues the ~eters in the :pr.:j~lem l2y

asSlr.1e.
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and the number of steps s satisf'y

1 :s p(s :s n

This restriction implies, for example, that if" we start with an

(2.7.3)

n-by-p matrix X where l:S p :s n , then we can ca:rry through the

- -Block Lanczos method at cost s steps where s satisfies

1 ::: s ~ nip

::-·rOlll. the standpoint of the problems to which this method will usually

be ::l.pplied., i. e., problems of very JArge order n f"or w!J.i.ch, because

of limited. storage, p« n and pxs« n , Equation (2.7.3) does not

represent a real restriction.

We 'Will follow a path s~r to that f"ollowed by Lanczos in

developing his :llgoritbm. To begin, let A be a symmei;ric ma.trix

of" order n and let X be an n-by-p orihononnal matrix X. Let

j( = X
1

compute

and let Z2 be the result of projecting YJ. onto the subspace orthogonal

to ~. That is,

Z2 = (I - ~Xi)AJS.

(2·7·4)

where

By iefinition, xi~ = 9. Strictly speaking, choosing ~ iu this

• i
.~

~
"II

1
h

• :{I

7'-

"'/:!
~\'

.<

->....
)

,
1
'~
:r,
;/
;1..
"....

?
~;,

~
"

"'".,
:<
~

i'.i• I...,.
~

I
.~

•t
~
'~
.~

i
•,i.

J"

..,

manner does not f'ollow Lanczos I developnent.

47

It can be shown., however,
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Si."lcebe th'a rank of

that choosing Z~2 as i:i Equation (2·7 .J..) minimize:: liZ: wi"th r<::::p'".::'t
II ~~. \

to ~ll possible choices o~ M
l

.

Z2 i~ an n-by-p matrix. Assume i'or the I:l~e.·rt tna't.. Z2 Ie,

and let

orthono~al matrix X
2

and a p-oy-p =atriY. R
2

where

definition, 02 ~ p. Factor 2
2

into the produc"l. of a!l ~--::l:r-p

If •. ~ p • then"2 ' is orthogonal to sin~e

to Xl' If ;:>2 < p , tb~"1 this ca)' not :l.eccss~ily be the c~e, :;0

we add the orthogonality condition as an additional c~iterion for

choosing X"" . In any event,
c-

t
9 (2.7 ·5)X2 Xl =

Note that X and ~ can be computed using a Gram-Schmidt method
2

~. : or a Q.R fac"orization method based on ~io1:l.seb.older transi'orma:tions.

such a way that the 3.d.ditional p - P~ r:olumns can be chosen so that. .X
2

is orthono!T.lal and Equation ('2.7.5) is satisfied.

':.,;::.,

X , we

48

Tb:'.l.S, at the end of the first step, sta..-ting from

..

have comp-..rted matrices M
1

) R:2 and X
2

such that

If P2 < P , then (p - 02) columns of' )"'""2 ..."ill not be detennined by

either of these method.s. However, both methods can be :programmed. in

where



-'.-- - ..... ....-~ .. ".,~ ,".eo • ,". -:~,:.
". ';~~. e,I·~· ...._.... _....... , .• ..., ..

a."1d )(2 is orthonormal. and orthogonal to X~.

Assume now that we are at the 1)eginning of: the j -til step where

J < S ~ and that we have a. sequence of mutual.ly orthononna1 matrices

Xl" ••• , Xj

such t~t

.",

where

, i = ~, ••• , j-J.

Compute Y. = At.. and let
J J

.1-
the space Sp(XJ." •• ,X

j
)

Since the projector onto

z "+J. be the result of projecting Y . onto
J J

orthogonal to that spa:nned by X
1

,X
2

, ••• ,X.j....

( I - X .X~ - X. ~x~ J. - ••. - ~ r)
J J J -... J - -Tl'

we have

t t t
= (I-X.X. -X. ~X. 1- ..• -JLr)AJC

J J J-'" J- ~~ J

:::: AX - - X .M. - X.. IN. 1 - - - •• - XJ:N~ J"J J J J - J - , J ..., .. '
i

Where J.
J,

'.. '." -• '. -._ .... " I ..........' .... '
.:.. .. '

and

N.
J

"' •.



'.
~.:,.:

i-:."

~or i - 1,2, ... ,j-I

N.. - '-1
~, .1

However, f'or i < j-l , we have

cy Equation (2.1·0) a~d
,',

"}

,;

".:

~or k = i-I, k = i , or k:.: i+I if' i < j-I - Thus,

,... 'r ',- 7. ??= nJ\.. - ...1·~. - •• , L'. 1 .
J J J J-.I.. J- , J

Note that by Equation (2.7·6),

;.x. 1 = X. 2R~ I+X. ,f-r. , +X.R.
J - J - J - J - .... J -.... J J

.~...

so that

~... '"
~•. 1 .J- ,.J

XtA".. ..... 1
J J-

Th.u-s.

Note also that in COI!lputing Zj+l' we need. only project AXj onto the

space orthogonal to Xj _I and Xj ' and Zj+l will automatica.lJy be

orthogonal to Xl" - - 'Xj _2

Zj+l is a..~ n-by-p 1!1a:t~iX. Assume for the moment tha.t Zj+I 1= e

ZJ'+l As we did for Z2' factor Z'+l.J

o!'thonorma.l matrix X. 1 and a p-by-p
J+

That is,

"
':".;+1

and let Pj+I be the rank of

into the p!"odt:.ct of an n-by-p

matrix Ro+,
J -

,..-here ;.~+,x '+1
J - J

I . If Pj+l <:p , t~en Xj +1 is required in addition

• 50
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'to be orthogonal. 'to X1.,~,.- .,X
j

.

Thus, during 'the j-th set, we have compl.tted. matrices M
j

, X
j
+

1
,

and Rj +1 such 'tha't ~

where

and Xj +1 is orthogonal. to ~,X2' ..• ,Xj .

Assume now that we are at the beginning of' Step 5 and that we have

s n-by-p ur.rtuaJ.ly orthonormaJ. matrices :JS.,X~ ... ,X
s

and sequences

of' ma.trices ~'M:2' ... ,Ms _1 and ~,R." •• - ,Rs such that

= Zs

= AX1 -~1\

t
= AX2 -Xz~ -X1R2

't
= AX -x M -x Rs-l s-J.: s-l s-2 s-l

As before, we now compu:te Ys = AXs and let Zs+1. be the result of'

projecting Ys ontc -the space orthogonal to that spanned by ~'X2'·- .,Xs

However, as we saw above for the j-th step, AX
s

need only be projected

onto the space crthogonal to X
s

and X
s

_
1

and it will be automatically

orthogonal. to X1'X2'·· .'Xs _2 • Tha't is,

Zs+l

where

'. ~.~ ,.... , • I~

'- ....

51
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• ;-
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and

'f

•

Ns-l,s

Also, ~ before,

.....

X2~ Z2
cO - ;-:_ r~:,· ....·1 .1. _

YR Z"
1\9",. - x.'i'"-2 - X.1R~.~; , '-"°2

7
~. ,

.JT-
l,,:'·: "

J
- X: ";"1.

J J
t.

- .... "T:\'
.J-- .J

(2.1.7)

X Rs :::
IJ.. -Y •• -x Rt

·s-1 ··s-ll\;-l ::-2 5-1

Let

_. fIX
s -7. fwts s

- X R~"
s-1 s

, 52

""'"

(2.1.8)

~ (2.1·9)

r-t 1 Rt
K- k

g R. :11
It 'K
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t:or k = 1.,2, ••• ,s. That is, Xl! is an n-by-pXk orthonormal. matri..'C

and 17i. is a. ::;;ymmetric block
!I: - •.

tridiagonal matrix o£ order p·k fonned f'ro:n the sequences (~, .•••,~)

and (~, ••• ;~\) • We will now show that

and. that

contains

L(s,X"A) = Sp('X~,)

K(s,X,A) = Sp(X,AX, ••• ,AS-lx)

(2.7.10)

(2.7.il)

(2.7.12)

i;"'.,..

We will then give a. precise description ot: an algorithm for computing

(X" ••• ,X ) ,_ s

based directly on the preceding deve1opnen.t and in light ot: Equations

(2.7·9), (2.7.J.O), and (2.7·11), is our goal. in this section

Observe that Equations (2.7.7) can be rewritten

A:S. = :s.~+Xh

~ = X1.~ +Xh+X~;

PIX. • t
XjMj + Xj+l.Rj+l.= x. l.R. +

J J- J

AXs = X R
t

+ X M +Z 1.s-1: s s s s+

In matrix notation, these equations can be written

AX. = 'X 1)( +Z ...s s s s+...

where

53
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i~ an n-by-pXs mat:!"ix all <:)f who::e col1.mms are zero except the la....rt

....

..;::..

p

By de:ri-"lition~ Z::+l is orthogonal

TherE:!'ore,"' Z"·l~ ••. , ·s

which are the col\L~~S of Z~+J.. -

and since

to

,

....e have by Equation (2.7 .1L.)~

'.;

'...,

~.

(2·1·15)

is a. linear

k-l.
(X,AX, ••• ,A 1:)

We "'"ill. show inducti-.-el:y that

for k =l.,2,. - .,s , where Uk ~_s matrix of order pk. This will

k-L
imply that each column of the ma.trices X,AX, ••• , A. JC

We aJ.so have the following result.

canbination of: the col.umns of (Xl." ••,~) and, therefore, that each

co1.um...... is con'Cained in L(s,X,A) .

Pr.:>of' •

Theorem 2.7 .L L(s,X~A), the space ~eci. by the col.umns of

(Xl'~' ••• ~Xs) , contains the co1:umns of the matrices X,AX, ••• ,As-lx

Thuc, m::: i:: the repre::entation of A, the re...ee-triction of A to

the space L{s,X,A) •

. i

, !
, i

I

Ie..
•

. f
i
i~

.,
. I
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Assmne that Eqaation (2.7.15) holds f'or sane k < s. Mal.tip~

both sides of' E~ion (2.7.15) by A gives us

(2·7·16)

f'ran which ye can conclude that. ..

(2·7.17)

By Equations (2.7.1;) with s replaced by k,

.-..i_ ,

".
.~

.'~

.~

..
,,
!
I

'-' 1
f
I'
I

, !
I
I
I
I

I.

I"
1

'-'::;"
.~ ..

c L.,. "A
"';' '. '"~''''''I'''''''''~'''

. - -~ .'

(2·7·18)

." r-' .,.:.. '.,. " • 1-~"'''';'·.I . - __ • ~,;I':'

I ~~
R:2M:2 R

t
:5

R:3 M"
.J

R4

;r:,.'"''~"_'''''
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where

Let Vk denote the last matrix in Equation (2.7.1.8). By canbining

Equations (2.7.17) and (2.7.J.8), -.re have

(X,AX, ••• ,A'k.x) = (~,~ ••.,Xl&l)u~l

This ccmpletes 'the indnctive step and 'the proof' of' the theoren•.

Before describing our algorithm, one point needs to be cleared up.

Nam~, our assumption that Zj+l f:. e f'or j = 1,2, •••,s-l. SUppose

tha't we intend' to carry tbrougb. s steps of' our algorithm, computing

.. ' .. "~'

I·i .~

I
t
!
.!
1
J

\
.;
.J

-l

"' ,." ~'-"'"

I.,.,,
.,

r
!

:i
,".:I

j

:1
l
~1
~j
:'(
~ t..,
~ _'~

.,
~ !

."
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::equence~ (ro!i)~=l ~ (Ri)~~2 ~ and (Xi)~=l ~ but f'or somE- value .j < s ~

Z.:+1 -= ~. In thi:: ciret.lr\'l.SU.t."lce~ ;,re replace. the value :: by .j and

u:;e t.he I:"~tricc:: 'Tc. and 'X. 1..0 CCir.1pu1. r: •.:Y..;..ct (.-i1~en'r..u.ur~:: ~d
,I J

--:------------~~.,.-..-- . '.;; . '"

i ...
A and its eigen-

(cf. Section 2 ~2) .

eigenvectors of A. This can be ::een by considerine Equation (2.7 .l~).

If' we repl.2.ce s by j ~ the equation is ::till va1.id~ and since

Thus, the eigenvalues of' 111. are eigenvalues of'
J

vectors ca."1 be used to cqmpute eigenvectors of' A

...
: ;

· i
· ,,

· i_r
· t

It would also be possible to continue computing i:f Zj+.l = Q f'or .;

J < s by si:nply choosing Xj+.l so.lch tb.a.t

,

P.n algorithm incorporating this idea. is of'and letting R . '.1 = 9
J~

little interest considering the a:pplica.tions we have in Ddnd. Fcrther-

in'teger values such. that P ~.l and

.'..

(R')~=2 ' and. (X')~=l.:1 1- ~ 1-

s
(M·)·l~1 1=

Let ~ = X and i = .1 •

Step 2.

step 1.

Let A be a symmetric matrix of order n. Let p and s be

We now describe a Block Lanczos algoritbm wilich can be used to

compllte the sequences

more~ it is extremely 'tmlike1y in practice that Zj+.l = e for a:rry j

even if' exact arithmetic operations are assmned.

Let X be an n-by-p ,orthonormal. ma1;rix.

56
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step ). If" i = s 7 stoF·

Step 4. Compute Zi+1 where

if i = 1

if i>l

- Step 5. If" Zi+l = Q 7 set s = i

Step 6. ComptIte Xi +1 and Ri+l such that

and Xi +l is orthononua.l.. If the rank of Zi+l is

less than p 7 we reqnire Xi + l to be orthonormal.

to X. 7 j S i .
J

step 7. Incr~e the vaJne of' i by one and go to Step 2.

'!he only time s will be dif'f'erent :f'raD. iots oz:igina1 va1ue is if

As the devel.opnell:t precediDg the above description suggests7 the

ma:tr:ices (Xi) ~=l compUted using this algori:tbm will be IZll1't'lIally

orthonormal and if

..

.(

As noted before7 this is an extremely un-Zi+l = e f'or some i < s

likely cirCUlDStance.

:-

,.

~.."

'.

.,.,

;:-.

•

.. , '." • 11' •• ~_ • r.... "
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Sp(X, ~X2~ •••~X )_ s

Q', !~
s . s

experience has shown this to be the case.

contains the space

section indicate that i.b.e p least eigenvalues of' 1.'1s wiJ.J. usually be

acCtl..'"'ate approX'i.m&tions to the p least eigenvaJ.ues of' A. ComptItationaJ.

If' we compute the eigenvalues ~f' 'lI/. ~ then the results 0-£ the previOUSs

then

a.."'ld

,

In the case 0-£ the standard Lanczos ~rithm~ tie saw that the

f'

sequence of' vectors (Xi) generated by the method would lose ?rthogonality

unless the vectors z. were reorthogoneJ.ized. With respect to all
:L

The same problem aris~ in the B1.ock
-f' r

previously computed. x. ~ j < i ~
J

Lanczos method.. Namely, the sequence of' matrices

•

•

theoretically orthogonal wi-ch respect to each other, will in pI":).ctice

lose orthogonaJi:ty unless the matrices Zi are reorthogonalized. with

respect to aJ.J. matrices Xi' i < j . The reort~tion

can be combined with the comptItation of' Xi +1. and R
i

+1. in Step 6•



)OJ .... , ... -,...---

whether reorthogonal.i.zat.ion is actually needed. That i:;~ los~ o~

o!"thogonaJ.ity impl.ie~ convergence of" soce o~ the ei•.;;envalues or the

re::tricted. operator to those of" the or:L:;inal. t".atrU:. Continuinl; the

canputation beyand 'the :poin~ that orthoi,;;onality is lost7 however7 lol'ill

resul.t :iI: eigenvalues being co:t!.pUted. core than once even if tbey arc

not. I:l.UJ..tiple. Thus 7 ~or ~ reliable algoritbm7 we must either

reorthogonalize or develop a criterion ~or determining when orthogonality

is l.ost. We have chosen the ~o:rmer pat.h which7 although more time

COIlSUl:ling, is more straigb:tf'orward than the latter. We will discuss

p components of" 'J.

If' ~ and 'J are an eigenvalue and eigenvector7 respectively7

denotes the vector composed of" the last
(s)

v

Note:

this point farther in Section :;.l.

eigenwJ.ue A. of" A such that

This equation implies by WeinStein ~ s inequal:i:ty tbat there is an

are eigenvalne and eigenvector of' A 7 the restriction of' A to

'Where

The eigenvectors corresponding to the extreme eigenvalues of' 11ls are

of'tP.J'1 such that llv(s) II is very small. This seems to explain partly

- .~" l~ ' .. , .- ...,.-"

why the eigenvaJnes of" 111s are often good. approximations to the

59 \
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then ;.rc have
.,;..

equal. to 1 and suppose that p and. s satisfy
."';:

''':;.:

. -'.~

~'

'.....

Thus,

eigenvalnes conta.ins a"term tan Q where Q is essentiaJ.ly" the angle

eigenvaJ.ues or A. Ho-..rever, the expression bounding the errors 'i1]. the

60
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between Sp(X) and Sp(Q.l.) where ~ is the orthonormal. matrix

1 S p*s :s n

2.8 Iterating to Improve Accuracy

Let A be a. symmetric matrix or ord.er n and. let X be an.

Let ?1is be the representation or A, the restriction or A to the

space spanned by the col~ or Xs = (Xl.'X2" •• ,Xs> which contai:ls

the space Sp(X,AX,A~,•••,As-lx) where 111,;- and X have been
..", S

comptIted usiJlg the Block Lanczos :oethod o:r section 2.1. F:inall.y, let

IJ.l'~' .•.,~ ~ ql'~'...,~ be the eigenvalnes and eigenvectors,

respectively, o:r A COl:lpU'ted"ilSing "ls and, Xs •

Theorem 2.6.1. suggests that the first p eigenval:ttes and eigen­

vectors or A ...~~ be accurate approximations to the corresponding

since the ~pectr-.u no.t"l:l is unita..'>"ily L"l-.rariant.

n-by-p o:!"thonorca1. matrix. Let s be an. integer grea:ter ~ha.n or

•

;1
-
'J •
-{
, .
~ f
J •
: f.

