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1. lDtroductloa. 

'ftIe tollow1J'4 P'&Pb probl- arl... 1n the .1'tudoJ ~ cJ.obal now 

anaJ..vah mel pr~ optUd.zatiCll [2,61. Let G. (V,E,r) be & flow 

craP1 111 tb .tart ftrt.x r. '2 A Tertex .,. dClii aate. ar.otber ftrt"!'IC 

'W , v in G it eYel'7 path tr(a. r to W CCIl-tam. .,.. vert_ v 

is the ~ate cSrwhator of ", deote4 .,.. ~(w) , it v 

'DIIIona 1 (~,6 1. EftI7 ftrta ot a now II'IIPl G. (v, E,r) except r 

has a lID1qua s.-e41.te """nator. 'l'tIIe...... {(!2(w),w)' WE V-{I'll 

!'oa Ii d1ftcted V. rooted at 1', 0&11_ 1Ibe ..... nl$or Vee of G, 

ncb tbat y "'net.. W it .. ~ it 'V 18.]II'GPV aaceRor 

ot W in tIM dcw1 ... tor trw. £ ... FJ.caru 1 .at "!. 

[P1pre 1J 

[P1pre 21 

tit "' ... to eaYtnct tIM ""'d-st. tI'M of __ 1~ tl.oIr IJ'IIIIIIl G. 

/IIJD" uu- [2] 1M .. \air 1M .... [7J -.enbe .. ~lattonuo4 

~ .. r.. .... a.. tIIl.)IODlAa. ... --...... .,. ~ r , ,.. 0U'I7 

Gat tM NI' ..... .upl 

..... ;4 ... "' .... t4 ....... fI'ta r, tM.. 8 t4 

ftII'Ueee .1. t .1- twa r " ..... 1IIaiab ... 4 .,.. !tall 

...... _ .. fill WI'tleM n 'PI' •• "" owe .. ~,u _ ........ 
tel ICU" __ n 2 •• w.. 
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To ~ze the runnins t:lrle of tbis al30l 1 ta, let us a~SWIf' tbat 

G ball III edces and. n vertices. Each execution o~ the pneral. stet' 

requires 0(.) t~, IUId tbe al&or1ta perfOl"lUl n-l executiClIlfS ot' the 

general step; tbwl the &l&orit_ require. 0(81) time total. 

Abo and 1Jl.la.l [~] deseribe another s1lllple alco:~thIl for cOIIIIPUting 

dominators. nu. aJ.&or1tma ~1pUate. bit wctors of lenctb n. Eacb 

vertex v baa a bit vector wb1.cb encodes a svperset of' the dar ~ nators 

of v. '!'be aJ.aori thIl aakea leftftl pules over tb~ snPl. updat1Dc 

the bit vectors dur1nI each peal, until no ~ber chaDlea to tbe bit 

vector. occur. '!'be bit Y!lCtor tor each vertex v the encode. th~ 

da.inatora of v. 

'1'h18 alccr1tbl require. 0(.) bit ftC'tor operation. per pus tor 

o(n) pus •• , or 0(_) b1t YlletCll' aperatlO1U1 total. SiDe .• ellCb bit 

TeCtor aperatica reqa1re1 O(n) tiM, tbI ""8". ttae (4 th. aIaor1:tIa 

is 0(1l~). '1'h1. bCNDd is peadJdatlc, bOUCi.; the CCIIlftaIrt tiletal' 

&8Boc1ated with tbe b1t ~ ..,..at1an. 18 ftI7 -AU.. ... 011 t;nd.cal. 

&ftIha NpftI-t1Dc :-..1. paup_ t.be IUIber of pr ... 1. ..u (GIl 

re4ac1bl.e t10w poapha ['] ~ tw ...... an r'f"qaireIl [ .. ]). 

III this JIII)G' _ IIU1l. "--iM a tut.. alpi.t:IIIa tor 8Ol~ tM 

.., ... ton prcf.>~ '1M ~tIa __ dIIptIt-ttrat .... [9J 11\ 

~1Dat1oD w1tA a data atna"". r. --.1 ....... ~ioM .. ftDeIl_ 

pt.b8 111 tNea [~). .. Jll'u. a a.a.. ".' t.IIt!. 01 ... IIlpritia 

1Ih1cb na. Sa O(a lCIII.) t .... a mN a' 'Ri .Iad s.., tl&t1a 

1IId.cb ... Sa o(a a(~.) ) 

of "'111_'. fWIeUca. 

, 



'!'be ~oritllll is a refinement of earlier versioos appearing in 

[10,ll,12]. Although prc..~ its correctness and veritY1nc it. !'Imn1ng 

time require rather ccmlpl.lc~ted analyai., the alcori tllll is quite sblpl.e 

to program and is very fas" in practice. We prosr~ bath versions of 

the algorithm in Alsol W, 9, stanford tbiveraity versim of AJaol, and 

tested the prograLB on an IBM 310/168. We ccapared the prosra- with 

a transcription into Al&ol W of the PUrdca - Moore aJ.aoritba md with 

an implementatim of the bU vector aJ.cor1tta. CD all but the small.est 

graphs tested our algorithm beat the other methods. 

"n!e paper cOIl.ists of five section.. SectlO1l ~ de.cr1be. the 

properties of depth-first search used by the &J.aor1tla aDd prons 

several. theora. which iIIply the correetne.s of the eJ.coritta. sc.e 

lmcv1edge of depth-first search as described 1r [9] and Sec:tiOll 2 of (10] 

is usefUl for understand1nl this leet1m. 8eetiOll' dftel0J)8 the 

al.gor1t1a, usiDI a, pr1lI1tlTes two proce4ure. tbat II8Il1pulate tne.l. 

Seet1ol1 ~ diseuse. two 1:IIpl-.t&t1<m., .Dpl.e cd 1a,h1lticatect. of 

the.e tree MI11pul&tiOll pr1Jr.1t1Te'. Sae lmowledp of ~ect1ou 1, 2, 

_ 5 of' (l)] 18 UMt'Ul for UllderatlllJ"'nc thi. HCtiOll. Sect101l 5 

preHllt. our ~l reaalt •• 

• 



2. .Depth-First s-reh aDd Dcw1-tara. 

