Stanford Artificial Intelligence Laboratory
Memo AIM-327

April 1879

Computer Science Department
Report No. STAN-CS-78-727

bo (THE INTERACTION OF OBSERVATION AND INFERENCE
O oy
O
o Robert Filman
|
<
Research sponsored by
Advanced Research Projects Agency
\E
COMPUTER SCIENCE DEPARTMENT
ol Stanford University
\ =
2 S -
iy — :
T) At “h " ‘r;
" - - £V f<

a-“"*’f9 11 15 147

-

i _ﬂ_ﬁ,{".ﬂBLunMBEBr._, e e F

UNCLASSIF1ED

SECURITY CLASSIFICATION OF THIS PAGE (When Data

Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO

STAN-CS-79-727, AIM-327
W

3 _RECIPIENTS CATALOG NUMBER

f“/ r 25 o : 7

- Robért Elliot/Filman

| stanford University
| stanford, CA 94305

4 TITLE fand Substitiet

&5 TYPE C_SF HE”DRT & ‘PERIOE COVEEEE]

The Interaction of Observation and Inference . /

technical, March 1979

6. PERFORMING ORG REPORT NUMBER

7 aoTHoORs

STAN-CS-T9-T27 (AIM-327)

Vidr - 5+
1

B CONTRACT OR GRANT NUMBERIs
7

| AREA MDRT903-76-C-02067

9. PER#CR&—“NG ORGANIZATION NAME AND ADDRESS
Department of Computer Science :

vk
y

i

2 : LEMENT, PROJECT.
AREA & WORK UNIT NUMBERS

O5

2. REPORT DATE 13. NO. OF PAGES |

71 COMNTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency

March 1972 235

Information Processing Techniques Office
1400 Wilson Avenue, Arlington, VA 22209

15 SECURITY CLASS. tof 1his report)

18 MONITORING AGENCY NAME & ADDRESS Lif auff. from Controliing Officel

| Mr. Philip Surra, Resident Representative
| office of Navel Research,

purand 165

Unclassified

T5s DECLASSIFICATION DOWNGRADING

SCHEDULE
gtanford University
16, DISTRIBUTION STATEMENT (of this report}
_ Approved for public release; distribution unlimited.
17 DISTRIBUTION STATEMENT f(of the ahstract cntered in Block 20, if different from report! -

18 SUPPLEMENTARY NOTES

19 LEY WORDS {Continue ON reverss side f necessary and

identify by biock number)

20 ABSTHRACT {Cuntinue ON roverse sidn 11 NACASATY and identify by tlock numbert

knowledge, and a mechanism for
solution of reasoning problems in

with an observational analogy obtained by performing
mOdel - i o

Consideration iﬁf;his

.. An intelligent computer program must have both a representation of its
manipulating that wnowledge in a reasoning process.
This thesis,is ean examination of ‘the problem of formalizing the expression and

s machine manipulable form.
concerned with analysing the interaction of the standard form of deductive steps

dissertation is centered on the

1t is particularly

computation in & semantic

world of retrograde -

DD .5 1473

UNC

sswrzep O FY JA D

EDITION OF ¥ NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION UF T1115 PAGE (When Data Entered!

UNCLASSIFIED

RIETY ASSIFICATION OF THIS PAGE (When Data Entered)

19. KEY WORDS (Continued}

20 ABSTRACT | Continued)

4 5analysis chess, a particularly rich domain for both observational tasks and long
deductive segquences.

A fo jzation is embodied in its axioms, and a major portion of _this dig-
serta is devoted to both axiomatizing the rules of chess, and discussing and
comparing the representational decisions involved in that axiomatization. Con-
sideration was given' to not only /the necessity for these particular choices (and
possible alternatives) but also the implications of these results for designers of |
representational systems for other domains.

Using a reasoning system for first order legic, *FOL‘, a detailed proof of
the solution of a difficult retrograde chess puzzle was constructed. The close
correspondence between this *rormal® solution to the problem, and an “informalﬂ
descriptive"” analysis & human might present was shown.

The proof and axioms were then examined for their relevance to general
epistemological formalisms.; The importance of several different mechanisms were
considered. These included: 1) rctaining both the notion of "current status”
(typically embodied as the current chessboard) and that of a "historical state”
(a hypothetical game played to reach a desired place), 2) evaluating functional
and predicate objects in the semantic model (the chess eye), 3) the value of
“induction schemas" as partial solutions to frame problems, L) the retention of
explicit undefined elements within the representation, 5) the importance of -
manipulating multiple representations of objects, and 6) a comparison of state
vector and modal representations.

DD. o5 18473 excr UNCLASSIFIED

EDITION OF 1 NOV 65 1S OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered!

Stanford Artificial Intelligence Laboratory April 1878
Memo AIM-327 _ -

Computer Science Department
Report No. STAN-CS-79-727

THE INTERACTION OF OBSERVATION AND INFERENCE

by

Robert Filman

An intelligent computer program must have both a representation of its knowledge, and a
mechanism for manipulating that knowledge in 2 reasoning process. This thesis is an
examination of the problem of formalizing the expression and solution of reasoning problems
in a machine manipulable form. It is particularly concerned with analyzing the interaction of
the standard form of deductive steps with an observational analogy obtained by performing
computation in a semantic model.

Consideration in this dissertation Is centered on the world of retrograde analysis chess, 3
particularly rich domain for both observational tasks and long deductive sequences.

A formalization is embodied in its axioms, and a major portion of this dissertation is
devoted to both axiomatizing the rules of chess, and discussing and comparing the
representational decisions involved in that axiomatization. Consideration was given to not
only the necessity for these particular choices (and possible alternatives) but also the
implications of these results for designers of representational systems for other domains.

Using a reasoning system for first order logic, "FOL", a detailed proof of the solution of a
difficult retrograde chess puitle was constructed. The close correspondence between this
“formal” solution to the problem, and an “informai, descriptive” analysis a human might present
was shown.

The proof and axioms were then examined for their relevance to general epistemological
formalisms. The importance of several different mechanisms were considered. These
included: 1) retaining both the notion of “current status™ (typically embodied as the current
chessboard) and that of “historical state” (a hypothetical game played to reach desired place),
2) evaluating functional and predicate objects in the semantic model (:he chess eye), 3) the
value of "induction schemas” as partial solutions to frame problems, 4) the retention of
explicit undefined elements within the representation, 5) the importance of manipulating

4
.

multiple representations of objects, and 6) a comparison of state vector and modal
representations.

T his thesis was submitted to the Department of Computer Science and the Committee on Graduate
Studies of Stanford University in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

T his research was supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Order No. 2494, Contract MDA903.76-C-0206. T he views and conclusions
contained in thls document are those of the guthors and should not be interpreted as necessarily
representing the official policies, either expressed or im plied, of Stanford University, or any agency
of the U. S. Government.

© Copyright 1979
by
Robert Elliot Filman

Acknowledgments

[would like to take this opportunity to thank the many people who have contributed to the
completion of this dissertation.

I am especially grateful to my adviser, Dr. John McCarthy, and the other members of my reading
committee, Drs. Richard Weyhrauch and Terry Winograd, for their kind and patient reading and
advice. Without their support and direction, this dissertation would not have been possible.
Without their guidance and helpful criticism, this dissertation would have been markedly inferior.

To the other members of the FOL project, Dan Blom, Juan Bulnes, Ashok Chandra, Bill Glassmire,
Chris Goad, Dave Poole, Andrew Robinson, Carolyn Talott, Arthur Thomas, and especially Rich
Weyhrauch for for providing a system where checking reasoning was possibie.

To Jim Davidson, for readir.g even those sections I had forgotten I'd written. To the other people
who have, over the years, provided discussions and suggestions for improvement to system. 1 can’t
remembper all of them, but they certainly include Avra Cohn, Lew Creary, Martin Davis, Scot
Drysdale, Bob Elschlager, Bill Faught, Brian Funt, Dick Gabriel, Scott Kim, Fred Knoll, Bob Moore,
Allen Newell, Rich Pattis, Hanan Samet, Dave Shaw, Bob Smith, Peter Suzman, Nori Suzuki, Dave
Wilkins, and Don Woods.

To the staff and system programmers of the Stanford Artificial Intelligence Laboratory, for
providing such a productive working environment.

And of course to Myrna Kay, for providing the emotional support and stability T needed to get all
this done.

Table of Contents

CONTENTS
Chapter 1 Introductionc.ccvcieeiiiaccenns va e R RS E e S 1
1.1 Synopsis: ASummaryieieeennnne e e G E R T AD 1
1.2 Paradigm: Artificial intelligence B SR ¥ 2
1.3 Context: The Representation of Knowledgeccvcverrnrorarcnnrvrneeees 3
13.1 Declarative versus Procedural Reprasentationscccveevvvnrcnrecens 4
13.1.1 The Power of Proceduresccicossnrsrnsnnnsrsvnnasrreseress 4
1.3.1.2 The Deficiencies of Proceduresccovrrreavsescrrecccaccnenes 5
1.3.13 A Declarative Alternstiveccoveerersnssscrcrnancencrnnenes 6
1.3.1.4 ASuitable Marriage:ccoevsrerrererasastatncararsaenees 9
132 Our Scheme B e B 10
1.4 Analogs: Other Eyes TR S e 2 11
1.4.1 The Mechanic’s Eye e B SRR R A A S e A 11
1.42 The Personal Assistant’'s Ey®cocovvrinnnsnrrrnnccrrnncrnnenaens 12
143 TheEngineer's EYEcoiceecvcnsnrroreacnrannnnnrrnnnoennnenes i3
15 WhyChesscc0c0 A R A A R S SRR 14
15.1 Structure and Search SPaCEScoversucosesscrcersnenernnrroenes 14
152 Chess andthe Ey®scoccrercrcensnrnnerencnnns . 15
153 WhichChess PUZZIBSccrvrerrronssssssnnrrnaesronnsorsenrens 16
1.6 Topography: The Path of Our Proof e P TP 16
1651 THOSOWHONcovscrvocossnsasnnnesssssssssssscerirrsonnonnans i8
162 TheReasonccocccns ia e e R e R e B ST 18
163 AnAnalysis o i e R A e e R 888 34
1.6.4 Reasoning in a First Order Logic Formalismccoovvevccncoreernenens 34
1.7 Perspectives: Other Points of interestcccovierminrnnecrrrnenonerees 35
1.7.1 Mathematics and 2 Chess Proofo.vvvccvccrcanrrnnnnnrensnnes i 3D
1.7.2 Machine Proof Generation and 8 Chess Proofccveeeevcrnaecens . 35
1.8 Format: A Guide for Reading This Peaperccccvvee R A e 35
181 The Proof Checker FOL ...ccvvvrrrrariinninnnccnnnssoonnnnes cee. 36
1.82 Reading Proofs cievessrenrrreescnrsncnnnnnsrnerssnnnnsoees .. 36
Chapter 2 The Chess AXiOMSccussrurrrssrrsrrrerrnsresescrorrsnrrsnsnrsoness 37
2.1 Declarations and Definitionsccceevnoonnrrcccrccccrccrrnncnnnnerenes 38
2.1.1 Very Primitive NOtIONsocvvirrreeniarnrrrosnirerenecacrannns cess 38
2.1.1.1 POSIIONS ..ovveccrrrersorssassssnnssrossssooncccnnuseece vees 38
2.1.1.2 Pieces Gl B G- e s ces 39
2.1.1.3 SQUArEScccrerrrrreraresereratseraacnrrearenaans sy W
2118 Valuescevessrssrrcessttcscecrsesecererasarnees vesesess 80
2.1.15 Boards B e e D D DR ceesnes B0
2116 MOVESveesrssrsssssssascsssssssssenennnns teasssansesss 81
2117 COOFS .ovccvvrroresscssssrosesssssrsnannassnses capas s sspen AL
212 Pisce Declarationscecenneiieicciaiiisrananns ceivasisnaages N
2.13 Squares and Dimensionsc.ccoiiiiicercinenenens T
2.13.1 Square declarstionscoeeeiiieceees .
2.13.2 Coordinate Declarationsoccenreees STURRARRI R .
214 Value Declarationscovvrverssarennannnes B —— cees.. 48
2.1 Board Declaralionscocovvrnrvrcnssns s P S o
2156 Color Declarstionscoeovvevnncennnns R w0 B
1.7 MoreonPositionsccceeccccnniniceee e v e b E R DO
2.1.7.1 Position deciarationsccoeceune B R 1t 1k sk, 53
2.1.7.2 Positional Attachments e L e 54
2.1.8 Move Declarationsccvcevnuces B 55

2.2

Chapter 3
3.1

3.2

Chapter

Rls

2.181 Predicates On MOVES . ocossrereres st 07T e es SR EEG B Om R 55
2182 Functions On Moves ...xrecrsot®? e S e R Civseness DB
219 Definitional Axioms«=°* S i e E e B 57
2191 hﬁmﬁ.momum e TGRSR - imews B
2.19.2 Positionsl Axioms ..ot E— Y S R e BN e i R 58
2.1.10 Niscellaneous Declarstions -.ccovcsre®” B D9
Mw ------ i e B B e MY -8 ®E ersusssereserad " ® R B 59
221 Movement SXiOMS ... oozecrsss sttt T g A R B Ceesreret §9
2.2.1.1 Sucmwrdaiinition spwnmad SRR SR eyt G Ay B 53
22.1.2 Simple jogal motion .. ceeerettt | el g ah U B R v oun 810 % #F 61
22121 Ortho Attachments o coorrererrret st P —— 64

22122 Disg Attachments < ..neeee ReCe——— kR e g 64

22123 Knighimove Attachments ...coooeree” © e als L S 8 GG ® 65

22.1.2.4 Kingmove Attschments ...-* i o A ARt Cive.... 05

22125 Pawn MOVES ..o T g R B 65

22.1.26 Bringing It All Together ...-.- B et 66

2213 Castling ----vo-oo"” v e SR B e T s e e A 66
22.1.4 Caplure En Passant co.oeeecettt e e e eld R e cesessene 67
222 lnChOckDoiini!iom R e—— T g o il E nR EE . B8
223 Board AXIOMS .. .oecerrrt sttt i g R e o R 69
2231 Sub-board Defimition .. .ovevssressrrst caeh g EE 69
2232 Bosrd Manipulation . .ceceererte S-S S a——— 70
224 Global Notions ... coevvrrr®? R aRE B RS e 71
2.24.1 Chess induction .. .ceeeerereecst MRS L b 71
2242 The Mathematics of Pawn Coptureso--** I 72
22421 Pawn Caplure DRI v ounssipammmnn s sk BBV L 72

2.25 Asserted Theorems-- " e L s e e EE 73
2251 Pawn Capture Theoremsc-:” IR L e 73
2252 Other Unproven Theorems ..ccooeecssrotts e e e B S 74
Chess Lemmas TG s B SIS L L 76
Gimplification Lemmas. «cxoreecet Tt P T JEOTI— 76
Simple Proofs «..ce..cooert B e s @e e RS I -
3zl Proﬁ!snn?ﬁsi’tions e ¥ 2 I easasaseret 76
322 Simple Theorems On Valugs ...coerrresstot"" "0 e b R EEEER ¢ 78
(.‘,houlnducl'weﬁoofs e L epa R B S T 80
33.1 OnlyPswm?rmti T R R 80
332 Mobility «.coneerrrrttt S R g4
333 Segregate ...-.cc-c-” eesasescssenveerene g e SN SR £ 88
More Complex Chess Theorems ...-«- - el el FEEETT B2 g1
3.4.1 Proof by Cases: Symmelric Orthogonality ..oecvevsc” R e—— 91
3.42 Cornered Checking Pieces - .ccore* ek g < wwmm e n R S 95
343 No Black Pawns On the First ROW ccovorrertnts e i€ pEREYREE TS 101
A?Ot.soluﬁan'lothccms?mzh s s v e SRR e e we RO . 105
Declsrations for this Proofeeevserere? i e e ew e SR e BV e —— 105
The Proofoceceosrestt”” I ©- - gl T 107
4.2.1 Black is in Chetk «oooemsmres sttt 770 J s IOV - 107
422 While's Lest Move . ..oncrett veei s e e s s e FEE s s € 109
4221 Thoctnckmﬁﬂ-vomniw.ﬁ...,.....112
423 Which Piece Discovered the Chotk .cowenresrmts®? I 113
4231 Whers the Last Move Originated . .cooreerenre Tttt g i13
4232 m-mtmwuaPnnPromtm iy G RE m R B 6 114

4 wai}qunPromcd s e e SN TS B e 118
4.24.1 TMPwnDdlthwtuuthm S S . 120

Table of Contents

4.24.1.2 Which Piece Discoveredthe Check covvvrennvnes 123

4242 The Pawn Did Not Capture a Kingor Pawn cccnvvvvnenren 129

4243 TheFateof the Black Bishopscovvvnvnrcrvrenacn A

425 TheBlackPawnscovevesnnsncvvescosanns RN - -

425.1 Which PawnPromotedc.00v0. i rrsrnsssessnssaress 136

426 DidaBlackPiecaFall? e PE T 138

4.2.7 The Fallen Piece Wasn't a White Pawn e v S AR 142

428 The White Rook and King I R 145

429 Black Pawn Capturesccovrvsarasscsasrorcrecrianarnrenes .. 187

4,2.10 The Black Pawn's Path to Pmmotlon ¢ v s wiow e

4211 ThoSowuloePromotmgm S

4212 TheRoute to BKN7ccccvenens T T S ———— 158
Chapter & Conclusions cce0uvn R e SR AR o e e R e 162
5.1 Perspectives SERnTEk e e e e e e b e SRR 162

5.2 Representation and this Proofcceiiiiniireciinnrenenenrnnrronens 162

5.2.1 State Variables and Computable Objectsccvvenees S

5.2.2 Incompletely Defined Objectsc0vvnn PR -

5.2.3 Representation of Aspects T P 166

5.2.4 Expanding the Vision of the Chess Eye ccovrncncrrneccrnnaranes 167

§.25 Other Natural and Unnatural Notions coevvnenenninnncrnnenencns 167

53 Alternativescccirrr0mrnaes e R ST S R 168

5.3.1 Levels of Amamaitzalion o ee i R R Wi At E R 168

§3.2 Prior's Modal Tense Logic and Posntmm cesese 109

533 Fillinginthe Blanksccooerieniieirrrininnannes on b R cveae 3T0

5.4 Our Representation Applied to Other Problems Yy

541 Wherewasthe Kingcocovvvencnins e mm e AR RGRR EE » 171

5.4.2 Berliner's problem000 e S 173

§5 The Limitations of this Axiomatization R e e SR 175

55.1 Difficulties Encountered in Generating !hn - T s 176

55.2 Epistemological Axiomatic Limitationsccccevcreneorenennrnnnees 176

56 General Representationissuesccirvrrieevrniarnnrres I .. 179

5.6.1 Multiple Representationscovevurevonens S s ies 1Y

5.6.2 Abstract and Concrete Representationsveevvreccecvnervnrcnees 181

5.6.3 Heuristics and Representation CewE e CREF AR S 181

5.6.4 Funclions and Predicates s e voreesecn e i A PR PSR 182

565 Whorf'sLaw0n e e e b i 20 5 TR R N R e 183

5.6.6 States and Representationscccvveerenrircrriinsareneees 184

5.7 Historical Contextccvvoiiiiiiieaaaniriiiiiiiiiisnaanne treesesss 185

508 Fm 1111111 e TR e REE S SR R R RS S AL A # & % % 8 B B REE S VS EE B B B B B 1‘87

59 Evafunhonandﬁummry esesesarsesserarveness ey 190
Appendix A Chess Lemmas A e e S A8 A R R e 192
Appendix B Proof LEMMasoceseernaanssnarurnurrrnrresrsrrrsirints 193
8.1 Undefined Squares on the Given Chessboard oe-vee sessenenesss 193

B.2 "Blocked on the Total Board, To0™covvvcrrnnnnnns te seensaensasenss 193

B3 Where A White Pawn on BQBZ Goes S — =y 196

B.4 A Rook or Queen on BQl is Cornered P 198

B.4.i Biocked Disgonal Movement R e R S 202

B.4.2 Consequences of a Distant Pawn Promhcn R R R 203
Appendix C FOL Command Frequencyeecececevecrnsnnenencnces sy B0
Appendix D A Constructive Solution to the Puzzle (e R e e G e 207

vi

Table of Contents

Appendix E Listing of the Chess Theorems B o T 208
BILUOGrAPAY +ecvevcsssisnssscssransornessasrrntostrsssrestsenanTecrcans e 218
index to Predconst and Opconst Declarations cocrvverrirerirrsscrennnvcrrrnes 223
Index 10 Axioms and TheOFemMScccesscccrrrsierrrersssnrrnrunsrrescrsess 225

vii

B Introduction Page i

Chapter 1 Introduction

Section 1.1 Synopsis: A Summary

A intelligent computer program must have both a representation of its knowledge, and a mechanism
for manipulating that knowledge in a reasoning process. This paper is an examination of a difficult
problem in retrograde chess, particularly with respect to formalizing the expression and solution of
that problem in a machine manipulable form. In effect, this is both an exploration in the symbolic
representation of knowledge and a characterization of the shape of the resulting knowledge space.

Our consideration centers on the following retrograde chess analysis puzzle (figure 1). Its solution
(from basic chess principles) is certainly beyond the ability of any current computer program.

A,
A5, X
L7 A

9 %

"
T

’////.fi. »»
220, BB
Ay M

Al pioce has [allen off of the board [rom the square marked X.
What piece was it? This position was achieved in a legal chess
game, though there is no presumption that sither pleyer was
playing to win.

figure 1

This problem was selected because its solution "requires” both deductive and observational
inferences, in a context isolated from other issues of correctness and sufficiency.!

The notion of deductive inference, obtaining new proof steps by the application of syntactic
inference rules, ought to be familiar to the reader. We recognize, however, that human reasoning
proceeds not only by deduction, but also by the immediate recognition of results, a process we
identify with observation. We have extended our representational system to include observationai
inference by performance of computation in a partial semaatic model. Thus, for example, 2 human

i The “requires” is in scare-gquotes, for, technicaliy, sy of thase fu-ctions can be decomposed intc logicsl ferm. Any program
can slso be sxpressed in Turing machine form: # in, howaver, se Mtalywwihlmaﬁvpmnahuﬂhwﬂmﬁnmm
e ithlcw‘ﬁcmmutm-lm#hlﬁ'himwia

Page 2. Introduction 5

chess player might see a black knight checking a white king on some board. This inference is
performed in our system by computing the check predicate within the semantic model. This result
might be applyed in the deduction that the black knight was the last piece to move, or that it is now
white's turn, by syntactic application of deductive inference rules.

Within the context of the solution of our chess problem, we attempt a synthesis of the two. In
particular, we will axiomatize the rules of chess within first order logic {our declarative
representation), but include within our system a method for evaluating (when we know how) the
values of predicates and functions (which will serve as a form of procedural representation).

We shall also highlight the various representational decisions made in the process of axiomatizing
retrograde chess. We will consider both the necessity for these particular choices, and their
implications for designers of representational systems for other domains.

Using a proof checker for first order logic (FOL, [Weyhrauch77]), we detail a proof for the solution
of the given chess puizle. In the process, we show the close correspondence between our formal
solution to the problem, and an informal, descriptive analysis.

This work should be viewed in the context of the search for epistemologically effective formalisms for
artificial intelligence. We need representation structures that are sufficient to express those concepts
we wish our computers to manipulate. However, if these formalisms are to be useful for our AL
purposes, they must aiso be able to express these ideas concisely enough for computer manipulation.

It should be emphasize? inat, unlike many theses within our field, we are not demonstrating a
computer program. Our research is on a more basic level. We are interested in the nature of the
things thai an artificially intelligent program would need to be able to do, without specifying the
mcenanism by which the program would tie these things together. We are not asserting here that
creating an intelligent program is an easy task; quite to the contrary, there are numerous issues in
the representation and manipulation of knowledge that require solution before a general human
level intelligence could be produced. We hope here to shed some light on several of the different
representation issues and ideas, and examine the power of their interaction.

Section 1.2 Paradigm: Artificial Intelligence

It is important to begin by expressing the underlying assumptions involved in this examination, to
mention, in effect, "where we're coming from™. We consider this thesis to be primarily centered in
the subfield of computer science called Artificial Intelligence.

The study of Artificial Intelligence is an attempt to better understand the nature of tntellipent
processes. This endeavor is, of itself, neither unique nor novel. Understanding cognitive processes
has long been the domain of many other sciences, especially philosophy, psychology and linguistics.
While AL shares many concerns with these fields, it differs in that its primary concern is with the
instrumentality of intelligent action. There exists a basic belief in A.L that intelligent processes can
be mechanized. This computer modeling of these processes has become the ma jor paradigm of AL

The gross model for these experiments is that of search through a problem spaceZ The A.l problem
then naturally divides into two parts: defining the elements and operators of the space to be

z Ses, for axemple, [Nilsson7 |] or [Newsii72]

i.2 Introduction Page 3.

searched, and describing the mechanisms that the searcher uses to transverse that space. This is
perhaps more familiarly represented as the distinction between the representation of knowledge and,
perhaps anthropomorphically, reasoning3 Thus, if we are to model general intelligent behavior we
must be capable of both symbolically encoding 2 representation of the world, and manipulating this
knowledge through a reasoning process. It must be emphasized that these two cannot be regarded as
separate and distinct entities; rather, the selections of particular data and control structures are
strongly interrelated decisions. However, we seek some simplification through problem
decomposition. Hence the emphasis in this thesis on the representation lssue, rather than attempting
to encompass the entire Al problem.

Section 1.3 Context: The Representation of Knowledge

This work Is directed towards general issues in the computer representation of knowledge, not just
heuristics and data structures applicable to one small domain. Many systems have been created, for
instance, which apply specific knowledge to a single problem, obtaining powerful, though limited,
deductions. These are typified by the “expert question answer systems”. While expert behavior in a
limited field can thus be had, these results do not generalize over into solving other, less well-
structured probiems.

A good example of purely specific knowledge representation systems are embodied in the game tree
searching programs. While various stratagems and heuristics, particularly the alpha-beta heuristic4,
have been used to program competent game playing programs, the resulting programs have not been
useful for solving problems outside of their limited expectations. Thus, while the typical chess
program, confronted with a board, might be very good at answering the question, "What Is the best
move for white”, it might well be unable to comprehend the meaning of "What is the second best
nove for white™. There is no way, of course, of getting the typical chess playing program to
incorporate knowledge of mathematics or geology, and therefore no way convincing the program to
manipulate such knowledge.

Even confining ourselves within the chess domain, and restricting our attention to producing the
"best” move from a given board, it is often quite difficult to instruct the chess program. While 2
suggestion like “keep your pawns in diagonal lines™ or "avoid an unprotected king in the center of
the board™ might easily be incorporated by addition to the board evaluation functions, notions like
"develop a strategy to obtain control of the center” and "work towards checkmate” are neither easily
expressed nor simply implemented within the tree search paradigm.

However, this is not a paper on playing chess. Rather, we are addressing ourselves to
representational lssues, considering the criteria for useable knowledge representations. We would
like our representation to be "general’, not one for which we first select the domain of application,
and then fit the knowledge structure. Our ideal representation should be able to express all

- -O--I--.-tv-.---p-i.-..-.---n-o---—-t- ——aw e -

3 This distinction has been characierized in several diffarent fashons. For instancs, McCarthy-Hayes calt it the
spistemolog icat and heuristic parts of the Al problem ([Ik(:mi-ybi}. pg 466), while Pratt lsxiending 8 notion of Chomsky on
finguistics) refers 10 the compelence/performance dichotomy [Prant77] Thus, one can think of “f pistemologicat Effectivenass” {section
1.3.1.3) as & form of "logxal compatence”, sl 88 Chomsky rafers 1o 8 noton of grammatical competencs t[cm-iwzp

4 The o=/ procedurs for sesrching games {rees is described n [Nilsson7 1]} section 5-12

5. This sxample is by Align Newsll, in & personal cOMMUNICELION

Page 4. Introduction 1.8.

“questions” and “notions”, or at least as many questions and notions as in human language is capable
of expressing. Particularly important, & good representation system must have some mechanism for
reiating the muitiple perspectives and organizations that are associated with any object. No good
representational structure should have arbitrary limits on its extent. Rather, it shoulkd be an
expansible system, one that can easily and uniformly include additional knowiedge about both
pmvlou:l;r defined domains, and new areas. It is convenient if the selected representation is natural,
its {basic) knowledge both readily apparent, and humanly understandabie® And, perhaps most
germane to the current discussion, the ideal representational organization should be able to empiloy
the most natural format for expressing each “fact”, be it as a static rule, or a computational
algorithm.”

Section 1.5.1 Declarative versus Procedural Representations
Section 1.£:.1.1 The Power of Procedures

Let us consider that last qualification in some greater detail. We consider the existence of two
species of knowledge. Declarative knowledge has each particular fact represented as a simple
statement, such as don was the father of Priam, or Al red objects on the table are blocks.
Procedural knowledge embeds the given information as an algorithm. Typically, To get to the train
station, make o right at the second light, and go three blocks or, To find if there is & green pyramid in a
blue box, check each object in eack blue box, (to see if it Is a green pyramid) . What is given here is not
so much a particular piece of information, as ‘a well defined algorithm for determining the desired
factor or achieving a desired state of the world. This distinction has often been characterized as the
difference between knowing what and knowing Aow.