~
:t

~'. ,
. r •, I
~. i-

~
i

: f
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!!-. r •': t;,t

I
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c:am.priSed or the f'irst p eigenvectors of P. _ If' we let

Q1 "" (ql~~'·· .~~) and. g be the angle between SP(Ql) and Sp(Q.1.) ,

then we might reasonably expect that g < 8 and therefore that

tan Q < tan Q since the vectors in Q-
l

will usua.l.ly be more accurate

approxima.tions to eigen-.rec:tors of A t~ X. Tb.us~ we might .

• ~

'.

•
reasonably expect to compu:te more accurate app...-ctin:a.tions by re-app}ying

the BJ.ock Lanczos method to ~l.

This discussion suggests the following a1.gori~bm for compu-cing

approximations to the p least eigenvalues and eigenvectors of' A 'to

a specified a.ce:ura.c:y:

Let A, P , s , and X be as defined above.

Step L USing the BJ.ock Lanczos .method~ comptIte Xs and ?1l s ~

the representation of A restricted to the space spanned

by X which contains the space Sp(X,AX, ••. ,AS-lx) •
s

Step 2. C~e tile eigenvalues Poi and eigenvectors Yi. of' '7l1 s

CanpIte q. ::: X y" i = 1,2, ••• ,p .
1 5"'1

-Step 3. Estimate the accuracy of lJoi and Cl:t as approximations

to the p J.east eigenvalues and eigenvectors of A •

.' If' they are aJ..l sufficient~ 3.t:ec:ra.te, stop•

,,~~ will di.Seuss how to estimate the acc:ura.ey of' com:pc:ted resuJ.ts in

Chapter ;.

The above aJ.go:ritbm. contains most of the essential. f'eatures of' our

61

.'final. method. We w:U1. modif'y it however for the :rollowing reasons:

,(:t..) The block size p will usuaJ.1.y' be d:ifi"eren:t fran the number of'

~- - ;,. -' •• , -, ~- ".. • .,', ~ j' "
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t eie;er.val1.:.es we are attempting to compute. In fact" we ......ill ...rar.t t8

~ the block. size ~ the computaLJon proceed:; .

0'-

• -..rill converge sooner than o-:.he-s. For this re~on" ......"" ;."'ill ....-ant ..0

(2·9·1)

is sone

;

were compl.."ted by means

i = 1,2,7 •••"rll

-
and ql'~"" '''~ be approximate eigenvalues

are orthonormal where

For in;;;tauce,1 if the

Let A be a symmetric matrix.

vectors?

<md the

Let A... < '°2 < ••. < t.. be the..~ - - - n

eigenvalues of A with eigellVectors ql,Q2"" .,,~. Let

RoW can we use the algoritbJ:l of the previous seci;ion to compute

'lId.them taking these already computed approximations into account ill

eigenvalues and eigenvectors of A. Re-appl.ying the method to A

62

of this method" then they 'Will mos"t likely correspond to the m least

integer greater than zero and less than n .

2.9 Restricting A to a Space Orthogonal to Computed Eigenvectors

and eigenvectors" respceti-.rely" of A in the sense that

we have aJ.reo.cly comptIted 'Without recompu:ting these latter values anc.

5:.
i

required zUlce it .."ill al..'ays tEmd. to compu"te the least eigenval-..;,es.

a:ppro.r~tions to eigenvalues and eigenvectors di..i'f'erent frore those

5:., <~" < ... < ~_-t=.- -m

a."1d eige."1'1rectors. Some modification 0::' 01U" C"..u:-rent I::etcod. is t~

In the ne.--:t section, ':ole "..-ill see how to Co this.

continue cooputiIlg a:i'ter ..e have ~ccepted ~d. stored. some eigen.....a.lue



so:lle fashion ....ould. :!:'esu1.t in our recomputing the same eigenvalues and

eigenvec"tors ,

The answer to the above question i.s to apply our m.ethod to an

cperator which is different nom A but,. nonetheless, related. to A
A

in ~-ticu1a::',. ....e a.pply our method to A, the TP.stl'iction of A to
,

.,

A • ._,.1
A 1.as n-m e~genv-....ues

axLd eige.""°.rectors ....hich ~e ~pprox.irnation.s to the eie;envalues and

vectors 01: A dift'een"t. from t.hose alTeady approximated. To see this.,.

- - -let ~1"~2'" - ''"~ be an orthono:rma.l basis for the space (of

d.:Ut:ension :1->::) ort~ogona.l to SP(Ql,Q2' -, .,~} • Let

t

and

-t ­
Q-> ;..~?... -

Let 5:~, ,5: . ':>~ ••• ,~..., d.eno,;e tl:le n-r.I eige."l';aluez of !'~2' Note
" ........,--_ f:':"':"'_ _.

a:!"e "the eigen'.ral.ues of

~-""a"'... ••-.... ,.~ i:;: the reP1"esenta~ion 0:: A and, hence its eigenvalues

.
'"

VI..:: now -.:ant ToO show that if' each ~i d.2i"ined. in Eq\La:tion (2-9-1)

iI. , , _ , .,.;.. .....iJl be accurate 8.ppToXiJ:la.tions to the
re+_ tl

rema:lni:lg eigen-;alues or A 'Note that if' all the c- = 0 ,. then
J.

"

t::J.e ..::igemra1.lles c·f A would also be eigenvalues of' A .

Def"ine

and
..



-t - g 9C;~1 AQl r~

C =

~
-t - gQ2 AQ2 !~

•

•

•

•

•

•

....,... _.....

... -t -
~"'Q Q,1 AQ,2

q:t AQ:
~l"'" 1.

B =-
-t -

~AQ20.2 AQ.l

Irate that B is similar to A. Let

-"" -9 Q.i AQ2
Do =

-t -
~Q2 AQ1

Thus,

B =C+ll

.- ......... ~ '- ~~ .. ~'.'-.". ." ..~ ...... '
_... ,...... ,

~
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<'~
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::;~

:;~
~~

'~'

~i
t~
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--,~

.,..::!:
""::-'.".-:

"'1"

or'.":
. ~e;:
-.,"

.(~

.,.;:
.-

-,

•

•

Since B is similar to A:J the eigenvalues 0'£ B 2.re the same as the

eigenval.ues 0'£ A. By the theory 0'£ perturbations '£or s;ymmetriC

matrices, (see~ fo?' ~p1e, '"liJJ:inson [23] .. Chapter 3) .. the eigen"Ja1.ues

0'£ C di:f'f'er:f:rcm those 0'£ B (and hence A) by amounts that are

bounded b'J ilAil· This q-u.antit:>r can :in 'C'ill"ll be bounded as follows:

It can be shown that

Let

where Pk is the residual vector def'ined in Equation (2.9.1). :By the

d.~.finit ion of'

..... ,.

'.~
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-t -Q2 Q.1. = Q

we have

"I' -, • ,... ,'. ,..... "~r" .~.

':-:

,

-.\ii

and therefore,

Since the spectral. nom. is invariant with respect t" orthogonal

transformations, and ci~ is orthogonal,

II~I = ilQiRII = IIRII

If all the €i = ilPill are small, then \I.lll\ will be small also. For

example,

-10
If m = 9 and € i S 10 , i = 1.,2,· •• ,9 , then

and the eigenvalues of' C differ f':r:om those of' B, and hence A,

by quantities which are less in modulus than 3·10-1.0 •

The set of: eigenvalues of' C is the union of' the sets of eigen-

values of r~ ~d ~. From. Equation (2.9.2) we can conclude that

- -t
M1.:: ~+Q.~R

Thus, ~~'~2' •. ·,:ii:m cli1'fer f'rom the eigenvalues of ~ by amounts

65
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the (n-c.) eigen....alue:; of A approximate the e.."1tire spectrum of A .

l, .•• ,m) and~ the: eigenva.1ues of A. Tak-;m 'together,

T'nus ~ for eYA':lple, i f ~l' ... ' ~I:l approY.:inate: t!le r:l least eieen....-al.ue::

;\.1' ••• '~I:I of A, the..''l the p least eig~values of A will a:gproXimate

;\. 1':-" 2' _.. ,~. ....ith errors bo'.mded by iiRI\m+ 0+ m-t-p

The Bloc!': La:':.czos algorit!::m: of Section 2.6 can be a~lied ciir~tly

•

•

•

•

to A to cOI!Ipute appro:timations to its least eigenvalues. The initial
...

ort:lonorma.l ::latrix X must lie in the do~in of A. '.i'ha:~ is,

•
lie in ~he space orthogor.a.l to the vectors

that

j{ must

- -O 0 0 Note """'0-1' -2' ••• '''m • .........

so t!lat 'to multiply by A, -..re first multiply by A and then pro.ject

FurtheDl!.ore,

- -compu-:"ed so t:b.at it is orthogonal to Ql'~' .••,~ in the event that

Z. is of less th.a::l. full ran..1t. Note that this will au:tomatical.ly be
J

the case ..: ~ Z is 0'£ f'ull rank•.u. j

The algorithm of the previous section, when l:lodi'£ied to take into

...•

- -the reS"..:lt onto the space orthogonal to Ql,Q2' •••,~

:::-eferTi.ng to Section 2.7, we add the extra requirement that X.
J

be

aCCOu:lt previously computed eigenvalue approXimations, can be described.

as follows:

Let fl. be a s:JIlID!letric matriX of oree!" n . Let .:~

; be orthonormal. vectors with m < n. Let p and s be integer -.ralues

•

•

such that P 2: 1, s > 1 and

1 < ~s < n-m

66
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Let X be an n-by-p orthonormal matrix which satis1'ies

t­
X Q.1 (.. '') /), - . ~

where ~l ~ (q~,._.,qp) •
~

Compute approxima.tions to the p l.east eigenval.u~s of A, the

restriction of' A to the space orthogonal. to Sp(ql.' ••• ,~) , as follows:

Step L Using the Block Lanczos algorithm, compute Xs and 'llls'

the representation of A restricted to the space spanned

(

A "'s-1-_)by x. 'Which contains the vectors x,AX, .•. ,A JCs

Step 2. COII[jlUte the eigenvalues ~i and eigenvectors yi

01' ""s • Compute \n.i =1lisYi for i = 1, ••• ,p •

Step 5. -F.st:ima.te the o.ccura.cy 01" ~i D.:ld q i ~ a..pproxisati~.m::

to an eigen:vaJ.ue and eigenvector, respectively, ,)1" II.

11' they are all. suf'f'iciently accurate, stop-

step 4.

In. 'the next section, 'We will integrate this method into a. compl.ete

will satisfy Equation (2.9-3).

to Q.1. and, hence, each ~i Will be orthogonal to Q1.' :i = 1., _. -,p

Therefore, each time step 1 is executed, the matriX represented by X

i
i
1
i
j

i
1
I

i
r
I

x will be orthogonaJ.s

If q1.'~' •••,~ are accurate approximations to sane of the

eigenvectors of A in the sense of Equation (2.9-1), then our discussion

suggests that the above algoritbm will compute a:pproximations to

eigenvaJ.ues and eigenvectors of A differen:t f'ran. those already Compt1ted_

Note that, by earlier comments, each coJ:emIl in

algorithm which Will also aJ.JDw us to vary the block size p •
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La."1CZOS method.

orthonormal :nattix X •

and X be the matrices canputed by the BJ.ocks

Let m = O. Pick values for p and s such that

Starting with X ~ apply the BJ.ock Lanczos method

to A, the restriction of' A to the space orthogonaJ.

to q1.,q~ .••,,~. (If' m = 0 ~ then A= A.) Let

p ~ 1. ~ s ~ 2 ~ and 1. ~ ~s :s n. Choose an n-by-p

step L

Step 2.

2.~O. A Comp!ete Iterative Block Lanczos .Algori.thm

Let A be a s-ftlIlletric matrix of order n with eigenvalues

step 3. ComptIte the eigenvaJnes ~i and eigenvectors y i ot: 11(s ~

i = l~ ••.,,~s. Com:plrl;e ~i '= "X.:?i' i = ~~2, ••• ,p •

Our method can be described as f'ollows:

Basically~ the plan of" the algoritbm is as follows: Comptlte approxi-

of them~ say m ~ a":'e sui'ficiently accurate~ compute a.pproximations to

the space orthogonal to those vectors already computed.

this section we~ outline an algorithm to so~ve the folloWing

prob~em: ComptIte accu......-ate approtiJ:lations ~i and qi to ?.i and qi

for i = ~, ••• ~r. OUr algoritt.:n will incorporate the idea of the

~ ~ ?.2 ~ ••• ~?.n and orthonormal. eigenvectors q~~~~ •••~~. Let

r be an integer greater than ze.'7"Q and ~es~ than or equal to n. In

~

the ~ea.st eigen-.-aJ..ues and eigenvectors of A ~ the restriction of' A to

previous section and have as its basis the Block Lanczos method.

mations 1;0 the ~ea.st eigenvalues and eigenvectors of A. When sane

_. ._0 .,_. _....... "•. .......-.

•

•

•

<

---1
'i P.

..~~

' .. 68
. .

• ...
~j,

~!

,',f



~~ ,~.':".. " ..- ~'.,-.

.-

-'l', -0 r--: ~ -- ,\:.~ -'•• -. - • ~'~"'i .. -,:,-,:-, ~:.. :-.,,: . _, ,"..l~ ••.. '" ,;( '~';""',,,,~ '~•.•,_ -..l'~,~."'.

step 4. EstImat.e t.he accuracy ar ~~:L =~:L and -
~i as

approxime.t.ions 1:.0 un ei.gcnvalne and eigenvector7 "

respect.ive!.Y7 or A for i = 1.72, •••,p. Suppose t.he

f'irst. k 01: t.hese, approx:imat.ions are accepted. (IT

none is accept.ed7 k = 0 .)
\

\

In practice, however, such a ci.re'cmstance is un1.ikely

'~'.'

;

st.ep 5. Choose new vaJ.ues 1:or p and s such that p? 1 7

S ~ 2 , and 1 ~ p::s ~ n-(mt-k) let

Step 6. Increase the value of' m by k. If" m < r 7 go to

step 2. Otherwise7 stop.

An un1'ortu:J.ate choice f'or the initial. X can ca:u.se this algorithm

to fail. For instance, if' none 01: the columns of' X contains components

corresponding to 8:D::f of' the eigenvectors for one 01: the initial

eigenvaJ:ues Ai' 1 ~ :L ~ r 7 then the above algorithm 'Will 1:ail to

cCJllPl11;e 71..
:L

to occur so we over1.ook th:Ls possibUi~ and accept the above algorit1:lm.

as a so1D:tion to the problem posed. at the start of' this section.

Note -that in Step 5, if k = 0 , then X is chosen as, in the l.a.st

section. Tha.t is, X is chosen to be the eigenvectors corresponding

to the p l.east eigenvaJnes of A. Otherwise, if k > 0 , thai' X

is chosen to be the next p eigenvectors f'oJ.J.owing the k that were

accepted.

llso, each time Step 2 is executed a:f'ter the first, X will. be

sucli =tbe.t

J
"

.t
~

j
1
l
j
I {

'0' 1,
L.

I
'.-

:~

' ..'
:"

."

.;1.

(;.
.'~"
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J.

,

I '.!
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~

;

~

~
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,. where ~ .. :ri 2:r - - -:r~ are thp. eigen".ra.lues 0'£ P. comp.Ited dm':ingm+.... m+ m+p

the previous ::tep- This can be seen as ::"oll::T,{s:

.
~..

is

By definition,

diag(~ l~i 2,---:r~ )m+ m+ ' n:+p

Note, in addition, that each time Step 2 is executed, X will

We have

a diagonal matrix-

Since advantage can be taken of this property, the initial X we

choose in step 1 will, in practice, also 'be chosen so that xt
AX

be orthogonal to all previously com.pc:ted vectors. This aJ.J.ows us to

Theref'ore:r

The X we chose in Step 5 sa.t:isrie~

•

':..

,,' --,
.,,
.;',
.~,.

f =,"c'

use the Bl.ock Lanczos algorithm. to canpc:te the eigenvalnes and eigen-
....

vectors of A •
..j

" ..~

Fina.J..4r, the range of: vaJ.ues '£or p and s will in practice be

restricted sanewhat more than indicated. in Steps 1 and 5. Tn our

~I·:!:

'..'
implementation:r lie require basicaJ.1.y pXS vectors in 'Which to carry

out the Bl.ock Lanczos method. In practice, we will general.J..y have

70 ;
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much fewer than n. veeto.cs f'or this pm'pOse ~n::l the values of' p

and s mast be chosen with this l:im.:i:tation in mind.

In the next chapter, we 'Will consider the problems associatea.

Yith the implementation of the above 2.lgoritbm. In p3Xtic:ular, we will

consider strategies for choosing i;alues for p and s • We will also ,

consider the problem of estiJna.ting the accuracy 01' c~puted eigenvalues

and eigenvectors.

\
\

\

,
j
I
1

- -t,
i
\.
I

1
1

-I
j
i
I

:... ,:
j

r.
\-'

~,

..,~.



'.,,

••

_. '.., _I._

~.
1.."'1 this chapte!" we illi.ll co~=ider 'the proolecz associated ioI"it~

---;;

In Section

•

•

..
- -..

,,.:11

the sequence of" :r-.at!"ices (X). CO::::ptlt-::e. in thE: Block !.a.'"lCZOZ met!:lod.

In :Jur use of' t:.hi:::; ::let~od, ....e do :-eorthogor-.a!iZE'; 'thel::e ~trices and

L'1 this ::ect.ion -..:e "'''ill. discuss o-~ !"easons f'o!" tar...Jlg this pat.h.

will be the su:Dject !!latter of' ~ion 2;.2. We will See how :in!'omation

on the accu.."'"2.':Y of' computec.. rezuJ.ts can be obtained in t!:le context o~

our method and ho-..r it can be used to stop the ~gram when a ~i:fied

accuracy has been obtained •

"In Section ::5 .3, we viTI ex2r.line the problem of' choosine a block

size f'or the B1.ock Lanczos rllethoci. 3y consid~...ng some eY.amp1.es, we

will see that. t:ti.s is not a simple problem. We will. then suggest sane

guideliIies b-,{ which an ini'OrI:led choice Clight be made.

