
>-
0..
0
(..)

LI.J
• ...J a-

z'*"

a! II-.

ADA040538

THE ANALYSIS OF A PRACTICAL AND NEARLY OPTIMAL
PR lOR lTV QUEUE

by

Mark R. Br<Mn

STAN-CS-77-600
MARCH 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Abstract.

The .Analysis of a Practical and Nearly Optimal

Priority Queue

Mark R. Brown

The binanial queue, a new data structure for implementing priority

queues that can be efficientl¥ merged, was recentJ.¥ discovered by Jean

Vuillemin; we explore the properties of this structure in detail. New

methods of repre~::enting binO'II.:i.al queues are given which reduce the storage

overhead of the structure and increase the efficiency of operations on it.

ODe of these representations allows any element of an unknown priority

queue to be deleted in log time, using only two pointers per element of

the queue. A c011lp1ete analysis of the average time for insertion into

and deletion from a binomial queue is performed. This anal¥sis is based

on the result that the distribution of keys in a random binomial queue

is also the stationar:v distribution obtained after repeated insertioos

and del.etions.

AD abstract notion of priority queue efficiency is defined, based on

caapari son countins. A good lower bOID'ld on the average aad worst case

D\lllber of cc:apariaons is derived; several. priority queue al&orithms are

exhibited 11hich near]¥ attain the bouDd.. It is sh01111 that 011e of these

al&or1 tala, uai.nc bincaial queuea, c.n be charACterized in a siaple way

baaed on the IDIIIber 1114 type of cc:apariacma that it reqgirea. The proof'

of this renl.t invol.~s an interesting problem on trees for 1lbieh

Huf~ • a c0118traction 11 vea a solution.

'!be pr1a.t1Dg of thia paper was npported in part by laticmal Science
Poundation ar.nt 11:8 72-a,752 Arr,, by tba Qtf'ice of laVal Reaearcb
contract ll)()()l. .. -76-c-0330, ud by IBM Corporation. Reproduction 1D
11bole or 1n part ia pend. tted for an;r parpoae of the 1111 ted States
Qoolena.lllt.

1

Acltnowl.edgments

I woul.ci like to thank Robert Ta.rjan, bot.h for acquainting me with

binanial queues and for many useful. discussions relating to this work;

Dooald J<huth, for prompting me to write up my results and for pointing

out innumerable improvements to them; Phyllis Winkler, for making the

task of writing much easier through her encouragement and excellent

tY}ling; and Andrew Yao, for reading the finished product. sam Bent,

Daniel Boley, ~le Ramshaw and Terry Roberts have also contributed to

my efforts in an essential way. Fin~, I am pleased to acknowledge

the National Science Foundation' s financial support of my graduate study.

11

Chapter Qle.

Table of Contents

Priority ~eues • • ••
1.1 Priority ~eue A~cations

1.2 Priority Queue structures

. . .

SUIIInary of the Results • • • •
Chapter Two. Implementation and Analysis of Binallial Queue

Algorithms
2.1 Binomial Trees, Fo~sts, and Queues . .
2.2 Binomial Qlleue AJ.gori thms
2.3 structures for Bincmial Queues •
2.lt Random Bincmial Qleu.es ••
2. 5 Analysis)f BinOIIIial Queue AJ.gori thms

Chapter Tbree. The C0111plexi ty of Priority Qleue Maintenance . . .
3 .1 A SettiDS for Priority QJ.eue Cc:aplexi ty • • • • • • . . .

Upper BoUDda • • • • . . • • • •
. • • •

1

3

6

11

15

21

28

:55

45

57

58

62

64

3 • ~ A Characterizati~JC of Binomial ~eues • • • • • • • • • • 66

D1acusai011 • • • • • • • •

Reterences • • • • • • • • • • • • • • . . .
.

. • • •

73

75

AppeDdlx. Priority ~ Dap1.antations • • • • • • • • • • • • • 78

1. SAIL Dapl....,.tatiana • • • • • • • • • • • • • • • • • • • 78

l.l JttnCIIitJ. c;peue usiD& Strurture R • • • • • • • •

1.2 Binali.&l. 'Pm• usiD8 Structure K • • • • . • . • • •

2. :rAIL Dlpl•?Dtatiou • • • • . . • • • • • . . • • •

2.1 Billcm.al Qleue usi.Dc Structure R • . • • •

2.2 Lefti.t Tree • 0 . . • • • • • • • • • • . •

111

Chapter <ne. Priority Queues

A priority queue is a structure for maintaining a coll-.lction of

items, each having an associated key, such that the item with the

smallest key is easily accessible. More precisely, if Q is a priority

queue and x is an item contS.:Oi.ng a key fro:n a linearly-ordered set,

then the following operations are defined:

Insert(x,Q) JAd item x to the collection of items in Q •

Delete Smallest (Q) Remove the item con~~aining the smallest key

alllong &ll items in Q from Q ; return the

removed item.

These actions are referred to informally as insertion and deletion.

A mergeable prL:,rity queu~ is a priority queue with the additional

:property that two disjoint queues can be ccabined quickly lnto a single

queue. 'l'bat is, the operation

lllion{T, Q) Remove all items frail T and add these Hems

to Q

is defined vheJ'l T and Q are merseable priority quues; this operation

is informally referred to at: merging T into Q • N1Y pair of priority

q~~eues can be merged by uaing repeated applications of :msert and

DeleteSIIalldat , but ve reserve the qualificatioo "merseable" for toosfl

iriority queues which can be aersed quic~~= aersinc abould not re'J.Uire

ex.iniDI a positive tractiaa ot th~ it•• 1D the queuea.

The new results or this thesis, contained in Chapters 2 and '' are

coocemed with a part1Clllar merpable priority queue, and with priority

queues in pneral. Cbllpter l is an introduction to the 8\lbjE.ct. ot

l

priority queues, and it should J•rovide background for the later

chapters.

The priority queue 'Was not rtcognized as a fundamentaJ. :! ... '-a structure

until quite recently. Several r.ontrivial _.JrLority queue organizations

were developed for different e.yplicationc before ~he 1.1.d€f'ulness of a

priority queue as an abstract~on was pointed out "by Knuth in 1973 [28].

It follows that a good introduction to th.!.o.; subject requires not only a

study of the data structures and their assoc.;.ated e.1.gori thms, but also

an appreciation of the diverse awli.ca.tiCJns ~.n Which priority queues

are useful. We will deve>te Sectic..n l.l to a survey of thue applications,

and describe the kr-own priority 1Ueue structures in Section 1.2.

Finally, in Section 1.3 we present a ~ of the results to be

proved in Chapters 2 and 3.

2

1.1 Priority gpeue Application~.

Possibly the earliest application ':lf priority queues was in the

implementation of simulation programming languages. Such languages are

typical~ structured around an "event list·• which is a record or actions

to be perforw~d at given instants of simulated time [2;5;15;}0;34].

Thus adding a new action to the event list corresponds to an Insert, and

executing the earliest event on the list requires a DeleteSIIII.llest.

An event list ~enerally has extra features which are not part of

the definition of a priority queue. <:ne of these is the FIFO property:

events with equal times must be performed according to a FIFO discipline,

in Which the first event entered into the list is the first to be executed.

In saae situations it is important to be able to remove an arbitrary

event (not just the earliest) from the list; in other cases, the ability

to locate the event to be executed immediately before or after a given

event may be necessar,y [41] •

.Another ear}¥ ~q~Plication of priority queues was in sorting and

se1ection problems. 'lbe idea of selection sorting [11;17;281 Section 5.2.}]

is to repeatedly remove the smallest of a collection of items and JDOY'e

this item to an Olltput area; hence we can accaapllah a selection sort

by first filliq a priority queue using sw:cesaive lhaert operations,

and then emptying the queue by usins DeleteSmallest repeatedly.

Priority queues also~ a role in extemal sorting (28, Section 5.4.1].

I4my extemal sortinS methoda uae a tecbnicpe called repl&c•ent selection

to f'om 1Dit1al nma (sorted. aubaequencea) ad to merp runs topther;

replacement selectioo is baaed on alternating inaertiona and deletiOfta

from a priority queue. (Bee&Wie the queue 81.ze does not change duriDg

replacement selection, the full generality of a priority que.ut is . ot

required.)

A typical se1ection problem is to find the !: largest of n numbers,

when n is much 1arger than k • <ne solution to this problem beghs by

inserting the first k n\Ullber.: ·nto a priority queue. Then for as lc·1g

as there are numbers which have not been inserted, we insert a new number

into the queue and then delete the smallest number from the queue. When

this process terminates, the k J.argest numbers are contained in the queue

[28, exercise 6.1-22]. This selection technique is used in an algorithm

for randan sampling [27, aJ.sorithm 3. 4.2R).

An obvious apolication of priority queues, and one which helps

motivate their name, is in job scheduli:ag according to fixed priorities.

In this situation jobs with priorities attached enter a system, and the

job of highest priority is alwqs the next to be executed, Examp~es of

this procedure occur in operating systems and in industrial practice,

thougn in both cases the restriction to fixed priorities ~ be vio1ated

in order to ensure fair scheduling (that is, to prevent a 1ow-priority

job tram being dela¥ed indefinitely).

Priority queues arise naturt.lly in certain nUJilerical iterations.

Ole scbaae for ad&J>tive quadrature maintains a priority queue of

subinterval.s whose unioa constitutes the interval of integratiOil; each

subinterval is }al)eled with the estimated error cOJIIIlitted in the numerical

integration over it. In each step of the iteraticn, the subinterval with

the largpst error is removed frail the queue and bisected. 'l'bell the

numerical integratioo is perfol'JIIed ov•r these two smaller subintervals,

which are inserted into the queue. Tbe iteration stops 11ben the total

estimated error is reduced b~ov a prescribed tolerance. This global

strategy is intended to result in subintervals over Which the errors are

roughly equal in magnitude [33].

It has been discovered that the use of fast priority qaeues can improve

the efficiency of some well-lmown graph algorithms. In Kruskal' s a.l8ori thm

for computing mininn.un spalllling trees, the procedure of sorting all edges

and then scanning through the sorted list can be :t-eplaeed by inserting all

edges into a priority qaeue and then successivP.}¥ deleting the smallest

edge (24]. If the priority queue is implemented proper}¥ this improves

the algorithm on most graphs. other ideas, one of lilich involves a good

mergeable priority queue implementation, have led to more improvements

in minimum spanning tree algorithms [3 ;19]. Similar applications have

been found for priority queues in shortest path problems [l.8;20].

Finally, th'!!re is a collection of good algorithms which fall into

none of the categories above but Which depend on priority qaeues.

Chartres' prime number generator u£es a priority queue in a scheme to

reduce its internal sto.raae requirements [28, exercise 5.2.3 ·15]. B. L. Fox

has mentiCiled. that priority queues are useful in implementing sCile discrete

programing aJ.sori tbllls [101 • Huffman' s optimal code c 'lllBtruction operates

on a priority queue in just the opposite maDner freD the numerical

iteration discussed above: it repeatedly selects the two Sll8llest

elements f'l'Cil a queue, canbines them, and inserts the result back into

the queue [26, pp. 4<X'-Ito5]. (Par this probl.•, there is act~ a.

better ill:plementation lllbicll uses pre-aortine instead. of priority queues.)

The last of these aJ.corithiU that we will menti<lll is the Hu-rucker

optimal binary search tree constructi011, 111lose asymptotic rnnn1 ng tillle

was great~ improved by usi.Dg a good iBrpl.ementaticm of mergeabl.e

priority queues [28, pp. ~,9-~ 1.

5

1.2 Priority 9Heue Structures.

The most obvious priority queue structure is certainly the linear

list. If we keep a p:riority queue as a list of elements in arbitrary

order, then an insertion cunsists of appending a new i tern to the front

of the list, and a deletion requjr~s searching the entire list to find

the smallest key. (This is a mergeable priority queue since with

linked lists, two queues can be merged in const&tt time.) A slightly

more subtle method is to keep the list of elements sorted according to

their keys; then a deletion is peri'ormed by removing the first item

from the list, and an insertion requi ·es searching down the sorted list

to locate the proper place for tl:l.e new element.

The sorted linear list was the structure first used to implement event

lists, so it is not surprising that this structure can perform the extra

operations required for event lists, and that it h~ the FIFO property.

Both of the linear list schemes are easy to implement and are quite

efficient liben the queue size is Slll&ll. But both schemes have the

draWback that their running time for a single primitive operation grows

linearly with the number of entries in the queue. A deletioo from an

unordered list al1f8¥B requires order m steps when there are m items

in the list; an insertion into a sorted list requires O(a) time on the

average, llltlether the list is maintained in consecutive storase locations

or in linked form. (Sorted list insertion can be made to run faster if

the input has a knoW FIFO or LD'O tendency.) So both of these methods

are slav vben m is large.

A new priority queue scheme wu discove.."'f!d. in 1964 by Arne Jonassen

and 01e-Johan Dahl [21]. It represents a priority queue as a special

type of binary tree, sieh they call a p-tree. AJJ;y node of a p-tree having

6

a null left link must also have a null right link, and the key::- in a

p-tree appear in increasing order When the tree is traversed in postorder.

By adding two extra links to each node, it is possible to perform

a deletion fran a p-tree in constant time. Insertion requires O(m) steps

in the worst c&.Se, but the analysis in [21] shows that an average

insertion takes only O(log m) 2 time. (Tbe analysis applies only to

a queue constructed by successive random insertions, but empirical tests

indicate that deletions do not significantly affect the cost of subsequent

inser~ions.) The p-tree structure has the FIFO property, and seems very

well sui ted to event list applications.

In 1964, J. W. J. Williams introduced a data structure called a

heap in cCIUlection vi th his heapsort algorithm [28, pp. 145-149]. The

heap structure uses a linkless representation of a complete binary tree,

storing the root in location 1 and the offspring of the node in location

k in locations 2k and 2ktl • A heap is further characterized by the

requirement that the key contained in erq node must be no larger than the

keys of its offsprins; a tree with this property is said to !:~ he!J!•Ordered.

It is easy to see that in any heap-ordered tree, the smallest key sppears

in the root. Deletion rraa a heap requires O(log a) t1ae em the average,

and insertion takes O(log a) steps in the worst case but only 0(1)

on the average (37]. Robert w. noyd has de111011strated a batttm-up

method which creates a heap cODtaiDing m eleaents in O(m) time [9] •

Heaps are not difficult to iaplaent, .od they uae storap efficient~

since no space 11 needed tor pointers within the structure. Iteu llU8t 'JIIOV'e

in order to perform insertions and deletiODs1 so if the items are long it is

more e:tf'icient to store pointers in the heap, instead of the items themselves.

1

A potential drawback of heaps is that they require a sufficiently larg~

block of' contiguoas storage to be allocated in advance. It is possible

to represent heaps as linked binary trees, With an apward pointer in

each node, bat this loses l!lllch of' the simplicity of' the method.

A sorted list becomes a pract1cal priority queue structure

for large N 1 g1 v~n an efficient wa;y of perfol'!lling insertions into such

"' a list. Th~:: balanced tl"'!!, structure of Ad.el' son-Velskii a!ld Landis leads

to sach an efficient sorted list representation, as described in (4;28,

pp. IKJ3-468). Both insertion and deletion can be performed in O(log m)

steps. The algorithms are unfortunately quite ca~rpllcated, but they

should be usef'u.l in large problems when all of' the nexibility that

balanced trees offer is needed. An analogous sorted list representation

is possible with 2-3 trees [1, PP• 155-1571.

The leftist tree, a mergeable priority q\leue structure based on

binary trees, vas discov'!red in 1971 by Clark A. crane (4; 28, :pp. 150-152].

A leftist tree is heap-ordered, and satisfies the fUrther condition that

the shortest path trt. any node to a leaf ma_y al¥8¥8 be found by following

rigbt-links. 'Drl.a explains th~ designation 11lef'tiat", since these trel'!s

are sener~ slanted toward the lert.

The basic operation on lettist trees 18 •l"lina· It is possible to merge

two leftist trees with a totU or m nodes in O(log m) steps; to maintain

the leftist structure durin& the aerge it is necessary to keep an extra

tield in eedl node llhich recorda its Wliniaa eli stance trca a lear.

Au insertion is acc~shed by mergin& a single DOde into the tree;

del.etiOD is pertol'Md by removin8 the root and IDIU'£iD8 its two oN'spring.

'l'hus l.n4ividual insertions and deletiOill take O(las a) tteps, and

insertions md. deletions take constant time in the cue that insertions

8

obey a stack discipline. The leftist tree operations are not difficult

to program, but since they ~equire more time and space than corresponding

heap operations it seems that leftist trees are on1y candidates for

applications where fast merging is required.

Another mergeable priority queue was proposed 1 n 1974 by Aho,

Hopcroft, and Ullman [1 1 pp. 152-155] • The queue is based on 2-3

trees, a close relative of balanced trees. A 2-3 tree is a tree in

which each non-leaf vertex has 2 or 3 sons, and all leaves appear

on the same level. For the mergeable priority queue, assign items to

the leaves of the 2-3 tree, and assign a label to each internal node

v which gives the value of the smallest key contained in the leaves of

the subtree rooted at v •

With this structure it is possible to perfo:nn insertions, deletions,

and merges in O(log n) steps. The algorithms are on1y described

int'ormally in [1], and are rather involved although not difficult to

follow. Although no careful st~ has been performed, it seems likely

that this priority queue is harder to implement, requires more storase

(because no items are stored in the internal nodes), and runs more

slowly than leftist trees. The main reason i'o'!' inteleRt in this structure

is that it supports a claim that ~ is possible with 2-3 trees.

The binomial queue, a data structure for brpli!Dimting me,rseable priority

queues, vas discovered in 1975 by Jean VUillemin [42). 'l'be structure

is a special type of forest, each of llbose trees is heap-ordered; this

forest c.n be represented as a binar,r tree. Chapter 2 considers this

structure in detail, and concludes that binoaial queues are preferabl.e

to lettiat trees in aoat applications of meqeable priority queues. They

9

are also useful in other priority queue applications, particularly if

the capability of deleting an a.~·bitrary item fran the queue is necessary.

If we assuae that the keys in our queue are a subset of {1,2, ••• ,m} ,

then some interesting specialized priority queue structures are possible.

A heap-like structure due to Lutl.cr c. .Abel [28, p. 153) represents such

a queue using only 2m-l bits of memory; it requires O(log m) steps

for insertion and deletion, regardless of how many items are in the queue.

A tree structure discovered by P. van Emde Boas [4o] allows insertions and

deletions in O(los log m) steps, but the crossover point between this

structure and the more straightforward O{log m) methods has not been

determined.

10

1.3 Swlmary of the Results.

The previous section presente~ a maze of structures for implementing

priority queues; how can we choose among them? It is not always pos::dble

to base such a choice oo nicely quantifiable factors, sln~l!' programming

time and the number of times a program is to be used may weigh heavily

in the consideration. The peculiarities of particular al«orithlru- ma;y

turn out to be significant advantages or disadvantages in a gl.ven

situation: the good performance of lef'tist trees when insertions

follow a stack discipline ~ be essential to solve some problem efficiently,

or the seq~ential allocation required by heaps ~ be impossible

within a certain progr&DIIIing system. We have attempted to convey a

feeling for these factors in the discussion of the preceding section.

In spite of these difficulties, it turns out that in many eases our

choice of structures shou1d be based on quantities such as how fast a given

implementation will run, and how mueb storage it will use. The storage

requirement is usual.ly obvious, but the running time, especiaJ.ly

"typical" running time, is generally 1110re difficult to predict. It is

possible to gain some reellDg about the .runnin& time by executing the

prograa several times on "~" inputs, but this procedure is unsatisfactory;

it cannot give ~ significant increase in our understanding or the a.J4!orithm

being teated. A method llhich £!!'!.give us .ore insiabt is to detemine the

expected running time :.nathematic~, under same plausible definition of

mat is Mant by "1'aDilcm" illputs to our aJ.&oritba. 'l'bis approach is

called the ~lis or an al.IOritba [261 Section 1.2.10].

Ideally, then, the roUOViDS chapter mould contain analyses of all

of the aJ.&ori tblls mentioned in the previous section. But analysis tW"Ds

ll

out to be very difficult for complicated priority queue structures.

One reason for this is that the structures tend to degenerate from

their "random" state (the state brought about by consecutive random

insertions) when they are formed by a sequence of insertions and

deletion~. SUch deletj :t sensiti,·ity tends to cCIDJllicate the analysis

[23]. (.AnrJ~ses of p-tree£ [21] and heaps [28;371 have been performed

for the case of insertions only.)

Chapter 2 considers one priority queue structure, the binomial

queue, in detul. When this structure was introduced by Vuillemin [42] 1

it seemed to be of interest primarily due to its intrinsic beauty and

simplicity. We show that the beauty of this structure is much deeper

than was previoualy appreciated, by proving that a random binomial queue

remains random even when deletions occur. 'l'bis result all.ovs us to

perform a complete analysis of binomial queues.

We also demonstrate in Chapter 2 that the binomial queue is of

greater practie!al importance than vas previously acknowledged. We start

by gi vine new Jllethods for implementing binomial queues which improve the

speed 1111d reduce the storase n:quirements of the structure; one method

allows any element of an unknown priority q11eue conta:Sn:Sng m elements

to be deleted in O(lJS a) tiM, using oaJ.y tvo pointers per elseot of

the queue. We then compare the nmnilll tiae of a good implementation of

binaaial quftes v:lth the tiM used by other aerseable priority queues, and

see that binCBlal queues are superior in :110st applications. This

caaparisoa is aided by OQ1' ~sis of binsal queues, which allows the

binOIIIial queue illpl~tatioa to be tuned for the best perfonumce.

Tbere are eaou&h good priority queue structures in uistence to

make one 110nder bow fast e117 priority queue scheme can run. In general

12

it seems illlpossibl.y difficult to prove results about the minimum number

of instructions that must be executed, or memory references performed,

in order to accomplish a given task. But interesting optimallty results

have been proved about sorting, selection, and other problems within more

restricted models of computation [28, Section 5.3]. Thie sort of

investigation generally comes under the heading of "computational

complexity".

