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Abstract

Deductive techniques are presented fo: deriving programs systematically from given
specifications  The ipecifications expre:s the purpose of the desired program without giving
ary fent of the algorithm to be ernployed  The basic approach 1s ‘o transform the
specstications repeated’y according to certain rules, until a satisfactory progra™ s sroduced.
Thne rules are guiced by a number of strategic controls. These technique:s %zve been
incorporated (N a runr ng program-synthzas 1ystem, catied DEDALYUS.

Many of the transformation rules represenit kncwledge about the program's sub ject dorna.n
{eg . numbe:< lists, sets), some represent thes meaning of the constructs of the specification
language and the target programming language, and a few rule; represent basic programming
principles  Two of these principies, tne corditiona/- formation ruie and the recursion-formation
rule, account for the sntroduction of condittona! expressions and of recursive call into the
synthesized program The termiration of the program is ensured as new recursive calls are
focrmed

Two extensions of the recursion-formaticn rule are discussed: a procedure- formation rule,
which admits the introduction of auxilliary subroutines in the course oi the synthecis process,
and a generalizaiion rule, ‘which causes e specifications to be akered to represent a more
general problem that 15 nevertheless easier to solve. Special techniques are introduced for the
formaiion of programs with side effects.

The techmiques of this paper are illustrated with 2 sequence of examples of incres:
complexity, programs are constructed for list processing, nurserica: calculation, and array
computation.

The methcas of program synthesis can be applied to various aspects of progremming
methodology - - program tansformation, data abstraction, progrsin modification, and st-uctured

programming.

The DEDALUS system accepts specificaticns expressed in a high-level language, inciuding
set notation, logical quantification, and a rich vocabulary drawn from a variety of sub jpct
domains. The system attempts to transform the specifications inm a recursive, LISP-like target
program Over one hundred rules have been impiemented, each expresc~d as a small program

in the QLISP language.
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introduciron 1

INTRCAUCTION

In receat years ihere has been increasing activity 1n the field of program verification. The
co.l of these efforts 13 ta COOSITUCT Computer systems Lo determining whether a given program
1< correc:, i the sense of sausiying given spe‘icanons. Thewe atterapis have met with
in.reasinz succrss. while automatic proufs of the correctriess of large progiamy ¢cay be a long
way off, it seems evident thai the tect.migises being developed will be usetul In pracvee, to find
rhe bugs 1n faulty programs and to give us confidence in correc ones.

The general scenario of the ver.l:zatior systery 13 (hat » programmer will present his
completed compurer progri m. &long with fis speciicacons znd assoclated documentation, 1o a
sysiem which witi then prove or disprove its correciness. [t nas been poinied out, most notably
by the advocates of structured programmirg. that this 1s “putting the cart befors the horse.”
Oncs we have techaiques for proving orogram ccrrectness. why should w: wait (o apply them
until after the program i complete> Instead, why not ensure the coriectness oi the program
while it 1s being constructed, therzoy devewopig (he program and it; correctness prooi “hand in
hand™

The point 13 particularly weli-caken when we conside: that program vertfication relies on
cutomatic theorem-proviag techniques. These techrigues embody prinuiplez of deductive
reasoning, the same princ ples that are applied by 2 prograramer in constructing the cregram i
the furs place Why aot smploy these principies in an awomatic synthests system, which would
constre « the program instead of merely prov.ng its correctness? Granted, to construct a
program requires more oriinality and creativeness than to prove its correctness, but bath tasks
require the same kind of iiunking.

Structured programming itsell made an early contribution to ticr autixmatic synthesis of
computer programs in liying down principles for the development i programs from their
specifications. These principles are 1tended to serve as guidelines to be followed Uy 2 human
programmer. However, they ars not formulated precisely ennugh to be carried cut by a
machine. Indeed. the priponents of ‘tructured programming have been most peasimistic about
the possibility of ever aucomating taeir tachniques; Dijkstra has gore 50 far as b say that we
shouldnt automate projramming even if we can. because we would take away all our
en oyment of the task.

Programming is a challenging task, and its automstion is a part of a-tificial intelligence. A
system to construct computer programs must have » bromd range ot knowledge about
programming laiguages programming tachniques, xnd the subdject domain of the program to
be construcicd. Fusthermore, & must have the ability to retrieve the rele ‘ant corponents of its
knowledge and to combine them to perform the task at hand. Programméb ¢ is among the most
dernanding human sctiv-cies, and s among the lay tasks computers will do well. Nevertheless,
the intrinsic interest and oractical importance of the programming task have motivated manv
rescarchers to consider the possibility of automattny it.
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Several yrars 1go, we began cur research on automats program synihous by considering a
large nurber of aimple programming task  In examuring the derivations ¢f programs to
2chieve these tars, we observed ceitain regularities, steps that are performed over and over
agatn 1n 7 vaniery of subject domaint ard that therefore can be regarded as “epresenting basic
programmirg grincples We have specified these prinuiples precisely. xand have applied them
to the constructinn of less trivial programs.

i1 "hie paper e pressnt some of the basic principles o be niorporai~d into an automatic
program-syrthetss system  Such a system accepts specifications that express the puroos: of the
program to be constructed, without giving any hint of the algorithm to he employed With no
furthe: human intervention, the system atrempts to transform these specifrcations into a
program t=at achieves the expressed purpose This program 1s ['1a"anteed to be co:rect and
will always terminate; for the most part, we will not be concerned with its efficiency

The specifications are expressed in 2 specification language rich with consiructs from the
sub ject domain of the application Because the spatificaion language does rot need 'o be
executed, 1t can afford high-level constructs ciose to our way of thinking about the sub jeci
Specifications represented 1n such a language are likely to be easy to formuiate and to
correspond correctly to our intentimns. The details of the parucular targe language--the
language in which the program is to be constructed--are not important. In our exmunples, we
employ a simple LISP-like language.

Our basiz approach s to transiorm the speafications repeatedly according "o cectain
rransformation rules  Cuded by 2 ne mher nf urategy controle thews rules stzempt Lo [roduce
an equivalent description composed eruirely of constructs from the target languagz  Many of
ths transformaiion rules represent kaowiedge about the program’s subjgect domain, so.ne
2xphcate the constructs of the specification and target larguages; and a few rules represant basic

programming principhes.

Some of thest techniqus have been licorporated into an zxperimental program—synthesis
syste called DEDALUS (the DEDuctive ALgaviihm Ur-3ynthestzer). The purpcse of this
system 13 not to be appherd in practice bist rathe- to test cur program-synthesls idea. Most of
the examples included in this paper have seen carried out by the DEDALUS system.
However, the emphasis of the paper is act on ihe details of the DEDALUS imgiementation,

but cn the basic programrung principles it incorporates, which car be applied in any system.

In the past few yetrs, there have appeared several varietier of proy. amming methadology,
¢ g. sructured programming, program trunsformation, snd daa sbatracion. Thase disciphines
recommend systematic approaches to prigram construction for making the programming process
simpler and more roisble. The techoijues of program iynthesis serve to faciliiate the
appiication of esch of these discig'ines. In this way, program-synthests research can be of
vaise long before Ms iHitimate goal is achys~ d.
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In this paper, we prereni the basic concepts and priraiples of progrem synthesis, we extend
rnese methods 0 allow the synchesis of programs with side effects. and we apply these
rechnique« (o various aspects of programming merhodology  Historical remarks, comparisons
with other approaches to automatic programming, and r.-ies on the DEDALUS implementation
are reserved for 2 f:nal section



q Concepts

1. CONCEPTS

A. Specifivations

The forsi requirement of a specification language 1s that it should alkxw us to express the
puipase of the des:red program directly  in otner words, once we have formed a precise tdea of
what the program 15 intended to do, we should be able to formulats the specifications
immediately. without paraphrase Fur.hermore, it shoukd be easy for the programmer and
othe: people to read #nd understand the specifications and to see that they are correct

For this reason, it is necessary that the ipeafication language contain very high-level
constructs, which correspond to the concepts we use in thinking about the problem and which
are endemic to the subject domain of the target vrogram Such consiructs are typically not
included 1n a conyventional programming language, because it may be impossibie to find a
unifcrin way of computing them or Decauie they may not be amenable to efficient
implementation

Because a specificativn language should have a large number of constructs, and because
these constructs are particular to the subject domain, we do not attempi to define a complete
specification language Instead, we present the specifications of some of the programs we will
use as examples later in this paper, to 1i'ustrate some of the most useful constructs

Suppuse we want to construct a program, called lessall. to test whether a given numbei ¥ 1t
less than every member of a given kst ! of numbers, and to output true or false accordingly
T his program can be described as

lessallix ) <== compute x < alil)
where x 3 a number and
{13 a list of numbers .

Here, the expression x < ¢/Kl) denotes the condition that x is less than every member of the st
I its value i3 true or fal:e depending on whether or not the condition holds. The expression
compute . . . I3 the sus2ur specificetion; it provides a description of the output the target
program is itended to produce. The expression where . . . is the input specificstion. it gives
the conditions the inputs ¥ and ! can be expectad ‘o satisfy.

To specify a program mexlist o compute the largest element of a given list [, we write

maxiisil) <=« compute sems »: 2z ¢! and 1 2 alli)
wihare { is a nonempy list of numbers.

Here, the construa "seme z « Plz)" denctes any element * satisTying the condition P(z), and ¥ ¢ ¢
means that & is 2 member of the kat (or ) v
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Anothei exarrple the greatest common divisor (gcd) of two nonnegative integers 13 the
fargest in-eger that divides borh of them  To sp~-fv 2 program to compuie the ged of x and y,

we wrte
icdix y) «<-« compute max{z zix and zjy}
where x and y are nonnegative integers 2nd

xwQQorys»0

Here mex 5 ac the argest element of the set 5§ The input condition x » 0 or 9 » 0 15 Includex
because if buth x and y are zero, then any integer divides each of them, a . the set of all their
commar divisnts 1s infinite and has no larges! element

The Cartesian product ca*f of two sets s and [ 1s the 3ot of all pairs whose first element
odelongi to 5 and whose seconc slement belongs tv i a program to compute it is specified by

carf(s 1) <= computs { (xy) xecsandyat;
whaere 5 and [ are {inite sets.

Here, (» v} denotrs the pair whose elements are x and y

B The Targs:s Langumge

The techniques we employ in this paper are not dependent on the particular choice of a
turgei icngucge, the ianguage in which the desirec program is to be expressed. However, for
the sake of definiteness, we will represe..t the target programs in this paper in a fixed, LISP-
like language. which should be readify understandable.

For numbers, the target language inchxies such familiar operstions as x +y, x -3, x s 9,
etc. For hsts, we assume that the target anguage contains the usual LISP primitives:

feaa(l) : the first elemem of the nonempty kist !

tasii) - the hst of 2l but the fiist element of the nonempty st {

consx /) : the list formed by inserting the element ¢ at the beginring of “he list ! .
Furthermore, we include the common conditional expression:

ifPthem x #iscy: x If P istrue,
y U Pisfabe
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Favally we mimploy recursion for exampie. « program f{(} may be defined i tzrms of 3 revraive

all [Tragdan

M (ourse we cznouse any of the target-ianguage consizucts i {ormulating the specif.cation:s
i hus e targer language mav be considered (o be a subset the apecification ieng sage

A sepment of A orogram aewcipuon that conusts entirely of target-language constructs wall
e s alled a primifiue segment

A tirwy we il Choose to add new primifives 1o the target fanguage Thus if we wani to
write 2 program mn a new wbhed doman, -« will add the primitives appropriate to that
aorvair |t we want (0 express a program in terms of some fiven set of procedures, we will
treat those precedures as primitives  in the section on side effects (Section 4), we will inciude
CONSEIUCTS U7t as assignment statements and arrays in the tavger l2nguage.

B, t.e s,.ne token, for cestain tasks we may choose .0 delete primitives from 1he target
language For initance. 0 c(onstruct a more effiient program we may delete certain time-
consumung primitives The DEDALUS system allows the user to add or delete construct: from
13 primuiive set for a pasicular task

C. Transformation Rules

Our hasic epproach to program synthesss 1s 1o employ a large number of transformatzion
rules, which replace one segment o a program description by anather, equivalent description.
The task o program synihexns 13 then reduced to applying these rules to the given specification
repeain~diy ua’il a primitive program 1 peoduoed.

“Jorme transformation rules express the principies of the underlying semantic doman (z.g., the
properuies of the integers or list structures). Othver rules express thr meaning of ine constructs
in the speafication and the target languages (eg- {x : 7)) i the spectficetion language and
Acad(!) in the target language) Stll others represent : formuiarion of basic programming
techniques, which do not depend on a particuiar wbpect domsin (eg., the introdection of
zonditional expressons MG reCUrMon).

We use the notation
=’

to denote a ansformation rule that an eaprestcr of form ¢ may be repiaced by the
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corresponding expressi~n t° Th - rransformation may be appied to any subepress.on ¢ of the
vurrent program description it 1 no! to be applied in the reve:se d.rection unless another rule
of form " <> 118 g1t 2n exphar iy

For example the rule
trueand Q > O

means that any expression of form trus and  may be replacer by Q. By applying this rule, we
may replace a program descriptior.

max{z : true and zly}
by the descript:an
max{r  rly,
A rule
te>t" AF

denotes that the transformation f => ;' can be applied only if the condition P 1s true. Thus the
rule

uly => true if u s an integer and v « 0

denotes that a program segment klv can be replaced Sy true if 1 15 known to be an integer and
v to be 1ero whenever the segment is executed. Thus, this rule can be applied to transform a
program description

ify-0
then xpy
else . . .

nt?
'J', -0
then trie
else . .,

wher: x 13 krrown to be ain integer.

Oftens, more than one rule cani be applied to the same program description or even to the
same seyment. For ex-mpile, the logical rule
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PandQ => Qand P
snd the numerical rule

uly and uhw => ule and ujw-v  tf u, v, and w arz .ntegers
can both be applied to the program description

max{2 1l o4 iy}

I such rasee 1t must be decided which rule is best to apply. This difficult problem must be
faced ta any transformatiori-rule system We prefer to po:tpone such considerations until after
we have presented some concrete examples (See Seciion 2D on “Strategic Controls 7)

D. Derivation Trees

In applying a transformation rule ic a given program description, we obtain a new program
description, which we regz:d as a suogoal of the first. To this subgoal we apply additional
transformation rules repeatedly, until a prumitive program description is obtained. This
description is the desired program.

The top-evel goal o obtaired dire-tly from the program’s specifications. Thus, if the
program [ 1; specified by

fix) <=a compuie P(x)
where ((x),

the tcp-ievel goal will be
Goal: compute P(x)

(Here. Q(x) I1s a condit:on but P(x) mey be any expression in the spexification language.) For
example, in deriving the god program, we are giver the specificai-ons

gedxr y)  <== compute mex{z : zix end zp}
whare x and j e nonnegative intagers and
xeOorye 0.

Victusily, the DEDALUS sysiem doss not use this rule explicitly) the same
oifect is schisved by o difterent mechsnism. Se: “mplemeniition®
Section 68.
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Qur top-levei goa! is thus

Goal 1: compute max{r . zlx and zp)}
By applying the transformation rile

Pand Q=>Qand P,
we obtatn

Goal 2: compute max{z 1y ana 7v; .

If a transformaticn rule imposes x condition P, which must be true If the ruic is to be
applied. a subgoal of the jorm

Goal: prove P

must be achieved before the rule ran be applied. For tiampie, in developing the program
tessall(x 1) to test 1f a number is les. than every element of a list of numbers, we begin with the
iop-level goal

Goal 1:  compute x < alll} .
In attempting to apply the rule
Plati(l)) => true  if ! is the emp.y list,

which states that any property 2 holds for every element of the empty list, we generate the
subgoal

Goal 2: prova ! is the empty list .

To accomplish such a task, we must apply trznsformatisn rules repeatedly to the expressien to
be proved, until the expression frue is produce.. if, insead, false is produced, or If we
encounter a situation in which no rule can be aoplied, the goal of proving P is aborted, and
the attempt to use the rule that imposed P as a condition is abandoned.

If no rule applies to a given subgoal, bucktrecking occurs; we seek akernale rules tn apply tc.
previous subgoals. Backtracking will be discussed further in th: section on “Strategic Controls®
(Section 2D).

By the process we have just outlined, a tree of goals and subgoss iy generated. We will call
this structure a progrem derisation tres.
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2. ELEMENTARY PRCGRAMMING PRINCIPLES

A. The Formation of Conditional Expressions

To sllustrate the formation of conditional expressions and secursive calis, we exploit a single
simple example The program to be constructed. lessailix 1), 13 intended to test wirether a given
number x 1s less than cvery member of a given hist / of numbers, and to output frue or faise
accordingly The specifications, as indicated in Section A can be expressed as

lessall(x {) <== compute x < all{l)
where x is 2 number and
{18 a st of numbers

Note that the output description uses the all specification construct, which is not primitive,
therefore, we attempt to apply transformation rules to paraphrase the output description using
vnly primitive constructs of the target language.