SUppose w. parton a depth-t'1rst a.arch OIl a now IZ'&lIh G. (V,E,r) 

start1Da f'rca vertex r I aDd that we llUIIber the TerUe.. ot G trta ~ 

to D as the7 are re&ehed. ~ the a-.rch. 'l'b. search acerat.. a 

8}~QIl1n5 tree T rooted at r, vi th nrticeE mabere:d in preorder [5) '. 

see F1pre 3. 

'l'bo tollowiD8 ptha ~ __ b III iIIportant prClp«t"t7 ot depth-fir.t 

.-.reh aDd 1a czw:ial to the carreetne •• ot the dcai.nator. aJ.car1tba. 

I.- ~ (9J. It v aDd. w are .,..rtie •• or G nch that 

P!!!!!!!!t(v) ~ ""cr(w} I tIMD mr path traa v to .. in G .. t 

ecmtain a c~ .cntor or v aa4 w in T. 

M _ 1ntened.iate Rep, tbe dc.hatar. ~lOritt.. e~ •• a value 

tor MCb wrta w';' r celled it • .-1-cJc.1nator, daoted. b7 .!!!!!(w) 

ID4 det1lled. b~ 

(~) .!!!g!(w) • lI1Il{m __ (v) l'tbue 18 & p.th V • vO'v1' ,,,,Vt • " nell 

~ IIIIiIbe(Tt ) > ....-er(w) tor ~ SiS t-1) • 

&.. I'1cve , • 

• (01,1,.,.1-. ".:ftM _1»u1c ,.,..nt- Oil .......... "III;nn 

",1 'taM ............ 

I.-. 2. ... IIIW....... w ~ ~ , Ja Y 1Mt tile • ___ tala tbat 

r $ w(.) • ""y). ... v 18 &....... . .... fII ';" 1ft !. 

, 



~. Let PUfSlt(V) be the parent ot v in T. S1nce (parct (v), v) 1s 

lID edce ot G, by (1) ma.ber(v) - ~(Y) !: mEer(ere!rt(y» < ~~~,,) • 

By (1) and the choice ot v, there is a path v - v<>,v1, ••• ,vk - v 

such that mJI1ber(v1) > m.ber(v' for 1 ~ 1 ~ k-l. By 1..-. 1, .cae 

vertex v 1 OIl the path 18 a c~ ancestor of v and v. But 8U.ch 

a eaam Uleestnr v1 IIlWIt satisfy maber(v1 ) ~ !!,~(v). This 

meUls 1 _ 0, 1.e., vi - v , and v 1s a proper flllcestor ot v. 0 

1.- ,. For all¥ vert" Y" r , let v be tile vertex such that 

~.!(v) • sdaa(v). Tben idea(v) 18 an ancestor of v in T. 

Proof. 'lbe tree path 1'rca r to v c:oata.1Iu ~ mcestors or v in T. 

Thus ~(v) ,. s an ancestor ot v. !be path ccmslst1Dc or the tree 

path f'l'Ca r to v tol.l.awcl bJ' • path v. v<>,v1' •• "vt • y 8UICh that 

m.ber(v
i

) > uu.ber(v) tor 1 ~ 1 ~ k-l (1Ib1eh auat exist b7 (1» 

avoids all proper de.cena.nts or v which are also proper UlCestors 

or v. It tallon that ~(v) i. aD ancestor or v. 0 

CCll'Ollar7 1. Par fG7 nrta V" r, im.(Y) * ..y. 

* * Let ftrtice. T, v lI&'tid;r .,. ... Y in T. !be T'" !!!!(Y) 

* or ~(Y) .. ~(v) • 

l!:2!!!. Let X be .... ~ ~ or J.J!!(v) 1IIa1cIa is al.8O a 

proper lmCeator or T. ., 'Ibeona 1 -. COIra1lar7 1, tIMft 18 a JIIMih 

1'rca r to v 1III1a1l awald8 x. ., ~ tad. ,... 1f'1tb tM 

tree path trma T to Y, _ aIrta1a a Jl&tIl 1'rca r to • 1IId.aIl a.at.. x'. 

6 



Tlnls ~(v) must be either a descendant of v or an ancestor of 

:!daIl(v). 0 

UsinS LeIIIM.8 l-~, we obtain two results Ybich provide a W8¥ to 

callfute immediate daninators frem sem1-daainators. 

'l'b.eonlll. 2. Let" ~ r aDd let v be the vertex such that 

number (v) • ~(v). SUppose no vertex u satisfies 

* DUlDber(u) ":> nUlllber{v), u ..... , and ~(u) < ~(w). '!'hen 

~(w) • v. 

Proof. B;y LeIIIIa 3, it suffices to show that v daD1na.tes Y. Consider 

any path fran r to v. Let x be the last vertex on this path 

satiaf'YinS number(x) < ll\IIIl.l)er(v). If' there i8 no web x, then v. r 

dClDinates w. otherwiae, let y be the f'1rat vertex foJ.l.ow:lng x on 

* * "the path and aat1af11ng v ... y ..... All. vertices z 1'oUowin& x on 

the path but preceed:llla y must .atist'y z > y by 1.- 1 and the 

eboice 01' x and y. 'BmI a&:D(y) < m:.bv(x} < mlllber(v} • sdca(w) • - - -
BY the bnIOtbea18 of' the tb~ y cazmot be a ~ deacenc!aDt ot v. 

'l'tma y. v and v 11.. CIIl the path. Since the l*th aelec:tec1 -.u 

arb1truy, v dc::.lDat.. ". 0 

'1'baoNa ~. Let" ~ r -. let v be the verta aw:h tbat 

m.lHarCT) • !!!!!C"). IArt u be a nrt_ tor 1Ib1ch !2(U) is KJ",-. 

..zs TVt1ces _Usf71Dl mJIII)v(u) > m.bv(v) 

5!!(u) ~ 5!i!(w) aDCl ~(U). ~(w) • 

T 

* u4 u .. w. 



Proof. Let x be the vertex such that Then 

sdaD(U) < sdom(x) < n'lDber(v) _ sdaa.(v) • - --' - --
By Lemma 3, 1d.aa.(v) is an ancestor of v and thus a proper 

* ancestor of u. TbIls by 1.- ~ !2(v) - ~(u). To prove 

1daD(u) • 1do11l(v) , it suffices to prove that ~(u) dca1nate6 Y. 

