GRAPH THEORY AND GAUSSIAN ELIMINAT ION

by
Robert E. Tarjan

STAN-C S-75-526
NOVEMBER 1975

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

7S,

Ry

G aph Theory and Gaussian Elimnation

Robert Endre Tarjan
Conput er Sci ence Depart nent
Stanford University
Stanford, California 94305

Abst r act

This paper surveys graph-theoretic ideas which apply to the
probl em of solving a sparse system of |inear equations by Gaussian
elimnation. Included are a discussion of bandw dth, profile, and
general sparse elimnation schenmes, and of two graph-theoretic

partitioning methods. A gorithns based on these ideas are presented.

Keywor ds: bandwi dt h, dom nators, Gaussian elimnation, profile,
| sparse |inear systens, strongly connected conponents.

This research was supported in part by National Science Foundation
grant DCR72-03752 A02 and by the O fice of Naval Research contract
NR Obk-402. Reproduction in whole or in part is permtted for any
purpose of the United States Government.

1. [ntroduction.

Consi der the systemxM = ¢ , where Mis a nonsingular real-val ued
n by n matrix, x is aone by n vector of variables, and ¢ is a
one by n vector of constants. W wish to solve this system of equations
for x . In many applications, Mis a large sparse matrix; that is,
M has many zero elements. If the systemis solved using Gaussian
elimnation or some other direct nethod, many of the zeros in M may
becone non-zero. To make the solution process efficient, we would Iike
to avoid having to explicitly examne the zeros of M, and to keep the
nunber of non-zero elenents small

VW can nodel the zero -non-zero structure of Mby a directed
graph and study the effect of a solution nethod on this graph. This
graph-theoretic analysis has several inportant benefits, including
the follow ng.

(1) For sonme sparse matrices, a graph-theoretic representation is a
good one, allowing efficient access of non-zero matrix elements

(2) W can devise a good solution procedure for an entire class of
matrices (those with the same zero -non-zero structure) at a tinme.
If several matrices with the same zero -non-zero structure occur
in an application, then spending extra tine initially to devise a
good solution procedure may result in later savings as the procedure

Is reused

(3) The approach illumnates the applicability of solution nethods for
linear systens to other kinds of graph problens such as those
arising in global flow anayslis and operations research.

This paper surveys several graph-theoretic aspects of the solution of
linear systens. W& consider several graph-theoretic nethods for choosing a
good ordering schene for Gaussian elimnation. These include bandwidth
mnimzation, profile mnimzation, and general sparse techniques. W

“also discuss graph-theoretic block nethods based on the strongly-connected
conponents and dominators of the underlying graph. Finally, we discuss
the problem of choosing a set of pivot positions for Gaussian elimnation.

The paper contains seven sections. Section 2 introduces necessary
graph-theoretic notation. Section 3 discusses representation of a
system of linear equations as a graph, a deconposition nethod which uses
strongly connected conponents, and a graphical version of Gaussian
elimnation. Section 4 discusses nethods for choosing a pivot order.
Section 5 discusses a decomposition nethod using domnators. Section 6
di scusses selection of a set of pivot positions. Section 7 contains
further remarks. Results in Sections 3, 4 and 6 are not new, though
sone are as yet unavailable in print. Section 5 contains new results.

2. G aph-Theoretic Notation.

A directed graph G= (V,E) is a finite set V of n =|V|
el ements called_vertices and a finite set Ec vxv of m=|g|
vertex pairs called edges. An edge of the form (i,i) is a |oop.
If (1,3) eE if and only if (j,i) eE, we say G is symetric.
(A symretric directed graph corresponds to the undirected graph given
by meking {i,j} an undirected edge if (i,j) €E . V¥ prefer to
use symetric directed graphs instead of undirected graphs since they
correspond nore closely to the conputer representation of graphs.)

A graph G = (V',E') is a subgraph of Gif V' < Vv and
E'cE. If vV c V and G(V") = (V',E(V")) where
E(V") = {(i,3) €eE| i, ev"}, then a(V") is the subgraph of G
i nduced by the vertex set v*. Simlarly, if E' c E and
G(E") = (V(E"),E") where V(E") = {ieV | (i,3) ¢B" or &(j,i) eE"} ,
then G(E") i s the subgraph of E induced by the edge set E" .

A sequence of edges p = (vl,v2),...,(vk,vk+l) is a path from vy

to v,,- B convention there is a path of no edges from every vertex
to itself. If Vi T Vg the path is a cycle. Every cycle contains

at least one edge. The path is said to contain vertices VisVps e s Vi

and edges (Vl’VE)’ S (Vk’vk+l) and to avoid all other vertices and

edges. If VisVps +eesVy,q are distinct, except possibly vy =

pis sinple.

Vit1

If there is a path froma vertex v to a vertex w, . vis
reachable fromw . [If every vertex in a graph G is reachable from
every other vertex, G is strongly connected. The nmaximal strongly

connected subgraphs of a graph G are vertex-disjoint and are called
its strongly connected conponents. |f u, v,w are distinct vertices
of a graph G such that every path fromu to w contains v , then

vis a domnator of wwith respect tou . If G contains no
three distinct vertices u, v,w such that v domnates w with
respect to u, G is strongly biconnected. The maxinmal strongly
bi connected subgraphs of G are edge disjoint (except for |oops) and
and are called the strongly biconnected conponents of ¢ .

