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1. Introduction.

A number of researchers have studied  a one-person pebble  game played on directed graphs

as a model  of storage allocation  problems  ([Cl,  [CSI,  [HPV], [PHI, [PTI). In this paper we consider

two variations  of the pebble game.

Suppose  G is a directed graph with vertex set 2/ and edge set E. We will write G = (V, E). If

(v, ZU)  is an edge of G, v is a predecessor of w and w is a successor of v. The number of predecessors

of v is its in-degree and the number  of successors  is its out-degree. We will be interested  in graphs

of bounded in-degree, so we will denote by @(n, d> the class of acyclic  directed graphs  on n
vertices  having maximum  in-degree  d. A source is a vertex of in-degree zero, and a s i n k  is a

vertex of out-degree 0.
We will consider  time to be divided into integral steps. The notation [a, b] will mean the s&t

of integers  i with a I i I 6.

The black pebble game is played on a graph G E @(n, 2) by placing a number of tokens called

black pebbles on the vertices of G according to the following rules.

(a) At each time step,  one black pebble  may be either placed on an unpebbled  vertex  or

removed from a pebbled vertex.

(b) A black pebble may be placed on a vertex  only if all  its  predecessors  are pebbled.

Thus a black pebble may be placed on a source at any time.

k> A black pebble may be removed from a vertex  at any time.

The object of the game is to pebble a distinguished vertex of G, using no more than a certain fixed

number of pebbles at once.

Intuitively,  we can think of this game as modelling register allocation  for the evaluation of an

expression. We can consider each vertex of G to be an operator whose  operands are its

predecessors,  so the sources  of G are the atomic subexpressions. Pebbles  are registers,  and placing a

pebble on a vertex corresponds to computing the value of the subexpression in the register.  An

operation can be performed  only if all  its operands are present  in registers, i.e., all its predecessors

are pebbled. Removing  a pebble from a vertex corresponds  to freeing that register to be used to

store the result of another computation. The vertex  for the top-level operation  in the expression is

the distinguished  vertex which we are trying to pebble,  and the number  of pebbles we use is the

number of registers used in computing the expression.
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Hopcroft, Paul, and Valiant  [HPVI have shown that any graph in @(n, 2) can be pebbled

with at most O(n/log n )  pebbles. Paul, Tarjan,  and Celoni [PTC]  have proved  that for infinitely

many n there is a graph in @(n, 2) which requires cnllog n pebbles,  so the bound in [HPVJ is

tight  to within a constant factor.  An algorithm which pebbles  any graph with O(n/log n )  pebbles is

also presented in [PTC].

The p e b b l i n g  p r o b l e m  is, given a graph G E q<n, 2) and an integer k, to decide  whether  k
pebbles suffice to pebble G. Sethi [Sl has shown that the pebbling problem is NP-hard,  that is,

that any problem  in NP can be reduced to the pebbling problem  in polynomial time. It seems likely

that this problem  is not in NP. Sethi also shows that if we restrict the rules of the black pebble

game so that no vertex can ever be pebbled  more than once, the pebbling  problem is NP-complete,

that is, any problem in NP can be reduced to the restricted pebbling problem in polynomial time

and the restricted  pebbling  problem is in NP. (A discussion of NP-completeness  can be found in

CAHUI.)

Section 2 of this paper extends the result of IPTCJ to a modified pebble game using two

kinds  of pebbles. Section  3 shows that the pebbling problem  for another  modified  pebble game is

complete in polynomial  space.

2. Black-white  pebble games.

The black-white pebble game is played on a graph G c @(n, 2) with two types  of tokens called

black pebbles and white pebbles. Black pebbles  are manipulated according to the rules of the black

pebble game, and white pebbles  are manipulated according to the following rules, which are in a

sense duals of the black rules.

(d) A white pebble  may be placed on a vertex at any time.

(e) A white  pebble may be removed from a vertex only if all its predecessors  are pebbled

(with either black or white pebbles).  Thus a white pebble may be removed  from a

source at any time.

The object  of the black-white  pebble  game is to begin with no pebbles on the graph, make

legal manipulations  which cause  the distinguished vertex  to be pebbled with a pebble  of either

color, and finish  with no pebbles  on the graph. A fixed number k of pebbles is assumed to be

available,  but their color is not specified. The number of black pebbles  and the number of white

l
pebbles in use may vary as long as there are never more than k pebbles  on the graph at once. Of

course,  a pebble may not change color while it is on the graph.

Intuitively,  we can think of the black-white  pebble  game as modelling the proof of a theorem.