Consider any path fraa. r to v. Let x be the l.a.st vertex CIl 

this path satis:fy1ng number (x) < lNIIber(~(u». If there 1s no 

such x, then idaa.(u). r dca1nates v. Otherwise, 1~ "T be the 

* * rirst vertex follo1r.U1g x on the path and sat1sf"J1,ng !~(u) ... y ... ,.. • 

All vertices z toll.OII1q x em the path but preceding y 8at18ty 

number(z) > n_ber(y) by I.-. 1 aDd the choice 01' x and "T. Thus 

sdall(y) ~ nUllber(x). S1nce DUllber(1claa(u» ~ !2(u) by r.-a " we 

have ~("T) ~ JUIb~(x) < DUlllber(~(u}) ~ ~(u) • 

By the def'1nl t10n of u, "T eazmot be a proper deaceadaD,t of v. 

FUrthermore 'Y cazmot be both a proper deaccdallt of idca(u) and an 

ancestor of u, for U thi. were the C&Ile tbe path calsi stiD& of the 

tree path rrc. r to .!e(y) fc.ll.owd by a:path !.e(Y). vO'T1,.·., Tk • Y 

auch that IMIber(V1 ) > lDIber(y) for 1 ~ i ~ k-l followed by the tne 

path fraI. y to u VOIIl4 aY014 1dJa(.); but no path 1'I'Ca r to \l 

avoicla ~(u) • 

'lbe ~ r-.1n1• pou1bll1'ty' 1. tat !!:!!(u). y. .. !:!!!!(u) 

lie. CI1 the path tna r to v. 81Dce the path .~e4 .. U'bi'tN.l7, 

!9(U) ... nate. •• C 

a 



coroll.ary 2. Let w,. r and let v be the vertex such that 

number (v) • adem(v). Let u be a vertex -ror which sdcm(u) is 

minimum among vertices satisf'yins number(u) > number (v) and 

Then 

(2) idem(w) - {v 
----- idcm(u) 

u sdca.(w) _ ~(u) , 

otherwise. 

Proof. IJImediate -rrem Theorems 2 anl 3. 0 

* u-v. 

The -rollow1ng theorea provides 0 wa.v to cCIIlpute aem1.-dClllinators. 

Theorem 4. For any vertex w,. r I 

(3) sdem{w) - min(fnlllllber(v) I (VI v) " E and number(v) < number(v)} 

U {sdClll(u} I nUlllber(u) > number(v} and there is 

* ed£r 'v .. ..,) such that u ... v in T}) • 

~. Let I equal the riSht side of "). We ahall. firat pl'O'Ie that 

sdcD(.) S I. SUppo8e I. mab!!'(v) tor a~ verta v such that 

(V/V) € E and %IUlllber(T) < maber(w). By (1) ~(.) S ,. SIIppo8e 

on the other band ,. ~(u) tor 8~ ftrtex u such that 

DUlber(u) > m.ber(v) and there 18 an edce (V,.) 8UCh that 

Let ]I: be the verta nch tbat m.bezo(z) • .e!!(U). llJ (1) then 11 

a path ]1:. v()lT1' ."''''.11 • u ncb t!at Il1IIbV(T;l) > d • ..-(U) > l1\1li).-(,,) 

tor 1 SiS .1-1. 1'M tree path'll. Vj - T.1+1 ...... - vk_1 • T 

satisfies raaber("'1) ~ mPbv (,,) > DIIIIbv(,,) tor .1 SiS k-1. 'DIu 

the path ]1:. TO'T1, ... ,TIt_1 • T, Tit." .. 1;1.n... DaibV(T;l) > 1UIbV(,,) 

for 1 ~ i S k-l. B.r (1), .!!!!(,,) ~ .--(x) • "~(11) ••• 

9 



It remains for us to prove that ~(v) ~ I. Let x be the 

vertex sueh that number (x) • .!2(v) , and let x. vO'vl' .• ,vk • v 

be a simple path such that number(v1 ) > number(w) for 1 =:: ! =:: k-l • 

If k - 1 I (x,v) € E I and r.umber(x) < number(v) bY' LeDIDa 2. ThUs 

sdan(w) _ number (x) ~ I. SUppose on the othe~' hand that k > 1. • 

.. 
Let j be minimum such that j 2: 1 and Vj - vk_l • SUch a j ex1S'lS 

since k-l 1s a candidate for j • 

We cla:lm ni.:mber(vi ) > number(vj ) for 1 =s 1 :5 j-l. Suppose to 

the contrary tbat number(v1 ) < number(v
j

) for scme i in the range 

1 =:: 1 =:: j-l. Choose the 1 such that 1 =s i =:: j-l and mmiber(v
i

) .. 
is mini1lDllI!. By Lesrma 1., vi - Vj , which contradicts the choice of j • 

Tb1 S lJ2'OV88 the claim. 

The elabD. 1mpl.1es ~(v) _ DUlllber(x) ~ ~(Vj) ~ I. 'lbus 

whether k - 1 or k > 1 we have' sdaa(v) ~ I , and the theorem 1s 

true. a 



;s. A rut 1)cw1 natora Alp1 till. 

D1 this s.ectiOll .. deYel.op lID &lcOl'1t11m 1Ibich uae. the rel'Ult. in 

Sect1.on 2 to t1.D4 da.ba'tora. Earlier 'ftraicxu.; at the al.&oritba appear 

in [10, 11, l2] ; the version ,.. present is refined to the po~t where it i8 

as sUlple to propoa ... the atra1&btforard aJ.gor1tt. [2,1] or the bit v~tor 

algorithm [3,4], sillilar in speed 011. SII&lJ. graphIC, aDd JllUCh faster OIl large graphs. 

The al8or1 tba cansiata of the fol.l.ow1na four stepa. 

step 1. Carl')" 0I%t a clepth-:t1rat search ot the probl_ srapll. RUllber 

the vertice. trca 1 to n .. tt.y are re.ehed duri.Da the 

search. '1'or ach ftl'ta: y, d.eten1ne the set E!!!<v) of 

vertice8 v such tbat (v, v) 11 all edp and the vertex 

par!Ilt(y) which is the parent or y in the spamdnc tree 

pD.erated bf the aearch. In1t1al1se 'the variables uaed in 

IS'UCceed1Dc steps. 

St!,p 2. ec.pate the .-.-dcw1naton of all. vertices by ~ Theora t.. 