A (directed, rooted) tree T is a graph with a distinguished
vertex r such that there is a unique path fromr to any vertex.

If v is onthepathfromr to w, wewritev—»*w and say v is
an ancestor of wand wis a descendant of v. If (v,w) is a
tree edge, we wite v -w and say v is the _parent of wand wis
a child of v . |If v % w and vEW, 'We wite viw and say Vv
is a proper ancestor of wand wis a proper descendant of T .

If G=(V,E) is any graph, the symetric (or undirected) extension
of Gis the graph ' = (V, {(i,3) | (4,3) €E or (j,i) eE}) . If T
is atree, its symetric extension is called a symetric (or undirected)

tree. If G=(V,E) is any graph, its reversal is the graph
G = (v, ((3,1) | (4,3) €E) .
For a graph G = (V,E) an ordering a of Vis bijection

a: {1,2,...,n} » V. G, = (V,E,a) is an ordered graph.

3. Gaussi an Elimnation on a G aph.

Let xM =c be a set of n linear equations, where M = (mij)
is an n by n non-singular natrix. W can represent the zero -non-zero
structure of the matrix M by an ordered graph Gy = (V,E,@) , where
V= {1,2,...,n} , B = {(4,3J) | m A0or i =35}, and a(i) =i
for 1 <i<n . The unordered graph G = (V,E) corresponds to the

set of matrices PMPT , Where P is a pernutation natrix.

We can represent the systemzxzM = ¢ by assigning to vertex i
the value c(i) = -y and the variable x(i) = X, and assigning to
edge (i,j) the value n(i,j) = m if i Aj , n(i,j) = m:c;r+l i f
i=J . The systemzxM = c becones

Q= { Zox(iynti,j)+c(i) =x(j) |1 < n}
(i:j)EE
Henceforth we consider the system of equations defined graph-theoretically
in this way. (The variable x(j) appears on the right side of the j-th
equation for reasons to be discussed later.)
Correspondi ng to any subgraph G' = (V',E') of Gis a system
of equations

(i;j)eE'

Q = { z x(i)m(i,:j)+c(i) = x(j) ljeV'}

W shal |l discuss solving the system Q by Gaussian elimnation.
First, it is useful to consider a way of deconposing Q into subsystens
Q such that the solution to the subsystems gives the solution to
the whole system Let G = (Vl,El) yeees Gy = (Vk,Ek) be the strongly
connected conponents of the graph G. These conponents can be ordered
so that if (v,w) is an edge of G wth veV, and weV.J, t hen

i >3 . Such an ordering is a topological sorting. [26] of the conponents.

G ven the conponents in a topologically sorted order, the follow ng nethod
solves the systemQ .

SOLVE: for i := k step -1 until 1 do begin
solve the system Qs
for (v,w) ¢E such that vel, WEVJ. withj >i do
c(w) := c(w)+x(v) -m(v,w);
end SOLVE

This scheme is well-known and its validity is easy to check.
The strongly connected conponents of G correspond to the irreducible
bl ocks of the matrix MI[43].

W can find the strongly connected conponents of a graph G and
topologically sort themin o(ntm) ti me using depth-first search [Lo].
The running time of SOLVE is thus O(mm) plus the time to solve the
substystems Qg if the graph Gis represented as a set of adjacency
lists [40]. Reference [63 contains a nore detailed conplexity analysis.

One special case of SOLVE is inportant. If each strongly connected
conponent of G consists of a single vertex (i.e., Gis acyclic
except for loops), each subsystem Q; is a single equation
x(i)a(i)+ c(i) = x(i) . Solving such an equation requires one subtraction
and one division: x(i) = c(i)[l-a(i)]':L . In this case SOLVE requires
Qntm) time total. This special case is the final step, called
- back solving, of the Gaussian elimnation method.

The first step of Gaussian elimnation consists of the follow ng
al gorithm

ELIMNATE: for j := 1 until n-1 do
for (j,k) eE with k > j do begin
& c(k) 1= c(k)+e(3) [1n(5,3)] " m(i,k);
for (i,3) eEwith i > do begin
if (i,k) #E then add (i,k)
with value m(i,k) = 0 to E
m(i, k) := m(i,k)+m(i,,j)-[l-m(j,j)]-l-m(j,k);
end end ELIM NATE;

It is well-known and easy to verify that when ELIM NATE term nates,
the solution to the original equation set Q can be found by applying
SOLVE to the graph g' = (V,E') defined by E' = {(1,3) eEUF | i > 3},
where F is the set of added edges (i,k) , called fill-in edges,
created by ELIMNATE. The values on edges when ELI M NATE terni nates
give an LU deconposition of M [1L].

ELIMINATE requires O(n+ ‘EUF|) numeric storage and

of n+ z 1+ Z 1 arithmetic operations.
(i,3) eEUF (jsk) eEUF
i>j k>j

SOLVE requires 0, n+ 2 1 time once ELIM NATE is applied.
k (i,j) eEUF

1>3
Solving the system Q for a new set of constants requires Q n+ |EUF|)
time given the LU deconposition conputed by ELIMNATE. For a nore
detail ed complixity analysis, see [6].
I npl enenting ELIMNATE to achieve the bounds above for total storage
and total operation count is not sinple. Two nethods of inplenentation
suggest thensel ves.

