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Analysis of the Subtractive Algorithm for Greatest Common Divisors

Andrew C. Yao and Donald E. Kmuth

Computer Science Department
Stanford Un.versity

To the memory of Hans A. Heilbronn, 1908-1975

An ancient Greek method (1) for finding the greatest common divisor
of two positive integers by mutual subtraction (& vravar pedrg)
can be described as follows: "Replace the larger number by the
difference of the two nmbers until both are equal; then the answer
18 this comson value." For example, the computation of gecd(18,42)
requires four subtraction steps: [18,42} - (18,24} - (18,6} ~
{12,6] - {6,6} ; the answer is 6 .

Let S(n) denote the average mumber of steps to compute gcd(m,n)
by this method, wvhen m 1is uniformly distriduted in the range
1 <m <n . We shall prove the following result:

Theorem. 8(n) = 6x~2(1n n)2 + 0(log n(log log n)°) .



1. Preliminaries.

Let (x] denote the largest integer less than or equal to x ,
and let xmody = x-y|x/y] be the remainder of x after division
by ¥y . Wz represent the continued fraction 1/(xl+1/ (%y: -nu# 1/xr) eer))
by /4 X)9Xo ...,xr[ .

If 1<m<n, it is vell known that there is a unique sequence
of positive integers 9y5+++59, such that m/n = lql, ...,qr,ll s
vhere r = r(myn) >0 . The number of subtraction steps needed to
conpute gcd(myn) 4is precisely Q)+ ...+q ; for this is evident
when m divides n , and otherwise q = Ln/m] eubtraction steps
replace (m,n} by {m,n mod m} , wvhere (n mod m)/m = Iqa,...,q‘,ll .
Therefore 8S(n) may be interpreted as one less than the average
total sum of partial quotients in the continued fraction representation
of fractions with denominator n .

Let us say that (x,x',y,y') 41s an H-representa“ion of n if

n=xx'+yy' , x>y>0 , gd(xy) =1 , and x' >y' >0 ., [1.1)

We begin our analysis with the following sharpened form of a fundamental
observation due to BH. A. Heilbronn (3):



Lemma 1. There is a 1-1 correspondence between H-representations of
n and ordersd psirs (m,j) where O <m <%n and 2 < J <r(myn) .
Purthermore if (x,x',y,y') correspcnds to (m,j) , the j-th partial
quotient q, in the comtimued fraction m/n = fa,,q, TR Y

is | x/y) .

Proof. Given o<n<%n,let d = ged(m,n) , r = r(myn) , and

m/n = lqlsqea---:qrxll . Let m'/n = ’l’qr""’qQ’ql, ; then
1

5“ <m' <n, and the correspondence m -~ @' between (0,-;'-n) and
(%n,n) is 1-1 .

Now let (m,») correspond to the H-representation
(m'/a,d, (nm*')/d,d) , and if (m,]) corresponds to
(!J’x:i’yd'y&) for some 3 >1, let (m,j-1) correspond to
(¥y59,%)+y]» %y -a,¥, 5 x}) . Tt follows reedily that |x,/y,] =qy
for 1 <j<r and that ¥, - 1, since this construction parallels
the contimued fraction process for =m'/n .

To complete the proof, we start with a given H-representation
(x,x',¥,y') and show that it corresponds to & unique (m,3) . This
is obvious if x' = y' , since the construction clearly treats every
such H-representation exactly once. If x' >y' , let x' = qy*'+x"
where 0 <x" <y' amsd g >1 . By induction on x' , the H-representation
(y*qx, ¥y', X, x") corresponds uniguely to some (m,j) , wvhere j > 1
since x > 1 ; hence (x,x',y,¥y') corresponds uniquely to (m,j-1) . O



corollary. nS(n) = 2T (x'y; +1l-(nmu ) , vhere the aum {s over

all H-represeniations of n .

Proof. By the lemma, T |x/y] 1is the total number of subtractions

to campute ged(myn) for 1 <m < 1. It 1s also the tctal for

2
% a<&<n, since {mn} and {n-m,n} both reduce to {m,n-m}

after ore rtep. Finally we add the cases m = n (O steps) and

m:%n (1 step if n 4s even). [J

2. Reduction of the Problem.

Let ZI'Lx/y] denvte the sum over all H-representations with

iy <% n . Note that
x/y < nfx'y = x/y+y'/x' < x/yl , [2.1]

hence the excluded H-representations with x'y > %n have | x/yj =1 .

Since r(m,n) = 0{log n) , we have

ILx/y) = ©'Lx/yj+0(n logn) . [2.2]

Lemma 2. Given x',y >0 and x'y < %n s there exist H-representations
(x,x',y,¥') of n if and only if

gcd(y,n) = ged(y,x*') . (2.3]
And wvhen [2.3] holds there are exactly gcd(y,n)]T(l-p'l) such
Herepreasestations, where the product is over all primes p which

divide gcd(y:.n) but not y/ged(y,n) .
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Proof. The necessity of [2.3] is obvious, since gecd(x,y) =1 . Let
d = ged(y,n) = ged(y,x'X = kx' % by . The set of all s lutions

(x,¥y') to n = xx'+yy' 4s given by ((an+qy)/d, (bn-gx')/a) ,

for integer q . Exwt]ty :l values of q will satisfy

0 <bn-gx' <ax' , i.e.,, y' <x' ; and vhen y' <x' we have

x = (n-yy')/x* >n/x'-y >y .