Each vertex  is a lemma which can be deduced from its  predecessors.  The distinguished  vertex is
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the theorem to be proved. Placing a black pebble  on a vertex  corresponds to proving that lemma

from its predecessors; placing a white pebble  on a vertex  corresponds  to assuming that lemma to be

true, intending later to justify the assumption  by proving the predecessors.  The number of pebbles

available  is the maximum  number  of intermediate results it is possible  to “remember” at one time.

Cook and Sethi [CSI show that for infinitely many n there are graphs  in @(n, 2) which

require a number of black and white pebbles  proportional to n ‘I4 The main result of this section.
is that  there are in fact graphs  requiring &log  n pebbles. The proof in this section closely
parallels  that in [PTC].  We will assume their Lemma 1 and Corollary 1.

Lemma 1 [PTC]. For any value of i there is a graph G(i)  E @(c2’, 2) with 2’ sources and 2’ sinks

such that: For any j E [l, 2’1, if S is any set of j sources and T is any set of j sinks, then there are at

least j vertex-disjoint  paths in C(i) from S to T.

Corollary 1 [PTC]. For any j E [O, 2’- 11, if j pebbles  are placed on any j vertices of C(i), and T is

any set of at least j+ 1 sinks, then at least 2’-j  sources are connected to T via pebble-free paths.

Lemma 2. In any graph,  if a path from vertex 5 to vertex  t is pebble-free  both at times tl and t2,

and t is pebbled  at some time in the interval [t 1, t21,  then 3 is pebbled at some time in the interval

[t 1, t,l.
Proof. By induction on the length of the path. If the path has length 0 then 5 = t and the

statement is trivial.  If the path has length at least one then there is a successor  s’ of 5 on the path.

By the induction hypothesis s’ must be pebbled  in [tl, t21. If s’ is pebbled black then s must be

pebbled when the pebble is placed on s’, and if s‘ is pebbled  white then s must be pebbled when

the pebble is removed  from s’. This completes the proof of Lemma 2.

This lemma will be used to show a en/log n lower bound on the number  of pebbles required

to pebble a sequence of graphs  which are essentially the same as those constructed in [PTC].  In

particular we will define  a graph C(i)  for each i 1 10. Let G(10)  = C(10)  from Lemma  1. Then

G(i+ 1) = (V(i+ l), E(i+ 1)) is built from two copies of G ( i )  and two copies of C(i) as follows.  Let

G(i) = (V(i),  E(i)) have sources  S(i)  = {s(i,  j) : j E [l, 2’11 and sinks T(i)  = (t(i,  j )  :  j  E [l, 2’3).  Let

C(i) = (K(i), EC(i)) h ave sources SC(i) = {sc(i,  j )  : j E [ 1, 2’]J and sinks 7X(i) = (tc(i, j) : j E [ 1, 2’3).

Let G r(i) and G,(i)  be two copies of G(i) and let C,(i) and C,(i)  be two copies  of C(i). Let

S(i+ 1) = (s(i+l, j) : j E [l, 2'+'1), and T(i+l)  = (t(i+l, j) : j E [I, 2”“1]  be two new sets of vertices. Let

G(i+ 1) = (V(i+  1), E(i+ 1)), where



V(i+l)  = S(i+ 1) u T(i+ 1) u Yt(i)  u V*(i) u VC&)  u K,(i),  and

E(i+l) = E,(i) u E,(i) u EC!(i)  u EC&i)

u ((s(i+ 1, j), t(i+  1, j)) : j c [I, 2”+9)

u ((s(i+ 1, j), scr(i,  j)) : j c [l, 2’3)

u ((s(i+l,  j+2’), sq(i,j))  : j c El, 2’3)

u {(tq(i,  j>, s#, j)) : j c [I, 2’1)

u ((t Iti, j), s2(i,  j)) : j c I I, 2’3)

u ((t2(i, j), x2(&  j)) : j p E 1, 2’13

u ((tc2(i, j), t(i+ 1, j)> : j Q [I, 2’3)

u ((t+(i,  j), t(i+  1, j+2’)) : j E El, 2’1) .

Figure 1 shows G(i+  1). The “left  half” of S(it  1) will refer to (s(it  1, j) : j Q [ 1, 2’31, with similar

definitions for “right half” and for T(it  1).

( 6 Let m(i) = IS(i)1 = IT(i)1  I= 2’, and let n(i)  = IV(i)1 be the total number  of vertices of G(i).  It

I is easy to show that G(i)  has maximum  in-degree  two and that there is a constant co such that

l n(i) I coi2’.