We assun,z we have at our disposal two rules that explicate the all construct:
® The vacuous rule
P(aill)) => true  if L is the empty hst
says ihat any property is true of every element of the empty list
® The decomposition rule
P(alll)) => P(tesd(!)) and P(all1ail(l))) if ! is a nonempty list

states that a property holds for every element of a nonempty list if it holds fcr the first element
and for ali the rest.

Our top-level goal is formed directly from the program’s specifications:
Geal {1  compute x < aik) .

In this discussion we wiil not consider how to select the rule to be applied; we will assume for
the time being that the appropriate rule magically appears when & is relevant.

One transformation rule that appliss to the current cutput description is the vacuous ruls,

P(aND) => true 4 1 13 the empty ist .
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T hic rule would allow us to reduce our output description to true if only we could achieve the
subgoal

Goal 2: prove ! i3 the empty hst

v contse. we cannot prove or disprove this condition {1 an input that is kncwn to be a
list. but that may or may not be empty Thi: is an occasion for applying the conditional-

faomarien rule

Cnonditional expressions are introduced info programs as a result of
hypothetical reasoning during .ne program-formation process. If we fail to
prove or a:sprovs a suogoal cf the form

prove ° |

the condittonri-fornction rule allows us to introduce a case analysis and
consider separately the case in which P is true and P is false. Suppose we
succeed 1N coNzisucing a program segment 5, that solves our problem under
‘he assumplion tnat Pois tru2, wnd another segment sp that solves the

problem under (ne assuraption that P is faise. Then w. combine the two
segments into a condiiional expression

if P then s else 3,

which solves the problem regardiess of whether P is true or false. Note that
to ersure that this expressia is primitive, we apply the conditional-
formation rule only when P itself is a primitive logical statement.

Let us return to our example. Having failed to prove Goal 2, that [ i3 empty, we attempt to
construct a program segment tha: will solve our problem under the assumption that / is empty.

Case [ 15 empty: In this case, we are justified in applying the vacuous rule
P(all(l)) => true  sof I is the empty list,

1o Goal |, compute x < allil), yielding the primitive program segment true. This segment
solves our problem in this case.

We have yet to consider the case in which [ is nonempty. This requires the formation of a
recursive call, which will be discussed in the next jection. However, at this point, we know that
the program will have the form
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lessall(x ) <e= if empiyl)
tAen trug
else

Case analysis in theorem proving has been emphasized by Bledsoe und
Tyson (1977}, Other program-synithesis systems thal form conditional
gxprassions by case  snalysis have heen implemented by Luckham and
Buchanan [1974) and Warren [1976]

B. Ths Formation of Recursive Calls

We illustrate the formation of recursive calls oy continuing the construction of the lessall
program. Recall thai it semains t0 consider the case in which [ is 2 nonempty hist.

Casa [ s nonemply. lu this case we fail to achieve Goal 2, to prove that ! is empty, and
therefare we look io: soene alternate means for approaching Goal |, computs x < ali(l).

Another rule that apolies 1o Goal | ts the all decompoatition rule
P(all()) > P{Aead(l)) and P(alltaii{!))  if [ is a nonempty list .
This rule imposes Lhe condition
Goal 3: prove ! is z nunempty list,

which Is satisfied tmmcdiately becausc we have assumed in our case analysis that { is nonempty.
The rule. therefore, iransforms Goal | inwo

Goal 41 compule x < Asad(/) and x < alltail])).

To compute the tiuth value ~f x < Aeadli) Is s:mple, because x and [ are inputs, and hoad is
2 primitive consiruct. [t rematus, therefore, to achieve

Goel 6:  onmputs x < sllteil))) .

Note that this subgoal is an instance of our original Goal |, to compute x < 2i/), with inputs x

and { repirced by x and teiXf). This is an opportunity for applying the recur sion—formation
rule.
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in general. suppose we are to deveiop o prograrn whote specifications are
of form

flx) <= compute P(x)
where Xx} .

in which (Xx) 1s a concition but F(x) ray . any expression in the
specification language. Assuine we encounter a subyuval

compute P(f)

that is an instance of the outpui specification compute P(x) Tien we can

attempt to achieve thiy subgoal o, forming a rxcursive call fir), because the

program fix) s intended to compute P(x) for any x that satisfies Xx). To

ensure that the introduction of this recursive call i3 legitimate, we must
verify two condit,ons:

® The= intut condition, Qr), which establishies that the argument ¢ of the
recursive call fr) satisfies the required input condition of the desired
program; otherwise, the program f i not guaranerd tc yield the expected
output.

® A terminution condition, which ensuiss that tive recursive call cannot
cause i1 infinite computation. A recursive call car fuil to ‘erminate f its
execuiion leads to another recursive call, which leac's to another, and so on
ind=tinitely

The termination condition is expressed n terms of the “well-forncled
set” concept, which wi'{ be explained in a later sectin devoted exclusively
to termination. In the meantime, we will appesl to intwitive srgumena to
establish termination.

Note that to ensure that the recursive call fir) be arimitive, we apply the
recursion-formation rule only when the argument ! it-eli’ is primitive.

Let us return to cur example. The recursion-formation rule observes that Goal §, to
compute x < all{taili}), is an instance of our outpw ipecification, »' < al/), with inputs x and {
replaced by x and tall(l), therefore it proposes that we achieve this goal with a recursive call
{es56lKx ted'(). For this purposs, the rule imposss twe conditions, tive input condition

Goal 8:  prove teXl) is a Mst,

and the termination condition
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Goal 71 provs lessad(x tadl(l)) lerminates.
The 1nput cundition that (ail(/} 15 a hai ran be proved directly by invoking a transformaion
rail(l) s a iy => rrue if {15 alist,

a basic rule describing hst structures. Tu achieve the terrmination condition is also
straightforwara, because the argument (ail(!) of the recursive call is a proper subhist of the
Input /; therefore only a fimite number of recuriive calis can occur before the second argument
18 reduced ‘o the empty hst. Conrequently, we are permitted to in‘roduce & recursive call
lessall(x tail()) ar (his pont. This satisfies Goal 5 Goal 4 1s then satisfied by the program
segment x < head(!) and lessall(x tail(l)) This segment is composed entirely of primitive
constructs of our target Ianguag!.

We have succeeded 1n finding primitive orogram segments tha. solve our problem in bath
cases, whether ( 1s empty or not. Therefore the condit:onal-formation rule combines the two
program segments into a conditicnal expression. The final program is

lessali(x 1) <== if empryll)
then true
olse x < Aead(!) ond lessall(x tall(’)) .

The above technique causes the formation of a recursive program. If we are worving in a
target language that does not admit recu.uion, it is necessary to transiorm the program further,
to replace the recursion by another repetit.ve construct. In many cases, a recursive program can
be transformed into 25 sterative program of comparable complexity. In the worst case, we can
always replace a recursiv» procedure with an iterative equivalent by the explicit introducticn of
a stack.

The abova recursion-formatior rule is the seme as the “foiding” rule of the
Bu:-stall and Derlington [1977] sysiem for the tranetormation of rocursive
proarams. Thoir system does rot check the input and termination conditions.

C. Termivation

in the preceding sxample we relisd on intuitive arguments to estabksh the termination of
the program we constructed. In fact, for that eximwle, the termination argument was quiie
straightforward. In this section, we will consider a general machanivm for proving the
termination of a recursive program at the same time & K is being constructed. We will
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‘Hustrate this mechanism vith an example for which the termination proof is somewhat more
subtie.

The program we constuct is intended to compute the greatest common divisor, ged(x 5), of
two nonnegative integers 3 and 9. 7 he specifications, as indicated in Secticn 1A, 2re expressed
as

grd{x y) <== comnute max{z : zix and 1}
where :: and y are nonnegative integers and
tmwUOryw 0.

Recall that the input conc ition x » 0 or y = 0 is impcsed because the ged i3 not deiined when
both its a:Tuments are zer:.

The cutput specificaticn is expressed in terms of the set constructor {u : F(w)}, which is not
primitive  We therefore a:tempt to transform it into an equivalent primitive description.

We aitume that the followir~ rules about the integers are included among the
transforrnations of our sys sm:

upe>trus ifre0

(every integer divides 0) ,
uls gnd uly => (v and upy-v

(the common d:visors of v and & are th» same as those of v and w—v), and
max{u: uw)j=>1 if 2is a positive integer

(every positive fizteger is i1i own greatest divisor).

As usual, our first goal is deriver' Jdirectly from the output specification:

Goal 1: comiute mex{z : xix end 1y} .

There mie at least two rules that maich the subexpression zix end riy; they are the logical
rule

PendQ=>Qend P
and the numerics] rule

up and xjw «> xp» end upp-v .
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Either rule will lead to a successful program; supps se we attempt the logicui rule first. Then we
develop the subgoal

Goal 2: compute max{z : zly and rix] .

Goal £ 15 an ‘nstunce of Goal | itself, with x a:d y replacad by y and x: therefcre, the
recurston-farmation rile ~tt mors to satisfy Goal € w'th a recursive call gzdy x). To ensure
that this step 1t leg-lirnate, th+ rule imposes ai tnpat ¢o *drtion

Goal 3: prove 9 ind x are nonnegative integers anu
y=0urx=0

obtained by replacng x and y by ¥ and x, respectiely, in the input condition of the
specification  This conditton is easily established, becaus2 ! 1s an equivalent form of rh» given
input condition itself  Furthermore, the recursion-form atn rule imposts a  termination
condition, to ens re that the propsed recursive call termina 1

Goal 4: prove ged(s x) ternanates.

We will begin by attempting (o use the same sort of informi.l argument we umployed in the
previous exampie proving the terraination of this recursive call. Later in this cxample, we will
be fo.ced to intrcruce the more formal and general apparatu.. 1o establish terminstion, it
suffices to achieve

Gow: 8t prove y <x,

because x and y are both kiown ic De ronnegative integers (b, the input condition), and
because y is the first argument of the "ecursive call

If we establish Goal 5 only a finite sequence of recursive calls can occur before the first
argument is reduced to zero. However, we cannot prove or disprove Goal % x and 9 are both
input variables, anv. we havz ro way of knowing if one of them is bigger than the other. As
before, the conditional-formaticn rule causes a case analysis to be intreduced.

Case y < x : Here, both the input condition and the termination cndition for introducing
the recursive call gedy x) are satisfied. W2 have thus completed <ne branch of the case
analysis; we have yet to consider the akternate case. However, at this tage we know that the
final program will have the form :

gedix 3) <ee ify<x
then gedy x)
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Case x s v Here, 1t 15 not ‘egitimate to in‘roduce the recursive call gcd(, x) to achieve
Goal 2. because tre termination condition i3 not satisfied  Assuming that wo other rules succeed
in reducing Goal 2 to a primitive segment, we are ‘ed "0 consider alteriiate means of achieving
the ortginal Goal | in this case.

Recal! that amwong other rules that applied to Goeal | was the numerical rule
ulp and uly => ujy and upy-v .
This rule causes the generation of a new goal
Goal 8: compute max{z : 2k and 19—} .

T his goal has the same form as the onginal Goal 1, bui with the inputs x an y replaced by
5 and y-x; the recursion-formatior, rule suggests satisfying Goal 6 with the rccursive call
ged < y-x)

To ensuie that the arguments x a..d y-x are legitimate, the rule imposes the tnput condition

Goal 7: prove x and y-x are nonnegative integers and
x=wOoryxw0;

to guarantee that the proposed recursive call will terminate, the rule alsc ‘mposes the
termination condition

Goal 8:  prove ged(x y-x) termirates.

Let us examine Coal 7 first: that 3 and y-x are nonnegative integers follows from the
original input speciiication and the case assumption x < 3 the condition

xwOoryxw0
leads us to attempt to prove sither

Goal B: prove x » \,

Gool 101 prevs y-x « 0.

We fail to prove or disprove Goal & therefore, the conditional-fermation ruls introduces a
case analysis.
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Case x » 0  Here the input condition jor the proposed recursive call ged(x y-x) 13

satisfied, It remains to show the termination condition (Goal 8)

If this were the oniy recursive call (n the vntire program, its terminatiors would be eay o
vstablish.  After all, we know in this case that x is a positve Integer and that y-x i3 a
nonnegative integer, furthermore, y-x 1s strictly less than thz second wtput y. Thus, each
execution of this recursive cali reduces the second argument, and only a ‘inite number of
execulions can occur befcre the secend argument ts reduced to zero. However, the program we
are developing aiready contains anather recursive call Jod(y x); we must consider the possibility
that an infinile computation iINvolving both recursive calls might occur.

This 1s a -eal possibility, because the recursive ~all ged(y x) actuaily increases the second
argument. We therefore must treat both recursive zalls at once, ard this requires a more
sophisticated mechanism ;or proving termination conditions.

In general, to prove termination we employ the concept of a well-
founded set, one whose elements re ordered in such a way that no infinite
decreasing sequeice of elementr can exist. For example, the nonnegative
integers, under the usual le-s-'han ordering, constitute a well-foundec set,
whereas the entire set of integ e15 does not

To prove the termination of a recursive prograrm f(x) with recursive calls
i), firl), . fity), we show that x, 1y, {, .... ty all belong to some

well- founded set W, ordered by a relation £ and that

£ <{x, 3<%, ..., andt,<x.

This concition suffices to ensure termination, because if there were a
nonterminating computation, it would contain an infinite ssquence of
recursive calls, whose arguments would constitute an infinite decreasing
sequenc: In the well-founded set. But a “vell-founded set contains nu
infinite decreanng sequences.

By the method we have just described, to establish the termination of a
program f{x) with many recursive calls ft\), fit3). ..., flty), we must show
that each argument {; is less than the original input x under a single weil-
founded onjerng <. This implies that, during the synthesis of the program,
whenever e introduce a new recursive call f{r;,) we must show that #; < =

under the same ordering < which we have used to establish the isrmination
of the recarsive calls ft)), Atp), ..., St} introduced previeusly. If we
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cannot. we must modify the well-founded set W and the ordering < so t%ar

1, < x. while ensuring that the relations ¢ < x, 1, < x, v iy {x are

still satisfied

It the program has more than one argument, the order:ng < of the well-
foundeG et may need to compare pairs or tuples of arguments. For this
pu pose it 1s convenient to use the lexicographic ordering between tuples.
For j.airs of nonnegative integers, for example, this ordering is defined as
foliows.

(xy x;) <y, 990 fxy<g,,oraf x,ay and x5 <y,

Thus, the second components are ignored uniess the first componeats are
egual This lexizographic ordering can be shown to be well-founded: there
exist no iniinite sequences of pars of nonnegative integers that decrease
under this ordering. A general notion of lexicographic ordering on
arbitrary tuples of elements can e defiriad in a similar way.

In the ged example, we have alreadly provea the termination condition of the recursive call
gcd(y x) by showing that the first argument 3 of the recursive call is less than the first input x;
in other words, we have used the ordering < defined by

(u) 4p) < (v, o) fu <y .

This 1s a well-founded ordering between pairs of nonnegative integers. Thus, in proving the
terminatinn condition for the proposed new recursive call gedix y~x), we attempt to show that

(x9-x)<(xy)

under this ordering, i.e, that x < x. This attempt fails; the first argument is not reduced by the
proposed recurnive Zall. We therefore try to modify the ordering < to establish the termination
concition for the second recursive call as well

The first urgument x of the proposed recursive call gedx y-x) is nonnegative and is
identical to the first input x; we have also seen that the second argument y-x is a nonnegative
integer (since we have as:umed that x < 9) and is less than the second input 9 (since x is
positive ir: this case).

This suggests that we modify the ordering < (o be the lexicographic orderirg. This ordering
wiil allow us to prove the termina‘ion conditions for both recursive calls.

The use of the recursive call gcd(x y-x) has been justified in this case, because its input
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condition (Goal 7) and its terminatson condition (Goal 8) have been estabiished. The partial

program we have constructed so far 13

ged(x y) <== tfy < x
then ged( y x)
e3¢ ifx w0
then ged(x y-x)
else

We have yet to consider the case i1 which x = 0

Case x = 0 In this case, the recurston-formaticn rule fais to introduce the recursive call
ged(x »-x) because we cannot establish 1ts termination cordition; inc -ed, if we nid iniroduce
this recursive call, the program woulc certainly not terminate. Instead, we ook for some

alternate means of satistying Goal 6,
compute max{z 17 :nd th-xj,

which, since x = 0, 15 reduced to

Goai 1.: compute max{z : 1i0 and zy} .

By application of the three rules
W e> true ife=0,

trueand P > P, and

max(u - ule} «> v 1f vis a positive integer

in succession, we obtain

Goal 15 compute ).

The last rule could be applied because in this case x = 3, and thus 3 » G {ince x w O or 9 » 0),

and y > 0 (since y » nonnegative).

Now 9 is a primitive program segment that solves our problem in this final case. The

complete ged program is

gedix 9) <o= ifycx
then gedy x)
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Tius 15 a version of the “subtractive” ged algeritum.

Well-focnded orderings were first invoked to - .e pruperhies of
racirai, s pruglems Dy turstan {1969  1he theorem-proving sy stem .t
Boyer and Moore [1977] aisc cunstructs Isxrcographic orderings.