Procedures are algorithms; recipes for action. In this respect, they model any well learned activity.
O'ne does not do long division by reference to Peano’s axioms, cemidcring at each step the set
theoretic maning of the computation. Rather, one knows "how to divide”, and does, just as one can
recognize thie checked king on a chessboard without considerations of orthogonality and color, or can
find 3 phone nume=r in the phonebook without requiring a derivation of the interpolation search
algaPishm. Hereye speak of using procedures to model derivable, though well defined, recognitions.

Nor cio we ngve to licpit the power of our procedures to human size tasks. For most tasks requiring

"intelwegendr”, a computer is ngs (or, is not yet) a match for a human. However, it is fair to recognize
that tywve are soine things (well defined, complicated algorithms, preferably requiring either a long
computatio ¢ a gxe'pr geal of memory) which computers can do better than humans. A procedure
that know® how i selve analytic integrals could use such a solution as a building block in some
longet® deriiatier- Hasre the solution of the integral is a single step in the larger deduction, though
the acual z@mp<€ation iSivolved in tiie integration might well be great.

We will exploge @ae notions iy some specific cases in section 1.4.
It is worthwhile menugfing that our notion of prazedural knowledge differs in several important

rasgegts from 2 similarad profebly more familiar concept): the procedural al. languages, of which
tke ma jor csmpllr is PLANRELR fHewitt7l) These languages are similar to our aforementioned

—

Natursl fors” Turmite sssinr compesition, veritastion snd understanding of the represented syeiem

]
7 mmbmgmmmmﬁmmwuwm for instonce, & rebet
mmmmmcmm oquipped with television comers, thet found sdges or regions in its vieus! fiskd

1.8.1L.L Introduction Page 5.

scheme, in that much of the knowledge of programs written in Planner is embedded in procedural
definitions. They differ, however, in that our notion does not include the implicit control structure
(particularly pattern matched invocation) dominant in the procedural languages QOur functions state
how to compute some value; there is no explicit or implicit demand when the actual computation
should take place. Additionally, we shall see that our notion of the procedure to compute x is
subordinate to our notion of x; we discuss this mapping in section 1.3.1.4.

Gection 1.3.1.2 The Deficiencies of Procedures

One might well expect, after reading the previous section, that we are about to hoist a banner,
Knowledge = Procedure. Not so. We recognize that procedural representation is sometimes
appropriate. Most particularly, when one knows how to compute some value, computing it might
well be the best idea.

But procedural representations have their limitations. For one thing, procedures are best written in
a structured and modular form. That is, we would like the procedure that computes X to be able to
do that without regard for "the rest of the world", (subject, of course, to conventions about data
structures, communications, and the like). In the same spirit, and within those assumptions, we want
our procedures to perform the most efficient computation possible. But this back boxing of a
procedure presupposes that the internal structure of the procedure will not be examined. Hence, we
will need some other way to express the relationships between procedures, and the invariants of the
particular procedural computation. In effect, we may need to reason about some procedure, and the
program semantic formalisms available to do this are not strong enough. Note that our notion of the
procedure as a black box corresponds strongly with human limitations on introspection. For instance,
no one can describe how he sees some scene, for example, what makes a particular ob ject red.

This fixation of the procedural definition delimits the possible uses of a given piece of knowledge.
Typically, procedural representations of entire predicates (as embodied by most purely procedural
languages) implicitly specifies the only uses of that knowledge. Thus, if we know that Al computer
science graduate students are bright and overworked we may want to use this knowledge to prove that
Tom, a computer science graduate student is bright, or that Dick, who is not overworked, can not be
a computer science graduate student, o that, combined with the fact that all AL graduate students
are computer science graduate students, there is no dumb A.l. graduate student.? The procedural
language formalism demands that each possible use be associated with an explicit occurrence of that
information.

Lastly, procedural representations dependent upon computation on completely specified ob jects, such
as a complete data base of ob jects, will be unable to reason about situations involving incomplete
knowledge and multiple representations.

To summarize, while procedural representations are often quite powerful, they retain certain
inadequacies. Our list is by no means exhausted; comparison with section 1.3 show several other,
obvious deficiencies. A more complete discussion of the problems of purely procedural
representations can be found in [Moore75)

If the meaning of natural language (that is, English, Latin, Basque, ..) expressions were more
precisely defined, and suitable for algorithmic reasoning, then perhaps a natural language

3 Thess being 8 slight extension of idess of Winogred in [Winograd75]

Page 6. Introduction 1.3.1.2.

representation would be appropriate. Language is, after all, one of the ma jor mediums of thought.
But the "pretend it's English” (Hayes77) approach to representation runs into problems of inherent
ill.definition. What, after all, does this English structure mean? And how is it to be used?
Language, we see, reveals itself to be too imprecise and ambiguous to serve as our representation.
Rather, we need a firmer epistemological foundation for our knowledge system.

Section 1.3.1.3 A Declarative Alternative

Modern formal logic is the most successful precise
language every developed to express human thought
and inference. Measured across any reasorably
broad spectrum, including philosophy, linguistics,
computer acience, mathematics and artificial
intolligence, no other formalism has been anything
like s0 successful.

P.]. layes®

To fill the gap between a natural language system and a pure procedural representation, we propose
the use of formal logic, particularly an extended first order predicate calculus.!®

Logic was originally conceived in an attempt to precisely delimit the nature of human reasoning.
This is a theme extending back through to Aristotle. It is a notion that reached its apogee by the
middle of the nineteenth century, perhaps best exemplified by George Boole's magnum opus, An
Investigation into the Laws of Thought, on Which Are Founded the Mathematical Theories of
Logic and Probabilities.

Modern logicians are not quite as dogmatic on this point. It is now recognized that there are many
domains which formal logic does not (yet) model well. Particularly of interest to those of us in A.L
are the various model logics of knowledge, belief, tense and ability. These are areas of current study
in both mathematics and philosophy. Until these problems are resolved, we can hardly assert the
universality of formal logic as a representational system. Even so, using formal logic for computer
representations has several advantages:

1. The sentences of first order logic are fairly natural. With a little practice, one has no
difficulty with either composing such sentences, or understanding the meaning of a given sentence.
In fact, they have a much clearer semantics than ambiguous natural language. Similarly, it is fairly
easy (for humans) to translate between many natural language constructs and first order logic.

2 First order logic has explicit quantification (v and 3). Some other formalisms, particularly
network formalisms, have no explicit method of producing existential quantification. Other network
formalisms lack explicit negation.

£ 5 There are partial decision procedures for first order logic (procedures which can sometimes
decide the validity of a WFF), and decision procedures for parts of first order logic (such as

.......

9 [Hayes?7]

i0 Tha “first order jogic” used in this volume » the propositionsi celculus (connectives A ¥ « 5 snd ~) sxtended by the inciusion
of predicates, quantification (¥ end 3), functions (operstors), the netion of squelty, and the sbility to do inference by computation in
ssmantic model

1.3.1.3. Introduction Page 7.

propositional logic with equality and monadic predicate calculus). Here we look ahead to the
heuristic side of the Al problem. The validity of some first order logic sentences is determinable by
certain decision procedures. In particular, the tautologies of -proposttimzi logic, tautologies of
propositional logic with equality without substitution in functionals, and monadic predicate calculus
are all examples of decidable logics. A reasoning program using 3 first order logic representation
could easily take advantage of these procedures. Similarly, there are heuristic procedures for first
order logic. For example, the various forms of resolutions are heuristic methods for logic.}! As
automatic theorem proving progesses, these better and more powerful procedures become
immediately available to a logic based system.

1 First order logic satisfies our criterion of generality. It is obviously not tailored to one
particular domain. One hears a complaint from the gallery, ~But logic is for mathematics.” Perhaps
so, but this paper is especially a demonstration of an application of first order logic to a non-
mathematical (though well structured) domain.

5. Knowledge can be added to a declarative system through the addition of lemmas and
theorems. There should not be any need to know how this new information the interaction will with
the current data base, other than to insure that no contradiction, deducible by the heuristic portion
of the program, is thereby introduced.i2

6. We propose 2 method for keeping the power of procedures that know how within the
framework of the formal logic system. In effect, have some of the best of both worlds. We consider
this notion in greater detail in section 1.3.1.4.

7. We have within first order logic 3 good mechanism for describing the equivalence of
different representations. We can do so explicitly, especially through the use of the equality relation,
and universal generalization.

8. In some sense, the aiternate representations currently extant are just other, and sometimes
fuzzier forms of logic. For example, most of the notions currently titied semantic networks are as well
expressed as well formed formulas; deductions and representations in one can be mapped to the
other. Similarly, anyone familiar with LISP must recognize the interchangeability of data and
functions. But there is an inherent problem with other systems that formal logic, with its strong
syntactic and semantic restraints does not share. The meaning (semantics) of the particular
constructs within these other representations are not well enough understood to be completely
analyzable. Non-monotoniic systems are particularly prone (o this problem. The truth value of the
various functions within systems of this kind is frequently tied up to the heuristic mechanisms
involved in computing that value. Statements about such systems, for example, whether they can or
cannot deduce some particular result, must therefore lead into a dynamic analysis of the action of the
entire system. And such analysis, as our brief experience with program yerification should show us,
is a difficult problem. Formal logic systems, with their notion of fruth, have the property that
anything once deducible, will remain deducible despite the addition of any other information (axioms).

- e -

ik We sra ot asserting that one wWants 1o reason stricily Dy using resakstion {or that one sven wants 1 ves resolution at alt).
Rﬂhﬂ,mwuﬂahmmﬁﬂmm,uﬁ,hmcﬂwtmwm might be veeful

12 W-ummm.ﬁmnwnniulhwlmm WommMcmmmﬁthﬁluﬂm
-m‘maumm ars not apperent. But determining d_lutal suioms s consisient m‘ammm. Whether one wante

Page 8. Introduction 1.3.1.3.

Systems such as PLANNER ([Hewitt7l], [Winograd72]), where negation is used interchangeably with
a truth value that is, effectively, 7 can’t find a counter example. lack this property.13

We are not alone in recognizing the importance of a uniform semantics for a representation system:.
[Hewitt73] considers this issue in detail in his design of his procedural ACTORS formalism.

Perhaps a word on the value of first order logic, in contrast to higher order or simpier logics. It is
clear that purely propositional logic is insufficient for our task; one of the major reasons we want
first order logic is its ability to express quantification and predicates.

Dismissing higher order logics is not quite as easy. First order logic is capable of expressing set
theory, and therefore, all of mathematics. It is not obvious that a higher level logic might not
provide a more convenient expression for some real world domains. However, first order logic is
complete; additional axioms can add any needed extension. Higher order logics dre not complete;
not every true statement has a derivation. Additionally, first order logic provides us with a well
defined semantic model; the more interesting higher order logics lack this feature. One of the
demonstrations of this paper is that an appropriate semantic model can be a very useful aid to the
deduction process. So, we consider first-order logic here; this is a is very powerful logic, with a large
existing literature on its manipulation. Note that some of the things that computer scientists think
they need higher order logics for can be accomplished through the use of axiom schema (see,
perhaps, sections 2.2.4.1 and A.2.1) in first order logic.

It is important to mention that use of a first order logic representation system is not at all the same as
marriage to a resolution style proof mechanism. Pure resolution proof checkers have proven to be
failures. While such an algorithm might be a small portion of a full artificial intelligence system, it
is clear that it cannot be the sole (or even the major) inference mechanism. We mention this caveat
because, unfortunately, formal logic and resolution are "married” in the minds of too many people in
the A.l. community. What we are dealing with here are primarily representation issues; even 1o the
limited extent that we touch upon heuristics, we wish to state that we are not implying & resolution
style approach.

We also wish to emphasize the distinction between representational formalisms and representational
data structures. A parallel to automata theory might clarify this difference. There are many
machines that retain a given degree of computing power: various automata equivalent, for example,
to finite state machines or Turing machines. Any class of machines can solve certain problems,
though some particular machine within that class might solve the given problem more quickly or
require less storage to do so.

The state of representational formalisms is similar. Certain formalisms can express certain truths
about the world. Formalism have certainly not reached the Turing level of expression; there are
many issues of representation we do not how to adequately express. Among them are the issues of
representing knowledge about how to use knowledge, representing beliefs, and representing
chronological developments.

For any given set of axioms and inference rules, there is a set of statements provable from those
axioms and rules. In a complete logic, such as first order predicate calculus, the set of provable

13 TMhmlom!Mlhlnﬂhu&nuwuuﬂbyhdqfcmnaphhmiw ;
er,ﬂhwmmuilmwmiwmm mﬂﬂnﬁliﬂiﬁbﬂm‘mﬁ‘mﬂ'ﬂhnmw

1.3.1.3. Introduction Page 9.

theorems is equivalent to the set of true statements. Classically, an axiomatization is adeguate if all
of the desired truths can be derived in it.

Now, A.L is a more practical sort of an affair. It is not merely sufficient for us that a given resuit be
eventually obtainable; we ideally desire two other things: that the result be concisely derivable, and
that there be some methodology a program could employ to find that derivation.

The second of these is the heuristic adequacy problem, and is beyond the scope of the current
discussion. Rather, we are concerned Wwith two things: finding representations in which what we
want to say can be expressed, and insuring that that expression is of manageable magnitude. We
call this the search for epistemologically effective representation formalisms.

Epistemologically effective formalisms are not a question of data structure. Rather, it is the
combination of classical epistemological adequacy (expressiveness of logical language) with an
appropriate set of inference ruies to allow reasonable proof to be obtained.

We notice that one of the things that human problem solving does to shorten derivations is to
employ both standard deduction, and a quicker noticing & conclusion, something we have associated
with observation, and suggested can be performed by procedyral computation on ground instances.
We explore this combination in the next section.

Section 1.3.1.4 A Suitable Marriage

We desire a composition that will permit us both the effective advantages of procedures, and the
expressive quality of declarative methods. We also want that this unification retain the
mathematically valid foundation accrued by use of our original formal system.

To perform this marriage, we turn 1o model theory, and postulate the follcwing. We assume that (as
an underlying structure) we have a LISP world. This world contains individuals {S-expressions,
hereafter abbreviated Sexpers), and functions and predicates in the usual LISP - lambda function
notation. Above this world, we have our formal first order logic system, the usual collection of
individuals, variables, predicates, and functions. We then create a map between our logic constants
and the LISP :.orld model, prescribing for some constants a LISP Sexpr, which we then assert will
act like that constant. Thus, in a system reasoning about arithmetic, we might map the individual
constants ONE, TWO and THREE to the respective LISP atoms 1, 2, and 3, the predicate < to the
LISP predicate LESSP, and the operator + to the LISP function PLUS. Our logic system would
then be able to derive the validity of sentences using these constants by invoking the computational
mechanism in the LISP model. For example, the sentence 9 < (1 + 3) would be seen to be semantically
true in the LISP model, and therefore valid in the formal fogic system.}4 In effect, we retain the
ability to easily compute Aow, when we can compute, while still being able to reason about the
computations. We have not increased what we can say; however, use of this device will free us to
talk about more interesting things than, for example, set theory and Peano axioms.

We hope that the resuking system will retain the advantages of hoth; that the computational
functions can be invoked when most appropriate, while retaining ths powerful descriptive ability of
the formal logic representation.

14 For & mors formal sxplanstion of this relationchip, see [Weyhraueh?7}

Page 10. Introduction 1.3.1.4.

Earlier (section 1.3.1.1), we suggested that the most appropriate use of this computational ability
would be to model the human ability to observe. Persisting in this notion, we dub our semantic
procedural attachment, our Eye. Thus, for our chess problem, we have a Chess Eye. Similarly, an
automated physician, capable of doing its own chemical analysis, might perceive this knowledge
through its Lab Eye, or an electrical design facility might consult a simulation Teck Eye to verify the
correctness of a circuit. Any computer individual performing a test on the real world will need to
employ some sort of device; quite likely, this device will be some computer system "called” ob ject.
The intelligent part (as opposed to the perceiving part) of our computer individual could easily refer
to this perception action as the evaluation of the particular device function, just as the semantic
model evaluation performs simulated functional evaluation. Hence, computation can be used just
like perception.

Section 1.3.2 Our Scheme

To summarize: we have, as our representational framework, a system founded on first order logic.
We declare predicates, functions and constants in this logical system, and express some of our
knowledge as axioms of the logic. Additionally, we will attack functions and constants in our LISP
model to the constants of our logic system, and will use these LISP ob jects to compute the values of
predicates and functions (attachment of semantic procedures). The legal operators of our system are
fundamentally the rules of inference of the first order logic, we extend them to include computational
evaluation within the LISP model {our EYE), and whatever decision procedures for this logic we have
available. We use this system to examine the topography of long reasoning sequences.

It is perhaps useful to emphasize that this structure constitutes the framework within which we
work. It is, we believe, a broad enough structure to accommodate most consistent formalisms for any
particular problem. We will, in the following chapter, be demonstrating the feasibility of this
framework for a particular formalization of the given chess problem; in the concluding chapter
(chapter 5), we will consider how alternative formulations of the problem might be expressed within
the framework of first order logic with semantic procedural attachment.

We presume the reader is more familiar with the inference rules of predicate calculus than with our
particular implementation of semantic procedural attachment. Perhaps a word about simplification
would be appropriate. Our simplification system employs two major computational mechanisms. As
initially conceived, its purpose was to use the attached functions to compute on constants of the logic
system. Thus, one could take a (constant) board, such as the puzzle board of our problem (figure /)
and compute a predicate (for example, Black is in check) on it. It has since been extented to include
the ability to evaluate WFFs quantified over finite sets.15 Thus, one can simplify a predicate that asks,
Is there a black bishop on a square of the given board.1® We shall consider in the section 5.8 various
desirable extensions to this scheme.

Proofs of the size we contemplate would be impossible to write (correctly) were it not for the
existence of a mechanical (computer) proof checking. We are fortunate to have available, for
verification of our proof, FOL. FOL is a proof checker in the first order logic. It originally checked
proofs of the natural deduction style of Prawitz [Prawitz65); it has since been extended to include

i5. The performance of this computaton vares, of course, with the size of the sete invoived. Pracicaily, we havs been patient
snough to chack WFF's with up to 2'Z conen.

16 The simplficetion mechannem, a8 smbodied in FOL, sise performe other inference tasks, such se decision procedures on the
sort hisrarchy, snd infarsnces sbout the membership of finite sels.

1.3.2. Introduction Page 11.

decision procedures on tautologies, and the beginings of deductive ability within a LISP model
(what we have been denoting semantic procedural reasoning or an eye).

This proof checker acts much like the Missouri Program ("show me") described by McCarthy and
Hayes [McCarthy69]. It “allows the experimenter to present it proof steps and checks their
correctness”17 The various decision procedures incorporated into FOL may be viewed as either
making this Missouri Program more discerning, or as being steps towards the Reasoning Program
mentioned in that paper.

The bulk of the remainder of this paper presumes knowledge of the FOL system. An introduction
to FOL, of adequate detail for understanding the FOL used in this paper, may be found in
[Filman76). A full description of the syntax and semantics of FOL is the FOL manual
[Weyhrauch77}

Section 1.4 Analogs: Other Eyes

Back at the beginning of this thesis (section 1.1) we mentioned that this is primarily (at least by the
measure of physical paper use) a demonstration of the proof of a chess puzzle. However, we are
concerned with the general representation issues, and find it profitable to present a few short
examples of our representational scheme applied to rome other domains, particularly emphasizing
the employment of procedural Eyes. In contrast 1o our major proof, which is a highly detailed
though unidirectional derivation, this detour is best perceived as speculation and hypothesis. We
are not presenting a system of axioms and attachments for these worlds, but rather, a brief overview
of how these techniques might be applied in them.

It is important to point out here that this section is not dealing with how perception might be
performed; rather, we are describing a system that, through the semantic procedural attachments, is
able to talk about its perceptions in the same language as the “rest of its thinking".

Section 1.4.1 The Mechanic's Eye

We consider first a representation to embody some of the knowledge employed by an automobile
mechanic in diagnosing a malfunctioning automobile. Of course, whatever we say can be related to
the maintenance of any similar machinery. What must such a person know? Primarily, the
mechanic knows the interconnections and functions of the various parts and subassemblies,
particularly with an eye towards recognizing malfunctions (and potential malfunctions) of individual
components.

How could a computer be employed in such a task? One imagines an extension of the current
engine electrical analysis systems. Instead of (or in addition to) displaying the current levels and
frequencies of various wires on 2 CRT, such a monitor would pass the information back to the
computer through an appropriate ADC. Special devices might be attached to, say the exhaust pipe
or water pump, to measure composition Or pressure, and convert these signals to digital vaiues.
Effectively, these devices would permit the machine to observe the state of the running engine. They
would act (combined with appropriate functions to transmute these real time signals) as part of the
computer’s eye.

Typically, our automated mechanics would have axioms such as:

i7. {McCarthy 8] pg 460.

Page 12. Introduction 141

¥x .{Voitage(Battery(x)cMinivoitage{{.‘.artype{x))bﬁ EEDREPLACEMENT(Battery(x))

which would be read to mean: for all cars x, if the voltage on the battery of x is less than the minimum
voltage required for cars of x's make, then that battery needs replacement (or repair). The mechanic
program could then simply observe (by simplifying the given formula) whether the battery was
performing correctly. Note that (from the point of view of the logical language level) we are able to
perform both the perceptual task involved in measuring the battery's current, and checking {in the
mechanics manual) the appropriate voltage for this car by employing the same mechanism. From

the computer’s point of view, observation inside its "head" is the same as observing the real world.

Given the prevailing technology, we can hardly expect the computer to fix the car alone. Rather, we
imagine it to be the partner of a human mechanic, who could both ask help from the computer, and
provide non-digitai measurements. The computer might request the tire-tread wear statistics for the
car, and then ask the human mechanic to push the front end up and down. His reply (and the
questions) couid be used in (and generated by) evaluating:

vx 3s{(IRREGULAR-WEAR(T ire.x $)ABOUNCES(x 3))>
NEEDREPLACEMEN T(Shock-absorber(x s)))

That is, if, for a car x, there is a side of x (left-front, right-rear, ...) whose tire Is wearing irregularly, and
which bounces after pushing, then the shock absorber on that side of that car meeds replacement. The
simplification (computer observation) would request the appropriate information from the human
mechanic, in addition to doing the cakulations.

Meta-knowledge, that is, general rules applicable to systems, might also be expressed axiomatically:

¥j k.((CONH}:CTED{}.k)nCURREN?THROUGHU)MCURRZNTTHROUGH(k)b
NEEDREPLACEMENT(k)

or, for any two electrical components j and k, if j and k are connected electrically, and there is current at
§, but not k, then k is defective. For example, if there is current leaving the distributor, but no spark
at the plug, then the ignition wire is broken. By looking at the electrical connections, our automatic
mechanic sees the validity of any instantiation to this axiom. But it is up to the main mechanic
program to (heuristically) decide what instantiation to make.

Section 1.4.2 The Personal Assistant’s Eye

Here is a second example of the combination of procedural observation embedded in a formal
system. One thing 1 would like of my computer, is for it to be my personal assistant, effectively, my
secretary. It should be capable of tasks such as scheduling appointments, planning trips, and making
coffee. To do these tasks most successfully involves both actions of a simple procedural nature (such
as table look up or message transmission) and of deductions of a more complex, reasoning variety.
For instance, I might want my assistant to arrange a trip to Pittsburgh for me. To accomplish this
task, the program would need to look up the airline schedule, relate the information found to its
knowledge of my flight preferences and other appointments, call the airline and hotel for
reservations, find a way to and from the various airports, print a list of directions, and so forth.
There are several different abilities involved here. The program must reason about my knowledge
and desires (it doesn't need to tell me, for instance, how to get to the San Francisco airport -- but I
might need information about ground transportation in Pittsburgh). It should realize that 1 prefer

1.4.2. Introduction Page 13.

flights with a movie and meal. It might believe that 1 have axioms telling it to use the least
expensive flight, or to avoid a particular airlne. But it does not need to do an involved reasoning
sequence to find out what flights exist. Rather, it can see the flight schedule merely by looking it up
in a table, an observational activity. We see that we need a formalism strong enough to be able to
reason about knowiedge and desires, but which can still efficiently solve simple algorithmic problems.
The semantic procedural attachment mechanism to a full logic seems the appropriate solution.

My secretary program would (in this ideal, non-existent world) alsc communicate with other
programs and machines. It could call the airline and hotel computers to arrange the reservations.
Another interesting communication domain involves scheduling appointments with the programs of
the other people on our system. Our ideal program can observe my schedule (table lookup), consider
my preferences (avoid appointments before 11:30), and send and receive messages from the other
secretary programs. Note that the acts of sending and receiving are procedurai actions, naturally
expressed by executing functions. The updating of various tables associated with particular states
accomplishes a large portion of fixing the tense logic. Within this general formalism, this updating
and searching is accomplished by attaching the executing procedures to the associated functions.
And this system allows us to reason about the actions of sending messages. Our system need also be
able to distinguish between thinking about sending a message, a purely gedanken experiment, and
actually sending it. Thus, it can reason, if | send Aim @ message asking for an appointment tomoryow, it
will probably give us ¢ 1000 am meeting. But if I ask for a more preferable time, like 2:30, | may get
B e

Making coffee involves turning on some real, physical device. Once again, it is accomplished
through some function call. We imagine, perhaps, an execution of the COFFEE UUO. Once
again, we seek interaction with the real world represented by the use of a function call. Needless to
say, simplification of some other function permits the program to observe when the coffee is ready.

Section 1.4.8 The Engineer's Eye

As our last example, we consider the representation of knowledge for a computer engineer.
Basically, we will wish to describe physical systems to this program, and have it verify properties of
these systems. For example, our engineer could be given a circuit, and asked to prove some
functional property of the outputs, relative to the input currents, or given a system a moving bodies
in some force field, and asked to determine the possibility of collision. Such a procedure might be
part of a hardware design and verification program, or a module of a computer aided instruction
system.

Our system will know general laws about ob jects, suitably expressed as formulas of our logic. Thus,
a typical axiom about moving bodies would have:

VX t v, as(x e Bvast? + vyot

or, the distance reached by body X, by time ¢, is the product of the {constant) acceleration of X
between t and t,, and t2, plus the distance traveled by x due to its initial velocity during interval t.

The program must be capable of both manipulating such formulas as formulas, and using them to
produce numeric answers. The natural rules allowing substitution of equals, and instantiation of
axioms allow for the formal manipulation. When a program using such a representation needed to
solve for a particular value, in could observe (via the simplification mechanism) and compute it.

.

Page 4. Introduction 14.3.

Our engineer might also be called upon to design systems. Humans have ready access to familiar,
solved subproblems. For example, adders and registers are the components from which human
designers build bigger digital systems. Our computer engineer can have a list of solved subproblems
of his own, and (with an appropriate procedurai call), can consuit this list for the correct device.
Once again, we have an observational operation obtained by procedural semantic attachment within
our generai formalism.

Section 1.5 Why Chess

It is not that the games and mathematical problems
are chosen because they are clear and simple; rather
it is that they give us, for the smallest initial
struclures, the greatest complexity.

Marvin Minsky!#

The end of our detour. Though concerned with general epistemological issues, we are presenting,
primarily, one particular example of the use of our representation system. As we stated in section
1.1, this thesis pivots around the demonstration of a solution of a chess puzzle, within the firet arder
logic (and semantic simplification) formalism. It is perhaps useful to detail some of the justification
for examining puzzles about chess, and not some other problem domain.

Section 1.5.1 Structure and Search Spaces

There are several dimensions to be considered in the selection of a domain for A.L research. The
primary one, shaping the entire model, is the degree of structure inherent to the task. Recall that we
described computer intelligence in terms of a search through a problem space (section 12). We
introduce the notion of measuring the structure of this space, along two different dimensions. Such a
space can vary both in the specificity of its elements, and the degree of definition of the operators for
transferring between these elements. In general, the more limited the elements of the space, and the
clearer the transference operators, the more amenable the problem is to computer solution. The
current generation of A.L. programs are mostly concerned with those problems for which there is
typically a fairly large number of states, but clear rules for state definition and transition.
Intelligence for programs such as these lies in selecting the appropriate heuristics for navigation.
Beyond the ability of present machine intelligence is negotiation of spaces with ill specified operators
or states. Effectively, we have no programs that can creatively generate and select operators and
states; we have difficultly representing the operators and states of ill-structured domains.

Spaces are also distinguished by the size of their solution sequences. Obviously, the fewer the
number of steps needed to solve a given problem, the easier it is to obtain the solution. With
several choices of applicable operators at any point, longer solutions can become exponentially
difficult. Typically, current problem solvers produce long, but certainly not very long, solutions.

This measure is reflected in the current “state of the art” of generating "smart” machines. We see
successful “expert” programs, dealing with well strucured and relatively small problem spaces,
mediocre mathematical programs, dealing with very well structured but very large spaces, but no
“creative” or "common sense” programs, dealing with both large and ill-structured domains. More
specifically, the better one is able to formalize the rules and structure of some domain, the more
successful one's program can be at “solving” the problems of that domain.

I8 {Minkey®8), poge 2.

1.5.1. Introduction Page 15.

In this thesis, we are concerned with extending the length of solution sequences, within the context
of fairly well structured problem spaces. We view this activity as laying the groundwork for much
longer and more complex reasoning programs. Effectively, we need to know the lie of the terrain,
before sending our computer out to transverse it. We also need a measure of the obstacles and steps,
to be considered in designing the right “jegs” for our explorers, gauging the difficulty of the course,
and, perhaps, the building of special tools.