(1) Representation of m(i,j) using a hash table [25].
(2) Representation of m(i,j) using adjacency lists for G [Lo].

It is straightforward to inplenment ELIM NATE using a hash table
to store edge values. This representation will achieve the desired
storage bound in the worst case and the desired operation bound on
the average (but not in the worst case). Because the hash table nust
be stored, the storage requirenents wll exceed the storage necessary
for adjacency lists, but the average running time is apt to be faster
than using adjacency lists.

Careful inplementation of ELIMNATE using adjacency lists allows
us to achieve the desired storage and tinme bounds in the worst case.
Qustavson [19] di scusses nmany of the ideas inportant in such an
i mpl ementation. W use a two-pass nethod. First, we conpute the
set F of fill-in edges. An algorithm described in [34] is adequate
for this step. Next we use the following nodification of ELIM NATE
for the LU deconposition. W assune that, for each vertex k , a list
B(k) of vertices | such that (j,k) eEUF is available, and that
these vertices | are in order by nunber, smallest to largest, in
the list B(k) . Associated with each entry j ¢B(k) is the val ue
m(j,k) . The procedure below carries out the conputation column-by-
colum. This nethod of elimnation is sonetinmes called the Crout
met hod or the Doolittle met hod [1k4].

CELI M NATE: begin
for 1 =1 until n do array(i) := O;
for k :=2 until n do begin
for j eB(k) do-array(j) := m(j,k);
for | eB(k) with j < k do begin
e(k) 1= c(k)+ e(3)-[1-m(3,3) 1™ m(3,k);
b: for ieB(j) with i > | do
array(i) = array(i) +m(1,3) -[1n(3,3)] m(3,%) ;
end,
for (j,k) eEUF do m(j,k) := array(j);
end end CELIMINATE;

Variable array is used here to-make the conputation in Step b
easy. It is easy to see that this procedure works correctly and
achieves the desired storage bound and operation count. The correctness
of CELI M NATE depends on the fact that the entries in each list B(k)
are in order by nunber. This representation seens to require that the
fill-in F be precomputed .

Sofar, little is known about the efficiency of using adjacency
lists versus using a hash table. Mst likely, the hash table nethod
uses less time, and the adjacency list nethod uses |ess space. See
(8,19,23] for details concerning inplenentation of Gaussian elinination
using adjacency lists.

The tinme and storage requirenents of ELIM NATE depend only on
the structure of G and on the ordering a . By reordering the
vertices of G, we may greatly inprove the efficiency of ELIM NATE.
The next section discusses the problem of choosing a good ordering.
Because of the conplexity of implementing ELI M NATE for sparse graphs,
various researchers have studied special methods which handle certain
types of sparse graphs. Two such nethods, the bandw dth nethod, and
the profile nmethod, are discussed in the next section, in addition to

“the general sparse nethod.

Symmetry plays an inportant role in the solution process. If
the matrix Mis symetric (i.e., ml.J = nhi), it is possible to
save a factor of two in storage and conputing time by using the

symmetry [19]. If the matrix M is structurally symetric (i.e.,
Gis symetric), it is nuch easier to conpute the fill-in and other
properties of the elimnation order [33]. In some applications it

may be useful to make G symmetric by adding an edge (j,i) for each
edge (i,j) . This may sinplify the inplenentation of ELIMNATE and
decrease the tinme necessary to find a good elimnation ordering.

These savings nust be bal anced against the tine and storage costs for
handling the added edges.

I f one of the pivot el enents m(j,Jj) equals one the j-th iteration
of the main loop in ELIM NATE cannot be carried out. Furthernore if
any of the m(j,j) are close to one, the nethod is nunerically
~unstable [14]. For certain types of matrices, however, ELIM NATE is
guaranteed to work and to be nunerically stable. These include the
diagonal |y dom nant matrices and the symetric positive definite
matrices [143. Henceforth we shall not worry about numeric stability
but shall assune that ELIMNATE using any vertex ordering will produce
an acceptable answer. In practice, however, it is inportant to
verify stability.

4, Eli mi nati on Schenes.

One nethod used to avoid the conplexity of inplenmenting ELIM NATE
for general sparse graphs is the bandwi dth nethod. If ais an
ordering of the vertices of G, we define the bandwidth b of G

to be max Ia(i) -oc(j)l. The bandwi dth nethod finds a band of
(i,J) €E

wi dth 2b+l about the main diagonal outside of which all entries are

zero, and performs Gaussian elimnation within the band. The bandwidth

version of Gaussian elimnation appears bel ow.

BELIM NATE: for j := 1 until n-l do
for k 1= j+1 until j+b do begin

(k) = c(k)+ c(3)-[1-m(3,3) 1" m(3,k);
LQLi = 1 until | +b dgN
m(1,%) = m(i,k) +n(L,3) - [1n(3,3) 1" m(3,k);

end BELI'M NATE;

Bandwi dth elimnation requires Q'bn) storage using array
storage and o(bgn) tinme. The difficulty with the bandwi dth nethod
is finding an ordering which produces a small bandw dth. A graph for
which there is an ordering such that all edges within the bandw dth
are present is called a dense bandwi dth graph. It is easy to test in

Q(n+m tinme whether a graph Gis a dense bandwi dth graph. If it is,
the ordering which makes G a dense bandwidth graph is easy to conpute.
A graph with an ordering which produces bandw dth one is
tridiagonal [1Lk]. (Edges within the bandwi dth may be nissing, so a
tridiagonal graph need not be a dense bandwi dth graph.) It is easy
to test in o(mm) time whether a graph is tridiagonal. Garey and
Johnson [16] have devised an Q(n+m) time method to find a bandwi dth
two ordering if one exists. W know of no efficient nethod to test
for bandwi dth three.
Various heuristics exist for finding orderings with small
bandwi dth. A breadth-first search nethod proposed by Cuthill and
McKee [11] works wel | on sone exanpl es.
Unfortunately, the problem of determning whether a given graph G
has an ordering which produces a bandwi dth of a given size b or
| ess belongs to a class of problems called NP-conplete. The NP-complete
probl ens have the fol | owing properties.