V't particular program we obtain depends on the transformatien rules we hase it our
disposal and the “hoices we make during the derivation process For exa.ngle, \f we had the
additional rules

gedlu v) => 2. gcd(ui2 vf2)  if u and v are even,
god(u v} «> ged(u/2 v)  if w1s even and v s oad. and
gedu vy => ged(u p/2)  1f wis odd and v 15 even,

we could have ot:tained the "binary” ged program

ged(x y) <== 1 tven(x)
tAen if even(y;
then 2. ged(x/2 yi2)
else ged(x{2 y)
else if even(y)
then ged(x 3/2)
elseify<x
then ged(y x)
ese ifx a0
then ged(x y-x.
tise y .

This program turns oui to be quite efficrent ‘or imple~ntsiion on a binary machine, in which
division and multiphcation by two can e represented as right and left shifts, respectively (ot
vice versa, depending on which side o the machine we are standing on). Of course, nothing in
the technique guarantees that an ef/icient program will be derived.

D. S8trategic Controls

Up to nov we have deveioped programs by applying transformation rules to gnals without
considering how 'o select the rule to be applied; the proper rule seemed to appenr by magic
when 1t was relevant. If we have hundreds of rules at our disposal, how de we retrieve the
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applicable ones? Of the many rules that can be applied :n a given situation, . all will lead to
a primitive program If mare than one ruie applies to a goal, how do w: dectde which to
attempt?

Ii the program 13 being developed by hand, we can rely on the programmer’. knowledge and
intuition  However, 1f we expect this process to be performed by an autorsatic s mthesis system,
the basis for our strategic cecisions must be made exphcit. In this scction, we will discuss some
sirategic methods for directing the transformation rules

The strategic controls that we have incorporated into our own program-synthesis systerr: may
be cuthned as follows. When a goal 1s proposed, the riles that seem applicable are selecte:l by
fiftern- directed tnvocation  Of all the telecied rules one 13 chosen according to a glven r e
ordering, this rule is attempted first. Each rule muy be provided with a nu nber nf strategic
condit.ons, which prevent it from being applied .oolishly If the strategic ronditions are not
satisfied. or 1f the rule does apply but does not lead to a primitive program, we backfrack and
consider the next applicable rule chosen by the rule crdering. Let us discuss each of these
methods 1n more detail

® Partern-directed invocation: The rules are indexed by the patterns to which they can be
appliad.  For example, the o/l decomposition rule

P(all(l)) => P(Aead(!)) and P(ali(tail(!)))  if | is a nchempty list

ts classified according to its left-hand side. P(all(l)). When a new goal is proposed, all those
rules whose patterns match the goal ar» retrieved. Thus, the above rule ard the vacrous rule

P(all(t)) «> true  If ! is the empty list,

would both be Invoked when he goal compute x < al/l{l) is proposed. This method of
retrieving a rule wren i i na applicanle 1s termed pattern—directed invocation.

® Rule ordering. It often happe1s that more than one transformation rule will match the same
goal. However, symetimes we can decide a priori that one rule should be aitempted before
another. For example, if the vacuous rule

P(allD) => true if { is the empty list

and the recursion-formation rule both match tne same goal, the vacucus rule shouid aiways be
attempted first; the recursion-formation rule imposes the input and termination conditions,
which may be time—consuming to verify. Furthermore, if both rules do apply, the program
segment trus is preferable to a recursive cail.

Cn the other hand, if the decompusition rule
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P(all(l)) = P{head(l)) and P(all{tail(l))  if {13 a nonempty list

and the recursion-formation rule both match the same goal, we piefer (o attempt the recursion-
formation rule first, the decomposition rule produces a nonprimitive subgeal more conplex
than the oniginal goa), while the recursion-formation rule is guaranteed to produce a primitive
recursive cail

® Strategic conditions We have seen that a transformation rule may impose logical conditions,
which must be satisited to ensure a vahid zpplication of the rule. By the same token, a rule
may have strategic conditions, which prevents it from being applied foolishly. For example, in
introducing a conditional expression if P then 5 else 53 or the recursive call flt) we imposed

the strategic condition that the condition P or the argument ¢ be primitive; this was lo ensure
that the resulting expression would itself be primitive.

Two more examples: if we introduce the logical rule
PandQe->Qand P,
or the integer rule
ulv and upy => ulp and ulp-v,

we must give them each strategic conditions to ensure that they are not applied repeatedly to
the suexpressions that they themselve: produce; otherwise, we may obtain an endless sequence,

eg.
PandQ, Qoend P, PandQ, ... .

Cuod stiategic conditions improve the general performance of a »ystem, but they may
prevent i from finding some trickier, less intultive solutiors.

® Backiracking: If applying one rule to ¢ goal fails to lead to a primitive program segment,
the systsm will bachtrack, and attempt to apply other applicable rules to the same goal.

For instance, in constructing the gcd program, we applied the rule
PandQ=>Qeand P
to Goal |,
compute mex{z : zix end 2y},

to form Goal 2,
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coinpute max{z : zjy end 1k} .

In the case in which x s y, we failed to derive » primitive pregram segment from Goal 2;
therefore, we backtracked and considered other rvler that riatched Goal |. As it turned out,
the rule

uly and ujw => L and ulp-v
applied to Goal | to yield Goal 6,
compute max(z : zix and ty-x} .

In addition to these general strategic methods fo: controlling transformation ruies, there are
special strategic techniques amociated with particular rules. One of these techniques is the
sub ject of the next subsection.

Pattern-directed invocetion was iniroduced as o festure of the PLANNER
programming language for erlificiel-intelligence resesrch (Hewitt [1971).

The Redundant~Test Strategy

The conditional-formation rule will introduce a case analysis when we fail to prove or
disprove a condition P. We consider separately the case in which P is true and the case in
which P is false, construct program segments $; and s, to handie each case, and combine these

segments into the conditional expression

if P then 3 olse 353 .

However, it Is possibie that one of these ssgments, say s3, does not depend on the corresponding
case assumption, that P is fales. In this situation, the segment 55 itsell will solve our problem
regardiess of whether P is true or fales; constructing the other sagment 5, would be a wans of
effort.

The redundant—test strategy prevents such irreievant conditional expressions from being
formed. According to this trategy, in introducing a case analysis we always consider first the
negative case, in which P is false. If we then scceed in constructing a program segment sg that
soives cur problem without ever using the case assumption that P Is fales, then this segment
solves the entire problem. We do not consider the positive case, in which P is true, and we do
not generats a conditional expression.
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We always consider the regative case first vecause in the positive case, the assumption that
P 1s true wili 2lway: be used by the rule thal imgposed the cundition; therefore, we can never
escape considering the negative case

For example, suppose. in constructing the gcd prugram, we are given the rem rule
uly and ulw => ufy end ulrem(w v) ifve0
instead of the minus rule
ujy and ujw => ufy and vw-o,

where u, v, and s are noinegative integers. (The rem rule states that the commeon divisors of
v and v are the same as the common divisors of v and rem(w v).) Recall that in developing our
previous gcd program. we iniroduced a case analysis on the condition y < x in an attempt o
introduce a recursive call ged(y x). Now, according to the redurdant-test strategy, we will first
censider the negative case, in which x £ 3 In this case we will apply the rem rule and

eventually develop ihe program segment

ifx =0
tAen ged(rem(y x) x)

else y

without ever using the case assumption that x s 9. Consequentiy, we nzed never cunsider the
positive case, in which 3 < x. The above segment solves the entire problem, 3o our final

program s simply

ged(x 9) <= ifx w0
thea ged(remy %) x)
olse y .

This is a version of the Euclidean gcd a.xorithm.

In describing a program derivation 'n which a case analysis i3 introduced and later
eliminated by the redundant-test strategy, we will often omit mentioning the cuse analysis
altogether. For example, in developing either of the above ged programs, we introduce a case
analysis on the condition 9 = 0 as well a1 on ‘he condition x = 0; this case analysison 5 = 0 is
eliminated by the redundant test strategy, and r.ever appears in our discussion.
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2. EXTENSIONS OF RECURSION FORMATION

A. QGeneralization

Recursive calls have been introduced +iien a new subgoal is discovered to be a precise
instance of the top-ievel goal But what if the subgoal is an instance not of the top-level goal
but of 2 somewhat more generai expression? In such cases, it may be advisable to construct a
new procedure (or subroutine) to compute the more general expression, and to achieve our
original goal by a cal! to the new procedure. Although the new procedure attempts tc solve a
more general problem, that problem may nevertheless be easizr (o solve.

Generaitzation is already comnwonplace in the theorem-proving context: paradozically, it is
ofter. necessary, in proving a theorem by mathematical induclich, to prove a more general
theorem, 5o that the taduction hypothesis will be strong enough to prove the inductive step. In
program synthesis, induction is anralogous to recursion: we attempt to construct a program to
compute & more general goal so that the recursive call will be strong enough to achieve the
desired subgoal.

A< before. we will explain the method in the context of an example. We will not follow the
precice order dictated by the strategic controls in constructing the program. Because we have
considered a similar program, lessall(x 1), previously, we will be a bit more brief in our
exposition.

Suppose we want to construct a program Avadrail(!) to test whether the head of a nonempty
hist ! is less than every element of its tail. The specifications for this program may be expressed
as

headtalll) <== compute Aead(l) < altaill))
where [ is a nonempty lst of nuinbers.
Our top-level goal i1 then
Goal 1: compute Assd() < altell))) .
Recall that we have introduced two rules that explicate the e/l constriict: the vacuous rule
P‘alXD)) => true if ! is the empty Hat,
and the decomposition rule
P(alKD)) => P(Aead()) and PlalXtaill)) If | i3 2 nonempty tist.

These rules, together with the conditional-formation rule, account for the introduction of a case
analysis inte our derivation, and the subssquent formation of a conditional expression in our
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finai program In the case that (wi(lj is empty, the vacuous rule reduces the jyoal 10 the
primitive segment true; \n the other casz, in which tail() 15 not empty, the decompiition rule
reduces the goal ts computing the con unction of two ex pressions: :

Goal 2: compute A:ad{!) < Arad(:aii])}
and
Goa! 3: campute Aead(l) < aliltail(tailil))) .

Goal 2 is aiready a primitive expression. We have ye: to consider Goal 3; howuver, the
progiam constructed so L1/ is

Aeadtail(() <==if emptyltai())
then ITue

else headil) < head(taiX()) and
An attempt to satisty Goal 3 by the recursion-formation rule fails, because Goal 3 i3 not a
preci-i instance of Goal |,
compute Aecd(l) < allltaikD) .

the ! on the ieft-hand side of Goa! | corresponds to [ in the subgoal, but the ! on the right--
hand side corresponds to raiX?. However, Goal 3 is an instance of a more general goal,

Goal | (generalized): compute Aead(l)) < alitaiXlp)) |

obtained from Goal | by introducing new variables [, and {3 :n place of the left- and right-
hand occurrences of {, respactively. This suggests thal we atterapt to construct 8 procedure
Assdiasigen(i) l3) to achieve the generalized Goal | instead of the original versicn. Thus, the
output specification for the new -vocedure will be

Aeadrailgenil, ty) <=~ compute Aedll,) < siltai],)) .

This procedure will test waether the heac of !, is less thun every clement of the tatl of ;. where
l| and ,, may be distinct lists.

We can now set aside our original derivation, and satisly the original Goal | by a =l i *h=
more general procedurs instesd; the resulting Aesdtell program will be simply

Avadiail)) <o= Aoadsailgeni] D) .
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It remains to construct the inre generil procedure Aeadtailigen, ie. to achieve the
generalized Goal |. The derivation of th: geievalized goal will attempt to mirror the original
derivation; our hope is tha: this time the top-level goal is general znough so that the previous
obstacle encountered in ‘ntroducing the 1 cursive call wiil be overcome.

In general, suppose we are developing 3 program whose specifications
are of form

flx) <== compute P(a(x))
where Qx) .

Then our top-level goal 45 of form
Goal £:  compute Pla(x)) .

Suppose that in developing th> program we encounter a subgoal
Goal B: compute P(Xx))

that is not an instance of Goal A, but that is an instance of the more
general expression

compute P(y).

Then the generaliration rule proposes that we attempt to construct a new .
procedure whose output specification is

£(y) <== compute P(y) .

We can thus ;atisfy the oviginal Goal A by a cail to the new procedure; the
resulting program f will be

£x) <== glolx) .

To ensure that the calis to the new procedure g will be primitiva, we do
not apply the generalization rule uniess (x) and Kx) are primitive.

The top-level goal of the new derivation will be the generalized Goal A,
compute P(3). We will altempt to mirror the staps of the original
derivation; that is, we try to apply o the new goal the same rules that we
applied earlier to the original Goal A in deriving the original Gaal B. Our
hope is that the goal \n the new detivation correponding 1o the original
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Goal B will tuin out to bz an -stance of the generalized Goal A, and that
1t will ce achieved by a recursi: e cal' to g. How=ver, there i3 nc guarantee
that the same sequence o rules will be applicable to the generalized Goal A,
or that if we succeed in cerving a generalized Goat B, it will turn out ro be
an instance of the geneaiized Goal A If the derivanon fails for uither
.eason, we abandon the generalizaiion and look for other ways to achieve
the original Goal B (This is a very conservative strategy. a more
adventurous approach would be tu try to use as much as possible of the
original derivation, but to seek other ways of progressing when the original
derivation fail)

We have jostponed describing tine input specificatior for the new
procedure g. It 15 to sur advantage to have as few conditions in this
specification as posiibl, because we must check each of these conditions
every time a procedure call to g is introduced. For this reason, rather than
attempting to formulate the new 1nput specification in advance, we prefer to
proceed with the derivation of g and add to the input specification only
those conustions that ar: needed to compicte the derivation. In other words,
we form the inpui specification for g incrementally.

Thus. if in the cotirse of the derivalion we fail to prove a desired
condition S(y), we con:ider adding this condition to the input specification
of g. However ever' time a call glu) to the procedure g has been
introduced previcusly in the synthesis, we must go back and check that the
additional input condition S(u) it satisfied. In particular, because the main
program

J1) <ee glal))

contains a-procedure call gls(x)), we must check that condition 3(afx)) is
satisfied.

Often, conditions are added to the input specification simply to ensure
that the output specifi:ation is meaningful.

Returning to our example, we attempt to construct the more general procedure
Asadteilgen(l, i3) that achieves the generalized Goal |,

compute Assdl/,) « a'Ntailli,)) .
However, this goal is not meaningful unless

1, and I3 are nonempty lists.
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We cannot prove th's cndiion about our arbitracy nputs !y and ly; iherefore, we must add It
to the :nput specific uicn fo: the new procedure. Because the main program teadrail{!) contains
the call Aeadtailge (! ), we first check that the :urguments ! wnd { for the call satisfy the
proposed conditter. 7 hus, we have to show that

{ and / are nonempty lists,

[ 1s a nonempty lisi.
But this is exactly the input specificatiun for the mai program.

We attempt to apply to the gensiaiized Goal | ih: same sequence of rules that we applied to
the originai Goal | exrlier. Applying the vacuous rile in the case where tail(l3) is empty, we
derive the primitive program segment true; anplying the decomposition rule in the case where
tail(l,) is not empty, we decompose the generalized Goal | irto computing ihe con pnction of
two expressions:

Gea! 2 (generalized):  compute head(l)) < Aradtali(ly))
and
3oal § (generalized): compute Ased(l|) < alltaitaill,))) .

The new Goal 2 is a primitive expression as before, however, this time the new Goa! 3 is a
precise instance of the generalized Goal |

compute Acad(l ) < allrail:y))

therefore, the recursion-formation rule proposes that we achieve the generalired Goal $ by a
recursive call Aesstatigen(l, 1al{ly)) to the new procedure. The arguments !, and teillis) can be
shown in this case to satisfy the input condition that

{, and taii(l,} are nonempty lists,

because !, and [y ars nonerpty Yists (the new input condition) and teili;) is not empty (the case
assumption). The termination conditici is established becauss the second argement failly) of
the recursive call is a »:blist 5i the second input {p.

The complets final progres 5 ihen

Aesd1ailll) <o Aesdtallgenil O
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where
Aeadiailgan(ly [p) <a= if empiyliaiilly))
tAen (rue
elsehead(l|) < Aradiiailily)) and
Ascdrailgen(l, taikly)) .

When it is successful, the generalization principle results in the construction of a stronger
program than originally required. If the new specifications are (oo general, however, the
corresponding program ca#i actualiy be more difficult to construct than the original. For this
reason, we must 1mpose conser vative strategic controls on the application of the generalization
principle.  For all the examples in this paper, the only generahzations required Involve
replacing a constant hy & variable, or one occurrence of a variable by a new variable, in
general, it 1s necessary to replace more complex terms by variables.

For examples of theorem-proving systems thet y.sarslize the theorems
they sre sbout to prove by induction, see Boyer srvi *ioore [1975) Brotz
{1973} and Aubin [1975] . Sikiossy [1974] propoied spplying this technique
to program synthes:s.

B. The Formation of Bubsidiary Procedure:

We form a recuriive cali when a subgoai is discovered (0 be an insanc of the top-level
goa'. But what if the subgoal is an instance, not of the top-level gesl, but of some other
subgoal? in this section. we show how such a situation can lead to the formation of tubsidiary
proceduiss (or subroutines) .