Let cl = 4911024,  c2 = 311024, c3= 1 IO/ 1024,  and c4 - l/ 1024.  The following inequalities  are

easily verified:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

c3m(i)/4 2 2c,m(it  1) t 1

( I-4c2)m(i+ 1) 1 c3m(it 1)

c2m(i>  - 1 1 c4m(it  1)

[cl m(it 1)/8)  1 Bc,m(it 1) t I

c p(i)12 2 2cp(i)  t 1

( l-2c&n(i) L c, m(i)

cgn(i)/2 - 2c,m(i) 2 qm(i)

c&i)/2 2 2c2m(i) t 1

( I-2c&m(it  1) L c3m(it  1).

F

Lemma 3. If in the time interval  [0, t] at least qm(i) sinks of G(i) are pebbled with any colors in

any order, and at times 0 and t there are at most c2m(i)  pebbles  on the graph, then there is a time

interval [t r, t2J E [O, tJ during which at least  cam(i)  sources of G(i)  are pebbled and at least c&l)

pebbles are always on the graph.

5



Proof is by induction  on i.

Basis. Let i = 10.  Suppose G( 10) = C(10) has 49 sinks pebbled  in [O, t], and at times 0 and t there

are no more than 3 pebbled vertices. Any 7 of these 49 sinks are connected, via paths which are

pebble-free both at 0 and at t, to at least 1018  sources,  by Corollary 1. Thus at least one of the

sinks, say v, is connected to at least 146 of the sources via such paths.

Let to be a time in [0, tl at which v is pebbled.  Let tl- 1 be the last time before  to at which v

is connected  to these 146  sources  via a pebble-free  path, and let t2t 1 be the first time after to at

which v is connected to these 146 sources via a pebble-free  path. During [t,, t2J,  at least one

pebble is always on the graph,  and at least 146 2 110 sources of G(10)  must be pebbled. This

proves the lemma for i = 10.

Inductive step. Suppose the lemma holds for some i L 10. To prove the lemma for i+l, suppose

that at least crm(it 1) sinks of G(it 1) are pebbled  during  [O, t], and that there are at most c2m(i+l)

pebbles on the graph at times 0 and t. We will consider  four cases.

Case 1. There exists  an interval  [tl, t2J 5 [O, tl during  which at least c3m(i)/4 sources  of G I(i) are

pebbled and at least c2m(i) pebbles  are always  on the graph.

The subgraph of G(i+l) consisting  of all  vertices and edges on paths from the left half of

S(if  1) to the sources  of Gr(i) satisfies  Lemma 1 and Corollary 1. So does the similar  subgraph

from the right  half  of S(it 1). Let t, be the last time, before  tl at which there are not more than

c2m(i+ 1) pebbles on the graph,  and let t3 be the first time after t2 at which there are not more than

c2m(i+ 1) pebbles  on the graph. Since

(1) c3m(i)/4  2 2c2m(it  1) t 1,

there are at least 2 (m(i) - 2c,m(i+ 1)) =

(2) ( 1-4c2)m(i+  1) L c3m(i+  1)

sources  of G ( i +  1) connected to the c3m(i)/4 sources pebbled  from tl to t2 by paths which are

pebble-free at both lo and t3. At least these sources of G(it 1) must be pebbled in [to, t,J, and at

least

(3) c2m(i)  - 1 1 c4m(it  1)

pebbles must be on the graph throughout  [t o, t3J. Thus the lower bound holds in this case.

Case 2. There exists  an interval  [tl, t2] E [O, tl during which at least  c3m(i)/4  sources of G,(i) are

pebbled and at least c2m(i)  pebbles  are always on the graph.
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The lemma holds in this case by a proof like that above,  considering  subgraphs whose only

intersections with G,(i)  are the direct connections  from S,(i) to T,(i).

Case 3. There exists  an interval  [f 1, t21 c LO, tl during which at least crm(it 1)/4 sinks of G(i+l)  are

pebbled and at least c2m(i)  pebbles  are always on the graph.