(1) If any NP-conplete problem has a polynomal-tine algorithm then
all NP-conplete problens have polynomal-time algorithns.

(2) If any NP-conplete problem has a polynomal-tine algorithm then
any problem solvable non-determnistically in polynomal tine
has a determnistic polynomal-tine algorithm

10

Such wel | -studied problens as the travelling sal esman problem the
taut ol ogy problem of propositional calculus, and the maxi num clique
problem are NP-conplete. It seens unlikely that any NP-conplete
al gorithm has a polynonial-time algorithm Papadimitriou [2g]
first proved the m ninum bandw dth problem NP complete; Garey and
Johnson [16] proved the problem NP conplete even for trees! This
negative result reduces the appeal of the bandw dth scheme except
for problens for which a good choice of ordering is explicit or
implicit in the problem description.

An extension of the bandw dth method is the profile nethod.
[f ais an ordering of the vertices of G, the profile b(j) of
vertex j is max{a(j) -a(i)| (i,3) €E or (j,1i) <E and a(j) >a(i)} .
The profile method assunes that alt entries are within an envel ope of
varying wdth about the main diagonal. For inplenentation of the
profile method, see [38]. Profile elinmnation requires

o(% b(j)\ storage and o(% (3)2‘\ time. As with the
= =

bandwi dth nethod, there is still the problem of finding an ordering
with small profile.

A graph G for which there is an ordering such that all edges
within the profile are present is called a dense profilé grapha t
is, G=(V,E) is a dense profile graph if and only if Ggis
symetric and there is an ordering o. of the vertices such that if
(i,3) eEwith a(i) <a(j) , and k satisfies a(i) <a(k) <a(j),
then (k,j) €E .

There is a nice characterization of dense profile graphs which
has apparently not appeared in print before. W call a graph
G =(V,E) an interval graph if there is a nmapping | of the vertices
of Ginto sets of consecutive integers such that (i,j)e Eif
and only if I(i)NI(3) # ¢ .

Theorem 1. Gis a dense profile graph if and only if G is an
interval graph.

Proof. Suppose G = (V,E) is dense profile with appropriate
ordering a . For each vertex vev , let I(v) = {a(w) | (w,v)cE and
a(w) < a(v) . By the dense profile property, each set I(v) is a
set of consecutive integers. Suppose (i,j) eE with a(i) <a(j)
Then a(i) eI(i) NI(j). Suppose a(k) eI(i)NI(j) . Then
(k,i),(k,j) eE, a(k) < a(i) , a(k) < a(j) . Wthout |oss of
generality, suppose a(i) <a(j) . Then by the dense profile
property, (i,3j) eE. Thus the intervals I(v) faithfully represent
the edges of G .

Conversely, suppose Gis an interval graph with appropriate
intervals I(v) . G is symetric since I(i)N I(j) = I(j)NI(i) .
Let a(j) be an ordering such that a(j) <a(i) inplies the |argest
integer in 1@j)) 1is no greater than the largest integer in
I(a(i)) . Let (i,3) eE with a(i) <a(j) and suppose
a(i) < (k) < a(j) . Then I(a(i)) NI(a(3)) £ ¢, so I(a(d))
contains all integers between the largest integer in I@i)) and
the largest integer in I(a(j)) . This set includes the I|argest
integer in I(a(k)) . Thus I(a(j)) NI(x(k)) #¢ , and (kj) cE . O

Lueker and Booth [28] have devised an O(mm) -tine test for the
interval graph property. The test is constructive, so an appropriate
ordering for a dense profile graph can be found in O(ntm) tine.

The breadth-first search method of Cuthill and McKee produces
smal|l profile on some exanples. A reverse breadth-first search based
on the Cuthill-MKee nethod does as well or better [27]. Little is
known theoretically about the behavior of such heuristics. The
problem of finding an ordering to mninize ‘E b(j) (or ‘E b(,j)2)

i=1 i=1
has not yet been proved NP-conplete. For results on the NP-conpleteness
of a simlar problem see [15]. See [10] for further discussion of
bandwi dth, profile, and related ordering schenes.

It is easy to generalize the definitions of bandwi dth and profile
to allow different envel opes on either side of the diagonal. See [10].
In view of the difficulty of finding good orderings for mnimzing
symetric bandw dth and profile, we do not pursue this idea further.