We are not presenting specific methods for improving the most ill-structured domains. Rather, we
seek to extend the present structured domains (though not artificially well-structured domains). More
particularly, we want a problem space that Is not purely artificial but, rather, corresponds to the
irreguiarities of natural systems. We want a problem we can soive, not one we must defend from
semantic ob jections and different interpretations.

Similarly, this domain should be complex enough to require long reasoning sequences. Most hard
problems of the *real” world do not derive their difficulty from the depth of the reasoning required
for their resolution. Rather, problems arise out of the poor structure and broad knowledge base
inherent to "real” domains. The problem is not then not merely the storage of information, but,
more importantly, its selection.

One domain obviously satises some of the above criteria: mathematics. Deduction sequences in
mathematics can be arbitrarily long; mathematical proofs are presumably not (very) open to
questions of semantic validity. But the mathematical domain retains shortcomings. parsimony
within mathematical structures that is not paralieled within more synthetic systems. Effectively, we
find mathematics oo well structured a domain.

So we step away from orderly mathematics, and towards a more ill-structured task. By considering a
game system, with rules delimiting the domain, we acquire a well specified structure. We will not be
bothered with semantic quibbles, for it is clear from any state what legal transitions exist. But with
as old and dynamic a game as chess, we also get an arbitrary and irregular rule system. As we shall
see in chapter 2, these irregularities dramatically increase the complexity of the representation.

Chess retains yet another appeal. We profess to be interested in extending the size of deduction
sequences. From the (relatively) small set of initial rules, we can produce problems of enormous
complexity. Since our goal is not to test the size of initial structure we can store,!® we find this an
additional boon.

Section 1.52 Chess and the Eye

Chess puzzies have yet another attraction. We defined one of the purposes of this paper as an
examination of the semantic simplification mechanism (our form of observation) as applied in
detailed deduction sequences. Chess provides a good forum to display this notion. Our chess eye
can roam freely in this world. It can, for example, be used io look at a board (or board fragment),
and determine a checking or movement relation. Various theorematic knowledge, such as limits on
the movements of pawns, can also be incorporated into the functions that make up the chess eye.
And we permit our proof to observe the values of ari. . ~owions, rather than requiring their
derivation. All these effectively parallel the observational aviiity of humans.

19 wnmmnw-ﬂhmmsm,wmmmmm«umaym-

Page 16. Introduction 153

Section 1.5.3 Which Chess Puzzles

Before the reader becomes too mislead, let us state that we are (by and large) not talking of chess
puzzles of the mate¢ in n (n = 1,2,3,.) variety. For sufficiently small n, such puzzles become trivial
tree search. Rather, we are examining the world of retrograde chess problems, puzzles where
examination of a board fragment leads to deductions and constraints about the moves that led to
that board.20 Retrograde chess problems (and their solutions) can be extremely long and complex; a
suitably difficult domain for analysis.

Let us also note that we seek these deductions from chess “first principles”. That is, we will derive
our solutions (by and large) from the rules of chess, rather than from the “theorems™ familiar to
chess puzile solvers. This serves both to display the generality of our system, and to preserve our
"honesty”, for from a sufficiently powerful set of lemmas, any theorem is easily proven.

Section 1.6 Topography: The Path of Our Proof

We continue our descent from the general to the more specific. As we stated in the introductory
summary (section 1.1), our attention is focused on the representation of the knowledge and reasoning
implicit in the solution of one particular chess puzzle. Having kept the reader waiting long enough,
it is perhaps time to state and solve that probiem.

We examine the FOL solution to the chess puzle illustrated in figure 2. Itis a difficult problem, one
whose solution requires inferences both about the given board and the game that preceded it.
Deducing the identity of the fallen piece requires the use of many of the more subtle nuances of the
chess rules.

—— N

20. Ilunubri-nim!dhﬂw-uapiuefmmudl:m:prmhmu{ﬂnmnl While this book s
primarily “feiry™ choss problems, i aleo containe & number of retrograde sralysie puzties.

16. Introduction Page 17.

/V//; % {//
/3% %/V%

'3%37 %
Jal) by

A pioce has fallen of/ of the boord from the square marked X.
Whet piece was it? This position was achieved in o legal chess
game, though there is no presumption that either player was

playing to win.

figure 2

The reader may be unconvinced of the difficulty of this problem, and the complexity of its solution,
if he has not himself attempted its solution. So we defer its answer to the next page.

Page i8. Introduction 1.6.1.

Section 1.6.1 The Soimh
The reader has, of course, by now deduced tha: She piece that feil off of the X-ed square was the
white queen's bishop. If the reader had reasoned the problem in sufficient detail, his analysis
probably resembled the following:2!
Section 1.62 The Reason
L We see, in figure 3 the white rook checking the black king. The king's check is a function
of only the boxed three squares of figure 3; hence, the king will stili be in check no matter what the
fallen piece might have been.

A It therefore must be biack’s turn to play.

1.2. And white must have made the last move.

%' a 74 %?

%% 14
A

"
4

% X U U,

%1%/"’/4 %
7/

“y

F
A
% %

R
A, K
Gal Y Y

The white rook checks the black king.
It s black’s turn to play.

figure 3

2. What was white's last move? There are several ways a check can be made. The checking
piece can make the check, the check can be discovered by a piece moving out from between the
checked king and the checking piece, the check can be discovered by the removal of a pawn
captured en passant. To these we add a fourth method, to accommodate our (to be developed)

-

21 Ws observe the following thees notation in this discussion. Saueres are named first by the color of the perspective side
{White or Black), then differentisted st being on the King's or Quesn's side. A modifying piece {(Rook, kNight, Bishop) may be used to
select the sppropriste column, while the finel dygit describes the distance to that squers from the edge of the board. Thus, the white
mnhhth:aumﬂi:wﬁb%nm Thmlhtthpbnhlfmhuﬂuuwh.hhthﬂﬂﬁoﬂd‘ﬂ%ﬂd.
Chesspieces are similerly nemed, by toler, side and rank ?Mﬂnuﬁh&qhﬂ;ihmhﬂmﬂﬂt&'tw'i&md
becomes BORP (black quesn's reck pawn). This i basically sn sbbravistion of the standerd “Englieh” system of chess nomes. We shalt
wouta:&mmﬂm;wmumudtmm.

162 Introduction Page 19.

formalism. As we will consider the king to be the "moving" piece of a castle, we consider the case
when a just castled rook has made the check.

2.1 The last move was obviously not a castle by white. The white king is not
on one of his castle destination squares. Nor is either white rook on a square
reachable by a castle.

2.2, This check could not have been made after a capture en passant. En
passant capture leaves a white pawn in the on the sixth rank. Therc is no white
pawn on this row to have just captured en passant. Hence the last move was not an
en passant capture.

2.3. Obviously, the only square the rook could have moved from is WQB7
(white queen's bishop seven, the distinguished square in figure 4). But the white rook
checks the black king from that square too, and white can not begin his move with

black in check.
e W 7%
a7, R

7 ;é i S
AN, D,
WA, %,
%//M// %
5% Y. Y.

The square between the rook and king.

figure 4

24. Hence, the check must have been a discovered check.

3. Well, then, what piece made the discovered check?

3.l If the check was discovered, it must have been from a square between the
rook and the king. But there is only one square between these two, WQRB7 (noted in
figure 4). Hence, the last move must have been made from that square.

32 What type of move was the last move? We have already concluded that
it was not a castle or en passant capture. How about an ordinary move?

Page 20. Introduction 16.2.

3.3 If the move was not a pawn promotion, one of the white pieces on the
board (see figure 5), in its present incarnation, (that is, unpromoted), must have made
that move.

331 The white king on WKRS certainly could not have been

next to the black king on BON2.

332 None of the white pawns could have moved from that

square.

333 We have already eliminated the rook on BQ2 as a

ible mover. This piece is making the check, not moving to

discover it.

3.34. A rook on WQB8 could not have moved on that

diagonal.

3.33. Nor could it have been the piece that fell off the board.

No matter which piece it was, it could not have moved from WQN?.
No piece can make the jump from WQN7 to BKR5.

None of the (possibly) white pieces (in its preseni incernation)
could have moved lo discover the check

figure 3

34. Therefore, the last move must have been a pawn promotion.

162 Introduction Page 21.

4. How did this pawn promotion go?

4.1 As we see in figure 6, a white pawn can move from WQB7 to one of
three squares. Only one of these, WQB, has a white piece on it. Thus, the last move
must have had a white pawn moving from WQﬁ'I to WQB promoting to & rook.

/
y///
7
2 49

f///@% /, % |

Where did the promoting pawn move?
figure &

3. But to make this move, the white pawn must have captured a black piece. Let us call that
piece Z, (figure 7). What plece was r A

io Nl R
/ // l/
// //’”
% 2%, 7/,,,, i
/ / //
ssh B

The white pawn capiured black's Z,.

Page 22. Introduction 162

figure 7

5.1 Clearly, black’s last move was neither an en passant capture nor a castle.
His pieces (pawns, king) are not appropriatedly arranged to have just completed one
of these moves.

5.2 Perhaps Z, was a black rook or black queen.

5.2.1 I that were the case, then white's king would be in
check. And Z, wculd be cornered, like the white rook on WQJ,

unable to have reached that square except from another checking

square.
3.2 So if Z, was a rook or queen, it must have made that check through a
discovered check.
331 But once again, none of the black pieces could have

moved from between the checking piece and the white king. Nor
could the piece that fell off have moved from any of those three

squares.

wnz

74 7

Ly Yy

% I8
L

2 %
W2 Y Y

None o] the ii pisces could have discoversd chock.
figure 8
54. Maybe the captured piece was a pawn?

5.4.1. But pawns (at least unpromoted pawns, and here we are talking
about the value of the captured plece) do not find their way to the first

Tow.

3.5 The captured piece certainly was not the black king.

162 Introduction Page 23.

56. Could the captured piece have been a bishop?
56.1 It certainly was not the black queen's bishop. That is

the black on white bishop (the black bishop that moves on the white
squares). He would not be caught dead on a black square.

56.2. It was not the black king’s bishop, either. Notice the two
pawns in figur¢ 9 on BK2 and BKN2. They have not moved, and the
bishop could not have gotten out from behind them.

//,1// % }é

Y

% %
{/;///. %

//, /Il/' /ﬂ

//a//////

These paswns stymie the exit of the black bishop.

figure 9

37 Hence, if the captured piece had bishop value, it must have been a
promoted pawn.

Page 24. Introduction 16.2.

58. And, we can see in figure 10, that if the captured plece was a knight, then
black had three knights on the board before white's last move. Anyone with three
knights on the board at the same time (and who is not cheating) has promoted a

pawn.
é
% 784
g./ g// ,_8_,/
). Y. /
If black has three knights, then he has promoied & pawn.
figure 10
59. We have not learned the identity of the captured piece, but we have
discovered an important fact: black must have promoted at least one of his pawns.
6. But which pawn?
6.1 In figure 11, we see the three black pawns on black’s second rank. These

must have been the pawns that started on these squares.

%a% //%1@
/ / i

Thaese black powns iuw not snnd-
figure 11

16.2. Introduction Page 25.

6.2. There is a pawn on BQR3S. Since only two black pawns can reach this
square, and we have concluded that one of them is on BQR2, this must be black's

queen's knight pawn (BQNP, figure 12).
y 7|
4, ﬁl:; I :i ¢

7 é@fﬂéﬂf%,/ X7
%

/

7
O
ALY

9§
VIV
UAY Y Y.

Black's queen's knight pawn (BONP).
figure 12

6.3. Of the remaining pawns, there are only two unaccounted for pawns that
could be on BQB4 and BQ3, the black queen's bishop and queen's pawns. We have
not established which is which, but then again, we do not care (figure 13).

TR T B

i ¥/ e/ Y/ lds
lﬁﬁfﬂéﬁﬁ’: X

‘o % % %
//4_7,/'// Y /,% 7, .
w2 7, 1,05
WA, 1%,
;&% 2 //@ A %
YN R

Black queen's and queen’s bishop pawns.

figure 13

SN

Page 26. Introduction 162

64 Which means the pawn on BQBS5, boxed in figure I4, must be the black
king's bishop pawn.
u’)

gf%;g?/%/%/ /@

[Jy

137,

>

Z
%
/,zj_!. IR
A // ’/’a'/ %
7.
//
Il U 0
Black king’s bishop pawn (BKBP).
figure 14
6.5. So all the pawns except the black king’s rook pawn are on the board.
Hence, if 2 bi:ck pawn promoted (as we have already established), it must have been
that pawn.
A Could a black piece have fallen off the board?

7.1 Well, we have accounted for all the black pawns.
7.2. We have also determined that in the position prior to the given board,
the two knights must have been on two of three squares.
7.3. The black on white bishop does not traffic on black squares.
74. The black on black bishop never escaped from his original square (as we

have already demonstrated (figure 9)). He could not have been the piece that fell.

7.5. The black king is on BQN2.

16.2.

76. If the fallen piece were rook or queen, then both sides wou

Introduction

on the original board (figure 13). This is ciﬂriy impossible.

%

‘y/ U,
’///,3.?'/3.//
,g%,g’//,;
%a7

/////'1////

//,ﬂl

7y %

Yy

Page 27.

id be in check

If the fallen piece were o black rook or queen, then beth sides

would be in check.

figure IS

Hence, the fallen piece must have been a white piece.

Could the fallen piece have been a white pawn?

Page 28. Introduction 162

9.1 By a process similar to that employed for black, we can identify all of the
white pawns. In fact, just before the fast move, all of them were on the board, in
pawn incarnation. Hence, the fallen piece was not white pawn (figure 16).

All ;’f the white pasons are on the boerd.

figure 16
10. The fallen piece was obviously not the white rook on WQ7, nor was it the white king.
10.1. Thus, we have accounted for all the white pieces except the other white

rook, both white knights, both white bishops, and the white queen.
1. We observe that the black queen’s knight pawn, now on BQRS3, and the black king's

bishop pawn, now on BQRS, have captured four white pieces between them in reaching their
current squares. Additionally, and most peculiarly, all of these captures have occurred on the white

squares (figure 17).
D
¢ %

AN

7 7

39.-0i9sY, B ¢
E L7

~
NN

DR DA
ﬂ%y//c&, %
a7 % %

Four white pieces captured on white squares.
figure 17

18.2. Introduction Page 29.
1. We recall that the black king’s rook pawn has promoted. What can we say about the path
to his elevation?

12.1. If he promoted on any square to the left of BKN7 {figure 18), he would
have had to make two or more captures.

,AW M/M
f
/

G

59 /’/
/ ’”2/’ .,
71 /,_ ///%«
///5’///5// %

99 Y%

it

/4

A2 A Y

I/ any of these wers the black promotion square them BKRP

coptured at least two whiie pieces.
figure 18
12.L1. This would have required the capture of a total of six

whitc pieces. There are already ten white pieces on the board. The
capture of six white pieces would leave no white piece to have fallen.

Page 30.

12.2.

Introduction

Hence, the pawn must have promoted on BKR8 or BKNB8 (figure 19).

/w’/ﬁ%ﬁf"ﬂ/ 4, 5
v f’”"//f/
b o

'%y//.&% ?’3.4
WA, % %

%27

The two pomblc promotion squares.

figure 19

1221 If the black king’s rook pawn promoted to BKRS or
BKNS, then he must have moved into one of these squares on some
move. What square would he have been moving from?

12.2.2. The white king's rook and king's bishop pawns,
distinguished in figure 20, have not, for the duration of this game, left

those squares.
N2 %, //f

;//f/. /,,, L 1
27 7% / %
/ ’/’t"//’ /
“van 1 5
//’; / a//f id

3/4
baly /ﬁl

These pawna have not moved.

figure 20

162

16.2. Introduction Page S1.

12.3. Therefore, the black king's rook pawn must have been on BKN7 (figure

21) before moving to promote.
/ 2 Z/ ////
?’/ é /ﬂ/ //f // x/

4
4

17 & W, %
U, % W,
L %}/’7/@, W, 7%
WA, 2,
Y, B
//M// YU

BKRP was on this square.

figure 21

13. How did that pawn get to BKNT?

13.1. The white king’s knight pawn was a2 good deal more widely traveled than
his neighbors. He has spent the game on two squares, WKN2 and WKNS3 (figure

22).
W%, Y, %

7% W 7% w/
AR DA

'%4‘57/

v s
/@////E

\

\R 72 %, %

%

WKNP remained on these squares.

figure 22

Page 32. Introduction 162

13.2. In the move that brought the black king's rook pawn to BKN7, white
king's knight pawn must have been on WKN3.
13.3. Hence, the black pawn must have made a capture in moving onto BKNT.

. But BKN7 is a white square. Five white pleces have been captured, all by pawns, and all

on white squares (figure 23).
% 2 %4
VIV B
A flé
Y

Vi, y 4Ll
%G Ligay 4

Z

'
yll
Z

W hite pieces were caplured on these squares.
figure 23

4.1 There are only six unaccounted for white pieces, all officers (non-pawns).
Five of them have been captured on whitc squares. The white queen’s bishop is
never on a white square. Between the fallen piece, and the five captured pieces, we
must arrange the falling square and the five capture squares. No piece s ever
captured twice; no piece once captured, ever reappears.

162 Introduction Page 33.

15. Obviously, we can conclude that the fallen piece must have been the white bishop {(figure

24).
2785 7
4*:/’ // ;,,,,/ i”ﬁf
b i 7 ‘)
‘i / a,,, ;@zl

"”/&’%3//
//.8.// ""”' ”"”’

ﬁa%’f//

Page 34. Introduction 1.6.4.

The board before the Fall.

figure 24
Section 1.63 An Analysis

Several differences between the reader’s reasoning process, and the above solution may be apparent.
For one thing, quite trivially, the order of some of the steps may be permuted. This is of little
consequence. Of more importance, however, is the detail to which we have developed our proof.
We have included many of the steps that most humans would have avoided noting, for instance,
statements to exclude kings in certain situations, where the human chess player would not rven
mention the possibility of their presence. This is partially an issue of heuristics; some Steps are
virtually automatic {(and unmentioned) in a familiar reasoning sequence. But it is mostly because we
presume that we are reasoning from the basic chess rules, and not from the theorems obvious to an
experienced player. The restraint, the refusal to "jump to conclusions”, is what permits the proof to
“see” the promoted pieces as knights and rooks, when the experienced chess player (though not the
chess problem solver) would quickly skip t0 the more “logical” conclusion that pawns promote 10
queens.

We have, however, availed ourselves of the ability to look at a board and “see” which pieces can
move where. We cite this as an example of of the observational knowledge mentioned in section
1.3.1.1. Within our representational model, deductions of this kind are performed by function
evaluation in the (LISP) model structure. Similarly, we leave to computation arithmetical evaluation;
this is not a treatise on proving equations by Peanc's axioms. Rather, mathematical calculations will
be automatic, procedural in our system.

Section 164 Reasoning in a First Order Logic Formalisn

We have a problem and a representation formalism, and with them, the assertion that the problem
can be “solved” within the formalism. In some sense, much of the rest of this paper is that
demonstration. We will first axiomatize the chess world in first order logic and then deduce, within
our formalism, the unique solution of our chess puzzle.

This proof is the other side of the intelligence probiem, the path through the problem space defined
by our representation. Note that we are not claiming a program that can do this reasoning; this
proof is human powered. Instead, we are exploring the path that a mechanized problem solver,
using our formalism, would take. What results then is a map of the terrain; a guide for future
explorers, an example of what is required to get through this particular "wilderness”.

We assert that this proof, while not matching the tevel of detail of human analysis, 22 corresponds on
grosser level to the human solution. That is, the individual inferences used in this proof are
typically much smaller and weaker than human deductions. We will show, however, the correlation
between the chunks of lines in our proof, and the individual steps of the natural deduction. We
imply thereby the ability of our formal logic/semantic attachment system to model the human ability
to accept problem solutions.

The analysis of the puzzle in section 162 will serve as the model of the "human solution”.

22 Mmm,ﬂwmu'hwmﬂmm-hmﬁuww

L7 Introduction Page 35.

Section 1.7 Perspectives: Other Points of Interest

While exploration of representational systems is the dominant direction of this research, it retains
several tangential interesting properties.

Section 1.7.1 Mathematics and a Chess Proof

We find this proof interesting for several mathematical reasons, unrelated to the problems of
artificial intelligence.

Historically, mathematicians have used formal logic in two ways. Proofs of short mathematical
theorems have occasionally been detailed within first order logic. But more commonly,
mathematicians have used logic as a field to reason about, rather than in. One proves that a formal
proof is possible, rather than presenting that elephantine object as a demonstraticn of its own
existence. One writes proofs about proofs, rather than the proof itself.

This proof breaks with that tradition in both respects. It is an application of logic to a non-
mathematical domain. As we will discuss in the conclusion, it exposes several strengths and
weaknesses of the natural deduction system. In particular, the value of stronger inference rules, and
semantic modeling will be considered. The difficulties of handling multiple representations and long
proofs will also be mentioned.

It is also unusual for being a long, formal logic proof. A proof of this size, even with the help of a
proof checker, has proven to be a non-trivial task. It is no surprise that there are not more of them.

Section 1.7.2 Machine Proof Generation and a Chess Proof

This paper should also be of interest to those interested in programming automatic theorem provers.
We have, particularly in the appendices, numerous examples of first order proofs, which can be used
as bench marks for those interested in creating their own systems. Effectively, we have a set of
machine level examples that can be compared to computer deductions.

Section 1.8 Format: A Guide for Reading This Paper

This thesis is divided into several chapters and appendices. This first chapter has been the
introduction, where we have presented our problem domain and motivation.

In the second chapter, we proceed to axiomatize the rules of chess in FOL. Concurrent with
detailing these axioms, we describe and defend the various representation decisions embodied
therein.

We begin to present FOL proofs in the third chapter. This section is a well commented sample of
the proofs of several lemmas. It serves not 30 much to expound interesting theorems, as to
familiarize the reader with FOL and our style of proof.

We present the proof of the fallen piece problem in the fourth chapter. In an important sense, this
is the heart of this research. In the process, we draw the correspondence between this proof and the
human proof of the first chapter.

Page 36. Introduction 18.

The final chapter contains our conclusions, basically, what we have jearned about the design and
implementations of representational systems, with an eye towards their improvement.

There are several appendices, principally the proofs of many lemmas, and statistics about the proofs,
and two indices, one for the document in general, and the other for the various labels and names
used in the proofs.

The reader who has not the patience 10 read the whole volume is pointed towards the introductory
and concluding chapters. A skimming of chapter two, the chess axioms, and a cursory glance at
chapter four, the main proof, will aid in understanding the conclusions.

Section 1.8.1 The Proof Checker FOL

The reader unfamiliar with FOL will not receive the full benefit of reading this paper. though we
hope the comments surrounding the various FOL sections will be of great value. For an
introduction to FOL suitable for understanding this proof, the reader is referenced to [Filman76].
The complete description of FOL, including some its the mathematical motivation, can be found in
[Weyhrauch77}.

Section 1.82 Reading Proofs

Understanding a proof in first order logic is somewhat similar to reading an assembly language
program. The level of detail is basically similar, and without annotation, the reader is sure to get
lost.

In an attempt to avoid that tragedy, the proofs in the various chapters have been copiously
commented.

Additionally, certain lexicographic and typographic conventions have be used in proofs in this
paper. Any identifier in capital letters (CHESSPIECES, BKR) is either a predicate (PREDCONST) or
individual (INDCONST). Functions (OPCONST) have only their initial letter capitalized. Lower case
identifiers are used for variables (INDVAR). Predicate and operator parameters have been printed in
script. Axiom names and labels are in capitals; theorems and lemma identifiers use both upper and

Jower case. A theorem name ending in an underbar {_) was obtained from 2 single simplification; a
theorem name both begining and ending with underbars is an unproven theorem (section 2.2.5).

4 The Chess Axioms Page 37.

Chapter 2 The Chess Axioms

In any epistemological domain, we have a basic collection of information, what the system knows
without further inference. This of course applies to our chess deduction. In a system like ours, of
formal logic combined with a computational model, this knowledge takes several forms. We must
first select the individual constants, predicates and operators of our formal system. Then the axioms
of chess must be written. We need to organize the underlying model structure, and prescribe the
mapping between the constants of our logical space, and the predicates, functions and individuals in
our model. Throughout ali of this definition, the correspondence between our definitions and the
rules of chess should remain transparent.

We have decided to study chess partially because chess provides a well-defined set of rules. One
might think that this regularity would prescribe some specific approach. But just as one can do
formal proofs in arithmetic by computing on sets or Peano axioms, one has a choice in chess of the
level of one’s axioms. There exist both decisions to be made on a complexity dimension, and
irregularities in the rules to complicate any organization.

The problems generated by the latter will be dealt with in depth in the remainder of this chapter,
particularly as we handle each intricacy. It would be useful, however, to justify at this point the
general complexity level of our approach, and the reasons for rejecting either a more or less basic set
of axioms.

This proof is meant to be an examination of the reasoning that could be involved in the solution of
retrograde chess problems. We wish to show the correspondence between the reasoning in this form,
and the human deduction, while retaining the validity advantages of a formal proof.23 It is not an
attempt to prove mathematical theorems, nor do we wish to do with deduction what could be more
easily observed. For these reasons, we have incorporated into the computational model functions to
compute relations like individual piece movement. We have also passed to the computational model
all arithmetic responsibility. In that sense, this is not a low level approach.

However, we also desire that our system be general in its ability to express many different kinds of
retrograde analysis chess puzzies. We thereby become limited from above. We do not wish this
analysis to be based on theorems applicable only to some small set of problems. Hence, we have
expended considerable energy deriving general chess theorems from our axioms, and have used these
theorems as individual steps in our main proof. These theorems are proven in chapter 3 and
appendix A. But we are restrained by this generality restriction to consider chess at the piece and
move level, rather than considering notions of general board geometry. A board geometric approach
would express legal moves in terms of the pieces on a board, and procedures for expressing their
movement ability. While easier to manipulate in the short term (proving things about the immediate
predecessor or successor of 4 given board) such an approach would have difficulty expressing long
term ("sometime, during this game, the following has happened”) notions.

We are also bounded from above by the limitations of our proof checker. There are some things
that are, by nature, observational, but nevertheless not computable within the present
implementation of the proof checker. These restrictions, we might add, are discoveries of experience.
We will consider possible improvements to the model computational method in section 538.

23 This is not to assert that we sre modeling the way humans reasom: rather, we are locking for s representstion thet »
computer can resson with, which is still undersiandable (and verifiable) for 3 humen intelligencs.

Page 38. The Chess Axioms 2.1

Section 2.1 Declarations and Definitions

This chapter naturally divides into two sections: defining the objects of the chess world {with their
FOL declarations), and expressing the rules of chess with these defined object. We begin, our
course, by detailing and declaring the tokens of the chess axiomatization.

Interspersed with the description of this chapter are the text of the various FOL declarations and
axioms used in generating this proof. Several of the declarations and functions here declared, while
not mentioned in any of the proofs in this paper, have been included for completeness.

Section 2.1.1 Very Primitive Notions

In any axiomatization, there will be certain base notions, upon which the rest of the structure is
built. Chess, of course, is no exception. We shouid dispiay the distinction between the basic ob jects,
and the less basic operations and predicates upon them. For this discussion, there exist seven basic
sorts2% of chess objects -- chesspieces, squares, piece values, positions, boards, moves and colors.
While the necessity for some of these concepts is obvious (what can we say about a chess problem
without referring to a chess board, or speaking of black and white?) the reasons for some of the
others are more obscure, and will require some explanation. This section will detail each of these
sorts, and their ob jects and ob jecuves.28

Section 2.1.1.1 Positions

The fundamental object in this chess world is the position. A position is, effectively, a state vector
containing all of the information needed to reconstruct an entire chess game. While this might, for
instance, be conceptually encoded as a list of the moves made to reach that moment, or a list of the
chess boards visited in the course of the game, it is generally not possible, in our system, (0 do so.
More particularly, a position is not a concrete ob ject (one that we can (usually) display or compute
upon), but, rather, a conceptual notion.

Typically, a retrograde chess puzzie will be presented not as a position, but, rather, as an
arrangement of chess pieces?® on a chessboard, (what we will call a board). The puzzle is then to
deduce the common factors of all possible games that could have led to such a board, effectively, the
predicates true on any position with such 2 board. Nevertheless, we still wish to be able to retain our
computational ability on the given (and associated boards). Hence, we see the necessity for
representing what is essentially the same ob ject (the board and the common factors of the games that
lead to it) in several different representations. The lesson here for writers of programs that would
seek to solve problems like this (and problems of similar complexity) is of the necessity for retaining
multiple representations of ob jects.2’

So, rather than having axioms manipulating positions themselves, our axioms will constrain the

24 A sort is s monadic predicste; one that thersforé defines & se! {the set of things for which it is trus).

25 Ies the ramainder of this paper, it is asserted that ali individuals, amplm““mmwwmm
as chess objects. We declere this representation with the command: declers REPRESENTATION CHESS:

26. Or, mors precmely, an arrangement of chass values.

27. We will coneider this result in greater detail in setion 56.1.

2.LLL The Chess Axioms Page 39.

transfer from one position to the next. Similarly, we will draw conclusions about the properties of
successor and predecessor positions. It is worthwhile noting that from a given position, one can
derive the previous position (the position on the previous move), and determine, of two positions, if
one occurred in the game of the other.28

For example, we consider the following notions involving positions. We will have occasion to speak
of the path some piece must have used to get to some square, without having to detail the
interleaving between the moves of that piece and the other moves of that player, or to describe the
capture of some particular chess piece, without detailing the particulars of the move (which piece
made the capture?) involved. Thus, we will conciude, for example, that in any game played to reach
a given board, there must have been another position (in that game) with some certain property, (for
example, an unknown piece captured a bishop on that square) without ever having to state explicitly
which prior position it was (which move during this game the captured occurred).