C&rI7 oat the c:w:putatiClll vertex-b7-ftl'tex in decreaslDa order 

b7~. 

step ,. DIpl1ci~ datine the '-elUate ncmnator or each vertex by 

~ Caral.lu7 2. 

steR ~. Bxpl1c1~ cJet1M the 1 c!1ate 4cm.nator ot each vertex, e&rrJiDC 

CMt the cCllpl'taUca ...-ta-bJ'-"fVta 1D 1Dcl'eU1D8 orUr bJ' .... 
!!!£ .. Y« Y !!.I!!!(Y) :- _. !!!!.(Y) - 0 S 
DrI(r); 



Step 1. uns the recursive procedure DFS, det'1necl belo~. to carr:v 

out the depth-nrn learch. Tbe procedure .. .-al that ~(v) 11 

th., set ot verticel • 8\1Cb that (v,.) E E. Wbel a vartex v receives 

a n\laber 1, the procedure aslipS 1-.:1 (v) :_ i IID4 verta(i) :_ v • 

procedure DFS(vertu: v); 

~ 
semi (v) :_ n :_ n+1., 

vertu:(n) :_ v; 

c~t :1nitialize varl~1.e6 tor Itepa 2, }, and~; 

for each.E BUCC(V) do 
~,..."...,.",. - ~ 

~ ~(v) _ 0 ~ parent(.) :- v; Dl'S(v) n; -add v to pred(v) ad -
.!!l~ DFS; 

After c&J'r71nc cut step 1., the aJ.aori tIa caft'1.. out stepa 2 aDd , 

s1multmeoua17, proc(!l'8inc the wrtie •• v; r ill ~ 0I'de __ .-.r. 

Wben procesdns a ,""a v, 

'l'heorea 4. Each edp (u,v) i. ........... U 

lNIIber(u) 18 a ca.Udate tor --Cv). It 

, 8I'C.) < n _(v) , 

n _(.) > I.dv), t:a. 

m.ber(x) 

~Cv) • 

~ 

• > WlllbwCv) IIIIl x ... ; .t.(x) 11.. Ita .... 

vertex v to.... -,-C.),..... • 11" ....... ... 

DWIIMtr(u) • !!!i!!(v). 'IIIIlI ..... 1 ...... t.... ,.. .... tIM ... . 

!t!!!Cv) 18 t~ .-lCv) • 

•• Cv) - .!!!!aCv) • 

7 wCv) , .. .,... JB{Y) u,.... 



Af't- r the ... -dmd.I.4tar or v is cc.pu.ted. the &1aDr1tla .-ptle. 

bucket (parent (v) ). P'or..ch vertex w £ bucket (JI!I'!Ilt(v) ) , the alcor1th11 

t'inds a vertex u or.:1n1aal ~(u) ~ vertice. satb1)inc 

it 

nuaber('t) > lImber(ll!:I'9t(v» and u ... ". It ~(u) • .!!!!!!(w) , 

then by COl"Ol..l.u7 2 tile 1 Jll1ate dcWnator ot " 1. R!I'!Ilt(v) , and 

the algoritla ua1p. ~(,,):_ ....... t(v). It .!!!!!!(u) < ~(w) , 

then by C'oro1.l.ar,r 2, u UI4 " brfe the __ ~.te ~ator, Uld 

the alCor1.tba ... 1pa ~(w) :. u • on. lntet of tid .... ,~t 

is to iJIpllci t~ def1De the ~at. dew1 natar of " to be the 

~ate .... 'n.tor ul. ftrta with _".,. ...s.-cIe1M:tozo tbu w. 

Tb1s ~.tea at.p, tor ft!'t1cel WE bacIrift<pu.t(v» • 
it 

Both step 2 .ad step , recpln ~ tor certa1D lJ&tIla v - w 
it 

in the ~1 .... tree, • .....na u CIIl the I*th v - W ba1.Dc wi n1_ 

.!!!!:!!(u). To t1D4 ... YVticea the alpoita. uea • ..tbocl dMcr1be4 

in (1.0]. '!'be alaad'Ua aiIrtIa1u • __ atnatve 1Ib1oh ~ ... eecta • 

toreat with vwt.t .... Y 1114 ...... (Cwet(V),T) 1.e!!(T) baa b_ 

c:c.pated}. 'fo ..s. .. '" tId. ..... .u .... tbe alpi_ ..... two 

procedaft. : 

MIl.... ( .. w) to tM f'alut. 

It T 11"'" root of • u.. sa tile ran.t. NMu Y. 

0tIa1lw1-. 1ft r __ .. ~ of .. Vee 1a tile fWeat 

1IMaIa....... y. ."A. ,.__ • ~ r of .tid 

• !B(.) .... ,... r-y ia"~. 



IIIKl EVAL. 

c~t initi&llze TU1.ab1e.; 

!2!. 1 :- n ~ -1 ~ 2 ~ 

v :- ?Uta(1); 

~: tor each u € pred(v) do -- -x :_ EVAL(u}; ~ .!!!!!(x) < a.m(T) ~ !!!!!(v) :_ !!!!(x) ~ 

~: 

LIlU:U--t(v),v) ; 

add v to 'bucUt( .... rta(!!!!!.(v»; 

~ ~ w € bucUt(pnat(v») !!. 
delete v tr.a b\1cbt<ez-t(v»; 

u :_ EVAL(.); 

dca(w) :- !!. .!!!!!(u) < !!!!!<ez-t(v» ~ u 
el.ae P!!'St(v) t1 04 0'.1; 
~ "..,.." . ..,...,~.".", 

the 1zsndiate dtw1natar. nat apl1e1t~ ~ bJ' steJI 3. Heft 18 1m 

AJcol-liU ftl"1101l of step ~. 

~: tar 1 :- 2 ..ul D clo - --T :. wna(l); 

!! taa(v) ~ ........ (1 ... ("'» ~!!!(T) :- !!!(-(Y) !!i 

1'b1. ccmp1trtu GIll' ,.....ataU.- fd tile ~tIIa ... tor tile 

1IIF1...tatica or LIIK .. DAL. P1pft ~ ~ ... ta.. alpitlla 

["-" ~] 

~ ... cClllWu • 1I .. 'ete ~-u. ......... fII_~'" 
~.I_~_ . 
••• _ .. _ ltlilt 



dca(v) _ ~(v) for a.eh ftrt_ v ~ r , u8Wl1Da that LIlOC aDd EVAL 

per1'onl &8 c1a11lecl. The l'\IM1nc tiM of the aJ.aor1tba is O( ... n) 

plus t:1.e ~or n-1 LDX mel ... n-1 EVAL 1nstruct1011a. 