12

Several facts reduce the appeal of the bandw dth and profile
schemes except on problens for which a good choice of ordering is
explicit or inplicit in the problem description. First, it is not
easy to find a good ordering. Second, and nore inportant, the band-
width and profile schemes may be overly pessimstic in that they may
examne many matrix elements which are in fact zero. This will happen
with sparse graphs having large bandwi dth or profile. A practical
exanple is the square Kk by k grid graph, which arises in finite
difference solutions to partial differential equations [14]. Any
bandwi dth or profile nethod for this problem requires (Xk3) storage
and CXkA') tinme [22,30], whereas the nested dissection method [17,36]
a special type of general sparse ordering, requires only
o(k2 | og k) storage and CXk3) tine.

W consider now the general sparse nethod. A graph is a
perfect elimnation graph if there is an ordering which produces no
fill-in. W can test for the perfect elimnation property in Q' nm
time [34]. This property is conputationally at least as hard as
testing a directed graph for transitivity, so inproving the tine
bound beyond Q(nnm) would be a significant result. Gven any

ordering, we can conpute its fill-in in Qnm tine [34]. Such an
algorithmis useful if we wish to precompute the fill-in before
performng the numeric calculations. Conputing the fill-in is at

| east as hard as conputing the transitive closure of a directed
graph [3L4].
The problem of finding an ordering which mnimzes the size of

the fill-in is NP-conmplete [34]. However, a related problem has a
polynomal time algorithm W call a set of fill-in edges F
mnimal if no ordering produces a fill-in F*c F. |If ais an
ordering which produces fill-in F, «ais a mniml ordering.

M nimal orderings are not necessarily close to mninum but given

any ordering we can inprove it to a ninimal one in o(nh) time [34].
These problens are easier for symretric graphs. W can test a

symretric graph for the perfect elimnation property in o(ntm) tine,

conpute the fill-in of any ordering in O(mm) tine, and find a
mnimal ordering in o(mm) tinme [35]. These algorithns, especially
the one to conpute fill-in, may have inportant practical uses.

13

In view of the NP-conpleteness results, we cannot hope to solve
the general problem of efficiently inplenmenting sparse Gaussian
elimnation. W can only try to solve the problem for special cases.
Approaches include the follow ng

(1) Develop and study heuristics for producing orderings with small
fill-in. Several heuristics have been proposed, including the
m ni mum degree and minimum fill-in heuristics [31,32]. These nethods
seemto work well in practice, but nothing is known about their
theoretical behavior.

(2) Develop good ordering schemes for special types of graphs.

A successful exanple of this approach is the nested dissection
met hod [17,36].

(3) Develop methods which avoid the necessity of conputing all the
fill-in. In some cases values on fill-in edges can be stored
implicitly rather than explicitly, resulting in a savings of
time and storage.

W consider in the next section a nethod which conbines ideas (3)
and (k).

Anot her possi bl e approach would be to study the average behavi or
of elimnation nethods. This approach is not a good one, however,
for two reasons. (1) Most graphs which occur in practical problenms
are highly non-randomin their structure. (2) Erdss and Even [13]
have shown that "most" symmetric graphs with order n log n edges have
a fill-in of order n (nost graphs with less than order n log n edges
are not connected). Thus a dense matrix method is as good (to within a
constant factor) as any sparse method, on random graphs which are not
too sparse

5. A Deconposition Method Using Dom nators.

This section presents a deconposition nethod for solving systens
of linear equations which is nore powerful than the deconposition
into strongly connected conponents discussed in Section 3. The idea
of the method is as follows. Suppose G = (V,E) is a directed graph
and there exists a triple u,v,w of distinct vertices such that v

14

dom nates w with respect to u . W can partition Vinto
VvV = {v}UVlUV2 such that v. contains u and all vertices

1
reachabl e by a path fromu which avoids v . Let
6, = ((v}Uvy, B(v}uvy)) » G, = (Iv}UV,, E({v}UVy)). Suppose

we are given a set of equations defined on G. W solve the set by
the foll ow ng nethod.

Step 1: For each vertex wev, , solve for x(w in terns of x(v)
using the system of equations defined on Gy - That is,
represent x(w) as x(w = x(v)-.a(v,w)+b(v,w) for sone

real values a(v,w) , b(v,w)

Step 2: Repl ace each edge (x,y) with xev, , ye {v} UV, , by

an edge (v,y) with value m(v,y) = 0, if such an edge does
not exist already. set m(v,y) := a(v,x) -m(x,y)+n(v,y) .
set c(y) := b(v,x)m(x,y)+ c(y)

Step 3: In the new graph G', solve the system of equations defined
on G .

Step 4. using the equations found in Step 1, solve for the values
of the variables x(w) , weV, .
This nethod sol ves the system of equations defined on graph G
by solving the two smaller systens defined on Gy and & and
combining the solutions. It is equivalent to carrying out Caussian
elimnpation on Gin an order so that all the vertices in V,
are ordered first, followed by vertex v , followed by all the
vertices in vy For each edge (x,y) wWith xev, , vYe{vly V)
this elimnation order may create a |large nunber of fill-in edges
(x',y) wth x'eV,. None of these fill-in edges are really
necessary to the conputation; only the corresponding fill-in edge
(v»y) 1S necessary. By conputing the value of this edge directly,
we avoid conputing many of the fill-in edges and thus save tine and
storage space.
W generalize this schene as follows. Henceforth we assune
G = (V,E) is Strongly connected. Let r be some fixed, distinguished

vertex of G. If v domnates wwith respect to r and no vertex

15

domnates w with respect to v , we say v is the immediate
dom nator of w (with respect to r). W denote this relationship

by v = idom(w) .