There is also an additional motivation for retaining the entire history of a game in our encoding.
More specifically, one of the chess rules refers to the entire game. The castling rule requires that
neither of the castling pieces have moved in the course of that Ig:me That is, for some positions,
the entire game must be considered tu determine the legal moves.

Our FOL declaration for POSI T]ONS:30

decliare PREDCONST POSITIONS 1(PRE];

Section 2.1.1.2 Pieces

Perhaps the most obvious sort needed in the solution of chess puzzles is one to represent the
individual chesspieces. The implementation of this concept, however, is not so trivial. One quickly
discovers3! that not all pawns are the same; each of the thirty two chessmen has his own identity,
distinguished mostly of his value and square at both the begining of the game, and at any later
position. Note that we are differentiating between the identity of a chessman and his value; a pawn
may promote to a queen, but in our eyes he remains a pawn in drag.

We will have need to talk of the piece on a square in a position. We therefore are required to add a
thirty-third "piece” to our system, the EMPTY piece, the piece that sits on any square with no other
occupant. Thus, the major sort of this scheme is PIECES, which includes the set of the thirty two
CHESSPIECES. The FOL declarations are:

declare PREDCONST PIECES 1I[PRE};
declare PREDCONST CHESSPIECES(PIECES) [PRE]:

28 An exception to much of what we say is, of course, the initisl pesition. We have s complete description of the game that led
to it, and can sncods & particulsr representation for it.

28 Though the sffect of this rule could be obtained by in s shorter ferm representation by *flagging” the “position” when one
of the castiing pieces moved

30. This command declares the sxistence of s one placs (monedic) predicste POSITIONS. POSITIONS is » prefix {PRE} predicate,
snd may be used without parenthesss sround its srgument.

al. Particularly when desling with choss puzzies, rather then pleying chess.

Page 40. The Chess Axioms 2.1.13.

Section 2.1.1.3 Squares

Another group of individuals is the set of squares of the chessboard. As with pieces, we have an
extra member in our set, a heaven or hell for chesspieces, a place for them to be after they are
captured and removed. We call this sort of extended squares EXSQUARES, and will occasionally
speak of the extended square that a chesspiece is on in a given position, or which plece is on a
given square in that position.

declare PREDCONST EXSQUARES 1;
declare PREDCONST SQUARES (EXSQUARES) [PRE]:

Section 2.1.1.4 Values

Just as we spoke of the thirty two chessmen in 2 chess set, we will still often find it necessary to speak
of their rank in a given position. To avoid confusion with rank and column, we shall henceforth
speak of the VALUE of a chesspiece. Thus most pawns will promote to have a queen’s value. We
shall prove general chess theorems such as Al pawn valued pieces are pawns and Al non-pawn (officer)
pieces retain the same value through every position (no officer ever promotes).

We also distinguish the color of a piece in its value. Thus, the black king’s pawn (BKP) will usually
have a value of pawn black (PB), but might occasionally3? promote to be a knight black (NB). Failure
to understand the fundamental distinction between the name of a piece and its value in a position
will cause trouble understanding the motivation and detail of many of the proofs in this paper.

deciare PREDCONST VALUES 1(PRE];

Section 2.1.1.5 Boards

Most chess problems are stated not in terms of what we have called a position, but rather, as boards
of distributed chess values. Similarly, most chess moves are defined in terms of the board structures
they can to be made on, rather than the varieties of games that could precede different moves.33
Therefore, we find it useful to have the primitive notion of a Board in our chess axiomatization. On
the individual squares of a board, we meet the various values, including the value MT, which
represents an empty square, and UD, a square on a board whose value is unknown. Note that one
can speak of a pawn on a board without specifying which pawn it is. Our formalism includes
partially and fully defined boards, and naturally lends itself to a partial ordering on boards by
increasing definition. We speak of a fully defined board, one with no unknown squares, as being a
TOTALBOARD.

declare PREDCONST BOARDS 1([PRE];
declare PREDCONST TOTALBOARDS (BOARDS) [PREI:
It is reasonable to question the necessity for the partially defined boards introduced above. They

32 Particularly i purties.

33 Thnuuw,omplwu%bnhThanw:uﬁnﬂmfﬂhimmndulyhlhwmmm
asiso the last move. Castling is not permitied if sither lhhqwlhud:hnwhlhi’m)bﬂ“ Even more complicated
are uummanmmmmmmﬂ«unmmm

2.1.15. The Chess Axioms Page 41.

serve two primary purposes. First, they provide a structure for the representation of partial
information about a situation. For example, we may know that a certain bishop has moved and
captured, though we may not know what the captured chesspiece was. Nevertheless, through the
employment of partial boards, we can compactly express the situation prior to the capture

A parallel, and perhaps more important reason, resides the in nature of FOL's simplification
mechanism. Partial boards are computable objects; particularly, our LISP functions can make
computations on expressions with explicitly undefined values, but not on partially defined
expressions. This is similar to call-by-value LISP's inability to evaluate CAR(CONS(A x)) if x is
undefined. Each of our attached functions and predicates on boards must know how to handle the
partial piece. Partially defined squares typically restrict validity of predicates, for more information
does not accrue from a less specified ob ject.

Section 2.1.1.6 Mcves

Our next sort is something of a pseudo-sort. A common chess notion is that of the move. We would
like to be able to speak of the last move of a position as being a castling, or the white queen as the
mover (piece that moved) of the last move of this position. Practically speaking, however, there are
no occasions when a predicate or function on a move is used without first extracting the move from
the position in question. As the state vector, the position retains all of the information in the move;
hence, the sort itself is not needed; rather, it gets in the way. However, we are attempting to model
reasoning, not distort it. A move is a natural notion, and this demands its inclusion.

declare PREDCONST MOVES 1(PRE];

Section 2.1.1.7 Colors

There remains one basic, though nevertheless trivial sort to be mentioned. Chess is organized as a
competitive game; there is not much we could say without recognizing the existence of the two
armies, BLACK and WHITE.

declare PRECCONST COLORS 11(PRE];
Section 2.1.2 Piece Declarations

A large sort hierarchy for pieces is declared, most of which is not used. It is worthwhile mentioning
the existence of EMPTY, the piece on any not otherwise occupied square, and that the variables for
pieces are the t's (t and t1), whereas the variables for chesspieces are those variables starting with
the last three letters of the alphabet (x, y, and 2).

The naming scheme for the constant chesspieces might also be mentioned; the encoding is color, side
(king's or queen's), column or rank, and the designation p for pawns. Thus, the WKR is the white
kinéx rook, and the BONP is the black queen's knight pawn.

The function Piecscolor, on chesspieces, returns the color of the given chesspiece.

Pieces are represented internaily to the FOL simplification mechanism by the atom of the same name
as the piece.

Page 42. The Chess Axioms 212
The rest of this section is a series of rather monotonous declarations.34

declare PREDCONST EMPTYPIECE (PIECES) (PRE]

declare PREDCONST WHITEPIECE BLACKPIECE (CHESSPIECES) [PRE]}

declare PREDCONST PALUNS BISHOPS KNIGHTS KINGS QUEENS ROOKS
(CHESSP1ECES) [PRE];

declare PREDCONST BPAUNS WPAWNS {(PALNS) (PRE]:

dec |are PREDCONST BBISHOPS WBISHOPS (BISHOPS) [PRE]:
declare PREDCONST BKNIGHTS HKNIGHTS (KNIGHTS) [PRE):
declare PREOCONST BROOKS WROOKS (ROOKS) [PRE]:
declare PREDCONST BKINGS WKINGS {(KINGS) [PRE];
declare PREDCONST BQUEENS WOUEENS (QUEENS) (PRE];

declare OPCONST Piececoior (CHESSP1ECES) =COLORS (PRE] ;

decliare INDVAR t t1 ¢ PIECES:
declare INDVAR x x1 x2 x3 x4 y z xa xb xc xd ¢ CHESSP1ECES:

declare INDCONST BK ¢ BKINGS, WK ¢ WKINGS;

declare INDCONST BQ ¢ BQOUEENS, WQ ¢ WQUEENS:

declare INOCONST BKB BOB ¢ BBISHOPS, WKB WGB ¢ WBISHOPS:;
declare INDCONST BKN BGN ¢ BKNIGHTS, WKN WON ¢ WKNIGHTS;
declare INDCONST BKR BQR ¢ BROOKS, WKR WOR ¢ WROOKS:

declare INDCONST WGRP WKRP WONP UKNP WKBP WOBP WOP WKP ¢ WPALINS;
declare INDCONST BGRP BKRP BONP BKNP BKBP BQBP BOP BKP ¢ BPAWNS:
deciare INDCONST EMPTY EMPTYPIECE;

deciare INDVAR yo zb ¢ BLACKPIECE, yyu ¢ WHITEPIECE:
declare INDVAR yk ¢ KINGS, ywr yurl « WROOKS:

declare INDVAR ybic BISHOPS, yn ¢ KNIGHTS, yun ¢ WKNIGHTS;
declare INOVAR yp ¢ PAUNS, yup ¢ WPALINS, ybp ¢ BPALNS;

mg PIECES2 {CHESSP1ECES, EMPTYPIECE! ;
mg CHESSPIECES2
{WHI TEPIECE.BL%CKPIEQE,PAHNS,BI%PS,KMIGHTS.KENGS.Q[EENS.MQ 3
mg WHITEPIECE2 {LIPQEJNS.%iWS.NKNIGHTS.HKINGS.HGLEENS.WSI !
mg BL#CKP!ECE::{BPWS.BBISI-DPS.BKNIGH?S,BKINGS,BGI.EENS.BROOKSI;
mg PALNS2 {BPALNS, WPALNSI
mg BISHOPS2 {BB1SHOPS, HB1SHOPSI §
mg KNIGHTS2 {BKNIGHTS, WKNIGHTS! ¢
mg KINGS2 {BKINGS, WKINGS! ;
mg QUEENS2 (BQUEENS, WQUEENSI
mg ROOKS2 (BROOKS, WROOKS! 3

Here are some attachments for the chess eye. All simplification is done in the (partial) model named
CHESS: we shall usually attach (map or associate) atomic primitives to the atom of that name in this
model.

34 in these declerstions, PREDCONST's ars predrcate constants, OPCONST's operator constants (or functions, i you prefer),
INDCONST's, indwidual constants, and INDVAR's, indwidual varisbles. [PRE] spplcation terme can be written without parsathesizing their
srgument; [INF] 1erms, botween thew srguments. it is worthwhile pointing sut 1hat while every sert hes on infinite colloction of vorisbles
{theorsetically) availsble 1o it, we have only doclared those verisbles that we shall actuslly vee.

212 The Chess Axioms

attach BK « [CHESS) BK; attach BKP « [CHESS] BKP;
attach BKB » [CHESS] BKB: attach BKBP « [CHESS] BKBP;
attach BKN « [CHESS) BKN; attach BKNP « [CHESS] BKNP;

attach BKR » [CHESS) BKR; attach BKRP « (CHESS] BKRP;
attach BQ =~ [CHESS) BQ: attach BOP « [CHESS] BOP;
attach BOB « [CHESS] BOB; attach BOBP ~ ([CHESS) BOBP:
attach BON « [CHESS] BON; attach BONP « [CHESS] BONP:
attach BOR « [CHESS] BOR; attach BORP « [CHESS) BORP;

attach WK (CHESS] WK; attach WKP « [CHESS] WKP;
attach WKB « [CHESS) WKB; attach WKBP « [CHESS] WKBP;
attach WKN « [CHESS] WKN; attach WKNP « [CHESS! WKNP;
attach WKR {CHESS] WKR: attach WKRP « [CHESS] WKRP;

attach WO « [CHESS) WO; attach WGP [CHESS] WQP;
sttach WOB « [CHESS] WOB; attach WQBP « [CHESS] WOBP;
attach WON « [CHESS] WQON; attach WONP « [CHESS] WONP;

attach WOR « [CHESS] WOR; attach WORP « [CHESS] WGRP;
attach EMPTY « [CHESS] EMPTY;

attach WPAWNS [CHESS] (DE WPAWNS (x) (MEMQ x
(QUOTE (LIKRP WKNP WKBP WKP WQOP WQBP WONP WARP}11);
attach BPAUNS [CHESS] (DE BPAUNS {x} (MEMQ x
(CQUOTE (BKRP BKNP BKBP BKP BQP BGBP BQGNP BORP)11})1

attach BBISHOPS [CHESS) (DE BBISHOPS (x) (MEMQ x (QUOTE {BKB BOB}}})3
attach WBISHOPS [CHESS] (DE WBISHOPS (x) (MEMQ x (QUOTE (WKB HaBI 1))
attach BKNIGHTS [CHESS) (DE BKNIGHTS (x) (MEMQ x (QUOTE (BKN BAN})) g
attach WKNIGHTS [CHESS] (DE WKNIGHTS (x) (MEMQ x (QUOTE (WKN WON}))) g
attach BROOKS [CHESS] (DE BROOKS (x)} (MEMO = {QUOTE (BKR BOR}}1}:
attach WROOKS [CHESS] (DE WROOKS (x) (MEMQ x (QUOTE (HKR WARI}})¢
attach BKINGS [CHESS] (DE BKINGS (x) (MEMQ x (QUOTE (BK}1))s
attach WKINGS [CHESS] (DE WKINGS {x) (MEMQ x (QUOTE (WK)111)s
attach BOQUEENS (CHESS] (DE BQUEENS (x)} (MEMQ x (QUOTE (BQi}))s
attach WOUEENS [CHESS] (DE WQUEENS (x)} (MEMQ x (QUOTE (HQ)1));
attach QUEENS [CHESS] (DE QUEENS (x) (MEMQ x (QUOTE (WO BQ))));
attach ROOKS [CHESS) (DE ROOKS (x) (MENMQ x (QUOTE (BKR WKR BGR WAR)I I} }¢
attach BISHOPS [CHESS) (DE BISHOPS (x) (MEMQ » (QUOTE (BKB BOB WKB WAB) 1)
attach KNIGHTS [CHESS] (DE KNIGHTS (x) (MEMQ x (QUOTE (WKN WON BKN BGN}1)
attach KINGS [CHESS) (DE KINGS (x) (MEMQ x (QUOTE (WK BK})))g
attach BLACKPIECE [CHESS) (DE BLACKPIECE (x) (MEMQ x (QUOTE

(BKRP BKNP BKBP BKP BOP BOBP BONP BORP BKB BOB BKN BON BKR BGR BK BQ:')3
attach WHITEPIECE (CHESS] (DE WHITEPIECE (x) {MEMQ x (QUOTE

(UKRP LIKNP WKBP WKP WOP WOBP GNP WORP WKB WOB WKN HON WKR WOR WK Ha)) 1)
attach EMPTYPIECE [CHESS] (DE EMPTYPIECE (x)} (MEMO x (QUOTE (EMPTY)}1)s
“ttach PAUNS [CHESS] (DE PAUNS(x} (MEMQ x (QUOTE

{[KRP BKNP BKBP BKP BOP BOBP BONP BORP .

WKRP WKNP LKBP WKP WOP WOBP LQONP WaARP)))
attach CHESSPIECES [CHESS] (DE CHESSPIECES(x) (MEMQ x {QUOTE {(BKRP BKNP

BKBP BKP BOP BOBP BONP BORP BKB BOB BKN BON BKR BGR BK BQ WKRP WKNP

WKBP WKP WOP LOBP WONP WORP LKB WGB WKN WON WKR WOR LK WA
attach PIECES [CHESS] (DE PIECES (x) (MEMQ x (QUOTE (BKRP BKNP BKBP BKP BQP

BOBP BONP BORP BXB BOR BKN BON BKR BOR BK BQ EMPTY WKRP WKNP WKBP WKP

LOP WOBP WONP WORP WKB WGB WKN WON WKR WOR WK WQ))))3

attach Piececolor [CHESS-CHESS] (OE Piececolor {x}
(COND ((WHI TEPIECE x) (QUOTE WHITE)) ((BLACKPIECE x) {QUOTE BLACK})))4

| I
}:

Page 44 The Chess Axioms 2.1.2

extension BKINGS {BKI; extension WKINGS LK1 ¢
extension BQUEENS 1{BQIg extension WQUEENS (WO};
extension BROOKS (BKR BOR}; extension WROOKS [WKP WOR) 3
extensica BBISHOPS (BKB BGBI4 extension WBISHOPS (WKB WGB!
extension BKNIGHTS (BKN BONI; extension WKNIGHTS {WKN WONI;
extension WPAKWNS (UKRP WKNP WKBP WKP WGP WQBP WUONP WQRPI 3
extension BDPAUNS (BKRP BKNP BKBP BKP BOP BQBP BONP BORPI:

extension KINGS (WK BK}:

extension QUEENS (WQ BOI;

extension ROOKS {BKR WKR BGR WOR}

extension BISHOPS (BKB BGB WKB HaB! ;

extension KNIGHTS (WKN WON BKN BOM} 3

extension PAUWNS {BKRP BKNP BKBP BKP BQP BOBP BONP BORP
NKRPWBPWBPHKPHUPNQBPWWH

extension BLACKPIECE (BKRP BKNP BKBP BKP BOP BQOBP BONP BORP
BKB BQB

extension WHiTEPIECE {(WKRP WKNP WKBP WKP LOP WQBP WONP WGRP
UKB WOB WKN WON WKR WOR WK WOl
extension EMPTYPIECE {EMPTY) s
extension CHESSPIECES
{BKRP BKNP BKBP BKP BQP BOBP BONP BORP BKB BOB BKN BGN BKR BOR BK BQ
WKRP HKNPUKBPWPHGPWHGNPHORPHKBHGBWNWUKH@NK Wal 3

Note that were it not for a small bug in the FOL implementation, the functional definitions of
various sorts would not have been required. This has since been corrected.

Section 2.1.3 Squares and Dimensions

Section 2.1.3.1 Square declarations

Squares are represented in FOL as the acronym of the square’s name. Thus, the FOL INDCONST for
black queen's rook one is BGRL. The perspective (relative to white and black) is chosen to be the

nearer side. Black king's knight five (which is also white king's knight four) therefore becomes
LKNG. This notation is seen to be a subset of the standard English system.

2.1.5.1. The Chess Axioms

Page 45.

Internal to the LISP chess model, squares are represented at the dotted pair formed of the squares

coordinates (row, column). Thus, BGl in FOL (black queen’s one) is (i
coordinates used are illustrated in figure 25.

123458678

= 0 b T etm T IR
éigil.wf , ’a’;’
¢ - ‘3 Yl b |
- x s ! #

”1%’1//}/’1%’1%
Wi, I, 7%, 7
%y %y %{/ %ﬂ,
) %ﬁ, %y %V %
///f/////////; .
ARG RBERIRK
A AR

123456738

co~OYUNT S WN -

. 4) to the LISP model. The

The LISP internal numbering scheme for aquares.

figure 25

There are also several sub-species of squares. We
by the traditional checkerboard pattern of the squares.

identify the WHITESQUARES and BLACKSQUARES,
Squares are also specialized by their row.

We thereby acheive sorts such as WLASTRANK and BLASTRANK (white and black's last rank (row)).

declare PREDCONST WHITESQUARES BLACKSOUARES BLASTRANK WLASTRANK

(SQUARES) [PRE] ;

declare INDVAR sgx sg sql sq2 sg3 sgh s6q5 8q6 8q7 8q8 ¢ SQUARES;

decliare INDCONST

BOR1 BONI BOB1 BQl A¥1 BKBL BKN1 BKRI BOR? BONZ BOB2 BO2 BK2 BKBZ BKN2 BKRZ
BOR3 BON3 BOB3 BO2 t .3 BKB3 BKN3 BKR3 BURG BONG BOBG BO4 BK4 BKB4 BKN4 BKR4

LOR4G WONG WOBG LOG UKL LKB4 LUKNG WKRG WOR3 WAN3

WORZ WONZ WOBZ W02 WK2 WKB2 WKN2
¢« SQUARES:

mg EXSQUARES2 (SGUARESI ;

mg

And the various sorts have the obvious attachments.

attach SQUARES [CHESS] (DE SQUARES (x}
(AND (NOT (ATOM x})
(NUMBERP (COR)) (GREATERP (COR
(NUMBERP (CAR x}) (GREATERP (CAR x1@)
attach BLASTRANK [CHESS) (LAMBOA (x)(EQ 8 (CAR x})}
attach WLASTRANK [CHESS] (LAMBOA (x) (EQ ¢ {CAR x)i);:

WOB3 HO3 WK3 WKB3 WKN3 WKR3
LKR2 WORI WON1 WOB1 WOl WK1 WKB1 WKN1 WKR1

SQUARES2 (WH]1 TESQUARES, BLACKSQUARES, WLASTRANK , BLASTRANKI

x) @) (LESSP (COR x) 9)
(LESSP (CAR x) 811},

Page 46. The Chess Axioms

attach WHITESQUARES [CHESS] (LAMBOA(S) (AND (SQUARES S)
(ZEROP (REMAINDER (PLUS(CAR S) (COR S1)2)}1)3
attach BLACKSQUARES [CHESS) (LAMBOA (S} (AND (SQUARES S)
(NOT (ZEROP (REMAINDER(PLUS (CAR S) (COR 811211131)y

extension SQUARES (BOR1 BON1 BGB1 BOl BK1 BKBI BKN1 BKR1 BORZ2 BONZ BGBZ
BO2 BK2 BKBZ BKN2 BKRZ BOR3 BON3 BGB3 BU3 BK3 BKB3 BKN3 BKR3 BOR4 BONG BOB4
BQ4 BK4 BKB4 BKNG BKR4 WORG WON4 WOB4 WQ4 WK4 WKB&4 WKNG WKR4 WOR3 WON3 WGB3
WO3 WK3 WKB3 WKN3 WKR3 WORZ WON2 WOB2 WO2 WK2 WKBZ WKNZ WKR2 WOR1 WON1 WOB1
WQ1 WK1 WKB1 WKN1 WKR1l;

attach BOR1«[CHESS] (1.1);attach BON1«[CHESS) {1.2)sattach BGBl« [CHESS] (1.3);
attach BQ1 «([CHESS] {1.4);attach BK1 «[CHESS] {1.5);attach BKBl« [CHESS] (1.6);
attach BKN1e«(CHESS] (1.7);attach BKR1«[CHESS) (1.8);attach BOR2w» [CHESS]) (2.1);
attach BON2«[CHESS] (2.2);attach BOBZ«(CHESS) {2.3)3attach BGZ «(CHESS] (2.4);
attach BK2 «[CHESS] (2.5} :attach BKB2w«[CHESS) (2.6)sattach BKN2~ [CHESS] (2.7)
attach BKR2«[CHESS] (2.8} ;attach BOR3«[CHESS] (3.1} ;attach BON3« [CHESS] (3.2)
attach BOB3«I[CHESS] (3.3):attach B3 «[CHESS) (3.4)1attach BK3 «[CHESS]) (3.5}
attach BKB3«[CHESS] (3.6);attach BKN3«[CHESS] (3.7);attach BKR3« [CHESS] (3.8}
attach BOR&w [CHESS) {4.1);attach BONG« [CHESS] (4.2);attach BOB4w [CHESS] (4.3)
attach BOG «»[CHESS] (4.4} :attach BK&G «[CHESS) (4.5)sattach BKB4«[CHESS) (4.6)
attach BKN&Gw»[CHESS) (4.7):attach BKR4«[CHESS) (4,8) sattach WORG«[CHESS] (5.1
attach WON&G« [CHESS) (5.2);attach WOB4«[CHESS] (5.3);attach WA4 «[CHESS) (5.4);
attach WK4 «[CHESS) (5.5):attach WKB4«{CHESS] (5.8) ;attach WKN4«[CHESS] (5.7}
attach WKRG«[CHESS] (5.8):attach WOR3«ICHESS] (6.1);attach WON3«[CHESS] (6.2)
attach WOB3«[CHESS] (6.3):attach WG3 ~[CHESS) (6.4);attach WK3 «[CHESS] (6.5}
attach WKB3«[CHESS] (B.8):attach WKN3«[CHESS] {(6.7);attach WKR3«[CHESS] (6.8}
attach WOR2«[CHESS) {7.1):attach WON2«[CHESS] (7.2) ;attach WABZ2« [CHESS] (7.3}
attach W02 «[CHESS) (7.4);attach WK2 «[CHESS] (7.5);attach WKBZ«[CHESS] (7.6}
attach WKN2«[CHESS] (7.7);attach WKR2«([CHESS]) (7.8) ;attach WOR1«[CHESS] (8.1}
attach WONI«[{CHESS] (8.2} ;attach WABl«[CHESS] {8.3);attach WAl «[CHESS] (8.4}
attach WK1 «[CHESS] (8.5);attach WKBl«([CHESS] (8.6) ;attach WKNl«[CHESS] (8.7}
attach WKRi«[CHESS] (8.8);

2.1.3.1.

The predicates LASTRANKER (is square the last rank (pawn promotion rank) of the given color),
SAMEDIAG (are the arguments on the same diagonal), and SQUARE_BETKEEN (is the middie argument
between the other arguments, either orthogonally or diagonally) are also declared. Attachments are

provided for the latter two.

decliare PREDCONST LASTRANKER (SQUARES COLORS);
declare PREDCONST SAMEDIAG (SQUARES,SQUARES);
deciare PREDCONST SQUARE_BETWEEN (SQUARES,SQUARES, SQUARES)

attach SAMEDIAG [CHESS,CHESS) (DE SAMEDIAG (x y) (AND
{SQUARES x) (SQUARES yJ (NOT(EQUAL x y))
(EQ(ABS(DIFFERENCE (CAR x) (CAR yl}}
(ABS (DIFFERENCE (COR ») (COR y}11}));

attach SQUARE_BETWEEN [CHESS,CHESS,CHESS] (DE SQUARE_BETWEEN(q r S}

(AND (SQUARES q) (SQUARES r} (SQUARES Si (OR

(AND (EQ (CAR .} (CAR r}}(EQ (CAR r) (CAR S}} (BETWEEN (COR g) (COR r} (COR S))

(AND (EQ (COR q) (COR r)} (EQ (COR r) (COR S}) (BETWEEN {(CAR q) (CAR r} (CAR S))

;?TE};{SMEUMG q r) (SAMEDIAG q SJ (SAMEOIAG r S) (BETWEEN(CAR q) (CAR r) (CAR S
1

}
}
}

2.1.3.2. The Chess Axioms Page 47.

Section 2.1.3.2 Coordinate Declarations

We will also have occasion to refer to the individual coordinates of particular squares, and to prove
femmas about these coordinates. We call the class of square coordinates dimensions, and speak of the
row and column of a particular square. The numbering scheme for rows and columns corresponds to
the numbering in the internal LISP model. This, we might axiomatically have, If Square is in
White's last row then its row is equal to 1. Dimensions are represented in the LISP model as natural
numbers.

A compositor, Makesquare, for taking 2 row-column pair, and producing the appropriate square, is
also declared. This compositor is stated to be equivalent to the LISP function CONS in the
computational model.

declare PREDCONST ISOIMENSION {NATNUM) [PRE] 3
declare PREDCONST 1SROM 1SCOLUMN (1SDIMENSION) [PRET
declare PREDCONST BLASTROMW WLASTROW (ISROW s

represent (ISOIMENSION [SROM 1SCOLUMN BLASTROMW WLAGTROM} as NATNUMREP:

decliare OPCONST Row (SQUARES) =1SROM [PRE] ;
declare OPCONST Column (SQUARES) =1 SCOLUMN [PRED 3
declare OPCONST Makesquare (1SROW 1SCOLUMN} «SQUARES:

declare PREDCONST IS_EVEN (1SROW, 1SCOLUMND 4

declare INOVAR dx dxl dx2 ¢ 1SDIMENSION;
declare INDVAR drx drxl drx2 ¢ 1SROU;
decliars INDVAR dcx dcxl dex2 « 1SCOLUMNg

mg 1S0IMENSION2 (ISROW, ISCOLUMNI :
mg NATNUMz (1SOIMENSIONI 3

Successor functions are defined on the rows, succession being relative to the moving side. A black
pawn in row drx moves (o row BSUC (drx) on his next (single square) move. The last row is the
pawn promotion row.

declare PREDCONST BSUC WSUC {1 SROW, 1SROUW) 3
declare PREDCONST BETUWEEN HSDH‘[ENSIDNJSD{NEHSIM. ISOIMENSIONI ¢
declare OPCONST Bsucf Wsucf (1SROM) =1SROM [PRE] ¢

It should be noted that the operators Bsucf, Wsuct {and, similarly L2 touchf and R2touchf, section
929.1.2) are functions of convenience, not definition. There are no axioms that mention these
functions. However, we can (and do) use the simplification mechanism to compute the value of these
functions in every (interesting) case, and thereby produce useful inference steps involving their use.

Attachments to implement rows, columns and successors.