4. I!Rle.elltat1C1l of LIH aDd EVAL. 

Ref'erence (13] prortdea two W¥8 to 1JIpl~t LIlUC IDd IVAL, ene 

a1mpl.e and one aopb1atlcated. We sball not di8CUS8 the deta1la of the8e 

aethods here, but aerely proride Alaol-lllte 1Ilp1..tat1Q1ls of' LIn: 8D4. 

EVAL which are adapted t'l'ca [13]. 

The simple aethod. uaes path cC!IJ)!'!u1Q1l to C&ZT7 out !VAL. To 

represent the f'or..:st bunt by the LIlOC instl'UlCt101l8 (hencef'ortb called 

the forest), the aJ.&ori tma uaes two an"qa, ance8tor aDd ~. 

Initi&ll.y IUlcestor(v). 0 an(' ~(v) _ v f'or eaeb vertex v. 

In general. ancestor(v) _ 0 c:ml.y if v is a tree root in the f'arest; 

otherwise anceator(v) is aD ancestor cd T in the f'arest. 

property. Let v be ~ vertex, let r be the root of' the tree in 

the forest CCIlta1n1ns T, aDd let v. T~Tk_l'" .,'YO _ r be sueh 

that anc:estor(Ti ). 'Y1_1 tor 1 SIS k. Let It be. ftrta -= 
tbat ~(x) is afld-- --.. ftrtlee. x E fl.lMl('Y1) 'l 5 1 ~ k) • 

!beD 

(*) x 18 a ftrta .... tba't .!!!:!!!(x) 18 wlni_ ~ ~1". x 

+ * aat1at;ina r":II: .. y in tbe t'areat. 

!b eaft7 oat LIB(T,.), tile al&aft- U"'P' 

!O CU'r7 CMt DALeT), 

MteIIdM tbe .....-c. Y. YJLITIt-1'''.'YO. I' .... tbd 

..... (T1 ) • T1_1 ,. 1!S 1!S It. tt Y. 1", T 18 ..... 1. 

otMn1.., tile ~_ .. r- .... I . 2r- _ eeet .. .. 

",,"'(T1) :. r fbi' • S 1 :5 It , .... ' .. '.ala to .. $ •• ee). 

!ilia JIIrIl(Y) 18.. .... _ 18 _ AIeIl-lDa ,,11.1 •• ,.. .... 



vertex procedure EVAL(v); 
,..,.- ,..'"' ...... , 

if' ancestor(v) '" .J then EVAL :_ v - --else CCMPIiESS(v); EVAt :. l.abe1(v) f'1; 
""""..",.,. -,."",.." 

Recursive procedure COMPRESS, vb1cb carries aut the path compression, 

1s defined by 

pr(Jcedure CCMPln:8S(v); 
-fto .. ,.,. 

c:.cmaent this procedure &88U1les ancestor(v) ~ 0; 

if ancestor(ccestor(v» ~ 0 tben 
""'" - -

CCMPltESS(aDcestor(v» ; 

if sewi(labe1(aDcestor(v)) < sem(J.abe1(v» then 
~-- -- ~ 

label (v) :_ label(.mce.tor(v» t1; - - ,.,.,. 
aDce.tor(v) :_ aDCeltar(aace.tor(T» t1; -

Tbe tiae ~red for n-1 LDIt8 aDd ... n-1 EVALa WliDI thiF 

illlp1_entatioo 18 0(. loc n) [13]. '1'hus the .b!p1e nrliOD of' the 

doIIinatol'l alIOritla requirea 0(. loin) tiM. 

'!'he aopb1aticatecl .etbocl ... a path ca.pnll1cm to caft7 out the 

EVAI. lutructlC1la 1Nt 1IIpl mta tile LIB 1utnctiClll 10 that J)&tb 

ca.pt"eaaiClll 18 can"1ed 0IIt cmq em he1ucecl tree.. see [13]. '!be 

sophisticated. Mtbod nqU.n. t-.IO .sd1tlClUl. arrq8, .!!!.! ud~. 
ID1tlal..q ai •• (v) - 1 ID4 aIaU4(T) _ 0 tor all. ""icee T. Bere - -
are A.laol-l1ke 1 •• aatatlcas or au. .ad l.mx u1Jtc the aopbiaticatecl 

..... b04. '!bee. proceduru are ~ tI'ca [~J. 



vertex £roe~ !VAL(v); 

C~: procedure C{)(PRESS used here is identical to that in the 

sblpl.e metbocl; 

if Ulcestor(v) • 0 then EVAL :. l.abel(v) - --el.se CalPRES8(v); -- !VAL :. it se.1(l.abel.(mce&tor(v») > se.1(label.(v» then label(v) ---- - ----- ---
el.se label.(aneestor(v» f1 ti; 
,.""".,...,.- 1/IIItIIItJ"".""., 

R.roc~! Lm1C(v,v); 
begin ---cc-.ent this procedure as SUMS tor eaaven1ence that . ... 

!!!!(O) - !!!!!!(O) _ s-.(O) - 0; 

8 :. Y; 

~ !'!!! (~.!~JY» < .!!!! (l.lbel. (ChUeS (s») !! 
!.! !!!!(s) + .!!!!(eb1]eS(~(I») 2 2* !!!!(eblld(s» ~ 

perent(£h1l!(s» :_ I; Cb1l.d(s) :_ ~(eb1)d(s) 
el.se size(eb11d(.» :_ IiS8(.); 
~-- -

• :- J!!I'!Ilt(a) :- ~(I) !!. ~ 
~(I) :- A!!!!!(w>; 
!!!!(v) :_ .!!!!('V) + !!!!(w); 

it sise('V) < 2* aue(v) theft a,cb1l4(v) :. ch1l4(v)" ftj 
~- - - - "."",. 

~ • I- 0 ~ pNlt(s) :- 'Vj s :- ~(a) 2!. 
eM LIB; -.. 

W1t1l thia iIIpl.-.tat1oa., tbll tSM "~tor D-l. LUx." ... n-1 

IVa. 1a O(a a( .. n» , ... a is a r.ctlaaal illvel'ae td ____ 'a 

f'uDctloa. (1], cle1"1Aed u tol.l.an. Par ~ 1,.1 ~ 0 , l.et A(1,0) _ 0 

1t 1 ~ 0, A(O,.1) _ 2.1 it .1 2 l., A(1.1). A(1-1,2) it 1 ~ 1. , 

.-I A(1,j) - Aft-).,A(1,j-1» it 1 ~ 1., j ~ 2, ~ 

a( .. a) • 1dA(! ~ 1. , A(1, L211/aJ) > ~ a} • . .... tIM 8C1S1bifti0&M4 

ftl'dca ot tIM .............. alp'ltla........ o(a Cl(a.a» UM. 