Theorem 2 [1]. Each vertex w # r has a unique immediate

dom nator. The rooted tree T = (V, {(idom(v),v)|vVv #7r)) , called

the domnator tree of G, has the property that, for every vertex w,
its domnators with respect to r are exactly its ancestors in T .

Qur solution method works as follows.

Step 1 Choose a fixed vertex r of G . Conpute the corresponding
dom nator tree T .

Step 2 Working fromthe leaves of T to the root, solve for each
variable x(v) in terms of x(idon(v))

Step 3 Solve for x(r) and for all other variables x(v) by
backsol ving using the equations conputed in Step 2.

Step 2 will conpute, for each variable x(v) , a pair of nunbers
a(v) and b(v) such that x(v) = x(idom(v))-a(v)+Db(v) . As we work
through the tree in Step 2, we nust conpose such affine functions. W
will assune the existence of two primtive instructions for this
purpose. Gven two ordered pairs (a,b) and (ec,d) , |et
(a,b)+(c,d) = (ac, berd) (this operation corresponds to formng the
conposition of the affine functions axtb and cy+d .

The two operations will construct T and place ordered pairs of
real numbers on its edges. Initially T has no edges constructed.
The operation LINK(idon(v) ,v, (a,b)) adds the edge (idom(v),v) ,
with associated value c(idom(v),v) = (a,b) to T . The operation
EVAL(v) returns the ordered triple (u,x,y) such that

(x, y) = c(el)-c(ee).. o o c(e,) , where €10€ps -5 €y is the |ongest
path to vertex v in the part of T so far constructed by LINK
instructions, and this path starts at vertex u . (If v has no

entering edge yet constructed, EVAL(v) returns the triple (v,1,0) ;
the pair (1,0) corresponds to the identity function.)
Now we give the details of the algorithm

16

St ep 1 Choose a fixed vertex r of G. Cbn’pute t he Correspondi ng
domnator tree T of G. Number the vertices of T from
1 tonin postorder. For each vertex v , let s(v) be

the set of children of vin T .

Step 2: for u := 1 until n do begin
initialize E(u) = ¢;
for ve s(u) do
for each edge (w,v) of G do begin
(zy2,b) := EVAL(w);
if (z,v) is not an edge of E(u) ,Ul?.ﬂ
add (z,v) with value m(z,v) = m(w,v).a to E(W

g'%,s&m(z,v)_ := m(w,v) ra+m(z,v);
c(v) := m(w,v)-b+ c(Vv);

end;
find g;; strongly connected conponents of the graph
qy =({v}Us(u),E(u)) and topol ogically sort them
solve the system of equations
Q(u) = { 2 m(w,v) x(w) + c(Vv) = X(Vv) |ves(u)
(w, v) & (u)
to give an equation x(v) = a(v)-x(u)+b(v) for
each ves(u) , by using Gaussian elimnation and
the strongly connected conponents deconposition
as di scussed in Section 3;

for ves(u) do LINK(u, V, (a(v),b(v)));

Step 3: for each edge (w,n) of G do begin
(z,a,b) : = EVAL(w);

m(n,n) := m(w,n).a+m(n,n);

c(n) :=m(w,n)b+ c(n);
x(n) := c(n).[1-m(n,n)]7%;
end;
for i = n-l step -1 until1 d
X(i) := x(idom(1))-a(1) + o(1) ;

17

This method uses Gaussian elinination on the strongly connected
conponents of the graphs Qu) and conbines the solutions to give
the solution to the entire problem The tine to conbine sol utions
is almost-linear in the size of G; thus if the nethod breaks the
graph into several parts it is certainly faster than Gaussian
elimnation applied to the whole graph. .

More precisely, the running tine of Step 1 is Q'm a(mn)) [k1],
where a(m,n) is a very slowy growing function related to a
functional inverse of Ackermann's function. Step 1 requires Q(m
storage. Step 2 requires Qm a(m,n)) time and Q(nm) storage for
the LINK and EVAL instructions [41]. Step 2 requires Q(n) tinme
and storage except for the Gaussian elimnation steps and the LINK
and EVAL instructions. Step 3 requires Q(n) tinme and storage.

Thus the entire algorithmrequires Q' ma(m,n)) tine and QM
storage exclusive of the Gaussian elimnation steps.

If each strongly connected conponent of every graph Gu) consists
of a single vertex, then the algorithmruns in Q(m a(m,n)) tine
total. A graph G for which this happens is called a reducible
graph [29] (not to be confused with a reducible matrix). Though
reduci bl e graphs do not seemto arise in nunerical problems, they
often arise in global optimzation of conputer code, to which the
ideas in this paper also apply. Thus this deconposition method may
have consi derable practical value. Indeed, simlar methods for
reduci bl e graphs have been extensively studied by conputer scientists
[2, g 1,2L2hke],

If no root r can be found for which G breaks into several
pi eces using this deconposition schene, the same idea can be applied
to the reverse of G. The algorithm nust be changed somewhat, but
the idea is simlar. In fact, a nore general algorithm which divides
Ginto strongly biconnected conponents and sol ves a set of equations
on each conponent can be developed. The trouble with such an algorithm
is that at present no efficient nmethod exists for dividing a graph
into strongly biconnected components. Research is in progress in this
ar ea.