Page 48. The Chess Axioms 2132

extension ISROW 11,2,3,4,5,6,7,81:
extension 1SCOLUMN 11,2,3,4,5,6,7,81;
‘xt.n'iﬂﬁ iSBIfENSlm {142:30“:5:6!7!81;

attach Rou [CHESS-NATNUMREP] CAR;
attach Column [CHESS-NATNUMREP] CORg
attach Makesquars INATNUMREP, NATNUMREPCHESS] CONS
attach ISDIMENSION [NATNUMREP] (DE]SDIMENSION (x)
(AND (NUMBERP) (LESSP x 9) (GREATERP x 8)))3
attach ISROU (NATNUMREP] 1SDIMENSION;
attach ISCOLUMN INATNUMREP] I1SDIMENSION;
attach Bsucf INATNUMREP-NATNUMREP] (DE Bsucf (r) (COND((EQ r 8)8) (T(ADDI1 ri})}s
attach Wsucf INATNUMREP-NATNUMREP] (DE Usucf(r) (COND((EG » 131} (T(SUBL r))})s
attach BLASTROW [NATNUMREP] (DE BLASTROW(r) {EQ r 8))3
attach WLASTROW [NATNUMREP] (DE WLASTROW (r) (EQ v 1))
attach BETUEEN [NATNUMREP, NATNUMREP , NATNUMREP] (DE BETWEEN (x y 2!}
(AND (NUMBERP x)} (NUMBERP y) {NUMBERP z}
(OR (AND (LESSP x y) (LESSP y z))
(AND (LESSP z y) (LESSP y x}1)));

Notice that we can easily observe (simplify) that the predicates ISROM, I1SCOLUMN and ISDIMENSION
are equivalent. However, we find it more natural to retain the distinction, for, after all, rows and
columns are hardly equivalent in their chess interpretations.

Section 2.1.4 Value Declarations

There are fourteen YALUES in this system, corresponding to the twelve different incarnations of the
chessmen on the chessboard, an empty value, and an undefined value. It is perhaps worthwhile (o
emphasize that the value of a given chesspiece is a function of the position in which we are
considering that chesspiece. Of course, the value of non-pawn pieces does not change during a game
(and we shall prove a theorem to that effect (section 3.3.0.

Chessboards, being a manifestation of the current situation in a chess game, rather than a
description of the history of that game, have values filling their squares. Our desire to have
partially defined chessboards leads to the existence of the undefined value (UD) of our system.

The naming scheme for values is the converse of that of pieces. Thus, QW is a value of any piece
that is a white queen. In competitive chess, a promoted white pawn would therefore be likely io
have the value QW after his promotion. Value variables begin with the letter v. Each value is
represented in the internal LISP world as the atom of the same name.

declare PREDCONST VVALUES NVALUES (VALUES) [PRE]
declare PREDCONST PIECEVALUES EVALUES (VVALUES) [PRE];
declare PREDCONST WVALUES BVALUES (PIECEVALUES) [PRE];
dec|are PREDCONST PROMYALUES VALUEK VALUEQ VALUEB VALUEP
VALUER VALUEN (PIECEVALUES) [PRE];

declare INDCONST KW QW BW NW RW PH < WVALUES
declare INDCONST KB OB BB N8 RB PB ¢ BYALUES;
deciare INDCONST MT ¢ EVALUES, UD ¢ NVALUES:

2.14. The Chess Axioms Page 49.

declare INDVAR vu ¢ WYALUES, vb ¢ BVALUES:

deciare INDVAR v vl ¢ VALUES, vpc vpel vpc2 ¢ PIECEVALUES;
declare INDVAR vvx ¢ VVALUES:

declare INOYAR vbi ¢ YALUEB;

attach MT « [CHESS] MT; attach NB » [CHESS] NB; attach KW = {CHESS] KU
attach RW « [CHESS] RW; attach PB « [CHESS] PB; attach PW = [CHESS] PHi
attach KB « [CHESS! KB; attach RB « [CHESS] RB; attach 0B « [CHESS) QB
attach QW « [CHESS! QW; attach UD « [CHESS] UD; attach BB « [CHESS) BB
attach NW « [CHESS) NW; attach BW » [CHESS] BMW;

mg PIECEVALUES2
(PROMVALUES., WVALUES, BVALUES, VALUEK , VALUEG, VALUEB,, VALUEN, VALUER, VALUEP) 1
mg PROMVALUESz _ (VALUEQ, VALUEB, VALUEN, VALUERI ;
mg VVALUES2 (PIECEVALUES, EVALUES! ;
mg VALUES2 INVALUES, VVALUES! ;

extension VALUEK (KW KBl:; extension VALUEQ {OW GBI
extension VALUEB (BW BBl; extension VALUEN (NW NB} 3
extension VALUER (RW RBI; extension VALUEP (PW PBl;
extension WVALUES (KW,QW,BW,NW,RU,PUHI;

extension BVALUES (KB,08B,88,N8,RB,PBI;

extension EVALUES (MT}; extension NVALUES {UD!;

extension PIECEVALUES {KB 0B R8 BB NB PB KW QU RW Bl N PUl g
extension YVALUES {MT KB 0B RB B8 NB PB KW QU RU BW NU PWl 3
extension VALUES {UD MT KB 0B RB BB NB PB KW QM RU BHW Nu PUl;
extension PROMVALUES (0B RB BB NB QW RW BW NWl;

attach YALUEK [CHESS) (DE VALUEK (x} (MENQ x (QUOTE (KU
attach VALUEQ [CHESS] (DE VALUEQ (x) (MEMQ x (QUOTE {(Qu
attach YALUEB [CHESS] (DE VALUEB (x) (MEMQ x {QUOTE (BW
attach VALUEN [CHESS] (DE VALUEN (x) (MEMQ x {QUOTE (NW

KB}

aB}

B8)

NB)

attach VALUER [CHESS] (DE VALUER (x) (MEMO x {(QUOTE (RW g;
au

a8

}

)

)

)
attach VALUEP [CHESS) (DE VALUEP (x) (MEMQ x {QUOTE (PU)
attach WVALUES [CHESS) (DE WVALUES (x) (MEMQ » {QUOTE (KW
attach BVALUES [CHESS] (DE BVALUES (x) (MEMQ x {QUOTE (KB
attach EVALUES [CHESS] (DE EVALUES (x) (EQ x (QUOTE MT1})
attach NVALUES (CHESS] (DE NVALUES (x) (EQ x (QUOTE Ubii} s
attach VVALUES [CHESS] (DE VVALUES (x)

(OR(BVALUES x) (WVALUES x) (EQ x(QUOTE MT))});

attach PROMVALUES ([CHESS) (DE PROMVALUES (x)

(MEMQ = (QUOTE(GB RB NB BB QW RW NW BWl}));
attach PIECEVALUES [CHESS] (DE PIECEVALUES (x) (OR (BVALUES x) (WVALUES x))}3
attach YALUES [CHESS] (DE VALUES (x} (OR (VYVALUES ») {(EQ x (QUOTE UD))1});

3

$

i

i

'

;
Bl N{ RU PUI1) g
BB NB RB PB})))¢

PROMVALUES are the values a pawn can promote to. More specifically, a pawn can promote to be a
queen, rook, bishop or knight.

The Valuecolor of any PIECEVALUES is the color of that value. Thus, the Yaluecolor of KH is
WHITE.

declare OPCONST Valuecolor (P1ECEVALUES) «COLORS (PRE] §

attach Valuecolor [CHESS-CHESS] (DE Valuecolor {v) (COND
{ (MWVALUES v) (QUOTE WHITE)) ({BYALUES v} {QUOTE BLACK)}})3

Page 50. The Chess Axioms 2.1.5.

Section 2.1.5 Board Declarations

We have several interesting functions and predicates defined on boards. Two of the most complex
are the predicates WH] TEINCHECK and BLACKINCHECK. These are true when the given side is in
check on the given board38

Similarly, we have the composite predicate, S1DEINCHECK, on boards and colors. SIDEINCHECK on
WHITE and a board is true if and only if WHITEINCHECK is true for that board. The corresponding
statement about BLACK and BLACKINCHECK also holds.

Since a position is a state vector, we are theoretically able to obtain the total board (board with no
undefined squares) of any position. The function which extracts that board is Tboard. However, as
a position is almost invariably a variable (rather than a constant), we will never actually compute the
Tooard of any position.

One board is a SUBOARD of another if the second is equal to the first, on every square the first is not
undefined (UD). SUBOARD is therefore a partial ordering relation on boards. We state that the
predicate BOARD, on positions and boards, is true if the given board is a SUBOARD of the Yooard
(total board) of that position. Thus, this predicate is true if the undefined squares of the given
board could be filled in to make the board obtained by playing the game that the position defines 36
The predicate BOARD is particularly appropriate for the kinds of puzzles we solve. Typically, we
shall be presented a board or board fraction, and need to reason about any POSITION which has
this board fragment as one of its boards.

We also have a constructor for boards, Hakeboard, which takes a board, a square and a value, and
constructs the new board formed by inserting that value on the stated square.

The function Yaiueon, on boards and squares, returns the value on that square of that board. The
predicate MOVETO, on boards, values, squares and squares, s true if the given value could move, on
the given board, from the first square to the second. MOVETO encompasses our notion of ordinary
movement. If the piece in question is, for example, a rook, then MOVETO will be true for that piece
and board, if, the two squares share a row or column (but not both), and every square between them
is unoccupied (1T, not uo).

declare PREOCONST WHI TE INCHECK BLACKINCHECK (BOARDS) [PRE] s
dec|are PREDCONST BOARD (POS] TIONS,BOARDS) ¢

, group

deciare OPCONST Tboard (PDS!YIWS)-TBT&LBUARBS[PFE!;
deciare OPCONST Vaiueon { .SﬂUARES}--VhLUESt
declare INODVAR a b bl b2 b3 ¢ BOARDS, bt ¢ TOTALBOAROS:

declare PREDCONST S1DE INCHECK (BOARDS, COLORS]
dec |are PREDCONST MOVETO lBDARDS.\'ALUES,SMS,MSM

mg BOARDS2 {TOTALBOARDS, WHI TEiNC%ECK.BLaCKlMBKi i

as. The sttachmants to thess prodicates are in section 222

36 Therefors, {snd trivislty) the m-ﬁymﬂh‘hﬂilm#mwﬁ

2.1.5.

declare OPCONST Makeboard
declare PREOCONST SUBCARD

We shall call initial board, the configuration of pieces before the

The Chess Axioms

Page 51.

(BOARDS, SQUARES, VALUES) =BOARDS:

(BOARDS, BOARDS]

board is illustrated in figure 26.

Jart of the game, START. This

P

/4 .
EA ¢\

7’
P A A P77
AV A IS
o -

271 ,1;/’

A
Z

7
Z

4

(4
C

78

KRR
Y.

{0
%

W, 1

%

LR R,
w6 %R

/%
¥

7

The board START.
figure 26

declare INOCONST START ¢ TOTALBOARDS:

We represent a board in the in

ternal LISP system as a list of

the eight values on it. This is illustrated in figure 27.

((BQR1 BON1
(BORZ BANZ
(BAR3 BAN3

B0B1 BOl BK1 BKB1
BOB2 BQ2 BK2 BKBZ
8083 803 BK3 BKB3

(BQRG BONG BOB4 BQ4 BK4 BKB4
(HQR4 WONG WOB4 HO4 K& LIKBG

(WOR3 WON3 WOB3 WO3 WK3
(MOR2 WON2 WOB2 Waz
{WQR1 WON1 WOB1 Wl

WKB3
WK2 WKB2
WK1 WKB1

the eight rows, each row being 2 list of

BKN1 BKR1)
BKN2 BKRZ)
BKN3 BKR3)
BKN& BKR4)
WKNG WKR&)
WKN3 WKR3)
WKN2 WKR2)
WKN1 WKR1}}

LISP arrangement of a board, with square locations

figure 27

With this representation in mind, we make the appropriate attachments.

Page 52. The Chess Axioms 2.1.5

attach START » [CHESS] ((RB NB BB OB KB BB NB RB)
(P8 PB PB PB PB PB PB PB)
(MT MT MT MT MT MT MT HT)
(MT MT HT HMT NT MT HMT HT)
(MT MT MT MT HT MT MT HT)
(MT MT MT MT MT HT NMT A7)
(PW PW P4 PH PW PW PH P}

(RW N BH QW KW BW NW RiI)3

attach Yalueon [CHESS,CHESS-CHESS]
(DE Valuson (b S}{CAR (NTH (CAR (NTH b (CAR S}}} (COR S))))y

attach BOARDS [CHESS) (DE BOARDS(b) (AND (EQ (LENGTH b) 8) (ALLROUS b 1)))
FUNCTION (DE ALLROWS (b) (COND ((NULL b) T)
((AND (EQ (LENGTH (CAR b)) 8) (MEMBOARD (CAR b)) (ALLROWS (COR b}))lilg
FUNCTION (DE MEMBOARD (Row) (COND ((NULL Row) T}
((AND (VALUES (CAR Row)) (MEMBOARD (COR Rowl}i})});
attach TOTALBOARDS [CHESS)
(DE TOTALBOARDS (b) (AND (EQ (LENGTH b) 8) (ALLTROWS bllls
FUNCTION(DE ALLTROWS (b) (COND _({NULL b) T) ({AND (EQ {LENGTH {CAR b}) 8}
(MEMTBOARD (CAR b)) (ALLTROWS (COR b))}})iy
FUNCTION (DE MEMTBOARD (Row) (COND ((NULL Row) Ti
((AND (VVALUES (CAR Rou)) (MEMTBOARD (COR Rowl}})1)y
attach SUBOARD (CHESS,CHESS! (DE SUBOARD (a v} (COND
((NULL a)T}
{(EQUAL (CAR a) (CAR b)) (SUBOARD (COR a) (COR b))
{(OR (EQ {CAAR a) (CAAR bl}
' (EQ (CAAR a) (QUOTE UOl})
{SUBDARD (CONS (CDAR a) {(COR al}}
{CONS (CDAR b} (COR b))))1);

Section 2.1.6 Color Declarations
We develop a much richer set of predicates and variables on colors than a two element sort deserves.

declare PREDCONST WHT BLK (COLORS) [PRE] ;
declare INDCONST WHITE ¢ WHT, BLACK ¢ BLK;
declare INOVAR ¢ ¢ COLORS;

mg COLORS 2 (WHT,BLK}

extension BLK {(BLACKI
extension WHT (WHITE};
extension COLORS WHT u BLK;

attach BLACK « [CHESS] BLACK:
attach WHITE « [CHESS] WHITE;
attach WHT [CHESS] (DE WHT(c) (EQ c (QUOTE WHITE} 1 1y
attach BLK [CHESS] (DE BLK(c)(EQ c (QUOTE BLACK)))4

2.1.%. The Chess Axioms Page 53.

Section 2.1.7 More on Positions
Section 2.1.7.1 Position declarations

It is worthwhile to emphasize that these chess axioms apply only to situations that might arise in a
legal game. Just as formal logic is very sensitive to inconsistency, allowing a proof of any WFF from
a false premise, so these axioms, when presented with, for example, an impossible board, do not
know which of their axioms to doubt, and will permit the proof of any conclusion about that board.
Therefore, the use of the word fosition in this paper should be understood to mean legal position. 1f
it were necessary to consider almost legal positions, then these axioms could be suitable subverted to
reflect whatever the subverter felt were the more fundamental legalities (see section 52.1).

Our system recognizes another ma jor distinction between positions. For almost every position, one
can speak of the move ti.at was made to get to that position. The exception, of course, is the initial
position, the position before the game begins. We therefore have the subsort of GAMEPOSITION,
which is every position except the initial one.

We refer to the initial position as P8. Its LISP representation is as the list whose only element is the
(arbitrarily selected) atom STARTING.

Positions also naturally, and somewhat more evenly, divide themselves by the color of the player
who is to move next in that position. We therefore have the subsort of WHI TETURN, those positions
for which white is on move. Consistent with the rules of chess, P8 will be a WHITETURN position.

The variables r, r1 and r2 are over the domain of POSITIONS. All variables beginning with the
letters p and g range over the GAMEPOSI TIONS.

declare PREDCONST WHITETURN GAMEPOSITION (POSITIONS) [PRE];
mg POSITIONS2 {WH1 TETURN, GAMEPOSI TION} 3

declare INOCONST PB ¢ POSITIONS;
attach P8 « [CHESS] (STARTING) ;

declare INDVAR r rl r2 ¢POSITIONS:
declare INDVAR p q pl p2 p3 p4 px py PZ Gx QY qz aql g2 a3 ¢ GAMEPOS] TION;

We speak of one position as being 2 SUCCESSOR to another if there is a legal move from the first to
the second. We also recognize the function which takes a position, and returns the previous position
(position prior to the last move), Prevpos. Thus, for all GAMEPOSITIONs, p, SUCCESSOR (Prevpos
p.p} will be true.

declare PREDCONST SUCCESSOR {POSITIONS, GAMEPOSITION) 3
declare OPCONST Prevpos (GAMEPOS 1 TION) =POS] TIONS [PRE] 5

As positions are conceptually built of moves, we have the function Move, on GAMEPOSI TIONs, which
extracts the last move made to get to that position. A compositor, Nextpos, on moves and positions,
yielding the ALLPOSITION obtained by making that move, is also provided. Two things should be
noted about this function. It produces elements of the sort ALLPOSITION, which includes both
“legal” and "illegal” positions, depending upon whether the given move was legal in the argument
position. Secondly, and perhaps more germanely, we are dealing exclusively with retrograde analysis
chess; the function Nextpos and sort ALLPOSITION are nowhere used in the following proofs.

Page 54. The Chess Axioms 4 Jy e

deciare OPCONST Move (GAMEPOS| T10N) =MOVES [PRE] 5
declare OPCONST Nextpos (MOVES, POSI TIONS) =ALLPOSI TION;

One position is PREDEGAME (predecessor in this game) to another if the first occurred in the game
played to reach the second. We will also use similar kinship terms, such as ancestor and descendant
in describing positions played in the same game. The initial position i3, of course, a predecessor to
every GAMEPOSITION. It is seen, therefore, that POSI TIONS form themselves into a tree, with P2 at
the root, with respect to Prevpos operator.

declare PREDCONST PREDEGAME (POSI TIONS, GAMEPOSI TION) 4

In going from one position to a successor position, one can employ one of three different moves - a
castle, a capture en passant, or a simple, legal move 37 Castles are distinguished by moving two pieces
with the same move, en passant capture by the capture of a piece on a square other than the one
moved to.

declare PREDCONST SIMPLELEGALMOVE EN_PASSANT CASTLING
(POSI TIONS, GAMEPOSI TION) 3

Another useful predicate on positions and colors is POS1TIONINCHECK. If the given color is in check
in the stated position, this predicate is true.

declare PREDCONST POSITIONINCHECK {POSI TIONS,COLORS) ¢

As positions are state variables, it is possible to extract information about the status of individual
chesspieces or squares from them. The function Pos says which piece is on a given square at a
given time. Its a/most inverse is Pospct (position-piece function) which takes a position and a
chesspiece, and returns the extended square occupied by that piece3® One can also ask for the value
of a piece in a position (Val) or the color of the position itself (Color), a WHITETURN position having
a WHITE color.

declare OPCONST Pos (POS1 TIONS, SQUARES) =P1ECES:
declare OPCONST Pospcf (POS1 TIONS, CHESSPIECES) =EXSQUARES:
declare OPCONST Val (POSI TIONS,PI1ECES) =VVALUES;
deciare OPCONST Color (POS: TIONS) =COLORS [PRE] 5

The predicate PROMOTEDPAUN is true if the argument pawn has been promoted before or by the
given position (no longer has a pawn value.)

declare PREOCONST PROMOTEOPAWN (GAMEPOSI TION, PAUNS) 3

Section 2.1.7.2 Positional Attachments

The following attachments have been made to the position predicates33 These functions are, to the
minimal extent that they have been implemented, the obvious attachments for handling the ob jects in

a7 A genersl classification, meant 1o subsume sverything sles
38 ‘a'hi:pbuny,ﬂmubuuhouw'ml'qm mmmmm-dmmhmmm.
39. Note the ves of the I_DONT_KNOW respones uapumfmmm)mmmmwmmmu the rest of

these complicated functions.

2.1.7.2. The Chess Axioms Page 55.

the world we have defined. The notion of a position as a list of moves has been minimally
incorporated into these attachments. The attachment for POSITIONS is only used to uniformly
recognize the initial position. We will construct no other positions, for we will not be speaking about
any other entire game.

attach POSITIONS [CHESS) (DE POSITIONS {L){COND
((EQUAL (QUOTE (STARTING)) L)) (T (QUOTE I_DONT_KNOW}) 1

attach Pos [CHESS,CHESS-CHESSI]
(LAMBDA (p S) (COND((EQUAL p (QUOTE (STARTING))} (GIVENF S})
(T (QUOTE I_DONT_KNOW}} 1}:
attach Pospcf [CHESS,CHESS-CHESS]
(LAMBDA (p =) (COND((EQUAL p (QUOTE {STARTING))) (GIVENPCF x=))
(T (QUOTE 1_DONT_KNOW)))3

attach WHITETURN [CHESS] (DE WHITETURN(L) {NOT (ZEROP (REMAINDER (LENGTH L12)11)4
attach Color [CHESS-CHESSI]
(DE Color (L) (COND((WHI TETURN L} {QUOTE WHITE)) (T{QUOTE BLACK})}

FUNCTION (DE GIVENF (S) (COND
((EQ (CAR S) 1) (CAR (NTH (QUOTE (BQR BON BGB BQ BK BKB BKN BKR}) (COR S11))
((EQ (CAR S} 2) (CAR (NTH
(QUOTE (BQRP BGNP BQBP BOP BKP BKBP BKNP BKRP)) {(COR S)11)
({EQ (CAR S) 7)1 (CAR (NTH
(QUOTE (WGRP WONP WQBP WOP WKP WKBP WKNP WKRP)) (COR S)) 1)
((EQ (CAR S} 8) (CAR (NTH (QUOTE (WQR WON WQB WQ WK WKB WKN WKR)) (COR S)))}
(T (QUOTE EMPTY})))
FUNCTION (DE GIVENPCF (x) (CADR (ASSOC x (QUDTE(
(BOR (1 . 1)) (BON (1 . 2)) (BOB (1 . 3)) (BQ (1. 4))
(BK (1 . 5)) (BKB (1 . B)} (BKN (1 . 7))} (BKR (1 . 81)
(BGRP (2 . 1)) (BONP (2 . 2)) (BQBP (2 . 3)) (BQP (2 . 4}
(BKP (2 . 5)) (BKBP (2 . 6)) (BKNP (2 . 7)) (BKRP (2 . 8)
(MQRP (7 . 1)) (WONP (7 . 2)) (WQBP (7 . 3)) uaep (7 . 4)
(WKP (7 . 5)) (WKBP (7 . B)) (UKNP (7 . 7)) (KKRP 7.8
(UOR (8 . 1)) (WON (8 . 2)) (4GB (8 . 3)) (40 (8 . 4))
(WK (8 . 5)) (WKB (8 . B)) (KN (8 . 7)) (WKR (8 . 8111111
attach Val [CHESS,CHESS-CHESS) (DE Vall(p x) {COND ((EQUAL p(QUOTE(STARTING)))
(COND ((SETQ TEMPORARYXXX (ASSOC x (QUOTE
(UK. KW (HKN.NW) (WKB.BW) (WKR.RW) (WQ.QW) (LON.NW) (WOB.BW) (WOR.RW)
{LQP. PW) (WGNP.PW) (WGBP. PH) (WQRP. PU) (WKP. PW) (WKNP . PW) (WKBP, PH) (WKRP. P}
(BK.KB) (BKN.NB) (BKB.BB) (BKR.RB) (B0.QB) (BON.NB) (BQB.BB) (BAR.RB)
(BQP. PB) (BGNP.PB) (BQBP, PB) (BORP.PB) (BKP.PB) (BKNP. PB) (BKBP.PB) (BKRP.PB)
(EMPTY.MT) 1)) (COR TEMPORARYXXX))))
(T(QUOTE 1_DONT_KNOW)))):

Section 2.1.8 Move Declarations
Section 2.1.8.1 Predicates on Moves

The sort of MOVES is redundant in the axioms and proof, replacable by the positions themselves.
However, the notion of a move is a natural concept in itself, and was therefore included in the

axiomatization.

There are, of course, various kinds of moves. For example, we can classify the last position by
whether it was an en passant capture, castle or ordinary move:

Page 5. The Chess Axioms 2.18.1

declare PREDCONST ORDINARY CASTLE ENPASSANT (MOVES) [PRE];

There are several kinds of ordinary moves. They divide between the capturing and non-capturing
moves (CAPTURE and SIMPLE), and may also fall into the pawn promotions (PAWNPROM). Compound
classifications such as simple pawn prometion (SIMPP) or captures that are not promotion moves
(CAP). The predconst TAKINGS covers all capture moves, including en passant capture. This rich
structure uses the following declarations:

declare PREDCONST PALNPROM TAKINGS (MOVES) [PRE];
declare PREDCONST CAPTURE SIMPLE {ORDINARY) [PRE] s
declare PREDCONST SIM SIMPP (SIMPLE) [PRE];
declare PREDOCONST CAP CAPPP (CAPTURE) [PRE];

mg CAPTURE 2 (CAP CAPPPI]:

mg SIMPLE 2 (SIM SINMPPi;

mg PAUNPROM z (SIMPP CAPPPI;

mg ORDINARY 2 {PAUNPROM CAPTURE SIMPLE};

mg TAKINGS 2 {(CAPTURE ENPASSANTI ;

mg MOVES 2 {(ORDINARY CASILE ENPASSANT TAKINGS!:

And, of course, each of these sorts needs a variable to call its own.

declare INDVAR m ¢ MOVES, mc ¢ CAPTURE, mo ¢ ORDINARY, mpp ¢ PALINPROM,
ms ¢ SIMPLE, mtx ¢ TAKINGS, mspp ¢ SIMPP;

Section 2.1.8.2 Functions on Moves

For all moves, we can speak of the square from which the move was made, the square to which it
was made, and the chesspiece that did the moving. For certain other classes of moves, we can state
the chesspiece captured, the value a pawn promoted to, how the rook of a castling move moved, or
where an en passant capture took place. Collectively, these produce the following declarations.

declare OPCONST From To (MOVES) = SQUARES [PRE];

declare OPCONST Mover (MOVES) = CHESSPIECES [PRE]:
declare OPCONST Taken (TAKINGS) = CHESSPIECES [PRE]:
declare OPCONST Promoted {(PAUNPROM) = PROMVALUES [PRE]:
deciare OPCONST Alsofrom Alsoto {(CASTLE) = SQUARES [PRE];
declare OPCONST Aisomover (CASTLE} = CHESSP1ECES [PRE]:
declare OPCONST Takenon (ENPASSANT) = SQUARES [PRE] ;

It should be noted that the ALSO part of the castling move functions refer to the actions of the rook
in the castling move.

We can also have move constructor functions, which take the various determiners of a move, and
produce the move corresponding to those requirements. For example, a simple (SIM) move
constructor would be declared:

declare OPCONST Makesimplemove (SQUARES, SQUARES, CHESSP1ECES) «S1M1;

And would produce the move resulting from that chesspiece moving from the first square to the
second. However, as we never construct any moves, we will not need these constructors.

2.18. The Chess Axioms Page 57.

Section 2.1.9 Definitional Axioms
Section 2.1.9.1 Miscellaneous axioms

In the last several sections, we have defined several predicatcs and functions in terms of other
predicates and functions. FOL does not, of course, know about these relationships unless we
explicitly axiomatize them. For example, the rule that white moves first, is expressed by
axiomatically stating that the initial position (P8) be a WH1TETURN.

axiom INITIAL_MOVER:WHITETURN P@;i
Similarly, the fact that the inaugural board is the board START, is specified as:

axiom STARTING_BOARD: Tboard P8 =STARTy;

As you can see, definitional axioms are not very exciting.

We gave a large hierarchy for move typing. It is important to state both the inclusive (all moves are
of certain sorts) and exclusive (a move is in only one of several classes) properties of this move
structure in an axiom.

axiom MOVETYPES:
¥m. (ENPASSANT m VCASTLE m vORDINARY m),
¥m. ~{ENPASSANT m ACASTLE =),
¥m. -~ {ENPASSANT m AORDINARY m),
¥m,~{CASTLE m AORDINARY m],
¥Ymo.=(CAPTURE mo «SIMPLE mo },
¥mc.~{CAPPP mc sCAP mc),
Yms.~{SIMPP ms aSIl ms),
¥Ympp.~{CAPPP mpp sSIMPP mpp i,
¥Ymtx.~(ENPASSANT mtx sCAPTURE mtx)i

We claimed that the Makesquare operator, on rows and columns, produced the appropriate square,
that the LASTRANKER predicate on squares and colors is decomposable in terms of WLASTRANK and
BLASTRANK, and that SQUARE_BETWEEN representes the betweenness relation, both orthogonally and
diagonally. Each of these definitions entails the appropriate defining axiom. Note, however, we
include the axiom for SQUARE_BETWEEN only for reference; this axiom is not subsequently invoked.
Rather, all uses of SQUARE _BETWEEN are done through simplification.

axiom SQUARED:
Y sq. (sqsMakesquare(Rou sq, Column sqll,
¥ sq c. (LASTRANKER (sq,cl=
{ (c=WH] TEAWLASTRANK 8q)v {c=BLACKABLASTRANK eqlilis

axiom SQBETWEEN:
¥sql sqZ sq3. (SQUARE_BETWEEN({sql sq2 sq3)={

(Row sql =Row sq2 ARow sq2 =Rou sqd A
BETWEEN (Cotumn sql, Column sq2, Column 8g3 liv

{Column sql =Column 8q2 aColumn sq2 =Column 8q3 A
BETWEEN (Row sql, Row 892, Row eg3))v

(SAMEDIAG (sql sq2) ASAMEDIAG (sq2 853) ASAMEDIAG (sql sq3)A
BETWEEN (Row sql, Row 8q2, Row 3q3 i

Page 58. The Chess Axioms 2.192.