Chapter 3 is concerned with optimality results about priority queues,

a subject which has never previously been ad.dressed. We define the

erf'lciency of a priority queue scheme in terms or the number of inter-key

ccmparisons it requires, and prove good upper and lower bounds on

priority queue efficiency within this model. We also show that a

certain form of the binomial queue algorithm, which is close to being

optimal in our model, can be characterized in a simple Ve::f in terms of

the number and type or cca,parisons it requires.

The Appendix contains impl.ementations or the binomial queue

algorithms in a hiP,-level language. Ii. also ccntains sane of the

assembly language impl.ementations used to malte the per1'ormance

ccmparisCils in Cbapter 2.

Chapter Two. Implementation and Analysis of

Binomial ~eue Algorithms

'!he principal results of this cha:pter were zunmarized briefly in the

previous section. In section 2.1 we define the binomial queue structure

in rather abstre~t terms, and in Section 2.2 we give informal descriptions

of algorithms operating on this structure. No referen~es to binomial

queue implementations are made in these two sections; to a large degree,

the conceptual simplicity of binomial queues de:pends on our ability to

think of them in this abstract manner.

Section 2.3 presents several structures 'llhich can be used to implement

binomial. queues. While the original structure proposed for this purpose

was a binary tree, none of our new structures are; several advantages are

gained from aba.ndming the standard representation.

In seetion 2.4 we define the notion of a random binomial queue, and

prove that randolllless is preserved in a wide variety of situations. our

an&.lysis of bintaial queue algorithms, based on these insensitivity

results, is contained in Section 2.5; the end of that section contains a

caarparison of aerpable priority queue methods.

In what fall.ova we use tbe terminology for trees given 1n [26);

in particular, the offspriua of arry node in a~ are ordered, 11bil.e

1n an oriented tree they are unordered.

2.1 Binamia.l 'h'ees, Foref>ts and Q,ueues.

For eaeh k > 0 Wf! define a class lit of ordered trees as follows:

Any tree consisting of a single node is a B0 tree.

SUppose that Y and Z are disjoint Bx-1 trees for

lt :;: 1 • 1hen the tree obtained by adding an edge to make the

root of Y become the le~st offspring of the root of Z

is a ~ tree.

(1)

(2)

A binanial tree is a tree which is in class ~ for some k ; the

integer k is called the~ of such a binomial tree. Binomial. trees

have appeared several times in the cauputer literature: they arise

:lmplicit.ly in backtrack algorithms for generating combinations [32];

Bo through]\ trees are shown expl.icit.ly iu an algorithm for prime

implicant determil'lation [36]; a ~ tree is given as the frontispiece

for [26]; and oriented binomial trees, called Sn trees, were uaed by

Fischer in an ana.:cysis of set uniC'-". algorttbms [8].

It should be clear frail the definitic:a abmre that all binomial trees

having a given index are isomol"J',bic in the sense that they have the s,..

shape. P1sure l on pee 19 illustrates rule (2) for building binomial

treE '~• 1111d F:lcure 2 d1apl.a¥s the first few cases.

ltD. alternative CCilstructiaD rule, equivalent to (2), is otten

uae:t'\11.:

BUP.Po•e that ~-l•····~ are disjoint trees such that z1 (~)

ia a B 1 tree tw o ~ l ~ k-l. • Let R be a Dcde 11hich is

dia,1oint traa eedl z
1

• 'Dlea the tree obtained by tald.Dg R

u the root and maJdDg t'le roota c4 ~-l' ... ,Zo the otrspriDc

of R , l.ett to ript in this order, iB a ~ tree.

15

Figure 3 illustratas rule (3) for bui.ldi.ng binanial trees. The

equivalence of (2) and (3) follows by indvction un k •

For future refe1·ence ~ record sune properties of binCIIlial trees,

including t.he !ll'operty which origl..nally moti va.ted their name:

Lemm~ 1. Let z be a lit tree. Then

(i) z haf> 2k nodes;

(ii) z has (~) nodes on level l •

~f· Tri vi a1 ind11ction en k • CJ

For each 111 2: 0 we define a binomial forest of size m to be ·All

ordered forest of binanial trees with the properties:

The forest contains m nodes. (4)

If a Bt tree Y is to the left of a B
1

tree Z in the (5}

forest, then k > t • (That is, the indices of trees :Ln the

forest are strictly decreasing fram lett to right.)

Since by (5) the indices of all trees in the forest are distinct,

the structure of a binaaial forest of size m can be encoded in a bit

string b 1 b1_1 .•• b0 such that bj is tbe number (zero or cme} of Bj

trees in the forest. By Lela& 1, tbe number of nodes in the forest is

1: b f2.1 ; hence b
1

b 1_1 •
•• b0 is just the binary representatioo ot a •

J~O

This shovs that a bin~al forest of size • exists for each m 2: 0 ,

and that aU biDcaial forests of a given size ar~ iscaorpuc. Figure ~

shova soae ...U. biDaial forests.

l.6

~ 2. Let F be a binauial forest of size m > 0 • Then

(i) The l~gest tree in F is a. BLlg mJ tree;

(ii) There are "V(m) • (f of 1 's in binary representation of m)

trees in F ; this is at most Ll8(mH)J trees;

(iii) There are m-"V(m) edges in F •

E!:22!• Obviuus. Cl

Consider a binCIIIibl forest of size m such that each node has an

associated key, where a linear order :S is defined on the set of possible

key values. 'l'bis forest is a binomial queue of size m if each binOIIU.al

tree of the forest. is heap-ordered: no offspring has a smaller key than

its parent. This implies that no node in a tree has a smaller key than

the root. Figure 5 gives an ex8JitPle of a binan:ial queue.

To avoid dwelling on details at this point, we shall defer discussion of

representations for binomial queue~ until later sections. The timing

bounds we si ve here and in the next section can only be fully' justified

b;y reference to a specific representation, but the boundE should be

plausible as they stand.

The f'ol.J.ov.l.DS propositioua. relating tu binOIID.al. queues are essential:

I.-a'· Two hetll)-ordered ~ trees can be merged into a sill&le

hap-ordered ~l tree in constant time.

!!2:2!• We uae CCIDatruc'tiCID rule (2). The Mrge ia accaa:plished b7

f'irat c~ the k~a of' the t110 roots, then add1 ns 111 edge to make

the l.arpr root beca.e the let'tlloat 11011 of' the naJler. (Ties can be

broken ill liD arbitra17 WillY.) '.rb:ia proceaa requires •aki ng a single

17

canparison and adding a single edge to a tree; for an appropriate tree

representation this requires constant time. Cl

Lemma 4. Let •r be a heap-orde!'ed ~ tree. Then the forest

consisting of subtrees of T whose roots are the cl'fspring of the root

of T is a b-Inomial queue of size k
2 -1 •

~· This follows immediately from construction rule (3) and the

fact that subtrees of a heap-ordered tree are heap-ordered. D

l.8

Figure 1.. Construction of a binamal tree.

' ,..,

r

l'1pre 2. SMl1 binomal. tree•.

19

0

size 1

Figure 3. Alternative construction of a
binr::mrlal. tree.

1ize 2 size 3 size 4

Figure 4. Slllall bincnial forests.

C3

Pipre 5. A ·oincaial quce of size 5
(w1 th integer keys).

0

size 5

2.2 Binaoial SU.eue Al.gorithms.

In order to implement a mergeable priority queue using binomial

queues, we must give binomial queue al.sorithms for the operations

Insert , DeleteSmallest and muon libich were introduced in Chapter 1.

In the following informal description of the alsoritbma we let IIQII
denote the number of e1ements in a queue Q •

ccmsider f'irst the operation Ulion(T, Q) , which merges the elements

of T into Q • If ll'rll • t and IIQII .. q , then the process of merging

the binomial queues for T and Q is analogous to the process of adding

t and q in binary. We successively "add" pairs of heap-ordered ~

trees, as described in Lelllaa 3, for increasing values or k • In the

initial step there are at most two Bo trees present~ one fran each queue.

rr two are present, merge (add) them to produce a single ~ tree, the

carry. In the general step, there are at most three Bt trees present:

one rrc. each queue and a eariy. If two or more are present we add two

of them ad carry the result, a ~1 tree. Each step of this procedure

requires constant t:t.e, and by Lela& 2 there are at most

IIUIX(L ls(t+ 1) J 1 L ls(q+l) J) steps. Hence the entire operation reqllires

O(ax(101ll'l'll, 101UQ!I)) t:t.e. Figure 6 gives 111 ex..,_ ot 1111011 with

bincaial queues.

G1va1 tbe abllity to perlOl'll l.bicm , the operation Inaert(x, Q) ,

wbich adds it. x to queue Q , is trivial. to specity: just let X

be the bs.&al cpnae cont.ainiDI cal¥ the it• x 1 IDCl petrfOl'll tb!on(X, Q) •

BT tbb ..tbod, the tDe re~red. for 8ll illaertiOD into Q is 0(101 IIQII> •
Die operatiaL D8l.ete...Uest(Q) ia a bit :mre c~catecl. The

t1rst st.p 11 to locate the node x eczt&1 ntna the lll&ll.elt key. 81Dce

21

x is the root of' one oi' the queue's ~ trees, it can be foWld

by examining eacl• of these roots once. By Leuma 2 this requires

O(log 1\QII> time.

The second step of a deletion begins by removing the heap-ordered

~ tree T containing x freD the binomial queue representing Q •

Then T is partially di8Dl8lltled by deleting all edaes leaving the coot x

this results in a binomial queue T' of size 2k-1 , as suggested by

Lemma 4, plus the node x which will be returned as the value of'

DeleteSmallest •

The final step consists of merging the two queues formed in the

seccmd step: the queue T' fol'JIIed from T , and the queue Q' formed

by removing T f'raD Q • Since each queue is smaller than IIQII , the

operation {iliOil(T', Q') requires O(log IIQID tiae; therefore the entire

deletion requires O(log IIQII> time. Figure 7 gives an exa.ple of

Delete8ullest v.:l:f.h binCDial queues.

In acae situatJ.ona it is useful to be able to delete an arbitrary

element of a priority queue, not just the smallest. It is poaaible to

accomplish this v.l.th binOIIial. queues by generallziDC the tree-diiUDtlins

step of DeleteSIIaUeat • Suppoae x ia the nc4e ·.o be 4.eleted,

where x is contained in the ~ tree T • Ref'err!Ds back to lipre l,

ve cm dec<llfiiOse T 1Dto two ~-l treea Y ad Z • 1lov x lle• in

either Y or z , •4 it liea 1n Y it MCl 01117 it the root of' Y h

on the path t:rca :a to the root ot T • So w r.an the ecJce joo n:l ns Y

and Z 1 eave tile ~ wlaich d.oea not contain x 1 and repeat the process

011 the tree caatetntns x until x stanc1a alane aa a Bo tree. lihc

the proce11 tenlinatea, lt .ubtraa have been saved, and they canstitute a

binanial queue of size 2k-l • (Note that when x is the root of T ,

this 11rocedure just deletes all edges leaving x •) The deletion is

completed with a final UU.on , as before; the s~e time estimates also

apply as long as we can delete each edge in constant time during the

tree-dismantling step.

It is interesting to note that the time bound given for the Insert

operation can be substantial.ly illlproved if we st~ the effect uf

several consecutive instructions. Consider the sequence of instructions

The time for each insertion is just 0(1) + O(number of edges created

by the insertioo) • If HQ!I • m initially, the number of edges created

by this sequence of instructions is (Jittok- v(m+k))- (m- v(m)) ,..

k + v(m) - 'll(m+k) by Lemma 2. Hence the time for k insertions into a

queue i::: O(k)+O(k+v(m)-v(m+k)} .. O(k+1og m) if the q_ueue has

size :n initially.

As menticmed in Sectioo 1.2, 1e:rtist trees and 2-3 trees can be

ued to impleent llel"geable priority queues. The time bounds for Insert ,

DeleteSII&l.lest and thion 1l8inl these structures have the same order of

...,Utude as -;bose ghen above tor b1ncBial. queues. But f'or both of these

sUu.cturea, insertiCila -.at be hmdled 1n a speci&L VQ in order to achieve

the Cl(k + 101 a) tae bouad tor a sequence of' Insert inatructions. The

aaive erpprow::h, ttl&t of' insertin& el4!1111nts 1Jidi:rl~ into the leftist

or 2·3 tree, co coat about los(ll:t-a) per insertion tor a total cost or

O(lt lol(kt'IB)) • '.ftle f'uter eppi'OIIdl is to butter the insertions by

-.:lnta1D111s the n~ inserted elaents a.a a forest of trees vit.h graduated

sizes, such as powers of tw. '!'hen insertions cw• be handl.ed by

balanc·~d merges, just as with binomial queues. Individual. merge~

require more than constant time, but the time for k insertions

comes to O(k + log m) •

A:t_:

_A24

26 r/ l~ 25

27b

x: eu size 3 "' (U)2

size 1 • (lll)2

(a) BinCIIIi&l queues of size 3 and 1 to be merged for UNION operation.

9 ll ._,carry

A 21

(b) Atter wmoge of B0 • s ; result is carry.

(c) Atter Ml'P ot B:l ' •·

1

0

l.

10

J2
1010

13

(d} Merge cCIIIPleted.

Figure 6. Bincaial queue Ulion operation.

(a) Bincmial. queue of size 6. Node 1 is to be deleted.

f-- remainder of original queue

o 6 ~ children of deleted node

(b) Two queues which result f'raa removing node l. •

o6

(c) Resulting Cl'leue ot abe 5 after merglna.

npre 7. DeleteSIIall.eat 011 a biru:aial. queue.

2.~ Structures for Rinani.al QUeues.

In impl~enting binomial queues our objectives are to make the

·lperations described in the previous r.ection as efficient as possible

while requiring a uinimum of storage for each node. A$ usual, the most

appropriE•e structure mS¥ depend on whi<.:h operations are to be perfot-med

mod frequently.

Since a bino~ial queue is a forest, it is natural ~o represent it

as a binary tree [26]. But not aJ.l orientations of the binary tree links

allow binomial queue operations to be perfonned efficiently. Evidently

the individual trees o:f the bino:rr•_aJ. forest .111U13t be linked together

from smaller to larger, in order to allo-..r "carries" to propagate during

the Union ~peration. But in oraer to allow two heap-ordered binomial

trees to be merged in constant time, it seems necessary that the root

of a binanial tree contain a pointer to its lef'tmost child; hence the

subtrees mu~t be linked fran larger to smaller. This stru.c.ture for

binOIIlial q:.1eues vas suggested by Vuillemin [421; we shall call it

structure V • An ex8111ple of a binomial queue and its representation

using structure V is given in Figllre 8(a).

The time bounds given in the preceding section for Insert ,

DeleteSIIlallest , and 'lllion ean be met using stru.cture V 1 provid£d

that the queue size is avldlable daring these operations. '!he q:~Jeue size

is necessary in order to determine efficiently the sizes of the trees in

the queue as they are being processed. ('l'he alternative is to store in

each node tbe size of the tree of which it is the root; this will generally

be leas useful thaD keeping the queue size avai1able, and it will use more

atorace.) Ill llbat follows we shall assume that the queue size ia aTailable

as part of the ~eue he&der; the other component of the queue header

will be a pointer to the structure representing the queue.

One drawback of structure V for bincmial queues is that the

directioo of the top-level links is special. This means that in this

representation, the subforest consisting of trees Whose roots are offspring

of the root of a binomial tree is not represented as a bincmial queue

(as would be suggested by Lemma 4); the top level links are backwards.

Structure R , the ring structure shown in Figure 8(b), eliminates this

problem. In this structure smaller trees are always linked to larger

ones, except that the largest tree points to the smallest. Downward

links point to the largest subtrees, as before. It appears that

structure R is slightly inferior to structure V for insertions, but

is enougb better for deletions to ~e it preferable for most priority

queue applications. Structure V has scme advantages for implementing

the fast min1111WD spanning tree algorithm [4), since the ordering of

subtrees helps to limit stack growth in that algorithm. ('!'he staek can

be stored in a linked fashion using the deleted nodes, thereby removing

this objection to structure R •)

Reither of the atruc~ures described so tar allOVB an arbitrar,y node

to be deleted f'rca a binc.ial queue, pven onl)t a pointer to the node.

It 111 evident that in order for this to be possible, the structure must

contain upward pointers of' a~ sort which allow the path from any node

to the root of the tree containing 1 t to be found quickl)t. It aust also

be poaai ble to find the queue be~er, since 1 t will cbtul&e durinC a

deletioo.

Simply adding a pointer f'ro:u each node to its parent node (to the

queue headei in case of a root) in structure V results in a structure

which allows arbitrary deletions to be perfonned. J.n example is given

in Figure 9(a). Starting from any n~de in this structure, it is possible

to f'ollow the upward 1 i.nks and trace the path to the root of' the binomial

tr~e containing the node. The upward link f'rom the root leads to the

queue header, wl ich we asswne is distinguishable in some way from a queue

node. Once the path to the root is known, the top-dOWl deletion

procedure described in the preceding section can be applied.

Wnile the top-down deletion process iF- easy to describe, a more

ef'ficient bottom-up procedure would be used in practice. It is also

essential to understand the bottom-up procedure in order to comprehend

how alternative structures can be used. In the initial step of the

bottan-up procedure we save all of the trees whose roots are offspring

of the node to be deleted, and call this node the p&th nod~. In the

general step the path node was originally the root of a ~ tree within

the binomial tree being dismantled; its parent vas the root of a B
1

tree,

and we have saved ~-l' ••• ,B0 trees so far. We first save the ~ tree

formed by the right sibUngs of the ,path node, taking the path node' 11

parent as a root. 'Dlen we save the ~+l' ••• ,B1_1 trees which are lett

siblinp of the path node, and -.ke the parent of the path node the new

path node. When the path node bec01116s the root, the process tel'llinates.

The forest of trees saved by this process is the same as that created by

the top-dam process, and the remaining steps of the two algori tllu are

identical.

Figure 9(b) shows a modification of structure R which allows

arbitrary deletions to be performed. This structure keeps an upward

pointer ally in the leftmost node among a group of' siblings, and t.~is

pointer indicates the right sibling of the parent of nodes on this level.

Note that the rightmost sibling in any family has no o.CfsprinG, so the

parent's right sibling always e..·'Cists wen n~eded. It is not too hard to

convince oneself that the bottom-~ deletion procedure just described

can be perfonned on this structure.

Figure 9(c) shows a method of encoding the previous structure which

uses only two pointers per node. The regularity of the binanial tree

structure allows us to recover the information about ldlich "child" pointers

actun.lly point upward, as follows: the rightmost node in any of the

horizontal rings has no offspring (except perhaps on the top level of the

forest), so its "child" pointer goes upward. If a node iR an only child,

or is the right sibling of a node having an only child, then it is one of

these rightmost nodes. A node is an only child if and only if it is its

01111 lett sibling, so it is possible to test efficiently whether or not a

"child" pointer aoes upvard. The up1IIU'd pointer convention in Figure 9(c)

is sligbt.ly 1rrepl.u' at the top levels; here the decoding depends on our

ability to distinsuillh the qgeue header tra. other nodes.

Strueture K 1 another structure llhich Rllovs &rbi trary de.letions

u.inc cm.q two pointers per node, is shom in Figure 9(d). 'ftds structure

containa ac.e nul1 l1Dks1 and aees to require leas pointer u;pdating per

operation thaD the structure in Figure 9(c). Note that a :path troa an

arbitrary node to the queue header can be found by al¥8¥1 fol101fin3 "lett"

l.inka, - of 11b1ch ao upnl'da. To.,.,. to the r1&trt on a given level

ve ,1ust follow the ch1l4 pointer mel tbe. tbe "lett" pointer.

@

(a) A binCIIlial queue and its representation using structure V •

(b) A rapreaentaticn for the s•e queue using structure R •

Figure 8. Structures for bincaial queue a.

size -~------...... _
structure

(a) structure V with upward pointers.

(b) structure R with upward pointers.

"

11

(c) A structure with only two pointers per node.

11

(d) structure J: •

Pipre 9. Structures tor b1n011i&1 queues allovias arbitrarr clel.etiOIUI.

2.~ Rudom Binraial 9leues.

we define a randan binallial gueue of size m to be the queue formed

by choosins a randall pel'!lll.ltation of { 1, 2, ••• , m} and inserting the

permutation's elements successively into an initially empty binomial

queue. (By a random pel'!lll.ltation we mean a permutation drawn from tr.e

space in which al1 m: permutations are equally likely.) Equivalently,

a rand0111 binomial q1eue of size m is formed fraa a random binomial

queue of size m-1 by choosfns a random element x from
1 1 1 { 2, 12, ••• , m - 2) , insertins x into the queue, and renumberins the

queue such that the keys cane fran {11 2, ••• 1 m} and the ordering among

nodes is preserved.

This definition of a rand0111 queue is simple, yet is not artificial.

The secand statement of the definition, which sqs that the m-th randan

insertion falls with equal probability into each of the m intervals

defined by lteys in the queue, is equivalent to another definition of

raDdam insertion ~ich arises from event list applications. In these

situations, a rUl~ insertion is obtained aa follows: generate an

iDd.ependent randcll !Wilber X fl'CIIl the neptive exponential distribution,

-x in which the probabil1ty that X S x iP 1-e • ~em 1n~ert the nUIIber

J:+t , llbere t is the keJ' 110st recen~ly re.'IO'Y""A tl'OIIl the queue (0 if

no deletions b~mt takeD place). Here t 1s intei"preted aa the cvrent

instmt ot sillulatecl tiae, ad X is a l'Uidca "wai tins tilDe" to the

oeeurreoee ot acae ennt. !be f'.ct that this det1n1tion ot a rE&.

insertiOD 11 equivalent to the one w haft ldopt.d w.a prone! by Jcausen

u4 Dabl. [22); it f'al.l.on vitbout d11't1cul't7 tro. the wll-II:DcniD

OUr goal in this section is to study the structure of random binomial

queues. The gross structure of such a queue is already evident; we

ob:::erved earlier that all binomial forests of a given size are isomol'lJhic.

But more information about the distribution uf keys in the forest is

necessary to t'ul.l.y analyze the performance of binomial. queue algorithms.

For example, in order to analyze the behavior of DeleteSmallest it

is necessarJ to deter-mine the probability of finding the smallest element

in the various trees of the binomial queue. It is also important tc

determine whether or not a random queue stays random after a DeleteSmallest

has been performed, since if this is true then the analysis of' randan queues

may apply even in sit1Ultions where both insertions and deletions are used

to build the queue.