As before, we will consider the gencral case in the context of a specific example. The
program to be construcved, ellal! m), is intended to test whether every member of a given lisi !
of numbers Is bess than every member of another sxch kst m. The specifications can be
expressed as

altell m) o= compute aill)) < alim) ,
where ! and m are lists of numbers.

T he top-level goal Is thus
Gcal 1;: compute alN)) < ellm) .

A3 before, ve will empioy the vacuous rule
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Plalil)) »> true  1f {13 the empty it
and the aecomposition rule
P(a2U{)) «> Plhead(l)) and P(all{tail(l))  if [ 13 a nonempty list.

In the case in which [ is empty, the vacuous rule reduces Goal | to the primitive prcgram
segment frue 1n the other case, the decomponition rule reduces the goal to ~emputing the
Con Junction of two expressions:

Goal 2: compute Aead(() < ali(m)
and
Goal 3:  compute ali{rail{()) < al(m) .

Gnat 8 15 discovered to be an instance of the top-level goal, with the inputs { and m replaced
by tail(l) and m. Therefore, the recursion-formation rule repince: this goai by a recursive call
lessalltail(l) m), the input condition is easily checkid, and the termination condition is proved
because (ail!) s a proper sutlist of {.

We have yet to consider Goal 2; the program constructed so far has the form

allall{l m) <=« if emprAl)
them true
e .. and
allatitaill) m) .

Goal 2, compute Arad{!) < all(m), i decomposed in a tanner similar .0 Goal 1. in the case
where m is empty, the vacuous rule transforms this expression to the primitive prograra
segment true. In the other case, the decomposition rule reduces this goal to computirg the
con junct:on of two expressions:

Goal 4: compute Aradll) < Arad(m)

Gom 8: compute Aead(() < ali1aiim)) .

Goal 1 is a primitive expression th.: can be computed directly. Goal 8 is an instance not of
the top-level gual but of the intermediate Goal 2, compute Assd(l) < eli(m), with the inputs !
and m replaced by ' -nd tetm). This suggests that we might uchieve Coal B by a recursive call
not to the entire program alisll but to the segmant of elisll thsi achieves Goal 2. For this

purpose, we must introduce a subsidiary procedure AezdelX! m) corresponding to this segment.
Thus, the output specification for the new procedure will be
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headall{l m) <== compute Aead(l) < all(m) .

(This procedure tests whether the head of / is less than every element of m ) Then we can
achieve Goal 3,

compute Aead(!) < all(tail(m}),

by a recursive calil headall(l tait(m)) to the new procedure.

I general, suppose we are developing a prog:am whose specifications
are of the form

Ax) <== compute P(x)
whare X»),

and we encounter a subgoa’
Goal 8: compute R(D),

which 1s an instance of some previously generated subgoal
Goal A: compute R(x).

‘We assume that Goul A it ,ome aicestor of Goal B other than the top-
level goal. The procedure—formation rule propoes that we introduce a new
procedure g whose output description is

£(x) <o= compute R(x),

30 that we can achieve Goal B by a recursive call g(). Then we set zude
the original derivation for Goal A, and achieve the goal by 2 call g(x) to
the new procedure.

A3 in the previous section, we prefer to formulate the input
specifications for the new procsdure g incrementally, rather than attempting
i0 express this specifiration in advance. Again, i is %0 our advantage to
have as few corditions % possibie in the input specification for g, because
each of these conditions must be checked every time 2 call to ¢ i
introduced. We add to the new input specificaion anly thaoe .ondlsons
that are nesded in the course of the derivation cf .

Thus, if in constructing the procsdure ¢ we fail 12 prove soms condition
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S(x), we conuder adoing this condition to the input specificarron for g
However, every lime a cail §() to the new froce’ure has been introduced
ezrher 1n the synthesis we must g9 back and check that the additional
input condition S(u) 15 satisfied  In partilar, because te main program f
now contains a call g{x) to achieve Goal A wz ™ust check that S(x) holds
when this call 1s executed For this purpose. we ray use the input
speaficitions for [ or any of the case isumptions that c-cur in the

derivation of Goai A

Goal A. compute R(x), now becomes the top-level goal in the
construction of the procedure g Initially, we mirror the steps of the
original Gerivation, that 15, we apply In the new derivation the same
sequence of steps that we applied originally, adding conditions to the input
specification of g as necesuary. Go2! B, compute R(r), will again be
introduced, and will again be an instance of Goal A, compute R(x}. This
time, however, Goal A is the top-level goal, so the recursivn-formation rule
can be applied to satisfy Goal B with a recursive call g(7), provided that
the input and termination conditions are satisfied. This input condition for
such a recursive cail i the same as usual, however, the terminaiion
condition is more complex, and will not be discussed until Section 3D.

We may need to ach eve other goals to compiete the derivation of the
main procedure f 1nd the subsidiary procedure g. Of course, in continuing

these derivations we mzy introduce stili more subsidiary procedures.
Returning to ovr allall examgle, recall that we developed a subgoal
compute Aead(l) < alXtaii(m))
(Goal 5). which we observed to be an instance of its ancestor ssbgoal

compute Aeadll) < all{m)

as

(Goal 2). Therefore. the procecu-e-formation rule suggests introducing a new procedure,

Avadall, whose output specification i

Aeadalll m) ce= compiute Acsall) < slim) .

Thcpmnlprqnmdexﬁpuondenvdl‘mGoal?lsutuuqdmgwunwm

by a call Acadelil m) to the new procedure. Thus, the final sliail program is

allal ®) <oa lfﬂm
tAen true
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else Aeadall(l m) and
allall(tail(l) m) .

We have yet to completc the construction of the subsitiary procedure Aeadal  The top-
lr:vel goal for the procedure s Goal 2,

compute Aead(i) < allim) .
This expression s not well-formed unless

{ and m are hsts
and { 1s not empty.

By our incremental specification tachmiGue, we csasider adding these ronditions to the npu:
speciiwation for Acodall  Because a call hezaall(l m) has already been iniroduczd 1n the man
program ‘o achieve Goal 2. we must chack that these condiuons are satisfied when this <all s
made However, the first conciiion 18 the input specification for the main progran, and the
second condition holds Because Goal 2 was introduced under the assumption that [ is nox
empty. Therefore. tivese conditrons may safely he added to the input specification for headadl.

To camplete the derivation of the Aeadall procedure, we begin by mirroring the derivation
kazing from Goal 2 in the o7 iginal synthesis. We again introduce Goals 4 ana 5 Goal 5,

compute Aead(!) < all(tail(m)) ,
1s again an nstance of Goal 2,
compute Aead(!) < all(m) .

However, this ume Goa' 2 is the top-level goal, and the recursion-formation 1ule can now
introduce the recursive call Avadall{] teikm)). (The input and termination conditions for this
cal!l are straightforward ) The complete program we derive is thus

adiall(i m) <= if empeyl)
tAen true
ols¢ Aeads!N! m) and
sllalltailil) m) ,

where

Aoadalll m) cme (f empty(m)
them true
else hesdl) < hoadm) and
Aeadalll taikm)) .
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Another E~ample

Using the same basic principles as w the lessall example, but employing some additional
rules for the set-theoretic domasn, we can construct a prograin o compute the Cartestan
product cart(s t) of two sets s and !. '] he speciiicaticns for this program are

cart{s t) <a= compute | (x %) xeiandy et}
where 5 and ¢ are seis

The rules for sets employed in this syntnests are the ¢mpry-set-formation ruie,
(u false) => |}

(where { } 15 the empty set). the union-formation rule
{u Plu)or Qu)} => {u: P} v iv. Ku)}

(where u denotes the union of tv .. sets), the equaliry—sitmination rule
fuuet) e

(where u and f are expressions with no variables ir comimon) , and the definition of the member
relation « We assume that the empty set { ], the functions Aead(s) and taiX(s), the union
function v, and the nofations for the singleton set {s} and the pair (s {) are among the
primitives of our target ianguige.

We will be very brief. in derivirg fae program from the specifications, we decompose the
output specification into the expresvion

f(xy) x=heg sdand s ac}!
{(xy):xcradll andyet},

corresponding to the case in which : is nonempty. The second subexpression,
v gl actalis)endyat},
can be computed by a simple recuiiive call certaiXs) ¢).
It vemains to compute the firs. subexpression, e,
Goal A: compute [(xy):x = heads)and g ot} .

This expression decomposes further, yielding




38 Extensions of Recursion Formation

{(xy).x e head(s) and y = head(r) j v
{(x 9 x = head(s) and 5 « tatls) }

in the case sn which ¢ 1s nonempty The first subexpression,
{0V x = Aead(s) and y = Aead() | .

reduces directiy to the primitive expression
[ {Aead(.) Read(t)) } .

It remains to compute the second subexpression, ie,
Goal B:  compute { (x §): x « Aead(s) and y e tailit) } .

Goal B 1s an instance of Gual A, therefore, we introduce a new procedure cartAead, whose
output specification is

carthead(s !) <= compute | (x y) . x = Acad(s) and y«t} .

(This orecedure computes the Cartesian product of the singleton set {Aeadis)} and i) To
ensure that ihis specification is well-formed, we are forced to introduce the condition

s and ¢ are sets
and s 13 not empty

as the input specification for the subsidiary procedure.

Then Goal A is satisfied by a call carthead(s () to the new procedure, while Goal B is
satisfied by a recursive call caiiAead(s tail(t)). The complete Cartesian produc. program is

cart(s £) <ua {f emprys)
tAen { )
else carthead(s 1) v
cere(talls) 1)) ,

where

carthoad(s 1) cos if empeylt)
then | |
dse {(Aeadls) headt))} L
carthoad(s taills)) .

Tt Cortesion-product oxemple is derived from Derlinglen [1978)
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C. The Generalization of SBubsidiary Procedurass

In our discussion of subsidiary-procedure formation, we Introduced a procedure only if i
subgoal (Goal B) 1s aiscovered to be a precise instance of a previously generated subgoal (Gcea
A) We further required that Goal A be a direct ancestor of Goal B (other than the 'lop—level
goal) However, what if Goal A is not actua’ly an ancestor of Goal B but occurs somewhere
else in the synthesis? O: what tf Goal B is not a precise instance of Goal A, but of a somewhat
more general expression? In fact, the techniques we have already introduced extend naturally
to this more general sit1ation, as we will see in nur next example. This example will also s~rve
to illustrate how program-synthesis techniques can be applied o transform an already-
constructed program.

Suppose we are given the following program reverse(!) for reversing *h elements of a list { :

reverse(l) <== if empty(l)
then nil
eise appenals everse(tail(l))
1:5t{head())) .

where nil 15 the empty list and append({, ;) is the program for appsnding the elements of two
hsts, given by

append(t, l3) <a= (f empixl,)
tAen lz
else cons (head(l))
append(tail(ly) {5) .

This reverse program is not very efficient because its execution may irivolve many calls to
append;, moreover, each tirie append is called it makes a new copy of its first srgument.

Let us consider the given rewerse program to be the specification for another r-verse
program. Even though we have a program t. cumpute the append Tunction, let us treat
append as a nonprimitive construct. Thus, we will be forced to transform our given program
into an equivalent program that does not use append. Our hope is that the resuking program
wili be more efficient.

We assume that we have the following rules that explicate the = ppend construct:
append(l) ly) => iy  if |, is the empty list

CPPﬂdh lz) => mu(Ml.)
eppend(tail|) lg)) If I3 13-2 nonempty Kat,

appendlappendll ly) ly) => appendll; appendlly ly)) .

and
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These rules are derived from the append program itscif. In addition, we will use the given
reverse program as a transformation rule:

reverse(l) = if empryll)
then nil
eise append(reversetail(l))
list(headil))) .
Wz will aiso apply several rule: baiad on the properties of list tiructures.
Our top-level goal is
Gosi 1: compute if empryll)
then nil
else a2 pend(reverse(tail(l))
list{head(?))) .

The “nonprimitive™ construct append appears in the eise branch of the gual. Applying the
trunsformation rules

Uist(yy 32 .- Ju) o> cons(y, listyz ... 95)) Wfn 2l
and

lst() => ndd
to the ¢/se clause, we obtain

Goal 2: conpute 1ppendireverse(talil)
consiAcad(/) nil) .

Applfing to the subexpression reverse(tailll)) the rule for reserse, and “pulling out™ the
conditional expression using the rule

SUf P then s else 1) => if P them fis)) else fls2) ,
we obtain
Goal 31 compute if empesiiail))

thsn append(nil cons(hoad(l) nil))
olse appesdiappondironisotailitalll
lse(Aesditall)i})

cons{hoadl)) nil)) .

Applying the rule
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append(ly l;) => { 1f {; 18 the empty list
to the then clanse, and applying the rule

cppendiappendll; Iy ly) => append(, eppend(ly ly))
to the else clause, we obtain

Goal 4 compute if eripryltailll))
then cons(head(l) nil)
elic append(reversetaii':ziil)))
apgend(list(head(ta: (1))
cons(hea() nil))) .

Let us focus our attention on the e/se branch of this goal.

Goal §: compute appmd(nvcru(rail(lail(l)))
append(.’is.‘(.‘::c:!(.'a:‘!(.’)))
cons(Azad(l) nil))) .

By the rules for /ist, append, and cons, this reduces to

Gosl 8: compute appenaireversetail(ta:ll))
cons(Aead(tail())
cons{/iead(l) nil))) .

This goal 13 not a precise instance of the high :r-level Goal 2,

compute append(reverse(tailil))
cons(head(l)
nil)) ,

because the expression cons(head(!) nil) in Goal 6 coincides with the constant nil in Goal 2.
However, Goal 6 is a precise instance of the somewhat mors general expression

compute append(reversetaikl))
mu(M;)dl)
m) .

obtained from Goal 2 by replacing the constant i/ by a new variable m.

Ve have rleveloped a situation in which a subgoal is a precise instace,
ot of the previously generated subgoal, but of & somewhat more generat
cxpresshon. In oth s words, we have found that
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Goal B:  compute R(Kx))

and the previously generated
Goal A:  computa R(e(x))

are hoth instances of the morz general expyression
compute R(y) .

(Note that we do not need to assume that Goal A 13 actually an ancestor of
Goal B, or even that voth appear in the synthess of the same procedure.)

In this sitvation, the extended procedure—formation rule proposes
introducing a new subsidiary procedure g{y) whose purpose is to achieve
both goals. The output specification for g will be

£(9) <== compute R(y) .

We intend to achieve Grai A, compits Rielx)), by a call gie(x)), and to
achieve Goal B, compvte R(Mx)), by a call g(¥x)). (In the special case
where Goal A {3 already the top-ieve! goal of some procedure that achisves
it. and Goal B is a precise instance of Goal A, there is of course no need to
introduce a new procedure to achieve Goal A )

The input specific=iion for the new procedure g is formed incrementally
as before. Tive top-leve! goal in the derivation of ¢ is

Goal A (generalized): compute Ry .

In constructing the subsidiary program g, we begin by attempting to mirror
the original derivation leading from Goal A, adding conditions to the input

specification as necessary. All the techniques presented previc.utly can then
be applie.! to complete the derivation of g.

Returning to cur example, recall that the extended procedure-formation rule proposec
introducing a new subsidiary procedure rusersegen(l m) to compute the more general expression
Thus, the output specification for ressrsegen b

reversegenil m) <o  COMPULD Sppen slreverséteil)))
coms(Aeadl))
n).
(intuitively, the reversogun(! m) reverses & nomerepty list ! and appand: the remsic to = )
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Now, Goal 2 in the derivation of the main program 15 ach.eved by a call reversegen(l nil) to
the subsidiary procedure The final reverse program 1s then

reverse(l) <=» if emptyl)
then nil
vlse reversegen(l nil)

It remains to complete the derivation of reversegen. The top-level goal for this derivation is
obtained directly from the output specification:

Goal 2 ‘generalized): compute append(reverse(tail(l))
cons{head(l)
m))

To ensure that this expression is well-formed, we add the conditions

{ and m are hists
and [ is nonempty

ncrementally to the input specification for the reversegen precedure. We then attempt to
mirror the original derivation leading from Goal 2. We succeed in applying the same rules as
before, uitimaieiy obiaining

Goal 6 (generalized): compute append(reverse(tail(tali(l))
cons(Aead(iail(l))
cons(Aead(/)
m))) .

This time, the generalized Goal 6 is inceed an instance of the generalized Goal 2, obtained by
r2placing ! with tail(l) and m with cons(Aead(l) m). Therefore, we can achieve the new Goal 6
by a recursive call reversegen(tailll) cons(Aead(!) m)} to the subsidiary procedure. The final
reverse program we obtain is thus

reverse(l) <eo if empty(l)
‘ tAem nil
else reversegenil nil)

where

reversegen(l m) <== if emptyltaiXl)
tarm cons{hoadll) m)
olse reversegen(taif)
cons(wad(l) m)) .
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This 13 a better reverse prugram than the one we were originally given. Not only has the
expensive append prograr: deen eliminated, but by good fortune the new procedure reversegen
we have obtained is of a special form, for which the recursicn can be implemented efficiently
without the use of a stack.

The reverse axsnpa follows Burstall and Dariinglon [1977]1 Thei- system
does no! perform tre ganarslization automaticelly.