5 • Igllementation and Experimental Results. 

We translated both versions of the al8or1tbm as contained in 

Appendix B into Also1 W and ran the programa on a series of randanly 

generated program now graphs. Table 1 and Figures 5 and 6 illustrate 

the results. Tbe sophisticated version beat the s1mple version on al1 

gralils tested. The relative difference in speed vas between 5 and 25~ 

increasing with increasing n. 

(Table 1) 

(Figure 5] 

[F:l.IUre 6] 

we transcribed the PurdaD - Moore algorithm into Algol W and ran it 

and the sophisticated version of our algorithm on another series of 

prosram flow graphs. Table 2 and Fisure 7 show the results. rur algoritml 

vas faster on all. gr&pls tested except those with n. 8. !he 

PUr"4aa -)t)Ore al&Oritml rap1~ bec_ DOD-ca.petithe.. n increued. 

The trade-ott po1ut ... aboat n. 10 • 

[TUle 2) 

[1'1pre 7] 

we 1IIpl..nted the bl t netor alCCri tba u1D& • let ot praceda.l'e. 

tor 'MIlipal&tlDe .utl-pnc1a1C11l blt vecton. (AJ,agl1l al.lon bit wctora 

0DlJ' ot l.!mPh ,2 CIJ' leaa.) !\able, p.,.. the zwn1. tS- ot tbl. 

al&or1 till em tbe aee.. ....1e. ot ten &ftl1ba, UI4 J'1CUN 8 CCIIIINII'O tM 

l"wpd'QI ttau of thf: bit nctOl' alp1.1a8 M4 tiM .CIJIId,8t1cate4 nniClll 

ot oar alcoritIIL 'aM 8pM4 of tbe ld:t ftCtor alaDriila _riel ..... ". 

~ tile .-.r or JIU'" r~ lNt 1\ .. alIIIp wu. \IIiID ... 

tut a.1Fri~ 

19 



[Table 3] 

[Figure 8] 

There are several ways in which the bit vector algorithm can be made 

more c~titive. First, the bit vector llrocedure.:: can be inserted 

in-line to save the overhead of llrocedure calls. We made this change and 

observed a " - 45~ sJleed-up. The corresponding change in the fast 

algorithm, inserting LINK and EVAL in-line, llroduced a ~ SJleed-Up. 

These ehanges made the bit vector algorithm almost as fast as our algorithm 

on graphs of les~ than ,2 vertiees, but on larger grapbs the bit vector 

algorithm remained substantiall..y slower than our ~orithm. See Table 1, 

Table h, and Figure 9. 

[Table 4] 

(Figure 9] 

Second, the bit vector procedures CUI. be written in assembq l.aDsua&e. 

To prorlde a fair cc.parison with the fast algorithm it woald be neces8&17 

to write LIlIK Ul.d EVA!. in assembly laDguace. we did not tr,r this 8jpprOacb, 

but we believe that the tast aJ.&ori tba would still beat tbe bit vector 

aJ.cori tla OIl gI"8jIils ot moderate 8be. 

Da1r4, uae ot the bit ftCtor aJ.corltba caD be reltr1cted to &ftIi1. 

mOWl to be I'e4uc1ble. Q1. Hliacib1e IP"8Iil cm.q ODe pus of the bit 

. 
second pus 11 to pron that the bit ftCton 4alt t cbIDp, a tact 

pu'IIltee4 _ tbe ncl1ac1bU1t7 of tbe 1ftIIb. We bel1ft'8 tllat a CIle-JlUa 

1n-l1De bit nctor alCOritbi woal4 .. CCIQIt1tb. w1tb .. tut ~tla 

OIl recmos.ble cn;taa of ~ $1 ... , lNt ~ it cee ipcfta tbe tiM 

needed to teat nducibWt,.. 



The bit vector algorithm bas two disadvantages not possessed by the 

fast algorithm. First, it requires 0(n2) storage, which ~ be 

prohibi t1 ve f'or large val.ues of' n. Second.. the dominator +.ree, not 

the daninator relation, is required for many kinds of' global flow analysis 

[8,14], but the bit vector algorithm ca!I.p\ltes only the dani.nator rel.ation. 

Computing the reJ.ation f'rom the tree is easy, requiring constant time pel" 

element of the relation or O(n) bit vector operations total. However, 

computing the tree from bit vectors encoding the relation requires 0(n2) 

time in the worst case. 

We can sUlllll8.rize the good and bad points of' the three alsori thlDs as 

follows: the Purdom - Moore al.gori tbm is easy to explain and easy to 

program but slow on all. but small graJils. lbe bit vector algori tbm is 

equ.a.lly easy to explain and. program, f'aster than the Purdom - Moore a.l.goritbm, 

but not competitive in speed with the f'ast algorithm unless it is run em 

small grlQ)hs which are reducibl.e or alJDost reducible. '!'be fast algorithm 

is much harder to prove correct but almost as easy to progam as the other 

two algorithms, caapetitive in speed on 8II&ll graJbs, aDd lINCh raster on 

l&n!:c graJlhs. We favor SaM version of the faR algoritba for practical. 

applications. 

We ccmclude with a fev cc.ment. em lIIQ'l to iIIprove the etr1cienq of 

the fast algoritla. Qle can speed up the aJ.coritba bJ' NWrit1Da DIB 8Dd. 

CCllPRESS as Dal-recurs1ve })1"OCedQre. 1Ib.1~ ,... explicit .tacks. Qle cu 

avoid usins an .url' , err atack tor C(lllUSS bJ' 1Dstea4 ua1111 & trick or 

reveraiDg ancestor poirrtenj s .. [12]. A alii] .. trick al.l.on eme te a'9014 

the use or III .,,.,.., 1 'ar, atack rar DI'S. ODe CIUl aft sc.e IIdditicma1 stoftae 

b7 cmllb1D1D& certaiD U"!'IIP, ncb .. 1!!!1"!!* .. -mor. bs • .ad1ncat1~ 

san lWID'ns t,.. aD4 stanp .,..,., 1N1; ~ at tile eIl*lM of pr ..... claz1.'t7. 