OUr first observation is that the insertion algorithm shows P. certain

indifference to the sizes of the elements inserted.

Let p • p1 p2 ••• Pm be a pei'IIIUtation of {11 21 ••• ,m} • Then

in the binollia.l queue obtained by inserting p1,p2, ••• ,pm successively

into an initial.ly arpty queue, the tree containing Pj is determined by

j for j • 1,2, ••• ,m.

~· We proceed by inducticn on a • The result is obvious for

m • 1 • For a> 1 , let 1 • 2Llg mJ be the largest power of t110

less than ore~ to a. Atter the first 1 elements'of p ~e

been inserted, the queue consists of a s1D8le BLlc •J tree. Later

insertions hue no effect on this tree, since it can ~ be aerged with

another tree or equal size. Hence the first 1 el-.nts or p lllSt

fall into the lef'ta>st tree of' the queue. rurthenaore, since the

lef'blast tree is not touched, the remaining a-1 insertions distribute

the last elements or p into smaller trees as if the insertions were

into an empty q11eue. ':'his proves the resu1t by inductil.'l".. 0

A quicker but les;; suggestive proof of LeDma 5 simply 11otes that

ccmparisons between keyo.3 in the insertion algorithm only affect the

relative placement of subtrees in the tree being constructed. SUch

comparisons never determine Which tree is to receive a given node.

What the given proof of LeJIIII& 5 says is that the input permutation

p can be partitioned into blocks Whose sizes are distinct powers of two,
k such that the 2 elements of block bk form a ~ tree when all m

insertions are complete. The sizes of these blocks decrease from left

to right, just as tne sizes of trees in the forest decrease. (Another

priority queue structure with this sort of indifferent behavior is an

unsorted linear list; with the linear list, the blocks are all of size

one.)

The deletion al&Ori thm e:xhibi ts ts s1milar d~.ndence on when the

deleted item was inserted, and a similar indifference to key sizes. What

the folloving 1-. states is that if we delete an element from a bincaial

cpeue, theD the resulting queue is the same as ve attain bJ never inserting

the elaent at all, but penuting the elements that we ~ insert in a

.... er wbich depeada ~on wben the deleted ela.nt vas inserted.

I.-a 6. Let p • 1\ p2 ••• p• be a pe!'I!Qtation or {11 21 ••• ,aJ •
!biD there is a aapp1Dc r • r.. rrc. {1,2, ••• ,a-1} ODto .,,.
{11 2, ••• ,J-l,j+l, ••• ,a) lliCh tbat tbe result or iJlsertins p1 p2 ••• p•

into an initialll' tiiiJ'tJ' biDamal queue 11Dd then deletins pJ is identical

to the result o~ iuertiDg Pr(l) Pr(2) ••• Pr(a-l) into an initi~

li!IFI' biDcmal. queue.

Froof. We basically mimic the procedure for deleting pj and then read

the mawing from the result. The exact mapping depends on arbitrary

choices made during the merging process and would be tedious to exhibit

for general j and m , so lte Will give an example of the construction

for m • 10 , j • ~ • First the input is divided into blocks as

described &.bove.

[o o too o o o][][o o][1

Then the block containing j , which holds all elements of the binomial

tree 'I ~onta!ning j in the queue, is f'urth~r divided to exhibit the

subtree~ produced when T is dismantled.

[(oo) t(o)(oooo)][](oo)[J

This division clearly depends only on m and j •

Following the dismantling step is a merging step. Ckle possible

strategy for this merge is as follows. If the dismantled binanial tree

T vas the smallest tre~ in the original queue, then no merging is

required. Otherwise combine the smallest tree in the original queue with

the fort=st just obtained by cUSJUDtling T • This produces a new tree

vhich has the see size u T had, plus a f'ol"!lst of small trees; the

merse is then coapl.ete. 'l.'he sae effect would be created (in the case

WI! are cooaicleriDS) by reinserting all nodes in tbe order

(OOOOJ(OO)[OO]{ 0)

To see this, just at.ulate the inaertion process 011 this input. 'l'he

inte:naediate trees created cluriDc this process correspond to trees involved

in the aerse. (llote that toe r map is far fl'ml beins unique~

determined.) 0

Here again we can draw an analogy with the unsorted linear list,

which obviously has the behavior stated in the lemma •

.Armed v.l.th this result, we can determine the effects of various

types of deletions on random binomial queues.

Theorem l. Let Q. be a random binanial queue of size m • Suppose

that l1t , the k-th element inserted in the process of building Q ,

iJ delete.l from Q. and Q. is renumbered. Then the resulting Q. is

a ra.ndan binanial queue of size m-l •

Prooi'. Consider the m! equall,y-like1y permutations used to bui.i.d Q •

When the k-th element oi' each permutation is discarded and the permutation

renumbered, each of the (m-l)! possible permutations occurs m times.

The same is true if oome !'ixed rearrangement of the pennutaticn is made

just before the renumbering. Hence by LeiiiDa 6 the m! queues obtaint!d.

by inserting all possible permutations of length m and then deleting

the k-th element (and renumbering} are just m copies of the (m-1)!

queues obtained by inserting all permutations of length m-1 • 0

!beorem 2. Let Q be a rancka binomial queue of size m • SUppose

that k , the k-th -u.est element iuaerted in the process of bu1ld:1ns Q,

is deleted frclll Q and Q is renumbered. Then the result.ng Q is a

random binallial q\l~Ne of size m-l •

l!!2f. Ccmaider the a! equal.l3'-l.ilutl.¥ penmtationa used to build Q •

For tixecl .1 , there are (a-1}! of these pel'llltatiCIIUI with Pj • k

if we ipore pj and rern.ber, we set all (a-1)! possible pe:nutstiODa

of {11 21 ••• 1 a-l) • '!he s- ia true if Belle fixed rearraap.Mnt of the

'9

permutation is made before renumbering. Hence by Lemma G the (m-1)!

queues obtained by inserting all permutations of length m with pj • k

and then deleting k (and renumbering) are just tl'"&e (m-1)! queues

obtained by inserting all permutations of length m-1 • This is true

for each j , so the result follows. 0

Coroll&rY 1. If' a random element (or randomly placed eleme11t) of the

input is deleted fran a random binomial queue of size m , the result

is a random binomial queue of size m-1 •

E!:22!• The two statements are obviously equivalent; they follow

illlllediately fran Theorem 1 or 'lbeorem 2. 0

The~e results are sufficien+. to show that binomial queues stq random

in many situations. The most important of these is when a queue is formed

by a sequence of n random Insert operations intemixed with m :S n

OCC'!'..irrences of Del.eteSmallest , arranged so that a deleticm is never

attempted when the queue is empty. Theorem 2 shows that a DeleteSIDallest

r .. pplied to a randml queue leaves a random queue; a rand0111. Insert also

preserves randclBless. So under tbe most reascmable assu.ptions tor

priority cpeues, bincaial qwftles can be treated as randca. 'l'his is our

rationale for u~ ralldca bincCal queues 1D tbe auaJ¥sis of the

next aecticm.

A aillilar arpMDt shoV8 that raDdc. binomal queues result 1Gen

intenlixecl ranclaa deletions are perforaect; a sillple ~ appealin&

to X... 6 shova tb&t intend.xed deletions by aae (hov 101'18 an eleaent

has been 1D the cpaeue) also lead to randc. queues. Tbese tJpes ot

deletions, especiall¥ deletions by age, are ac.nbat artificial t~ priority

queue a.

It is natural to ask whether randcmness is preserved by the merging

of bincmial queues. Suppose that a randan permutation of length m is

given; its first k elements are inserted into one initially empty

binCIIlial queue, and the remaining m-k elements are inserted into

another. Then each of these queues is a randan binCIIlial queue, and the

argument used to prove Lelllna 6 showe that the result of merging these

queues is also randan as long as some fixed choice is made about which

two trees to "add" when three are pres~nt during the merge. So in this

sense merging does preserve ra.."ldcmness.

Sensitivity to deletions has been studied in the context of binary

search trees by Knott [25]. The model used there considers a randan

insertion 1 , be the insertion of a random real number drawn independently

from some continuous distribution (for examp1e1 uniform an the interval

[o, lj •) This definition is !!2!, equivalent to ours; Theorem 1 and

Coroll.ary 1 bold for deletions from binary search trees, but this does

not imp~ that a tree built using intermixed random deletions is randan.

In fact, aa Dlott first noted, binary search trees are sensitive to

deletioos in this IIOdel..

Binc.ial queu.es, however, are not sensitive to del.etions in the

search tree .odel.. In a sseral atuq of del.eticm insensitivity, Dluth

abowed that 'J.'heor. 2 illplies.insssiti'Vity to random deletions, and

:t.e.a 6 illpliea ins•siti'Vity to del~ticms by ase in this model. [29].

BlnCIIial queues are senaitin to del.etions by order (e.s., Del.eteSIIalleat)

in this .aclel., but unsorted linear lists, as well as pract1~ all other

aJ.aoritb1u1 are &lao aensitin to these del.etions. So even v:Lth this

alternatin 4et1niticm of a !'U4ca insertion., randoa binadal queues

At this point it might seem that nothing can destroy a randan

binomial queue: This is not true; a de" tion based on knowled&e of the

structure of the queue (or equivalently, knowledge of' the entire input)

can easily introduce bias. For example, random queues of size 4 are

distributed as show.n:

pr = 1/3

If' we now delete the rightmost child of the root and renumber, we get:

pr. 1

This ian' t nmdca; randaa binCIIlial queues of size ' have the diatributic•n

pr • 1/3

Since the eaqaia of biDCIIlial queue al6ori tbma pert'omecl 1n tile next

aect1011 is baaed 011 raadoa bincm.al queues, we are intereated 1n tile

distribution of lrqll in tbeae qunea. _. I.-a 5, the probability that

a given element (e.g. the smallest) of a random permutation lies in a

given binanial tree is simply the probability that the eJ.ement lies in

a certain block of positions within the permutation. Thus the P- :Jbability

that the j-th largest element in a birH:mial queue of size m lies in a

k ~ tree is just 2 /m 1 assuming that a ~ tree is present in a queue

of size m • This decomposition of' the input into bJ.ocks reduces the

stu~ of rendcm binomial queues to the study of rendan heap-ordered

binomial trees (i.e., random binomial queues of size 2k) •

AJ3 we observed earlier, the small.est key in a heap-ordered binanial

tree must be in the root. The distribution of larger keys is not so

highly constrained. The following result characterizes the distribution

of key~ without explicit reference to the n! :possible input permutations.

Theorem 3. Let a configuration of a heap-ordered ~ tree be ezr:t
k assignment of the inte8erS 1,2, ••• ,2 to the nodes of a ~ tree such

that the tree is heap-ordered. Then in a random heap-ordered ~ tree

all (2k)! ecmfigurations are e~ likely. (That is, there are
2(2k)-l

2(2k)-l distinct input pe1'Bltationa which generate each possible

ccmfiguraticm.)

!!:22!:• We proceed 'b7 1Dductioo on k • Dle result is obvious for k • 0 •

Aaaume that for It • .1 there are 2(2j)-l. ~atioos of {1,2, ••• ,2.1}

llbieh give size to each poalible cmf1curatioo.

llow ccmsider art¥ tized COilf'1Curat101l X of a B.1+l tree. This tree

can be deccaposeclinto the two Bj trees Y Uld Z 1 &a shom in

Fisure l. B.J the ~t ot I.- 5, aD7 pelWitation g:l.. 'ring rise to

cont~guration X must consist of two blocks, one producing Y end the

other Z ; these bloc!.s 1118¥ appear in either order, since the relativtj

position of Y and Z is detemined. by which tree contains the smallest

(2J)-l
key. By the induction hypothesi:; there are 2 arrangements of

the keys in tree Y which give rise to Y , and similarly for Z • SO

(2j) 1 (2j) 1 (2j+l) 1
thE-re are 2·2 - ·2 - • 2 - permutations ldlich produce X •

Since this holds for any X , the result follows. u

In the inductive ste}l above, we can note that the element 1 is

equally likely to be contained in the first or the second block of a

permutation producing X • This leads to an easy inductive proof of the

JlrQilosi tion that the i-th inaerteJ. element is equally likely to fall into

k
each of the 2 nodes of a random heap-ordered 11r tree.

\l'lfortunately, Theorem ' does not hel.p much in detel'!llining the exact

distribution of keys in a random binomial tree. There are fewer

configurations than ·:1t!rmutations, but the number of configurations still

increases rapidl;_; w1 th k •

2.5 Anal.yf:is of Binomial ~eue Al.gorithm.s.

We are now prepared to analyze the performance of Insert and

Del.eteSml\.lJ.e.Jt 1 when imp1emented using binomial queues; this will

a11ow a ca~rparisan with other priority queue organizations. The binomial

queue implementation to be ana.l¥Zed is based on structure R , discussed

in Section 2.3 and pictured on page ,2. The priority queue structures

to be used fer canparisCil. are the heap, l.eftist tree, sorted linear

list, and \Ulsorted linear list.

For each of the five structures, the operations Insert and

r>eleteGmall.est have been caretully coded in FAIL, a PDP-10 assembly

language (the binOIIIial queue and leftist tree implementations appear in

Appencti.x A.) By inspecting these programs, we can write expressions for

their running time as a function of how often certain statements are

executed. It then remains to determine the average values of these factors.

The running tilDes (in memory references tor instructions and data)

ot the binaaial queue operations are

Insert

Deletea.•Jleat

16 + 19M + 2E + 6A

38 + llB + 6T + ~N - 2L + ~S + l~U + 2X

M ia the DUIIIber ot ~a required for the insertion;

E ia the !UIIber of excbanps pertoi'Md duriDI these merges in order

to preserve the he1111-order property;

A 11 1 it M • 0 , and 0 otherwise;

B is 1 U the qaege CCiltairua no B0 tree, and 0 otherv.lse;

T is the ll\1lllber of binaaial trees 1n the queue;

N is the number of times that the value o!' the smallest key seen so

far is changed during the search for the root containing the smallest

L is 1 if the smal.lest key is contained in the lef'tmost ruot, and 0

otherwise;

S is the number of offspring of the root containing the smallest key;

U is the number of merges re~ired for the deletion; and

X is the number of exchanges performed during these merges.

(To keep the expression for DeleteSmallest si~le, certain unlikely paths

through the program have been ignored. The expression above always

overestunates the time re~ired for these cases.)

As a first step in the analysis we note that several of the factors

above depend only on the structure of the binomial queue Q and not on the

distribution of keys in Q • Since the structure of Q is detP.J"JIIined

solely by its size, these factors are easy to determine. For example, if

Q. has size m then evidently M is the number of low-order 1 bits in

the bina.ry representation of m , and A • 1 if and only if m is even.

Clearly B • A , and by ~ 2 -we can see that T • v(•) •

These factors are a bit unusual in that they do not vary smoothly

with m •
n

For exuple, when m • 2 -1 we have M • T • n , while for

m • 2° this changes to M • 0 and T • 1 • Since in practice ve are

generall7 eoncemed not with a specific queue size m but rather with a

range of queue sizes in the nei @tlborhood of m , it makes sense to averaae

the performance of our algorithms over such a neighborhood.

Factors A and M can be success~ smoothed by thia approach;

averaging over the interval [m/2 , 2m] gives an expected value of

~ + o(~) for A and 1 + o(1'! m) ror M • nus agrees well

w1 th our intuition, since it sa;ys that about half of the integer<> in

the interva.l are even, and that one carry is produced., on the average,

by incrementing a number in the interval.

Properties of the facto ... · T • "(m) have been studied extensively.

FrCIIl (35) we find that

< ~ "V(k) < l ~ m 1g mJ
1<k<m

,

where each botmd is ti~t for infinite:cy many m ; it follows that our

neighbomood averaging process Yill not ccmpl.etely smooth the sequ.ence

v(m) • But ·ore have bounds on an "integrated" version of "V(m) , so

dift'erentiating the bOWlda puts limits on the average growth rate or

v(m) • C&rrying out the differentiation gives

Wdch is about what ve expect: half of the bits are l , on the average.

The remaining lDlcertainty in the corurtant term is about • 21 •

While this ~ techllique fails to smooth the sequence v(a)

ca.,pletely, there are other aethod.a wbich succeed. 'l'bere is no single

"correct" .tbDd tor hiiJMlltnc problema or this t;ype: dirtereot tecbniques

..,. sin ditreNDt anera, •d the uaef'ulness or a result clepencls on bow

"natural" the aootbiq method is in a p.ven context. 'Dle aore power1"ul

averaama tctdmiquea 'lbich succeed in IIIIIOOt.b1Ds v(•) seem artificial

in cc:anectiOil vith our gnaJ,yBis, but the :results are quite interestin.!E

matbematicall7. I¥1e R•lhav 1:591 baa abOWl that

~7

using logaritlunic averagir•g ['{]; his r-e:.:u.lT. is ba:.;ed on the detailed

analysis or I: v(k) yer.(;:t'!lled. by Hubert Delange [G]. The
l<kC:::m

n~i.;ura.lress o~· logaritt.a..~i..c averagiilg h indicated by the fact that

it also .!.eads to the logaritlun:ic distribution of leading digits which

has bc~n obs~rved empirically [38;27, Section 4.2.4], and the fact

that lt is consistent with zeveral other averaging methods (such as

repeated Cesaro sUDming) when those m~thods define an average.

'.i'his an~ds of !.'actor T completes the pureJ.¥ "structural"

a.naly::;is; the remaining f'actors depend oo the d:l.stribution of keys in

the queue. For the average-case anaJ..ysis we shall assume that Q is

a random binanial queue of size m and that the insertion is random.

These assumptions are well justif'ied by the discussion of Section 2.4.

The factors E and X are easy to ~spose of. Since we only merge

trees of equal size, our ra.nclomness as:oumption sqs that an exchaDSe is

required on half of the merges (em the average). More precisel¥1 if

there are :1 merges then the nUillber of exchanges is binomi~ distributed

with mean n/2 and variance n/4 • ~e number of merges is just M in

the case of E 1 aDd U in the case o .. ~ X •

The factors L and S are also easy to ~e. We noted in

secti011 2.4 that the probability of having the queue• s -nest kq in

a given 'i.ree is just proportionbl to the size of the tree. Theref'ore if'

k
there is a binOIIIial tree of size 2 in a queue of size m , this tree

I

contains the queue• s ;nest key with probability

such a binomial tree)as k offspring by Lemma 11 so the ~ted value

of 3 is ~ F(a) llbere

F(m) • ~
k>O

Ill• (b .eb l-1" •• b0}2

While it seems hard to find a simpler closed form for F(m} , it is

possible to derive good upper and lower bounds.

LeiBa B. Tbe t'unction F(m) de:t'ined above satisfies

fm lg m - 21111 :S F(m) :S L• J.g mj , m ~ l , and the upper bound is

ti&ht for infinitely many values of m •

E!:22£• (This argument is similar to the one used to prove Theorem 1

in [25].) From the definitioo of F(m) , if m • 2k then

k. k r(m) • r(2) • k·2 • m J.g :m •

It is alao clear trca the def1nitioo that

,

The upper bouDd on r(m) is evidently attained llbeftever :m is a

powr ot two. It tberef'ore holda 111lm 11. • 1 , aDd uSUJd.Ds that 1 t

k.
hol.dl liP to • • 2 , we haTe

So the upper bouD4 hol.cla tor all • 'b7 induction.

The lower bound on F(m} holds when m ... l , and whenever m is

a power of two. Suppose that a bound of the form

F(m) :;:: m lg m - c m

is true for some c > 0 and al1 m < 2k • Then

>ml&m+ilgi-ci

It follows that if the inequa.li ty

m lg m + i 1g· i - c i ~ (mH) lg(m+i) - c(m+i) (0 ~ i < 2k)

holds, the lower bound will hold for all m by induction. Replacing i

by xm and simpli~ing gives another inequality which implies the result:

x lg x ~ U±.x) lg(l+x) - c (0 ~ X < l)

But it is easy to verify that x lg x - (l+x) J 1(l+x) is decreasing

on [o, 1] , so we can take x .. 1 to determine c • 2 • (A tight lover

bound can be found by using the value F(2k-l) • (k-2)2k+2 •) CJ

AccordiJla to tbese bounds, the averece value of S ll.es betwen

1g m- 2 111d lC a • I¥le Baab• ['9] baa ahcnm tbat the lop.ritbsic~

averased value of 8 is

lg m- C

Wl.ere

(-1~~) +! .
j 2 • l.J.099j

50

The expected value of L is 2 L J.g m J fm , which is between 1/2

and 1 •

F&.ctor U is close~ related to

is equal. to the number of trees (i.e.,

S • 'l'he number of merges required

S) created by removing the node

containing the smal1est key, minus the number of these trees 'Which are

not merged. Since the first merge must take place with the smallest

tree remining in the original forest, we see that the number of trees

~eluded from merg::l.ng is equal to the number of low-order 0 bits in m •

Since the least significant bits of m are distributed almost uniformly,

the average value of this quantity s-u is the same as the average value

of M •

Factor N is more interesting. Clle 'W8\Y to search for the small.est

root in the forest is to use the key ccnta:ined in the rightmost root as

an initial estimate for the smallest key, and then sean the forest from

risht to left, updatins the estimate as sall.er keys are seen. Since the

trees increase in size frail riSbt to l.ett, trees in the left of tbe forest

are more likely to CCllltain the aa&l.lest Jte,y; thus the estimate of 8JIIal.l.est

key will be cbaD8ed of'ten duri.Dg the scan. To be more precise, the

expected maaber ~ chlnpa 11llile searchiJIS a forest of size

• • (bn bn-1 • • • b0}2 is

51

z Pr(estimate changes when the Bk treo:: i o exa.mined)

0 ~ k , n

(number of' nodes in t,h~ Bk tree)

{total number of' nodes in !W.l B l trees e:xaJDined, 0 < l i k)

L
2k

==
2' O<k<n !:

bk a: 1
OSlSk

b,-1

When 111 • 2n -1 this has the simple fol"!ll

... n-1
+ g__
~-1

• (!+!+!+ ••• +!)+.!(!+!+.J!.+ .•. +-L)
2 2 2 2 2 3 7 J.;'.) 2n • 1

'Where a: • I: -* • 1. 60CG9 •••
k>l 2 -1

(The constant a: also arises in connection with Heapsort; see [28, 5.2.3(19)).)