D. Systems of Mutually Recursive Procedures

In the above examples we have used the usual techniques for showing the termination cf
the programs and procedurer we construct. However, certain situations arise In introducing
subsidiary procedures that reguire this technique to be strengthened. In particular, we can
form systems of murually recursive proced.ares, ie. procedures each of which may contain calls to
the others. Let us see how such a system can emerge.

Suppose that one subgoal ir: the derivation of a subsidiary procedure g is achieved .y a call
to the main program f. Then the program f will be expressed in terms of a call to the
procedure g,

ﬂx) <om ‘(ll.) ey

while g wil! be expressed in terms of a call to the main program f,

9 <o= ... fo) ...

Suh a system of mutually recursive procedures can fail to terminate, say if f calls g, g calls
f. [ calls g again, and 30 on ind+finitely. The naive approach for showing the termination of
such a system i3 to show that all the inputs and arguments belong to some well-founded set IV,
and that

«<{xand v <y

under the ordering < of W. Jowever, there are systems whose termination cannot be shown by
this approach; for example, if & is x kself, then no well-founded ordering will aliow us to show
% <x. Furthermors, in some 1ystems, f and y may apply to differsnt domains; / may apply 'o
lists, say, and g may apply 1o numbers; in such a case, k may b3 difficuk to construct & single
wall-founded set that containe the arguments of beth £ and .
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1’0 show the termination of a system f,, f,. f3. ... .fp of mutually recussive procedures,

we resort to a more general method: We find (as before) a single well-founded set # with an
ordering < In addition, we find a termination function T; corresponding to each procedure f; ,

such that T; razps the arguments of f; into W and such that, whenever a czii fjl.r) occurs in the

execution of the procedure f(x), we can establish the rermination condition
Tj(r) <T{x).

This suffices to prove the terwination of the iystem, because if there were a computation
contaiming an infinite sequence uf calls

faltg) . filty) . £l .
the corresponding sequence

of elements of W wouid be infinitely decreasing, contradicting the definition of a well-founded
set.

To illustrate this method, we will briefly conside: this simple example of a system of
mutually recursive procedures to compute the ged f two nGhnegative integers x and 9 :

fedofx ) <on of x = 0
then y
else ged\(x y)

gedi(x9) cem ify2x
tAen gedy(x y)
else gedy(x 9)

gedAx 9) <oe ged,(x y-x)
gedax 9) <o gedgly x) .

For this example, the naive approach is to show that the inputs (x 9) and the arguments of
euach procedure call belong to the well-founded et W of pairs of nonnegative integers, and that
the arguments of each procedure call are less than its inputs under some well-found:+ ordering,
such as the lexiographic ordering. This tpproach fails here because, for instance, the waain
progiam gedo(x 9) executes & procedure call ged,(x o) whoss arguments are the same as the

inputs.
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It 1uffices, however, to ake ¥ w be the set of triples of nonnegative inlegers, under the
lexicographic ordering < Correspending o esch procedure ged; re have a termingtion

functicn T, :
Tolxy) =(xy2,
Tixy)el(xy D),
Tax y) =(xy0), and

T4xy) =(xy0)

Now, each time a procedure czll gcd!(u 9) is executed within a procedure ged(x y) we nexd to

show the termination condition
Thuv) <Tgxy).

For example, because Jcaolx 1) calls ged (x 9) when x is not ero, w# have to show
(xy1;<(xy2),

which is clearly true under ihe lexicographic ovdering. Becauss jedg(x 9) calls gedg(y x) when
is less than x , we have to show

(3x2)<(xy0),

which aiso holds under the lexicographic ordering since y < x .
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4. BTRUCTURE-CHANGING PROGRAMS

A. Btraight-Line Programs

The programs we have been developing up 'o now have oeen siructure-mainfaining
programs: they do not alter the value of any variable or change the configuration of any aata
structure  Thus, any condition that is true before exscuting such a program will 2lso be true
afterwards In this section, we extend the wchniques we have already introduced to permit the
construction of structure-changing programs; these programs can reset the values of variables.
change the contents of an ~rr1y, or alter the structure of a list or other data objert. (Commonly,
such changes are called rice affects; this term has the unfortunate connotation that the effects
are undesirable, rather like a headache) In executing such 2 program, a condition that was
previously false can be made tive, and the opposite

For =xample. a program that merely outputs the maximum element of an array is a
structure-maintaining Program; its execution aoes not change the contents of the array. On the
other hand, a program to sort an ariay in place is & structure—changing program, because the
contents of the array may be changed.

The basic princoles of progi. m consruction introduced eartier (such as conditional
formacion, recursion forination, generalization, and procedure formation) extend naturally to the
development of structure-changing programs. In addition, we will need some basic principles
that specifically per:ain to this new class of programs.

To express programming problems that require structure changing, we need to introduce
new construc’s into our specification language. To express programs that solve such problems,
we need to introducs new primitiva statements into our target lsnguage.

To the specification language we add the new construct
achieve P,

where P is some condition. The meaning of this construct is that the corresponding pragram
segment is to cause condition P to become true. (Thus, schieve < = 2 can yield a program
segment that sets x to be 2)

We also extend our target ianguage t0 include sssignment statemencs, such as seriable
sisignments, e g,

et

arrey a1tignments, eg.,
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alt] ~ ¢ ,
and list assignments eg,
head(l) « t and tail(l) v 1 .

The effect of these statements iz to change the value of the variable u, the contents of the
array elemenc ali). and the Acad and tail of the list [, respectively.

We will introduce other specification and target-language constructs i1 the context of
speaific examples.

Let us introduce rules that explicate the achisve construct and reiate it to the assignment
statements  For instance:

® T he achieve-elimination rule
achieve P => prove P .

This rule expresses that to achieve some condition P, it suffices > prove that P is already irue.
The rule 1s generall; applied in con unction with

©® The prove-elimination rule
prove (rue => A |

where A represents the empty prograr segment. Together, thew rules aliow us to remove from
the program description any subexpression of form schieve P. where P can e proven to be
true. Because prove is a nonprimiive construct, a Progrem segment contair.g a
subexpression prove P must be transformed until the subexpression ts eliminated, Le, until we

prove that P holds when contro! paises through the corresponding point.

® The variable-essignment formatisn rule

achieve P(u) > prove PU)
et for some ¢

where u is a variable azd ¢ is an expression. Thiz rule expresses that if the condition P(¢) is
true, we can achieve z condition of form P(u) by the variable assignment u « ¢.

Let us illustrate how these rules can be applisd to construct a program to achieve x = 2.
T he specifications for the program are

meketwo(x) <o= aohiove x = 2.
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Qur top-level goal 1s therefore
Goal 1: achieverx«?2

Two of the above rules match this goal. The achieve-elsmination rule transf-siins this goal into
the subgoa!

Goal 2: prove x - 2.

which fails  The variskic-assignment formation rule, on the other hand, iads to the subgoal

Goal 3: provs! .«
xet for 3ome ¢ .

A pplying the rule for equahty,
U=u => frue,

forces us to take { to be 2 itself; we obtain

Goal 4: prove frue
x« 2.

Finally, the prove-elimination rule yields the ukimate program

maketwo(x) <oa x ¢ 2.

B. Conditional Programs

Let us illustrate how the conditional-formation ruie exwends to :Wow the introduction of tests
into struciure-changing programe. For this purpose, we will consauct & program serfXx jy) to
sort the values of two variables x and 9. We will assume that the target language contains tha
new instruction intercAange(x 9), which has the effect of exchanging the vakses of the variables
x and 3. This instruction is described by the intercAange rule

cchieve P(u ») => prove Ply v)

interchange(x v) ,
where x and » are variables.

T s output specification fer the srf2 program i
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sortAx y) <= achiave x s yand perm(xg yoKx ¥))

Fiere. permi(xy yoXx y)) means that the values of x and y are a permutation of their oniginal
values x, and 3o [In the following, we wili abbreviate thi: condstion as perm{(x ] This
condiion 1s necessary because, were it omitted, the sort2 prov:am could achieve x s 3 simply by
reseting x ang y, say to | and 2, respectively However, the ouput specification for this
program 1s to achieve two conditions at the same ‘1me; such goals require special treatment and
will not be discussed until the next section The purpose of Lhis section 13 merely to tliustrate
condiional formation 1n structure-changing programs. Consequently, w< will ignore the
permutation property and pretend that the output specficeiion has only the one ccndition,
achieve x s y We will ensure that the permuiation proparty i3 preserved by temporarily
allowing interchangeix y) to be the only siructure-changing primitive In our target language.

Our top-level goal 13 therefore
Goal V: achieve x s y
The achieve-ehimination rule,
achieve P -> prove P,
transfarms this goal 1o form the subgoal
Goal 2: prove x s y

We can neither prove nor disprove x s y -- X and 9 are nputs -- 30 we introduce a case
analysis based on this conditson.

Case y < x Here, we cannot achieve Goal 2, 50 we sek akernate ways to schieve Goal
1. Cur interchange rule,

achieve P(u ») «> prove F(# x)
interchengeln v) .

causes us to transforra Goal | o

Gool §: prove y s x
intevchange(x y) .

However, we are assuming that 3 < x in this case. Therefore, the subespression prove ) S Y is
ehminaied by applying the rule

UsSveor'rue ey,
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followed by the prove-elimination rule. Consequently, we generate ihe program segment
interchange(s y)
in this case [t remain; to consider the alteri:ate case

Case x = y Here, Goal 2, prove x s 3. is achieved by the prove-el‘mination rule, and
we aie lefi vith ths empty program segment A

Our final program s therefore
sort2Ax y) <== if 3 <x

then intercharn geix y,
eise A

or, equivalently,

sortZx 9) <w= 4fy<x
then interchange(x 9) .

C. The Weakest-Precondition Operator

in formulating the specifications fer the serf2 program in the previous section, we avoided
incl 1ding in the output specification the condition perm((x y)); otherwise, the top-level goal
wovd have been

achieve x s 9 and permi(x 3)) .
Special difficukies arise in approsching a simultensous—goa! probiem, Le., a goal of the form
achieve P and P,y ,

where P, and P, are (0 hoid simukaneously. We -annot always decompose such a goal into a
sequence of two goals

schieve P,
achieve Py,

achiove P,
achieve ’| .
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beca 1se 1n e course of making the second condition true we may very well make the first
false. For Instance, in the sortZ problem, we can achieve x s y by setting x te | and y to 2, and
we can achieve permi((x 1)) by setting x and y to their originai vatues, but no concatenaticn of
these two programs will sort x and y .

To handle such simultaneous-goal problems properly, we need to analyze what effect a
given prosrem sogment has on the truth of a given condition. For this putpose, we defirie the
concapt of the weakest precondition, we wiil chen use this concept to formulatz a program-
modification technique that will serve as the basts for our simultaneous—gos! principle.

If $ 13 a program segment and P 13 a concition, we define the weakest precondition wi(S P)
to be the condition P’ such that

P’ 15 true before executing 5
if and only if
P 1s true afterwards.

(We will assume throughout that § terminztes) We will also call wp(S P) the result of passing
P back over S. Thus, the weakest precondition for the execution of the program segment
x « x+ | (0 achieve the condition x 22 is x+1 2 2, ie, x 2 [ In other words,

wpl x « x+1 x22)is x2 1.

We can represent the properties of :he weakest-precondition operator by transformation
rules. Some of these rules tell how to compute the weikest precondition for particular
speaification- or target-language constructs:

wp( A P)eP
wp{uet Plu))=>Plt)
wp( interchangelu v) Plu v)) => Plv v}

wpl if §:a6n S else Sg P ) => (if g then wp(S, P)) and
Uf not ¢ then w3, P))

wplif qthen S P ) => (if g then wp(S 1)) and
(if not ¢ then P)

.ﬂ S.S, P)e> UP(S; .’(SQP))

wp{ achieve Q P )e=>trus Il Qimplies P .
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The weakest-precondition rule for the recursion construct does not tell us how to compute
the weakes: precondition, but only how to prove by mathematicai induction that a given
condition is indeed the weakest precondition for a recursive call. Suppose that f(s) is a cali to 2
procedure

fix) <== B(x},
and that < 15 a well-founded ordering. Taen, for any condition P(x), we have
wp{fls) P(s) = P'(s}
If we can prove
wp(B(xY P(x))= P'{x)
under the indictive assumption that
wp{flt) P()) = P'(r)

for any ¢ such that ¢ < x. (Often, < is taken to be the well-founded ordering used to prove the
termination of f.)

In addition to rules that give the weakest preccnditions for the various programeming-
language constructs, there are ruks for computing the weakest preconditions for specific
conditions. For example,

wp(S true) => trus

i3S false) o false,

i3 P) end Po) o> wplS Pp) end wplS Py)
wpS Ppor 2 )e> wiS Pi)er wplS Pg) , and

.P(S “P)->M'K’P).

When 2 new construct s defirad in terms of other constructs, we can often deduce the
weakest-precondition rule for the new construct. For example, serf2(x 9) is the program

ifocu

tAen interchengelu v) .

T herefore,
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wp ( 50:02u v) Plu o))
= wp (i v <uthen .nterchangeluv) Pluv))
= if v < u then wpiinterchenge(u v) Pl{u v)) and
if usvthen Pluv)
=ifv<uthen Plvu)and
ifusvithem Plup).

We thus obtain the 5c7i2 rule

wpl sort2Au v) Pluv) ) =>(if v < u then Plv u)) and
(Uf s vthm Pluv).

On the other hand, if we introducs a new conatruct into our apecification or target language
that is not exprcised in terms of other constructs, we must also provide weakest-precondition
rules for the new construct. For example, we have used the construct perm(l) to denote that the
values of the variables in a list / are a permutation of their original values; we must therefore
introduce rules such as

wp( interchange(u v) perm(l)) => perm(l) if u and v belong to ! .

In other words, interchanging the values of two of the variables of the list does not affect the
permuation property. Similarly, we will introduce the construct only ! cAenged (o denote that
no variabies other than those in [ are changed by the program segment; we will ahwo introduce

the corresponding rule
wp{uet onlylchanged) > only!changed ifuc!l.

The weakest-precondition operator is used to express many transformation rules that
manipulate structure-changing programs. Two regression rules are obtained directly from the
definition of Lthe weakest precondition:

S => prove ws P)
prove P h

m -
3 «> achieve wys P)

achieve P s.

Ti .¢ is, to prove or achieve a condition P after a program segment §, one may jist as well
prove or achieve the weakest precondition w(S P) before S.
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We have twe additional rules for pushing goals back into conditional expressions:

(tf ¢ - ifyq

then S, then 5,

elze 53) achieve P

achieve P else S,
achiave P

and (consequently)

(ifq > lfq
then Sl) then Sl
schieve P achleve P

ese achleve P .

Le us tee how these cnnczpis can be applied to obtain a systemalic program-modification
tectinig ve, wnich will eventually be used in the simukaneous-goal rule.

The weaskest-precoidition opersior of Dijkstra [1975) was voliveled by
\"e program-verification technique of Floyd [1967) snd Hosre (1969}

D. A Proyram-Medifioation Technique

Imagine that ve have a program segment S that is a concatenation 3,53 of two instructions.
Suppose we wish (o aker $ (o achieve some new condition P. The most straightforward

approach i to add new instructions to the end of § that achieve the new condition; we may
describe the desired modification as

)
)
ashieve P .

However, according to the regression rule of the previous section, we may just as well add new
instructions to achieve wp(S, P) before Sy; Le., we can pass ° back over S, yielding
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Similarly, we car; pass wp(S, P) back over S :

acnieve wi{(S, wp(S, P))
)
Sa2

Thus, we can make modifications at ar:; peint in $ to achieve the desired condition.
For example, suppose thai S is a program segment

yex

Y-yl

and that we want to modify § to achieve the relation y 2 2; this modification task may be
expressed &

Yo x

y -+

achieve 5 2 2.
We can certainly achieve the new condition by adding an instruction (eg. 3 « 2) to the end ot
the program But, by the regression rule, we car. aleo transform the above task into

- X
achieve y 2 |
RSl

and then into

achievex 2 !
yox
y-yl.

(In the first transformation, we relied on the fact that wp(y e 201 22 )1 9el 22,0092 1
the second step rehwd on the fact that wp{y + x 92 1) 1s x 2 1.] Thus, we can abo parform
the required modification by adding insiructions in the middie of the program (eg. y 1) or at

the beginning (eg. x « 1).

Of course, & pruogram segment modified by the above technique may no longer achieve the

purpose for which it was originally intended. Suppose that » program segment S was originalty
intended to achieve some condition P, and we want 10 modify S 90 achieve a new condition P,

as well as the original condition P,. To ensure that the modified program still achieves its
originial purpose, we protect Py st the end of S ¢ ring the medification precess. This
modiication tash is denoted by
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S
achieve P,
protect P,

The putpose of the protection condition prutect P is to block any modification that does not
allow us subsequenily to prove the protected condition P, Let us see how such a protection
condition 13 checked

Returning to the previous example, suppose in modifying the program tegment

Yyex
y o9+l

to achieve the new condition 5 2 2, we want to protect the condition x < y that the program
ortginally achieved Our task can thus be described as

Gosl ¥t vex
y -yl
schieve 5 2 2
protectx < y.