Finally, in Section .5.4 we 'Will consider certain practical. matters

such as program end storage organizat.ion, storage requirements and

operation counts.

:>.1 Reorthogona.l:iza..tion in the B1.ock Lanczos !-lethod

Recall that in the Block Lanczos method we compu.te a. sequence o:f

.'

..~

.~.

which theoreticaJ.J.y :form a. 'basis :for the space

A is a. symmetric matrix of' order n and

X is an n-by-p orthonormal. matrix, where p and s are integers

12
"1
~.

---~,
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suCh that p, 2: ~ , 's 2: 1. , and p<:s 5 ~. While theore~ically -:::he

sequence ai" I:I:&trices (Xi) is orth::mon::al, in ~ice t.oe"J de:P3-""'t

from ortb.o::lo~t".fafter a ~ew steps ~f' t.he method. Fr.:e the :;:tanclpoinl:

o~ the standard. Lanczos method. (ll'" 1.) , t.his :::'os:; of' orthogonaJ.ity ""~

step was added U> -the algotithm ;,rhereby~ vector x. i::
:I.

:reorthogonal.i.~cd '1oo"ith respect to all prt~viou::;ly Co:!1put.ed x... .j < i .
J

'PaiGe [1.71 l:mrever found t!iat uset'ul rc~-ults could be obtained even ii'

a. reorthogonalization step is not included ::ince J.oss of arthogoD2l.ity

:impl.ies convergence of some of the eigenva.lues of the tridia.gonal matrix.

to those of the originaJ IE!&tri,x A. The :28.jor dra.i.'back With Paige's

8i'!lroach is tba.t eigenvalues of A will otten appear more than once

when the eigenval.ues .:>~ the tri~matrix are computed.. The rea::on

1'or this is that once orthogonality is lost.. tile met.!lod e:::;cntially

re~s and recomputes eigenvaJ.ues it ha.:: aJ.r~ c:anputoo. 'l'hu:: .. 'th<:

vnl.idity of results COI:lplIted usine; the Lanczos method without

reorthogona.1ization is questionab1.e.

The same prob1.em arises with the BJ.."'Ck r.anczos method. That is,

i.r we a.pply the method wi:thOlIt reorthogonalizing the Xi then ac::ura.te

rest::l.ts can be canplIted bu"t their val:id:it".f is questionab1.e in ~e same

sense as before -- we can not determine which of the eigenval.ues we

compxte are reaJ. aad wb:ich are images.

Adding reorthogonal.ization to the B1.ock Lanczo~ method stabi.l.izes

it and we can be sure 01' the resul.ts we ccmptrte, but the cost. 0:1" this

insurance is considera.b1.e. (The stahili:ty 0:1" the methOd vith

reorthogon.aJ.i.za.tion is not something we ba.ve proved, btrt is an observation

.'
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1. •

He concluded that a. Block Lanczos

I

liowe-.rer, e"J'e.."1 ,...it.h reorthog~zat.ion, our early experj%arts

i::lJ.icated tha~ ~he Block Lanczos tle-thod co;;;o compete ef'fectivel:;r in

~~en ~ot o~~y ~ou~d ~hp.~e be ~ concite~blc redu~tion in the ~~oun7. of

in eenern.l for the solt:.'tion of: large S})2rse eigenproblems. For thi:::

it) wi~hout reorth:>gor.r.Hzation as 10cg 3.S the sequence of matrices

Since this t.i.:ne.. P.rof'essor ~j. Kahan of' the Unive..-rosity o£ Ca.li:rornia

have I:ever i:>een published.

em. 1;his aJ.terna.'te a.pproach•

at Berke1.e-.f has related s:::me of" his results and conclusions obtained

retained "healthy independence". He also discovered a W8:y of de'terminine

ad..:i a la!"t:::e n:.::::ber of' ope...-ation::: 't.~ ~he method, b....'t. necessit.a:tes 'th~

te:ms o~ reliability, ef'f'iciency, a:ld. storage requirement.s -.rith t.he

:f"rom ~:rir:!ent.::: using a Block Lanczos method in the late ~950Ys, which

approach. The reader is urged to consult Cull.um's 'Work for more deta.D.:;

me-r.h::xi of si::rulta.r:eous itera'tJ.on, :previously the most ef'fective method

!"E.-asO:1... we c::o:;e origL'13-ll:.,r <"0 re:Iedy the above problem with the Blo.:k

when independence is lost and used this test as a Cleans of stoPPi.ne 'the

method. The 'Work of Cullum [ 4 J a.ppears to reflect Kahan's ideas and

1!Iethod cou1d be a.pplied in an iterative fashion (as we have used

•

.1 •...
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;.2 Estimating A::~...- and Convergence Criteria

Given a. syllImetric matrix A ~ the goal. of' our algorithm is to

compute sca.la.rs ';' and vectors x.. i J.
(whe.::.-e- we assume \\x. II -= 1 ) such

1

that

(;:.2.2)

where -r is some tolerance (to be determined). In this section we

are interested in determ:ini.ng when the eigenvaJ..ue ano -.rector approx:ima.tions

canprted using the iterative Block Lanczos method satisfy Equation (3.2.2).

Let X be an n-by-p orthonormal matrix. S~se that

where

(;;.2.4)

and x _ is the j -th colmm1 of X. If X is used to start the Block
J

Lanczos method (r~er to Section 2.7 f'or notation),. then Xl = X and

(3.2·5)

form (;.2.1) for the columns of X and the Ray~ei.gh quotients ~j

defined by Equa:tion (3.2.4) provided X satisfies (;.2.3). However,

and the j-th column of Z2 is

Thus,. the Block Lanczos method immedi.at~1'-""Ovides estimates of "the

"

~'

".-~

for "the method we have developed, the X used to start the BL--ck Lanczos

method each time wi.:ll satisfy' (3.2.3) where the ~j are the eigenva.J.ues

compc:t;ed dnring the pr.enous step (cf. Section 2.1.0) •

75
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Note:

• ,_ •..,~ ......~. -', r •

SiIlce (c:f. Section 2.7)

. . ~--"I -.... ,....... -.-:; ;. ._:-.

In our program, h01oTe-"er, ....e h<='-J'e

than R2 to cO!Ilpute the -.ral-.:es o:f

II I, "I' I'"E. = p. I = liz. I = 1i!'·11
J J J' J

or equal "to one in modul.us. That is,

f~i'X= if' I~·I >l , and
).

or = (;;.2.7)

eps if' 1u..1 < 1. ,
'). -

76

Howe't"er, in detennining the accuracy o~ computed results and

cps is some specif'ied precisior..

(c:f. Section 2.9) that if' 'We have already computed m eigenvalue and

eigenvector CopproXimations ~'~2'··"~m and ql.'~'" .,~ , then

additionaJ. &PI-TOximations may be obtained. by computing t~e eigenvalues

and eigenveC"tors o:f A, the re5triction o:f A to the space orthogonal.

to Sp(q1.'" .,~) . However, the eigenvalues and eigenvectors of' A­

will dif'f'er ~rom those of A by 8.!Il.0I.:nts that depend on the magnitudes

eigenval\les and eigenvectors must also be taken :into accotmt.· Recall

greater than one in modulus and absolu'te error :for eigen·.ra.lues less tilan

The tolerance 't' we use is basical1.y re1.A.ti-"e error :for eiger.va1.ues

e~ablishi'lg ~... stopF..ng criterion, the error in yreviously computed.

where !J.. is the ei.genV3~ue app!"oximation corresponding to ~ . and
). ).

:fou."la. it easier to use Z...
c:

and X
2

is ~rthonormal., we also have

1Ii!.:.er<il r . is the j -th column o:f p.....
.J <::
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~.. ~ t:-:e other e;-:.trec, if" all the

l~_~~._.p~:": l!" i

-..."u1ci. nor. e:..-pect i.hc ei,~e."iva.lues :L."ld eit~env(:Ct.ors ;)[ p" to be U::d'uJ

a::-e =er:::~ theil eac=. qi is e:.n eigen'Vecc.or of .i'>. ~d the eigec'\"!U.ues

,
'"

are cOll1puti."lg' are c~nverging to 'teose o!.~.;. ancinot t?1erefor(: .

if' -...,;e c:r:.pute the

t~e."l there is -:l lo~er li::lit t::: t:-ae valu~s of the &. beyond .hich ;':0;:
J.

can n;:,t. reasonably '?xpeC't thera to de:::::en':.

OUr prog-d£1! takes this er_·...xr into accOll.'lt as !':")110W's:

,-~
• I'" +\ -1

then we acce-m._'" :;. value ., a..'1d a "I."',=,--tor x if' th~ir .:orreS""""I'... ..;·"., ("-~-_.~ -1.

satisfies

"C later on to acccr.mt for roUlld--:>ff error in compt."ting 1':1.' ) One way

of looking at this criterion is that i.t is a way of estimating 'Wh~"l the

< -r+ Tm

-where T is gi.....en by Equation (3.2.7). (We will add one more te:rm to

...
cor.:;,puted eigenvalue ~ has convere;ed to an ei~envalue lJo or A

f~ Section 2.9 that there is an ei.gen--.alue of A such that

Recall

.~

~
" '
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II~ we ~et
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"then

­..
Tht:..s.

< ­ :::

Thlls. ?.::: long as

--
.

i

..... ane. we can i.'Ilpr::nre: on the accu..-racy of jJ. relative to T. Basically,

~nce {S.2.9) :J.as been satisfied. we have reached the obtainab~e accu....-acy

i = 1, ... ~m •~i 'andF...
J.

Note: The eigemralues !.l. ~ COll!pu:t~ by our program are Ray~eigb.
oJ

quotie.'1ts computed usil'1£; the v-ector K..;. ':We asSUl!!e that ilK} = ~ .)

allowed by the e!TOTS in

....

t •
Ll. K.~_

J J.J

It is well kn",,'1'l that the Rayleigh quotien"t is often twice as aceu:ra.te

78
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an approximation to a.ti eigenvaJ..uE: o~ l" as thE: vector used. to f"on. it.

Thc:t is, ir

Ax" - ~ .x. c .
•J .J.:r ,1

and ,
= .j

t.he.."l there is 3.n eige.."1va1.ue l\. 0:" ;.. :;uch trot

2Ix. - ~ . \ < .: ./5
. J - J

..

where 5 ;;'.j and. the remain~

eigenvalues of Po- [23, p. 1.8-31. Thus, for well separated eigenval.u.es,

the er!"Or in I:.j
Vill. be approxi:l!B.~ely

2
-:. r3.tber than . . 1

A

Furthe:n::1Ore, the error in the eigenvalues of: A as a.pproximations

toO the eigenvalues of A 'k!ill ot'ten be far 2es:: "';ha;n the bound suggested

by F.qua.tion (;;.2.8). The resu..1.ts of' Ftiee [16) in fact ::uggest t.hat "the

oreer of" ~itude wi" US11ally be correct and this is what is important

in determining convergence. The exception to this statement occurs whE:n

79

almost complete cancellation takes place when ;:Ii is computed. This wi:!.!

..
j

~
.,
-\
i;
It,
!,
3

..
-,
;.,
-2

!,.,..,
I

• i
" J.. -

Computational.indicate.of the residuals'=i

experience "Verifies that this is u.suaJ.J.y the case.

error for 1r."ell sepa..""3.tcd eigen".ra.lues Will. be prc,portional. to

-2 -2 -2
('"1 + . 2 + ••• + : m) rath~ 't.ha.n the square root Ot" thi:: term.

The!"e~ort:, we expect the coarp'.rt.~ eige!lvaJ..ues to be tYice e::

The error in the compu+'ed. va1.ue of I;;i arising f'1-:ml rounci.-<l'f:f

errors Will generaJ.l.y be unimportant in estimating the accura.ey of: computed

results and determining When convergence has occurred. That is, while €i

may be someWhat iCl"precise in terms of number of significant digits, its

&.Ccura:te as the norms
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!lappen whe:l the quan'tity ~ps in Equation (j.2.7) is chosen close to

"the liJ:Iits of" the l'J."ecision obtain:::.ble on the :na.c!tine the prognm is

b.::i.n.t: ex.ec-.J.ted :>n. To remedy thi.::: ~ituation, we :nodi:f'y ... as ,:.'ollo"rls:

';ccept -.: and x. whe."l the no~... :J.

-r
i < .+ -

.!

i

:.:here -: is no..... defined t::> be

I;';'i \ (eps ~ 1.0:1 x l:lac!l~:; ) i:.' I~il >J.

-:
(eps + Ian x~heps) if' 1.. 1 < 1·...i l

where n is t::e o!"der of" A ami l:Il2.Cheps is -che sm~eS't positive

(:-;.g. : cac!le?s ~t:.-13= ..=.. .... for double

....

precis::'on co::pu'tation (:n 1-3.::;. Syst.em!5lfJ ~O!Irputc!"S.) The :-O!'t:l 0:" the

c:x::;nrt.ation 0:" i"·l..~er -products (cee Wi1 ki...·l.s~-_ [23], Chapter 3) and

actually is a considerable overestiJ:la.te ('ty about a factor of' 1.0 which

is arbitl"2.!."i1:r chosen) o~ tne e-.~rs that act~ occur. However:- ~

-.re pointed out abo·".e.. 'this new ~er.: will usuall~· be insigr.i1'icant i:l

co::rparison to eps in most a.pplications •

.;
;~,

,
~ ",.

.;~

i
~..>
,~
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.5 •.5 Choice o-r Bl.ock Size

is ;:.ceura.te knowl.edge of the spec't;rum 01· t.he problec matrix which is,

or course, "the j.nformation we are tryinc to determine. Even :for the

bl.ock size can often considerably reduce t.b.e number o:f iterations

..

~

;~
'''l:!
~i

~
:;~

....
>t-,
:..~

.f:

:l
.~

'eo

I
, -

;,
;!
,~..
~

t

~
<

s of the Block Lanczos l:1ethod we can carry out for a e:LVtmof steps

of eigelva.l.ues and eigenv~..ors we are tr..{ing to c~put.e and the !l'UJI1ber

S8Z:1.e matrix, howe.....er, the best block size wi.ll also depend on the: number

One o-r the problems we have not discussed up to this point is

req~ed to canptIte a given number of eigenva.1::.les and eigenvectors.

~e difficulty is that the best information for choos:ine; the block si~e

iteration o:f the algorithm o:f Section 2.10. A good choice for the

b:':"~ to choose the block size :for the Block Lanczos cethod duriJ:le each

block size p.

~p1.e. Let -l
A = ~ where H is the discrete bihannonic

~tor of order 256 [~]. Suppose we arc given q = 12 vectors in

which to appl;f the Bl.ock La:1czo:; method. This mean:; (cr. Section ,.1;.)

that at a::r.f point in our computation, the number m or eigenval.ue::

we have already ccmput;ed, the bl.ock size: p, and the number or step:: ::

:for "the B!.ock Lanc:zos Clethod must sati::1'y =+ pXs :s 12. 5uppose a..lso

that ;,re are 'trying to c::mpu:te r:;; 6 eigenvaJJ1es and eigenvectors.

Ii" we a.pply the~ o-r AppenaiX A to this problem, we arri.ve at

the results given in Tabl.e ;.3 .~, where an iteration basicaJ.Jy invol.ves

an execution o-r steps 'two through six of the iterative Bl.oc:k Lanczos

Ugoti~ of Section 2.1.0, end the nu:nber of matrix mu!.tiplies is the

number of times the matrix-vector produc-t Ay is canpu'ted where y is

'§
1
Q

S
~

• 1·! ..
~ .,

f
'":t

.1 <..
,~

1
i.~

a given vec'tcr.

81



:.",-.

--

-

••

initial block size

1

2

3
4

5

Table 5.3.1

i'tera;tions

10

7

7
8

''''''-;.-.