It remains to count how many of these 4 solutions satisfy
ged(x,y) =1 . If p is a prime divisor of y/d , then p does not
divide an/d , hence p does not divide x . On the other hand, let
Pys--+sP, be the primes which divide d but not y/d ; then Py -+ P,
consecutive values of q will make (an+qy)/d run through a complete
residue class modulo p, ...p, , hence (pl-l) . (pr-l) of these

values will be relatively prime to y . 0O

Let P(n) denote @(n)/n = ‘n(l-p.l) , where the product is over
all prime divisors of n , and let P(n\m) denote the similar product
over all primes which divide n but not m . As a result of {2.1),

[2.2] and the lemma, we have

z =z z a\ (y/d z 24 0(1) ) +0(n 10g n) .
iy =B B aHa\G/) caeSy o (5 (1)) +o(n 10g »
l1<y<n/2 1<x*' <n/2y

Replacing n, y, x' 7respectively by md, Jd, kd yields

Zixfyy = L z P((n/m) \ J) Z Jlk +0(n logn) , [2.3)
m\n ged(j,m) =1 ged(x,J) =1
J <m2/2n k<n2/2n;j

stnce L, , d =n0_,(n) =0(n log logn) . (See (2, §2.9).)



5. Asymptotic Formulas.

Lema. X 1—°§1 = 0(log log n) - [3.1]
P\

Proof. Let n be divisible by k primes, and let Cy5 % be constants

such that the j-th prime lies between clj log j and c, Jlog J - Then

log P
y 2 . T —d .o I ?l—ol-g-d—)=0(logk).u
P 1<i<k By 1cack 9 083
Consequently
T !%’)-m(%) - Z B2pn\p) - o(log 1ogn) (3.2]
a\n Aa F
and
L d . v ompf i S + 4 \o (-9-) ao((loglogn)e). (5.3)
an ¢ P2 /) \§
We shall now evaluate [2.3] step by step, beginning with the sum
on k
1
Lenma. . = = P(J) ln x + 0(log log J) - (3.4
gcd(k,9) =1 F :
k<x
Proof. The smm is
Zue £ & - @ anZionn . o
a\J kd <x a\j



Let  (n) = (-1)7 if n 1is the product of r >0 distinct
primes, none of which divide m , otherwise p.m(n) =0 .

. (r)
Lema. Z B < p(m) 1n x 2 ”.dg + 0(1og logm) . {3.5]
ged(d,m) =1 9 ged(r,m) =1 r
J<x ‘ r<x

Proof. The sum 1is

Z 1 Ud(r) _ 2 “d(r) 2 1
ged(dm) =1 Iry T ged(r,m) =1 *  ged(j,m) =1 IF
j<x r<x j<x/r
apply (3.4]. O
Lemaa.
a(T)
M) . L pmymn® D 3
ged(J,m) =1 ged(r,m) =1 r
J<x r<x
+ 0(log x log logm) . [3.6)

Proof. As in [3.4], we have

-l%‘—k = 2 p(d) z
kd <x

a\J

In kd
ged(k,3) =1 kd

3<x
. dz;_‘,d l(g)-(%(ln %)2+ (m %)(m a) +0(1n ’a‘))

= % #(3)(1n x)% + 0(10g x 1og log J)

by (35.2], hence the desired sum can be evaluated as in [3.5]. I



L. Concluding Steps.
Putting the results of Sectlon 3 into (2.3], letting N stand for

m2/2n , and using the fact that P(a\b)P(b) = P(ab) = P(b\a)Pa) , we

have
¥ > 5 P(n/m) P(}\(n/m)) , (N
Ly m\n . ged(J,m) =1 ] (j )
J<N
+ 0(n G_l(n) log n log log n)
= T nP(n/m)| 3 P(m)(1n N)° % @
m\n ged(r,m) =1 r
r<N
+ O(n a_l(n) log n log log n)
-1z mP(n/m)P(m)(ln5+ 21n2 ¢ z #u(%)
2 m\n 2 n r<N r2
+ 0(n log n(log log m)?)
Since

T miogl -n I 282 . o(n(log log n)%)
m\n m da\n

by [3.3], we can simplify this to

(r)
%‘ Z\:n mP(n/m) P(m) (1n n)2 2<3N “ner + 0(n log n(log log n)2)
m r r



We can extend the sumon r to « , since

ZmE-%=ZnE—l§+ZmO(-%)
m\n r>N r m\n r>1 r m\n m

n</n m>v/n

by (2, 518.1)- Now

2= n(-3) - s n(-E)

It remains to evaluate En\n nP(n/m)P(m) , and since this is a
multiplicative function it suffices to do the evaluation when n - pk 3

Osglgpa(l-%)upn)((l-_) -(2-2)) ,P( )

Putting everything together yields

ZLxfy) = -‘% n(1n )% + 0(n log n(log og 0)%)

and this proves the theorem in view of the corollary to the lemma of
Section 1. !

The ‘heorem shows that the sum of all partial gquoctients for m/n
iz 0((log n)e") for auqlrc o(n) values of m<n, a8 n -0,
and this establishes a conjecture made in (5). The applicatiom in (5)

involves the sums of even-numbered and odd-mmbered partial quotieants



separately. If so(n) denotes the average of ‘ql+ At agt ..

and se(n) the average of gq,+ Qp*tQg* ..., It is easy to see from
the relation between m/n and (n-m)/n that n(So(n) -8,(n)) =n-1.
Hence §,(n) ~ Se(n) ~ 3:‘2(].11 n)2 .

In a sense our theorem is rather surprising, since Khintchine (4)
proved that the sum of the first k pacrtial quotients of a real number
x 1is asymptotically k ].n)g2 k except for x in a set of measure
zero. Thus we originally expected 8/n) to be of order
(log n)(log log n) instead of (log n)° .
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