Appendix A: Graph-Theoretic Teft1noloey. 

A directed graph G. (V, E) consists of a finite set V of 

vertices and a set E of ordered pairs (VIW) of distinct vertices, 

called.~. If (V,W) is 311 edge, W is a successor of v and v 

is a predecessor of w. A graph Gl - (V1' E:t.) 1s a subll'aph of G 

if V1 ~ V and E:t ~ E. A path p of leJl§th k frem v to w 

in G is a sequenc~ of vertices p _ (v - v
O
,v

1
, ••• ,v

k 
• w) such that 

(vpvi+1) € E for a ~ i < k. '!be path is simp1e if va' •• "vk are 

distinct (except possibly va - vk ) and the path is a cycle if va - vk • 

By convention there is a path of no edges fran every vertex to itself 

but a cycle mst contain at least two edges. A graph 1s acycllc if it 

contains no cycles. If Pl. (u. Uo'~'" "~ • v) is a path frca u 

to v and P • (v >= vO,v1', ",V, • w) is a path fran v to w, the 

path Pl followed by P2 is p. (u. ~~I" .,~ • v • vQ'vl,,, .,v, • w) • 

A flow graph G. (V,E,r) is a directed graph (V,E) nth a 

distir~shed start vertex r such that for arq vertex v E V there is 

& path frca r to v. A £1'011'- flov I!'!Ph is a flow lI'aph auch that 

eacl". Y~L·t;ex has exactJ¥ two succeSIDrI. A (directed, rooted) tree 

T • (V,E,r) is a now 1I'&1)b such that lEI • Ivl-1. The start vertex 
, 

r is the ~ of the tree. A1q tree 11 IIqCl.1C, ud it v ie anr'"I'Vtex 

in a tree T, th~ ta a unique path trca r to v. It v ad v 

are yertices in a tree '1' ad there 1. a Jl&1'Jl fl'cIa v to ., tba v 1a 

* an ancestor of • and ... is a desceodMt ot v (~"" v .... ) • It 

in ad4i tica T". I the v 11 .. I,.,., .. 1Jte of • ...t • h .. 

+ * proper deseenclmt of T (daoted. "" v ... ). It v ... u4 (v,.) 

1. 111 qe ot if (dcotecl b7 v -elf ). tba v is the MW" of .. 

UI4 .. 1 ... ~ ot v. Ill .. Vee .... ft!'MK l.. .. - ... ,..,...t 



(excert the root, which has no parent). If G. (V, E) is a graph 

and T=(V',E',r) is a tree such that (V',E') is a subgraph of G 

and V .. V' , then T is a spllllIlins tree of G. 



AjPllendix B: ihe GC!I.pl.ete DClllinators Algor1 thm. 

This appeJ11:i.x contains 6. complete listing of both versicns of the 

dClllinators algorithm. The algorithm aSSlDes that the vertex set of the 

probl£::n graph is V .. {v \1 ~ v ~ n} • 

procedure DOMINATORS(intcger set arra¥ succ(l::n); integer r,n; ---.......... ,.."... ....~. ~-

integer arr~ dom(l::n»; 
-..,.,;;;.;....._--.,....-

~ 
i~teger ~ parent, ancestor, [child,] vertex (1: :n); 

integer array label, semi [, size] (0: :n); ---''-'---- -- --
intp.ger set array~, Lucket (:: :n); 
; ,J"""""""'~ 

integer u,v,x; 
IV.'" ..... IW' 

procedur~ DFS(lnteger v); ....... .., ,... _ ... 
begin --~(v) :_ n :_ n+1j 

verta(n) :- labe1(v) :- Vi 

ancestor (v) :- [~(v) :-] OJ 

~~(v) :_ 1;] 

for each v € succ(v) do 
~~ -,..""", 

~ semi(,,) • 0 ~ par!Dt,v) :. Vj DrS(.) fi: .-.-
add v to ~(y) od ,..,.., 

end DFS; --
i,~~~ CC»IPD93(:n~r v); 

if uceator(mceator(y») I- 0 tMrl -- -C(IIfRE8B(uceator(v») j 

~!!!!.(1~(.aceatQl'(v») < ~(1eMl.(v» ~ 
~(y) :- A!!!!!(lIICeetor(V» !J:j 

uce8tor(v) :- aceator(GDCeator(.» f1; -
~U' ~eclve EVAL(~ v); 

if anceator(v) • 0 tbIa IVAI. :. v -- -!!:!! C<lftB88(v); WJL :. label.(v) !!J 



p:oc;du:~ LINK(~~teger v,w); 
ancestor(w) :_ V; 

stepl: for v :_ 1 until n do 

step2: 

~: 

-- -pred(v) :_ bucket(v) :_ fJ; ~('l) :_ 0 od; ,..,.., 
n :- OJ 

DFS(r) ; 

[!!!!(O) :- ~(O) :- ~(I) :_ 0;] 

tar i :_ n by -1 until 2 do 
,..."."".", ~ ~ ~ 

v :- vertex(i) j 

~~u€~(v) ~ 
x :- EVAL(u); if aea1(x) < .-.i(v) then .em(v) :_ aem(x) od; 

~- - ~- ---
LIlR:(prent(v),v) ; 

add v to bucket(vertex(~(v»); 

tor each WE bucket (prent(v» do -- -delete. traa bucket(p&r!Dt(v»; 
u :- EVAL(.); 

~(.) :- .!!.~(u) < .!!!!(prent(v» ~ u 
elae .. t(T) n 04 04; 
~ ,.".., ......... .....-" 

~: i :_ 2 until D do --T :- ftZ"ta(i) j 

~ ~(T) ~ ftJ'ta(~(T» !!!! J!!!(T) :_ !!!(dtw(T» ~ 

'ftae a1Jlpl.e ftra1Cl1l or tbe alcariu.t CCDd-t. cd tbe procedaze abGn, 

vi th ~ in bNCbta Ml..M:e4. !IMt 8C11J11d.atica1;ed. wnial of t.be 

&1.tJ)r1t111 ccma1ata or tbe proc .......... , w1t1l .....,ud.Dc 1A ~ 

iDcl.uded, ..,. t!le '!a11"'11 .. ~ .-.uWMd 1'or .At. .. LDL 

~ proc .... 18L(~ "')i 

it 1IICedaa"( ... ) - 0 u... &al. :- lIItel.(T) - --!!!! CCW -( ... ); 

_AI. :- !!..!!!!lClP!lC ... n.( ... ») ~ !!I!lQl!!S(T» !!!!.1:!!!!:(T) 
!!!! 1II!!lC •• .-g:(.» !!,!!J 



R.z:.ocedure LIB(int:£;", v, v) ; 

~ intepr 8; ---• :_ Vj 

vb11e a-.l(l»el(v» < aa:l.(label.(cbil4(a») cJQ 
~-- --- -..... 