93
68

7.l

80

86

,- '_A ,'~""- .... ., ...
-':"'1-- •.,

:~.,

j
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.:.. ,
:.~

, ~
.?:
i';

;f
...~ .
"
;,~

"$.
~~~

'4 -,
~
~
:~

7i ,
.; ~
~,;

The strategy used ~ these te~ts is a.t each point to choo:;e

the 'block size cqua.l ~o the p!"eviou.::: block :;i:= p unless there are

fe\o~e!" t~ P "rectors to be c~:mteel i:1 which case i't is chosen

equal to t~e number o~ ·,,-ect.ors le:'t to be cor.:puted..

I:!" .....~ incre~e the rcq-..:.i::,eC. nur:loc::, o-=: vec-to!"s r to lO ~ t1:::.e!l

Table 3-3.2

,",

..

l
I
;

t ...--

initial block si=e

1

2

4
,.
o

ite..."'"ations

20

22

20

19

175

126

138

153

t,
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Note that 'With q = 12 ~ the largest block size a1.1owed is

P ~ 6. Note also that it is inefficient to choose P =; since

. With this block size, onl.y two steps o~ the Block Lanczos method.

can be carr1ed out q.s is the case with p = 6 .

Fin&l..ly with q incre£o.Sed to 24 and r equal. to 10, we

have the results o-r Table ,.,.,.

Table ,.;.,

initial block size iterations matrix multiplies

1 11 219
2 8 158

3 , 1 8 15(,

4 7 140

6 7 128

8 7 1:59
12 8 166 .\

. '

It woa1d appear :tron this example that the best b!ock size when

q = 12 is P = 2 , and when q = 24 , 1t is P = 6. This example a1s~

demonstrates that tbere are advantages to be ga1ned 'b:Y: 'Using a Block

Lanczos ~ethod in compa.ri.son to ~ standard Lanczos method (p = 1) •

The point o:! this example :is that it is dif'ficu1t in advance to

predict what the best block size will be. Therefore, rather than

attempt to descn.be specific strategy -ror choosing tbe block size, we

Will establish sane guidelines that we can use to make inf'ormed decisions

in particUlar problems.

In our program, we are assuming that there is an upper boand on the

],Iroduct p'XS jmposed by storage 1imitatiOJ1S. Thus, if' we increase tbe

, ~.
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is several times that

..., ~

In situations where the value of: q

strategy.

For problems which are known to have multiple eigenva.1.ue::, it is

of: r ~ the required D1.Eber of eigenvalues, azn where there is no inf'orma-

84

eigenvectors.

int:onnation is retained £'rom one iteration to the next. However, as

have converged since the block size can only decrease. All usef'ul

value of: p, the value ot: s I!IUSt u.sua.lly decrease. This gene-""ally

Dot a:!.ways lead to the best choice, and it also means tbat we can only

the above example indicate::, choos~.ng the block size in this way doe::

implies that each individual -/~tor in 'the block will converge at. a

clower rate. These ::lo...er rates of' convergence are c::lmpensated. t:or bj.-

sometimes prove ad:vantageO".IS to choose p = 1 , it will SC8-?"Cely ever

the f'act that we are cOI:!putine; m::>re vectors at once. One conclusion we

this approach. T!:lere is no dit:fieu:Lty in restarting ai'ter s::me eigenvalues

CUll.1II!l and Dona~h r4] .choose the block size equal to the

equal to the required IrUII1ber of eigenva..lues. There is much to recomI:lend

pay to choose p = 3 .

tioo about the matrix to indicate otherwise~ Cullen t s approach is a good

number q of: vectors avaiJ.able to the Block Lanczos method. While this

st2'ategy can be utilized with the program we have included in the Appen4iX,

the program has been designed to e.;mpo:te as ~'as q-l eig~ues and

cOlllJ?1.lte a number of: vectors less than or equal to one-ilali" ot: ~he tota1

can draw, however, is t.i:1at it selciom pays to choose a block size larger

we are interested in computing tw"O eigen-.raluf z, then while it might

than t.he number ot: eigenvalues we are tIJ-ing to co:npute. For eY.3mple, it:

best to choose the block size at least as lArge as the greatest

Immber of vectors that remain to be computed and, thus, illitia.l.ly

-

--

.-tC

'f

J
:'1--, -
~

!I
, ~ ..

[
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': ~
-I

·t
. !
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Iq
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a block

". ...... - ....

size of' at least two. As the results indicate" a bloCk siz

Sj"Jllmetries in the physical problem it m::xlels.

.-\' .. ,

\
\\

mul.tiplld.t;y, or if this is not possible, at l~\ter than one.

For example" the biharmonic operator in the above ~le is known to

have multiple eigenvalues with multiplicities at :':1ost t 0 because of'

.".-., ....._'"r.... ~.:.-_-"•• ,• .'r ,- •

,.
,r,

was clearly less ef'f'icient than a block size greater than one ••,

Th~rem 2.6.1. gave bounds on the errors in ti.:.e least eigenvalue::

coa:ptIted. USi..lg the Block Lanczos method.. Thcse bounds cont.ained. a term

where "lk = (A. -~ l.)/(~ -~ ) ,K p+ it n p is the block size"

s is the IlUIliJ:>er of' steps" and ~ , ~ 1" and A. are the k-th"
? p+ n

(p+1.) -st" and n-'th eigen-rcUues of A" the problem matrix of order n •

While our attanpts to f'crmula.te a. precise str&tegy for ctloosing the

~
i

block size using this term as a relative measure 0'£ eff~iveness 'Were

largely unsuccessfuJ." it does yield some qual.i.1;8.tive inf'onnation about.....
how to choose the block size. That is" we try to choose p such tnat

.'
the dif'.ference ~ - A.p+l is as large as possible and s is not t.~ .....-_~

small. This suggests, for instance" that if several. eigenvalues are

clustered at one end o.f the spect.rum nth a gap between them and the

reca.ining eigenvaJnes, that we should attempt to choose the block size

at least as large as the ntmlbcr of' eigenvalues in the c;t.uster.

In conclusion, we suggest that simple strategies chosen along

the lines suggested. a.bove will usually prove to be completely adequate

in most applications.
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2 xp+l

and f'or each

This is accomplished

as long as it is

In plL'"'ticu.lar, we will re:fer

T"nese latter ::ubroutines are

During each iteration of the i~ti-.re

R.
.1

in such a. manner that it is acceptable to

However, it is re2a~ive1y 'lInimportant whi.ch

This is accomplished via the Stlbrotttine EIGm

is a1.so a band S"y1!lI:let!"ic matrix ""ith

and

7Ti'S

TP..ED2

Although 't~ere are special techniqt:es and programs ava.ila.ble

is orthogonal and

z. = X.R .
.J J J

Note that

"''-''~'''' -~ .. , ., .,-"':....

It 'to."ill be convenient to relate our cli.scussion to the actua1.

In the Block I,auc::os m~thod we cocpute ~atrices

Pr?gr'"c.:l!l and Storage Organization

in [24 J.

ror tile sol'.l'tio:: of eige."1pro'blE:l!ls for banci. 8;T'I:I!!letr1.e ma.tricoas, we found

ir.lplem·~..a.tions [21J of Algcl 'IJ procedures 00£ the same name de:::ctibed

Block ~~czos ~etnod~ it is necessa-~ tn solve the eigenproblem f'or

There are certai:l auxilliar-.r functions perf'ormed in the Prograzl:.

t!:le I!.atr-x ot" the restrict~ operator c':.:lplrted b-J the Block Lanczos

to the va.riouz ports of the program through the names of' the subroutir.es.

diagonals •

that -:heir use did not convenient1¥ allow us to !"educe the amount of'

G!"m:!l-ScbI::idi: orthogonalization method. ORlSG _"2.S derived f'rom -the

Fortran progra.:!l contained in AppendiY- A.

designee. to solve standa--..c. ~etric eigenprob1ens and are r'ortran

nccessar'"J' tiI:le or storage.

which we ;.{ill deal -nth i'irst.

IlUI:lericalJ.y stahle.

through the subroutine ORTHG which ir:lpleme!l'ts a stable variant of the

3.4

method is us~ to solve the eigenproblem fer

matrix, it. is necessa-"""y to compute its orthogonal factorization:

method (cf. Section 2.7).

'"""." ""'- ,... t.':..

•

•

•
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Algol. 60 procedure ORmOG contained in 'the program f'or si.:nultaneous

iteration <iescribed by Ra:tishanser [20]. CRmG bas also been designed

to carry ou:t the ftmctions of' re-orthogona J i,7,8.tion of' the X • (cf'•
J

Section 3.1.) and projection of' the X. onto the space orthogonal. to
J

prenously computed eigenvectors (cf'. Section 2.9). ORmG is also

used "to generate the initial. matrix X used in 'the Block Lanc:z;os

method.

RANDOM is a subroutine used to fill the col'UlllnS of' an array with

a pseudo-random sequence of real values. The resulting ~triX of' random

e1.ements is orthogcma.Jized (~ing ORTHG) and sent to the subroutine

SE:T.N. SEI:TN rotates the orthono:rca.l. matriX X , say, so that XtAX

is diagonal as f'ollows: X is mul."tiplied OI: the rietrt by U where

U is the orthon~ llIa:trix of' eigenV"ecto:!"S of' C == "I..tAX. - If' X

is n-by-p and ~,~, ••• , d
p

are the eigenva.l.ues of C , then

The rotation 01: X can be accO!!.plished through the subroa.tine ROTATE

which is aJ.so used to comptlte the eigenvectors of' the restricted operators

(c1:. Section 2.5) in the ma.:in subroutine using the ma:trices Xs and V

'Where X and?1l are canputed by the BJ.ock Lanczos method and V iss s

composed of sane of' the eigenvectors of' 'll( That is, if' v. is an
S 1

eigenvector of'll(, then ROTATE is used to compu:te q. where q. = 'll( v.
S 1 1 S 1

for several. vaJ.ues of' i .

The principal. part of' the program is coIIta.i.ned in the five

subroutines caJJ.ed CNVTST, ERR, R:H, BKLANC, and MnlVAL. CNVTST and

ERR are fa.irJ;y siJ:rpJ.e subroutines Which impl.e:lent the ideas of Section 3.~.

...,. •• " - ~., ":.1,
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€ • satisf'y the convergence
~

the number of steps., :n is the order of the matrix A whose eigenval.uec

Section 2.7 with reorthogonaliza"tion. If p is the block size, s is

The subrcm:tine BKLANC implements the Block La:1czos method of

reduced to 'the point that s can be assiglled a value of two.

.
met"1od can be carried O'lrt. because o~ storage l:i::nitati,ons, thel2 l' is

b1.oc~ sio:e p is such that fewer than two steps of the Block Lanczos

the use of ~he storage available to t.he Bloe:k Lanczos method. I~ the

method. is ca-ororied .:rot. The value of s is chosen so as to maximize

each s'te:p wiD. be the same as it was dur'i.Jlg the previous step unless

FCE also choos'i$ a value for s" the t'1umber of stellE the Bl.oc.k Lc:ncz~

P is set equal. to the !tt.lI!lber of eigenvaJnes left to be comp.rted.

f'e-er "tha."l P eigen..,alues remain to be ccmpt.Ited. I:l the latter case,

crite...-i.on described in Section 3.5.

sub:!:'OUtine" 3:ld d~termines ,"hizh of -the

LanCz.?S method. during t!:le next i te-.-ration of the program i t" ~ther

respect. to X ~ the mat!'iX used to start the Block Lanczos method.

are bei:lg ccmputed: and X is an n-by--:p orthonomeJ..~, the main

contained in Appendix A is fairJ.y si:IpJ.e: The block size :to during

iteration is necessary. The strate£::,- of the specific subrouti:!:le

EBR is called in BKLJllIC" the stit-routine for the Block Lanczos method"

The purpose of :rcH is to choose 1. new blxk size for the Bleck

af'ter Z2 has been computed and before it has been orthogonaJ..i.zed "':'ith

respect to previously computed. eigenvectors en6. reorthogonalized with

puxpose 0'£ BJCI.A!.qC is to ccmpc.te 'Xs and 111 s ' the representation 01: A

EF.R simp~ cOr.lputes the lengtl'>..s "'i of the col'tmms of ~ which are

the residual vectors for X • Crnr.rST is ca.l:l.ed from MmVAL" the ma.in

':," ."......', \,,' ,,'V':.'.

•

•

•

•

•

•
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rest-'""i.cted to X ;,;here Sp(x) contains Sp(X1AX,. __ • I AS -1x) .
s s

Rec:U1, also,. that 1Jls is a P>CS-by'-pXs symmetric block tridi~nal.

matrix with p-by-p matrice& M"M.., •••,M~ al.ong it::: dia,;onal and
__ I. -.)0

p-by-p upper-triangulAr p-by-p m:Ltricez R.),R"" ••• ,.R.. on its f'i.r:rt,c;;;::; .,

lower d.ia.gon.aJ.. The matrix Xs is n-by-P,xS so an a:r:ra.y T I :;ay, with

at 1.east pXs cohmms of" 1.ength n is su:ppJ..ied to BKLANC to store X
s

in. However, as we will see,. previously ccmputed eigenvector approx:imations

are also stored in T. If m suCh. approximations have been obtained,

th..-=oy are stored in the first m co:b.mm.s ot: T, and BKLANC stores 'X
s

in col.umns m+1. through m + p<s ot: T. Note that i:f the a.ctua.J..

dimensions o:f T are n-by-q where q is some integer value greater

than one, that at s:ny point in the execution o~ the Progr:JJll,. m,. P ,.

and s must sa.tis1'y

m+ pX.S ~ q

FCH chooses values t:or p and s witl:! this restriction in m:.ind. The

in:itial n-by-p matrix X is stored in cc1l<mns m+1. through m+p

of T •

The compo;ta.tion per:formed by:BKLANC is ccmpri.sed of s majo~

steps. Dt:ri.ng the j-th step, Mj ,. Rj+1.,;md Xj +1. are canpu:ted .

except that during the s-th step,. only Ms is comptrt.ed. The matrix X
....

is assumed to be such that ~ = X"AX is diagonal.. Advantage is 'taken

of this in the f'iX'st step. Rj+l. and Xj +1. are obtained by~

form:iD.g Zj+l. (c:f. Section 2·7) and stori.ng it iD, .....T in the same·

l.ocation that X
j
+1. Will occupy. ORrHG is t1. "1 executed which

orthogonaJ.izes Z.., with respect to aJ..l. previous vectors stored
J+... .. - .

in T and decalrpOses the resnl.t into Xj+l. and Rj+l.. The

1



Fina.ll.y~ the :mbrm.."tine I~VAL is the main subroutine which

restriction of A to the space orthogonal to pre'l.-:i.ously comP\Ited

.~ ,~-,. ,~ :.

(2) Orthogonalization

is band s;ymmE:tric, onlySi:lce .",
Ilt~

(1.) Orthogonalization With respect to the first m co1UJ'l'l.ns

orthogonaJ.iza.tion With respect tn previous vectors in T accomplishes

eigen-.rector approxi=ations (cf. Sectio!l 2.9);

-implies that we are applying the Block Lanczos method to Ii, the

With respect. to 'tee remaining colUIll!lS of T acccmplishes the

two ends:

its lower p+1. diagonals are stored in C

re-orthogo::laliza:tion Ol~ Zj+1 with respect to X.::I i < j (cf.

Section )-1). ?7l
s

;.s stored in ro"'tlS and. colum:lS 1:1+1. througb.

m + pXs of an a..-ray C:I say.

•

:.

,""'"

..:c.
"t
"1"
t
t: •

combines the f'".mctions of the above subroutines into an im:ple:nenta~;io!l

•
of the iterative Block Lanczos method of Section 2.1.0. An n-by-q

a...-rray T is S'..:pplied to rm:vp.L ;,"hich 1::; ~ed by BKLANC as described.

e.bove and a.lso to store the eigenve.....or approXimations as they are

computed. A variable ~ is used to count the number of c:Jl:lPUted values',. and vectors a."ld. when its value exceeds r ~ thE required IIUI:iber of

eigenvalues ::me. vectors being sought, the prcgra::1 stops.

,. Th~ i:ni.tial size of the block siZe p is supplied. to the :progr""~.

• In the p:re];m;nary phase of: the progra.m~ the ll'tlIll.ber of steps s is

•
. ,

sele-.---ted and the ;n4tial orthonormal matr-"-x X is compc:ted. and ~,;ed

so that XtAJ( is diagonal. The ma.in })art of the subrotrtine is a sequence

of sta:i,~ents whiCh carries out steps two through six of the ~"Orit.b!:1

descri.bed in Section 2.10. The main diff'erence between the~

and the description of Section 2.10 is that the compu~io:l or ~e
-eige::::.vectors q.: is!=JU't; oC: 'I:!lt.il the end o~ t!:le 100?- ;--;$ i: ~. ~...
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.''.
both the eigenvectors which have converged and tbose that will he used

to :rorm tbe orthonormal mat:rix X :for the next iteration JOust be

computed s:i:multaneously. Since the neW blOCk size is cOlIlpu.ted at tile

end .)f: the iteration, the computation of: the! eif~en.vcctors must. be

deJ.a.yed until this point.

!ni'ormatio;l on the ma.'trix. A is passed into MINVAL tbrOugb. the

t

"7

name of' a subroutine with three argoments. Vi"hen the subroutine is

ca.ll.ed, One of the a.I'gIJII!.exrts "W'ill be an e:r:r:a~' containing a vector v,

say. The subroutine computes "the :product A x v and stores it :in. a

secon1. array parameter. This is the only lIlay -the llle.ttiX A is ref'erenced

0 .. :

'j,

in the entire program.. "~

The storage requirements of' the Jlr~g:r8lll are as fellows:

An. n-by-q array ~ . T i:l u.sed i."l BKLANC and e.lso 1.0

store the cQllll"q.ted eigenvectors. Thi~ array is suWlied to

MmVP.L by tbe program 'Weich ca.J.ls it. The value 01' q sh.OIDd.

be as large as :POss!.""cle, bu.i;, in a:D.y event, it shou.1d. be a-t

J.eas-t O:le greater than r, the :required~be:r of eigenvaj:u.es

2.

3.

4.

and e1.gen.vectors.

JlrJ:J.. a:rray D of leDgtb. at l.easi; q eJ.ements for storing tlle

computed eigenvalues. This ~y is alSo S1X.PPlied eJCternalJ..y.

C is 'U.Sed to

store 711. in BI<IJ\NC and also to sto:re "the ei.gen.vector~ of
s

'"' in ElGEN."\s

.Pn a:rray E witb at least q elem.ents for storing the nonns

of the residuals in ERE!..
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In addition to the above st~rage, the program also includes two axrays