Either the left or right half of T(i+l)  contains  at least rclm(itl)/81  of the sinks which are

pebbled in [t r, t21. Again we will apply Corollary  1 to two subgraphs  of G(i+l). The first

subgraph  contains  all vertices and edges on paths from the left half of S(ic I) to the sinks S I(i)  of

Gr(i)  (including  all of C,(i)); the direct connections  from S,(i) to T,(i); the edges  from T,(i) to S,(i);

the direct connections  from S2(i) to T2(i); the edges from Tp(i) to SC,(i);  all vertices and edges on

m ( i )  vertex-disjoint paths from SC2(i>  to X2(i)  in c,(i);  and the edges from TC2(i) to the half  of

T(it  1) containing  at least rc,m(itl)/81  of the sinks which are pebbled in [fl, t2J. This subgraph

satisfies  Lemma 1 and Corollary 1, as does the similar subgraph which starts  from the right  half  of

S(i+ 1). Let to be the last time before tI at which there are not more than  c2m(i+  1) pebbles  on the

graph and let t3 be the first time after  t2 at which there are not more than c2m(i+l)  pebbles  on the

graph. Since

c
(4) [c, m(it 1)/81 1 2c2m(it 1) t 1,

l

there are at least 2 (m(i) - 2c2m(it  1)) =

(2) ( I-4c2)m(it  I) L c3m(it 1)

sources  of G(i+l) connected to the qm(it 1) sinks pebbled  from tl to t2 by paths which are

pebble-free at both to and t3. At least  these sources of G(it  1) must be pebbled in [to, t3], and at

least

(3) c2m(i) - 1 1 c4m(i+l)

pebbles must be on the graph throughout  Ito, t31. Thus the lemma holds in this case.

Case 4. None of cases (1) - (3) hold. Figure 1 may help in following  this argument.

Since case (3) does not hold, there must be a time t 1 E [O, 11 such that fewer than crm(it 1)/4

sinks of G(i+ 1) are pebbled during [O, t,] and the number of pebbles  on the graph at time t, is at

most c2m(i). Similarly  there must be a time tlo (: CO, tl such that fewer than crm(it 1)/4 sinks of

G(i+ 1) are pebbled  during  [t ,o, t] and there are at most c2m(i>  pebbles  on the graph at tlo.

c During  Ctl, flol at lea?; qm(i+ 1)/2  = qm(i) sinks of G(it  1) are pebbled, of which at least

clm(i)/2  must be in either :he left or the right half of T(it 1). Since



(5) c 1 m(i)12 2 2c,m(i) t 1,

the number of sinks of G2(i)  connected  to these sinks of G(i+l) via paths which are pebble-free  at

both tl and t10 is at least m(i) - 2c2m(i).  Thus at least these m(i) - 2c,m(i) =

(6) (1-2c,)m(i) 1 qm(i)

sinks of G,(i) are pebbled during [t,, tlol, with no more than c2m(i)  pebbles  on the graph at tr and

t,,. By the induction  hypothesis there is a time interval [t2, tgl E [t,, tlo] during which c3m(i)
sources  of G*(i)  are pebbled and c4m(i)  pebbles  are always  on G2(i).

Since case (2) does not hold, there must be a time t3 E [t2, t9] such that fewer than c3m(i)/4

sources  of G,(i)  are pebbled during Et 2, t,l and there are at most  +m(i)  pebbles on G(i+ 1) at t3.

Similarly  there must be a time t8 E [t 2, t,] such that fewer than c3m(i)/4  sources  of G,(i)  are pebbled

during [t8,  f91 and there are at most c2m(i)  pebbles  on G(i+l)  at tg. Thus in kg, t8] at least  c3m(i)/2
sources  of G2(i)  are pebbled. Since

(7) c3m(i)/2  - 2c,m(i)  1 qm(i),

there are at least c]m(i) sinks of G,(i) connected to these c3m(i> sources of G,(i) by paths  which are

pebble-free both at t3 and at t,. During  [tz,  t81 these sinks of G , ( i )  must be pebbled. There are at

most c2m(i)  pebbles on the graph at t3 and t& so by the induction hypothesis there is an interval

[t4, t7] c_ [t3,  f,] during which cam(i)  sources of G,(i)  are pebbled  and c4m(i)  pebbles are always on

G ,G>.

Since case 1 does not hold, there must be a time t5 E [t4, t7] such that fewer than  c3m(i)/4
sources  of G r(i) are pebbled during [t4, t51  and there are at most +m(i>  pebbles  on G ( i +  1) at time t5.

Similarly  there must be a time t6 E it 4, t71  such that fewer than cam(i)/4 sources  of G,(i)  are pebbled

during  [t6, t-/l and there are at most  cg(i)  pebbles  on G&l) at time t6. During [t5, t6] at least

c3m(i)/2 sources of G,(i) are pebbled.