A search strategy which intuitively see111s superior to the one Juat

described is to search the forest fran left to right; for the above exaiaple

the expected number of changes is reauced to

l l 1 1 (-n)
- + - + ~ + • • • + - .. o:-1 + 0 2
' 7 ~ ~-1

But this strate§ is !lot practical; the links point in the VI'Oil£ direction.

With structure R ve can improve the search by using the key contained in

52

the 1et'tmost root as our initial estimate in a right to left search. This

makes the expected number of changes in a queue of size 2°-1 equal to

...
By writing this sum in reverse order we can derive its asymptotic value:

mere
t

Cl •

1
••• -""=1~

2n- +1

('l'be coostant u' arises in connection with merge sorting; see [28,

exercise 5.2.4-13].) So the expected value or this factor is about

1.13 f'or larse n ; b;y modif'yins the sear<:h in this Y1Q' we have

effecti vel.y removed part of the inner loop.

t'bia c~etes the an&l.yaia of' Insert and DeleteSIIal.l.est for

bina.ial '1\leues. By plugj ns our avenge values into the rwminS time

expressions given abcml and aillpl.if,yiD&, ve get the results for binomial

queues show in l'1aure 10. A INch silllpler 81l&l.ys1a [26, pp. 94-99] gives

tbe correspocdiq renlts tor sorted. aDd UIUIOrted linear lists (also

shown in l'1pre 10.)

Priority queue algorithms based on heaps and 1eftist trees have

not been comp1ete1y analyzed; partial resul.ts are known for heaps

[28;37] but not for leftist tree~. Therefore experiments were performed

to determine the average values ot' factors contro11ing the running time

of these algorithms. Leftist trees and heaps are deletion sensitive,

so the averages were taken from stationary structures (obtained after

repeated insertions and deletions) rather than fran random structures.

Figure 10 gives the experimentally determined running times for 1eftist

trees and heaps.

These results indicate that binomial queues completely dominate

leftist trees. Not only do binanial queues require one fewer field per

node, they also run faster, on the average, for m > 4 when the measure

of performance is the cost of an Insert followed by a De1ete •

Linear lists are of course preferabl~ to both of these algorithms for

.:mall. m 1 but binomial queues are fa.ster than unsorted linear lists,

on the average, for m 2: 18 at a cost of one more pointer per node. So

the bincmial queue is a very practical structure for mergeeble :p:-iul"ity

queues.

In BOlle applications the queue size mq ccmatu~ be in a nDCe

litlich causes the insertion IDi deleticm aperaticms em binclllial quewaa to

run more slav~ than our averaces indicate, due to the aoothed averap

ve COIIIplted. If the queue size can be anticipated then ~ el.....ta

added to the queue mi&ht actual..q speed up the a.J.&or:l.tlma. At the expense

of cOIIIpllcatiDg the ~tlmls it is also possible to uintaiD a queue as

two bincaial forests iD such a w.y that each inaerticm is guaruteed to

take oal.¥ ccmatmt time. Bllt the biDCIII:ial queue aJ.sori tbu as thq stand

still clca1nate &l.goritbma uaiDC l.ettist trees, enD it the l.ettiat tree

5~

operations have average-case rwm.ing times and the binomial queue

operations al~s take the worst-case t::.me. The tn1,y advantages which

can apparent~ be claimed for leftist trees is that they are easier to

implement and can take advent age of any tendency of insertions to follow

a stack discipline.

The comparison of binomial queues with heaps and sorted linear lists

is also interesting. 'lhe heap implementaticn stores pointers in the

heap, instead of the items themselves; this j s the usual approach when

the items are large and should not be moved. In this situation heal:)&

are sllgbt~ faster than binCIIIial queues on the average, &nd considerably

faster in the i.Orst case. Reaps also save one pointer per node, so it

seems that heaps are preferable to binomial queues when fast merging is

not required. Btnc.d.al queues have an advantaae llhen sequential

&llocat101l is a probl-, or pemaps vben arbitrary deletions mwst be

performed. SOrted linear liata are better than both methods llhen m

is 81118ll., but heepa are faster, Oil the average, when m 2: 30 •

55

average case running times wben IQI • m •

queue Insert(x,Q.) DeleteSmallest(Q) Insert (x, Q) ; DeleteSmallest(Q)

binomial. queue 39 22 lg m + 19 22 lg m + 58

leftist tree 17 lg m + 35 35 lg m - ';!? 52 lg m + 8

linear list 19 6m + 2 lg m + 20 6m + 2 lg m + 39

heap 32 l8lgm+l 18 lg m + 33

sorted list 3m + 17 15 ,3m + .)2

worst case running times when IQI • m •

queue Insert{x,Q) DeleteSmallest{Q) Insert(x, Q); De1etesmallest(Q)

binomial queue 21 lg m + 16 30 lg m + l66 51 lg. + 62

le:t'tist tree 32 lg ll + 23 64 lg m- 1 96J.gm+l6

linear list 19 9111+15 9111 + 34

ileap l2 lg m + 14 18lgm+16 :50 lg. + }0

sorted list 6m + 20 15 fim + 35

Figure 10. ec.pari son or methochl.

Chapter Tbree. The C~lexity of Priority ~eue Maintenance

The inherent comp~exi ty of sorting, selection, ancl related prcblemc

has been studied extensively [28). The caaplexity of inserting and deleting

items from a priority queue has not received such attention, possibly

because the individual operations take ccnstant time in certain eases.

Priority queues mq be used to perform sorting, however; hence it is clear

tnat there is some limit to the average efficiency of a sequence of priority

queue operatio.1s.

In section 3.1 of this chapter we develop a definition of priority que''''

efficiency, based on the average number of canpa.risons required to execute

a certain fixed :pattern of insertions and deletions. We evaluate some

lmown :p?iority queue algorithms 1n Secticn 3.2 to obt&in upper bounds on

the average anci "WOrst case behavior of priority queues. In section 3. 3 we

prove ~c-~r boWlds on the average and worst case efficiency; these bounds

are exact for inf'initely many queue sizes.

~e of the priority queue algorithms diacuaaed. in section 3.2, based

on binc.ial queues, hu a simple characterization which is proved in

Section 3.4: it is the ~ aJ.aoritblll which cc:apares only "unbeaten"

nodes (nodes which are ISIII&Uer than all. nodes in the queue with wbich

they have been cc.pareci) and llbieh takes a nu.ber ot c~sons independent

of the key value• inwl:nd. 'l'!le proot linn tor this result uses a ~ellllla

involv.lnc two extzoaal probleas Clll treea; w 8bow that Hutt.an' a CCIIIStruetion

(16;261 l'P• 402-~1 so~ves these probleu. !his is espeei~ interesting

since Idle probleu lie outside the large clcwiJ n tor which HU1'flllan tnea

were proved optimal in [~').

We C<ll'lcl.ude the ch.lg)ter with a discuasicz of po .. ible generalizations

and open prob~-· in Sect1CIIl '. 5.

57

3.1 A Setting for Priority 9Heue Camwlexity.

We shall investigate the complexity of priority queues in the

following context. Initially we are given a priority queue containing

m elements. We then perform an infinite number of cycles which consist

of first deleting the smallest element of the queue, and then inserting

a nev element into the queue. A t)'llical cycle of this infinite proces ..

is represented pictorially in Figure 1. (It b easy to imagine other

settings in which to study the complexity of .~riority queues, but we

defer discussion of this topic until Section 3.~.)

Our measure of the performance of a priorit~r queue will be based an

the number of comparisons made between keys during the above process.

Therefore we restrict our attention to priority queue methods which are

based entirely on the linear ordering 8IIIOllS keys. This means, ror example,

that none of our methods mfi¥ perform arithmetic on keys. We shall fUrther

assume that all keys are distinct, so that there are only two possible

outcomes from any comparison.

Note that beeauae ve make so few asauaptions about llhat goes on inside

""priority queue, it is posaible that the INIIIber of cCIIIp&l'isons used on

any particular cycle is zero. A deletion takes no ec.parisooa if tbe

Sll&ll.eat ela.ent is mown prior to tbe deletion, and Ml insertioo takes

no cc.pwisOG8 it the queue Just stores the inserted node vi thout lookins

at it. Dl order to cope with this sort of ..-ely, ve use as our measure

of coat tbe nu.ber or cc.parisCIUI per cycle averapd over infinitely~

cycles. More preeiael71 it a ..-tbod uses C(n,a) cc.parisons to perfol'll

n c;rcles OD a quwe ot size • 1 then ita liait coat per cycle is

n .. •

C(n,a)
D

We denote by Q(m) the ainiluD lild.t cost per cycle

58

~1ich suffices (in the worst case) to maintain a priority queue of size m •

We define Q(m) to be the minimum average limit cost per cycle, where

insertion into each of the m intervals bounded by the m-1 key values

in the queue is taken to be equally likely during each cycle.

Because we are averaging the number of comparisons over many cycles,

it is possible to make a further assumption about the internal structure

of our priority queues: we may assume that at the beginning of each cycle

the smallest element of the queue is known. This is a valid assumption

because it just amounts to charging the previous cycle for whatever

comparisons are required at the start of a cycle to determine the

smallest. Since we are averaging over infinitely many cycles this cannot

change the result.

'l'bis addi tiona! property allows us to make a slightly less abstract

interpretation of the situation. Tbe state of a priority queue at the

begiming of a cycle can be represented as a directed acyclic gr&ph,

where the ares indicate c0111parisons which have been made in the process

of maintain!.ns the queue. An arc leads frcm a node with key Ki to a

node vi th key Kj if the comparison Ki : Kj •• made and Ki < Kj was

the result. As indicated in Fipre 21 the graph bas a single source node,

containins th~, saalleat key, at the start of each cycle. Then this node

is reiiOVe.l rrc. a sraph, correapond:ins to deletiq the smallest eleaent

of the cpeue, and • nev node is added to the sraph. 'l'bis node is inserted

into tt .. '1'18ue by perfonnnc en~ co.pariaons (aM1ns directed arcs) to

apin detel'lline the -nest eleent (obtain a griiJb hav.lns a sinlle source).

59

G? =+ b,.a
DeleteSnallest mu.hest element

a priority queue
containins m elements

0 + &> ~ [?> t Insert
new element

l'igure 1. A priority pue cycle.

6o

(a) The start of a cycle (comparisons to be lost by deletion of smallest
are shown dashed).

(b) .Atter removal of the smallest node and introduction of the inserted
node (5).

(c) DlRrtion ca.plete {added C<lllparlaau are 8bOIID va~).

61

:5.2 Upper Bounds.

uPper bound on Q(m) are provided by the priority ~eue structures

described in Section 1.2. Hea1s and leftist trees ea~h require about

2 lg m comparisons, in the worst case, for a cycle on a ~eue of size m •

QUeues based on balanced trees also require at least c lg m comparisons

for some constant c > 1 , in the V.Jrst case. But some queue structures

reduce the coefficient of lg m to 1 •

one such structure is the sorted linear list. The smallest element

of such a list can be deleted using no comparisons; an insertion into a

list of (m-1) items requires at most r lg m 1 comparisons, using

binary search. It follows tnat Q(m) ~ f l.g ml • More detailed analysis

of binary search [28, P• l~) shows that the average number of co:nparisons

required is lg m + (1 + (i)- 2Q) where Q - r l.g ml - 1g m ; hence

- g Q
Q(m) !': lg m + (1 + g- 2) • The function (1 + Q- 2) is namep;ative and

has a maxilDum value of abc.ut o. o86l for Q in the range 0 ~ Q < 1 •

There is good reason to feel uneasy about these bo111ds, since llhen

this priority q11eue 18 1-.pleaeDtecl usin& sillple linked or sequential list

atructurea ita avence rwmiJII tiae for a ~le 11 O(a) • l'ortuaately

the1'e 11 a 110re lecitiaate structure llbich pvla exactly the aaae

cc.pariaOD bOWI!Ib u a aorted l1Dear 11.-t: tbe "lOIIer-oriented" tree

uaed for replac--t aelect1oa [28, p. 25']. UBilatl tbia structure, the

zomni IIC tiM for & C7Cle is proportion.U. to the DlalbU of CCIIpSI'iaODa

pertomecl.

A thin atructure 11bicb pna a sood upper bouad is a variant of

the bina.i.Gl. queue. the atiiii.Jard b1Dc:.1al. queqe aJ.aoritbu given 1D

Secticm 2.2 ca require about 2 1& • cc.pal'lsODa for DeleteSe•l J eat

it may take lg m to find the smallest, and l.g m to merge its

offspring back into the forest.. An Insert operation also requires

up to l.g m canparisons, so an entire cycle may take about 3 l.g m

comparisons.

To reduce the number of comparisons required by a binanial queue

cycle, add nodes containing the key +• to the queue, maJdng the queue

k size 2 where k • r l.g m 1 • Then at the start of a cycle the queue

consists of a sir.gle heap-ordered ~ tree, and the DeleteSmallest

operation requires no ccaparisons. T:.le follow:lnS Insert uses k

comparisons, so this method requires exact~ r 1& ml cc:aparisons per

cycle. 1his shows that Q(m) ~ ria ml ' giving the same bound 011 the

worst-case nuaber of ccapariaCDa per cycle u vas given by the sorted

linear list (or loser tree). Since this binalli.al queue algorithm

requires a fixed number of co.,parisODS per cycle, independent of key

values, it doea not live any better bound for Q(m) tbu ita bound for

Q(m) •

~.~ Lower Bounds.

One approach -t;o lowr bounds on the number of comparisons required

to maintain a priority queue is to analyze the possible internal states

of the queue at the start or each cycle. This is possible under certain

restrictions, as shown in the next section, but to get a general lower

bound seems to require a different sort or argument llbich takes advantage

of the long-term averaging present in our model.

It tums out to be quite easy to prove a sood lower bound on Q(m) •

~ppoae that a priority queue of size m requires C(n,m) comparisons,

on tb@ averase1 to perform n cycles. Tbe number of equally-likely

outcomes of these ~ycles is m0
1 since there are m equally-l1uly

relative sizes for each of the a keys inserted durins the cycles. So

by the same decision-tree argument used to prove lower bounds for sortins

[28, p. 194], the average number o£ comparisons required to determine

llhich outctae baa occurred is at least a 18m • But it is possible to

detel'lline this outca.e by obaervicg the outputs of the n queue cycles

ud aortiDS the m keys llhich reeain in the queue. Hence

so

n 1& a !: C(n,a) + O(a log a)

lga < 'ili
D .. •

C{n,a) + o(a loa a) • Q(m)
n

'lbia al80 ~·· ·that Q(•) ~ 18 • •

•

We c• ~n the reaulta o£ thia .ad the previous aecticm u

toUon.

Theorem 1. The functions Q(m) and Q(m) defined in section 3.1

satisi'y

lg m < Q(m) < flg ml and

lg m < Q(m) < lg m + (1 + Q - 2g) ,

where g. rl8 ml -l.g m • CJ

3. 4 A Characterization of Binomial QUeues.

'!be foregoing l'esults show that binomial queues ... e optimal wen

the queue size is a power of 2 • When the queue size is not a power

of 2 1 then d~ nodes can be added as described in Section ,.2 to make

binomial queues nearly optimal; in the rest of this section, we shall

use the term "binomial queue" to refer to such a structure.

We have seen that linear lists and loser trees also require lg m

k
comparisons per cycle when m • 2 , so binomial queues are not the only

opt:i.Inal structure for this problem. But neither linear lists nor loser

trees are the basis for a pract~cal priority queue algorithm. We have

alre&Qy noted that comparisons do not reflect the actual running time

of a priority queue using a sorted linear list; loser trees work wel.1.

for replacement selection but are awkward to use when the priority tp1eue

size may change with time. Our comparison model evidently does not capture

the factors which make a given priority queue scheme difficult to implement.

It seems extreaely dif'f'icult to evaluate the tl'lle complexity of data

structuri.ng probleu; the linking autaaa.ton [.~l.] appears to be a good

settinc for such questions, b11t few results bave been obtained for this

model.. A mre lillited approach, closer in spirit to t.he comparisCX'l-cOlXlting

IIOilel of c~exity, is to restrict our coosideration to algorithlla such

that. the Wlder~DI structures !!!!! be easy to illpl.~t.. SUppQae t.bat

the ~ eleMnts llbich-,.., participate in ccapariaona are those which

are not 1alo1m to be larser t.bu uy other el-.,t of tbe q\lfnle. In terms

of our directed &nPa descript.iOD of a prioritJ queue, aueb elelllerlta havE!

no entering edges; they are candidates for being the Sll&lleat eleeent iD

the queue. We call cc:eparis011a between such elaenta tree cO!Ill>!I11CDI1

66

since they preserve the property that the directed graph structure of the

queue is a tree. (It is not hard to see that a queue which makes a non-tree

,~omr!ll'ison can eventually have an internal structure which is not a tree.)

Since a tree is much easier to represent and operate on than an arbitrary

directed graph, this restriction m~ be a reasonable one.

We conjecture that binanial queues are uniquely optimal {in the sense

of)Jroviding the tightest upper bound on Q(m)) among all priority queue

algorithms which make only tree comparisons. The following result i~ a

weakened form of this conj'ecture.

Theorem 2. The only priority queue which makes only tree comparison::; and

which makes a number of comparisons per cycle depending only on the queue

size is the binomial queue.

~· We c:msider two aJ.&oritbms to be the same if their directed graph

structures are the same af'ter each comparison. Suppose that an aisorithm

makes k .. k(m) canparisons per cycle on a queue of size m • At the

start of each cycle the smallest element is known, so let the number of

edges leavi~ tb:ls node at the start of the 1-th cycle be d1 • '!'ben during

the i-th cyr;le the aicoritbiR lUSt determine which of d1+1 nodes (the d
1

which lost to the smallest, plus the inserted Dode) caotaina the llll&ll.est

key. By the restrictiao to tree c~iacoa tbis takes exactly 41
eomparisoos; bence d1 • k Cll1 every cycle. Tbu8 it auf'ficeL to ahov that

aey tree caaparison aJ.&orithll in lllbich the -.neat node (heoceforth called

the ~) has a t1xed INIIber k • k(a) of offsprins tor a queue of size m

---~- ,i.s the 8111111! as thtt binomal. qu.eue al.goritba.

We are therefore led to consider 14veraaries vbich atteii)Jt to aake the

degree or the root fiuctuate. It will be helpful to tirst consider tw

67

sil.'tpler adversaries: one which attempts to maximize the degree of the

root on a single cycle, and another which attempts to minimize it. Since

max is an increasing function of its arguments, a maximizing adversary

can do no better than to ma.ximize the degree of the node whi.cb is smaller

at each c~ariaon; similarly, the minimiziag adversary will minimize this

quantity. If the two unbeaten nodes to be caRpared have degrees d1 and

~ then the III&Jdll\lll. (lldniiUII.) resulting degree 1 s max (d1, ~)+ 1

(lllin(~,~)+l) • What strategy can the algorithm use to minimize the

degree of the root against a maximizing adversary, or maximize this

quantity against a mintmizing adversary?

It is useful to abstract this question into a problem on extended

binary trees: we are given a vector (wO'v1, ••• ,vk) of k+l :real-valued

weights, corresponding to the degrees of the k+l nodes to be ccapared,

and a f'Wlction t 111bich mq be max or min • For any binary tree having

k+l external nodes ve associate a real-valued ~ v.lth eacll node. 'J.'he

weights w1 uoe aa11ped u coats to the external nodes, and the costs of

internal node• are eallplted via the rule: it tbe tvo o:f'fspriq of & node

have c01t1 u 1114 T then tbe coat of the node is l+ t(u,v) • Hence tbe

co.t of aD iatei'Dal node is just the dqree of the node libich vina the

corre8p01l4in1 ec.pariscm ua4er the adversaries canaidered aboVe. We define

tbe coat ot tbe resultiDC billary tree to be the coat of tbe root, so our

pi'Oblea 18 to t1ncl a bi.DUT tree of minj •• cOlt vben t • .ax , or -.n..

colt 1111e t • ld.n • We. 8hall cal1 such trees opt~.

Qle ..tbod or CCII18tl'actiag an appropriately labeled bina:ey tree is to

u.e Hutftllal' 1 alaori tba [1.6]. 1he first step in th1a procedure is to select

the two ..Uelt wiabts trca tbe nctor (v01 v1,v2, •• ·••t> , aq v0

68

and w1 • Then solve the :problem for the k weights

(l + f(w0, w1), w2, ••• , wk) • Final~, replace the external node containing

l + f(wO' w1) with the binary tree

The tree 1dlich results from this :procedure is eall.ed a Huff'IDan tree.

Lemma 1. A Huff'IDan tree is optimal when f • max and men f • min •

Proof. (This :proof is simil.ar to the proof that Huffman trees have

minimum weighted external path length, given in [26, p. 4o3]; a different

proof for the ease f • max is given in [14].) We argue by induction

on k , the result being obvious when k • 0 • It is sufficient to shov

that when k > 0 , there is an optimal tree T in 'ldlich the two smallest

weights, sq w0 and w1 , are contained in external nodes vhich are

offspring of the s•e 1nte:o:4al node. To aee 1lb,y tbia ia enouab, f'int

note iilat by the induction hypothesis, the reduced probl• of fin4ins an

optiaal tree for the weiabts (l+ f(wO'w1),w2, ••• ,wk) is solved b;y

Hufflun' a aJ.&ori thm. Call the Hutf'IDan tree for the reduced probl• R ;

then the coat of R 1a not worse than the coat of T becawse a aol.ution

to the reduced probJ.t., llb!ch R aolvea optiM.l.q1 ia :lllbed4ecl :lA T •

But the tne a clitrera floc. the Hu1'tlun tree for the oriainal probl•

onl;y in the replac.._t of ane external node, wbich does not cheap the

cost of the root. Hence the ~ tree for the or:laiDal probl• 1&>

opt:laal.

69

A second observation is that the cost of a tree is actually determined

solely by the levels on which the weights w0,w1, ••• ,wk appear. The co.st

of the root is simply f(l 0 +YO, t 1 + w1 , ••• 1 tk + wk) where li is the

level on which weight w1 appears in an external node.