l t in the subroutine ErGEN with at least q eleIl!.ents for use with TRED2

and TQ.I2. .tUso, two arrays of length n axe provided which are used

with the subroutine for C.:JIllputi!lg the matrix-'Tector product Iiy where

t y is a vector. AD. these a...-rays were provided to make the program

:I;.ore flexible and usable and are to a ce.-...-taill extent, optional.

B-,i far the bulk of the computation is performed by the subroutines

~ t

.-
'.;.

t

BKLA!'C, EIGEN, and ROTATE so we ..."ill confine our op~ation coUnt

analysis to these three subroutines. The counts given below are for

either additive and multiplicative operations and are for ~ step

of the iterative Block Lanczos method. The terms n, In , P , s are

I

the order of A, the number of previously computed vectors, the block

size and the !l'.1Illber of' steps for the Block Lanczos method, respectively.

t BIa.ANC:

Computatior.. of' M. 's:
J.

n;p(pH) (s-l)
2

t
Computation of z. 's:

J.

computation or it may be insignificant in comparison.

This comptltation is performed externall.y and depends on the matriX A.

2 2
2nmps + np s + nps_

approx.

Computation of X. 's and R. 's:
J. J.

EIGEN (using TRED2 and TQL2):

2
!lp SROTATE:

2.

3.

92

Depending on the problem, it may completely overshadow the rest of the

In addition, there are 17.><s matri."'C-vector products computed in BKLAIiC.
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Example. Suppose n = lOO~ P 5 , s 4 , a."ld ~ -" We

then have the folloWing counts:

l. BKLANC:

Computation of Mo 's: 45,000;
).

Computation of Z. 's: 120,000;
).

Computation of X's and R •s: 540,000;

.'.
'.:.

':-

2.

3·

ElGEN:

ROTATE:

24,000.

100,000.

o.

In addition, there are 25 matrix-vector products involving

which is of order 1.000

A

From this example.. we' ~ee that the bulk. of the computation takes
•• 'J

place in BKLANC .. and in particular, in the computation of the x. 's
].

and R
i

' s which involves the ortb.ogonalizati~nof the Zi' s. This

example is fairly representative of the situation in general.

The above operation counts don I t reaJ..1y say anything about the

overall running time of the program since this depends on how fast the

comptlted eigenvalues and vectors converge to those of A. The rates

of conv~gence in turn depend on the spectI"'oJm of A. In the next

chapter.. we will c.onsider sOlll.e specific examples and compare our

algorithm with the method of' simultaneous iteration.

93
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iterative Block Lanczos R.lgoritbm to a number of' examples _ We will

In this cha~ter, we will consider the results o~ ap'p~~g t~e

.... '.. ~ ,d~·';' .. 'J"; '.,~

'.~ ~';\-.

, .~,. "",

";..-.r· :. :'''-.t:'''/,.:

also compare SOlr.e of' our results with those obtained using the method

of' simultanec~s iteration described by Rutishauser [20].

1.:-. nuMERICAL EXAl4PIES

j • ~

For the purposes of testing our method and the method of'

simultaneous iteration, diagonal matrices are sui'f'iciently general and

particularly convenient _ That they are suf'ficiently genere.l arises

from. the f'act that neither of' the above methods transf'orms the matrix A

whose eigen-.ralues are being computed or in any other way attempts to

take into account the structure of' A. Rather.: the only way A is

ref'erenced is through a subroutine which computes v = Au ·where u

is a given vector _ Ii'

where n is the order of A, then

'"

'"
1"

.
~

.-

-
.
0.

where u. and v. are t·he i-th components of' u and v, respectively_
J. J.

This can be easily programmed and a large number of different exampl.es

can be quic.k1y generated whose exact eigenvalues and eigenvectors are

known. More important than knowing the sPeCtrum is the fact that we

can specify the spectrum of' A and theref'ore can study the behavior

of our method from the standpoint of test examples whose spectrums vary

accOl'ding to the separations and multiplicities of their eigenvalues.

All but one of our examples will be chosen from this class of' problems_

~­,
::;. .,;-
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It is somewhat difficult to compare the iterative Block Lanczos

method to the method of' simultaneous iteration siner: the computations

they pc!"fonn are difi.'ercnt. One meCl.::ur(~ is thc tot:,Ll t.im(: e:ach requiTC:::

to sol\"e a particular problem but this :;tandard is rather crude and

uninf'or.!iE:.tive. There are two areas, however, in which the computations

perf'ormed by the two methods coincide -- the computation of m.atrix-vector

products Ay Where y is a vector, and the orthogon~zationof' the

columns of a matrix which involves computing a large number of vector

inner products. As we saw (cf. Section 3.4) a major part of the compu-

tation time in the iterative Block Lanczos method is spent in these two

areas and the same is true of' simultaneous iteration. ThUS,7 for the

purposes of comparing the two methods, we ~.Jl report the following:

1. The computed eigenvalues 1Jo. •
1.

orthogonalization routines.

have been deleted from this listing.

Additionally, for the iterative Block Lanczos method, we will report

.~,

The magnitudes €i of the residual vectors Axi - lJoixi

where x. is the eigenvector corresponding to 1Jo. •
1. 1.

The number of matrix-vector products computed.

2.

3.

the number of iterations required which is also the number of times

A listing of our iterative.,,:~nockLaLczos program is contained in

5. The total execution time f'or the entire program.

4. The number of vector inner prcducts computed in the

the Block Lanczos method per se is carried out.

Appendix A. The output stl:l.temen-;s us~d to print out program statistics
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Our program for si."IIUltaneous i 1;;eration is a Fortran translation

of the Algol 60 procedure ritzit described by R11tishauser [19,20]-

:~ .-

\ ~~
"

.. J~•,
: ,
,

This procedure: is actually a combinnt"on of simultaneous i1~erat.ion

and a Chebyshe-" type iteration - The biggest difioiculty in using this

and eigenvectors than asked foro With our method, it is far easier to

:program and then attempt to match its resuJ.:ts in some sense using our

control both the precision and nUI'lber of resu1.ts computed. Thus, our

...
"

'.I'

.~.

I

computes results far more accurately than
J.

in the. process) or it computes more eigenvalues

While 0\1X version of simultaneous iteration is a nearlyNote:

goal. That is, it either

i-terative Block Lanczos program-

plan has been to perform a computation with the simultaneous iteration

desired (taking more time

program as a standard for comparison is that it often overshoots its

0'
? literal transl.ation of the Algol 60 ~oc:eduxe, there are some minor

differences between thE" two. The differences arise from our attempts OJ<
'0

to rectif'y some errors in the published version of the Algol 60
;. ...
;

~.

4_....

.'
"
,

~
~

~,

t,

f
.

~

, i:

r
;~

.:
~.: " •~

-:,.. ~

procedure, and to clarify the strI.A.~ture of the p::-ogram which was very

complicated at the start. No essential. change was made :in the

algorithm, however, which would compromise its efficiency.

We now proceed to the examples. In each example, we will specify

vaJ.ues for r, the required number of eigenvalues and eigenvectors to

be complIted, and q', the number of columns of length n :in an array X

which. is used :in both the iterative Block Lanczos method and the method

of si.mul.t&.Oeous iteration. For both methods, the value of q must be

greater 'Chan that of r - In addition, for our method, we will give

values for ells, the approximate precision desired :in our computed

96
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resu1.ts., and p, the block size to be used in the Block Lanczos

method. 'l'he strategy used f:or choosing the block size is as described

in Section ,.4. That is., the block size is chosen to be the least of

,.

the two f:ollowing values: (1) The initial block size p; and.,

(2) the number of: eigenvalues left to be computed. This strategy is

implemented by the program listed in Appendix A.

In Examples 1, 2., and 3., we will compare our method with the

method of: simultaneous iteration when both are applied to problems

with cha..""8.cter:i.stic "~ypes of: spectra. In Examples 1 and 2., we will

consider problems f:or which our method is more ef:f:ective. Example 3,

in contrast., f:avors simultaneous iteration. In Examples 4 and 5, we

will consider the behavior of our method on matrices with multiple

eigenvalues. Example 6 involves a matI-ix with ve...ry close eigenvalt:.es.

FinaJ.Jy., :in Example 7., we will consider the results of: applying both

prc;grams to the problem: of: canputing the least eigenval'lE s and eigen-

vectors of: the discrete biharmonic operator.

Example L

A is a (diagonal) matrix of: order 454 with eigenvalues

"1. = -10.00., A.2 = -9·99., A.; = -9·98 ., and A.i = -9·00+ .02 X (i-4)

-8for i = 4.,5.,. •. .,454. With q = l5., r = 3., p = 3 ., and eps = 10

the iterative, Block Lanczos program computed

-9·99 999 999 999 996
-8

~l = ., El = L73 X 10 .,

-9·98 999 999 999 994 -8
~2

, E2 = 2.85 X 10 .,

-9·W 999 999 999 991
-8

~3 = ., E3 = 2.ll X lO

'1
1
~
1l

~;
-!

• ~
~

~
~
,.~

•
~l
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In contrast, the program for simultaneous iteration computed

progtams.
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-9·99 999 999 999 995 -6
iJ.l = , €l = 3.09 x 10 , . !.

-9·98 999 999 999 999
-6

iJ.2 , E:2 = 1.09 X 10 ,

-9·97 999 999 999 992
-6

IJ.; = , E" = 2.21 X 10
""

Note that Ie/iJ.i I <10-8
in each instBJ;lce. Eleven ii;erations were

required for this computation.

Note that the values of the E
i

are greater in this case.

Table 4.1 summarizes the comparative statistics for the two

•

Times, unless otherwise indicated, will be total execution times for "..

programs compiled using the University of Waterloo Watfiv Fortran

remain:i:!g eigenvalues by a relativeJy large gap.

indicate.

This example is typical of those problems in which the iterative

Note in each case that the eigenvalues are about tw:ice as accurate

compiler and exeCl4ted on an I.B.M. System 370/168 computer.

Block Lanczos algorithm can be used to best advantage. In particular,

problems in which the eigenvalues to be ccmpu.ted are separated :from the

as the

~.
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Example 2.

The matrix in this ex8.'Ilple is the same as in Example 1 except that

the gaps between the e~envalues have been decreased by a f'actor of' 10

; andr

).2'= -9·999, ~ = -9·998 ,

i = 4,5, ... ,454 As before,

That is, ).1 = -10.OC ,

).. = -9.900+ (i-4)x.002
~

q = 15 .

With p = 5 and e1Js = 10-8 , the i terative Block Lanczos proeram
.r..

computed in 10 iterati.':.lns the f'ollowing results:

-9·99 999 999 999 996 6 -8
E1 = 8·9 x10

."
-9.99 000 000 000 002

~3 = -9·99 799 999 999 999

, -8
1·97 x 10

.,

The siJ!rultaneous i"teration program computed

-9·99 999 999 947 815 -6
~1. = €1. = 7 ·91)C 10 ,

-9·99 899 999 9<:J7 082
-6

~2 = , E2 = 1.92)C 10 ,
-6

~3 -9·99 799 999 920 755 , '=3 9.61.)C 10

In each case, the errors in the computed eigenvectors were approx:imate1¥

the size o~ the E. ·s.
~

This example produced the results given in Table 4.2.

Table 4.2

matrix-vector vector inner time relative
products products (sec .) precision

Block La:1czos 149 1140 41..80 10-8

Sim. Iter. 1.785 l800 88·94 10-6

99
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The behavior of the iterative Block Lanczos :;>rogram was virtually

'U;laffec'ted by the reduction in the spread of the eigenvaluez. This

example serves to illustrate the point that the :roa.tes of convergence

of the approximations depend on the gaps between the eigenva.J.ues

relative to the spread of the eigenvalues. This is suggested by

Theorem 2.6.1 in which the bounds on the errors in the lJ.i dePended

;

..
OD the eigenvalues through the quantities where

'"-',

,',

~

:;

•
,f

a..

I

•

Decreasing the gaps bet-ween all the eigenvalues by a constant :factor

does not affect the vallie et J'. •
:l

The simultaneous iteration program, however., suffered by this c:ba."'lge

since the results it computes converge at rates that dePend on 'the

ratios ApTJA
i

which increase when the eigenvalues were brought closer

together.

Example 3.

A is a. (diagonal) ma.'triX of order 101 with eigenvalues equa1.J..y

spaced in the interval [ -1..0 ., 0.0] That is., A. = -(101- i)/100 .,
J.

i = I., 2., •.• .,101. In this example., we have r = 6 and q = 10. In

addition., we choose p = 2 and eps = 10-5 for the Block Lanczos method.

The iterative Block Lanczos program then compu'ted six eigenvalues:

100
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~1 = -·999 999 9997··· :1 £1 .925 x 10-5 ,

~2 = -·989 999 998 3 .•• , £2 1.494 x 10-5 ,

iJ.; - ·980 000 000 3.·. , £3 1.29 x 10-5 ,

1J.4 == -·9700000007··· , £4- 1.53 x 10-5

~5 -·959 999 999 6... , E
5

2.07 x 10-5 ,

1J.6 = -·949 999 998 7··· , E6 = 1.75 x 10-5

Note that the residuals exceeded 10-5 in the last fiv(: eigen·r.uues.

This was because of the allowance made :for the error in the first.

eigenvalue and eigenvector.

J
::

. ~ :

.'.

~ ..

",,'

The simultaneous iteration program compu:ted seven (even though

onJ.;y six were asked for):

1J.1 -1.000 000 000 000 :1 €1 = 2.13 X10-9 ,

1J.2 = -·989 999 999 999 , €2 = 2.56 x 10-9 :1

IJ.; == -.gr9 999 999 999 :1 £; = 6.75 X 10-9 ,

-·969 999 999 994
-8

~4 = , €4- = 2.21x10 ,

1Jo5 =: -·959 999 999 466 , €5 == 1.91 x 10-7 , ,
j
I

-8
I

-.949 999 999 993
;

1J.6 == :1 €6 2.02 X 10 :1 l

I
-8 ;

~
=: -·939 999 999 959 :1 ~

=: 4.54 x10 1
.;- ~

The comparative statistics for the i:;wo programs are given in
- i

t
!i•

Tab!.e 4.,. ~

~
%

z;~
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No canpa.ri.son with s:imul~eous""J.ao = 2.00 -Thus~

~ =~ = 0.1 , and Ai = .25+ (:i-5)X.Ol ,

Teble 4.;

mat~-·.rector vector tilDe
products imler-products (sec.) precision

Block Le.nczos 350 1.974 1.7·96 awrox• 10-;

SilD. Iter. 625 795 9·13 appr~::" 10-7
or less

:~:

iteration was made as the simultaneou.s iterati.on program canputes::!~$.~;
''''''''i<;'-'

eigenvalues of greatest modulus which are di:f"f'erent in this case:'.~'

Block Lanczos method cOlll];llIted four eigenvalues With residuals

order of 1.0-4 • For instance for p = :2 , we compo:ted

the least eigenvalues.

This example is typical of the type of problem for which s:illl:ultaneous

102

eigenvalues, and for which r is a :Large fi'action of q

or no distance between. those eigenvalues being sought and ~e renaining

Example 4.

A is a (diagonal) matriX of order 1.80 With eigenvalues

Al = A2 = 0.0 ~

i = 5,6~ ...~180

iteration perfonns better than the iterative Bleck Lanczoz method.

That is: problems for which the spectrum is fairly dense llith litt1.e
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5.38 x lO
_0 -I.:

= .;
= ·58) )( 10IJol !J.l

!J-2 =' 1.57 x 10-9 j..;,2 = .644 x 10-4 ,

""" '.

.100 000 000 9 .•.

~4 = ·999 999 997 9···

, , 5'7 1-4
-' -I X 0

6
_u.

~4 = • 28 x 10 '

The results f'or the other three cases are similar. The largest residual

in any case was approxii'uate1y
-4­

1..59 x 10 Note that for this case,

the error is absolute and not relative error. The eigenvectors for

f=.l and 1J.2 were prima-.-il.y linear combinations of' e1 and e2 and

the e....-rors· in the remaining compone::.ts were 5.n all cases approY..im.ately

the size of' the residual 01' less. Similarly f'or IJ., and 1Jo4 .

The comparative statistics for the f'our values of p are as

f'ollows:

.,4'

..~.

m~trix-vector vector iDner time
iterations products prodllcts (sec.)

p = 1 20 158 997 1).19

p = 2 15 125 725 11.15

p ,= 3 17 1.40 699 ]2·50 .c;,,

p = 4 33 317 13,0 29·53

"
,~

Note that there was a definite :iJIrprovem.ent 1":ran p = 1 to P = 2 .

Mu.l.tip1e eigenvalues tend -to 'slow down the standard ::.a.I!czos a1.goritbm

(11 = 1) since the eigenvaJ.ues of the restricted operator will converge

to on:!.y one of: a set of: Yn-altiple roots. With q 1.0 , ef:f'ective use

of all the working sto~.ge could not be made with p =::5 or p = 4

(since neither di....iaes 10 eVe:liJ-). However, lo"ith the program. listed

103

i
,f

,......, :d!r .,.' - .--,---...-:--~-.
- . ,.: . , .' ~""('" '-.": ,._ : .... ..;;t.' .•'.,:... '



. ~:

. ·'lti

; \

.,

,".~,

in Appendix A;, a b:i.ock size of 5 was chosen after the first iteration

with P = 4. Even though this change made better use of storage,