18

6. Selection of a Set of Pivot Positions

When considering orderings for Gaussian elimnation in Section 4,
we restricted our attention to sinultaneous row and colum pernutations
represented by a renunbering of vertices in the graph representing the
system of equations. Thus we always used the positions on the main
di agonal as pivot positions. In nuneric problens, there is no reason
to restrict our attention to such reorderings, however. W can easily
al l ow i ndependent row and colum pernutations, and thus use an arbitrary
transversal of the matrix as a set of pivot positions (a matrix
transversal is a set of n matrix elements, no two in the same row
or colum).

There are two reasons for selecting a transversal other than the
mai n di agonal .

(1) To inprove the stability of Gaussian elimnation
(2) To inprove the resource requirements of Gaussian elimnation

The wel | -known partial and conpl ete pivoting nethods [14] choose
a transversal to inprove stability. They choose a set of matrix
elenents of large absolute value as pivots. These nethods depend on
the actual nuneric entries and not on the zero -non-zero structure of
the matrix.

If we do not know the actual entries of the matrix, but only its
zero -non-zero structure, then any transversal consisting of non-zero
el ements is as good as any other for purposes of stability. Such a
transversal may be found in O(nl/2 m time by using a bipartite matching
al gorithm of Hoperoft and Karp [44]. Dulmage and Mendel sohn [12]
extensively discuss this and related problems. Essentially no research
has been done on the problem of picking a non-zero transversal which
mnimzes resource requirenents. One theoremis known however

Theorem 2. Let M be any matrix. Let Q be any pernutation matrix
‘such that MQ has a non-zero main diagonal. Let GQ be the directed
graph corresponding to M) . Then the vertex partition induced by the
strongly connected conponents of G Q is independent of Q.

19

This theoremfollows fromresults of Dulmage and Mendelsohn [12].
Howel | has given a nice proof [45]. The theoreminplies that the
strong conponent deconposition nethod discussed in Section 3 produces
the same nunber of conponents independent of the transversal chosen
though the conponents themselves may be different.

I gnoring questions of stability, there is no reason not to choose
a transversal sone of whose elenents are initially zero and only becone
non-zero as the elimnation proceeds. Such a choice may result in
substantial computational savings. Bank and Rose [&] have provided
a practical exanple of this idea. Though their nmethod is nunerically
unstable, it can be nodified to make it stable without degrading its
efficiency too nuch [5].

In summary, the problem of choosing the best set of pivot positions,
for stability or efficiency or both, is very poorly understood. The
results of Bank and Rose indicate that allowing only transversals
which are initially non-zero is too restrictive. It is likely that
the problemis too hard for a general solution, and the nost prom sing
areas for research seemto be the devel opment of heuristics and
speci al -case al gorithns.

7. Remarks.

Though we have assumed throughout this discussion that the matrix
M consi sts of nunbers, there is no reason to do so. The techniques of
l'inear algebra, such as Gaussian elimnation, apply to other algebraic
structures having two operations + and .. Thus the nethods discussed
in this paper can be used to conpute path sets in labelled graphs [3,37]
(a problemof automata theory), find shortest paths and other kinds
of optimal paths in directed graphs [7], and to do global flow
anal ysis of conputer code [2,9,18,24,42]. The algorithms remain the
the same; only the interpretation changes.

W nust assume the existence, for any a , of an element a* sych
that, for all b, a*b is a solution to the equation X = a-xtb

_ -1 : .
For numbers, a* = [l-a] exists whenever a # 1, and Gaussian
elimnation requires non-unit pivots.

20

(2]

(3]

(5]

(6]

[10]

[(12]

D31
v-41

115]

(16]

Ref er ences

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,
and Conpiling, Vol. Il: Conpiling, Prentice-Hall, Englewood
arfrs, NJ. (1972).

F. E. Allen, "Control flow analysis,” SIGPLAN Notices, 5 (1970),
1-19.

R. C. Backhouse and B. A. Carré, "Regul ar al gebra applied to
;{gtlhiégdi ng problems,"” J. Inst. Maths. Applies., 15 (1975),

R E. Bank and D. J. Rose, "An O(ne) met hod for solving
constant coefficient boundary value problens in two dinensions,"
SIAM J. Nurer. Anal., to appear.

R E. Bank and D. J. Rose, "Marching algorithnms for elliptic
boundary value problems |: the constant coefficient case,"
SIAM J. Nunmer. Anal., submtted.

J. R. Bunch and D. J. Rose, "Partitioning, tearing, and nodifi-
cation of sparse linear systems," J. Math. Anal. Appl., 48 (1974),

B. A Carré, "An algebra for network routing problems,"
J. Inst. Maths. Applies., 7 (1971), 273-29%.

A Chang, "Application of sparse matrix nethods in electric
power systens," Sparse Matrix Proceedings, R A WIIoughby,
ed., |BM Research, Yorktown Heights, NY. (1968), 113-122.

J. Cocke, "dobal conmmon subexpression elimnation, " SIGPLAN
Noti ces, 5 (1970), 20-2k.

E. Cuthill, 'Several strategies for reducing the bandwi dth of
matrices,” Sparse Matrices and Their Applications, D. Rose and
R. WI Il oughby, eds., Plenum Press, N v. (1972), 157- 166.

E. Cuthill and J. MKee, "Reducing the bandwidth of sparse
symmetric matrices," Proc. ACM National Conference (1969),
157-172.