We sb&l.l prove that the two smallest weights, w0 and w1 , ~ both

appear on the deepest level in an optimal tree. Since there are at least

two external nodes at this level and weights on the same level can be

rearranged arbitrarily, this Will give the result. ~ose that w0

appears at level t0 and that YJ > Y0 appears at lt:vel 1 J > t
0

•

Consider the case f • III&X ; the eff'ect of' w0 and wj on the cost r

of the root is to guarantee that r ~ max(t0+Y0 , 'lwJ) • ttwJ • If

w0 and w J are exchanged, these nodes ~ force

r ?: max(I /wo, t 0+wj) < llwJ , so the switch can only reduce r •

In the cue f'. min , we have r ::::; min(t0+v0 , 1 j+w.j) • t 0+-w0 before

the switch, and r ~ min(lj+w0 , 10+wj) t 0+w0 &f'ter, so the exchange

can Clllly increase r • CJ

Uda& I.-a 1, ve can ematruct the more caa:,pl.icated adversuy needed

to estal>ll.th a .tronc restriction on tbe a:Lcori tblu which JUke a t1xed

number ot ca..parlaOfta per qcl.e.

~ 2. A neceaaarr condition for an aleori tba usins cnly tree

c~IOU to baft a tiucl clepoee k at tbe root at the start of each

cycle is tbat the Ol&t-cleane• or the offapnns of the root be k-l,k-2, ••• ,1,0

at tbe start ot each CJ'C].e.

!£!!2!• ~·· that tbe dep'eea or tbe root' a ottapring, listed in

clec:reutac or4.er, an ~-l''-2' ... ,~,do • We cle:t:I.Jle an edveraar:v lltlicb

70

causes the degree of the root to differ from k if the above degrees are

not k-1,k-2, ••• ,1,0. The strategy -~pends on the first left-to-right

discrepancy between the two sequences. SupJ>ose I is the largest index

such that d
1
~ t ; then there are two cases according to the relative

sizes of d
1

and l •

case 1. d
1
~ t • The adversary attempts to maximize the degree cf the

root. Since offspring with degrees k-l,k-2, ••• ,1+1, and d
1

> 1+1

are present, along with the inserted node of degree 0 , it is easy to

see by Lemma 1 that even when the algorithm uses an optimal strategy

against the maximizing adversary, the resulting degree is ::! k+l •

Case 2. d
1

< l • The adversary attempts to minimize the degree of the

root unless a premature comparison occurs; the 1-tb comparison is ;premature

if it involves dj where j > max(i-1, t) • Info~, this means that

to avoid a premature comparison, the algorithm must first perform a series

of 1+1 comparisons involving o~ the newly inserted el.ent of degree 0

and the t+l trees llhose roots have degrees ~ ~ ~ ~ ••• ~ d1 < I •

This reiUlts in a s1D&le tree llhicb is eO!IIp&l'ed with the root of degree

d
1
+1 • 1+1 the reault of this is the CQIII)&I'1ICi with the I'OOt of 4eaz'ee

d 1+2 • 1+2 , and so 011 1111t11 a aiDcle tree raa:lns.

If no pr..ture c~ariaCIIl occurs, thm by I.- 1 the tree wbich

results from the f'irst set of 1+1 caapar1a011s baa decree 5 1., ao the

f1Dal result baa decree ~ k-1 • If a p~ture CCJql&riacm occurs then

the adwrsaey chanpa to a •x1., z1DC strateg 011 that ~aCIIl and for

all thoae vbich follow. 111 arau-nt aiiiUar to the one u.sed 1n cue 1

Bbova that the resulting degree is then > ktl • 0

71

We can finally rrove the theorem. First no:..e that if the offspring

of the root have out-degrees k-l,k-2, ••• ,0, then compari~ons must

proceed as in the binomial queue algorithm in order to guarantee that

the root's degree remains at k • That is, the inserted node is canpared

to the degree 0 offspring, then this result is compared to the degree 1

offspring, and so on. This follows from LeDma 1 using either the

maximizing or minimizing adversary.

Nov order the offspring of each node in the directed graph structure

of the queue by their out-degrees, decreasing fran lert to right. Find

a stru.cture arising during the operation of the given priority queue

algorithm which differs from the binomial queue structure at some point,

such that this discrepancy is as shallow {close to the root} as possible.

The discrepancy can't occur at the root, and it can't occur at an offspring

of the root by Leilia& 2. If it occurs deeper in the tree, then one cycle

of the queue can move 1 t toward the root as shown (X is the subtree

containing the miaatch);

A

'l'bia cCDtndicts tbe uawlption that the diacrep.ncy was Bhallonst, and

cc.pletes the proof'. Cl

It aeeu quite ,.,11 Jre.q that an exhaust! ve an~ ~a!"' of this kind

can pi'Oft tbe coajecture atated above.

72

:3.5 Discussion.

Huffman trees were originally used to find an extended binary tree

solving the problem

The proof of LemDa l shows that Huff'lllan' s algori tbm also finds trees which

optimize

min max (li+wi)
l<i<n - -

and

max min (li+wi) •
1=s1~n

The first of these problems CUl be interpreted &8 a scheduling rroblem OD

n parallel processors: we have n jobs with runn1ng times v1,v2, ••• ,wn

whose results must be ccmbined pairvlse, at unit cost, before a final

answer is obtained. Huf'f'llan trees miniaize the time to cCIIpllte the f'inal

answer in this si tuatioo. Both probl.flll18 can be interpreted in tel'IIIS of a

circuit-desisn probl•: we have n devices with propagation del.qs

v1,v2, ••• ,vn whose outputs lll8t be cc:.bined pairv.lse, at unit del.q,

to pve a sinsle output.

prop~~~&tiOD delq; the other Nrlll~ zea tbe ld.n~ delq. The latter

property can be a1pif'icst if the circuit is part of a pipelille.

'l'bere are as aiiF possible aettinp tor priority quue CQIIPlexi 't7

as tbere are applications of priori't7 queues. !'be cme ct.os• here 11

si.Jiple,)"et s.-. repreaerrtatiw. An obYi<US ltfteraliZatiOD ia to allow

the Cflew! size to tl.uctuate in a rqular fuhion betwes two vide~-apaced.

values, auch as a •d ra/2 • ln this aituatiCil ov l.oller bound oo Q(a)

becomes lg m -lg(e/2) , and the upper bounds on Q(m) and Q(m) given

by sorted linear lists are again nearly tight. But the loser tree and

binomial queue structures used to prove upper bounds in the simpler

model do not apply in this situation, since they do not grow and shrink

gracefully. It would be interesting to find a structure which is nearly

optillal. in the more general model and can actually be implemented to run

in time proportional to the n'WDber of co!llparisons.

It is an open problem to improve upon the upper and lower bounds on

Q(m) or Q(m) when m is not a power of 2 • It would also be

interesting to prove results to the effect that ari tbmetic on keys cannot

help, in the worst case or on the average, wben the key space is large

caapared to the queue size; results o:f this kind have been shown for

selection problems [43;13]. Wben the key space is restricted to the

integers fro3l 1 to m and arithmetic on keys is allowed, thtm the

prioritJ queue operations can be implemented to run. in O(log le& m)

time [~).

our .J)strect stud¥ of prioritJ queues haa shown that binomial queues

of aize • • 2k are t. puticult.rly si.Jiple and efficient structure for

iapl..-ntin& t.ltemating inaert1Dils aDd deletions, oJuch as occur in

replac..at aelect10ft. When a ia not a power ot 2 , tevar than 11 •

~ nodes aut be lidded to aUe the quwe behave aa such, since the

alaoritllu never look below a node ccmtainiDB an infinitely larae lur,y.

Hence blac.ill Q.lMIW'!B ..,-be a uaef\11 altemative to loser trees for

repleceMDt aelectiaa.

References

[1] Alfred v. Aho, John E. Hopcroft, and Jeffrey D. tn.lman, The Design
and Ana1ysis of Computer Algorithms, Addison-Wesley, Reading, Mass.
(1974).

[2) J. N. Buxton, ed., Simulation Progr8JIIIIing Languages, North-Holland,
Amsterdam (1968).

nJ David Cheriton and Robert Endre Tarjan, "Finding Minimum Spanning
Trees," SIAM Journal on CaJr,puting 5, 4 (December 1976), 724-742.

[41 Clark Allan Crane, "Li.near Lists and Priority Queues as Balanced
Binary Trees," Ph.D. Thesis, Computer Science Department, Stanford
university, STAN-cs-12-259, February 1972.

[5] Ole-Johan Dahl and Kristen Nygaard, "SIMULA - M ALGOL-Based
Simulation Language," £=.le! 91 9 (1966) 1 671-678.

[6) Hubert Delange, "Sur la Fcmction Sanmatoire de 1a Fonction
((Sanme des Cbiffres))," L' Ehseignement Math. 21, 1 {1975), 31-47.

[7] Persi Diaconis, "Examples in the Theory of Infinite Iteration of
Summa.bili ty Methods, " stanford lh1 versi ty Department of Statistics
Technical Report No. 86, May 1976.

[8] Michael J. Fischer, "Efficiency of Equivalence Algorithms," in
Ra1mcmd E. Miller and James w. 'l'hatcher, ed.s., CO!!Ipl.exity of CC!!:RUter
CC!!putations, Plenum Press, New York (1972).

[9] Bobert w. Floyd, "Algorithm 245: Treesort 31 " £:.,g 7, l2
(December 1964), 701.

[10] B. L. Fox, "Accelerating List Processiq in Discrete Prosr
:!:.e 17, 2 (~r11 1970), 383-384.

(11] Edw.rd H. Friend, "Sortiq on Electronic Cc.puter Systau," ~ 31

(1956), 134-168.
[12) Frank haaeneger and Harold N. Gabow, "UaiDs Cc.parison 'frees to

Derive Lower Bo\11da on Sel.ection Prob1-.," Proe. 17th Annual D·
on FoypdatiODa or C<lSJ\lter Science, Houston, !aU, 1976, 178-1.82.

[13) c. R. Gl.&aaq and R. M. l'arp, "<:m the Opt:laallty ot Hutflllan f'l'eea,"
SIAM J. APl!l. Math. 'l (1976), 368-378.

[14] Martin c. Gol.ulllbic, "Ccabinatorial ~" IEEE Traa.HctiCIDa 011

ceeputers, C-25 (Itonllber 1976), 1161J-ll.67.

75

[l5) G. Gordon, "A General-Purpose Systems Simulator," IBM Systems

Jl·umal 1, September 1962, 18-32. -- .
{16] Dtvid A. Huffman, "A Method for the Constructjon of Minimum

Rtdundancy Codes," Proc. IRE 40 (1951), 1098-1101.

(17} Kenneth E. Iverson, A Programming Languye, John Wiley, New York

(1962), 223-227.

[18] Ellis L. Johnson, "~ Shortest Paths and Sorting," Proc. 25th Annual.

Ccnference of the ACM, 1972, 510-517.

[19] Donald B. Jolmaon, "Priority Queues with Update and Finding Mir.imum

Spanning Trees," Information Processiug Letters 4, 3 (December 1975) 1

53-57.
{20} Donald B. Jobnson, "Efficient Algorithms for Shortest Paths in Sparse

Netwrks," J.ACM 24, 1 (Jana.ury 1977), 1-13.

[21] J,J:ne Jonassen and Ole-Johan !ah1, "Analysis of an AJ.aorithm for

Priority Qpeue Administration," !II l5 (1975), 4o9-422.

[22] Arne Jonassen and OJ.e-Joban Dahl, "AJl~sis of an AJ.8oritbm for

Priority Qlleue Administration," Math. Inst., l.hiv. of Oslo (1975).

(23 1 A.me T. Jonassen and Donald E. Knuth, "A Trivial Alsoritbm Whose

.AD&lysis Isn't," submitted tor publication.

[24] A. Kerschenb&Uil and R. Van Sl¥ke, "CCII'lputing Minimum Spanning Trees

Uficient~," Proc. 25th Almual ConfE:rence of the 9 1972, 518-527.

[25] Guy D. ICDott, "Deletion in Binary Storaae Trees," Fh.D. Thesis,

Caaputer Scicce Department, Stanro:nt thiversity, STAH-CS-75-11.91,

- 1975, 93 pp.
[26) Dcm&ld E. Dluth, 'l'be .vt ot COS!uter Prolra•1DII Vol. 11 Plmdaunental

Alloritbaa• Mdison-Weal.ey, Reeding, Mus. (1973).

[27) s-1 m.,rical

(28] Dollald 1. Dluth, !be Art ot CQ!J!Uter Prop'e:ln1.r Vol. 3, Sort1D&

e4 Se!rchi!!lt Md.iaon-Weal.eJ, Reed1nc, -.... (1973).

(29) DcDa'ld E. lblth, "Deleticml that Preserve Billldmmess," Caaputel'

Sc1•ce ~t, stutol'd Uliverai't7.r STAN.Cs-76-584, n·.cellber 1CJ76.

(30) Dcm&14 E. Daltb aD4 Jollft L. Mclleley, "SOL - A s,.bolic LaDpap tor

aeeral Purpose STateu SiJmlat:l.on, " IEEE TnDsactiona OD Ccsuters

~-13. 4 (1~), 4o1-lt08.

[32]

v
A. N. Ko:IJIIogorov and v. A. Uspenskii, "K oprede1eniio algoritma,"
[On the Definition of Algorithms], Uspekhi Mat. Nault. 13, 4 (1958),
3-28. English Translation in Amer. teth. Soc. Transl. II Vol. 29
(1963), 217-245.
Derrick H. Lehmer, "The Machine Tools of Canbinatorics," in
Edwin F. Bechenbach, ed. 1 Applied Canbinatorial Mathematics,
John Wiley, New York (1964).

[33] M. A. Malcolm and R. B. Simpson, "Local Versus Globa.L Strategies
for Adaptive Quadrature, 11 ACM Transactions in Math. Sof'twa.re, 1, 2
(June 1975), 130-146.

(34] H. Markowitz, B. Hausner, and H. Karr, SIMSCRIPT, A Simulation
Programming Language, Prentice-Hall, Englewood Cliffs, N. J. (1963).

[35] M. D. Mcilroy, "The Number of 1 's in Binary Integers: Bounds and
Extremal Properties, 11 SIAM Journal on Computing 3, 4 (December 1974),
255-261.

[36] Eugenio)brreale, 11Canputational Complexity of Partitioned List
Algoritllas," IEEE Transactions C-19 (May 1970) 1 421-428.

U7] Thanas Porter and Istvan Simon, "Random Insertion into a Priority
Queue Structure," IEEE Tran:osactiODs SE-1 (September 1975), 292-298.

[58) Ralph A. Rabd., "The First Digit Problem, 11 Amer. Math. Monthly 83,
7 (1976), 521-538.

[39) Iqle Ramshav, personal cc.aunication.
[Ito) P. van Emde Boas, "Preserving Order in a Forest in Less Than

Lopritbldc Tille," Proc. 16th .Annual Sm• on Foundations of
CC!I[JJUter Science, Berkeley, Calif. 1975, 75-84.

[41) Jean G. Vaucber and Pierre Duval, "A Ccmparisan of Simulation Event
List I.J.aoritbu," ~ 18 (1975), 223-~o.

[~] Jelll VUill.U, "A Data structure for Mlmipulating Priority ~eues, "
£:,S (to appear).

[43] llld1'ev c.-c. Yao, "at the ec.pl.exity of Cc:lmparism Probl.eu UsiDa
LiDear Pmletions," Proc. 16th Almual SZ!p. on Foundations of
CC!!p9ter Science, Berke1ey, Calif., 1975, 85-89.

17

Appendix. Priority Queue Implementations

1. SAIL Implementations.

1.1 Binomial QJeue using Structure R.

COMMENT Priority queue routinE's using structure R for binoa.'al trees.

Notes
1)
2l
3)

on the sub~ct of ~.AJL u~ttd here:
• •• • i r. th£' t'KChan~te oprrator.
'[1(11·£ "bn'" cause!i the loop on block naMed •bn•
RECORO_POINlER paraMeters are passed by ... alue.

About pro~tram111ing style:

to be e~e i ted.

Th£·stt rout inc~ are not intended toile an easiJ intoducticn to bino•ial queues.
lnr,tparl tt•PY are Meant to ''e a guide to efficient iMpleuntatlon of bin(oMial
queuE' c•pE·rations, as adoht be- accoMplished in asseMbly language. Thi!'. m-:·.:rns
th.:~t in tht>~e procedures a large aMount of state is kept :111pl icitly in the·
fle>11 cof cc•ntrc>l, rathl·r tto.'ln in progra• variable!-. I.Je have not attE>IIIptt-d
to pE·rfor·• other opti~d::ations, such as the assignMent of regiGters. o;ince
tlwr.(' can be pt'rforMcd without a global understanding of the algoriU''""'·

About Mnt.>Monics:
I dent i f i cr na111es are • n t t'ndt'd to convey Meaning when poeel b I e, but howe
also bf·c>n kf'l>t reason<•bly £-hort. NaMes are generally a concatenation of
short t<tgs l-lhich are abbreviation• of sOMething Maningfula Rt for root,
Nxt for next, etc. Capital izat ioro ie ueed to del i•i t the tags. eo "the
neu ritlhtMOst root• it> written newRtiiRt. Happy reacUngh

BEGIN •aino•iaiOueue"
REQUIRE "II o• DELIMITERS;

RECORO_CLASS Node
fRECORO_POINTERfNode) ISibl ing!. IChild!a INTEGER ICey!·)a

C£1'ftN1 Abbrevi•tiona for Node f ieldau
OEFH£ ISibl ing • INodez ISibl ing!la
DEFJPE !Child • INodeaiChi ld!l;
~FINE: Kett • INoderiCey!t 1

RECOAO_Ct.A~S Ou.ueHeader fREC(R)_POINlER(Node) left~~HtRoota INTEGER Sizeh

Ek.-u.EAN motE(Ul[IDJCINTEGER il z
RETURN f i l Atll U :

78

PROCEOI.IRl lns{'rt (R[C(ft()_POINTERINode) XI REo:Rl_POINTER(QueueHeaderl OJ; BEGIN "lm.crt"
JilCUHll POl NlER CNode) r tiiiRt, n~«tRt1
INTEGfil s:
s .. OucucHe<tcler 1 S i ze [Q) 1
IF s "' 8 lH£ N r tiiiRt .. IS i b I ing lr.ueueHeaderrl e ft•ostRoot [(]) h
I Chi I rl be) .. tU I . RfCORO;
IF [l(lfJisl H-ILN BlGIN

"lhc r i{lhhtost trre in q consists of a single node; Merge it into IC, IThe Merge nf 110' & i r. ·trl'ated specially to eliMinate a test froM the inner locop. I"
n~etHt .. ISibl incdrtiiiRt]:
H K nu [IC) :> Kr~,4 .,,. tllfltl HI[N IC .. r tiiRt;
ICid lil!lc) .. rtMRt:
ISiiJI inq(rtmfH) .. rtMRt;
lolllllf TRll[00 BEGIN "ttergeloop"

- \lltRt .. mctRt; II .. en;
IF -.(J((I(~l H£N [l(lt£ "Mergeloop"1
"The rightM~st trpe r••aining is th~ saMe size as x1 •erge It into ~e." nxtRt .. ISihling(rtiiiRtll
IF K•~dxl > Key(rtiiiRtJ H£N x .. rtlllfH1
IS i 1J I i n~dr tiiiAtl .. IS ibl i ng (I Child (x]] 1
IS i IJ I i ~;[I Ch i I d (IC)) .. r t 11ft t 1
IChi ld[IC) .. rtiiiRt

ENO ''11('r gE-l oop •
El\0:
IF s ~ e T~ICN &GIN

"The entire forest has been •err~d into x. (The foreat size Is a power of tuo.J" ISibl inghc) .. XI
Oueu~Headerlleft•ostRootiOJ .. 1e

EPLI
ELSE BFGIN

"SoMe of the original forest re••ins1 x is the rlght~st root in the neu forest.• IS ib I i nq IQueueHeadera leftiiOetRootiQJJ .. Ml
ISibl in;d)(J .. rtiiRt

ENO: .
OueucH£'.:tdcr:SizelOl ... OueueHMderiSizelQJ + l;

ENO "Insert•;

79

AE rora1 f'ti!NlUHNoch•l PR(ICHJllnE 0f~leteSMalle&t tRECORO_POINTEfHOueueHeaded O»;

EIU.J N "I I•· I e t<·c;m.:t I I e"'t"
fi[COI~[I I'OINTUHNoctel I fliRt, r tMRt, sMallest, pred, succ, s•allestPred, rh.Chi ld,

nnrH tnrn t, ~~~ gl rC'I:', met l n.·c:
INH •·II! ~ .• &t.•.=tlle!>tKtoq:
I fmfit • Uucuellcaclt'r: l~ftMostRoot (QJ; rtiiRt .. ISibl ing(lfiiRt)a

s • fJ, u·u£>He.:~der: S i O:E' ((JI :

If I f n~r: t "' r h•nt TllfN BfGI N "There i r. on I y one trre in the forest. •
"lktwn the rc•<"•t. at1d Miii<P the ne11 for•st froM its sont."
!-ntZtl I•" t •· I fu1llt;
(Jqr "'"'l'.:tdl•t·: lef ttnostRoot !Ul .. I Child I I htRtl

fN[t "It c· i~ conl4 cuw trt:c i11 the fo•·est."
ELSl [\lt.)N "lhe1·e· are t~o c•r m(lre trees in the fore!it. •

"~·r·,·u <11 lc•r the nodt: cc•ntaining the &~tal le!'.t key in the queue. •
~

l~·it:d rnulltnrRtl •· NULL mr:ORo: "tlark the leftMost node to atop scarc.h."