more time was req".lired here than in the other three case::;.

Exa.I:IlEle 5·

A is a (diagonal) matrix of order 300 with eigenvalues

?-'l = 0.0;, 71.2 = O.l;, 71., = 0.1;, 71.4 = 0.1;, \. = 1.-3/(i-l) for

i = 5;,6;, ••• , ,00. For this example, we choose r = ,;, q =:: 12 ;, end

-3eps = 10 . We tried p = 1, 2, , Of the three values;, the fastest

execution was achieved for :p = 3. In four iterations, the following

results were canputed:

-'J

The statistics f'or th.i.s computation are as follows:

matrix-vector products: ;6

vector inDer products: 288

~l = .000 000 002 922 313

.1.00 000 000 000 004

1J.3 = .lGO 000 000 090 571.

E
2

= .149 x lO-5

-3E, = .1l0x 10

.

.<

,7

.
-,
;,.

··t

f:'

.'
.. ~.
:

time (secs.): 1·86

-" t.,

"
\

'~"

,/ •,

~-

DO

The eigenvectors for 1J.2 and iJo3 were pr-'...maril:y' combinations of e2
, -

and e,;, the unit vectors With ones in the second and third positions,

respecti'l;e1y. The errors in these vectors are a.ga.in proportional to the

sizes of' the residuals E
i

.

The i'act that :for p = , 71. = 71. shows that Theorem 2.6.l
p p+l

on the rates of convergence does not adequately expl.a.i.!l. all si"t".mtions.
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In fo.ct, A2 converged much~ rapidly than i\l ~ leading us to

conjecture that the :ate of convergence for A.
2

involves A.
5

= .25

rather than A.p+l = A.4 = .1. We have" however, found no way of

establishing this conjecture.

Example \,).

our iterative Blc..~k Lanczos program computed

A is the same matrix as in Example 5 except "Chat

.1000000 , ana. A.4 = .1000001 .

-;
and ells = 10 •

In this example,

A.2 = .0999999 ,

r = 4, q = 12 ,

~-

1J.1 = .000 000 01)7

1J.2 = .099 999 926 ,

1Jo; .100 000 oOS ,

1Jo4 = .100 000 078 ,

-4
€1 = 9·12 X 10 ,

-4
€2 = 1·9; X 10 ,

-4E:, = 9.47 x 10 ,
-6

E:4 = L42 xlO

,-
.;:
;

.~-

,~

Note that in the case of 1Jo4' the error is approxi.!:late1¥ of orde- E4

2
rather than €4· Furthermore, the eigenvectors f'or 1Jo2" IJ.; and \,:04

each contained significant components of the eigenvectors~corresponding

to A2 , ~ , and A.4. :Ba.sica.ll.y, the program regards A.2 , ~ , and

~ as multiple roots and e:ny combination of their eigenvectors as an

e:'genvec-:;or also. Each compu:ted eigenvector of 1J.2' 1Jo; , and 1Jo4

was very close, therefore, to the space spanned by the eigenvectors

corresponding to A.2 , ~ , and A4 •

These results are not indicative of' a def'ect in our algoritbm but

represent inherent limits in the accuracy obta:inable for eigenvectors

corresponding to very close but distinct roots (cf. Section 1.2).

',­
"Ie.

..... ~
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The statistics in this case l:o.re as f::Jllows:

.l. matriX-vector products: 54

2. "rector inner prod.ucts: 408

,. time (sees.): ll.29

4. iterations: 6

Example 7·

The natural modes of Vibration of a square clamped elastic plate

can be solved by the following partial d.i.f'f'erential equation f'or w

(4.1)

,.
I

in the interior of' the plate With

w = 0 ;;:; normal derivative of: (l)

on the boundary. If' 'we attempt to compute a discrete approximation to

the solution of the above equation at the points of' a mesh superimposed

on the pJ.a.te" then we are led to a symmetri~ eigenproblem

~ IDe = AX

where h is the mesh Width and H is a symmetric block pentadiagonaJ.

matriX derived using a 13-point f':U1ite clif'f'erence approximation to the

diff'eren:tiaJ. operator in Equation 4.1 [1]. Rather than compu.te the

eigenvalues 'of H" we wi11 compute the eigenvalues of A = _H-l. Note

that if "'l S A2 S ... S An are the eigenvalues of H ~ then
';
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are the eigenvalues of' A

Thus, if' we compute the 1.east eigenvalues of' Po., their negative

reciprocals will be the lead eigenvalues of' U with the same

eigenvectors. "'0 compute "y. flY.. p;iven x, we ::o1.ve

,
" and set

Hz x (4.2) .~,.

>:.

,;"

r."

y = -z

To so1.ve Equation (4.2), we use a program provided by Dr. Fred Dorr of'

the Los Alamos Scientific Laboratory. T:lis program is based on an idea

of' Buzbee and Dorr [2] and computes a so1.utioI:. to Equation (4.2)

by a direct method.

'It'or a unit square and a mesh width of h =.1./35 , the order of I\.

r)

is ,~?r. or 1.021, Jo'or thi:: prob] em we choo::e q 1.(. , r .l:~ .
"

Wi'th P =. 5 and eps -- 1.0-1, our program computed the results eiven .~.,
in Tab1.e 4.4 where f'or each eigenvalue 'V of' A, the correspon~

:frequency f' of' vibration of' the pl.a.te satisfies f' = 1. / J-h4'J i.

...
-~

".t
!

-' ,,"- '.,7:,:',"

1.~
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.~ Table 4.4..
'f
, l eigenvalue of" resiq,ual :fl'equency o:f
, ~

i A ~ .. .ribratior.t {
;

~ -51 -923·91(,33 ().(,5 x 1D .35.82709
&

2 -225·7499G
-1

72.802520.21 x 10

-", -225.7499(, G.25x10 J 72.S30252

1; -195.. 2242<)
-4

':"07.185770.9(, xlI)

5 -70.42348 1.03 x 1()-; 129·76846

() -('9·73160 8 ... -4 1;0.410651. 2 x 1,)

7 -44.77957 1.29 x 10-3 162.73760

8 -44·77956 3.06 x 10-3 162·73760

-zr·90840 -2
206.1.39139 1.42 x 10

10 -Zl·90839
-2

206.139172.05 x10

-25·29523
-2

21(.·5252811 1.87 x If)

I? -21.0m54 5.83 x 10-2 237·25804

..

Because of" the allowance made f'or error in previously canpute-i

eigenvalues and vectors.. the relative error in the last :four

eigenvalues exceeds 10-4 and f"or the last eigenvalue is

approximately 2 x 10-3 .

. : ..~
, ",

.. ..
" ,"7:

" ,
!'-~;i' i.,

.:- ~-

.'';'',. .;

':.~:

.' .'

; ~-
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.;

,.'

'~

.,
-1

..
ft-

•

The frequencies computed :from the eigenvalues of A correspond

c1.':lsely to those reported by Bauer and Reiss in [ 1 ]. Note that

eigenvalues 2 and 3.. 7 and 8.. and 9 and 1.0 are multiple with

multiplicity 2. Rough graphs of the eigenvectors verify that they

describe fundamental modes of vibration very similar to those reported

'-Do [ 1. ] •

1.08
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The zimultaneous iteration pro/:ram could not complete its

computation in the two minutes of' time allotted to it. Tb.us~ we

increased the mesh 'ridth to 1/25 which lowered the order of' A

to ){6. The program then computed the 13 lea.st eigenvalues of' A­

to relative precisions ra."1ging !'rom approximately 10-14 to 10-
4

Both the f'requencies and fundamental modes of' vibration described by

the eigenvectors com'PUted here are what one 'Would expect based on the

results reported in I 1 ] .

Table 4.5 su..r.marizes the results of' the two programs.

Table 4.5

t .."

•

.<

Order
of' A

1I'latrix­
'lector

products

vector
inner

products
time
(sec .)

no. of'
eigen­
values

rel.
precision

Block Lanczos

Sim. Iter.

1024

22;

1233· 85.52

1752 6'}·92

12

approx.

10-6 to 10-3

A total of' 19 iterat.ions were required. f'or the iterative Block Lanczos

method.

As we pointed out at the start~ it is dil'f'icul:t to use the

si.muJ.taneou.s iteration program as a standard of comparison since it is

hard to control the number and precision of the results it computes.

However~ we would say that our program did a better job of' completing

its assigned task of' c:::mputing a specified number of' eigenvalues to a

specified preciSion.

109



j'

!' :

--.- -~...!,,!=-.,...- -' '- ,~. -.~ '. ,.... -.. .." ,,-, ......~

........

,,--- - ...

.1

:1
i

..
~ I

~is Appendix contains a listing of the progra:: for the iterative

B1.ock Lanczos method. See Section;'.4 for a discussibn of the program.

A sample driver program is included with a test problem .
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REML*8 VARIABLE. INITIALLY, EPS S800LD a:BrAIN A
VALUE INDICATING mE RELATIVE PRECISla. 'D) WBIQI
MlNVAL wILL ATTEHP1' 'lO CXIIPU'l'E THE EIGENVALUES AND
EIGENVECTORS OF A. FOR EIGENVAWES LESS IN MaXJLOS
THA'J 1, EPS WILL BE AN ABSOLUTE 'IOLERANCE. BECAUSE
OF THE WAY TlUS ME'nJOD WJRKS, IT MAY BAPpm 'DfAT
THE LATER EIGENVAIDES CAtH)T BE CQo1PtJ'1ED 'IO THE
SAME RElATIVE PRECISION AS 1HOSE LESS IN VAWE.

SUBRJUTINE NAME. '1ti£ ICl'UAL ABGI.lPlENr CORRESPaIDm;
'IO OP SHOULD aE THE NAfotE OF A SOBlQJTINE USED 'IO
DEFINE THE MATRIX A. THIS SOBROOTINE SIDJLD HAVE
'lHB£E A.1G.ll'lENTS NL U, AND V, ~~ WHERE N IS AN
INTEGER VARIABLE \:JIVING 'JBE 0 OF A AND 0 AND V
ARE TWO ONE-DDmIlSIOOAL ARRAYS OF LENG'1B N. IF W

EPS:

OP:

R:

i
!

SUBBOUTINE MINVAL (N,Q,PI~IT,R,~~,£PS,OP,M,D,X,IEOOD~j
IMPLICIT R&\L*a (A-H ,o-Z) .'
INTEGER~LQ,PINIT,R,~ i
REAL*8 a:;t'::j :

~Ot' i
DIMENSICfi O(Q) ,X(N,Q) J
INTEGER. IECOOE

'iSIS SUBROUTINE IS niE MAIN SUBROOTINE
IMPLDlENTL.'Ki THE ITERATIVE BLOCK LANCZ~ ME'l'HOD
FOR CO'.PUTING niE EIGEN\lAWES AND ElGENVEC'IORS OF
SYMMETRIC MATRICES.

DESCRIPTION OF PAAA"'IETERS:

N: !NT'"r:GER VARIABLE.. 'IHE ORDER OF '!HE SYML'lE:TRIC
MATRIX A IoIHUSE EIGENVALUES AND EIGENVEC'lORS ARE
BEINti OJMPuTffi. THE VAWE OF N StfOULD BE LESS '!HAN
OR EQ.J.o.L 10 1296 AND GREATER 1.liAN OR EQjAL '10 2.

Q: L.'\iTEGER VARIABLE. THE NUMBER OF ~:RS OF LENG'1B
N C()i'.ITAINED IN 'mE ARRAY X. THE VAWE OF 0 SHOULD
8£ LESS THA.'\l OR E(lJAL '10 25, AT LEAST a-m
GREATER 'niAN THE VAWE OF R AND lESS THAN OR
OR EQUAL 'ID N.

PINIT: I~'TEGE.R VARIABLE. THE INITIAL BLOCK SIZE TO BE
USED IN THE BWCK LANCZ~~. IF PINIT IS
NEGA1"lVE, 'rHEfIl -PINIT IS USED FOR 11:IE BLOCK SIZE
AND CJLOM.."IS M+L, • • • L_~+(-PINIT) OF '1HE ARRAY X
ARE ASSlJMt'1ED 'IO BE INI'l'.uu.IZED 'IO THE INITIAL
MATRIX USED 'IO srARl' THE BlDCK LANCZai Mt:l'HOO. IF
'lHE SUBROOTINE TERL'4lNATES WITH A VAWE OF M LESS
'1HA.~ R, '!'bEN PINIT IS ASSIGNED A VALUE -P WHERE P
IS '!HE FINAL BOOCi{ SIZE QiOSEN. IN 'nilS
CIRCUMSTA..~, COLUMNS M+IL_._•..:.-L-M+P WILL CDil'AIN
'ftiE MOST RECENT SET OF EI~vt."\:.lvR APPR:>XIMATIONS
WHIm CAN SE USED 'lO RESl'ARl' THE SUBRXlTINE IF
DESiRED.

i~"TEGER VARIABLE. THE NUMBER OF EIGENVALUES AND
AND EIGfNV""r.C'lORS BEING CDUUl'ED. '!HAT IS, MINVAL
ATI'EMPTS TO CCJo1PUTE ACCURA'lE APPR)XIMATIOOS '10 '!BE
R LEAST EIGENVAWES AND EIGENVEC'lORS OF '!BE MATRIX
A. ThE VALUE OF R S9X1ID BE CREMER '!BAN
ZE~ AND LESS THAN O.

L'lTEGER VARIABLE. '!HE HAXDUt NUMBER OF MATRIX­
VECl'OR PR)OOCXS A*X WHEBE X IS A VFX:'lOR 'DIAT ARE
ALLOWED DURING ~E CALL OF nilS SUBROOTINE 'IO
CCMPLETE ITS TASK OF ea-tPUTING R EIGENVAIDES AND
EIGENVEC'roRS. UNLESS T8E PRlBLEM IHDICA'l'ES
OI'HE~ISE, MMAX SHOOLD BE GIVEN A VERY LAf(;E VAWE.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

-----
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DaOlES 'l'8E VEX:'roR OF ORDER N S'lORED IN U, '!HEN '!HE
sr~

CALL OP (N,U,V)

SHOUID RESULT IN 'lBE VEC'lOR A*W BEING OJHPOTED AND
S'l'ORED IN V. THE (u''TENTS OF U CAN BE MCl)IFIEO BY
THIS CALL.

IN'reGEN VARIABLE. M GIVES '!'HE NlJi"tdER OF
t::IGaNALUES AND EIGENVEClOE<S ALREADY 0lMPUTED.
1.tiUS, INITIALLY, M SI:iOULD BE ZERO. IF l"1 IS GREA'lER
'!HAN ZERO, THEN a>LmIG Q.1E 'IHIUJGH M OF 'lifE ARRAY
X ARE ASSUMED 'lU CQ.JTAIN '!HE CQIPU'l'ED
APPIOXIMATI<Hi '10 '!HE M LEAST EIGf:2NALUES AND
EIGENVEC'IORS OF A. AT EXIT, M CCJItl'AINS A
VALDE. EOOAL 10 'lHE 'lOl'AL NUMBER OF EIGENVAWES AND
EIGE1'NECIORS cnu?UTED INCWDING ANY ALREADY
CXX'!PU'IED WEN MINVAL WAS EN'lERED. 'ltiUS, AT EXIT(
THE FIRST M ELEMENl'S OF D AND 'IHE FIIcST M CCLUMNS
OF X WILL <DNTAIN APPBOXIMATICfiS ro THE M LEAST
EIGENVALUES OF A.

REAL*8 ARRAY. 0 CXNl'AINS THE CQIPU'I'EO EIGENVAUJES.
D Si:IOULD BE. A ONE DIMENSIONAL AI<RAY WI'lH AT LEAST Q
ELEMFNl'S. -

REAL*8 ARRAY. X CONTAINS '!BE CCMPU'l'ED
EIGa.vrx::'roRS. X S80ULD BE AN AfcRAY CCNl'AINlNG AT
LEAST N*Q ELEMLN'l'S. X IS USED tDl' ONLY 10 STORE

~RKI~~~~mB&~~6s~~ ~
EXIT, 'lHE FI~ N*M El.amN'l'5 OF X CDITAIN 'DIE
EIGaNECroR APPR)XIMATIONS- '!BE FIRST VEC'lOR IN
WE FIRST N ELEI'IENI'S, '!HE SECnID IN WE SECCIID N
ELEMENTS, ETC.

INTt:GER VAlUABLE. THE VAWE OE' IECOOE INDICATI::S
WH.I:."llfER MINVAL TERoUNATED SUCCESSfULLY, AND IF Nlll:,
THE REAS(lII WHY.

IECOOE=0 •
IECCDE=l •
IECOOEz2 •
IECCDE=3
IECCDE=4 •

IECOOE--5 •
IECCDE=6 •
IECOOE=7 •

IECODE:

DlMENSICE E(25) .C(251251
DlMENSI~ U(1296) ,V( 296)
INTEGER p,s,PS

sua..e:ssflJL n:RMINATION.
'!HE VAWE OF N IS LESS '!'HAN 'D«>.
THE VALUE OF N EXCEEDS 1296.
'l'BE VALUE OF R IS LESS '!BAN ONE.
'1'8E VALUE OF Q IS LESS 'l'8AN OR
E(XJAL '1U R.
TilE VALUE OF U GREATER '!'HAN 25.
THE "ALUE OF EXCEEDS N.
'1'8E VALUE OF WAS EXCEEDED
BEFOBE R EIG9NALmS AND
EIGENVEC'lOBS WERE ca.PIJ'1'EO.

NOl'E THAT THE SOBROOTINE BAS BEEN DESIGNED '1U AUDIl mITIAL
APPK>XIMATI(N) 'lQ '!BE EIGf1INEC'lORS CQRRESPONDDG '10 mE LEAST
EIGaNAUJES 'l() BE UTILIZED IF 'lHEY ARE KtOiN (BY SlORING '1HEM
IN X AND ASSIGNIM; PINIT MINOS 'DIE VALUE OF 'lHEIR~
f(JRI.'ElEIM:)BE, IT B1S AlSO BEEN DESIGNED 'lU AU.DiI RI
IF IT S'1OPS WI'lB lEC(J)E>t7. 'DIOS~_1HE OSER OF 'IBIS PRX;RM CAllI
RESTART IT AF'1'ER EXNUNING 1Bl PAKJ.'IAL AESOL'lS Wl'1'BOOT IDSS
OF PREVIOUS WORK.

X:

M:

0:

c
C

c
c
ccc
c
cc
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
c
cc
cc
c
c
c
c
c
c
c
c
c
c
cc
c
c
c
c
cc
c
c
cc
Cc
cc
Cc
Cc

•

: ~.

~,

: \
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, .
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RJrA'l'E THE INITIAL N-BY-P MTR!X Xl S) '!BAT

n°·A-Xl = DlAG(0I,D2, ••• , DP)

WHERE 01 IS S'IOREO IN 0(1), 1=1•••• , P.

CALL SECTN(N.Q.M,P,OP,X,C,D,U,V)

QIECK '!HAT THE INITIAL VALUES OF THE SUBROOTINE
p~ ARE IN RAtliE•

IF N.LT.2) 00 '10 91U
IF N.GI'.12%) 00 '10 982
IF R.LT.l~ 00 '10 983
IF S.LEeR 00 '10 904
IF .GI'.2) 00 '10 90S
IF O.GI'.N) 00 '10 906

moosE INITIAL VAWES FOR 'D:IE BUX:K S!~_~.L.'DIE NDMBER

~'D!~~~~~~&a,~
SlAR'I' 'l'8E BUX:K LAHCZQS ME'lBOD.

P=PlNIT
IF (P.LT.0) p--p

¥F(~g:2) 00 'IO 1lI"
sa2
P-O/2

C
1"0 IF (PINIT.LT.0) CD 'IO 150

00 120 K=l,P
120 CALL RANDOM(N,Q,K,XJ

C
lStt IF (M.GT.0) CD 'IO 2"0

C
CALL ORTHG(N,Q,M,P,C.~

C
C
C
C
C
C
C

C
ERRC=0.0D0

200 1'l'ER--0
IMM.=0

C
C 'l'HE MAIN OODY OF '!HE SOBKlUTINE STARTS HERE. BIt
C CXXJNTS 'mE lIL"\BER OF KA.~X-VEX:'lORPlOXlC1'S CQItPlJ'1'EO
C WHIQi IS 'IHE NUMBER OF TIMES 'I'Hf; SOBROOTINE NMED BY
C OP IS CALLED. ERRC MEASURES 1BE ACCtMJLATED ERR>R IN
C WE EIGENVALUES AND ElGENVECl'ORi.
C

30B IF (M.GE.R) 00 '10 900
IF (DIIl.G'l'.MMAX) Q) '10 987
I'1"ER=I'l'ER~1
PS=P*S

C
C BKLANC CARRIES OUT THE BLOCK LANCZCS ME'1'HCD AND
C STONES '!HE RESULTING BWCK 'IfUDI1lCDiN. MATRIX MS IN C
C AND 'DiE N-BY-PS~ MATRIX XS IN X. 'DIE
C INITIAL N-BY-P~ MATRIX IS ASSUMED '10
C BE S'ID1£D IN COLOMNS 1'1+1 'l'HRlUG8 M+PS c::F X. mE
C RESIOOALS FOR 'IBESE VEC'lORS AND '!BE E1GElWAW!Sg APPR:>XIMATlOOS IN D..Al&-CQtPO'1'ED AND Sl'ORED IN E.

CALL BKLANC (N,Q,M,P,S,OP,D,C,X,E,U,V)

C
C
C
C
C
C

cc. c

.<

11.3

~.



c
c
C

0' • c

t cc
, . c
> t cc

C
4 C

C

C
C
C
C
C

C
C
C
C
C
C
C
C

C

EIG~ SOLVES THE EIGENPR:>BLEM FOR MS, SlORING 'IHE
EIGENVALUES IN ELEMfNl'S M+l THRXJGH M+PS or D
AND '!tiE EIGENV£C'lORS IN THE FIRST P*S lOtS ~
COLUMNS OF C (<J\1EHWIoCITING MS, POSSIBLY.)

CALL EIGEN(Q,M,P,PS,C,D)

CNVTST DE'1'ER'tINES He::W MANY OF 'DIE £lGfNJALUES AND
EIGf2NECTORS HAVE CONVENGED USING THE ERROR ESTIMATES
Sl'Oam IN EO' 'lH£ NUMBER '!HAT HAVE CCtWER:;ED IS STORED
IN NroNO' IF NCQNV=8, THEN NCI*: HAVE CXINElG:"DO'

CALL CNVTST(N,O,M,P,ERAC,EPS,D,E,~

POI <lKOiES NEW VArnES FOR P AND S.I.~ BWCK SIZE AND
'l'HE NlJIlIIBER OF Sl'EPS FOR '!HE BLOCK ~(6 SlJBPRX;RAM,
RESPECTIVELY.

CALL PCH(N,O,M,R,NOONV.P.S)

ROl'ATE aJ4PU'1'ES 'l'RE EIGENVEC'lORS OF '!BE RESTRIClED
OF '!BE RESTRICl'ED MATRIX USING XS SIORED IN X AND
'DiE £IGaNfL'roRS OF HS STORED IN CO' 'DiESE VEC'lORS
SERVE EIO'1'B AS EIGDoVEC'lOR APPRJXIMTIONS AND ro
FQIIo1 'DiE MATRIX USED ro START '!'HE BUlCK I.ANCZCS
METHOD IN 'DIE NEXr ITERATION.

CALL RDTAaE(N,O,M.P.S.NOONV+P,C,>o

~... ". ' ~ -'

"-

c

M=M+NCX»N
UlPI~P*S
00 TO 308

C
C THIS IS 'IBE END OF '!HE MAIN BODY OF 'DIE SUBRCX1l'INEO'
C SET 'l'8E VALUE OF IF.O:J)E AND EXIT.
C

900 If.C00E=8
RE'l'U.­

981 IECOOEal
RETUR\1

902 IfDDE=2
RE'l'OIti

983 IECOOE=3
~

984 IECOOE=4
RETOR\1

905 IECOOE=5
RE'l'UR\1

986 IfXXI)E)06
RE'l'OIII

987 IECOOEa7
PINI'r--p
RE'ltJR.1

fH)

114
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SU5dOUTINE BKLANC CN,Q,M,P,S,OP,D,C,X,E,U,V)
IMPLICIT REAL*8 (A-H,o-Z)
INTEGER N,Q,M,P,LS
DLMENSION D(Q),~(O,Q),X(N,Q)
DIMENSION ECQ),U(N),V(N)

'IBIS SUBRXJTlNE IMP~ THE BlOCK LANCZCli
ME'l'HOO WITH REORl'H~ZATION. BKLANC COMPU1ES
A BLOCK TRiDIIlQJNAL MATRIX MS WHICH IT S'IORES IN
RCWi A.'IlD Q)UJMNS M+l THRXJGH M+P*S OF 'lBE ARRAY C,
AND AN 0R:I'B<N>PJ4AL MATRIX XS WHICH IT SIORES IN
a:>uJMNS M+1 ~-UOJGH M+P-S OF 'lB£ N-BY-Q ARRAY X.
MS IS A SYME"_RlC MATRIX WI'1'8 P-BY-P
~E:TRIC MATRICFS MCl),L_ ••• , M(S) Q\1 I'1'S
OIAGJNAL AND P-BY-P uppt;t( '1'RIAtGJLAR MATRICES
R(2),L ••• , RCS) AUHi ITS UJWER D~. SINCE