We have seen that we can achieve the desired condition y 2 2 by introducing statements at the
end (eg .,y « 2), the middle (eg. y + }), or the beginning (eg. x « 1) of the program. To check
the protection condition for a proposed modification, we try to prove that the protected
condition 3tli holds in the modified program. Thus, ic see whether introducing 3 + 2 at the
end of the program violates the protected condition, we establish the subgoal

Goal 21 9yex
y eyl
ye?
provex «<y.

This means that we must prove that ¥ < § holds after the execution of the modified program.

In fact, we fail to prove this condition, so0 the propossd modification is rejected. Similarly,
we cannot achieve the desired condition by inserting the statement 3 « 1 in the middie of the

program, because we fail to establish the corresponding subgoal

Goeld: ye~x
gl
yeyl
prove x <y.
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However, the third proposed modification, to insert x « | at the beginning of the program, does
maintain 1%~ nrotected condition:

Goal 4: x|

’o-r
PR Ad
prove x < y.

Let us see in more d =il how such a proof is conducted.

A pplying the regressicn rule

s -> prove wi(S P)
prove P 3,
we develop 1he subgoal
Goal 8: x+« )
Yy x
prove wp(y+ ¢l x<y)
’o-,-bl.

The weakest-precondition rule for wrugnment statements,
‘W uet Plu))e> Pl),

eliminates the weakest-precondition operator:

QGoel 8: x|
yex
prove x < y¢l
yeryi .

Again applying the regression and assignment rules, we obtain

GoelT: x|

prove x < x+|
yox

Yyl
The condition prove x < x+ | can now be establishod by the rule

% <+l ws frue if ¥ is 2 number.
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Having verified the protection condition, we obtain the program

x el
yex
yeysl,

which achieves both the original condition x <y and the additional condition y z 2.

The previous discussion neglected the strategic aspects of our program modification
technique. How do we divit'e vur .ime between akering the program to achieve a new
condition P, and ensuring that a protected condition P, is sill achieved? The most
adventurous sirategy is first to complete the modification necessary to achieve P, and then to
check that P, still holds. This cen be wasteful, however, because we mey need io do a lo of
work moditying the program to achieve P, before we ducover that P, is not achieved by the
modified program. A more conservalive strategy is to ;ak that the protaction conditions are
maitcained each time a new instructicn i3 inserted during the modification process; thus s
proposed modification that does not ichseve P may be re jecies quite early. For example, if P,
15 the permutation property perm{l), that the values of the variables in the list { are to be a
permutation of their original vaiues, we will admit modifications. that interchange the values of
varjables in !, but reject modifications that attempt to astign new vakues to these variables.
This conservative strategy is adhered to by our implemented system; it is & bit too restrictive,
because a modification that satisfies the protection condition only at the final stage may be
re jected if its protection condition is checked prematurely.

The above modification technique allows us 1o insert new instructions int» the program
sgient, but not to aker or delete any of the instructions that are already there. Such
modiif icaticns may sometimes be necesrary, but they are beyond the scape of our technique.

The prolaction concept was used by Sussman [1973]) ss en spprusch to
plan formstion by the successive debugging of neerly corract plane.

B. The Simultanecus-(ical Prineiple
We have remarked that when faced with a simuitanecus-goal problem
achieve P, and Py,
we cannot dixcompaee the goal into the inear sequence

schieve P,
sslilove Py
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because, In the cousse of making P, true, we may be making F false. For the same reason, it
1$ not enough (o reverse the order in which the goals are achieved. However, the program
modification technique of the previcus section gives us a way of solving such a problem. To
apply this technique, we first construct a program that achieves P,; we then modify this
program to achieve P, whii prctecting P, The simulrancous—goal rule that represents this
approach 13

achieve P, and P, => achisve P,

schisve P,
protect P .

(Of course, the roles of P, and Py can be reveised.) This rule extends naturally to the more
general problem of achieving many conditions simukaneously; we consider P, to be one of the
conditions, and 2 to be the con junction of 8l the others.

The simultaneous-goal priiciole does not dictate which condition we attempt to uchieve
first In general, if we discover that ons of the conditions is aiready true, we prefer to “schie> °
that condition first, protect it, and go on to achisve the others. urthermore, we may have rukes
for specific sub ject domains that cause these conditions ic be reordere::

Let us see how the simukaneous-goal rule applies :0 2 new sorting problem; this tim we
wish to sort three variables x, 9, and . The problem can be specified by

sor1%x 9 1) <o~ achiave x § 3 and 9 s z and perm{(x y 1))
where x, 3, t1d 2 are variables with numerical values.

We will introduce the program sorr2(u v), which we constructed in the previous section, as a
primitive in the target language. Because the sorf2 program was consructed to achieve the
condition ¥ 5 », we can include the sorf2—formal:on , Jle

achleve u s v => sortu v)

in our set of transformation rules. Because sortu ») was specified to maintoin the condition
perm((u v)), we can add the sert2-perm rule

o sortNu 9) permil)) => permll)  if u and v belong t: | .
The top-level goal for the sert3 derivation b
Qoal 1:  aohlevix <yand 9 s 1 ond pormi(x 3 1) .

We apply the simuktanecus-goa! principie; because the condition permi(x y 1)) is already true, it
is the first to be "achisved”;
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Goal 2: achieve permi(x 5 tj)
echieve xr 3 yandy s z

protect perm((x y 1)) .

Because perm((x y 2)) 11 true initially, we can eliminate the first task achieve perm((x y 1)) by
applying first the achieve-elimination rule

achieve P -> prove P,
and later the prove-elimination rule
prove frue => A .
We obtain

Goal 3: echlevsxsyandysr
protect perm((x 9 1)) .

The first task, achiove x s 9 and 9 s 2, is another simukaneous-goal prodiem; we again
apply the simultaneous-goal rule, arbitrarily attumpting to achieve the condition x 5 9 first.

Goal 4: achievex <)y
alhMeve 95z
proteci ¥ sy
protect perm({x ¥ 1)) .

Apolying the new sorr2-formation ruie
achieve i s v > sort2n v)

1o the first tas«, achleve x 5 9, yiekds

Goel 8:  ser12Ax 9)
achieve y 5 2
protect x 5 )
protect permi(x 3 2)) .

We first attempt to apply the same rule (o th second task, ashiove 9 ¢ 1, Yielding

Goal §: sz 9)
sort2(y 1)
protect - 3 y
protost permiix y 2)) .
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However, in executing the instruction sort2(y 1) we may violate the protected condition x s y .
(In particular. if z was imitially the smaliest of the three vaiues, then sorting 7y and r makes y the
smallest. x and 3 will now be out of order) Therefore, we are forced to backtrack and consider
alternate means for achieving Goal 5.

By applying the regression rule

S ~> achieve wp(S P)
achieve P s,
we derive

Gnoal T: achieve wp{ sorfxy) ssz)
sort2(x y)
protectx 5y
protect perm((x y 2)) .

We have already derived the weakes-precondition rule for the serf2 instruction; it is

wpl sortNu ») P(uv)) o> (if v < u then Plv u)) and
(Ufu s viken Pluv) .

A pplying this rule produces

Goal 8: echieve (if y < X tAm x S 2) And
(ifxsythemygsz)
sort2x 9)
protectx sy
protect perm((x 9 1)) .

intuitively, the first task of this goal,

achieve (if y < x then x 4 1) ond
(ifxsythemysz),

1s t0 achieve that the value of £ s the largest of the thres values: if this condition holds befors
sort2(x ) 1s executed, we know that the desired condition 3 < x will be true afterwards. This
task is stil another simulanesus-geal problem, and is achieved by ancther application of the
simultaneous-goal principle. We will not descrie in detail how this task s accomplished. The
resulting program segment is

if y < x them sor?2x 2)
if x S ythem sortdy 2) .
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The corresponding goal 18

Gosl 9: if y = x tAen sort2Ax 1)
if x5 9 then sorrAy 1)
sort2x y)
protecix sy
protect perm((ix y 1)) .

It remains 10 cherk the protection corditions. Intuitively, the first condition x < y is satisfied
because 1t occu.s immediately after the sori2x 3) instruction, whizh achieves this relation. The
second condition perm((x y 1)) hokis because it i1s true initially and it is preserved by the threv
sort2 instructions In the program. In practice, these conditions would be extablished by
application of the regression and weakest-precondition rules. (As we remarked, our
implementation checks these conditions repeatedly whik the program s teing mudified rather
than waiting until the end of the derivauon)

The final program we obtain is

501t 9 ) <=m if § < = then sorf2Ax 1)
if x s y then sort(y 1)
sorfz y) .

This concludes cur discussion of the simulianecus-goal rule, we will see further applications
of this rule in the next section. tn the synthasis of a romewhat less trivial program.

An exfended discussion of the simuitenecus-gosl Dproblem eppesrs in
Weidinger (1977] A nimiler spprosch 1o tie problom wes devised by Werren
[1974] but he did nt use the weshest-precondition operator. Other methnds
have besn applied 1o the problem by Sacardoti [1975) end Tete [1973]

F. Recursive Programs

The structure—changing programs we have constructed 30 far contain n0 recursive calis.
Our next example ilustrates how the recursion-formation technijus we have introduced

suriier can be apphied to structure-chanting programs.

We are asked v construct a program o find the maximum mex(s 8) of an arcay sagment
a{0: n) tha kst of a+1 elements ¢{0), o(l1], ... elr]. The specifications for this progum may
be writn a3
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max(a 1) <= acu'eve all(a(0 n)) < z and
1¢al0 n}ond
only z cAanged

where a 15 an array of rumber: and
n 13 an ‘nteger and
Osn

Recalt that only 1 changed means that no variable other than z can be changed by the program,
tn particular. this condition ensures that the final program will have no surprisinz side effects,
and that it will not satisfy its specifications perversely, say by setting 1 and all the elements of
the array segment to zero.

Our top-level goal 13 thus
Goal 1: achieve al{al0 n]) < z6nd
z¢af0 n)and

only : changed .

This goal has tive form of & simuitaneous-goal problem. The third condition, only 1 changed, is
of course true initially, 3c we decide (0 “aciieve” it first; it will then be eliminated by the
achieve- and prove-stimination ruls. The ccher two concitions may be approached in sither
order. We obtain

Goal 2: achieve 2/Xs[0  n)) sz
achieve 2 ¢ a{0 - )
protect allle{0: n)) s z
protect snly 1 changed .

Assume that we have the following three transformation rules that reiate the e/ ccnstruct
and the array segment:

©® The vacuous rule
P(aiNelu : w]D) => true fu >
(any condition 18 true for every element of the empty segment),
©® The singisten rule
PialNa(u : wD) => Palu)) Hn-w

(a e xittion is true of every clamew. of a “singleton” segment if the condition holds for that
segment’s sole elsment), and




Structurs-Changing Pragrams (L 1.]

¢ Vhe decomposition rule
Plail(alu - w]) => P(allalv  @-1]) and Plalw]) ifu«w

{(a condition (s true for every elemeni of a segmernt containing two or (nore elements if the
condition hokis for the tinal element of the segmoant as well as for every siement of the initial
segment)

We focus cur attention on the first task in Goal &
Goal 3: achieve allfa{0:n]) s - .

The three all rules each match this goal. The vacuous rule requires that the segment be empty;
we krow this is false by the condition 0 s n in the inpui specification. The singleton rule
requires that the segment have but one element, Le, that 0 = ®; we cannot prove or disprove
this condttion, so we make it the basis for a case analysis.

Case 0 ~ n (te, 0 < n) - Here, the singleton rule fails, but the decomposition rute, which
actually requires that 0 « n, succeed: in decomposing the goal in-o the conjunction of two
conditions. These conditions may be treated separately by the simutaneous-goal principle,
yielding

Goal 4; achieve &/lu{0:n-1) s.
+>hiave aln) s 2
pro.ect allefl0:n-1]) s 2.
We will consider the three tasks of this goal in turn. The first task, to achiave

al{el0: n-1N sz,

ts an insiance of one of the conditions of the top-level goal therefore, the recursion-formation
rule proposes achieving it by means of a recursive call mexie a-1). The input and termination
conditions for this call are traightforward.

We now focus our aitention on the second tash. of Goal 4,
Goal 8: achiove e{x) s 1 .

Be'ore attempting to achive s condition, the achieve-climination rule always tries to determine
wirether that condition is already trus; we can neither prove nor disprove it, 00 we make it the
basis for & surther case analiviis.

Case x < aln]: In this case, we must see« akernate means to achieve Goal 5. Recall that we
have a variable-assignment formation ruk
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achisve P(u) => prove P()
uet for some ¢

where u is a variable and ¢ 1s an expression. Taking P(u) to be aln)  u. ¢ to be a{z], and u
to be 1. we can achieve Goal 5 by the assignment statement

z +aln],
because a[n) s aln).
[Note that we could also achieve Goal 5 by the array-assignment rule
ain) ¢ 1,
or the sort2 instruction
sortAzln) 75,

these solutions woulkd be rejected, however, bacause they viclate the proticted condition only ¢
changed.)

Case a[n] s z: Here, the condition of Goal 5 13 already true, and can be “"achieved” by the
empty program.

We have achieved Goal 5 in both cases; the conditional-formation principle yieids the
program

if 2 <cln) then 1 = aln) .
We have thus completed the second task of Goal 4.
We now proceed to consider the third task, which is to check the protection condition

Goal 6: maxie n-1)
if 1 <sin)
then 2 « aln)
prove ella{0 : a-1} s 2 .

Applying the prove-regression rule

s > prove wpS P)
frove P 3,

the weakest-precondition rule for the {f-£)ex constract
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wHif gthmS P ) => if g then wi(S P)and
if not g then P,
and the weakest-precondiion rule for the assignment satement
wp( u et Plu))«> Pl),
we obtain
Goal T: max(a n-1)
prove if 1 < a(n) then all(al0: n-1)) s aln] and
Va[n] <z then allial0: n-1) s 2
{f t < aln)

then 1 + aln) .
Note thit max(a n) was specified to achieve the condition
alfal0- ]y sz,
therefore, by mathematica! induction, the recursive call max{a n—-1) can be assumed to achieve
all@a{0:n-1]} s 2 .
The second condition we are asked to prove,
.f a{n) s z tAen all(al0:n-1D s ¢,
follows at once. The first conaition,
i 2 < aln) thmn olKal0: n-1] s oln] ,
follows directly by the transitive rule.

This completes the final task of Goal 4, and thus we have achieved the conditien of Goal 8,
that ala{0 : n]) < z, for the case where 0 < ». The remaining case is more easily disposed of.

Case n = 0 : Here, the segment al0 : 8] has only one element, and the singieton rule
reduces Goal $ to the following:

Goal 8: achieve ¢{0] 5 1 .
This condition is achieved by the assignment statement
2+ ol0),

as before.
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We have constructed program segments that achieve Goal 8 in each case; the resulting
conditional segment is
ifne0
thea z + al0)
#ise max(a n-1)
if r « aln)
then 1 « a(n) .

There are three addititnal tasks in Goal 2 that we must perform: We must achieve the
rondition

7¢a{0 n),

this condition 15 already true, and may be proved by application uf the regression and weakest--
precondition rules. Next, we must check that the protected condition

ali(al0 - n)) s z

13 satisfied; this is true, because we have just constructed a segment that achieves th.. condition,
and in "achieving” the additional condition 2 ¢ al0 : n) we made no changes to this sxxment.
Finally, we must ensure that the protected condition

only z changed
is satisfied: this 15 true, because only assignments to z occur in the program we have constructed.
Having established the protection conditions, we are left with the final program
max(a n) <== ifneal
then t « al0)
olse maxig n-1)

if 2 < ew)
them £ + aln] .

G. The Mediliration of Recursive Pregrams

The program-modification technique we introduced fer Isep-free projrams extends
naturally to permit the modification ef recursive structvre-changing pregrans.

Assume we are given the program mexis n) ~snstrincsed n the precading sectiew; this




Structure=-Char.2ing Programs 89

program finds the value of the maximum element in an array. Suppose that we vish to extend
that program to obtain a new program maxindex(a n) for {inding the index cf ttat maximum
element as well as its value. In other words, we want to modify the program max tu achieve the
new condition

aly)=zand0sysn
while protecting the original condition
all(af0 . r)) s z and 1 al0 : n)

that the program was intended to achieve. Note that we do not protect the condition only z
changed that the program originkily echieved; this is because we want to change the value of y
as well as z. Instead, we include

only y, 7 cAanged
among the new conditions to be achieved by maxindex.
Our modification task is thus specified as fullows:

maxindex{a n) <= {f 1 = 0
then = + a(0]
tlse maxindeda n-1)
ifrc a(n)
then 7 « aln)
achleve a[y) = zen' 0 sy snend 9.2 changed
protect alial0 : n) s vand ze af0: n

where a is an array of numbers and
n is an integer and
Osn. :

Here, we have replaced the recursive calis 1o mex, the old program, by rerursive calls to the
extended program mexindex. Goal | is formed directly from thesa specifications, and will not
be copied here.