!-r,;d IP,.'tK('•J ... ke-yll f!IIRtl; j)red .. I fliRt; succ .. rtwh;
[lU BIGIN

IF ~.nrCIIIN.tKetJ ~ 1Ce1,1l~uccl THEN BEGIN
~~~tallf'~·tKe~l .. Kt-yl~ur.cl; s111allestPred .. pred ENJ; 

1•r l'" • 5ucc: succ ... lSibl iny[succl 
FN£1 urn IL !-ucc .. NULL_REcORtl: 
!-t•r.:tll•:~.t .. ISibl ingls11allestf-'rectl; 
If !.ru:~llc~t • NULL_RECORO TII[N OCGIN "The rightMost root is &Mal lest. • 

!-r•t-11 h·~.t • r·ti!Rt; 
H OII{JI s) THEN 

"lhp rinhtMost tree is a sing node; just reMOve it fro• the forest.• 

1~-.iblencdlfii!Atl .. ISiblinglsMatlestl 
fl SE NGIN 

"lht> sons of t.'1£. r iaht•ost root beco•e the ••al lest treea in the new foreat. • 

I Si IJI i n{l (I fMRtl .. lSi bl ing II Child ls•allestl J' 
ISibl inoliChi ld(s•allestJJ .. ISibl ingls•allestJ 

EN[l 
t:Nll "JI-," r icahtMost root i!> smallest. • 
El S( BU;fN "A root other than the right•ost is s•allast. • 

"TI"' tn·r· containing thi!' root Must be rerlaced. A replaceMent treo i• for~~ecl 

, .. _. mt·t·9intt thE' right•Mt tree in the forest with the ehi ldren of the rc•oved 

n•(>t Chi ldre;1 1.1hich <tre s•all~ in size than the r igt\haost tree bec:o-e the 

!·lll~ll I ['~.t trees in the ncH forest. • · 

rtu.C:hi lrl .. ISibl inCJ[IChi lclls•allestlJ: 
ISibl inn( !Chi ld(sMallestl l .. N..l.l_RECORO; •nark leftMOst child \o stop scan." 

IF .-«l[ltr.t Tt£N BEGIN 
"lt•" quP.ue • ize '-!as evPn before the de I et ion. to SOlie chi I dr'en of the 
reMov~d root will Move up to becOMe the e•alleat tr .. a in the new foreet. 
Sran thr-ough the children until wglree, the on& which will ~~erge with 
tht- rinht•ost tree in the forest. is reached.• 

nniHMF!t .. rt.Chi ld1 
~· ... s/2: 
IJI-IILE ...QllHst 00 BEGIN 

rt.Child .. 1Siblinq(rh£hild]; 1 .. 112 Et.O& 
111r9l r Cl' ,_ IS I bl inglr t.Ch i I d) t 
I~ &Mallestf'red • rhrRt 11-EN 

•the treo to the r·ight of the reMOved root i• the rightMOst tree, and thue 

ui I I be consUMed in btJi lding the replaee~~ent tree. So tne replae;e .. nt•e 

predecessor "'iII be the left•oet child which MYel up. • 
~MallestPred ... rt.Child 

U.Sf. 
•link the children i~to the right of the forest no~. since their !Sibling 

i~ not the rrplacc•en' and is therefore t~.· 
1Sibling(rh£hild) .. ISibllng(rtiiRtl 

8o 



[NU 
ElSE BEGIN 

"The queue size is odd, so all children of the reMoved root ~ill be used 
to Make the replaceMent.• 

newRtMRt ~ ISiblinglrtMRtJ; 
IF e111allestPred • rtMRt H£N 

"The rt>placeMent tree wi II be the rightMost tree in the ne~• forest: hence 
neuRtiiAt and s•allestPred cannot be given true values nou. Flag 
thi !I with &Malle!tPrttd • Nll.l_RECORO." 

!.mallcstF"rt'd •· N.JLL_RECORO: 
.''Pf.•rfor m tlrt> first Merge. The Merge of 88'• ia handled specially in order 
rt-n~ove a tt>'!:ot froM the inner loop, • 

IW{tlrcc .. ISibl inglrt111Chi ld): 
If Kt·~j(rtlotRtl :> Kr 'JlrhtChi I d) THEN rtiiiAt .. rt.Chi ld: 
IChi ld(rtiiAtl .. rt.Chi ld; 
ISibl ing[rh.Chi I d) .. rh.Chi ld 

EM'l; 
"CoMplete the Merge." 
IJHILE 11rglree " NULL __ RECORO 00 BEGIN 

mdlrt>t> .. I Sib I inglMrglreel; 
If Ke~t lr tMRt J > KeylMrgT reel TI£N r tiiAt .. Mrglree: 
ISibl inglt1tr9Treel .. ISibllngliChi ldlrhrRtlJ 1 
ISibl inr•[ IChi ldlrtiiRtJJ .. Mrglree: 
IC'1i ldlrtMRtl .. Mrglree: 
~' ~Tr~c .. nxtTree: 

EN(I;. 

•J t reMains to fi,. up so•e linka between roots in the forestt 1) ISibl ing I ink 
froM I e f t•ost root to r i ghtMOet root. 2t- I Sib I i ng I i f'lk froM rep I areMent tree 
te> the ne~et larger tree, and 31 ISibl ing link to replaceMent tree froM the 
nc)(t :;ataller tree. Many for•• of degeneracy a.-e poeaible •• , • 

IF uallest • lf.Rt U£NBEGIN 
''l hl' ll'ftMost tree was rep It ~ed. eo I ink fr011 header IIUtt be f i wed." 
Out'uelleaderaleftiiOstRoot (Q) ~ rtllfH: 
I r !.'-lila I I e!i tPred .. ttll_RECORCi TI£N 

"Til€' rer1lace•ent tree is tht only tree in the forestt 1), 2t. and J) are 
i cl<:n t i c a I • • 

15ibl inq[rtMRtJ .. rtiiiRt 
E:LSE BfGIN 

"Th£·r·e is another tree in the forest, beaiclee the replaceuntt 1) and 2) 
arf' identical,• 

ISibling[rt.Rtl ~ newRtMRt: 
ISibling[ .. allestPredJ ~ rtiiRt 

fOO 
ENO 
ELSE BEGIN 

"there Is a tree larger than the replace~~ent. eo 2t can be filled in now." 
ISibl ing(rtiiiRtl .. ISibl ing(sullesth 
IF s•alle9tPred • N.U_RECIJIJ TI£N 

•there ie no tree s•aller than the replec...,.ta 1J and 3t •• identical. • 
ISibling(lfiiRtl • rtiiRt 

&itSE BfGIN 
"the nondegenerate easea 1) • 2t. and 3) ... dlstlnc:t. • 
ISiblingllfiiRtJ • newRtMRt1 
JSibll~l ... llettPredl • ~tiiiRt 

E~ 
ENJ 

ENO "A root other ·than the rlghtMOtt Ia ... lleet.• 
lND •n,ere are two or 110re trHa in the foreat. •a 
ilut'Uf'tlcoade>riSizelOJ .. Oueuclie...,.tSize(Ql - h 
ISibl irt(J(&MallntJ • IChlld( ... lleetl • tl.~-~-f£CCRh 
RETlRHuallnU 

END •OrleteS.allest•a 



f'HO(EIIllf-:1 Ulli(•n fHLCOflD_POINTERIQueuefleaderl T, Ql; 
£1[G IN "ll11 ion" 

RF[(lfl[l POINTfR!Noclet ARRAV SkU :31; 
INllr.f.f! i 1 
COMfi(NT £\k. i!. 3 !otaclr. of Bk trees ~•hich it. accUtllulated for each stage of 

tltr• ";ulrlitir>n". "Carries" are prDP09ated through Bklll. The intf!ger j 

i,. tit£· star:k point£Or, i,(',, i! is the nuMber of tree! in the stack.: 
R£rnr:[l POINTUl (Nn!IC>I r T, rO, rf, dUinMy; 
CnllllfNI ,r l•<~ints to th£> laq1e$t tree in the result forest uhic.h ha~ been 

qr II{' I a I ed.: 
INlrf.fli ~-1, ~.iJ; 
!-1 •· (Jttr•ou.llh'uh;•r:Si;;:e{TJ; 
!-0 •- (JIIe•.lt•ll>.•.:ldf!'r: S i ;:e lOh 
dummq • Nr l.l __ k( CORD !Node): 
i ... {I; 

IF s1"0 lHFN rT ~ ISibl ing!OueueHeader: lf.'fth•ostUoot lTll; 
If s0"0 TH£N rD .. ISibl ing[OueueHeadcr: lt'f t111ostHoot [QJ l t 
rF <- duMMy; 

"ltoc- bin.:-ery addition algorithM." 

"The £•0 tr·er:'s ar·e handled spt'ciallu to re111ove tests fro• the inneor loop." 
IF Dri!J(~.l I TllfN BrGIN 

i • i-tl; llk(i) .. rl; rl .. ISibling[rTJ ENl; 
IF £l[IUI!:.Ql TII(N O£.GIN 

i • i+l: Rt<.lil • rO: rO ~ ISibling(rQ) END; 
If i , 1 UllN BtGIN 

IStbl in~tlrrJ • [\ldlJ: rF .. BtdlJ; .. 9 (ttl; 
IF i ~ ::' HffN UfGIN 

If Kt•q lllk U l l > Key !Btd2J I THEN Bk U J .. Elk (21; 
I fh i I cllllk (1 l1 .. Ellr, [2J ; 
I~. i I) I i 11(1 Ullc. [21 J .. Bk [21 ; 
j .. 1 . 

EN[l; 
~T ~ $TI2: ~a .. ~a/2; 
•The gEneral step." 
IJHILE I!.T " 9) '-' I~Q " 91 00 BEGIN 

I f Oll[t (!. Tl HI U BEGIN 
i .. i+l: llk{i) ~ rl: rl .. ISibling(rl) ENl1 

IF OfiOfsQI r·-::• BEGIN 
i •- i-tl; clldiJ .. rO: rO .. ISibl inglrQl ENl; 

IF fi .- 11 v li • 3) UEN BEGIN 
ISibl incllr1'j .. Bkli); rf .. Bklil; i .. i-1 ENl; 

If i ~ l t ... N &GIN 
IF ke\1 (Bk l1 l J > Kt>y lBk l2J J Tt£N 8k U l .. Bk (2) 1 
IS ib I ing lf\k 12)) .. ISiblingliChi ld(Bir [1)) h 
lSi bl inq [I Chi ld(Bk Ull l .. 811.121, 
IChildiOkllll .. Bkl2la 
i .. 1 

ENO: 
~T .. sT/2; sO .. .0/2 

ENJ: 
•Handle a cat·ru off the end, if present. • 
IF i • 1 HEN NGIN 

ISiblin{llrF) • BltUl: rF .. ~lll ENJ; 

"lin6<. the reo!:iult into 0, and clear out T.• 

lSi bl i ng lrF) .. IS i bl in~ (duMIII\fl; 
"At thit. point thr dui111Y n..:•de can be e~epl ici t.IY deal located to eave GC• •·" 
0\J('llf·llf·.:lder t I" f t•oetRt~o tlOJ ~ rf; 
Oueut·ll~.:•deraSi -=~ lOJ ~ lluf.'ueUe.:.~cSi ze tTl + au.u..teaderaSizelQh 
0Ul'uclk()(l(·r: left•ostRootlll .. tU..L_RECOFOa 
Oueuef-ll·.:ttk>r:Sizelll .. 8; 

EM:J "Union"; 



1.2 Binomial r;eeue using Structure K. 

COMMENT Priority queue routines using structure K for binoMial trees. 

Notes 
1 ) 
21 
3) 

''" the· SLibt;c t of SAil used here: 
'••' is thE' e~oechanpe Ollt'rator. 
•nnr·E "tm"' causet; the loop on block naMed "bn" 
k~r.Ofm_POINTER paraMeters are passed by value. 

About ~lr09r.:11111ing style: 

to be exited. 

lhE'sP. r(ult inc·!; are not intended to be an easy intoduction to binomial q•Jt>ues. 
lr•ste.-d the!J are Meant to be a guide to efficient i~~pleMentatioro of binon1ial 
qucue opf'r at ions, as • i gh t be acc011p I i shed in asseMb I y I anguage. 1 his nu•ans 
that in the-;e procedures a large aMount of state is kept iMplicitly in thf;.l 
flow of control, rather than in prograM variables. We have not atteMpted 
to p£>rforll oth~r optiMizations. such as the assignMent of registers, since 
tt.e!le can bP perforMed without a glObal understanding of the algorIthMs. 

About Mnr.Monics: 
I dent i f i E'r- nitiiC ~ ar-e intended to convey Meaning when pose i b I e, but have 
ai!·O b£'•.'r krpt rcasonabl\f ~·hort. NaMee are generillly a concateni'tion of 
short t.1~•s llhich are aboreviat ions of sOMething •eaning:'ul: Rt for- root, 
Nxt f01· m.•xt. etc. Capitalization is used to deliMit the tags, so "the 
new r inhtllloGt root• ie written newRtiiiAt. Happv reading•: 

BEGIN "BinoMiaiQur.u~· 
REDUIRf "II<>" DELIMITERS& 

RECORO_CLASS NC1dc 
fRfCORO_POJNTERfANV_Q ASS I ISibllng!a FECCRI_POINTERfNodel IChll d! & INTEGER Key !I 1 

C()ti'ENT The ISibl ing! field is declared ANY_CLASS beCIUte it IIUSt refer to records 
of cl:~r.s Oue•.JeHeader as well as class Node. SAIL does not handle for~ard 
RECORt• __ CLASS declarations correctluo~ · 

CCft1ENT Abbreviations for Node fieldell 
DEFINE ISibl ing • INodeaiSibl ing!t 1 
OEFit£ IChi ld • INodeaiChlld!l 1 
OEF UF Key • INodeaiCewtl 1 

RECORD_ CLASS Out'ueHeadei-
IRECORO_POINlERfNodel ISibl ing!, !Child!& INTEGER Slzeta 

Ccri"ENT It is eM1ent ial that !Sibling! have the •.-e offset In both NOO. Ctnd 
Ou.uPUe.~fler, !iince the condition ISibling! • tll.L_RECOIJ is wNt distinguish~"! 
header nodes frltll other•. In SOlie provr-lng l~ngUeges (e.g. Si~~t~lal tht'r~ are 
f•clll tie~. fo•· t~eoclarlng such rntrletlone e..plic;ltly.a 

8(){1EAN rnOCEWlE (D)(JNTEGER II 1 
RETLRU i LAKI 1 I: 



PHOIFilllfil ln!.rrt IFU:CORll POINTE.AINodeJ ~e; RECORO_POINTERIQue~eaderl Ql; 
BlGIN "J,.~.r·r t" -

RECQfl(), F'OJNTrRINCldeJ rtiiiAt, nl(tRh 
lNlH;rf! ~·: 
s • Uu• ·•r..:•tfe.Jcl~;>r: Size [Q) ; 
r t nrrl t • Oucut·Hc3cler: I Chi I d! lOla 

IChi ltf[,.J .. NULL_RI:.COF:O: 
If (1[1[1(~.1 HlfN OCGIN 

"llo<:· r i (thtllrc•[· t tree in 0 consists of a r. i ng le nodeJ Merge it Into x, (1 he Merge 
cof lin's i~ treated specially to eliMinate a test fro• the inner loo1>.l" 

:-t><Hlt • ISibl inq(rt~riHI: 
If K• q[)(J > Kt!qlrtarf:t) lHEN 1C .. rhrRt: 
IChi lti()(J • rtMRh 
Willi f TUllf 00 EI£GIN "tkr nf'l.oop" 

1 trullt • mctHt: s • '>1:': 
II -.CiliU I d HllN DONE "ll('qtcloop" J 
"Tlo• ,. i~ahtmost tnl! rt·r.r.lining is the saMe size as IJIII Merge it into ,., " 
11>< Hit .... IS ib I inu (r hrHtJ: 
II KC'q(,.J ,. KNt.(rtlllfltJ TII[N x .. rtMRtr 
ISibl inq(IChi I~J[rtiiRtlJ .. IChild[lc); 
ISihl in.-tiiChi ld(MlJ •· rhrflt1 
llhi ldi~J .. rtMRt 

E IJ[I "lk r ~trl. C. Oil" : 
~~~ihl inrtliCtti ld[,.)) ~ Q 

END: •
aur·tJ~·Hr .'tdt-1' : I r hi I d I [Q) .. IC:

IF' ~' " 0 HIEN
"llw l'ntir(' fon~st has b£'cn •erged into ~e, (The forest size is a po~•er of tr..ro.)"
ISild in11()() .. Q

ELSl Bll~IN
"Son1(' of tht' original forest re•ains; IC ia the right110st root in the ne~• forest."
ISiltl inl1hcl .. rtiiRt;
ISihl int1liChi ld(rhlltll • 1e

E'NO: •
Oueu~H(•.'ldf'r r S i ze (QJ .. QueueHeadet" r S i ze(Q) + h

END '' I nst'r t " 1

R£.COR[lJ'tliNT£rHNoclc) rRrCEOURE OcleteS•al'est fRECORO_POINTERf0ucut+l(·,1d,.d 01;
NGJN "[lo·lct~~Malle~t"

Hf.COHll. f'OI N iiA I Node) r th;'lt, r-., .. ; i 11Sl, p, r h.Chi ld, r ightRtT, newRt11Rt, mqll ree,
met lr-t'c;

I NTt- (;Ff(r.. !oUI3 I I f.'S tiCett;
r t mH t • Ot rcuf'He::tder : I Chi I d! (Q] l e .. OueueHeader: Size (QJ ;

"SE><u-ch f(lr thE' node c.ontaining the sMallest key in the queue,"

s111allr".t • r tllfH; SM;JllestKe~ .. Keyla•allesth
p .. lSi hi in9!!.1113lle!I\J: ·
~-IILE 15ibl innh>l " Nlll_RfCORO 00 BEGIN

lf s111al !c~.tKqt > ICe\1IPI THEN BEGIN
f<M;llll">l .. p: &Mallestl(ey .. ICey[sMallestl Etll;

p .. ISihl in~"pl
ENO:

"Mer{l'-' the olf!<pring Clf the s111allest node with the righh1ost tree in the
ft.wcr.t, unit,~·!· the rightMost tree contained the sllalle.st."

rt..Child • IChildls11allcstl:
IF rtmChilrt ""NULl. RfCORD THEN BEGIN "e•allest ie.a 88."

"Tht~ cit> let ion can be CoMpleted now."
Jr t 1 TIIIN

0. l"cl('Hc· .,d,.r·: I Chi I c1! IQl .. Nlt.L_RECORD
EISI:. fltGIN

Oucu~IINrlt'rl !Chi hi! (OJ .. ISibl ingls•alll'sth
Is i b I in~· liChi ld(15ibl ing(s•allestl)) .. a

Hlt
ENO "!·111·1 I I C'!· t i s a £18. "
ELS£ EIIGIN "f.Mallest is not a 89. •

"rin·l tht' rirtht•ost child of the ••alleet node."
LIIILF !Chi tdfrt.Chi ldl , Nll.L_RECtRJ 00

rtmChihl .. ISiblingltChildld..Childlla
IF smallest • rtMRt THEN BEGIN •s•allest Is the rightMOst root."

"1 ht' etc I t't ion ean be COMP I eted J'IOI.I."
O'wudlt>etrl(·r: IChi tell (01 .. rt..Chi ld;
tSiblh•s•UChild[s•allestll .. ISibling(sullesth
I F I S ia.ol i ned t;Ma I I PS t) " 0 THEN

IS ib I inr,·l I Child IISitJ I ino ls•allestJ JJ .. I Child [sulleetJ
EN[I ·~.Mal ie$t is \he r ight110st root. •
EI.SE [ifGIN •s.•allest l s not the r ight110st root. •

·s~t up tor the ~~erge."

r i!lhtHtl • ISibl ing'IChi ld(... llestlh
IS ibl ing I I Chi ldiUialleetJJ .. Ml.l_RECOih •nark left110et child."
IF -«Ofs) U£N BEGIN

"lhP. rightMOst tree is not • 81, eo tcMN children of .. I test wi II
IX' the s•altest treet In the new forest. •

nnlfltllfH .. r UIChlldc
~· .. !>1".:;
LJIIILE ·«1\h.l 00 OCGIN

rt.Chi ht • !Sibllr~t(rhChildh s • s/2 Etlh
•rglree .. ISibling(rt.Child)a
Jr ri{lhtRtT • rtlllflt Tti:N

r ic1htRtT .. rt..Chi ld
1:1. 5I:.. BI:G IN

ISiblingtrt.Childl • ISiblinglrt.RtJa
ISit>t lngliChi ldltSibllnglrt.RtJJJ • rhChild

HIJ
ENO

ll"' f\1-I~IN
"Thf' r·i~rhtlllt>~t tr~c ir. a 68, t.o it combines "ith all of thl' children
nf r.•t~alff'o;t tl) f01111 t11eo r,placi!Ment tree.•

II r· i (lh tfl tT r r t mfH TII(N
r· r olr t H tT • NUl L RlfORO

fl Sl:.flf"GIN -
nl·t~H tnll t +- IS i b I i n(l (r th•flt J 1
ISibl inq(IChi lcl(n£';1Rt•lfltl J .. a

I NCI; .
"f'£·r·fornr the fir~~ fll('l"{l£'• The 11ergt' of B8'e is handled epecially in order

c·l i rn in,, t(' a t r.!·· t f ronr thC' inner I oop."
''" crlrt·•· ... 1<;ibl inqlrtr.rChi ld);
If. Kf'•dr tnrfltl > K(·o.tlr hrChi ldl TIICN rtrnRt .. rttnChi ld;
IUri lillr tmf!t) ... rt~rChi lei;

f r Jll:

''(:"'"'·" c tr· t l•c M[·r ~re. "

LJIIIL f n..-qlr£'c • Nllll RECORD 00 BCGIN
mctlrl.;_ .. ISibl inqllllrqTrce):
H Kr·~dr tnrRtl > ICelJ lnr~~1lreel THCN r tmRt .. MrgTree1
ISibl innliChi ldl•rglrce)) .. l(hi lcl(rhrRtl 1
ISii.JI in~tliChi ldlrtiiiRtll .. 111rglree:
IChi ld[rtmHtl .. •ralree;
bwqlrC'r .. nxtln e:-

f Nil:.