~~~~~ ~~'lSIN~XS IS
CCMPOSED OF S N-BY-P~ MATRICES XU),
••• J._X(S) WHERE XC!) IS GIva. AND SBOOLD BE
Sl'OlQ:i1J tN COUlHNS M+1 'l'HRJ(X;B M+P OF X.
~ X(l) IS ASSlJIIED '10 SATISFY
XCI) "'l\*X(l} =DUGCD(M+l!.&..t~)L...··· 6D(~
~~~ ~~m~~ ~~'fU~M OF x.
OP IS '!BE NAME OF AN EXlERNAL SUBiOJ'l'INE USED '10
DEFINE '!HE MATRIX A. OORING 'DIE FIRST S'1'EP, '!BE
SUBROOTIr.."E ERR IS CALLED AND THE GJANTITIES EJ ARE
ClJ'Lt:JUTED WHERE EJ = II A*X1J -~M+J) *XlJ II, Xl3
IS '!BE J.JIB cnuJMN OF XU), AND I *~DQlO1'ES
'IHE EUCLIDEAN NOPJil. EJ IS S'l'O IN t M+J), 3=1,
2'p. ••• , P. U AND V ABE AUXILLIARY 1$ USED
BY: OP.

MP1-M+I
MPPS=M+P*S

00 90 [,;1,S

LLzM+CIr1)*P+1
w-M+L*P

00 78 K=LL,W

18 ~I}~x7I~Kr
CALL O:P (N,U,V)

IF CL.GT.1) 00 '10 19
00 U I=K ill

12 ~I'K)=0.~00
C KiK)=O(K)

4 I=l,N
14 ~I40VJI)-D(K)*X(I,K)

19 DO 30 I=K,LU
'r=0
00 20 J=l,N

2~ ~VCJ)*X(J,I)
3iJ C(I,K)='l'

C
ITcK-P
00 60 I==1,N
'1'=0

48 ~~(i:Jr'~C~J)
IF (K.EQ.W) ~ '10 60
KPl=K+1
00 50 J=KPl,W

l
l
I

I
i,

.-i:
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5~ ~+X(I,J)*C(J,K)
6kl V(I)=VU)-'l'

61 IF (L.£O.S) W '10 70
00 63 I=-l,N

63 XU ,K+P)·V(1)

7" aJNrINUE
IF (L.EQ.l) ~ ERR(N,O,M,P,X,E)
IF (L.EQ.S) 00 '10 90

CAlL 0Rl'HG (N,Q,W,P,C.X)

IL=W+l
ITzLU
00 88 J=l,P
IT=rr+l
OJ 80 l:zlL IT

B0 C(I,IT-P)~{I,IT)

90 CONTINUE
E£'IURN
END
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SUBHOU'rINE PCH(.N.O,fo1,H,t~CONV ,P,S)
IMPLICIT REJ\L*8 (A-ii,o;...Z)
INTEG~R N,Q,M,R,NOQNV,P.S

BASED Cl'I T!lE VALUES OF N, O. M. &. AND NCOOV. POi
<BX:>SES NEw VALUES FOR P ~ S. '.1lsE BIDCK SIZE AND
NUMBER OF SfEPS FO~ THE BLOCK LANCZOO METHOD. mE:
srRA'lEGY USED HERE IS 'IO CHOOSE P TO BE: 'D:IE
SMALLER OF 'l'HE ~ roI.LClWING V'AIIJES: 1) Ti:lE
PREVIOUS BLOCK SIZE:; AND. 2) THE 1IlJMBER OF VAWES
LEFT'IO BE CClt1PUTED. S IS CHOSEN AS LAllGE AS
POSSIBLE SfJaJECT TO THE ~Sl'RAlNTS IMPOSED BY mE
LIMI'I'S OF S'IORAGE. IN ANY E:VENT. S IS GREATER
'!HAN OR ECUM. '10 2. N IS THE ORDER OF TaE PR)BLEM
AND Q IS '!HE NllMBER OF VEC'IDRS AVAILABLE FOR
STORING EIGENVECroRS A..'ID APPLYING 'lBE BLOCK
IANcza; METHOD. M IS 'lHE NUMBER OF EIG!NVAWES
AND EIGENVEC'roRS THAT RAVE ALREAD'Y BEEN <XlMPUTED=~JH8F'i'&~M~~D Ei~x.ro~~s
HAVE OJN\lERGE:D IN WE CURRENT ITERATION.

INTEGER PI' ,5'1'

i'fi'=M+NOONV
P'1"=.R-MT
IF (PT.Gl'.P) Pr=P
IF (PT.GI'.0) OJ '10 Ii'll
P=0
RETlJ~

C
101 OON'.rINUEST=1Q-MT) /Pr

IF Sl'.GT.2) OC 'l\) 110
S'I'=
P'I'=(Q-M'l'}/2

C
110P=PT

S=ST
C

RETUBN
END

C
C
C
C
C
C
C
C
C
C
C
C,.
'"c
C
c
Cc
C

C

'j

::t
"

"

~'L

a

]
-t
t.
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cc
cc
cc

SUBRXlTINE ERR(N10,M,P ,XtE)
IMPLICIT REAL·8 ,kil,crZI
Itll'EGER N,O,M,P
DIMENSIC6 X(N.Q) .E(O)

ERR cntPUTES '!BE EUCLIDEAN I.I!lC1BS OF 'DIE VB:'1ORS
sro~ IN C()L(JtNS M+P+1 'lHR:XXiB M+P+P OF 'lBE
N-BY-Q ARRAY X AND S'lOI£S '1HFIl IN ELEMEN1'S M+1
TBlOJGB M+P OF E.

MPl=M+P+1
MPP--M+P+P
00 200 K=MP1,MPP
T=0.8D0
00 10B 1=1 N

100 T=T+X(I,K)'*2
208 ~~=~(T)

END
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c
c
c
ccc
cccccc
Cc
c

SUBROUTINE awrsT(N..tQ,!.M1.p,EaR<:,EPS ,D,E,NCON'I)
IMPLICIT REAL*8 (A-l1 ,lr~)
INTEGER a,M,P
REAL*8 EPS
DIMENSIOO D(Q) ,E(Q)

CNV'1'ST DE'1'ERMlNES WHICH OF 'l'HE P EIGENVALUES
S1'ORED IN ELEMENTS M+1 'l'HRJOGB M+P OF D HAVE
<XJNVEBGEO USING THE TEST DESCRIBED IN SECTION 3.2.
ERRC IS A MEASURE OF 'mE ACClJM[JLJ.\TED ERROR IN '1HE
M PREVIOOSLY CC»olPUTED EIGENVALUES MD
EIGENVEC'roPS. ERRC IS OPDATED IF MORE
APPRJXIMATIONS HAVE~. '1B£ OORMS OF 1HE
BFSIlXJAL VEC'lORS ARE SIORED IN EIB4ENTS M+1
'IBIaJGH M+P OF E. EPS IS 'lBE PRECISION 'to WHICH
~ ARE c:auurING 'lHE APPIVXIMATIONS. FINALLY,
NCONV IS 'IHE NUMBER TBAT HAVE OONVERGED. IF
NCONV=0, '!HEN NONE HAVE CONVERGED.

REAL*8 MCBEPS / 2.2.2Ir-16/

K=0
00 100 I=l,P
T=DABS(D(M+l) )
IF (T.LT.l.0D0) '1'=1.000
IF (E(M+I) .GT.T*(EPS + 10D0*N*MCHEPS)+EiUC) ro '10 200

100 K=I
200 NCONV=K

IF (K.EQ.0) RETURN
C

T=0.0D0

~',Jit~~2
300 OJNTINUE

ERRC=DSQRr (ERRC**2+T)
BETO~
END

"
.}

.,
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SUBROUTINE EIGEN(Q,M,P,PS~C,D)
IMPLICIT REAL*8 (A-B,o-z)
INTEGER M,P,O,PS
DIMENSION C(O,Q) ,0(0)

EISEN SOLVES Tl:iE EIGENPR:>BLEM fUR ']}:IE: sYMMETRIC
MATRIX MS OF ORDER PS SlORED IN fOtiS AND COLUMNS
M+1 TH.lUJGH M+PS OF C. '!HE EIGENVALUES OF MS ARE
sroRED IN ELEMENTS M+1 THBOUGll M+PS OF D AND THE
EIGENVECTORS ARE STORED IN RlWS AND OOLOMNS 1
'lBIOJGH PS OF C POSSIBLY OVERWRITTING MS. ElGEN
SIMPLY RE-S'IDRES; MS IN A MANmR ACCEPTABLE TO mE
SUBBOOTINES TBED2 AND TQL2.

DIMENSION 00(25) ,V(25)

00 150 I=l,PS
LIM=I-P
IF (l.LE.P) LIM=1
IF (LIM.LE.l) 00 '10 130

C
IJoU=LIM-1
00 U0 J~UU

120 C(I,J)={f.000
C

130 00 140 J=LIM I
14~ C(I,J)=C(I+M,j+M)

C
150 CDNTINUE

C
CALL TRED2(O PS ~,OO V C)
CALL TQL2(Q,PS,DD,V,C,fERR)

00 160 1-=1 PS
160 D(M+I)=DD(f)

C
RETURN
END

cc
c
C
C
C
C
C
C
C

C
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SU~~E SECtN(N,O,M,P,OP,X,C,D,U,V)
IMPLICIT REAL*8 (k-H,<rZ)
~N6~,M,P

DIMENSIQQ X(N,Q) ,C(Q,Q) ,0(0) ,U(N) ,V(N)

SECrN 'lRANSFORMS '!HE N-BY-P OR'l'B<H)ltIAL MATRIX Xl,
SAY SIDRED IN COLUMNS M+.). 'lBKXJGB M+P OF 'DIE
N-Bt~ ARRAY J SO '1'8AT Xl. *A*Xl = DIAG(D1,D2, •••
L~l.; WHERE DENO'l'ES TRANSPOSE AND A IS A
~:llTl5:'rRIC MATRIX OF ORDER N DEFINED BY 'lH£
SUBR:XJTINE OF. 'DIE VAlDES D1, D2L •••6 DP ARE
Sl'OREO IN ELEMEN1'S ~1 '1'HROOGH M+1' OF • SEC'IN
FOBMS 'D:lE MATRIX Xl *A*X1 = CP, SOORING CP IN 'l'HE
ARRAY C. '!HE VALUES 01, 0k_~."':"-L DP AND '!HE
EIGf1'WEC'lORi OF OF CP ARE u..t'U'U".1\:;u BY ElGEN AND
Sl'OREO IN 0 MI> C, RESP. IDrATE '!BEN CARRIES OOT
'mE l'RANSFORMATION Xl<=Xl*oP.

ICDL1=M
IX) 300 J::l P
ICDL1=IOOL!+1
00 100 1::1 N

100 U(I)=X(I,ICOLl)
CALL OP(N,U,V)
lCOL2=M
IX) 300 1=1..1
ICDL2=ICOL2+1
T=0.0D0
00 200 K=l,N

200 T=T+V(K)*X(~LIOOL2)
300 C(IODLl,IOO~)=T

C
CALL EIGEN(O,M,P,F,C,O)

C
CALL ~~TE(N,Q,M,P,P,C,X)

C
RETURii
END

121.
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SUBRJUI'INE ICI'ATE (N,O,MrPS,L,C,X)
IMPLICIT REAL·a (A-H,~Z
ItlI'EGER N,O,M,PS,L
DEMENSIor~ C(O,O),X(N,O)

HOl'ATt:: aJ4Pl1l'ES THI:: FIRST L OOLUMNS OF "!tiE MATRIX
XS*QS \\HERE XS IS AN N-BY-PS~ MATRIX
Sl'OREO IN COLl.I4N::i M+1 'l'WOJGH M+PS OF THE N-BY-Q
ARRAY X AND OS IS A PS-BY-PS an1lQl\l)!M\L MATRIX
Sl'OREO IN ~ AND CDLlJMNS 1 'l'tilIDiH PS OF 'DiE
ARRAY C. 'IBE RESULT IS SlORED IN e:a.tI4NS M+l
'I'HIOXiH M+L OF X OVERWRITTING PARr OF XS.

DIMENSla. V(2S)

DO 30" I~I,N
DO 288 K=I,',
'J':EB
00 188 J"1 PS

10" T=T+X(I,M+j)·C(J,K)
200 V(K)-1'

00 380 Itc l,L
30. X(I ,M+It) =V (It)

C
~
EN)

122
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SUBRXlTINE ORlBG(N~Ffl-z8 ,X)
IMPLICIT REAL *8 ( , )
INTEGER N,g,F,P •

C
DIMENSION (Q,o) ,X(N,Q)

C ORmG Rm~ZES 'lHE N-IW-P MATRIX Z S'1'OAED
C IN OOLUMNS F+1 'JBIOJGB F+P OF 'DIE N-BY1BEARRAY X
C WI'ftI RESPEX:T '10 'l'HE VECroRS S'l'OB£D IN FIRST F
C OOLOMNS OF X AND "1HEN DfXXJ(POSES '!HE R&SULTn«i
C MATRIX IN1'O THE p.RJIXJCr OF AN N-BY-P~
C MATRIX JlORl'B~ fsAND A P-BY-P (PPER '1'RIAlGJLAR t
C MATRIX R. S'1ORED CJJER Z AND '1BE OPPER
C 'l'RIAlGLE OF R IS S'1OBED IN ID6 AND a:JLtMI) F+l
C 'lH1Uli8 F+P OF 'lBE ~ARRAY8. A STABLE
C VARIANT OF 'lBE GRA.~ ~Of
C ME'l'BOD IS urILIZED. '1BIS SDBRXJTINE IS BASED
C DIRECTLY Cfi '!BE AlGOL 60 PRX:EWRE CJRlB(X;
C CDll'AINm IN '!BE SIMULTANEOOS I'1'ERATI(1\l PIO;RAM OF
C R1rISBAUSER. 1
C

IN'l!XZR FP1{;FPP
UJGICAL OR]

C
IF (P.EQ.I) Im'URN
FP1"'F+1
FJ?1I'sF+P

C
DO Sit K:FPl,FPP
QRIG= • 'l'RDE.
KPlleK-l

C
1" 'M •.,oe

IF ~.LTKM (D '1U 25
00 Ios1, •5=-0.100
00 IS J z l,N

15 s-s+~ I~(J'M-IF t {;. .1. .F) B(I,K)aS
~S*S
00 21 J""I,N

C
2i X(J,IQ=X(J,K)-5*X(J,I}

2S 5=8.800 t
00 38 J=I,N

38 ~X(J,k)*X(J,K)

Ts'1'+S
IF ~.G1'.T/I"") (D '1t) 48
0R1 - .FALSE.

{ Q) TO ltd
4"~S)

tJ.K,K}- •~.NE.0) S=o:lIS
00 J&1 N

C
50 X(J ,K) =S*X(J ,K)

RE'l'UFN
END

•
';

• •
~
.~
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00 210 I-1,N

c

SUBlOJTlNE RANOCM (N.Q.t.L.lX)
IMPLIcn" REAL*8 (A-B,~~)
IN'l'EGER N,Q,L
DIMENSIClIl X(N,Q~

kAN[)()4 eatPtlI't:S NfD S1'ORES A SEXJ.J9C; OF N PSfUX)-RArO:)II
l'UtBERS IN 'DIE L-TI:f OlWMN OF TIlE N-BY~ ARRAY x. RAfO:)t
GENERATES '1W) SEOODICES OF PSWDO-RAfDliiI~ FILLINi
AN ARRAY wrm (J>.I£ S£CXJENCE AND USING '!HE SECQID 10 ACCESS
WE ARRAY IN A~FASHI~.

DIMENSI~OOl"")IHl'EXiER Fl 1416/ F2 27183 FT
IN'lEGER 6821/,Cis3~7/,JW~328/,Xl
00 I"" 1=1,100
Xl=A*X8+C
IF (Xl.GE.l"""") Xl=X1-1880/i1
T(I) =Xl/999900-.508

HJt') X0=X1
C

C

c
cc
c
c
c
c

FT-Fl+F2
IF (FI'.GE.ltJ""HB) Pl'-FT-IB"188S
Fl=F2
F2-Fl'
K=ET/lD6*l"/iI+l
XCI ,L) =T(IC)

C
Xl=A*X8+C
IF (Xl.GE.IBB08) Xl-X1-1088B
T(K)=Xl/9999D&-.5Dfi1

208 XS=Xl
C

REWRW
t:M>
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DO lee I • lr N