!!. .!!!!.(s) + !!!!(~(c!lnd(a»} ~ 2* .!!!!(~(a» ~ 
_1M1_e_e_at_o_r(~(I» :. a; ~(a) :_ ~(~(a» 

~ .!!!!(cb:Pd(a» :- d.se(l); 

• :- .neeator(a) :- cbild(.) f1 ad; - --~(s) :_ ~(w); 

.!!!!(v) :_ !!!!(Y) + !!!!(w); 

if aize(v) < 2* lize(w) tbeD a,ch1l4(v) :- cb1ld(y),a 11; 
......,- - ~ - - ~ 

wb1le • ~ 0 do .neeator(.) :- Y; • :. ch1~d(a) ad 
",."."."". ~ -- IIt#fiY 

eDd LIB; -
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F1sure }. Depth-first search ot 1"l.ov path in Fisure ~. 

BaUd edp. are apwminc tree edps, da8hecl ecJps are 

llCIl-tree edps. 

I'1rst mIIber :In ~ •••• 1s ...-tu 1Ulb4!:t', secCDl 

i • ...s.~. 



(8,- ) (8, -) 

(11,1) 

(12,8) 

<a) (b) 

(e) 

Figure 4. Forest mamta:l.nt:d. by LIl'fI: mel !.'VAL duriDs steps 2 and, of the 
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simple sophisticated s~e sophisticated 

n min max min max n min max min max 

10 2.0 2.1 1.9 2.0 200 46.4 47.2 36.2 36.4 
20 4.3 4.4 3.7 '.9 300 70.1 72.3 55.0 55.7 
30 6.2 6.8 5.5 5.8 400 98.5 101 74.7 78.1 
40 8.0 8.8 7.1 7.6 500 123 125 92.0 ~.7 

50 10.5 11.4 8.9 9.6 600 150 152 llO J.20 

60 12.4 13.4 10.9 11.6 700 176 1&.i.. 130 137 
70 14.6 15.4 12.6 13.1 800 214 217 158 167 
80 17.4 18.6 14.5 15.6 900 238 244 173 188 
90 20.0 20.2 16.7 16.8 1000 263 268 192 206 

100 ~ 22.4 22.7 18.0 19.3 

Table 1. Bunni ng tiM. in 10-' .ecOllda at the sillple and sophisticated 

versi01l8 CIt the tut alaorithll (three anPuI tor qch w.l.ue 

of n). 



in-line 
sophisticated sophisticated Purdcm - }tk)ore 

n min max min max min max 

8 1.7 1.7 1.4 1.5 ]..3 1.4 
16 ,.0 ,.2 2.5 2.6 4.6 4.1 
24 4.4 4.5 3.6 3~7 10.~ ~0.3 

32 5.8 6.~ 4.7 4.8 18.4 18.6 
40 7.4 7.6 6.0 6.1 29.4 29.6 
48 3.8 9.2 7.0 7.4 40.8 42.5 
56 10 II 8.0 8.8 56.5 58.2 
64 12 13 9.3 10.0 74,3 75.5 
72 1";.2 13.8 10.3 10.9 
80 14.9 15.1 li.8 12.0 
80 ~6.5 17.4 1}.0 13.9 
')6 17.-:- 17.9 14.0 14.5 

104 19.3 20.4 ~5.4 16.4 
112 19.9 20.6 15.9 16.7 
120 22.3 23.4 17·7 19.0 
128 23.5 23.8 18.7 19.2 

Tab1e 2. Rnnninc times in 10-3 80ccmds of the PIlrdaIl- Moore al&orittlm 

and the sophi sticated version of the fut aJcori thm (three 

graphs for each value of 11 ). 



bit vector 

n time passes time passes time passes 

8 ,.2 3 3.~ , ,.4 , 
16 6.3 3 6., , 6.4 3 
24 9.' , 9.4 3 9.5 3 
,2 ]2.4 , 12.~ :5 l5.7 4 
40 12.8 2 12.9 2 17.3 :5 
48 20.9 , 20.9 , 21.0 :3 
56 24., , 24., , 24.3 3 
~ 27.9 , 28.2 3 28.2 :3 
72 25.6 2 35.1 3 35.5 :3 
80 28.6 2 39.2 3 39.6 :3 
88 4'.7 , 43.8 , 44.1 3 
96 46.6 :5 47.7 3 41.7 3 

104 40.6 2 41.0 2 56.0 3 
112 43.9 2 43.9 2 63.., , 
120 65.9 3 66.0 3 66.6 , 
128 70.5 3 11.3 , 91.5 4 

Table :5. BlINd as times ill 10-' secoau aa4 lalber of puses 

o~ the bit vector aJ.aor1tla (three 11"'" tor NCb 

ftlue o~ Il). 

'9 



n 

8 
16 
24 
32 
40 
48 
56 
64 

72 
80 

88 

96 
104 
112 

120 

128 

in-line bit veetor 

time passes time passes time passes 

~ ~ , 1.8 , 1.9 , 
,., , 3.4 'I 3.4 3 '" 
4.9 3 5.0 :5 5.1 3 
6.4 , 6.5 3 7.9 4 

7.7 2 7.7 2 10.1 :5 
12.1 ~ 12.2 :5 12.4 :5 
14.2 z 14.2 3 14.2 :5 .-
16.1 :3 16., :5 16.3 , 
16.8 2 22.4 :3 22.7 "i ... 
lR.4 2 24.7 :5 24.8 :5 
Z7.1 3 27.5 3 27.8 :5 
29.5 3 29.6 :5 29.8 3 
27.1 2 27.2 2 38.1 3 
jo.4 2 30.8 2 41.5 3 
44.0 3 44.1 :5 44.3 3 
116.5 :5 'Ki.9 3 60.6 4 

Table 4. "'pm" DC tSae. in 10-' .eecmU Mld llUIIber o~ pa .. es 

ot the in-Une bit veetor al&or1tha (three papbs tor 

each wJ..ue ot 11). 