"Link the' tret' en ated hy the Mt'rge into the forest. •

ISihl inq[rtrnRtJ .. ISibling(s•allestl;
IF ISibl incdslllallt•t;t) • a·TI-I:N

IS i hI i n{l.(ICh i I d liS i hI ingls•allestJ)) .. r hrRh
IF r i~1htfHT ., N..lll_R£CORO U£N BEGIN

Out'ucllc~der: ICh i I d' ((J) .. r tMRt a
l~iihling(IChildlrtlllfftll .. 0;

HJ[I
n.c:,[orc;JN

(Jq<•uf-H~·.:t-11!'.-: IChi Ill! ((J) • newRtiiRt;
1~; i b I i n~dr i ~1htR tTl .. r tMRt:
l~>ibl in~tiiChi ldlrtMRtJJ .. rightRtT

H-l£1
lUll ·~·•allt'~t is not the right110st root. •

END "!·M<'IIt-t·t ie. not a 80. •;
Ch I('Ut-B~.ldf:or : S i ;:"' lUI • Queu(Header 1 S i ze (()) - 1:
ISibl inrJ[GMalll'5tJ • IChi ldlsMallestJ .. tu.l_RECOflh
RETLEifH~·•.aii"!·U

END •oeleteS.allest•a

CC?Y
86

Rf r(lFUI f'IIJ NHII 10u£•uE'Hearler) F'f~(lfE(~ De fete (RECORO_POINTER (Node) ~el:
BEGIN "lt~let.-"

i : ; • ·~··
':. .···..1' I _...,.

nt.Cllflll l'liiNll ri!OuC'u£"Htadt-rJ Q;
RfC'fiRll: POINURINode) f>, rtii!Ht, rightRtT, leftRtl, pN, Fr, Tr, nP.~tMRt, 111ralrce,

n,. t lr('f'l
COMti£NT Hr-rC' T df'note!:. the trf'c containing M, and Tr the tree ~•hich replacr.s T:
Rf:r.flfiO. F'OINHRINodel ARRAY pathllll8l 1 CCH1ENT 18 it lg(MaM queue si~~!l + 1a
INllll:R i, s. i5ave:
LA[IrL MN{I('f ort-o:;ts, Dt·let•Return;

"CI illlh out of tht' binoMial (JU"'ue to reach the queue header: save the trai 1
elf node·~· vi~.itrd in thC' 'path' array.•

" .. ICI i • A:
..,.II I.E p , Nllll. HfCORn 00 BfGIN

i .. i-tl: 1•.-tlh(i] • p: p .. ISibl ing(p] Hlh
Q .. ,,, t h (i) : i .. i -1:
s • Duo ·uE'Ue.:t•len Size (0) : r t Mfl t .. CueueHeader: I Chi I d! (Q) :

"tlow did Ut' ~l<'t to thr queue header? There .,-e tuo possibilitie-s~ cithe:·
froM tht- IClti lei of the r i{1ht11ost root, or fro• the leftaoet root. •

IF l'.:.thlil • IChild[rtMfltJ UEN BEGIN
"~e i ~· a nc•n-root node in thl' r ightaoet tree. •
r i qh Ill t 1 .. tUL RECORD;
IC'ftfltl •· 15ibllng(rt11Rth
pN • ,. t111Rt

ENll
ELSf £\fGIN

"FithPI JJC is the roc•t of thfo rightaoet tree, or it is in e011e tref! other than
the r iflhtMo5t. loc.at~ the root of the tree containing x. •

UHILE TRl~ DO DEGIN •RootScarch•
If- i-2 ~ 8 TI-EN BIGIN "M is a root.•

"The dil!laantl i~1 of the tree containing x can be cOIJI)Iated nou. •
IC'ftRtl • ISibl in{IIMJ:
If- IChi I ell >C) r N.l.L FILCORO Tt£N BEGIN "x is a 88. •

"lh.;- d.:oletion can-be co•pleted nou.•
If !. .. I Tt£N
rJ.,.,u~adertiChi ld! [QJ ~ tll..L REaR)

ElSC OCGIN -
Otlt't.ld6eadera1Chi ld! IQJ ~ leftAtTa
ISi!>l ing(IChi ldlleftRtTIJ ~ Q

[tiJ:
r.oTO l~leteAeturn

FNO 10
M is a ee.·,

r ightrrtT .. ISibl ingiiChi ldbJJ 1 IF rightRtl • Q nEN r ightRtT .. tl.l.L_AECOROa
Fr • l[toi ldi•J 1 ISibl ingiFrJ ~ M.l.l_AECMlh
t.llll.E I Chi ldlFrJ , tu.l_RECOAO DO Fr .. ISibl ing(IChi ldlfrl I 1
[~TO ~rgeforrste

Hll •I(ie: a root. •a
IF IChi ldlpathliJJ • p~tthli-21 Tt£N OOf£ "RootS.arch"a
i .. i -1

fNO "Rot~tSf.arc.h"l
"x ie a non-root node in eo~~e trH other than the rightiiOst. •
J:'N •· path(i) I
rightRtT .. r"thli-lla lrftRtl ~ ISiblinglpNla i • i-2

ENOa

•u. at·£• h£"re to di••antle th«' tree containing the node Ml M le not the
r~t of this tree, eince that epeeial caee was handled •Jove,

TN- di!>M&~ntllng proceed• top douR& large tree• •• generated before sMall

C>llr": .• At r.tch r.tC'p, there ic. a forest of trC'cs alread\i r.aveod, linlr.•.:d frolll
£.111-ll h·• tn larytor, in Fr. There is altiio il neode on the 'true' path froM ,. to
thC' r11o t elf thr trt'e cont01 in i ng ~<, in pN, Eat.h step .,eg ins by finding the
pLI th m.tciC' on the I t'Yt' I on the ne~<t I o~rt>r I eve I. Any trees to the If' f t of
thi!· 1n11r-r p.:Jth node are added to the forest; then a tree forMed frc•m pN
and till" trE'r-s to the right of the lower path node is added. Then the loHer path nocll' bc·coiiiC'!" pN, and the process repeats on the new level unt i I the
I evt·l c•f nnoiP 11 is rE·achcd.

~tor·n ttoc· cli~.r.~;tntl ing bl't~ino, pN is the root of the tree containinq 1<
.1rnl i i•. ''" irrol"'" in l>ath o;,uc.h that IChildlpNI .. path[i)." -

F r • fJIII l. H[f(lfl[l;
1JH II ~ H :llf Llfl Ell GIN "(lownl. oop"

JS.:tvt.• ... i:
~1111 F Tf1LIF [10 BF GIN "R i 9h tl. CIOJ)•

H i -:· :; 8 lHlN DUN£ "llo~o~nl.oop•:
H IChi lrHrath[ill • p<tth[i-21 Tt£N IJOt£ "Rightloop•a
i • i -1

f fJll "fli !lh tl ncop ";
If i~;-rvt' • i lt(NEIEGIN

ISil}l imdpathliSave)] .. Fr; Fr .. path[i+ll ENJ&
l(hildlpNI • p;:tth[i-11: ISibling[J:INl .. Fra Fr .. pN;
pfl ·- p.Jth[i]; i. i-2

fN[I "(l,unl n,.,p•:
IF iS.w~· , 1 llfi.N OEGIN

ISihl inq(pathliSaveJI ... Fr; Fr .. path[2] EMh
ISilol ir,~tii'NJ • Fr; Fr· .. rJN:
IF tr_lii ldl~<l " Nlll_RtCORO Tt£N li,;;,,ld[pNJ ... N.l.L_RECORO
ElSf. OCGIN

U:hi lclh.t~J .. ISibl ingliChild[xlh
l~:iblinq[l(hild(K)) • Frs Fr .. IChildhc)a
~llilf IChilcllFrl., tu.l_RECCRI DO Fr .. ISiblingliChildlfrJl ENO:

Mcrgd on·~.tsa

"The· v.:•r i.:•blc~ pat-sed froM abh•e are rtiiiAt, rightRtT, leftRtT, Fr, CJ, Olnd s."

IF r-ightfltl • Ntl.l_HUCMJ HEN ElEGIN "the right110st trH wu dl~•ant led." "1 ht' dt:' I Pt ion can bt• COMPleted now. •
CltJt'urHC'<ldcr:IChi ld! 101 ... fq
UHIU l~ibl ir19IFrJ " M.l.L_fiECOOO DO BEGIN

l!:iibl ingliChi lc:HI~ibl ingiFrJJI • Fra Fr • ISiblinglfrJ EfC)a
ISiiJI it'l{tlhl • leftfltT: If-' leftAtT "Q Tt£N ISiblingliChild(leftRtTll .. Fr HI) '"tb .. righhto'Jt trt>e uas di•antled,"

[LS[[I(l>IN •a non-ri{lht1110~t tree .,.II disuntled. •

"St>t up to Mt-•·~ fr with the right110st tree.•

Tr o- rtiiiRt:
If ·{l(llllsJ TK:N BEGIN

"ThC' qtK'Ut' &ize Is •ven before the deletion, ~ e011e trl'•• In lr'
ui II Mov• up to beCOIIl' the s .. lleBt lrees in the new for•st. •

m-llftltlf'lt .. Fra
s •. • r~:
UHJI E -{•OtsJ 00 BEGIN

l~ibl ir19liChi ld[ISibl ing(FrJJl • Fr& rr .. ISibl ingiFrJ 1
~. •· !./2 EOO:

.,.,,,,. •.• ,! .. ISibiiNI(frl:
IF. rillhtRf.T • rt.flt Ul.N

r ightHtT·• Fr

88

f I ~r. (t[l-;IN
I Silo! ing[Fr) • ISibl innlrtii!RtJ;
ISibl in~1l1Chi ldllSibl in{drt11Rt1JJ • Fr

H~fl
END
fl Sf. A~(;IN

"lhl' CJIIr:ouc size it:. odd. so alI children of the reMoved root wi II be used
to •••k<' the- rt·pl;lCl'IIICnt."

II- riqhtlltl r rh•f~t liKN
•·ic,iotlltT ,._ Nll.t...R[COOO

US(~n;JN
•u·alftult ... ISibl in~lrtMffth
l'oil•lanc1l1Chi ldlnt';ilt.rttll .. Q

ENll: .
"I'~TfOIM theo first Mer{•·· The Merge of ee·. it handled tpecial ly in order
$pf'~d up tht' inner loC>p."

MI'CJTrr·P .. ISibl in~1lfrJ;
II- K,.tJll d > K~u If r I 11£N

Tr •· Jra
H'hilrlllrl .. Fra

HIJ;

UIIJLr wnlrt>e "Nli.L.R[C0110 00 BEGIN
rud lrl"C' o- I Sib I inul•r·glreeJ 1
IF KP\Illrl > Ke\f[Mr~elr~,.l H£N Tr • wglrH&
IS i blinn [I Child lwglrccJJ .. IChlld ITrh
ISibl in!,eliChi ldllrJJ • wglreea
IChi ld[JrJ-gTree&
••·ctlr (·l' .. n•tlree1

Elll:.

"lh<' ME·anc ir. COIIPirtt>l link the new tree Tr into the forest.'"

ISibl innl1rJ .. lettruTa 1r lt>ftRtT "Q TI£N ISibl ingiiChlldlleftRtTll .. Tr 1
IF r itehtRtT • tU.L.f.:ECOflD T~N BEGIN.

f'let~.-UI':tiEo.~lwiiChlld! [01 • lr;
ISibl ingliChi ldllrJJ .. Q

FM'I
USE BEGIN

flutourfleadera tChlld! IQJ • nr.llt•h
. ISibtinglrightRtTJ • Tr; ISibllngiiChlldlTrJJ • rightRtT

EfiJ
EN) •a non-r ighh•o•t tree Witt' ditiNntled. •1

O.tetPRehrnz
~ueltcadf:raSizelOt .. Oue~t'acteraSizeiQJ - 1a
tSitJI lnghcJ .. IChi ldh,J • Nll.L.}£COIIh
AETliRNfQt

END •""lete•a

J•li(t('flllll:l lluicuo Ulfr(ll:(l P(IINn.Hiautut-He<"l••r I 1, Cll;
[\(GIN "lh•innH -

Ill r ftl/ft 1'(11 Nll R INroclf I 1\FIIIAY Hk 11:3):
I N ll I ·I II i :
((lt\111 Ill (lk lr. a !.t<ock ot l\k tn·es ~rhich •·.:. accuMulated for each ~t.1c1~ ot

t I•• """" d •••n". "(;u r i l" H .:tr e pr VJJC•·J.I t(·d tt,•·ou[Jh Btdl). The in tcyN· I

i·. u .. •.t..rl<.. p<ointt·r, i.t., it i~ tllro 11\.loiOf:l of t1 ('~~ in the statk.t

fU:CIIf:[l.lttlNlUHNoclr.:-l r T, 1'11, rf, dullllllq;

f:£11111! IJ1 1 f pnint!. tn the l;"trgrst tree in the r·f'r.ul t forut uhich h.'ls bef'n

(\t ., It t ('(t. :
lrJll(,fll ~.1. ~.fj;

!· 1 • [J, It •ill l!f•,1cl(•l : s L· •: I TJ :
o;.(J ... ll•••·l!dlt•.'lllt'l': ~I;:~ IIJJ:
clunrntq • NIIJ. m rmo tNoue I ;
rF .. duniiiUH
i .. 0: .

rl .. CueueH< :ul('r: I Child! Ill;
ra .. Queuelte;.tll~r: I Chi I d !(Q)!

"11,.. ,,,,,,,,,_~ ,1ddition .1lgorith11."

"Thr· (Ill trr:("'· art> hanttled £opeeiallu tu r ,.,,,o.,e testa fro• the inner loo)J, •

It- [1(1{1(!.11 ltlfN BfGIN
i • i·tl; ~lk.(il • rl; rl .. tSiblin•Jidl ENO;

IF OOllh.Qt TIILN OCGIN
i • i+l: f\kli) .. rO; rU• tSiblinylrOJ Hll:

tr i ~ 1 ltiN BlGIN
l~>ibl int!lrll • [lldllt rf .. f\klll; .. 8 Et();

IF i , :• iHl N B~t;IN
tr K•·•dllk (J I J " Keq [llld~l l Tlt:N Bk U J .. £1k [2);
I(hi ltl[(\tdlll • 8kl~'l;
i • I

[.r~[l;

s 1 • ~·1121 dl • !-fJ/2;
"llo•• ~· ftPI .ll !o lt•fl,"

I.IIHLL fd " 01 v lsO ,. 81 [II) OCGIN
If' (l(ll.ltt.ll UtrN OCGIN

i • iii: lllo.liJ- rl: rl .. ISibltn!Jlrll END&
IF [I(JOh.fll li£U OCGIN

i • iii: Hklil .. r[J: ,u .. ISiblinq(rQJ Et«l;
It- (i • U v fi • ~: nLN BtGIN •

I!'Jihli~tlrrJ .. Bklill ISiblingliChildlBklilll • rf1
d • ~klil; l .. i-'

Ull;
1r i • 2 TllN BEGIN

If ICC'~tlf\tr..llll > K•·yUik(2ll lt£N kliJ .. BU2Js
lSi bl in!t lllhi ldl~ l2J J) ... l(hildl~ Ul h
ISibl inqllChi ldlBUllll • Bkl2h
ICioi ldli-UIJ • BkiZh
i .. 1

END;
r.1 .. !.1/2; ~n .. .012

lNtl;
"Handlr a c:trr~ off tht" end, if preHnt.•
IF i r J Uf·H 8f'GIN

l~ibl i~tlrf-J • 1\t!.Uh
I ~ti til i mtll Chi I d l8k ll) 11 • rf 1
,. ... lik·u 1

Hl"h

"link thfo rec.ult into Q, and clear :)Ut 1."

l~iblinglrFJ • 0;
Qur·ut•~·'lder; I th i I d! (Q) • IS i b I i ng [dullawh

"At this f't'int thf' du-\1 node can be explicitly deallocated to save C.C'fl"
IF IC:hi lciiUuc•uf'HroacttoraiChi ld! (Q]] "N..Ll_RECCIRO T~N

I S i b I i n~J (I C:h i I d (QueueHeadert I Chi I d! [Q]J) ~ Q;
Out'utl lf'.1clc·r: S i ;-c[Q} ... Ducucllo~uler:Si ze [TJ + OueueHeader 1 Size (Q) 1
Out-u(•H•··'Id•·r: IChi ld! [1) ... Nl..l_RECCRla
Queouo;:oll£·~tder: Size [1 I ... 81

El«l "lin i t•n • :

· t-- -.. ~, l t , .. , V ~. t COPY , . I, ~ • , I ,

... :;. 1 t\ ~ J"\1 hn .. :.. -

9l

2. FAIL ~lementationz.

2.1 Binanial 9J,eue using Structure R.

Tl ll[lliJ
:;IIRlll llino11ial queue priority fiUCIJe routines using strtJcturto k.

[NTRV lNS_BO,UCL_DQ

.&.~AIL r: .. }

.&.SAIL)'o-17

UMOST .. •9
.&.Sil[... 1

ol.l CJIILO. • 8
-il SI~INf. B

,&.1(£ y. ·-

.&.INS lH.:HAl T
~l).J LiiW.. T

;SAIL. result rerpster for t\ll)ed procedures •
;SAIL regular PUL.

;Node Fields:

; Hea<•~r norlc:
;Pointer to root of IPft11ost tree in forest.
;rullword in~!'::er count of I1UIIber of eleMent!> in (lllr:!Ue •

;Oueue eleMent (binoMial queue) node:
;PointE'r tu leftMost child of this rtode (ri(lht tMI fl.
;Poinh.•r to rwoxt sib to left of this no<l@ tieft h,lf).
; If no left sib, then points to r ight11ost sib in~.t€ .1r1,
;Fu lluord integer or rea I key (i.e., node pr-im i I ~~t.

:Trap handlers1
:Here on insertion into queue with SIZE< e .
;Here on dt'letton fr011 queue with SIZE s e.

2. FAIL Implementations.

2.1 Binanial 'l!eue using Structure R.

Till[[IQ
~.llflllL l\in011ial ttueue priority cj\Jeue routines using struC"turc H.

ENTRV INSJBQ.OCL_OQ

+~AIL R..J
,I.SAIL)' .. l7

.l.l MOST I:'J
+51 i'[... 1

oi.LCtiiLO• • 8
~I SIEILINr.--o-8

+KEY• •·

"INS_lJl.~HALT
.mEL_lJ L:tW. T

;Regi ett>r111

;SAIL result rP{Iister for typed procedures.
:SAIL rPgular PUL.

;Nodv Fields:

; Header node:
;Pointer to root of IPftMost tree in forest.
aFullword integer count of nUIIber of ele•ents in quo:!ue.

;Queue elnent (binot~i31 queue) node:
;Pointrr to left•ost child of this node lriqht hal fl.
;Pointpr to next sib to left of this nodf! (ieft hnlfl.
:If no left sib, then poinh to rightMOst sib im.h-'1•1.
:Fulluord integer or real key Ci,e •• node pr·ioril~tL

: lraf1 handler sa.
;Here an insertion into queue with SIZE< 8.
1Here on dttletson frOII queue with SIZE s 8 •

Ill GIN

TO~

Th
u ...
X•-
I t1R•
fiMR ...
NXTR ...
s~

SJ ...

tJNS_OO:III:RZ
All~~G
.II:ST
f1(1V[
Ill Rl
HI!R7
SllZM
I ~'HC
,IIIMf'L
IILRZ
t1(1V[
CAMLE
D<CU
1-JHRM
f10VSM
t10VE.I
I SHC
.lliMf"l

M_LOOJ'z HI AZ
flt.IVE
CA11LE
rMCH
HI\R7
llfiRM
•• ~z
UIILM
IIJ:LM
tr-.vr 1
LSHC
~ltniE

n_ID£a .liFN
11W[M
tiLM
~T

LINKINz •rt.n
tn.n

EXIT a SliB
..AST
SEND

INS_BQ

8
1
2
3
4
5
6
7
5•1

1 BinOMial ttueue insert ion

;LMOST_ROOT
;RMOST_ROOT
;NEXT_ROOT

: t>rocedure INSERT (reference (NODE I X:
0,-115AIL_Pl ; rcferenceiDUEUEHEAOERI 01:
S,SIZEIQI :S ... SIZEIQI ... SIZEIQI + 1
INc;_liFL 1 if S s 8 then ERROR endif
Ulr.,LMOSTIDI 1LMOST_ROOT ... LMOSTlDl
fWIR,LSHILINGIU1RI1RMOST ROOT ... LSIBLJNCIU'IOST ROOTl
~.-2CSAIL_PI - -
LSIOLINCUO ;LCHILOt)(l • NIL:
s. -1
Sl.M_COE: 1 if eveniSI then !Handle first ••rge Sl>ecially.t
NXTR.LSIBLINGIRMRJ 1tEXT_ROOT ... LSIBLJNCIRMOST_ROOTI
T8,k'EV0()
T8,k'EVIFltiU 1 if KEVOO > KEYlRroST_ROOTt
X, RMR 1 then X .. RMOST _ROOT end I f
flt~.LCHJLOOO ; LCHILDIXJ ... RI'IJST_ROOT
RMR,lSIBll t«i IRI'IU 1 LS IBL lt«J CFnlST_ROOTI ... RI'OST_ROOT 1
RMR, INXTRJ : RmST_ROOT .. NEXT_ROOT
5.-1 1 S • S/2
Sl.M_DONE ; loop while eveniSII
NXTR,LSISlltliiRtiH; NElCT_ROOT • LSIBllt«iU11lST_ROOTJ
18,KEY.fXJ
TO, KEY CRI'IU if ICEYOO > KEVCRIIJST_ROOTJ
)(.~
ll,LCHILOIXJ
Rftl,LCHILO lXI
T8,LSIBLJNG(Tll &
Rflf.LSIBlltlifTl, I
TO.LSIOLINGIRnRJa
Rflf. INXTRJ

then X • RMOST_ROOT endi f
Tl ~ LCHILOOO
LCHILO()IJ ... RrOST _ROOT
Tl ~ LSIBLINGIT11
LSIBlltliCTH • II'OST_ROOT
LSIBLINGUftJST_AOOH ... T8
RmST _ROOT • ~XT _ROOT

S,-1
S1,M_LOO'

S,LINKIN
)(, UIJST IQJ
X,LSIBLlt«;()(J
EXIT
X, LSI BL lNG lli'IU
fi'IR,LSill.ltGCXJ

SAIL_P, 13, ,3J
~31SAIL_PJ

S ~ S/2
1 repeat
tendi fa
aif S ~ 1 then
t li10ST 101 ~ X a
1 LSIBLINGCKJ •)(
1
1 LSIBLINGIUIJSTJIOOTJ •)(~
1 LSIBLINGCXJ • IIIJsT_IIOOT
...... f