Since

(8) c3m(i)/2  1 2c2m(i)  t 1,

at least 2 (m(i) - 2c,m(i))  =

(9) ( 1-2c2)m(i+  1) 2 c3m(i+  1)

sources  of G(i+ 1) are connected  to these c3m(i)/2  sources of G ](i> by paths which are pebble-free  at

both t, and t6. These sources  of G(it  1) must be pebbled  during [t5, t61 & [t4, t,] c [t2, tg] c [0, t]
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while at least  c4m(i) t qm(i) = c4m(it 1) pebbles  are always on the graph. This  completes the proof

of Lemma 3.

Finally  we can prove the main theorem.

Theorem 1. For infinitely  many n, there is a graph G E @(n, 2 )  such that pebbling some vertex in

G requires c&log n pebbles.

Proof. For n =n(i),i?  10,letG = G(i). Since pebbling all  sinks of G(i)  beginning and ending with

no pebbled vertices requires  c4m(i)  pebbles,  thdre must be some sink whose pebbling requires c4m(i)
pebbles,  or else we could pebble all  the sinks one after another, with the graph empty at some point

after each sink is pebbled. Since m ( i )  = 2’ and G(i) has n(i)  I coi2i vertices,  the number of pebbles

required is c&)/log n(i) for some constant  c5.

b

Since any black pebbling  strategy  is also a black-white pebbling  strategy,  the O(n/log  n)-

pebble algorithm in [PTCI  also works for the black-white pebble  game. Thus  the lower bound on

worst-case number of pebbles in Theorem 1 is tight to within a constant  factor.

The only place that Theorem  1 uses any information about the conditions  under which a

vertex can be pebbled is in the proof of Lemma 2. Therefore  at least c&log n pebbles  are

required in the worst  case of any pebble game on @(n, 2 )  for which Lemma 2 holds.
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3. A polyllomial-space  complete pebbling problem.

In this section  we show that the pebbling problem  for another  modified pebble  game is

complete  in polynomial  space. That  is, any problem  which can be solved in polynomial  space can

be reduced to this pebbling  problem  in logarithmic space,  and the problem can itself be solved in

polynomial space. Any problem which can be solved nondeterministically in polynomial  space can

also be solved deterministically  in polynomial  space. Again, see IAHUJ for a discussion  of

polynomial-space  completeness.

This modified  pebble game will use only black pebbles. We will find it convenient to allow a

pebble to move from a vertex to its  successor  in a single time step. This “sliding  rule” does not

affect our results,  since we shall see that it always saves exactly one pebble.
The major change  in the pebble game is the introduction of cyclic graphs  and “0~ vertices.”

Let G be a directed  graph in which every vertex has in-degree  at most two. Let every vertex  of G

be designated either an and vertex  or an g vertex, and let t be a particular  vertex. We are given

some number k of black pebbles  which can be manipulated according to the following rules.

(a) At each time step, one pebble may be placed on an unpebbled vertex, removed from a

pebbled vertex, or moved  from a pebbled  vertex to an unpebbled successor  of that

vertex.

(b) If a vertex is an and vertex,  a pebble  may be placed on it or moved  to it only if all its

predecessors  are pebbled. Thus an and vertex which is a source can be pebbled at any

time.

(c) If a vertex is an g vertex, a pebble  may be placed on it or moved  to it only if at least

one of its predecessors is pebbled.  Thus an or vertex  which is a source  can never be

pebbled.

(d) A pebble  may be removed from any pebbled  vertex at any time.

The problem is to decide whether or not it is possible to place a pebble on vertex t by legal

manipulations  using at most  k pebbles.

Lelnma 4. For all k > 0, a graph G can be pebbled  using k pebbles  in the modified  pebble game if

and only if it can be pebbled using kt 1 pebbles  in the modified pebble game without  ever moving

a pebble from a vertex to one of its successors,  that is, without ever using the “sliding rule.”

Proof. Suppose  G can be pebbled using k pebbles  with the sliding rule. We replace each use of

the sliding rule to move a pebble from a vertex x to a vertex y with two steps,  first  placing a pebble

on y and then removing  the pebble from x. This uses at most  kt 1 pebbles.

Conversely,  suppose a scheme exists  for  pebbling G with kt 1 pebbles  without  the sliding rule,

for some k > 0. We transform this scheme into one using k pebbles  as follows.  Suppose  there are

k+ 1 pebbles  on G at time ‘to. Then the move at to must be to place a pebble on some vertex y. If

this is not the final move, the move at to+1 must be to remove  a pebble from some vertex X. If x is
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a predecessor  of y we replace these two moves with a single move sliding the pebble from x to y. If

x is not a predecessor  of y we reverse the moves, first removing the pebble from x and then placing

it on y. If to is the final move we slide a pebble  from any predecessor  of y to y (if y has no

predecessors we just pebble it, using one pebble,  since  k > 0). We apply this transformation

simultaneously  to all instants at which there are kt 1 pebbles  on G, and get a scheme with the

sliding  rule which uses only k pebbles.  This completes the proof of Lemma 4.