Note that it is quite necessary o protect the condition alXel0 : ) s x; otherwise, we could
achieve the new conditions by perversely resstting z to ¢{0] and setting 9 to 0. The second
condition, on the other hand, Is actually redundant; if aly) = z and 0 S 9 £ n, then certainly
2« a(0: n). Applying the usual regression und weaket-precondition rules, we derive
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Goal 2: ifn-0
tAen achieve aly) - ¢i0}Jand 0 s v < nand only ¥, 1 cAanged
1 + al0)
¢l3¢ maxindex(a n-1)
{f 1 < aln)
then achiave u[y} ~ a(njand 0 s y s n and only y, 1 changed
t «aln)
¢lse achiove uly) » 2and 0 s y s nand only y, 1 cAanged
protect ¢/{e{0: n)) s 1 and < a0 n) .
The task
achieve aly) = a[0) ard 0 5y s n and only y, 1 cAanged ,
which occurs :n the branch for which 1 = 0, is found to be achieved by the assignment
y- 0.

by application of the simuktaneous-goal principle and the variable-aisignment fo mation r.e.
Similarly, the task

achieve aly) = a[n}and 0 s y s n and only y, : changed ,

which occurs after the recursive call in the case z < a(n], i3 found o be achieved by the
assignment

yen.
Finally, the task
achieve aly) = zand 0 1 7 5 n end only g,z chenged ,

occurs immediately after the rocursive call maxindex(s n-1) in the case o{n) s 2. The recursive
call can be assumed inductively to achieve the condition

sly) e zend 0 s 95 n-1 end onlyy, t chenged ;
thus, the desired condition is already true.
The protected condition
elXalO: D ssendscel0:n),
which was achieved by owr original program mauls n), has not been affacted by any of our
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modifications; the only instructions we have added are assignments t0 3. The final maxindex
program we obtain is thus

maxindex(a 1) <v= o =0
themy + 0
7 + a[0)
ose maxindrx(s n-1)
if 1 < aln)
then y o n
teel’

The modification of recurtie programs can be iritiated by the simukaneous-goal principle
if the progiam constructed to acnieve vie of iR goa! enncitions happen: ‘o be recursive
However, modification of a given program may also be regarded at an tndependent
programming task; this application is discussed further in Section SC.
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5. IMPLICATIONS FOR PROGRAMMING METHODOLOGY

In program synthesis as we have defined i, a person formulates :he purpose of the program
he wants without Indicating a procedure o achieve that purpose. In practice, even the most
computationally naive user of a program-synthesis system is likely to havr some idea of an
algoziithm that could be employed by the desired program. This algori'hm may not be entirely
satisfactory- 1t may nox achieve all the desired conditions, it may be incompletel + specified, or it
may lead to an inefficient program. Nevertheless, it would be foolish to prevent the user from
ronveying this informalion to the system, because it is eaver to derive a program from a
partially specified algorsthm than from a speafication that expresses only the program’s
purpose. In this section, we will show how the ; _ram-synthesis trchniques we have already
iniroduced can be applied to transform a partially specified procedure into a complete program.

Actuaily, we have already seen sorne examples in which the specifications had a prcuciunl
component. In the maxindex example (Section <G), our specifications were given in the form of
a complete max program with some additionai conditions to be achieved. In the revirre
example (Section 3C), the specifications were composed of a complee revsrie program, which
was transformed into a more efficient equivalent. These examples we e introduced to illustrate
particular program-synthesis rechniques. The emphasis 1n this sec.jon will be on the actual
task performed.

We will consider separately three ways in which the procedural components of a
specification can be presentad.

® Program transformetion. The specifications ure given in the form of a clear--parhaps
inefficient--program, which is then trans’ormed inito an efficient—perhaps unciear--
equivalent.

® Data abstraction. The specifications are given in the form of a complete program that
operates on certain absiract dale types, structures (such as sets, stacks, or graphs) whose
properties are expressed precisely bu. whose ‘nachine represeatation it unspecified; the
program is then transformed to reflace eact operation on the abstract data types by 2
corresponding concrete operation or. a choser. machine representation.

® Program modification. We are given a comg iete program that performs one task succeisfully;
we wish to extend the program to achie/e an additionai condition, while still performing
its original task.

A%though we consider each of these torics separately, the same techniques can be apglied to
transform a procedure whose d-sc:iptior is sub ject to all three rodes of imprecision. In other
words, "he given specifications could rresent an inefficient procedure, expressed in terms of
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abstract structures, that needs !0 be extended to achieve addizional conditicns. Of course, there
are other way. 1n which the description m.y be imprecice besides the three we will discuss here.

A. Transformation: Programs -> Better Programs

Often the clearest, simplest prog-am for a given task ma+ not be the most efficient; if we
attempt to construct an efficient program for the task at oncr, our resuk is likely to be unclear,
and perhaps incorrect as well. It his been suggesed, therefore, that we construct vur program
In two stages. we begin by setiing effictency considerations aside for awt'le; we construct as
clear and straightfor<ard a program as possible. We then wransform this program to make it
more efficient, possibly losing some clarity during the process.

It 15 argued that the programs produced in this way are more likely to be correci than
programs produced by the conventional one-phase method The first version is likely to be
correct by virtue of it: clarity, the second version is produced by the application of
transformation rules that preserve the correctness of the first version while improving i
efficiency.

We have aiready scen program-synthesis techniques applied to a transformation problem, in
Section 3C. '~ that example, we were given the following program for reversing a list:

rever se(l) <salif m’tjl)
then nil
o3¢ append(reverse(taill))
lisAead(l)) ) .

Gﬂmh l') <omw lfﬂ’lﬁ’.)
tAm lg
olse cons(hoad(ly)
appenditaill,) 1y) .

Treating this progran, itself as the specifications, we developed the following eysiem of two
programs for performing the same task:

reverso(l) <ee if emptyll)
then il

else reversegenil nil) ,

where
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reversegeni m) <=« if emptyltailid)
then consiAead(l) m)
clse reversegenyail(l)
cons(Aead(l) m))

T he original reverse program s quite inefficient each execution may require many czlls ¢ the
append program, each of these calls to append produces a new cupy of its first argument. On
the other hand. in the final system of programs, the expensive append operation i3 replaced by
the economical cons Furthermore, the recursion 15 of a special form that ~an be evaluated
without the use of a stack; in fact, this system can be converted to the following iterative reverse
program by applicatron of a recui .lon-removal transformation rule

reversel) <== if mpty!)
then output(nil)
else m« nil
whtle not empryltail(()
do m « cons(head() m)
! « tail{l)
out put(con s(head(l) m)} .

By explotti.g e properties of the operations in the orig'nal reverse prugram, we have
managed to transform it to a more efficient program that achieves the 3ame purpose by a
fundan entally different method.

In this example, our specifications were given in the form of a complete program, with no
other indication of the purpose to be achieved. We were fortunate to perform the same task by
an ensrely different and more efficient m=thod. In goner2l, if the apecification of the program
is purely procedural, such radical improvements are difficult to achieve; in omitting any
staternent of purpose from the given specification. we aré binsed ioward adopting the algorithm
of the given program. inytead of seeking to achieve the same purpoe in a new way.

For example, mppwthan-mtmmapmmmmnhdnm Our
dexcription of the desirec program might be

sort(l) <ee if emptyl)
then il
olse mergelhoadll) sortitaik))) ,

where .
-ﬂ“ﬁ n <=e ‘f‘-m
then U30(x)
oise if x s hesdll)
tAen consix [)
olse conslheadl))
merpelx tailD)) .
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The sorting method employed by this program is intrinsically snefficient. The program
contains no z.phcit statement that the hist it produces 1s intended to be urdered. Without such
a statement. 1t 1s difficult to imagine x system stumbhing across a more efficient sorting method.

A more practicable approach wruld be to have the user specify the purpose of the given
program along with the program isell. The system would then apply correctness—preserving
transformarions, which could aiter the given progvam to achieve the same purpose in a
fundamentaliy different way

The pure program-lransformation aspproach hss been advocated by
Burstall and DNerlington (1977] Knuth [1974] Standish el al. [1976]) end
others. Gerharl [1975] introduces & system of correciness-preserving
trans{~rmations. An experimental system to improve progrems by successive
transtormation was impiemented by Derlington snd Burstall (1976}

B. Abstraoct Data Structures

Out of the different diagnoses of the causes of our programming s, there arise different
therapies One school of thought attnbutes much of the difficulty of programming to the
process of encoding high-level data structures in terms of the constructs avaiiable 1n the target

programming language.

According to this ichool we design an algorithm in our minds in terms of ebstrect deres
structures, structures such as sets, queues, or graphs whose properties are specified but whose
precise implementation is undetermined. In these terms, the “mental algorithm™ s
straightforward and easy to formulaie.

The difficuky arises when we attempt to express our mental algorithm in terrms of the
primitive constructs of the target language, such as arrays or lists. Because the machine
representations at our disposal do not correspond precisely to the abstract data structures of our
mental aigorithm, an act of paraghrasa i3 involved in the programming procesi We must
simuktaneously formulate our algorithm and express it in terms of mackine operations.
Furthermore, there are often many possible implemeniations for the sams abstract data
structure; only after we have compietely described our algorithm in shstract terms, and carn see
v/hat operations are to be performed on the structure, can we decide which implementation will
lezd (0 the most efficient program.

It has therefore been proposed that Wwe CONMruct our program in two sages: we begin by
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constructing a clear program in terms of tive abstract data structures of our mental algorithm;
only then do we choose a representation ‘or the abstract data structures, and transform our
program accordingly For instance. we would firsi express our algorsiin in terms of high-level
operations such as popping an element rom a queue or adding an element to a set; then we
would decide how (o represent .he queue or set, @s an array or hst, say. Faciliies might be
provided to perform the requir=d transformatsons automatically, or at least 1o ensure that they
are done correctly

The transformation provess may be regarded as a program-synthesis task. The specification
{for this task 18 the program expressed in terms of the abstract dara structures; the operations on
these siructures are considered ‘o te¢ nonprimitive constructs. The properties of the abstract
data structures and their operations are stated as transformation rules. The final program will
be equivalent to the origwnal, but ali the nonprimitive abstract operations will have been
reformulated in terms of primitive target-language constructs.

For examyle, suppose we are writing a program that deais with queues as an abstract data
structure  We may have three cperations on a queue: a push operation, which inserts an
element at the end of the queue; a (op operation, which produces the first elemrent of the qdeue-.
and a pop operation, which removes the fir element from the queue. Informally, we can
represent the properties of these operations by the rules

pushly queun(x, .. X)) => queue(x, ... xp y)

toplquenely x, . x,)) =>y if queue(y x, . . x,) is nonempty

popiqueney x, .. xp)) o> quauex, ... xy) il quouy x; ... xy) is NONEMPLy.
Now, suppose that we have wrilten our program in terms of abstract queues, but that our

target programming language requires us o represent cur queues in terms of lists. The obvious
representation 15 (o encode the queue directly as a list, Le,

encode lquene(x, .. x,)) > listx, ... x,) .

An akernate representalson is to encode the queue as a list with the slemants reversed, e,
ncodedquene(x, ... x,)) => list(xy ... X)) .

A ssume that we have thosen the firsl encoding.

To our encoding operation encede] there correzponds the opposite decoding aperation
decode\ise(x, ... x,)) => quenelr, ... x,).
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Out synthesis task 13 now to construct concrete operations on lists that corrzspond under cur
chosen encoding to the abstract pusA, rop, and pop operations, e,

pushi(y 1) <=« encodel(pusi(y decode 1()))

top 1({) <== topidecode(l))
whaere decode 1{{) 13 nonempty

pop1(’) cnea encodel( pop{iecodel()))
where decodei{l) is nonempty,

where { is a hst. We can consider these dexcriptions ai specifications for a synthesis task in
wihich push, top, pop. encodel, and decodel are all regarded as nonprimitive constructs. By
including the rules describing the properties of these consiructs among our transformation rules,
and applying our usual program-synthesis techniques, we obtain the following concrete
implementations:

pusAi(y ) <=nif empey (1)
then HsKy)
olsn MM[)
Push(y taili)™ |

topiii) <== Aead(l) ,
and
pop i{l) <== tailll) .

The final program 1s then obtained by replacing the abstract uperations pusk, top, and pop
by the concrete implementations pusAl, tepi, and popi in the given program.

In this implementation, tedl and popl may be executed directly, but pusAl involves
searching down the entire queve. Therefore, we might choose this implementation if the fop
and pop operations must be performed quickly, but the pusk operstion is permitted to take

more time.

If the reverse situation is the case, and push is the more critical operation, we may choose
iha alternate representation, in which the elements of the quewe appear on the Net in reverss
order, ie,

oncodeNquineix) ... x,)) o> Ustlxy ... 2y) .

The corresponding implementations that resuk are
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pusANy 1) <e=consty ),

10A!) cm= 1f emptp AN]))
(Aen Aead(!)
else 1opRiatil)

and

Popl) coe tf empin acd(l))
then ml
else consthead(l)
pop(tasl(N)

In this representation, the push operation becomes quite economicil, but the top and pop
operations Lecome correspondingiy more exceiive

The problems ihat arise in transiating abstract data sructures ir..a concrete representations
require all the synthesis techniques we have considered. However, these problems are of a
more limited scope and require less invention than the more general synthesis problem. It i
likely that program-synthesis techniques will become Ciactical for such relatively restricted
problems long before the general problem s solved.

The dala-sbstractior, methodoiogy has been investigated extensively (ses,
for example, !'snov and Jilles (1975) and Gutteg, Horowitz, snd Musser
{19761 Systems in wihwch the represantations for certsin sbstract data
siructures are selected sutomaticauy have been impiemenied by Low [1976]
snd Schwartz [1974) Owr quius Sxample iollows Hewitt end Smith [1975] ot
s sofe distance.

C. Program Modification

It is often remarked that programeners spend more of their time in modifying old programs
to achieve additional purposes than in constructing new programs. Thase modification tasks
are conceptually far less challenging than the original programming effort. However, a
programmer is especially prone to err in modifyins a program: For one thing, if the original
program is complex. 4 ma> be difficult to find all the pomnis at which changes must be made.
Furthermore, the programmer may not know or remember how the program works; he mav
interfere with its origiral functining in intreducing the required changes.
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Thus, the difficulty of program modification may be attributed to its complaxity as &
bookkeeping chore rather than to its challenge as a creative endeavor. For this reason,
program modification 1; another area in which program-synthesis techniques are likely to find
‘hetr ¢aihiest applhcation

We have a:ready intraduced a program-modification technique, using protected conditions,
as a Dasis for our simultaneous-goal principle in program synthesis This technique can also e
applied direcily to the program-inodification task. Thus, we modify the given program to
achieve a new condition, while protecting the condition the program was originaliy intended to
achieve

We have seen one exampie (in Section 4G) in which our program-modificacion technique
was applied to extend a program for findirg the value of the maximum slement of an array, to
“1so find the index. of that element. The original program,

maxia n) <s= if n U
then 1 « 6[0]
else max(a n-1)
if 2 <aln,
then 1 + cln] .
was constructed to achieve the condition
ati(ald n)) s zand z «al0: 2) and oniy 1 cAanged.
This program wal then modified to achi e the additional condition:
z=3lyland 0 <9< n andonlyy, rchanged
while still maintak.ang, two of the original conditi,ns,
all(al0  nj) and 1 ¢« a(0: n)
This modification tesk was speciiied as
maxindex(a n) <=e if 1 =0
them z « a{0)]
¢ls¢ maxindexia n-1}
if 1 < aln)
then 1 « aln]
achieve aly) » 24rd 0 5 95 nendonlyy, z chenged
protect allal0:nD s zend zcal0:n).

The achieve task ensures tha: the modifie’ ~rugram will fulfill its rew purpose, and the
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prctect task guarantees that in modifying the progiam we will not interfere with its original

funztioning

From the above specification. we obtained the modified program

maxindex(a n) ca= if n e 0
theny + 0
1+ a0}
¢'s¢ maxindex(a n-1)
if - <aln]
theny - n
R a[:l] .
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8. LOOSE ENDS

A. A Footnote on ftruotured Programming

In program synthesis we attempt to reproduce by machine the same process that is carried
out by the “struciured prog-ammer” by hand. However, the basic programming principles we
employ 1n this paper are not mercly machine implementations of the principles of structured
programming. Let us briefly exarnine the derivation of 2 program in the style of a structured-
programming practitioner, to illustrate some of the essential differences.

The program exp{x y) we construct is intended to set the value of the variable z to be the

expunential xJ of two integers x and y , where x 13 positive and 9 i3 nonnegative. We assume
we are giv = a number of properties of the exponential function, inchizing

wal ifuwOandve0,
W’ e (u-1)?'2  afviseven, and

WP o ne(u-wP*? fpasodd .

where u, v, and w are any integers. ldere, + Zerotes integer division. Written in our notation,
the top-ieve! goai of a structured-programming derivauon I3

Goel A achevera )

(where the exponenual function u” 15 considered to be nonprimitive). This goal can be
decomposed into the con junction of two condition.

Goal 81 achieve 1:xxV) « Jend yy - 0.

The motivation given for this siep Is that initially, we can achieve the first condition
2. xx7) « 27 easily enough (by setiing xx to x, yyto y, and z to I} ff we manage to achieve the
second condition gy = O subsequently, while maintaining the first condition, we will “ave
achieved our goal.