INS_BD 1end UNSERTI

fil GIN OCL_Ba ;Bin~ial queue deletion

10• B
11· z
IJ• 3
t fill· 4 :Lt105T_ROOT

: RI10ST _ROOT lli1Ro £,
NIIMR.- £; ; NUJ_RlMOST _ROOT

; MERGE_CHILO
:HESlLT_PHFO

f1C• 7
I :1 'fifO• I 0
f,'/1[.. Jl : Rl10ST _CUI LO
~~. 13
~.}. 5+1
~IS1KlV .. T0
mm: n
~;IICC~ t1C
Nr.. s ;NE)(l_CIILJO

tDEL OO:HilRZ
- ~.05(',[

.IHST
tlCIVE
llRZ
CAIN

..llST

1-t.LM
tl)V[
11:1VEJ
l'liVE I
~ftST

HEY_BST 2 MOVE
IUVEI
f(IVEI
..._RZ
~iln'E

S_L()(J>a CArl.
..161

mYEl
tLRZ
.lm4

S_OCII:: tl RZ
l. S.l:
.Jti-'N

;reference<NOOEJ procedure DeleteS•alle~t
0,-liSAIL_PI ; (reference tauEUEHEAOERJ Q);
5,SilE<DJ ;S .. SIZEfDl .. SIZEtQI - lt
Of.l_UFL :if S < 0 then ERROR endlft
ltii,LMOSTtQl ;li10ST_ROOT ~ UWJST fQl:
RMR,LSIBlJM:>fUIU :Rf1JST.}IOOT ., lSIBt..JNGILMDST_ROOTJ;
RI1R, lUfO :if LrosT_ROOl • Rf10ST_ROOT then

lf1JVEI
~z
110VEM
..JfST

; llhe forest consists of a single tree, uhose root
; contains the best key in the forest. R~•ove the
; root, Making the new foreet fro• ite children,
1 and ue' re done. I

SAIL_R. fli'IU;~L_BQ ~ LMOST_ROOT1
T8,LCHIL0(UtU
T8,LMOSJtQliLM0Sl(Ql ~ lCHILDtLMOST_ROOTJ
EXI TJ

;else
IThe fore-st consists of •ore than ~ trf'e&

& search the roote of theee tree• for the b~st key,
; Sean the forest froa right to left, but u~e the
; ~•t key in the leftMOst tree Is an esti•ate of
: the best keu in the for•st.J

Rf1R.LSI8LitiHLnRta LSIBLI~(LtllST_ROOTI ~ Nils
DEST_ICEV.K£V(L1'1Ria BEST_ICEV ... KEVClm&T_ROOlh
PREO, fli'IU ; PREO • Ll1lST_ROOT,
SIU, CRI'IU 1 S0CC ~ fft)5 t _ROOT 1

S~UO'
ef Sl_ICE 't, KEY ISOCCJ
Rf'REO, CfflEDI
rnro, tSlctl
Sl.r.:t, LSIBL lt«;tSlttJ
SOCC,S_D(J£ c toop unti I SU:C • Nllt
NST_.KEV,KEYtSOCCh If BEST_ICEV ~ KEY(SlJCCl
NUt.BSl 1 then BEST_KEY ~ ICEVlSU::Ch

& RESU-T _PREO • PAEO
encn fl

F'fE.O, (SUCCI I PRED ~ Sll:CJ
soct,LSlat.lf«ifSU:Ch SU:C ~ LSIII.It«<CSOCCJ
SI.U,S_LOOP 1 repeat&

SAIL_R,LSIBlltf;UfiREDt aOCL_BQ • LSiil.ltf;CRESlL T _F'REOJ 1

S,-1
SAIL_R,Nlt_FI1 it ML_BO " NIL then

Uhe best k.ev is in the root of the! s•allest
trft in the fwMt. If thia root has children,

I"IOVEI
JU'IPL

SB_BEST:II RZ
tllll M
JllST

SN_BES T 1llr.llZ
Ill FU
Uf!LM
IU_RZ
HHI.M
~lnST

NOT_RM:

llfiRZ
IILRZ

HLLM
JliMrGE

s_ooo: FlOVEI
I ~,11(:
.IUMI'GE

C_LOOP1 ULRZ
LSUC
,.IIJMF'l

C_DCI£1 tLRl

CAIN

..~1ST

tl.RZ
.aM
..JtST

S_EV[NI .. RZ
CAIN

SAIL R, IRtiH
Sl,sN_BfST

I
I

TA,l SIBUNGlSAil Rl
18,LSIBL INGlU1fll i
[)(JT

;
ll,LCHILOISAIL AI
Te,LSIBLINGlll Y
Te,LSIBLINGllMRI;
TB,LSIBLINGISAIL Rl
18,LSIBLINGIT11 -
EXIT

. .
Tl,LCHILOISAIL_RI
RMC,LSIBLINGITll;

ll.LSIBL INGITll
Sl,S_EvtN

Nrntt. lFI1C t
s. -1
Sl,C_OCN: I
RMC,LSIBl.ING lRMCI 1
s.-1
Sl,C_LOCP
MC,LSIBLINGlRMCt

APRED. nnu

(11)VE I FFRED, un:: 1
..flST M_la:Pl 1

I
T8,LSJBLINGfRMRt1
T8,LSIBLING Rl:t 1
11_LOCF

' ~.LSIBLINGffi'IU1
Ff-'AED • CFf'IIJ

then th~y Move up to become the ronts ~f thP
&llallt>&t tref'9 in the forest, ancl ue' n· done. I
DEL_BO ~ RMOST_ROOT;
if t'Vt'n lSI then

IThP. best key ie in an ~8 trtoe (uhich is
distinct fro111 the left111ost tref:'.l R~move
the SO and f i»e I ink froM thf' lef tmo!.t tree. I

lSIBLINGlLMOST_ROOTI .. LSIBLWG ([JEL. Elfll
else

tlhe bt>st key has children. Link tht•m into
the right of the forest.!

LSIBLINGILMOST_ROOTI .. LSIBLINGILCHILOIDEL_Balt

LSIBLINGILCHILDH£l_BQII .. LSIBLJNGWEL_BQI 1
endi f

el E>e
llhe best key is in the root of some tree other
than the rightMost in the fore!.lt. Chi lch·en of
this root 1-1hich are SMaller th.'ln the riqhhtost
tree 1-1ill Move up into the forest& the-other
children 1-1ill coMbin~ ~ith the rightM~~t tree
to for• a replaceMent tree. I ·

RrllST _CHILO ~ LSIBLING (LCHILDlOEL_Bat);
IMark end of chi lclren-1 iet.l
LSIBLINGlLCHILDIDEL_BQ)) ~ NIL;
if odctiSI thf'n

ISo•e, but not t: I, children of bt-'!:-t root
~iII Move up to be roots in the forest.l

NEU_RTMOST_RDOT ~ RMOST_CHILD;
S .. S/2;
loop while odd lSI:

RMOST_CHILD .. LSIBLINGIRMOST. CHILOI:
S ~ S/2

repeat;
t£RCE_CHILD ~ LSIBLING <RMOST _CHI LOt 1
INow RMDST_CHILO !e ~eall~ the left•o~t
which 1-1ill Move up. MERGE_CHILO is th~
r ightMot.t child wh.ich ui II partie ipate in
the 11erge to produce • replace~~ent tree. I
if RESlL T _PREO • RmST _ROOT tht-n

ILSI8Lit«; tlnk fr011 RmST_CHILD iE- salle
as LSIBLJM; link to replace .. nt tree.J
.RESlLT_PRED • RmST_CHILO

eiH
llink children Into forest nou.l

LSJBLINGUI'IlST_OfiLOJ ~
LSIBLINGtRMDST_ROQT)

end if
else

llhe right110et tr•e in theo forest Is an S8.
lhis will cOIIblne with 811 chi lclren of the
bttst root to prGduc:e ,.,. r~p I a'=e•ent tree. I
tEU_ATm5T.AOOT • LSJBllt«;IFntSl _ROOTJ;

. if RESU. T _PRED • fn:IST _ROOT then
ITho repl~enent tree wi II be tht- r inhtMost
in the new for .. t, so the LSIBLING link
fr011 the left110et root wi II be t~ LSIBLING
link to the replec-.nt tree. I

tiiiVE I Hl'fff 0. 8 RfSULT_PREO ~ NIL
"""if;

111 ru
110\'l
r,,r1L r
I)o.(II
til :flfl
IJitVSM

.llll If'[
M_LOOP: Hl H/

fi(IVl
(AMLE
~XC.H
IU!Iil
11mm
HI Ri'
IIIILM
llf:lM
MIIVE:I
Jllttr'N

M_OOOf: CA IE
.lf:51

R_LM: llitVfM
.111111 'N
llr:L M
.lUST
Uf:t..M
llll.M
.IRST

R_N_LMa lt.RZ
.. ilM
~lln'N
lfi..M
JHST
lriLM
IR..M

EKITa SFTzrt
SUB
..flST
B[hl)

. .
11C, L 5 IOL I NC.(FIMf I ;
1~.KEYIF:Ilf11
T >1, Kl Y U:11C I
fiflfl, RtlC
HIIC,LLHII.fiCRIIHI ,
RIIC, LSI llll NG mtiCI;

nr. M_ [lONE
N{',LSISLINGCMCI
T8,1CEYCRMRI
HI,ICEY IMCI
fillH, tiC
Tl,LCIULOIRI1AI
f1C, LCIIJLO IRI1RI 1
19,L SIBLING Ill I
MC,LSIOliNGill I 1
Hl,LSIBLINGIMCI
MC, lOCI
MC,M_LOO'

SAIL R, 4LMRI
R_N_[M
BIIR,lf'lm\TfC:
III'FIHt, ... 3 :
r:lln, LSWLING CRt11U 1
U<l T 1
NHtft, LSI Bll NG IRtiU 1
f!tll, LSI £1L I NG IRrREDt 1
f)(JT

I
T8,LSIBLINGISAIL_RI
18,l SIBI.INGIRI'IU:
Rf'RED,, +3 1
FI'R,LSI8L IN:; lUlU 1
E)(JT I
fltA, LSI8LING IRPREDI 1
NJIII,LS I Bl.l NG ILI'IU 1

llto(' MPrtJf•r of tuo SO's is a t.p~;-cial cas~.
hancll crt here. I
11ERGE_CHILO .. l SIBLINGIRI10CiT_CHILDi;

if KH lfii10ST nnon > KEY IHI1W• T CIIIL 01
tto('n RI1CIS(t!liOT "Rf10ST_C.Hil [I l.:'ncli f;

Lr.HIU1Hii1CIST FICIOTJ .. RII(JSl OIIUt;
LSIBLIHGWMOST CHILO! .. RI10ST UIIUl;
L.C1Ul01rii10ST CHILO! .. NIL: -

Pndi f: -
INo1-1 finish the Merge.!
loop unti I llERG':_CHILO ·NIL:

NEKT_CHILO .. LSIBLINGIMERGE_CHILOI;

if KI.YIRMOST RCOTI > KEYIMERGE CHILO!
then HMOSl}iOOT ,. ME:HGE_C~:!tD- endi t;

Tl ~ LCHllOIRMOST_ROOTl;
lLIIJI.OUmOST ROOTI ... I"ERGE C~Ul 0:
TO •· LSII:Il.INGITll; -
LSWLINGITll ~ MERGE_CHILO:
LSIBLINGIMEHGE_CHILDI ... 18:
MlHC~_CHILD ~ NEl<T_CHILO

ret,ea t 1
llh tiM£' to tie up the loose ends ••• l
If [ll::l_Ba • LMOST _ROOT

then
LMOST 101 .. fii'10ST_k00ll
if AlSULT_~I~O • NIL

th<·n LSIBLit-lOIRMOST ROOTI .. Rr10ST ROOT.
else - -

lSI BL I NG fRfJJS T _ROOTI ... tELUlTMOS T _ROOT:
LSIBL lNG fRESll.. T _PRE[)) ... RMOST _ROOT

pnd if
else

LSIBLINGIFI10ST_ROOH ... LSIBllt«ilOEL_BQI:
i f Rl:Sll. T _PR£0 • Nl L

then llSBLINGtLnosr_ROOTJ ... RMOST_ROOT
elt.e

lSIBLINGfRESULT_PRED) ... RMDST.ROOT:
lSIBLINCfLMOST_AOOTio-NEU_RTMOST_ROOT

end If
I endi f
I endi f
aendih

LSIBl.lt«iiSAIL_RJ 1LSIII.INGic:El_BQI ... LCHILDCIEL_BQJ .. NIL a
SAil_P,l2,.2J
•2lSAIL_PJ
DFL_BQ 1 end IIEL_BOII

2.2 Leftist Tree.

TITLE L1
SL(ITTL Leftic;t tree priority queue routines.

£ NlRV INS_LT ,OEL •. Ll

oi-';AJL A• 1
oi-SAIL)'..-17

.,j.Hoor e

.,j.SJZE•-• 1

..l.[lJST•-• 9

..I.LfFJ._._ 1
+HJCJ-fl-1
oloKEY• •· 2

"INS_liFl: HALT
.oEl_lf l: HALT

:SAil rrsult rerdster for typed prn..-~·lures.
:SA ll re~1u I ar PU..

;Node fie Ids:

;Header node:
;Pointer to roo• of t~fti~t tree •
;rull~o~C~rd inte~r count of nuaber of ele~~entB in c1ut-ue •

;Du~ue ele•ent (leftist-tree) node1
;Length of ahortest (righte!iU path fro• this node to NIL.
:Pointer to left child of thie node Cleft hal f) •

:Pointer to right child of this node (right half).
:Fulluord inte{;er or real kell (i.e,, node prioriti4),

1 Trap handlers&
:H~re on insertion into queue with SIZE c 8.
:Here on deletion fr011 queue with SIZE s 8 •

tMAG_LT:

QSMALL:

Dt..OOf":

PSMAL.l:

PNll:
W.llt

.1-f 'l•·
HH+-
m.
fll (;IN

~{

4
1~

MIIG_L l

;Leftist trrc insP-rtion and deletion.

: HP~I is tE'r s u•.('d fc•r I i nkage "'i th MP::;_Ll
: IJY I NS_Ll, (lll_Ll.

UlllflfNT • Proceclure to Mt>rg~ two left ir.t tree.,., Called by JSP N,MRG_LT,

udh the trees to be mt·rqed in Pl ancl 01: returns ~o~ith result tree in Pl.

Thi !' ~WOCt'durc US('$ AC oisT to cl indnate special checks for NIL in the
r<:l.o:tlancing phat,e; ti•IIS OIST should not conflict with ACs "'hich the caller

{''l(I)E't ts to be prese.-vcd: SAIL_P, SAIL_R, Q, and N. •

Th
K•·
ll·-

novrt
JHST
HIIH1
tlliRM
ftOVE I
~VEl
~lWE
,HIMPE
fiOVE
CAfl.E
.IRST
HHRZ
I flAM
riOVEl
MOVE I
~T

anENT

MOVE I
MOVE

~
6
Tl
7

n,e
llf~L.OOf'
Tl,RIGHHOU
R,RJC.HT 101)
R, (011
Ql, (ll)
Ql,ONIL
F'l,F'NIL
K,KE.VCPJ)
IC,KEYCOIJ
US11ALL
Tl,RIC.HHPU
R.RJGHHPU
R. CPH
Pl, nu
[H_OQP

• ee-e QSMAll •

PI, CQU
O,OIS1 fPU

: referenctdNC« J procedure I"'RG_.L T
, Creference(N(U) P,Q) &

; llhe •r ighh1crge" phase Merges thP r i9htmo~t pathe
;of p and (.1 into a single path. r.·e!>l!.'rving the
:proper t\1 that keys dt'crea~e fro n the root touard
:the lcavt-s. $int<' the nP~Ct phise ui II u.:~nt to

: travet-sP this path fro111 the le-aves to11ard the root,

'the path is I inked upuard, using the RIGHT field.

:A l the end of th 1s phase, R poi nt!l tCI thE' I owes t
:node on tht' n('u P<'th, and P contain& a "IE"ftover"
;tree whi~h will becoMe a child of R.l
;R ~ NIL;
; loop unt i I cr.IIL or PNILt

if a • NIL then QNIL eodif:
if P r NIL tt.cn f'NIL endif1

if KEYCP) ~ KEY(Q) then

T .. RIGHHP) 1
RIGHHP) .. Rt
R .. Pt
p ... T

else
T .. RJGHHQ)a
RIGHHOJ .. R,
R .. Qa
0 .. T

; endi f
a repeat;
&tht'n
a PNIL •> P .. 0; 0 .. liiST(P)a
; QNll •> 0 +- OISliP);
; t'ndt
; 11M "rebalance• phase .arche• up the P•th
;created by the right .. rge, int..-changing the
; left and right c.hi ldren of nodes aa necessaru
;to 9Jo1rantee that the re•utt Is leftist. At the
1end, Pl point• to the re.Uit.J

llfiV£1
.lf:ST

NO'...;&.Illlll: llUV[I
tn :r:rr

MOVEl~n: 111.1\l M
I11W[l
ru tVf'l

u:'l.OOf': .llltii'E
trnnz
Ill Rl
fAtlG
Jf6T

SUJTCII: t111Vr
I10Vll
IIP~Irl
Hill. t1
JRST

fiiST ,0
1.11'1 (l()f'
ll.l WI
f'l,Rir.HT IRI
[I,[IIST IRI
rJ, m1
H, COli
fl, CNI
OI,RIGHT IRI
1 J. Lf.f TIRI
(1, 015Tflll
Nfi~,LJI TCII
n,rtlt;T ITU
[l,l(Ol
Tl , R I (;Hl IR I
f'l ,LH T IRI
MOVEliP

;OISTCNILI • B;
;loop until R • NIL:

Q .. RIGHTIR); !Here Q is the nc,.t hiqh~'r nrtdc- on
the path, Pis our partial reo;ult and. i!. lf~ftist,
and 0 • OISHPI. l.le •au need to inh_·rchan~le tt'e
c:hi ldrcn of R.l
if D > [IISTCLf.FHRll then l[lo thP. intt'rchange.l

0 ~ 015TILEFTIRII + l;
RIGUT IRI • LEFT CRI:
LHTIRI .. P

; else INo interchange ie needed.!
ClnlE.NT e s£>e NltSLII TCH •· 0 • D -+ 1:

RIGHTIRI • P
endi f;
!No~ cuMplet~ R and Move up the path. I

COi'1t1(NT to st'e MOVELP • 01 ST IRI .. 0;
p • R;
R .. a

repeat
l~f-N~l t11:r •. u end IMRG_U I :

nrGIN INS_L 1

,.. 8
o.. 2

tiNS LT:IUIRZ
- AOSG

.11/ST
l'liV[
rmz
IVWE I
t11"1VEM
SfTZM
.ISP
110V£M
SUB
JUST
[101)

Hf.GIN

n •.

tocL_L T :r rmz
SOSGF
,I~T

I JOVE
tiiRZ
II Rl
~(I'

mvrn
SIJB
~lfl5T
RHIJ

0,-1 ISAIL_Pl
SIZE COl
IN5_lFL
Pl.ROOT 101
01,-2CSAIL_PI
1,1
1,01511011
RIGHTIOU
N,MRG_LT
f'l,ROOHQI
5/\IL_P, 13,.31
pJCSAIL_Pt
INS_LT

Of.L_LT

'2

;procedure INS_Ll(reference(NOOEt ~:
1 reference(Lljll£UEI Ql;
;SIZEIQ) ~ SIZECOI + 1;
; if SIZEIQ) s 8 then ERROR endif;

;OISTCXI .. l;
;LEFTCXI ~ RIGHTCXI ~ NIL1

1 ROO HOI .. mG_L HROOHQI , X l

;reference(t«<'E) procedure ~L_LT
0, -1 CSAIL_rt 1 Creferenc(' ll T _DI.HJE l Ql 1
~..;J Zf 10) ; SIZE fQI .. SIZE Cat - h
lll_~L ;ifSIZEIQt <8 thenERRORendif;
$AIL __ R,Rror COl 1l£L_LT ~ ROOHQI; ·
Ol,hlf~~fSAIL_Rl
Pl,LEn CSAIL_RI
N,mG_Ll
PJ,ROOTfQ) ;RODTIQI .. nRGjLTILEFTtADOTIQtt,RIGHTfHOOTIDJit
SAIL_P, 12,, 2J
•21SAIL_PJ
rEL_L 1 1 end UL_L Tt 1

99

Unclassified

n.e aaal>'sis of • practical ana:_i10&ri;':opti.;1
priority ~ueue • ~ ~

NG O"GANI Z AT ION NNAiAMiiiiEUANND'Aoiifii~::'"'"'"'{'::~~:=;;;==f-A't'T~~~LJ!~~!!t'!!!
Stanford University
Computer Science Department
Stanford, ca. 94305

&D&lysis ot &Lsoritbas

A-TIIACT --,4
+r1,1be bi.Doa1al queue, a new data stl'UCtun tor ~-ntinc priority

queues that can be etriciently •rsed,l!!! ... ~AA~.J ~conred by Jeu
Vuilleain; we expl.ore the properties ol""'Uf!"s s~ruc'ture in detail. lev
Mthoda or repreaentiac b1ncw1al queues are gben which reduce the atonp ·
overhead ot tbe atructure aDd 1Dcreue tbe etricientcy or operatiODa oa it.
ODe Of tbeae repn•ntatiODB allows &Dl' el--.t of an nnlr!ptQ prlorit7
qu.. to ~ clllletecl ill los tiM, uaiq GAl¥ two poiAtera per elrrs=t ot _, sc

Unclassified

_,
~the queue. A caaplete ana.l.¥s:ts of tbe average tilDe for insertion into

and deletion fran a binolllial queue is performed. '!his analysis is based
on the result that the distribution obtained after repeated insertions
and del.etions.

AD abstra~tioo of priority queue efficiency is defined) baaed on
comparison counting. A good l.cM!r bound on the average and worst case
number of comparisons is derived; several priority queue alsorithms are
exhibited which near4 attain the bound. It 1s shown tha.t one of these
al.gorithlu, using b1noadal queues, can be Characterized in a sD:Iple way
based on the number and type of comparisons that it requires. The proof
of this result involves an intel·esting problem on trees for which
Huffman's construction gives e solution.

UIMilualt1M
Jlt:YNn CIL .. f'ICM---n.IIIIAJ-