The proof that the modified pebbling problem is polynomial-space complete  will proceed  by

using a pebble graph to simulate boolean  registers,  gates,  and signal lines, essentially identical to

those used in real-world hardware. The devices  can then be used to build a polynomial-space

bounded Turing machine,  a PDP-10,  or whatever is desired; the simulation of a PS-bounded

Turing machine will be given in some  detail.

In the figures  to follow, an and vertex  will be represented  by a circle-dot 0, an or- vertex bY
a circle-plus 0, and a vertex whose type is not mentioned  by an empty circle 0.

In the first step of the construction  a few simplifying  assumptions  will be made, to be proved

later.  The first is that certain subgraphs  will always  contain exactly one pebble. A prologue and

epilogue will be added to the basic construction  to ensure that this is the case. Also we will
generalize the notion of ar~J and or vertices to allow vertices with an arbitrary  number of

predecessors. If the predecessors  of vertex  v are zul, . . . , w,, and boolean  variables  x1, . . . , x, are
such that Xi is true if and only if ZUi is pebbled,  we will allow the rule for pebbling v to be any

monotone boolean function of the Xi’s*  Using  D to represent  “and”  and D to represent “or”,

we can for example  have the five-vertex  “graph” in Figure 2. There v can be pebbled  if w1 and

either zu2 or both zu3 and w4 are pebbled.  Note that D and r> do not represent  vertices, but

only building  blocks  for “generalized  edges.”

The boolean circuits we will simulate  are composed of gates  and logic lines. A gate is a

device with some inputs and an output, which computes  a particular  boolean  function  of its inputs.

A logic line is simply a path connecting one gate’s  output to some inputs of other  gates  (or of itself).

An initial  value,  true or false,  is given for each logic line and hence for each gate input. The

boolean circuits  function  by repeatedly executing two steps. First every gate simultaneously
computes its output as a function of its inputs. Then every logic line simultaneously  picks up the
value of the gate to whose  output it is connected, and applies that value to each input to which it is

connected.

The functioning of the circuit is controlled by a subgraph called the clock,  shown  in Figure 3.

This  is a cycle of four vertices  a, b, c, and d, and will always  have a pebble on exactly one of its

vertices. This clock pebble will move around the cycle once for each iteration of the two steps

described above. While a is pebbled the gates will compute  their outputs, and for b to be pebbled

all outputs will have to have been correctly computed.  The transfer of values along the logic lines

will be similarly  controlled by c and d. One such  iteration  will be called a tick.
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A gate will consist  of a two-vertex cycle for each input and output, and some “control”  edges

between  these  cycles  and the clock. Each two-vertex cycle will always contain exactly one pebble.

In one position this pebble will be interpreted as a true value, and in the other as a false value. An

and gate is shown  in Figure  4. Clock vertex  a is a predecessor  of both output  vertices f, and fc, so

the output value can change when a is pebbled  and only then. All the vertices in the gate are

predecessors  of vertex 6 in such a way that b can be pebbled  only if the output  of the gate is the

correct function of its inputs. The reason for the complexity  of the network connecting  b to the gate

vertices is that more vertices  will eventually have to be added to each cycle in order to eliminate

our simplifying  assumptions. The network  of generalized  edges will ensure that, when b is pebbled,

no cycle has its pebble anywhere else besides  the f or f vertex.

A gate computing  any boolean  function of any number of inputs can be constructed  in this

way.

The structure involving clock vertices c and d which implements  the logic lines is very similar

to the above. An example  is given in Figure 5 of an output a being applied to two inputs b and c.

It is now necessary  to modify  the above  constructions  to use only two-input and and or

vertices. Notice that at present all  the vertices are partitioned into subgraphs,  each of which has

been assumed always  to contain exactly one pebble: One such subgraph  is the clock cycle and the

others are the input or output  cycles  of gates. The clock cycle is the only subgraph which has

vertices which are not two-input  and vertices.

The modifications  which follow  will add vertices to the clock subgraph,  but we will continue

to assume  that each subgraph  in the partition always contains  exactly one pebble. We will call

these subgraphs  single pebble subgraphs, or SPSG’s.  In the following  figures,  as in the earlier ones,

edges within a SPSG are drawn as wide lines and those between SPSG’s  are drawn  as narrow lines.

With this convention the following statement  is true, and will be preserved by the modifications.