Section 2.1.9.2 Positional Axioms

In the section on position declarations, we made several assertions about the relations between the
predicates we declared. We here axiomatize these assertions.

We stated that every position except the initial position was a GAMEPOSI TION.%

axiom POSITION_TYPES:
Yr.-~{r=P@aGAMEPOSITION rl i1

Every GAMEPOSITION is the successor of ity predecessor position; every GAMEPOSITION is a
descendant of the initial position, P8.

axiom POSITION_RULES:
¥p. (SUCCESSOR {Prevpos p . p) APREDECAME (P@,p)) 13

Much like a number system, we can axiomatize the a partial ordering relation (PREDEBAME) on
positions. PREDEGAME is true if its first argument occurred in the game that prodéauced its second. It
acts much like any partiai ordering relation, such as <41 If the reader keeps this correspondence in
mind, the following axioms will seem transparently valid.

In reading these axioms, one should also recall that the variables r. rl, and r2 range over all
POSITIONS (including the initial position, P@), and that p and q are on the domain of
GAMEPOS1 T10Ns only.

axiom GAMERELATIONS:
¥r q. (PREDEGAME (r q) = (SUCCESSOR(r qlv
3p. (PREDEGANE (r p) APREDEGAME (p q)))],
¥p rl r2. { (PREDEGAME (r2 p) APREDEGAME (rl pl)>
(PREDEGAME (r1 r2) vPREDEGAME (r2 rilvr2srill,
¥rl r2.~{PREDEGAME (rl r2) APREDEGAME (r2 rl1}),
¥rl q r2. {SUCCESSOR(rl q) >~ (PREDEGAME (rl r2) APREDEGAME {(r2 gl })11

These next three axioms relate the translation between functions and predicates. The first states that
the Color function is equivalent to the WHITETURN predicate. The second defines the ranjge over
which Pos (the piece on the given square in the given position), and Pospcf (the square on which
the given chesspiece rests) are inverses, to wit, when the chesspiece is still on the board (not yet
captured). The third states the equivalence of the Yal (value) function on pieces, with the Yaiveon
function of the corresponding boards.

axiom POS_COLORS: ¥r c.(Color rec = (MHT ¢ = WHITETURN v}l
axiom POS_TRANSLATION: ¥r sq x. (Posir sq)=x s Pospctir x)e=sqlis

axiom VALUETRANSPOSITION:Yr t sq b. { (Pos{r sq)=tABOARD(r bl})>
(Valueon (b, sq)=Val (r, t)vWaiueon(d sql=UD) i3

40. Note that the varisble “r" ranges over POSITIONS, aot merely GAMEPOSITIONS.
4§. Remembering, of courss, thet POSITIONS have & tree ke, rather then knser sinuciure.

2.1.10. The Chess Axioms Page 59.

Section 2.1.10 Miscellaneous Declarations

We shall also have occasion to use a few universal elements, particularlly for the axiom
Substitution4? We declare some universal variables (j and k), and functional parameters g (for
single argument functions) and 2 (for two argument functions).

declare INDVAR j jl j2 k kil VAT
deciare OPPAR § 1 (PRE];
declare OPPAR (2 2Z:

Section 2.2 Axioms
Section 2.2.1 Movement gxioms
Section 2.2.1.1 Successor definition

Having cleared away most of the definitional rubble (with the exception of a few scattered bricks
and window shards, sull to be presented) we are ready 1o express the rules of chess in first order
logic. The major vehicle for this task are the movement consequence axioms, (MCONSEQ). These
detail some of the requirements and consequences of a given position being a successor (legal move
away) to another position. In many ways, SUCCESSOR is the fundamental predicate of this axiom
system.

axion MCONSEQA:

¥r q. (SUCCESSOR(r gl>
{ (~WH] TETURN (r) sldH] TETURN (gl }n
Prevposigl=ra
—POSI TIONINCHECK {g,Color ria
(WH] TEP1ECE Mover Tove qslHI TETURN rla
Posir From Move ql=flover Move gn
Pos (g, To Move gisliover Move o~
Posig,From Hove al=EMPTYA
{CAPTURE Move g>Posir,To Move q)=Taken Hove gla
(CASTLING(r Q}VEN_PNSSAN?& uivSI!‘PLELEGALﬂGVﬁ{r alllise

This axiom states a series of conditions on positions needed to satisfy the SUCCESSOR predicate.

For two positions to have the successor relationship, they must, of course, be of opposite color. As
positions retain the history of their derivation, the first must be the previous position of the second.
A caveat against moving and remaining in check 18 specified. The piececolor of the mover is the
same 2s the side that made the move (you only move your own pieces), and the Mover moved from
the From square to the To square of the move. The square he leit is then vacant. If the move was
an ordinary capture, the captured piece was on the square moved to. Any move is either a castling
move, an ¢n passent capture, or a simpie, legal move.

&2 Secton AZ1

43 The preducats, (though ws shali not sxpicitiy do scl, would bs defmned ss the conpmction of some of the condrtions we will
state in this chapter As oli of the analysis we have appliet these sxOms 10 u retrograde anslysis, forwsrd conefruction of succeesors
has not been nesded Lhwmumlms.mmwd.ummmm.

Page 60. The Chess Axioms 22.1.1

Having defined the fate of the moving piece in any move, we reveal that any taken piece is nowhere
to be found (or, at least, is not on any square).

axiom MCONSEQF:Vr sq x. {Taken HMove rexoPoslr sglex)ii

It is also necessary to s:ate what does not change during 3 move. Any piece that did not move or
was not captured is still on the same square; any square that was not the From or To or Takenon
square of the last move retains its identical contents.

axiom MCONSEQD:Yr q sq. ((SUCCESSOR {r gl a~sq=From Move gn-sqeTo Move aA
~{CASTLE Move qnisq=Aisofrom Move qvsa=Aisoto fove glln
~{ENPASSANT Move gnsq=Takenon flove gll>
Pos{r sql=Posig sqgll;;
axiom MCONSEQE:Yr q x. (SUCCESSOR (r q) > (~x=Mover Move an
~(TAKINGS Move gnx=Taken Move gln
~{CASTLE Move gnx=hlsomover Hove qll>
Pospct (r x)=Pospcf (q x}})ss

There are also the loose ends of these functions to be tied. We wish these functions to be defined
only on the appropriate positions; to speak of the Takenon square of a castling move is meaningless.
While the need for this axiom is probably not obvious, its restrictions are required in the proofs of
several later theorems.

axiom MCONSEQG:Yr t sg. ((~=TAKINGS FMove ro~t=Taken Move rla
(-ENPASSANT Move ro~sq=Takenon Move 1 a(-GAMEPOSITION r>-MOVES Move rin
(~GAMEPOSITION ro-~sg=To Move r1A{~GAMEPOSITION ro~sqeFrom fMove rin
(~GAMEPOSITION ro~t=lover Move rla
(~CASTLE Move r>{-sqeAisolo Move ra-tsAlsomover flove rills;

These next three axioms deal with the special circumstances of pawn promotions. The first states
that the only way a piece can change its VALUE is by being the mover of a pawn promotion; we use€
this fact, for instance, to prove that any non-pawn chess piece always has the same value** The
second is definitional for the predicate PROMOTEDPAMN. The third places limiations on pawn
promotions, specifying that a pawn promotion moves a pawn to the last rank of his color, by a
simple, legal move, that the piece must have pawn value when he starts the move, and must have a
value from the set of possible promotion vaiues (queen, rook, bishop and knight) when done. The
axiom bars chameleon promotions, the pawn retans its color though the move.

axiom MCONSEQH:Vr g t. ({SUCCESSOR(r gln
{-~PALINPROM Move qu-t=tover Tove gqliovailr ti=Valig t)hss
axiom MCONSEQI:
Yr t. (PROMOTEDPAUNIr tl=
3q. {PW{Hove{q))MPREDEM{q r)vger) Atlover (Move ql=t))i
axiom MCONSEQL:
¥p . (PAWNPRON Move pn{LhSTRhNKERETo Move p.Color Prevpos pliAa
S]MPLELEGALMOVE (Prevpos P pla
PALNS Mover Move pn
VALUEP Vaiuveon(Tooard Prevpos p,From Move pla
((BVALUES Promoted Move peBVALUES Vai (Prevpos p Mover Move plla
(UVALUES Promoted love psWYALUES Val (Prevpos » Mover Move pllina
Vai(p Mover Tove p) =Promoted Move pllis

a6 Secton 33.1.

2215 The Chess Axioms Page 61.

The definitional equivalence of the three types of successions, and their respective moves is declared.

axiom MCONSEQM:
¥p. ({CASTLE Move psCASTLING (Prevpos p plla
(ENPASSANT Move psEN_PASSANT (Prevpos p plin
(ORDINARY Move psSIMPLELEGALMOVE (Prevpos p plidig

The above axioms are not quite strong enough in their limitations of that special position, the initial
position. So we include this additional axiom.

axiom MCONSEQO:Yt sq. (-fover Move P8s=ta~From Move Plesgn
-To Move PBssqn-~Taken Move PBsta
-MOVES Move P8ls:

Section 2.2.1.2 Simple legal motion

We have split the chess move world into three parts, castling, en passant and ordinary moves. We
must now define each of these classifications. Let us start with the last, certainly the most common.

The definition of a SIMPLELEGALMOVE is given in the axiom MCONSEQK. It demands that the
move source (From) square differ from the destination (To) square, that in non-capturing moves. the
move always go to an empty square, and that in capturing inoves, the captured piece always be a
member of the opposing army. The predicate MOVETO, on the (total) board of the moving from
position, need also be satished. Notice that, in some important sense, we are not cheating; for
retrograde analysis, it would be much more convenient to define the move in terms of the destination
board. However, this is not the way the rules of chess are naturally expressed. MOVETO defines the
different moves of the individual values.

axiom MCONSEQK:
¥r q. (SIMPLELEGALMOVE (r qls
{(~From Move ge=To Move gn
MOVETO(Tooard r Valueon(Tooard r.From Move q) From Move g To Move gla
{ (SIMPLE Move gaVaiueon(Tboard r,To Hove q)=NT)v
(CAPTURE Move aAPIECEVALUES (Yalueon{Tboard r,To Move glla
~Valuecolor (Vaiueon{Tboard r,To fove g))=Color r})))ss

The predicate MOVETO is, of course, the composite of five different predicates, representing the
possible ma jor movement types of chess. Chess pieces can move orthogonally, like rooks and queens,
on a bishop's (and queen’s) diagonal, to the king's ad jacent square, by the knight's jump, or in the
slow, advancing move of a pawn. A predicate for each of these styles is declared; it is true when
that move is legal on the given board, from the firs: square to the second. Notice that MOVETO, as we
have defined it here, does not include consideration of the end squares of the move. This is because
we wish to more easily conclude, if that unknown piece is @ rook, then it could move to that square.
However, this makes it subtly and slightly more difficult to prove moves about completely defined
situations. Life is a trade off.

The auxiliary predicate THOTOUCHING (are the column arguments next to each other; that is, can a
pawn capture from the first column to the second) is also declared. The functions L2touchf and
R2touchf embody the next column left and next column right notions.

Page 62. The Chess Axioms 22.12

declare PREDCONST ORTHO (BOARDS, SQUARES, SQUARES)

declare PREDCONST DIAG (BOARDS, SQUARES, SQUARES) ¢

dec!are PREDCONST PAWNMOVE (BOARDS, VALUES, SQUARES, SQUARES) 1
dec |are PREDCONST KINGMOVE (SQUARES, SQUARES) 3

deciare PREOCONST KNIGHTMOVE (SQUARES, SQUARES]H 1

declare PREDCONST TWOTOUCHING (1SOIMENSION, ISDIMENSIONI
declare OPCONST LZtouch® RZtouchf (1SDIMENSION) «1SOIMENSION [PRE]:

The attachments to the next column touching functions have a convenient inversion; when the
function would be otherwise undefined (at the edge of the board) the opposite direction is selected

attach LZ2touchf [NATNUMREP-NATNUMREP]

(DE L2touchf (r) (COND ({EQ r 1121 {T(SUBL r}}}}:
attach RZ2touchf inmm?wmmem

(DE R2touchf(r) (CONO ((EQ r 8)7) (TC(ADDL r})))s

Orthogonality and diagonality are given predicate logic definitions, in the obvious manner. Pawn
moves are broken into black and white pawn movements, and the three types of pawn moves (singie
space ahead, capture diagonal advance, and two Space first move) are described for each of black
and white. As the geometry of king and knight moves are purely a function of the squares involved
(at lJeast in the sense that the limitations are imposed elsewhere), we do not need a formal logic
definition of their potential actions. Rather, we invariably rely upon our chess eye for decisions of
this kind. The axioms that we would have defined for king and knight moves are derivable from
the chess eye's functions.

Note that if our chess eye were capable of computing on incompletely defined quantities {variable
ob jects with known properties, for example), we might be able to avoid having definitions of ORTHO
and DIAG. That is, if FOL permitted the passing of a variable board to these functions, then many
of the derivations that use the definitions of ORTHO and DIAG could be done merely by simplification.
However, in the more complex cases, simplify might have to consider four thousand 1quare pairs or
a quarter of a million triplets. The former, while painful, is computationally feasibie. The latter is
not. Hence, the definitions of these predicates.

declare PREDCONST WPAWNMOVE (BOARDS, SQUARES, SQUARES):
dec|are PREDCONST BPAUNMOVE (BOARDS, SQUARES, SQUARES):

axiom MOVING:
Yo v sql sq2. (MOVETO (o v sql sqlis

{ (VALUER(v) ADRTHO (b sql eq2l} v
(VALUEB (v) ADIAG (b sql 8q2)} v
(YALUEQ (v) AORTHO (b sql sq2)} v
(VALUEQ(v) ADIAG (b sql sq2l} v
(VALUEK (v) AKINGMOVE (sql sq2l} v
WALUEN(VIAKNIGHTHOVE{BQI sq2l) v
(VALUEP (v) APALNMOVE (b v sql sq2il}},

2212 The Chess Axioms Page 63.

¥b sql sq2. (CRTHO(b sql sq2ls
{-sgl=s5g2~
{{Column 3ql=Column sq2 A
¥sq3. ({BETHEEN (Row sql, Row sq3, Row sqZ})
AColumn sq3=Column sglil>
Yalueonib sq3)=MT}}v
{Rou sql=Row sqZa
¥sq3. ({BETUEEN{Column sql, Column 893, Column sq2in
Rou sq3=Rou sqlio
Yalueonib sq3isMfTi}})),
Yo sql sqZ.{D1AG (b sql sq2) =
{SAMEDIAG (sql sq2) A
¥sq3., ((SAMEDIAG {sql sq3) A
SAMEDIAG {sq2 8q3) A
BETWEEN (Row s8gql, Row 8q3, Rou 8q2l)l>

VYalueon (b sq3} = MT)))sg
axiom PAWNMOVING:
Yb v sql sq2Z. {(PALUNMOVE (b v sql sq2l=
({LPAUNMOVE (9 sqi sq2} A WVALUES v) v
(BPALINMOVE (o sql sq2l A BVALUES vi}},
Y b eql sqZ. (UPALUNMGVE (b ngl sq2ls
{{Cclumn sql=Column sq2a
WSUC (Rou sql, Row sq2ia
Yalueonib sq2)=MT} v
{Column sql=Column sg2na
Rou sql=7a
Valueonib sq2i=MTa
Valueon(b Makesquare (6, Column sql))«MTA
Row sq2=5)v
{TUOTOUCHING(Column sql, Column sq2ia
WSUC{Rou sql, Row sq2ia
BVALUES Valueon(b sq2)))),
Y b sql sqZ. (BPAUNMOVE (b sql sgq2)s
{({Column sql=Column sq2a
BSUC {Rou sql, Row sqlin
Yalueoni{b sq2i=HT} v
{Column sql=Column sq2na
Rou sql=2n
Yalueon{b sq2)=NTa
Valueon{b Makesquare{(3, Column sql)}=NTA
Rou sqZ=4jv
(TUOTOUCHING (Column sql, Column sg2ia
BSUC{Row sql, Row sq2la
WYALUES Yalueonib sq2))}}s;

Each of the possible moves also has an attachment in the LISP model. These attachments are to be
part of our Chess Eye*> The chess eye functions are defined and explained in the following sections;
their correspondence to these definitional axioms should be obvious.

45 Section 152

Page 64. The Chess Axioms 22.1.2.1

Section 2.2.1.2.1 Ortho Attachments

The auxiliary LISP function ALLFREER (all free (empty) in the row) is given. It takes a board, a row,
a from column, and a fo column, (from being arithmetically less than fo) and returns t (true) if every
square on that board, in the given row, between the given columns, is empty (has MT as its
Valueon), NIL (false) otherwise. The function ALLF performs the <orresponding action for
columns.

FUNCTION (DE ALLFREER (b r from to) (COND
((EQ from (SUBL to}}T)
{(EC (Valueon b (CONS r(SUBL to}l}) (QUOTE MTH
(ALLFREER b r from (SUBL to)))));

FUNCTION (DE ALLFREEC {b r from tol {COND
((EQ from (SUB1 tol})T)
{(EQ (Valueon b (CONS (SUBI1 tolr}) (QUOTE NT))
(ALLFREEC b r from (SUBL to))))):

Using these two functions, the orthogonality check for two squares merely becomes a check to see if
they share a row or column, and if all the squares between the argument squares are free. Note that
no square is ORTHO to itself.

attach ORTHO (CHESS,CHESS,CHESS] (DE ORTHO(o r S) (R
(AND (EQ (CAR r) (CAR S))
{OR (AND (LESSP (COR r) (COR S})
(ALLFREER b (CAR r) (COR r} (COR S}})
(AND (GREATERP (COR r) (COR S))
(ALLFREER b (CAR r) (COR S} (COR ri)))}
(AND (EQUAL (COR r) (CDR S))
(OR (AND (LESSP (CAR r) (CAR S))
(ALLFREEC b (COR r) (CAR r} (CAR S}}}
(AND (GREATERP (CAR r) (CAR S))
(ALLFREEC b (COR r) (CAR S) (CAR r))}}i})}y

Section 2.2.1.2.2 Diag Attachments

Diagonal movement attachment is similar to orthogonal. The predicate ALLFREED checks if all the
squares on the diagonal between two given squares are empty. SAMEDIAG (defined earlier) is true if
the two squares lie on a diagonal. SIGN is simply the sign function of mathematics.

FUNCTION (DE SIGN(x) (COND((MINUSP x)} (SUBL @)} ((ZEROP x}8} (T 1)1 }:

FUNCTION (DE ALLFREED(b rl cl r2 c2) (PROG (x y}
(SETQ x (SIGN (DIFFERENCE r2 rl}})
(SETQ y (SIGN (DIFFERENCE c2 cll})
LOOP (SETQ rl1 (PLUS rl x))
(SETQ c1 (PLUS cl y))
{COND ((EQ rl r2) (H‘ETURN 1)
{{EQ (Valueon b (CONS rl c1}}(QUOTE MT}) {GO LOOP)) 1}y

The attachment to DIAG then simply becomes:

22122 The Chess Axioms Page 65.

attach DIAG (CHESS,CHESS,CHESS] (DE DIAG(b sql sq2}
{ANO (SAMEDIAG sql sq2)
(ALLFREED b (CAR sql) {COR sql) {(CAR sq2) (COR 8q2))))4

Section 2.2.1.2.3 Knightmove Attachments

As a knight can effectively jump over other chesspieces, the function that computes the KNIGHTHOVE
between two squares does not need to refer to any board. Rather, two squares have this relationship
purely geometrically; if the differences of their coordinates are two and one, the squares are a knights
jump apart.

attach KNIGHTMOVE (CHESS,CHESS]
(O KNIGHTMOVE (x)
{AND

(SQUARES x)
(SQUARES)

(o (AND(EQ 1 (ABS (DIFFERENCE (CAR x) (CAR y

(E0 2 (ABS (DIFFERENCE (COR x) (COR y

(AND(EQ 2 (ABS(DIFFERENCE (CAR x) (CAR y

(E0 £ (ABS (DIFFERENCE (COR x) (COR 4)1))))))s

Section 2.2.1.2.4 Kingmove Attachments

Like the knight's move, the king's move is not limited by any squares beside the . nurce and
destination.

attach KINGMOVE [CHESS,CHESS] (DE KINGMOVE (x y) (AND
(NOT (EQUAL x y}}
{SQUARES x)
{SQUARES y)
(LESSPMBS(B!FFERENCE{CAR x} {CAR y))12}
(LESSP (ABS (DIFFERENCE (COR x) (COR 41112114

Section 2.2.1.2.5 Pawn Moves

Attachments are given for the predicates used in the pawn move axioms. These functions are a
fairly straightforward translation of their definitional axioms.

attach TUOTOUCHING [NATNUMREP, NATNUMREP] (DE THOTOUCHING (x y}

(AND (NUMBERP x) (NUMBERP y) (EQ 1 (ABS (DIFFERENCE x yl}})))3
attach WSUC INATNUMREP,NATNUNREP

{OE WSUC (x y) (AND{NUMBERP x) (NUMBERP y) (EQ 1 (DIFFERENCE x yiltih
attach BSUC [NATNR#EP.NATNMPE (DE BSUC (x y) (WSUC y =)}

Page 66. The Chess Axioms 22.1.25.

attach WPAWNMOVE [CHESS, CHESS,CHESS] (DE WPALNMOVE (b sql eq2)
(OR (AND(EQ{COR sql} (COR sq2)}
(EQ(Yalueon b sq2) (QUOTE NT))
(OR (EQ (CAR sql) (ADD1 (CAR sq2il}}
(AND (EQ (CAR sqgl) 7}
(EQ (CAR sq2) 5)
{(EQ (Valueon b (CONS & (COR sql}}) (QUOTE MTI)I D)
(AND (OR (EQ (COR sql) (ADO1 {COR sq2})}
(EQ (ADD1(COR sql)) (COR sq2)})
{EQ (CAR sql) (ADDL (CAR sq2i}}
(BVALUES (Valueon b 8q2))))):
attach BPAUNMOVE [CHESS, CHESS, CHESS] (DE BPAUNMOVE (b egl eq2}
{OR (AND(EQ(COR sql) {COR sq2))
(EG(Yalueon b sq2) (QUOTE M1
(OR (EQ (ADD1(CAR sql)) (CAR sq2}}
(AND (EQ (CAR sql) 2)
(EQ (CAR sq2) 4)
(EQ (Valueon b (CONS 3 (COR sql}}} (QUOTE MTI)ID)
(AND (OR (EQ (CDR eql) (ADO1 (COR sq2)))
(EQ (ADD1{COR sql)) (COR sq2)))
(EQ (ADDL (CAR sql)} (CAR sq2))
{(WUVALUES (Valueon b VAR RR RN
attach PAUNMOVE {CHESS , CHESS, CHESS, CHESS] (DE PALNMOVE (b v egl ®q2)
(COND ¢ (WVALUES v) {WPALNMOVE b sql sq2l}}
((BVALUES v) (BPAUNMOVE b sql 8q2) 11}

Section 2.2.1.2.6 Bringing It All Together

With the above functions, the definition of a LISP attachment for MOVETO becomes quite trivial.
For efficiency's sake, we take the liberty of using our knowledge that chess piece sorts are disjoint in
the translation of the axiom. Otherwise, the initial COND would be an OR.

attach MOVETO [CHESS, CHESS, CHESS,CHESS) (DE MOVETO (b v sql eq2) (COND
((VALUEQ v} (OR (ORTHO b sgl sq2) {DIAG b sql sq2)))
((VALUER v) (ORTHO b sql sqzl}
((VALUEB v) (DIAG b sql sq2))
((VALUEK v) (KINGMOVE sal sq2))
((VALUEN v} (KNIGHTHOVE eql 8q2])
{(VALUEP v) (PAUNMOVE b v sql sq2l)ils

Section 2.2.13 Castling

An axiomatic definition of the CASTLING predicate is given. One position obtains from another by
castling under the following conditions. The mover of the move must be a king, and the
Alsomover, a function peculiar to the castle move, a rook. The rook is constrained to be in an
Alsofrom square before the move, just as the general movement rules constrain the Mover to the
From square. Similarly, the Alsomover moves to the Alsoto square.

The next two con juncts state that both the rook and the king must have been on these squares in
every move that preceded this position. Every square between the rook and the king must be empty.

Castling can not be used when in check, nor can the king pass through check in making a castle.

2213 The Chess Axioms Page 67.

The last two conditions specify the destination squares in castlings.

Fortunately, we will not have to use this hairy axiom to prove that a castle took place in any given
situation. However, we will frequently have to prove that a castle did not take place. We will
develop theorems to make this easier.

axiom CASTLEMOVES:Vr p. (CASTLING(r p)=
(KINGS Mover Move pa
ROCKS Alsomover Move pa
Pos(r, Alsofrom Move p)=Alsomover Move pa
Pos(p, Alsotrom Move p)=EMPTYa
Pos(p, Alsoto Move p)=Alsomover Move pa
Yrl.(PREDEGAME (r1 p)oPos(r From Move p)sMover Move pla
¥rl, (PRECEGAME (rl p)oPos{r Alsofrom Move p)s=Alsomover Move pia
¥8q3. { (Rou sq3sRou From Move pa
BETWEEN (Column From Move p, Column 8q3, Column Alsofrom Move pll>
Posi{r sq3i«EMPTY}A
-POSITIONINCHECK {r, Color rln
¥sql x.~(Pos{r sqlisxa MOVETO(Tboard r, Vai(r x), sql, Alsoto Move pla
Piececolor xsColor pla
(WHITETURN ro>({Alsomover Move p=WKRAAlsotoc Move p=WKBInTo Move pelKNi)v
{Alsomover Move psWORAAIsoto Move p=lQlaTo Move p=WGB1))}a
(-WHITETURN r>((Alsomover Move p=BKRAAlsoto Move p=BKBiATo Move p=BKNI)v
{Alsomover Move p=BORaAlsotc Move p=BllAaTo love p«BGB1)))}}31g

Section 2.2.1.4 Capture En Passant

As chess was originally defined, pawns moved forward only one rank at a time. In an effort to
quicken the opening, the rules were modified to allow a pawn to step two spaces on its first move.
To avoid permitting a pawn to thereby jump and pass an opposing pawn in an adiacent column
(and thereby, perhaps, become a valuable passed pawn), the en passant capture rule was introduced.
This permitted a player whose pawn could have captured a two stepping pawn (if it had taken only
a single step) to do so, effectively, move the pawn back and capture it, though this right was only
extended for the immediately subsequent move.

A complicated rule produces a complicated axiom. This axiom must refer to both the current
position (q) and the move that reached the previous position (r). Here we refer to the Takenon
square as the square the captured piece moved to on the previous move. After the move, the square
that the captured pawn occupied is now vacant.

The previous move must have satisfied several conditions; the mover must have been the piece
captured, it must have moved to the Takenon square, it must have done so with a simple (SIM)
move, which stayed in the same column. The capture move will move into that column. The mover
and the captured piece both have the value pawn when the capture takes place. The actual rows of
the particular moves are given, depending upon the side making the capture. From the row and
column information, it is possible to reconstruct the various relevant squares.

Page 68. The Chess Axioms 22.14

axiom ENPASS:¥Yr q. (EN_PASSANT(r qis{
GAMEPQOSITION ra
Pos {q Takenon Move qlsEMPTYA
To Move r=Takenon Move gn
Mover liove r=Taken Move gn
SIM Move rA
Column From Move rsColumn To Move ra
Column To Move r= Column To Move ga
TWOTOUCHING (Cotumn From Move q, Column To Move gia
(WHITETURN go>(Val (g Mover Move q)=PBa
Val {r Mover Move risPia
Row From Move q=5a
Row To Move gs=bn
Row From Move r=7a
Row To Move r=S}ia
{(~WHITETURN gqo{Yal{g Mover Move g}=Pla
Yal{r Mover Move r}a=PBa
Row From Move g=én
Rou To Move q=3a
Row From Move r=2na
Rou To Move r=&))}};;

We (fortunately) shall not use this axiom, except to prove the last move was not an ¢n passant
capture. For this purpose, we will develop several simplifying lemmas.

Section 2.2.2 In Check Definitions

Having specified the different moves of the chesspieces, we can now define what it means to be in
check on a board or in a position. The axiom CHECKERS states the necessary conditions.

axiom CHECKERS:
Yo. {WHI TEINCHECK (b} =

3vb sql 8q2. (Valueon(b sq2)=KiaVaiuson{b sqli=vbAMOVETO(b vb sql sq2l)},
Yo. (BLACKINCHECK (D) =

Jvu sql 8q2. (Valueon(b 8q2)=KBaYalueon(b sql)=vuAOVETO(b vu sql #8q2))},
¥b ¢. (SIDEINCHECK (b clm

{ (WH] TEINCHECK {b) AllHT {c)) v (BLACKINCHECK (b} ABLK (¢}))) ,
Yr c. (POSITIONINCHECK (r c)a3b. (SIDEINCHECK (b c}ABOARD(r b)))13

The attachments to WHITEINCHECK, BLACKINCHECK and SIDEINCHECK differ somewhat, in spirit,
from the other attachments. Here we use our knowlecge of the unigue king of any chessboard to
simplify the computation. Note also the scanning of the board to find possible checking pieces used
in the auxiliary functions.