For this purpose, we establish an it ative locp, whose invariant is 7.3397 « x¥ and whase
exit condition is 3y = 0; the body of the loop mur! bring yy coser to zerc while maintaining the
invariant.

By exploiting the known properties of the exponential i other arithmetic functions, we
are led uh.mately to a fina! program, eg.,
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evplx y) com (xxyy2)e(xy )
whileyy » 0
do if even(yy)
then (xx yy) « (xa-xx yy+2)

else (xx yy 1) ¢ (xx-xa 9wel xX- 1) .

The weak point of this derivation reeins to be the passage from Goal A to Geal B. This
step 15 necessary to provide the invariint for the loop of the ultimate program. However, how
do we know to use this invariant unless we already know the final program in acvance? Why
shuild we generate this goal instead of one of the following, equally plausible alternatives;

Goal B! “achieve z + 27 - &) and xx = 0
[to be imtialized by (xx yy 1) + (x 3 0))
Goal 8;: achieve )7 - xVandyy = |
(to be initsalized by (yy 2) « (y x)), or ever
Goal By: achieve (z.xx)? = Y and xx = yy = |

[to be intsalized by (xx yy z) « (x 3 1) or by (xx yy 1) + (iy1?

Each of tivese steps can be nrXivated oy the same considerations that jusified the generation of
Goal B, but none of them leads to an exponentiai program so readily.

Our Instructors at the Structured Programming School have urged us to find the
appropriate invariant assertion before introducing a loop. But how are we to select the
successful invariant when there are 30 many promising candidates around?

The corresponding derivation of the same program by the program-synthests techniques of

this paper requires no Juch procognitive insights. By using the ame properties of the
arithmatic functions that were exploited in the structured-programming derivation, we can

reduce

Gosl A:  computs ¥)
to the (wo subgoals
Goal B:  compute (x-x)*2

(in the c.se that y is even) and
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Goel C: compute x. (x. x)7*2

(in the case that y 1s odd) Only after we observe that the subexpression (x-:z)J’2 , which

occurs ain both subgoals, 1s an instance of the expres ion ©J in the top-level gozal, do we actually
decide to introduce a recursive call exp{x-x 9+2 to compule these subexy essions. The
resuiting program 1s

exp(x y) <= ify=0
{hen x
else if even(y)
then exp(x.x y+2)
else x explx.x 937)

This ts a rec.rsive version of the previous (terative exponential program, and can actially be
transformer into that pregram by siandard recursion-removal techniques.

The recursive calls s the above program arose naturally from the tree of goais in the
derivation, and the structure of the final program reflects the swtructure of that tree. In contrast,
the derivation tree fo. the st>rative program had to be for-ibly manipulated to induce the
Invariant to appear.

Recursion sew s to be the ideal vehicle for sysiemaud program construction; its use accounts
for the relative umplicity of the ibce derivation. [n choosing ic empihasize iteration instead,
the propcnents of structured programming have had to resort to more du bious means

The principle- of structured programming have been described often in the
literature, a.g., by Daw, Drvjkstrs, snd Hoars [1972] Wirth [1974L snd Dijkstre
{1976]

B. Implementation

It 1s diffscult to develop or evaiuate heuristic techniques without experimenting with an
implementation The DEDALUS (UEDuctive Algorithm Ur-Synthesizerj system s a
laboratory tool rather than a practical product. The system is implemented in QLISP (Wilber
[1976]), an extension of INTERLISP (Teiteiman [1974)) chat includes pattern-matching and
backtrarking facilities. In this section, we wiki describe some of the special characteristics of our
‘mplementation without going into very much detail.
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The specifications are expressed in a LISP-like notation. Thus, the output specification for
the lessall program, which we wrote as

x < ali!) ,

i3 represented in the DEDALUS system as
(LESS X (ALL L).

T he outpr: specification for the ged program, which we wrote as
max{z : zix and 2} .

Is represented as

(MAX (SETOF Z (AND (DIVIDES Z X)
(DIVIDES Z Y)).

The target program is also expressed in LISP syntax.

The transformation riiles are expressed as programs in the CLISP programming language.
For example, the rule that we donot~1 by

P and irus «> P
i3 represented by the QLISP program

(Q-AMBDA (AND «P TRUL) 8P).
The rule we wrote a3

up > if wis aninege and 9 = 0
is exprecsed as

{QLAMBDA (DIVIDE «U 7
(INSIST (PROVE (' (INTIGER SUM)
(INSIST (PROVE (’(REQUAL 8§V ol
TRUD).

Atm.hmm-nouwmuuw-mrmuyumm all the
details of the nboupngnm.hemyumdmnhuﬁuymmnhtmbmlvb

that they waqumfm«mml’mmuwmedm
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Because rules are represented as programs, we are allowed the full power of the program.ning
language I1n express:ng each rule.

The DEDALUS system currently contains more than a hundred such transformation rules.
in expandirg the system to handle a new sub ject domain, we simply introduce new rules.

The rules of the system are classified accordi’g to their pattern, their left-hand side. This
pattern desc-ibes the class of subgoals to which the rule can be applied. Thus, the rules

Uy > true if ...

and
up > up-u if ...

both have patterr: uly, and can be applied to goals such v
compute x |y+r.

When a new goal is generated, the system retrieves those rules whose patterns match the form
of the goal. This retrieval is facilitated by arranging the rules in a classification tree according
to their patterns; thus the two rules above would be classified on the same branch of the tree.
This mechanism allows us to avoid matching every rule in the system against each newly-
geoerated goal.

If no rule maiches ti.e entire expression of a goal, its subexpressions are established as
subgoals. If no rule matches any subexpression of a given goual, 2 fallure occurs, and
backtracking is invoked; the system attempts to find an akernate transformation that applies to
a previous wubgoal.

The QLISP pattern-matcher has special provisions for matching commutative functions.
Thus, because the and operation 13 commutative, the rule

P and trug => P,
represented as the QLISP program
(QLAMBDA (AND «P TRUE) §P),

can be applied .t0 goals of form “true end P° as well a3 “P and trus". For this reason,
comymutativity rules such s

Pend Q=>QanaP
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are not necessary in the DEDALUS system.

The. kind of matching also occurs in the recursion-formation rule, in determining whethei 2
new goal is an tnstance of some zariier goal. For exampie, In ihe actual synthesis of the ged
prugram, the top-levei goal

compute max{r - zix and zjy)

was regarded as an instance of itself with the roles of x and y reverie . b>cause the and
function 1s commuiative. The recursion-foriation rule, therefore, was atle to propose the
recursive call gcd(y x).

Currently, the DEDALUS implementation incorporates the principles of conditional
formation, recursion formation (including the termination proofs), and procedure formation, but
not general: ation or the formalion of structure-changing programs. The techniques for
deriving straight-line structure—changing programs were implemented in a separate system (see
Waldinger [1977)).

Representative samples of the programs constructed by the current DEDALUS system are
the following.

Numerica! Programs:

® the subtractive ged algorithm

® the Euchidean gcd algorithm

® the binary gcd sleonihm

® the remainder of dividing two mtegers

List Programs:

® finding the maximum element of a lis.

® testing if a hist is sorted

® testing If a number s Jess than every element of » Hst of numbers (lessall)

@ iesting If every element of one kist of nuinbers is less than every elemen’
of another (allall)

Set Programs:

@ computing the union or intersection of two sets

@ testing If an element belongs to a st

@ testing if one set is & subset of another

@ computing the Cartesian product of two sets (cert) .
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C. Historical Remarxe
In this section we trace briefly the hictory of the deductive spproach to program synthesis.

The early Aeuristec compiler of Simon [1963] constructed simple uraight-line list-processing
programs irom descriptions oi the expected input and desired output; the syst-m * as based on
the General-Problem-Solver approach

A later group of systems wa: based on the resxution tAeorem- proving approach the
specifications for the desired program were (ransiated into an equivalen: theorem-proving
problem. and the desired { rogram was derived from the corresponding £roof (See, eg, Green
(1969), Waldineer and Lee [1969] and Lee, Chang, tnd Waldinger (1974]1) These systems
could pioduce conditional -cgrams, but thetr loop-formation ability was rudimentary; the
required matiiematical-induction proofs were awkward to p#form in the resolution formalism.
Efforts to improve ths synthesis of ioops within a {iionresolution) theorem-proving approach
are described i~ Manna and Waldinger {19711

A program-synthesis system based on the pregram-verifization formalism of Hoare (1969) is
described by Buchanan and Luckham [1976] Their system was implerented using some of the
fachties of PLANNER (Hewitt [1971)), it required that tne loops be specified in advance by
the user

The more recent woik :n program synthesis s oo ixtensive ai'u toc varied to be
summarircd here. Papers related to agects of the deductive apgroach are mentioned in the
approuriate sections o the text; some of the other aoproaches are discussed in the nex: section.

L. Cther Approaches

The program-synthests approach we have followed requires that we provide complete
specifications for the desired program expres:ed in an artificial language. It has been armied
that these specifications are difficuk to provide, and many akernate approaches have been buik
around c;ferent specification schemes.

® Sumple input-output palrs. In this approach (s, wee Hardy [1975) Summers [1977)), the
program 13 described by giving typscal inme2. «nd the corresponding outputs. Thus,

(A BC)=>(CBA), {4 (BC)D)e=>(D(5C)A)

suggests a program (o river.e a list. Such specifications are netural and easy to tformulate.
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However. in constructing the pairs one must be careful to avod ambiguities; for instance the
pllfi

H4)=>2, 3N e>6, (231310

could represent erther the subtraction or the remainder program. Furthermore, the approach
demands that the system be able to generalize from examples, not aiways an easy task; for
insiance, it 13 not immediately obvious that

Q2D=>4., A6 B, (TDa>T7. (142} «> 42

denotes a least-common-multiple program Moreover, the generalization task 15 redundant: the
system 13 trying [o guess a relation thai the user knows perfectly well, but 13 unable to express
directly in this notation.

® Sample execution traces In this appioach, the user provides a detathe! trace of the
performance of the desired program on iome typicai nputs.  (ee, eg., Brermann and
Krishnaswamy [1978]) Thus, the trace

(12 18) - (6 12) (U 6) = 6

indicates the Euclid-an algorithm for ine ged furction. Here, the posstbilities of ambiguity and
the burden on the system are reduced, but the user himseif is required 1o design the algorithm

to be empioyed

® Preawcate-logic language. This is a direct descendent of the theorem--proving approech.
The :pecifications for the program are expressed 13 resolutton-style clauses; the system then
transforms these clauses into another, equivalent et of clauses, which can be regarded as the
desired -ogram. (See, eg. Kowalski (1974), Clark and Sickel {1977]) We question whether
the clause form has the nerauona! flexibility to serve as 3 sunable spectfication language; for
example, many of the constructs we use n our spxifications would not usually be permitited in
a predicate-logic clause.

® Synthesis by debugging. Human programmers produce their programs by the successive
debugging of nearly correct programs. i has been proposed that a synthess system cuuld
benefit by imitating this process. In this way, .t could focus ita actention on the main features
of a problem, postponing consideration of the details unti! afterwards. Such techniques have
been aprlied to the construction of robot plans (Sussman (1975)) and electronic circuits
(Sussman [1977]), for example, but not %o the solution of mors typical programeing problems.

@ SyntAesis by anslogy. it 13 unusual for a programmer o construct a program from its
specifications by a purely deductive process; normally, he sttempts to sppty techniGues exiraceed
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from previous sclutions th similar problems T hus, he might compute the square root of a
number by a binary-search technwcie eatracted from a previcus progrzm to divide two
numbers  Most of the work oa this approach (eg. Manna wnd Waldinger [1975), Dershowitz
and Manna [1977), and Ulnich and Moil {1977]) requires thet & close syntactic correspondence
be fourd between the speafications for the two programs, this correspondence then provides a
ba<is for transtorming the previous program ta solve the new problem. To be more effe ve,
these techniques must be strengthened to 1ake ad vantage of looser similarites

® Automatic programming It has been ciaimed (eg. see Balzer [1972)) that, for a omplex
prograrmming task. 1t 15 unreahstic (0 expect the user to formulate complete, correct
specifications for the cesired program In specifying an airhine-reservation system, an operating
system, or a tpacecraft-guidance system, for example, we are unlikely to anticipate the desired
behavior of the system in every possible situation in some systems, the specifications for the
program are formulated gradually through an extended dialogue between the user and the
system  (See, eg. Green [1976) Barstow [1977] Balzer et al. [1977), or the survey of Heidorn
(1976]) The dialogue is continued duning the program-construction process, 30 that the user
can rescive any ambiguities Or inconsistencies the system might discover Typically, these
systems attemp! to play the role of an cxpert programmer—consukant, and they tend to rely more
on built-in knowledge :han on deductive processes By admitung natural language as a
communication vehicle, automati.-programming systems avoid the necessity of apecifying
programs in an arlificial formalism; however. they add to the problem of program construction
the not inconsiderabie difficuitses «w natural-janguage understanding.

A curvey of various approaches 10 automatic progrsm constructicss can be
tound in Biermann [1976]

E. Uunsettled Questions

Manv of the techniques we have presented in this paper oring to miiid questions that have
not bee;: adequately answered. Some of these are mentionec: here.

® Conditional-formation. We have introduced a case analysis, and consequently a conditional
expression, when we failed in ar attempt to prove or disprove some condition. This attempt,
however, may be somewhat time-consuming, as it involves exhausting all the rules that might
appiy io the candition. Marsover, there are certain situations in which we can see in advance
that the thearem-proving effort is door .«d to twiure. For exwrple, if we can find a legitimate
inpui that will cause the condition to be true, and znother that will cause the condition to b

false, it is clear thag "¢z can neither prove nor disprove th- ‘onditian. °s is possible to recognize
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some of these situations quickly, thus avoiding the ¢ Jense of a pointiess theorem-proving
effort?

® Generalization. We formed a generalized procedure when we discovered that two subgoai:
were an instance of a “somewhat” more general expression. For all the exaixples (n this paper,
\he only generalizations we require involved replacing a constant by a variable, or replacing
one occurrence of a variable by a new variable. In some caser. however, it ‘s necessaty (o
replace a complex term by a new variable. On the other hand, if the specifications for the new
procedure are too general, it may be impossible to construct a program that satisfies them.
What limits shall we set on the extent of generalization we permit?

® Termination. In forming simpie recursive programs, it is always possible 10 establish
termination by finding a well-founded orcering between the input of the program anA the
srguments to 1ts recursive calls. Methods for finding this weli-faunded ordering during the
dertvacon process have beer: discovered and implemented in the DEDALUS system However,
we have seen that, o prove the termination of systems of mutuahv recursive procedures, 1t 3
necessary to find terminatrion functions that map all the inpu's and arguments into a single
well-fouirded set. How are we to find these termination functions and the rviated we..~for.nd =1
set during the synthesis process?

® List-manipulating programs. We have introduced technic -es for forming programs that
manipulate data structures. In our examples, however, the only iata-siructure manipulation we
perform 13 the assignment of values to variables. The same xhniques can be applied in a
straightforward way 1o consiruct uray-nampulating prograns.  Can these techniques be
extended to develop programs that change the #ructure of hists. graphs, and other complex data
vbgects? The in-plare ust-reverung program and the Schorr-Waite garbage collection
aigorsthm are programs within this category

® Simultaneous goals. The technicues we develop for achieving more than one goal
simultanecusly presuppose that the transtormation rules at our disposal cun focus on only one
goal at a time, 30 that the various goals must be achseved, and protection conditions checked, in
separate stages. Couldn't we devise transiormation rules that, while trying to achieve one
condstion, consider what conditions have ben protected, and - nat other conditions have yet to
be achieved? Thus, a rule that was about to introduce an assignment s=tement into the
program might check whether it ix permitted to change the varjable.

® &trategic controls. We have introduced strategic controls to praven' the cerivation tres
from growing unmanageably. In the derivation trees constructed by the DEDALUS system, the
unsuccessful branches at least represent plausible and weil-motivated attempts to iolve the
problem. Will this mechanism stifl be adequate when we increass the rumber of rulk from one
hundred to one thousand, or the size of the target programn from a few Bnes to a few pages?
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® Etficlancy. The techniques we have incroduced are .10t concernad with the efficiency of the
programs they produce However, if program-synthesis methods are ever 0 become 1 actical,
they must zake efficiency considerations into account  Ttis 15 not 1o say that a synthesis system
will need to perform a mathematical anaiysis of the program being const;ucted; it would scffice
to {ind crude sstimates of the running time to guide the derivatron (cf Weagbreit 11976], Kant
{1977)

® Specifications. The only specificaucs we have allowed describe the relationships tciween
the exnected input and the desired ou’ .. of the program to be constructed. Such “input-
output speciticarions” are inadequate  describe certain classes of programs. In particular, in
specifysitg, say, an arrline-reservati  system or an operating system, which are never intended
to terrminale. 1" 13 necessary to ¢ press relationships batween the inputs it accepts and the
outputs 1t produces at wermed e stages in the computation. Can the techniques wr have
used with input-output specifications be extended to allow the construchion of ‘“uch
“continuousiy operating programs?
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