(*) Each or vertex in a SPSG has exactly two wide edges and no narrow edges  entering.

Each and vertex has exactly  one wide edge and at most one narrow edge entering.

We will work our way down to a graph with only simple and and or vertices by repeatedly

making the following two substitutions to replace complex narrow “generalized  edges”  by simpler

edges.

(1) For a vertex v with a narrow “and”  edge entering as in Figure 6a, we substitute  the

graph in Figure  6b. Here xl, . . . , Xi may be vertices or the symbols  [> and D

with more narrow  edges entering  them.

(11) For a vertex v with a narrow “or” edge entering as in Figure ‘la,  we substitute  the

graph in Figure  7b. Recall that 0 vertices are or vertices.

12
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These  substitutions  give an equivalent  graph in the following  sense:  Suppose  that  in a

certain configuration before one of the above modifications,  a pebble could be moved from tl to v.

Then this is also the case after the modification.  Conversely,  suppose  that after the modification a

pebble can be moved from u to v. For modification  (II) it is clear that the pebble could be moved

from u to v without the modification. For modification  (I), notice that no gate input or output

vertex can be pebbled  except  when the clock pebble  is on vertex  a or c. Thus  no gate vertex can

be pebbled between the time the clock pebble  moves from u to vl and the time it moves from Vi to

v. Thus the conditions  represented by edges xl, . . . , Xi must all  have been satisfied when the clock

pebble was on u, so without  the modification the pebble  could be moved  from u to v.

We now have a construction for a boolean circuit which computes  according  to the rule of

alternately  letting every gate compute its output and letting every output  be propagated to the

in,puts with which it is connected. The construction  uses only two-input  and and or vertices,  but

assumes that every SPSG always contains  exactly one pebble.  We will now add an epilogue to

guarantee that this is the case.

It is a consequence  of (*) above that if a SPSG  ever has no pebbles  on it, it can never again

contain a pebble. (The problem of getting a pebble  on it in the first  place will be discussed

presently.)
The boolean circuit we will construct  will have one gate output which is the “answer”  in the

sense that  if that output  is ever true, we will accept,  that is, we will be able to pebble the

distinguished  sink t of the graph. If we can force the presence of a pebble on each SPSG at some

time between the time the “answer” output becomes  true and the time vertex t is pebbled,  there will

have to have been a pebble on each SPSG during the whole computation of the boolean circuit.  If

in addition  we choose k, the number  of pebbles,  equal to the number of SPSG’s,  then no SPSG can

ever have contained  more than one pebble.  Therefore  the structure shown in Figure 8 is added to

the graph. Vertices to and f. are the true and false vertices of the output of the “answer” gate.

When this gate first computes a true output the clock pebble  will be on vertex b, so the pebble on to

(or the pebble on b) can be moved  to e. Vertices  tl, . . . , 1, and fr, . . . Jr,, are respectively  the true

and false vertices of all  the other inputs and outputs.  The pebble  on e can be moved all the way to

z if one of (ti,  fi) is pebbled for all  i, and conversely  no pebble  can reach t unless for all i one of

(Zi, fi) is pebbled  at some time after to is pebbled. Thus every SPSG has to have contained a

pebble between the computation of to and the pebbling of t.

Finally  we will address the problem  of getting a pebble  onto each SPSG in the first place.

We would like to be able to specify an initial value for each logic line and let the computation

proceed from there. Thus  we would like to be able to pebble  a specified  one of (ti,  fi> for each i,

and also to pebble  clock vertex a. Suppose  that we have k SPSG’s,  namely one clock subgraph  and

k-l inputs  and outputs, so we have  k pebbles.  Notice that in each SPSG  the vertex which we wish

to pebble initially  is an a& vertex. If in the i’th SPSG this vertex  is  Vi, then the situation  is as in

Figure 9a, recalling  (*), except  that the narrow edge from Xi to  Vi may not be present. We replace

this with the subgraph in Figure 9b. Here p is a single vertex  which is a predecessor of all the Ui’S.
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We have now violated (zi() because  an or vertex  in each SPSG  has an entering  narrow.edge, i.e., an

edge from outside  the SPSG. This means that the pebble  can be removed from the SPSG at any
time and later replaced at its initial vertex. To keep this from fouling everything up we add to p a

graph which requires that.  all  tt pebbles  be used to pebble  p, so removing  a pebble from a SPSG

will require the whole pebbling  to be started  over again to replace  it. The added graph is the

pyramid  Sk which Cook [Cl has proved to require k pebbles.  Figure 10 shows Sq.