FUNCTION (DE FINDKING (x b} (PROG (ru cl)
(SETQ ru 1}
(SETQ ¢! 1}
ROWLOGP (COND (({NULL b) (RETURN NILL})
{(NULL (CAR b))} (SETQ ©{COR b}} (SETQ ru(ADD1 rw)) (SETQ ci 1))}
(COND {(EQ (CAAR b)) {RETURN (CONS ru cl}}}}
(SETQ b (CONS {CDAR b) (COR bl))
(SETQ c! (ADDI cli¥)
(GO ROWLOOP}))3

222 The Chess Axioms Page 69.

FUNCTION (DE INCHECK (b kingsq Colormovin #) (PROG (bl ru cl)
(COND ({NULL kingsq) (RETURN NILL}}}
(SETQ ru 1) (SETQ c! 1) (SETQ bl b)
RWLP (COND ((NULL (CAR bl))
(SETQ bl (COR bl)) (SETQ ru (ADD1 rw)) (SETQ ci 1))}
(COND ({NULL bl) (RETURN NILL}}}
(COND ({Colormovingf (CAAR bl))
(COND ((MOVETO b (CAAR bl) (CONS ru ci) kingsq) (RETURN T)})1})
(SETQ bl (CONS (COAR bl1) (COR bl)))
(SETQ ¢! (ADD1 CL}}
(GO RWLP)));

attach WHITEINCHECK [CHESS]

(DE WHITEINCHECK (o) (INCHECK b (FINDKING (QUOTE KW) b) (QUOTE BVALUES)))
attach BLACKINCHECK [CHESS]

(DE BLACKINCHECK (b) (INCHECK b (FINDKING (QUOTE KB) b) (QUOTE WYALUES)))3
attach SIDEINCHECK (CHESS,CHESS] (DE SIDEINCHECK (b c) (COND

((EQ c(QUOTE WHITE)) (WHITEINCHECK b))

((EQ ¢ (QUOTE BLACK)) (BLACKINCHECK o}1))4

Section 2.2.3 Board Axioms

The SUCCESSOR definitions determine the effect of the various moves on the total boards (Tboard) of
positions. However, we still require primitives for the manipulation of the partial boards, those with
undefined (UD) squares.

Section 2.2.3.1 Sub-board Definition

In the section on board declarations, we asserted various properties for sub-boards and board
constructors. These need axiomatization. The axiom SUB_BOARDS consists of four such definitions.
The first WFF defines the Makeboard function. This functions takes a board, a square, and a value,
and creates a board identical to the original board on every square except the argument square. On
this square, Makeboard places the given value.

The second part of the axiom states that every total board has no undefined squares. The third
defines the relation BOARD, between a position and a partial board, in terms of the SUBOARD predicate
and Tboard function on that position. The last part of the axiom defines the SUBOARD relationship.
One board subsumes another if they are everywhere the same, except ‘on those squares where the
Jess defined board is undefined.

axiom SUB_BOARDS:
¥r b sq t v.({(Vallr t) =vaPos (r 8q)=tABOARD(r bli>
BOARD (r,Makeboard{b sq v))},
Yot sq.-Valueon(bt eq)=UD,
Yr b . (BOARD(r b)sSUBOARD(b Tboard 1),
Ya b. (SUBOARD(a b)sYsq. (Valueonia sq) =Valueonib sq)valueoni{a sqi=UD)},
Yol b2 sql vl. (bl=Makeboard(b2,sql,vlls
{Ysqx. {(~sqx=8ql>
Vaiucontbl.:qx)-Vatuoon{bZ.tqu}}n73luoon{b1.tql}-vll);;

An attachment for the Makeboard operator is declared.

Page 70. The Chess Axioms 223.1

FUNCTION (DE MKBOARDL (r N v) (COND
((EQ 1 N)(CONS v (COR rll)
({CONS (CAR r) (MKBOARD1 (COR r) (SUBL Niv}))))s

attach Makeboard [CHESS,CHESS,CHESS-CHESS] (DE Makeboard {b S v) (COND
((EQ {CAR S) 1) (CONS (MKBOARDL (CAR b} (COR S) v) (COR b))
({CONS (CAR b) (Makeboard (COR b) (CONS (SUBL (CAR S})(CTR Sil vl h

Section 2.2.3.2 Board Manipulation

We have provided a mechanism for building boards up from less well defined boards. However,
unless we want to be limited to always constructing from the totally undefined board, a very long and
painful process, we need board decomposers, to take a board and the information from a move, and
produce what can be determined of the previous board

For example, we declare the following four move unmakers, which take move information and a
board, and compute a sub-board of the previous position.

declare OPCONST Unmkmove (BOARDS, SQUARES, SQUARES)=BOARDS:
declare OPCONGT Unmkcapmove (BOAROS, SQUARES, SQUARES, YALUES}=BOARDS;
dec |are OPCONST Unmksppmove (BOARDS, SQUARES, SQUARES) =BOARDS:
dec lare OPCONST Unmkcapppmove (BOARDS, SQUARES, SQUARES, YALUES)=BOARDS:

The functions undo, respectively, all ordinary, non-pawn promotion moves, ordinary, nor-
promotional captures, simple pawn promotions, and capturing pawn promotions. The more specific
a decomposer function used, the better defined the resulting board, of course. These are just a
sample of the possible set of decomposer functions; however, combined with the Makeboard function,
they are powerful enough for our needs.

These functions come with both attachments, and axioms dictating their use. The attachments rely
heavily on the Makeboard function.

attach Unmkmove (CHESS, CHESS, CHESS-CHESS] (DE Unmkmove ibr S
{Makeboard(Makeboard b S (QUOTE UD))r (Valueon b S1));
attach Unmkcapmove [CHESS, CHESS, CHESS, CHESS~CHESS] (DE Unmkcapmove (br Sv)
(Makeboard (Makeboard b S vir (Valueon b S11}
attach Unmksppmove [CHESS, CHESS, CHESS-CHESS) (DE Unmksppmove (b r S)
(Makeboard (Makeboard b S (QUOTE NTl)r
(COND ((MVALUES (Valueon b S)) (QUOTE PW)) {T{QUOTE PB)1}1};
attach Unmkcapppmove [CHESS, CHESS, CHESS, CHESS~CHESS]
(DE Unmkcapppmovelb r S vi
{Makeboard (Makeboard b S v) r
(COND ((WVALUES (Yalueon b S}} {QUOTE PW}} (T(QUOTE PBI} 1))

The use of these functions is delimited by this axiom, UNDO.

exiom UNDO:
Yr q b sql sq2. ((SUCCESSOR (r q) ABOARD (q b) ADRDINARY Move ga
~PALNPROM Move gAFrom Move g=sglaTo Move q=8q2i>
BOARD (r Unmkmove (b sql sg2})),
¥r q b 8ql 8q2 v. ((SUCCESSOR(r q) ABOARD{q bIACAP Move an
From Move ae=sglaTo Move gesg2aVal(r,Taken Move qi=v)>
BOARD (r Unmkcapmove(b sqli sa2 vll),

2232 The Chess Axioms Page 71.

¥r q b sql sq2. ((SUCCESSOR(r g} ABOARD (g 0} ASIHMPP HMove an
From Move g=sqlaTo Move g=sq2l>
BOARD(r Unmksppmove (b sql sq2))),
¥r q b sql sq2 v. { (SUCCESSOR (r q) ABOARD (q b) ACAPPP Move gn
Yal {r,Taken Move q)=vaFrom liove q=sqlaTo Move q=8q2)>
BOARD (r Unmkcapppmove(b sql 8q2 villiis

Section 2.2.4 Global Notions

So far, the definitions and axioms presented have been of a local nature. That is, they detail the
transition from one position to the next, or the effect of a given move on a board. We now lay the
groundwork for more global notions, useful for proving what must have happened during the game
that reached some position.

Section 2.2.4.1 Chess Induction

Perhaps the most aesthetically pleasing notion of the entire axiomatization is that of Chess Induction.
Chess induction is a natural extension of the correspondence between the numerical predicate less
than on the natural numbers, and the chess predicate PREDEGAME of the chess world. A
mathematical induction proof has two parts, the first a proof in an initial state, the second a proof
on a transition from state to state by successor function. For these premises, mathematical induction
concludes a predicate true of all states.

Chess induction action is similar in principle. A proof of some proposition on POSITIONS, , is first
a proof on some specific position, r, that «(r} is true, then a proof that the proposition « holds over
the SUCCESSOR relation. We can then conclude that the proposition holds for all positions which
have r as one of their ancestors. As all GAMEPOSITIONS have the initial position, P8, in their
history, we will often use P@ as the position r. The resulting theorem will then be true of all
POSI TIONS.

Just as many powerful mathematical theorems are proven through the use of mathematical
induction, so we will be able to prove many interesting chess theorems by chess induction.

Chess induction is an axiom schema. For axiom schema, we need a predicate parameter, declared:

declare PREDPAR a (POSITIONS) [PRE]s

Note that a is a prefix predicate, and can be used without parentheses around its arguments.

The axiom schema itself i1$ written:

axiom CHESS_INDUCTION:
¥r. {({x ra
vrl p2. (la r1a(PREDEGAE (r r1)vrarl) ASUCCESSOR(rl p2}1oa p2lli>
Yr2. { (PREDEGAME (r r2)vr=r2ida TAREY

Our explanation, so far, has paralieled one of the more general explanations of ordinary
mathemati~al induction. Mathematical induction, while is an expression of if it is true of x, (and the
induction hypothesis is satisfied) then, for all y>x, it must also be true. In practice, however,
mathematical induction is almost invariably used with x=0, resulting in validity on all integers. Qur

Page 72. The Chess Axioms 224.1.

practice with chess induction is similar. Almost all of our proofs involving chess induction pick P8
for an initial case; they thereby produce proofs valid on all positions. This simplified for of chess
induction we call Chsind:

(« PBAYr p. ({a rASUCCESSOR(r,p))oa plis¥r.a r
The derivation of Chs/nd from CHESS_INDUCTION is section A2

Section 2.2.4.2 The Mathematics of Pawn Captures
Section 2.2.4.2.1 Pawn Capture Definitions

There is another, though perhaps more parochial, group of theorems and predicates still to be
considered. Any aficionado of chess problems knows that the position of a pawn on 2 board puts a
minimum on the number of pieces it had to capture to reach that square. Basically speaking, a
pawn must have captured at least one opposing piece for each column it is away from its initial
column (presuming, of course, that the pawn has not promoted in the meantime). While this is both
an extremely useful and interesting limit, practically, it leans more towards mathematics than we
would prefer to go. Consequently, though we declare the predicates to FOL, we leave the actual
computations to the attachment mechanism.

No pawn can move more than seven columns from his original column; nor less than none. We call
this set, zero through seven, the NUMBERS. We also need the mathematical predicate 2, (less than or
equals) to compare our numbers. The declarations and attachments look like:

declare PREDCONST NUMBERS (NATNUM) ¢
declars PREDCONST 2 (NUMBERS , NUMBERS) [INFy

extension NUMBERS (8 1 2345867
mg NATNUM2 INUMBERS! :
attach NUMBERS [NATNUMREP]
(LAMBDA {x) (AND (NUMBERP «) (LESSP x 9) (NOT (LESSP x g1
attach > [NATNUMREP , NATNUNMREP] (LAMBOA (x y} (NOT(LESSP x gl

We also desire a function to compute the pawn capturing distance between two squares.

deciare OPCONST Pauncaptures €SGUARES.5GUAFI£S}-NIR1B£RS:
attach Pauncaptures {CHESS., CHESS-NATNUMREP]
{LAMBDA (x yl (ABS (DIFFERENCE (COR x} (COR yll}ll}:

Lastly, we declare two predicates on squares and colors. The first, MAY_PAUNCAPTURES, takes two
squares and a color, and returns true if a pawn of that color could have reached the second square
from the first. The second, HUST _PAUN_CAPTURES is true if a pawn of that color, in going from the
first to the second square, must have captured a piece every time it moved.

declare PREOCONST MAY AWN_CAPTURES (SQUARES, SQUARES, COLORS) 3
dec lare PREOCONST MUST_PAWN CAPTURES (SQUARES, SQUARES, COLORS) 1

22421 The Chess Axioms Page 78.

attach MAY_PAUN_CAPTURES [CHESS, CHESS, CHESS!)
(DE MAY_PAUN_CAPTURES (x y ci (COND
{ {GREATERP
{DIFFERENCE (TIMES (COND ((EQ ¢ (QUOTE WHITE}) (SuBl 813 (Y 11}
(DIFFERENCE (CAR y} (CAR x}}}
(ABS (DIFFERENCE(COR y) (x}1i}
{(SUB1 Biil}li:

attach MUST_PAUN_CAPTURES [CHESS, CHESS, CHESS]
(DE MUST_PAUN_CAPTURES (x y c) (AND (NOT (EQUAL x y)) (COND
((ZEROP™ (DIFFERENCE (TIMES (COND iTlsg ¢ (QUGTE WHITE)) (SUBL @1)
1)
(DIFFERENCE (CAR y) (CAR x)))
(ABS (DIFFERENCE (COR y) (COR x})) 1111})s

S-ction 2.2.5 Asserted Theorems

There are several theorems in this volume which we have not proven. These are theorems, in that
they are provable from the axioms we have given, {with, perhaps, a little help from standard
mathematics). However, a certain misguided sense of honesty compels their n.ention in the axioms
chapter. For some of these, the proof is so trivial (perhaps a change from white's point of view to
black’s, or a proof that knights do not promoie, when we already have one for bishops) as to make
the actual proof more an exercise in mindiess substitution than in logic. Obviously, the value of
detailing another special example is minimal. Hence, we shall simply declare such theorems when
we prove the associated, similar theorem, rather than presenting their proofs.

There are also a few moderately complex theorems, of 2 general nature, obviously true in themseives,
but for which time and energy constraints have not allowed proofs. We present these theorems in
this section.

Section 2.2.5.1 Pawn Capture Theoremns

The first of these are the theorems using the pawn capture functions and predicates, PawnStructure.
PawnStructure s a sufficient condition on the satisfaction of the MAY_PAWN_CAPTURES predicate.
It states that if a pawn can move {rom One square io another in the course of a legal game, without
promoting, then the predicate MAY_PAUN_CAPTURES 15 true between those two squares. We could
have defined MAY_PAWN_CAPTURES to be the predicate sausfying this relationship; however, the
justification for the associated attachment would then have been much more complex.

The second "theorem” consists of seven parts, of which we have listed three %6]t states that the vaiue
of Pauncaptures for two squares place: a minimum bound on the number of capturing moves a
pawn has to make to get from it firs argument to its second. For each such move, there 15 a
position with the properties such as the cawn made a capture to get to that position, and that these
positions are distinct. This theorem is Lificult to prove with complete generality within our chess
predicate logic system, as it involves bu © the axiomatization of elementry numerical properties, and
a correspondence between a count of objects, and an existentially quantihed WFF. Wishing to avoud
this hassle, we leave this as an unprover theorem.

&g PawnStructurs2, PawnStruciursl and Faw ruciurnk

Page 74. The Chess Axioms 225.1.

The last pawn capture theorem states that if a pawn 18 diagonally extended from an earlier position
(MUST _PAUN_CAPTURES is true of the two squares) then the pawn must have made a capture on
every square within that diagonal segment. The proof of this theorem would involve showing that
the MUST_PAUN_CAPTURES predicate remains true if a capture occurs, but goes false, forever to stay
false, if the pawn makes any other move. Chess induction would surely be needed, and the difficulty
of the resulting proof would, in some sense, be inverse to the specificity of the definition of
MUST _PAWN_CAPTURES. Unfortunately, the more usable said definition, the jess closely it would
correspond to the attachment. A more basic proof would again involve more mathematics then we
want to approach. Hence, it 18 also an unproven theorem.

axiom _PaunStructure_ !
¥r p x sgl saZ. ((Posip sul)=xnPosir aq'Zi-mPRE{)EGﬂE{r plna
VALUEP (Vai (Prevpos P :Hi:ﬂk‘{_PAm_CﬂPTtﬁ‘ES{an sql Piececolor (x) 11},
¥r p x sgl sal. { (VALUEP (Val (Prevpos P x) i nPoslp sql)=xnPosir 8qZ}=xn
PREDEGAME {r pi ~Pauncaptures (sal sg2izil>
3qi 1. { (PREDEGAME (gl plvai=) APREDEGAME (r alin
TAK INGS (Move (gl)) Allover {(Move (gl) jexaTaken (Movelalil=xill,
¥r p x sal 8qZ. { (VALUEP (Va! (Prevpos D x)) nPosip mii-erﬁEBEGN‘iE{r pin
Posir qui-anauncap!urasisql sqzi2212
gl a2 =1 x2. ((PREDEGAME (ql p’ivql-plﬂﬂiﬁ%(ﬂ qliﬂﬁﬁ%{r gZin
TAKINGS (Move(gl] } ATAKINGS (lMove {g2) i nllover {Move(gl] h=xn
Mover (Move (g2} JexnTakenitove (alll =xinTaken(tovelaZl) exZ2))is
axiom _PaunStructumK_:
¥r p x sul sq2.ﬁ¥ALt£PWaH?revpos p x))1APosip sql)=xAPoslr 8G2) =xA
PREDEGAME (r p) APauncaplures {sql sa2i23)2
3l o2 a3 xi xZ x3. { (PREDEGAME (al pivql-p‘thpmtiﬂlqz qlin
PREDEGAME (a3 QZ}QREBEGM {r a?;lnTkKINGSiHcm%alHn
TAK INGS (Move (g2}) ATAK I NGS (Move (g3) } Atover (Move (gl)] =xn
Mover (Move (g2)) sxnliover (Move (g3} j =xaTaken {(Movelgli}i=xin
Taken (Move (2] }uuZATaken(ﬁovethi bex3li,
¥r p x sal sqz.{!VUST_PMﬁ_CﬁFTLﬂESHQZ sql Piececoior ixl i
VALUEP(va! (Prevpos P x)) nPoslp sqli-anﬂEDEGAﬂE-lr pinPosir sqll=xi>
¥sq3. iisq?wsqiv(SMEﬁiﬁG {sqgl sq33ASN"EGIAG($q3 sqZlna
BETWEEN (Row {sql) ,Roulsg3) JRoulsg2iillo
3a3 x2. { (PREDEGAME (g3 p)qu-p}nPREiEGAPEEr q3}nTAKIN55{Hovu(a3HA
Mover (Move (g3} jexnTo(Move (g3} } -nq3n'[ahnn{ﬁnva (g2ii=x3)))31

These theorems enable the usual probiem soiver tricks involving pawn structures.
Section 2.2.5.2 Other Unproven Theorems

Several other unproven theorems remain (o be mentioned. Checklypes siates the well known chess
fact that on any check, either the piece doing the checking was moved last, an en passant move
captureg a piece with discovered check, the rook in a castiing move made the check, or an ordinary
move was made, and the check was a discovered check.

The proof of this theorem would be just a large and painful case analysis, to show that the only
change to the board can occur on those squares, 5o that the conclusion naturally follows.

225 The Chess Axioms Page 75.

axiom _CheckTypes_:
¥p b sal saZ x vpcl vpe2. ((POSI TIONINCHECK (p Color{p))ABOARD (p bla

MOVETO(b vpcl sal sq2)APosip sql}sxaValueon(b sqll=vpcla
Valueoninb sq2)esvpc2aVALUEK (vpc2) a-Vaiuecoior vpcl =Yaluecolor vpc2id

{Mover Move p=xv

{EN_PASSANT (Prevpos p .p}n{S&dARE_BEWEEN{sql.Fro- Move p,sqgllv

SQUARE _BE TWEEN{sqgl, Takenon Move p.sqllllv
(CASTLING (Prevpos p,p)aAlsomover Move psvpcliv
(ORDINARY Move paSQUARE_BETWEEN(sql,From Move p,8q2lillis

The theorem MoveBack states that all moves, except pawn moves, are symmetric. That is, if the
piece could move from the first square to the second on a board, then it could move back again.

This theorem could be proven by the use of the simplify mechanism and a lot of manipulation.
Particularly useful would be the commutation theorems {section A.9.5).

axiom _MoveBack_:
¥r p v sql sq2. ({SUCCESSOR(r p) AORDINARY HMove pa-VALUEP (v)]>
{MOVETO(Tboard p,v sql 8g2)sMOVETO(Tboard r,v sqZ sqllllss

Page 76. Chess Lemmas and Theorems 3.

Che ter 3 Chess Lemmas and Theorems

Of « ‘urse, no complicated proof is achieved without the use of some theorems and lemmas. These
serve several functions, somewhat similar to the functions served by procedures in 2 programming
langi age. They provide suructure, pointing out the natural conclusions and breaking points, and
incre :sing general proof readability. They also serve to reduce the actual volume of the proof,
perr tting the condensation of several similar inferences into a single general scheme and the
avoi ance of repetition of an identical computation. In the case of computer proof checking, where
the + »mory size of the program and its data structures often needs be minimized, the use of lemmas
serve: to remove from the main computation large sections of proof, replacing them with only a
reference to/the desired conclusion. For our axioms, with their many equivalences between the
defirr 4 terms, they also aid by rephrasing an axiom into a form more usable in another part of the
proo’ This chapter is devoted to the proof of several representative general chess theorems and
lere 1s from the basic chess axioms described in the previous chapter. We present several thoughly
explained sample lemmas and theorems, with the proofs of the other chess lemmas and theorems,
less thoughly explained, in the appendices.

Section 3.1 Simplification Lemmas

Among these lemmas are several that are both trivially deduced, and frequently referenced. These
are the lemmas obtained through a single application of the simplify command (a single call to the
semantic computation of the chess eye). Many of these refer to the extension of various sorts. For
example, the simplification:

LABEL WhitepieceAre_;

SIMPLIFY Yt.(WHITEPIECE ts{
t =WK Pvt=WQPvt=WKNPvt=WKBPvLtzWKRPVL=WQBPvL=WONPvL=WORPY
t=WK vit=WQ visWKN visWKB vtsWKR visWQB vtsWON vtsWQR));

Gives a membership definition for the set of white pieces. This lemma is henceforth referred to as
Whitepiecedre . These simphfications would arise from definition or observation, rather than
deduction. In the cases where a large number of individuals must be considered to establish the
validity of some WFF, they are also quite slow. These qualities have led us to list them in their own
section, section A.l, rather than repeatedly computing them in the different theorems. We will use
these lemmas freely in the rest of this paper. In no case should they express any fact whose vahdity
is not observationally apparent to the reader.

Section 3.2 Simple Proofs
Section 3.2.1 Proofs on Positions

We begin with several simple example proofs. First, three lemmas about the PREDEGAME relation.
Recall that PREDEGAME (pl,p2} is true if position pl occurred sometime in the play that reached
position p2. In this usage, the PREDEGAME relation is like the predicate < (less than) on a partially
ordered, half closed set. The first lemma we prove on this relationship is its transitivity. PREDEGAME
is defined either directly by the successor relationship, or recursively in terms of the existence of an
intermed iate positidn satisfying PREDEGAME with the original arguments. The position p, common in
PREDEGAME to r and g in the assumption, is shown to be the intermediate position for them of the
definition.

3.2.1 Chess Lemmas and Theorems Page 77.

We shall include comments about the structure of the proof checker in italics.

seeex | abel L%a
ssaseassuUMe EDEGAME (r, p) APREDEGAME (p, q} 4
1 PREDEGAME(r,p)APREDEGAME(p,q) (1)

sssssdl * p:
7 3p.(PREDEGAME(r ,p)APREDEGAME(p,q)) (1)

Here, step one creates a line with the mm#i«m that r came before p, and p before a. Step two
generalizes this to some individual p. A series of n ts implies the nth previous step.

Assigning a label to ¢ line gives us another method for referring to it All of the theorems in this volume
have the label used in their proof associated with them; temporary label, suck as LI and L2, have been used
in many different proofs.

Part of the definition of the PREDEGAME relation is given in the axiom GAMEREL1 (game relation 1).

sseeeYE GAMERELATIONS] r.q;
3 pngngsﬁHE{r,q]-{SBCCESSOR{r.ﬂ)v3p.{PRED£GAHE(r.QIAPREDEGAHE{Baﬂ33}

YE is used to specialize a universally quantified statement (usualy an axiom) to a specific list of
individuals.

PREDEGAME is therefore obviously true of r and q.

ssxsstaut PREDEGAME (r,q) *1: 1%
4 PREDEGAME(r,q} (1)

FOL has two tautology deciders, TAUT, for tautologies of the propositional caleulus, and TAUTEQ for
tautologies of the propositional calculus, including equality. We give the deciders the WFF to be proven,
and the reasons (list of previous steps and axioms) from which it follcws.

As we will do for all the theorems in this volume, we remave dependencies, and generalize:

ssssed] LIo%:
5 (PREDEGAME(r,p)APREDEGAME(p,q) }>PREDEGAME(r,q)

o/ is @ natural deduction rule, one that individually introduces (1) or eliminates (E) propositional
connectives. 31 is also useful for removing dependencies.

sasss iabel Trgngigivgggngglggg;

sssse Yl 1T r p Qi
6 ¥r p q.((PREDESMEU‘.D)ﬁPREDEﬁME(Q.Q]):JP%EBEGME(!‘,Q))

This last, sixth step is a universal quantification. It asserts that, as the statement is true of some general r,
p, and q, it must be true foralir,p, and q.

The next lemma we prove is about the predecessors of positions immediately preceding a given
position. If, of two positions, r and p, p 15 & successor to r, then, for any position that came before p,
it either also came before r, or is equal to r. We employ three parts of the defining axiom for

Page 78. Chess Lemmas and Theorems 321

PREDEGAME, GAMERELATIONS. The first part (GAMEREL) states that there is no position between
two successor positions. The second part is a law of the excluded middle for the PREDEGAME
relation. If two positions are in the game tree of another position, then they are either equal, or one
came before the other. The third part is a repetition of GAMEREL1, used above. This time, we
employ the fact that the relation SUCCESSOR implies that of PREDEGAME. Together, these three imply
that a position has, by and large, the same predecessors as its successors.

ssassYE GAMERELATIONSG rl,q,rds;
7 SUCCESSOR(r1,q)>~(PREDEGAME(r1,r2)APREDEGAME(r2,q))

sssssYE CAMERELATIONSZ q.rl,r2:
alggkiﬁlﬁsmﬂr! ,q)APREDEGAME(r1,q))>(PREDEGAME(rl,r2 Jv(PREDEGAME{r2,rl)vris=
rij:

sssssVE GAMERELATIONSL rl.q:
9 PREDEGAME(rl,q)s(SUCCESSOR(r1,q)v3p.(PREDEGAME(r1,p)APREDEGAME(pP,q)))

I:Itttaut (SUCCESSOR (r1, q) APREDEGAME (r2,q)) > (PRECEGAME (r2,rllvr2erl]) t™1:
st
10 (SUCCESSGR[#‘I.ﬂ)n?REf?EWE(f?,G}}D{PREQ?GME(?Z.?’HWZ!PI}

We call this lemma ParentGenealogy.

sssss labe! ParentGenea! H
ssexs Y] T r2 rl o3
11 ¥r2 ri a.{{SUCCi:&SﬁR(rl.QMPREDESMEUZ.QIb{PRiDiSAHi{rZ,r})er-rl}}

The last part of our triplet concludes that, since all GAMEPOSI TIONS have the initial position in their
game trees, and the PREDEGANE relation is defined to be anti-reflexive, that no position can precede
the initial position. T his lemma is called GameRelations5.

sssssYE GAMERELATIONS3 r,PE;
12 ~(PREDEGAME(r,P0 JAPREDEGAME(PO,r))

sxsesYE POSITION_RULES ri
13 GAMEPOSITION r>{SUCCESSOR{Prevpos r,r)APREDEGAME(PCO,r))

'sssssYE POSITION_TYPES r;
14 =(r=P0=GAMEPOSITION r)

ssass tauteq —~PREDEGAME (r,PB) 111:%;
15 ~PREDEGAME(r,P0)

sseexlabe! GCameRelationsS:

sssss Y] T r;
16 Yr.~PREDEGAME(r,P0)

Section 3.2.2 Simple Theorems on Values '

As an example of the use of the simplify command on the extensions of sorts, we present the proofs
of [the lemmas Empty/sMT and ChesspiecePieceValueThm.