IF (N .~. 1) Q) 'lQ 328
•••••••••• FOR IaN STEP -1 DNrlL 2 DO -- ••••••••••DO·iii·ii·· 2. N ••••••••••

I-N+2-U
L-I-l
B • 0.8DS
SCAIE - 0.8De
IF (L .LT. 2) 00 'lO 138

~TQED2(NMrN~rOrErZ)

IHrEGER lrJrK~.LrNrlI.!.tllrJP1
REAL*8 A(llil.f. ~t;(N},Z (tIt,N)
BFAL*8 ~r
REAL*8 r ,tslQl

'IBIS SUBlQJ'l'INE IS A '1'RANSIMION OF 'lBE ALGOL PI()CEOORE THED2 r
fUll. MimI. U , --!!1-195(1968) BY ~~.L RElNSCB r AND~.
fIAN[BX)K fOR A1JW. COlP. r VOL.II-wl'IItAK AI.GEBMr 212-226(1971).

'l'BIS SOBRXJTDtE NEDUCES A REAL StPi'IEl'RlC MATRlX 'ID A
SD9IeDUC 'l1UDI1GJNAL MATRIX USING AND ACQJIIG.ATING
~ SDULARITY 'l'RANSFOlOWrIQIS.

ON INPOT:

til MOST BE SEl' 'lQ '!BE !Of DIMENSION OF 'D«:H)IMENSI~
ARRAY PARMEIERS AS DEClARED IN '!BE CJ\LI,IfG PRJGRAM
OlMENSr~ srATEMEBr:

N IS 'lBE ORDER OF mE MATRIX;

A <nrrAINS 'IBE NEAL~C INPUT MATRIX. <K.Y 'IBE
IDWER'TRIANGLE OF '!BE MATRIX NEED BE SUPPLIED.

Cfi CXJTfUT:

D 00NTAlNS '!HED~ ELEMEN'1'S OF 'DIE TRID~ MA'1'RIX:

E o:tlrAINS 'JBE SUBDLtalW. ELEMEN'1'S OF 'lHE TRIOIAOONAL
W\TRlX IN I'lS LAST N-1 POSITIQIS. £(1) IS SET 'lO ZERO:

Z CQl1'AINS 'JB£~'1'RANSFOlWd"I~ MATRIX
plQXJCED IN '!'HE BEWCTION:

A AND Z MAY OOINCIDE. IF OIS'1'DlCTr A IS UNALTERED.

OOESTICIG AND <XJ9ItH1'S SEtQOLD BE DINEC'1'ED 10 B. S. GARBOWr
APPLIED MATHf1IIIATICS DIVISIctf, ARDINE NATIClHAL LABOlW1OR!

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
DOlHJ-1 I

ZelrJ) • A(IrJ)
188 CXNrINOE

C

C

C
C
C

C

125 •
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: : : :: : : : :: SCALE RC7A (AUDL 10L 1tiEN NOr NEEDED)
oo120K-l L
SCALE =sCALE + DABS(Z(I,K»

IF (5C:ALE .NE. 0.800) GJ 'IU 140
~lfu=~jl,L)

DO l~!,~)=.ltli K) / SCALE
H = H + Z( ,K) • Z(I,K)

OONTINUE

~: :~f~(DSORT(H),F)
1::(1) = SCALE~-G
I::l=B-F*G
Z(I,L) = F - G
F • 0.000

00 240 J = 1 L
Z(J,I) =: Z(I,J) / (SCALE * B)
G .. 8.800

::::::li>:iarr=~ OF A*U ::::::::::

G =: G + Z (J ,it) • Z(I ,K)

JPl = J + 1
IF (L .I:1'. JPl) GJ '10 220

00 208 K • JP1, L
•.••••~.~.G~(~Z~,~)•.•.••••••······E(ji .. G / H ••••••••••

F • F + E(J) * Z(I,J)
CCNrINtJE

...~.~.:.I~+~ A ••••••••••···OO·i6i·J =1, L ••••••••••
F .. Z(l,J)
G = E(J) - HB * r'
E(J) • G

00 268 K • 1 J
Z(J,K) = Z(J,K) - F * E(K) - G * Z(I,K)

OONl'INUe

00280K=1 L
Z(I,K) = ScA£E * Z(I,K)

269
C

288
C

290 D(l) = B
3il0 crBriNtJE

C
320 0(1) =".000

E(l) = 8.800

c

C

188
C

C

2"8
C

220

240
C

C

158
C

C

12"
C

138

C
14"

c
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c

c

c

368
C

388

•
•.•............................ - NXUMULATl~ OF mANSfOIIIATION MTRICESoo·5ji-i-'; 1, N

LzI-1
IF (D(l) .£0. B.8D1) 00 '10 38B

00 368 J :z 1, L
G :z 8.BDe

00 348 K' = 1, L
G '"' G + Z(I,K) * Z(K,J)

00 368 !It '"' 1. L
~~K,.J) • ~(K,J) - G * Z(K,I)

~
I) = Z(I,I)

Z 1,1) ,. I_BDe
(L .LT. 1) Q) '10 588

~
oo ~0!j)"}'.;D8

Z .1,1) ., 0.801
400 E

C
588 <DiTINUE

C
RE'l'URic·········· LAST CARD OF TRED2 ::::::::::00·······

C

348
C

_.

••

••
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C
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c
c
C
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C
C
C
C
C
C
C
C
C
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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SUBROUTINE TQL2(I~,N,D,E,Z,lERK)

INTEGEE< I ,J,K,L'~.cN,II,Ll,NM,MML,IERR
RI:::AL*8 D(N),E(N),l:o(NM,N)
REAL*B ~~,F,~!~~P~fS,MACH£P
REAL*B LJ::JVR1-,L'IW::», I..b GN

'rHIS SUB1()l1flNE IS A TRANSLAl'ION OF THE AlGOL PiOCt.LllJRE TQL2,
NUM. MATH. 11, 293-306 (1968) BY BOftDLER, MARTIN, REINSCH, AND
WILKINSON.
HANDBOOK fUR AlJ'I'O. CCMt'., VOL.II-LINEAR. ALGEBRA, 227-240 (1971) •

nns SU8iOJTINE FINDS -mE EIGfNVALUES AND EIGENVEC'IORS
0F A ~'"Y2'METRIC TRlDIAGJNAL MATRIX BY 'l'Hf: OL ME'ltiOD.
THE EIGDNEC'l\)fcS OF A FULL SYMMETRIC MATRIX CA.~ AlSO
BE fUJND IF TR£D2 ~ BEE.N UStID '10 REDUO:: THIS
FULL MATRIX ro TP.IOIAGJNAL FORH.

ON INPU"l':

NM MUST BE SET 'l\) '11IE i()W DIMENSION OF ~DIMENSIONAL
ARiW{ PANNEreRS AS DECLARED IN 'l'BE CALLING PRJGRM
DlMENSI~ srATEMENT:

N IS 'l1tE O£<DER OF t1iE MATRIX:

o CONTAINS 'nIE DIAOONAL ELEMENTS OF'ltiE INPUT MATRIX;

£ CONTAINS 'DiE SUaolAOONAL EU;MENTS OF THE INPUT MATRIX
IN I1S LASl' N-l POSITIONS. E(1) IS ARBITr<ARY:

Z Cl.NrAINS THE TAANSFORMATION MATRIX pRXlUCE[) IN '!HE
E<Ea:AJCTION aY TRED2, IF PER1''ORMED. IF 'DIE EIGENVEX:ro~
OF -lHE TRlOIAWNAL MATRIX ARE DESIRED, Z !'IJST CamuN
11IE IDI:NrIn" MATRIX.

0N OO"l'Pl1l':

o C'OltrAlNS 11IE ElGEN'JALUES IN ASCENDING ORDER. IF AN
£RR)R EXIT IS MOE mE EIGENVAWES ARE CORRECT BUr
UNORDERED FOR INDIO:S 1,2,••• ,IERR-l:

E HAS BEEN DESTROYED;

Z CcurAINS 0Rl'H0N0I1MAL EIGfNVEX:roRS OF 'lHE S»ME:!'RIC
TRIDIAGJNAL (OR fULL) MATRIX. IF.AH ERIlOR EXIT IS l"IADE,
Z a:NrAINS 'DiE EIGENVECTORS ASSOCIATED WI'1'H '!BE S'rol£D
EIGaNALUES;

IERR 15 St.T '10
Z£R) FOR NORMAL RETURN,
J IF '!HE .i-ni EIGENVALUE HAS NOT BEEN

DE'l"EIIIlNED AFTER 38 I'l'ERATlOOS.

OOESTIONS AND 0K-1ER'l'S SEIXlLO BE DIlB:'1'm 'IO B. S. GA.~,
APPLIED MA'1'HEi'1ATICS DIVISION, JUlGOtIIE NATI~ LABORA'IO~

: : : : : : : : :: HACtlEP IS A MACIUNE DEPENDEN'l' PARAMErER 5PEX:IFYING
1'H£ f<ELATIVE PRECISION OF FLOIaING POINT ARr1'HMETIC.
MAOiEP :: 16."08**(-13) fOR UX«; FORM ARI'l'HMETIC
ON 5369 ••••••••••

DATA KACHEP/Z341"il81i';jiiiiiii/

126
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C

140.
C

C
F:zF+B

• • • • • • • • •• QL TRANSFORMATION ::::::::::· ··p·;·D(M)
C = 1.600
S == 0.000
~L=M-L .

•••••••••• roR....I=M-l STEP -1 UNTIL L DO - ••••••••••···D6·20a·lI =1, MML ••••••••••
I==M-1I
G =C * E(I)
B =C * P
IF (DABS(PJ .LT. DABS(E(I») 00 '10 IS0

~: f£k{JC+l.0oe}
£Cl+1) = S *'p * R
5=C/R
C = 1.000 / R
00 ro 160 .•
C = P / E(I)
R = pSQRl'(C*C+l.0D0)
E(I+1) :z 5 * E(I} * R
5 == 1.000 / R
C = C * 5
P == C * DCI} - S * G
D(I+1) =8 + 5 * (C * G + S * D(I)}•••••••••• FORM VEC!OR ••••••••••······co·is0 K= 1, N ....•..•••

~1A;K,iJ~)I:l~ * Z(K,I) + C * H
Z K,I) =C * Z(K,I) - S * H

OONT E

-OONTINUE

!ERR = ~
IF (N .EO. 1) Q) 10 11/JIU

15ij

lS0
C

2~1rI
C

160

C

C

C
C

110
C

128
130

C

C

C

C
00 1814 I =- 2i N

1~14 E(I-l) = E(l)
C

F = 0.000
B = ~.000
E(N) = 0.000

00 240 L:: 1, N
J = 0
H = MAQJEP • (DABS (D(L) ) + DABS (E(L» )
IF (B .LT. 9) B = a

• • • • • • • • •• LrOK FOR SMALL 5Ue-D1AG)NAL ELEMENT ••••••••••
···[X)"ii0·M =LN··········

IF (DABS (ECM) ) .LE. B) 00 '10 120
: : : : :: : : :: E (N) IS ALWAY5 ZER:>, so 'DlERE 15 NO EXIT

'I'WOJGH THE sorrc»ot OF '!'HE [lX)P ••••••••••OONrlNUE ••••••••••

IF (M .~. L) Q) '10' 226
IF (J. • 30) Q) 10 1000
J=J+

• • • • • • • • •• FOaM SHIFI' ••••••••••···Li·;·L·+ 1 .•••.•••.•

G = D(LL
P == (i)f ) - G) / (2.000 * E(L»
R = DSQRr(P*P+l.000)
D(L) = E(L) / (P + DSIGN(R,P»
H == G - [.l(L)

DO 140 i = Ll, N
D(I) -= 0(1) - H

129
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LAST CARD OF TQL2 :::::::::::

f'.(L) = S • p
D(L) =C * P
IF (DABS(E(L» .Gr. B) GO TO 130

22~ D(L) = O(L) + F
240 axolrINuE

: : : : : : : : :: ORDER t:IGENVALlJES AM) EIGENVEC'lURS
DO 300 II = 2~ N

I=II-l
K = I
P = 0(1)

00 26~ J = II, N
IF (D(J) .GE. P) 00 1U 260
K=J
~ = D(J)

CONTINUE

IF (K .EQ. I) GO TO 30~

gl~J ~ ~(I)

00 280 J = 1, N
P = Z(J~I)

Zl'J , Il = Z(J ,11.)
Z J ,K) = P

COl\i"T NUE280
C

3~0 CONTINUE

00 ro 1001
: : : : : : : : :: SET ERNOR - h"O CONVER'"'~CE TO AN

EIG£NVALUE AFTER 3li) I'IERATIONS ::::::::::

c

260
C

c

c

c
c
C

11400 IE:RR = L
Hun HETORN

c ··········.........•
END
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SUBiQJTlNE PRINTX (N,Q,M,K,X)
IMPLICIT REAL'*8 (A-9,crZ)
INTEGER N,O~M,K
DIMENSION &,N,Q)

C
C PRINT OOT COLUMNS M+1 '!'BROUGH M+l( OF THE
C N-BY-Q ARRAY X.
C

00 l~~ I:£l,N
100 PRINT 1ij01,(~'I~M+J)~J=1,l()

1001 FORMAT( :::)X{ ,l:lD12.4)
RETURN
END

SUBROUTINE AXIN,U,V)
IMPLICIT RE:AL"S (A-H ,crZ)
INTEGER N
DIMENSION O(N),V(N)

C
C AX COMPUTES Y == A*X WHERE A = DI1lG(-1,-1/2,-1/3, ••• ,-liN).
C X IS S'lORED IN U AND AX S'roRES Y IN V.
C

00 100 1=1 N
100 V(I)=-lD0/f*U(I)

RETURN
END

..:-1

CALL MINVAL(N,Q,PINIT,R,MMAX,EPS~AX,M,D,X,IEOODE)

~~I6rlE~~r Jti~~~f)
EXTERNAL AX
INTEGER O,PINIT,R

SA.\lPLE MIN PFa;RA"1. MWVAL IS USED 'lO <:a4PUTE
'!HE 4 LEAST EIGENVALUES OF 'DiE MATRIX
A = DIAG(-1,-lf2, ••• , -1/300) '10 AN APPR:>X!MATE
PRECISION OF 10-(-3). 'l'W"ELVE VEX:1.URS ARE ALLOWED
FOR TBE BLOCK !ANCZOS ME'l'HOD AND AN INITIAL BIOCK
SIZE OF 4 IS CHOSEN.

N=3i)0
Q=12
PINIT=4
R=4
K-1AX=500WJ
EPS=ltHl3
8=0

.
-,

f

"·f

• ••

=>E ' ,5023.15»

• •

C
C
C
C
C
C
C
C

c
C

1801 f.o~t"I~~MZEJI)~n:fX;i~(·
c

PRINT la"~
1""2 fORMAT<l1 EIGENVEC'lORS ••• 'II)

~ CALL PRINTX(N,Q,0,M,X)

S1'OP
E1IID

----- --. .----.
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