The only thing remaining to check is that the initialization must be complete before the

computation can begin. This is the case  because  the clock pebble cannot move to b until every

input and output SPSG contains a pebble;  no input SPSG  can change its value until the clock

pebble has moved all the way to c; and we don’t care whether the output  SPSG’s  change their

values because  moving  the clock pebble to b will ensure that they are correct.

This completes the main construction. Suppose  we are trying to simulate a boolean  circuit

with n gates,  each having  at most m inputs. The total  number of vertices  in all gates is at most

3n(m+l) since each input and output SPSG  finally has three vertices. The epilogue  has at most

another 3(n- l)(m+ 1) + 1 vertices. The prologue  has exactly (n+ l)(n+2)/2 vertices since the pyramid

is k = n+ 1 wide.

The clock SPSG had four vertices  initially. In the modifications to remove complex edges,

each time one of the symbols  D or D was eliminated the number  of vertices added to the

clock SPSG was linear  in the number  of lines into the symbol.  Each gate was originally  connected

to clock vertex  b by a network which may  have had size exponential in the number of gate inputs.

Thus  the contribution from all  gates is at most c(m)n  vertices, where c(m) is exponential in m but

independent of n. The size of the network  connecting  a logic line to clock vertex d was originally

linear in the number of inputs connected  to the line. Each input is connected to only one logic line,

so the total contribution of clock vertices  from all  the logic lines is linear in m n .  Thus the total

number of vertices in the graph  is at most n2/2 + c’(m)n,  and the total number of edges is at most

twice that.

An informal way to show that the pebbling problem  is polynomial-space  hard is to observe

that the gate in Figure 11 acts as a one-bit  memory. With these registers and ordinary  and, or, and

not gates, any modern  computer with storage  n can be built  with at most O(n2)  devices. Therefore

a Turing machine with a tape bound p ( n )  can be simulated  with O(p(n)2)  devices, or a graph of

size O(p(n)4).  A more formal simulation of a p(n)-space  bounded Turing  machine  is given  below.

Suppose machine M has a space bound of p(n) and has 5 states  and t tape symbols.  Suppose

an input  word w of length n is given. Define an array of 2p(n)+n  squares,  each of which can hold

a value from 1 to (J+ 1)t.  The value in a square encodes the tape symbol in that cell and either  the

fact that  the head does  not point to that cell, or the state  of the machine if the head does point  to

that cell.  Each square  can be represented by Y = [log&s+ 1)t)l logic lines, which are initialized  to

the machine’s  initial  configuration  reading w with p ( n )  cells of blank tape on each side. The value

of one of these logic lines after the machine makes a single move is a boolean function of the 3r
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inputs  which give the value of this square and the two adjacent  ones, so a gate which computes

this  function can be built for each logic line. If the output from each gate is applied to the

corresponding  logic line, we have a simulation  which will run exactly like the Turing machine,

making one transition  at each clock tick.

Another  gate can be built which takes the Y lines for one tape cell and decides whether the

machine is in a final state at that cell.  These values  can be combined by 2p(n)+n-1  two-input  or

gates in a binary tree, yielding a final answer which is true momentarily if (and only if) the

machine  ever accepts.
The number of gates is O@(n)) and the.maximum  number of inputs per gate is 3r, which is

independent of n. Thus  the size of the graph to simulate M on w is O(p(n)2).  The graph can be

constructed using scratch space proportional  to the log of its size, or to log n .

To see that the pebbling  problem  can be solved in polynomial  space, simply note that  a

supposed pebbling can be checked in space equal to the size of the graph,  so the problem  takes

linear  space non-deterministically.  Therefore  it can be done deterministically in quadratic  space.

4. Conclusion.

Theorem 1 gives an n/log n lower bound on the number  of pebbles required in the

black-white  pebble game in the worst case. Therefore  in the worst case black-white pebbling  is

only a constant  factor more efficient than black pebbling. It is not known whether there exist
classes  of graphs for which black-white  pebbling saves more than a constant factor. For example,

the pyramid graph Sk (with (k2+k)/2 vertices) requires kt 1 pebbles  in the black pebble game. Cook

and Sethi  [CSJ prove that Sk requires SI(k l/2 ) pebbles  in the black-white  pebble game, but the most

efficient  black-white  pebbling  strategy  known for Sk uses LkI2j t 2 pebbles.

Section 3 shows  that a considerably modified  version of the black pebbling problem is

complete in polynomial  space. It seems quite likely that the black pebbling problem is

polynomial-space  complete even without the introduction of or vertices  and cyclic graphs, but we

have so far been unable to prove this.
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