A. Dulmage and N. Mendelsohn, "G aphs and Matrices," Graph
Theory and Theoretical Physics, F. Harary, ed., Academ<C Press,
N. Y. (1967), 161-227.

S. Even, private communication (1974).

G. E. Forsythe and Cc. B. Mler, Conputer Solution of Linear
Al gebraic Equations, Prentice-HalT, Englewood Qiffs, NJ. (1967).

M. R. Garey, D. 5. Johnson, and L. Stockneyer, "Some sinplified
NP- Conpl ete problems,'* Proc. Si xth Annual ACM Symp. on Theory of
Conputing (1974), 47-63.
M. R. Garev and D. S. Johnson., arivate comunication (1975).

21

[17] J. A Ceorge, "Nested dissection of a regular finite el enent
nmesh," SIAM J. Nuner. Anal., 10 (1973), 345- 363.

[18] s. Gaham and M. Wegman, "A fast and usually |inear algorithm
for global flow analysis,” Conf. Record of the Second ACM
Symp. on Principles of Prog. Lang. (1975), 22-3k.

[19] F. G. Gustavson, "Sone basic techniques for solving sparse
systems of linear equations,” Sparse Matrices and Their
Appilicédtions D. Rose and R. WIl oughby, eds., Plenum Press,
N.Y. (1972), Li-s2.

[20] F. G. Qustavson, W. Liniger, and R WI I oughby, "Synbolic
generation of an optimal Crout algorithm for sparse systens of
linear equations," 5. AQw 17 (1970), 87-109.

[22] M S. Hecht and J. D. Ullman, "Characterizations of reducible
fl ow graphs," J. ACM, 21 (197k4), 367-375.
[22] A J. Hoffman, M S. Martin, and D. J. Rose, "Conplexity bounds

for regular finite difference and finite elenment grids," SIAM
Journal of Nunerical Analysis, 9 (1961), 36k-369.

[23] A Jennings, "A conpact storage scheme for the sol ution of
ggllrmzegtSri ¢ linear sinultaneous equations,"” Conmput. J., 9 (1966),

[24] K. W Kennedy, "Node listings applied to data flow analysis,"
Conf. Record of the Second ACM Symp. on Principles of Pprog.
Lang. (1973), 10-21.

[25] D. Knuth, The Art of Conputer Programming, vol. 3. Sorting and
Searchi ng, Addi son-\Wesley, Reading, Mass. (1973), 506-549.

[26] D. Knuth, The Art of Conputer Programming, vol. 1: Fundanent al

A gorithns, Addison-Wesley, Reading, Mass. (1968), 258-2065.

[27] w. H. Liu and A H Sherman, "Conparative analysis of the
Cuthill-MKee and reverse Cuthill-McKee ordering algorithnms for
sparse matrices," SIAM J. Nuner. Anal., to appear.

[28] G. 8. Lueker and K. S. Booth, "Linear algorithns to recognize
interval graphs and test for the consecutive ones property,"
Proc. Seventh Annual ACM Symp. on Theory of Conputing (197 5),
255-265 .

[29] C. H Papadimitriou, "The NP-conpleteness of the bandwidth
mnimzation problent Conputing, to appear.
[30] D. J. Rose, private communication (1975).

[31] D. J. Rose, "Triangulated graphs and the elimnation process,"
J. Math. Anal. Appl., 32 (1970), 597~609.
“[32] D. J. Rose, A graph-theoretic study of the nunerical solution

of sparse positive definite systems of |inear equations,"”
G aph Theory and Conputing, R Read, ed., Academc Press, N.Y.

(1973), 183-217.

22

D. J. Rose and R E. Tarjan, "Algorithmc aspects of vertex
elimnation," Proc. Seventh Annual ACM Symp. on Theory of
Computing, (1975), 2h5-254.

D. J. Rose and R E. Tarjan, "Algorithmc aspects of vertex
elimnation on directed graphs,” to appear.

D. J. Rose, R E Tarjan, and G S. Lueker, "Algorithmc aspects
of vertex elimnation on graphs,” SIAM J. Conput., to appear.

D. J. Rose and G F. Wwhitten, "Autonmtic nested dissection,"
Proc. Aov Conf erence (1974), 82- 88.

A. Sal omaa, Theory of Automata, Pergamon Press, xford, England
(1969), 120-123.

A. H Sherman, "Subroutines for envelope solution of sparse
linear equations," Research Report No. 35, Dept. of Conputer
Science, Yale University (1974).

A. H Sherman, Ph.D. thesis, Yale University (1975).

R E Tarjan, "Depth-first search and |inear graph algorithns,"”
SIAM J. Conput., 1 (1972), 1h6-160.

R E. Tarjan, "Applications of path conpression on bal anced
trees," to appear.

J. D. Ullman, "A fast algorithm for the elimnation of common
subexpressions," Acta Informatica, 2 (1973), 191-213.

R. 8. Varga, Matrix Iterative Analysis, Prentice-Hall,
Englewood O iffs, N.J. (1962).

J. E. Hoperoft and R M Karp, "an ns/2 al gorithm for maxi num
matching in bipartite graphs," SIAM J. Conput. 2 (1973), 225-231.

T. D. Howell, "Partitioning using PAQ," to appear in Sparse
Matrix Conputations, J. R Bunch and D. J. Rose, eds., Academc
Press, New York.

23