322 Chess Lemmas and Theorems Page 79.

EmptylsMT states that having a value of MT is equivalent to being the EMPTY piece. This resuit is
obtained using the theorem RetalnValueColor, which states that the blackness or whiteness of the
value of any piece in any pair of positions is the same. The proof of RetainvalueColor is in section
A.8.3. This proof also twice employs the simplification mechanism. We first check that, in the initial
position, having value MT is the savie as being the piece EMPTY. Then, each of the YVALUES {values
a piece can have) is checked to sinw that the value MT is the oniy value that is neither a biack value
(BVALUES) nor a white value (MVALL=S).

ssxzssimplify vt. (t=EMPTYsVal (P8 t)=MT)s
1 Vt.(ttiHPTY¢V31{P0.t):ﬁ?}

sssselabel L1t
ssssssimplify Yvvx, { (-BYALUES vyxa-WVALUES yyx) mvyxsiiT) 3
2 Yvvx.({~BVALUES vvxA-WVALUES vvx JavvxsMT}

These two facts are certainly true of our typical piece, 1, and its values in the initial position,
val (P8, t), and in a general position r (val (r, t)).

ssszseYE 1143
3 t=£ﬂ??¥z“al(?0.t)=ﬁ?

sssssVE 11 Val (P8 t)s
4 (-~BVALUES Val{P0,t)A~WVALUES Vﬂ{?ﬂ,t))l\ul(?n,t)iﬁf

sssss¥E 111 Vallr t):
5 (~BVALUES Va!{r.t}n-WALﬂis Vn(r,tﬂ-va!(r,t)flﬂ

Our lemma RetainValueColor tells us that the color of the value of any piece is the same in all
positions.

ssses¥VE RetainValueColor Pg r t:
6 (BVALUES val{r,t)=BVALUES mm,tna{wmas Val{r,t)sWVALUES val{P0,t))

But if this is the case, then the equivalence between having MT value in the initial position, and
being the EMPTY piece, must also hold in the position r.

zeea® taut Mttt 2 P00t
7 t=£l‘i?1”(ava1{r,t}=n1

We generalize this to all POSI TIONS and PIECES. Let us call this theorem EmptylsMT.

sssee | abel gngtglsrﬁt

sxxss¥] T r U
8 ¥r t.{uiﬂPTY-Vn]{r,t)sHT)

We next attempt the lemma ChesspiecePieceValueThm, wh .1 states that the value of any
CHESSPIECE in any POSITION is always one of the PIECEVALUES. Recall that PIECEVALUES are the
VALUES less the empty value (M), and the undefined value (UD). We first inquire of simplify if all
BYALUES and WVALUES are P1ECEVALUES.

ssssagimplify Yvb.PIECEVALUES vbi
9 Yvb.PIECEVALUES vb

Page 80. Chess Lemmas and Theorems 822

seesesimplify Yviu.PIECEVALUES vu;
10 Yvw.PIECEVALUES ww

As our lemma EmptyIsMT is true of ail PIECES, it must therefore be true of all CHESSPIECES.

sssssVE Emptylshl r x;
11 x=EMPTY=uVal(r, x)=MT

And the two simplifications on PIECEVALUES must also be true on the value of x in r. Note the
conditions inserted by the YE command.

sxssaVE 1t Vallr »);
12 BVALUES Val{r,x)>PIECEVALUES Val(r,x)

sssesYE M1* Valilr x};
13 WVALUES Val{r,x)>PIECEVALUES Val{r,x)

Simplification can also be used to obtain SORT information.

ssssssimplify CHESSPIECES xn-~CHESSPIECES EMPTY;
14 CHESSPIECES xa~CHESSPIECES EMPTY

We also need the simplification of line two, applying it now to Yal {r,x).

ssese¥YE L1 Vali{r x);
15 (~BVALUES Val(r,x)a~WVALUES Val{r,x))=aVal{r,x)=NT

Since x is a chesspiece, it is not EMPTY. Therefore, it does not have value HT in any position. But if
the value of x in a position is neither black nor white, then it is MT. Hence, x must have either a
black or white value in every position. As all such values are PIECEVALUES, x must always have a
PIECEVALUES value. A single TAUTEQ gives us this result.

ssssstauteq PIECEVALUES Val(r =x) MMM Y
16 PIECEVALUES Val(r,x)

We generalize, calling the result ChesspiecePieceValueThm.

sssss label ChesspiecePisceVaiuelhm;

sssse¥|r x;
17 ¥r x.PIECEVALUES Vai(r,x}

Section 3.3 Chess Inductive Proofs
Section 3.3.1 Only Pawns Promote

Having sampled several simple, small proofs, we next attempt the proof of a more complex and
interesting theorem. We want to prove the theorem OniyPawnsPromote, which states that if any
piece has a non-pawn value at some point in a game, its value will not subsequently change. This
theorem implies that the only piece whose value ever change is a pawn, these only by promotion,
and that not pawn ever promotes twice (in one game). OnlyPawnsPromote is an interesting example
of a Chess inductive proof. From this theorem will spin off several useful corollaries, including the
fact that pieces of value pawn are always pawns.

3.3.1. Chess Lemmas and Theorems Page 81.

We have not explained in detail several of the jemmas used in this proof. Their proofs, with some
commentary, may be found in appendix A. In many cases, these lemmas are merely 2 rephrasing of
some axiom.

This proof uses the simplified form of chess induction, which we call Chsind. The general chess
induction theorem refers to predicates true in the descendants of a position. The simplified form
assumes that the ancestor position is the initial one. As all GAMEPOSI TIONs are descended from P8,
theorems true of all GAMEPOS] TIONs can be easily proven from this form.47

The predicate we wish to prove is:
¥r r1 t. ((~VALUEP Val (rl t)APREDEGAME(rl r1)oVal(r ti=Valirl t})

That is, if in some position rl, a piece t does not have the value of pawn, then, in any descendant
of r1, r, then the value of t is the same in rl as rl.

We substitute this predicate for the predicate parameter « in Chsind.

szxes | abel %l;

n:u;\IIChs nd laear. ¥Yrl t. ((~VALUEP Val(rl t) APREDEGAME (r1 r))2Vallr ti=Vall
erl th)ls

1 (¥Yrl t.{(-VALUEP ‘Jai(rl,t)aPREBiGAHE(rl,?O}bVa!(Po,t}-ﬁaltti,t))rﬂr p.{(Y
rl t.{(-VALUEP Vﬁ'llrl.t)APREBEBME{ri,r}):\fa!(r,t}ﬂhl{ri,t)}ASUCCESSGR(?.;))
)o¥rl t.{(-~VALUEP Va!(rl,t)nPREBEGﬁﬁE{rl,D)):}VaHp.t}ﬂhl(rl,t}H'J:‘Ir ri t.¢
{~VALUEP Va‘l{rl,t)nPREDEGN&E(rZ.r)}3Va¥(r,t}=\lﬂ{rl,t))

First, we must establish the validity of the proposition in the initial position (P8). As no position is
a predecessor to the initial position, this is trivial.

sxessYE GameRelationsS rl;
2 ~PREDEGAME(r1,P0)

exssstaut L1:HIHIHIHL %
3 (-~VALUEP V-nl{rl.t)n?REBEGME(rl,?0)):Val{i’o,t)sv:!(rl,t}

sasazlabel L%‘
sesse Y| T rl t
4 ¥rl t.{(=VALUEP ?al{rl,t)aPﬂEBEEAﬂE{rl,?O}):Val(Pﬁ.t}tVai{rl.t}}

We now make two assumptions. As the inductive form is assume its true of n, prove it is true of n+l,
we assume the validity of the theorem in position 1, trying to prove its validity in its successor p.
Secondly, as the sentence we are trying to prove of p is also of the form 423, we assume the A part,
seeking B. Note this sequence; it is our general schema for chess inductive proofs.

ssassiabel L3;

esess assume L1:1#1#2H1ALH]L,

5 !;rl{ § i('(-NM.UEP Val{rl,t)APREDEGAME(r] LF)oVailr, t)sVai{ri,t) YASUCCESSOR(r
+P

s 3SSUME L1s#IH281H1H2H1H1H]L
6 ~VALUEP \fﬂ(rl,t)n?ﬂfﬂiﬁﬂﬁ(ri,#} (6)

rrssssanan

a7. A derivation of Cheing from CHESS_INDUCTION » in soction AZ

Page B2. Chess Lemmas and Theorems 3.3.1.

sssssnkE L3:H];
7 ¥rl t.{(-VALUE?P Val(rl,t)APREDEGAME(rl,r))oVal(r,t)svVal(rl,¢t)) (5)

There are three pertinent positions in this proof. We seek to prove that the Yal of t is the same in
both positions r1 and p. We have assumed that the Val is the same between rl and r, the position
previous to (Prevpos) of p.

sxeaeVE T rl,t;
8 (-~VALUEP Val{rl,t)APREDEGAME{rl,r))oVal(r,t)=Val(rl,t) (5)

We need to show that rl is also a predecessor of p. Our lemma ParentGenealogy*s is used to
establish this.

sesssYE ParentGenealogy rl,r,.p;
9 (SUCCESSOR{r,p)APREDEGAME(r1,p))>(PREDEGAME(rl,r)vrisr)

The heart of this proof lies with the axiom that states that pieces change value only when they
move in a pawn promotion. The axiom MCONSEQH, part of the move definitional axioms, tells us
that, between a position » and its successor p, if the piece, t, was not the mover of p, or p was not a
pawn promotion, then t retains the same vaiue from r to p.

sssss iabel L&;
ssass YE MC QH r,p, ts
10 (SUCCESSOR{r,p)A(~PAWNPROM Move pv~(tsMover Move p))ovai(r,t)=Vai(p,t)

We have a special case to consider: when the position rl is the same as the position r (line 9).
TAUTEQ will not make the substitution in functions for us, we must do it ourselves. Assume they
are the same.

sssseabel LS;
ssesr assume re=rl;
11 r=r1 {(11)

ssssxsubst LS in L3+1;
12 -VALUEP Val{r,t)APREDEGAME(r,p) (6 11}

ssssesubstr LS in Lé&;
13{(SUCCESSOR{H.D)A(HPAHNPROH Move pv-~(tszMover Move p)))oVal(rl,t)=Vai(p,t)
11)

SUBST and SUBSTR substitute for equels in WFFs.
If they are the same, then, as t does not have a pawn value in rl, it will not have one in r.

sssss label LB
sssss D] L5OT1:
14 r=rls{~VALUEP Val(r,t)APREDEGAME(r,p)) (6)

sesee>] LSO
15 ;=r1:;§(50£€£550ﬂ(r1.B)A{-PAHHPROH Move pv~{t=Mover Move p)))oVai(rl,t)=
Vali{p,t

48 Section 32.1.

3.3.1 Chess Lemmas and Theorems Page 83.

By the definition of pawn promotional moves, the moving piece is a pawn on the total board of the
move.

ssaxsYE MCONSEQL ps

16 PAWNPROM Move pu{ LASTRANKER{To Move p,Color Prevpos 9)AQSIHPLEL£GBLH{}VE{
Prevpos p,p)a(PAWNS Mover Move pa{VALUEP valueon{Tboard Prevpos p,From Move
p)a{{{BVALUES Promoted Move psBVALUES Val(Prevpos p,Mover Move p))n{WVALUES
Promoted Move psWVALUES Vai{Prevpos p,Mover Move p)))avai{p,Mover Move pis

Promoted Move p)))})

By the definition of SUCCESSOR, the previous position (Prevpos) of a position shares the SUCCESSOR

relation.

ssss¢YE MCONSEQA r,p:

17 SUCCESSOR(r,p)>((~WHITETURN reWHITETURN p)a{Prevpos p:rn[~P051TIO¥IHCHECK
{p,Color r)a{ {WHITEPIECE Mover Move p=WHITETURN ra{Pos{r,From Move p)=Mover
Move pn{Pos{p,Tc Move p)=Mover Move pa{Pos{p,From Hove p)niﬂPTYA{{CﬁPTuni
Move poPos(r,To Move p)=Taken Move p)n{CASTi.ING(r,p}v(EN_?ASSiNT{r,p)v

SIHPLELEGALﬂOVE(r.p}}}))))))))

ssssstaut Prevpos p=r L3, %
18 Prevpos p=r (5)

seesssubstr 1 in TN

19 PAWNPROM Move ps{LASTRANKER(To Move p,Color r}A{SIﬂPLELEGALHO‘JEEr.p)n{
PAWNS Mover Move pa(VALUEP valueon{Tboard r, From Move pIa{ ((BVALUES Promoted
Move p=BVALUES Vai(r, Mover Move p))A(WVALUES Promoted Move psWVALUES Val{r,
Mover Move p)))aval(p,Mover Move p)=Promoted Move plIN}} (8)

A mention of the equivalence of the Yai and Yalueon functions.

«xsss¥E ValueTranspositionA r,Mover Move p,From Move p;
Za Pos(r,From Move p)sMover Move p>Valueon(Tboard r,From Move p)=Val(r,Mover
ove p)

More substi-utions for the sake of TAUTEQ

sseszlabel L7:
sssss assune t=Mover Move p:
21 t=Mover tlove p (21}

ssssesubst L7 in 9% occ 23
2% Pos(r,From Move p)=Mover Move p>Valueon{Tboard r,From Move pleVal{r,t} |
21}

sssxs]l L7o%
23 t=Mover Move pa>{Pos(r From Move p)=Mover Move poValueon(Tboard r, From
Move p)sVal(r,t})

We have a form that can be handled by TAUTEQ, One invocation produces our desired identity.

ssasxtauteq Val (p, t)=Val(rl, t] L3:L4,0L6:20,%:
24 Val(p,t)=Vai(ri,t) (5 6)

Page 8¢. Chess Lemmas and Theorems 3.3.L

We remove the dependencies, and insert the universal quantifiers in the proper order so as to obtain
the theorem.

ssss3>] BoMy
25 (~VALUEP Vﬂ{l"l,t)hPREBEGMEiH.aﬂb‘h'f(ﬁ,t}ﬂh’l(rl.t} {5)

exess¥] + rl t:
26 ¥rl t.({-VALUEP Vﬁ{rl,t)nPREDEGME{rI,p})a\faT(p.t)lU&‘i(ri,tﬂ {5)

ssssxd] L3o%
27 (Vrl t.((~VALUEP Val(rl,t)APREDEGAME(r1,r))oVal(r,t)=Val(rl,t))aSUCCESSOR
(r.p))o¥rl t.((~VALUZP Vai{rl,t)APREDEGAME(r1,p))oVal(p,t)=Val(rl,t))

ssxxs¥] T r py
28 Vr p.{{¥rl t.((-VALUEP Va!(rl.t)hPREDE'GME(rI,r‘}}:\iai(r.t)ﬂiﬂ(ri,t)}h
f;t;t;ﬁESSOﬂ(-rm}erl t.((~VALUEP ’h!(rl.t)n?ﬂEﬁiGz\HE(rl;D”:Vﬂ{p.tiﬂhl{ri,t

We have satisfied the two conditions of chess induction. Our theorem naturally follows.

sssxs [abel QningungPrgmcjg:
sssses taut L1:fC EWMER
29 ¥r r1 t.{(~VALUEP Va'i(rl.z)ﬁ?ﬂ‘é{JiGME(ri.r)}::V-ﬁtr,t}ﬂa‘l{ri,t))

Section 3.3.2 Mobility

Another example of a proof by chess induction. We wish to prove that if any chesspiece is on a
square differing from the one it started upon, then there must have existed a position, earlier in that
game, where that piece moved 4 We take this proposition, and substitute it for the predicate
parameter o in Chsind.

ssxsxiabel L1:
sssssnl ChsindlaeAp.¥sq x. { (Pos(p,sq)=xa-Pos (P8, sq)=x}> 3q. { (PREDEGAME (g, plv
sq=pln ({Mover Move g=xnTo Move qe=sq)v (CASTLE Move qnAlsomover Move gq=xn
sAlsoto Move g=sqllll];
1 (Y¥sq x.({Pos(PB.sq}sm-{Pos(PO.sq}ﬂx)}:)31:.{{PRE&ESME(Q.PG)VQ!PD)A({Hovar
Move q=xaTo Move g=sq)v(CASTLE Move aqn({Alsomover Move g=xaAlsoto Move q=5Q))
1)Ia¥r p.{(V¥sg x.{(Pos(r.sq}:xnwiPas(?ﬂ,sq}ﬂx))33q,({PREDEGAHE{q,r)vq:r)A{(
Mover Move q=xaTo Move g=sq)v{CASTLE Move gn{Alsomover Move g=xaAlsoto Hove
q=sq})}}]ASUCCESSOR{r.p}):VSQ x.((?os{p.sq}=xn—(Pas(PO,sq)=x}}33q.((
PREDEGAME{q,p)vqzp)a((Mover Move q=xaTo Move g=sq)v{CASTLE Move qa(Alsomover
Move gq=xaAlsoto Move q=sq)))))))o¥r sq x.{{Pos(r,sq)=xn~{Pos{?ﬂ.sq}nx}):Eq.
{ (PREDEGAME(q, r)vg=r Ja{(Mover Move q=xnTo Move q=sq)v(CASTLE Move an(
Alsomover Move g=xaAlsoto Move q=5q)))))

As this theorem refers to a position where the piece is on a different square from the initiai position,
it automatically is true of the initial position.

ssesstaut TiHIHLIHLAL
2 {-Pos{90.sq)txn«(?os(PO.sq)nx}be.((PREDESAHE{Q,?G}VQI?O)n({Hover Move Q=X
~To Move q=5G)v(CASTLE Move gn{Alsomover Move q=xaAlsoto Move q=sq})))}

------------------ - -

49 The notwon of moved, m this comtexl, uwwamaumdayim position, or being the rook in & castling

332 Chess Lemmas and Theorems Page 85.

sesax¥Y] Tsqg x;
3 ¥sq x.{{-Pos(?ﬁ.sq)uxm{Pos(?ﬁ,sq)-x)}:ﬂq.{{PREOEGAHE{Q.PO}vq=?0)n({ﬁovsr
i;t;\;a qexaTo Move qssq)v(CASTLE Move ga{Alsomover Move gexnAlisoto Move g=sq))

Following the form of the other chess inductive proofs, we make two assumptions. The first
assumption is that the theorem is true in some position r; We then seek to prove its validity in a
successor of r, p. The theorem itself is of the form A>b, we assume A, and work to conclude b.

sxessiabel LZ:

sssssassume L1:HIN2HIHLAL;

4 ¥sq x.({Pas{r.sq}axn-—-{?us(?i}.sq)lx}}:ﬂ&.((PREGEGME{q,r)vqur)n{(Hovar Move
q=xATo Move q=sq)v{CASTLE Move ga(Alsomover Move gsxaAlsoto Move q=s5G)))})a
SUCCESSOR{r.,p} {(4)

sssssassume L1t HIN2H1HIHZHIHINL:
5 Pos(p,sq)=xa-~{Pos(P0,sq)=x) (5)

Let us call the chesspiece in question x, and the square it 15 on In b, 8Q. The first half of the first
assumption 1s therefore true of x and sq.

sxsasnbEtt 18]

6 ¥sg x.{(Pns{r.sq}txm{Pos{Pﬂ.sq):x)be.{{PREDEGME{Q.r)van)A{{ﬂovar Move
a=>;n1'a Move q=sq)v(CASTLE Move ga(Alsomover Move q=xaAlsoto Move g=s5q)))))
{4

ssssxlabel LS;

sssss¥E * 8q , x

7 (Pas(r,sq}:xa—{!’os{?ﬁ.sq}*x}):ﬁq.i(PREOES!\HE(Q.?)vqur}n({ﬁovar Move g=xaTc
Move q=5q)v{CASTLE Move ga{Alsomover Move q=xnAlsoto Move q=sq}))) {4)

We have to consider, in this problem, two cases. Either the piece x is one the same square in both p
and r, or it has changed location in the transition between positions. We examine first the occasion
when it 15 on the same square in each.

ssrexiabel L3;
sesssassume Pos(p sql=Posir sql;
8 Pos(p,sq)=Pos(r,sq) (8)

By our assumption, there exists some position, a predecessor of r, in which x was the moving piece,
and it moved to sq. Let us call this position q.

ssssstauteq THi#2 1 11401
9 3q.((PREDEGAME(q,r)va=r)a{(Mover Move g=xaTo Move g=sq)v{CASTLE Move gat
Alsomover Move g=xaAlsoto Move g=sq)))) (4 5 8)

ssesedETq:
10 (PREDEGAME(q,r)vg=r)a((Mover Move q=xaTo Move q=sq)v{CASTLE Move gaf
Alsomover Move g=xaAlsoto Move q=sq))) (10)

But by the lemma Grand parentGenealogyY, this position g is also a predecessor to p. Hence, we
have a position to satisfy the theorem for p.

sssssVE GrandparentGeneaiogyY q r pi

Page 86. Chess Lemmas and Theorems 3.3.2

11 (SUCCESSOR(r,p)a{PREDEGAME(q,r)vq=r))>PREDEGAME(q,p)

ssssstaut (P:H2vqeplatti#2 + 14,02
12 (PREDEGAME(q,p)vqzp)a({Mover Move q=xaTo Move gs=sq)v(CASTLE Move gn{
Alsomover Move g=xaAlsoto Move g=sq))) (4 10)

seses 3 tq;
13 3q.{(PREDEGAME(q.p)va=p)a{{Mover Move g=xaTo Move q=sq)v(CASTLE Move an{
Alsomover Move g=xaAlsoto Move q=sq}))) (4 5§ 8)

sz3z2z|abel L&:

seeex>] L32%:

14 Pos(p,sq)sPos{r,sq)>3q.{(PREDEGAME(q,p)vazp)a((Mover Move g=xaTo Move g=
sq)v(CASTLE Move ga{Alsomover Move g=xnAlsoto Move q=sq)))) (4 5)

We consider the other possibility. If the occupant of sg in r 15 not the same as in p.

ssxssiabel Lb;
ssxesassune —Posip sql=Posir sqgi;
15 ~(Pos{p,sq)=Pos(r,sq)) (1%)

We consider the various ways the piece x could have changed squares. We have a theorem that
states that the only way the contents of a square changes between positions is if it is either the source
or destination of a move (or castle), or is the square vacated by a piece captured en_passant.

sxesse¥YE MCONSEQD r.p.sq:

16 {SUCCESSOR(r,p)a{~(sq=From Move p)a(~(sq=To Move p)Aa{=~(CASTLE Move pn(sqg
Alsofrom Move pvsg:zAlsoto Move p))a~(ENPASSANT Move pasg=Takenon Move p))))
>Pos(r,sq)=Pos(p,sq)

)

We know from the axioms about successors, that after a move the source square (From, Aisofrom) is
occupied by the piece EMPTY. The square of a piece Captured en_passant is likewise vacant. And
EMPTY is not a chesspiece (it is, of course, one of the P1ECES).

sssssYE MCONSEQA r,p:

17 SUCCESSOR(r,p)o{(~WHITETURN reWHITETURN p)a(Prevpos p=ra{~?0SITIONINCHECK
(p,Color r)A{{WHITEPIECE Mover Move psWHITETURN r)a(Pos(r,From Move p)=Mover
Move pa{Pos(p,To Move p)=Mover Move pa(Pos(p,From Move p)=EMPTYA{{CAPTURE
Move po>Pos(r,To Move p)=Taken Move pIA{CASTLING(r,p)v(EN_PASSANT(r,p)v
SIMPLELEGALMOVE(r,p))))12 1))

sssss¥E NotChesspiecebEmpty_ x;
18 ~CHESSPIECES xsxsEMPTY

All moves are of one of the three types.

ssxxss¥E MconseqmX r,p:
19 SUCCESSOR(r,p)>((CASTLE Move psCASTLING(r,p))A((ENPASSANT Move psEN_
PASSANT(r,p))A{ORDINARY Move psSIMPLELEGALMOVE(r,p}}))

And no piece is on two different squares in the same position.

sssssYE Unique p,sq,To Move p,x;
20 Pos{p,sq)sx>(Pos{p,To Move p)=xssqeTo Move p)

332 Chess Lemmas and Theorems Page 87.

ssss¢YE Unique p,sq,From Move p,xi
21 Pos{p,sq)=x>(Pos(p,From Move p)=xwusqezFrom Move p)

We search the castling and en_passant rules for their special cases.

sssssYE CASTLEMOVES r,p;
22 CASTLING(r,p)s{KINGS Mover Move pa{ROOKS Alsomover Move pa(Pos{r,Alsofrom
Move p)=Alsomover Move pa{Pos{p,Alsofrom Move p)=EMPTYa(Pos{p,Alsoto Move p
y=Alsomover Move pa(¥rl.(PREDEGAME(rl,p)oPos(r,From Move p)zMover Move p)a(Y
r1.(PREDEGAME(r1,p)oPos{r,Alsofrom Move p)=Alsomover Move p)a{V¥sqd.{{Row sq3
z=Row From Move pABETWEEN(Column from Move p,Column sqg3,Column Alsofrom Move
p)IoPos{r,sq3)=EMPTY)A(-POSITIONINCHECK(r,Color r)a{¥sgl x.~{Pos{r,sql)=xa(
MOVETO(Tboard r,Val{r,x),sql,Alsotc Move p)aPiececolor x=Color p})a{{
WHITETURN ro({Alsomover Move psWKRAa{Alsoto Move p=WKB1laTo Move psWKNI1))v{
Alsomover Move psWQRA{Alsoto Move p=WQlaTo Move puunal;};)niquITifuaﬂ ra{(
Alsomover Move p=BKRa(Alsoto Move p=BKBlaTo Move p=BKN1})v{Alsomover Move p=
BQRA{Alsoto Move p=BQiaTo Move p=BQBL})}I))))INIn)

ze22xYE Unique p,sq,Alsoto Move p,x;
23 Pos(p,sq)=x>(Pos{p,Alsoto Move p)=xasq=Alscto Move p)

ses3¢YE Unique p,sq,Alsofrom Move p,x;
24 Pos{p,sq)=x>(Pos{p,Alsofrom Move p)=xasq=Alsofrom Move p)

s+x32¢YE ENPASS r,p:
25 EN_PASSANT(r,p)={GAMEPOSITION ra{Pos{p,Takenon Move p)sEMPTYA{Toc Move r=
Takenon Move pa(Mover Move r=Taken Move pa(SIM Move ra{Column From Move r=
Column To Move ra{Column To Move r=Column To Move pa{TWOTOUCHING(Column From
Move p,Column To Move p)A{(WHITETURN p>(Val(p,Mover Move p)=PBa(Val{r, Mover
Move r)=PWa(Row From Move p=5a{Row To Move p=6a(Row From Move r=7aRow To
Move r=5))))) IA(~WHITETURN p>{Val{p,Mover Move p)zPWa(Val(r,Mover Move r)=PB
n{Row From Move p=4a{Row To Move p=3a{Row From Move rz2aRow To Move rz4))}))

NNNIN

sxs22¥YE Unique p,sq, Takenon Move p,x:
26 Pos{p,sq)=sx>{Pos{p,Takenon Move p)=xssqeTakenon Move p}

sexsesimpl i fy(CASTLE Move p>SQUARES(Alsoto Move p))A{CASTLE Move p>SQUARES (
sAlsofrom Move p}la (ENPASSANT Move p>SQUARES (Takenon Move pl}a CHESSPIECES

X}
27 {CASTLE Move po>SQUARES Alsoto Move p)a{(CASTLE Move poSQUARES Alsofrom
Move p)a{{ENPASSANT Move p>SQUARES Takenon Move p)ACHESSPIECES x))

It therefore tautologically follows, that in the move that created p, x and sq must have performed
the desired roles.

sxssstauteg ((PREDEGAME (p plvps=pla{{Mover Move p=xaTo Move p=sq)vI(CASTLE
sMove pnlAlsomover Move p=xnAisoto Move pssgi))) L6:%,L2:L5;

28 {PREDEGAME(p,p)vp=p)al{(Mover Move p=xaTo Move p=sq)v{CASTLE Move pa(
Alsomover Move p=xahAlsoto Move p=sg)})) (4 5 15)

p is thus seen to be the position whose existence we were trying to prove.

sxsss3ltpegqocc 1 3567 8 9;
29 3q.{(PREDEGAME(q,p)va=p)a({Mover Move q=xaTo Move qesq)v(CASTLE Move ga(
Alsomover Move g=xaAlsoto Move qssg)))) (4 § 15)

Page 88. Chess Lemmas and Theorems 3.3.2.

All this was, of course, based on the assumption that the piece was on a different square.

sxssed] LBoM
30 ~{Pos{p,sq)=Pos(r,sq))>3q.((PREDEGAME(q,p)va=p)a((Mover Move gqsxATo Move
q=sq)v(CASTLE Move ga(Alsomover Move gsxaAlsoto Move q=sq)))) (4 5)

We have obtained the desired WFF in both cases; when x had changed squares, and when x had not.
It is therefore always true.

sssestaut TiH2 T, LG
31 3q.((PREDEGAME(q,p)vq=p)a({(Mover Move g=xaTo Move q=sq)v{CASTLE Move qnl
Alsomover Move gsxaAlsoto Move q=sq)))) (4 5)

We insert the assumptions back in the correct order, 5o as to obtain the premises for the chess
induction form.

sxsexd] L2+10%;
32 {Pos{p,sq):xn—-(?os(?ﬂ,sq):x})ﬁq.((PREBEGME(q,p}vqw)ﬁ{{Hovar Move g=xa
To Move q=sq)v{CASTLE Move ga{Alsomover Move g=xaAlscto Move q=sq)))} {(4)

sxesx¥]fsq x;

33 ¥sq x.{(Pos{p,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,p)vg=p)Aa((Mover

rjh;\;n ?=mTo Move q=5q)v{CASTLE Move ga{Alsomover Move g=xaAlsoto Move qssq))
4)

ssxxad] LZ2o%;

34 (¥sq x.({?cs{r.sq)zxnwipos(Pu.sq)=x))33q.({PRiDiGAﬂE(q,r}van)ni(Hover
Move q=xaTo Move Q=sq)v(CASTLE Move ga(Alsomover Move g=xaAlsoto Move q=5Q))
}))ASUCCESSOR(r,p))o¥sq x.{(Pos(p,sq)exa~{Pos({P0,sq)=x))>3q.((PREDEGAME(q,p)
vq=p)a({Mover Move g=xaTo Move q=sq)v(CASTLE Move gn(Alsomover Move g=xa
Alsoto Move q=sq)))))

zxxx2¥][Tr p:

35 ¥r p.{{¥sq x.({Pos{r.sq)nxn-«(i’ostPo,sq}-x)):3q.{{PREDEBAHE{Q.r}vqsr)n{{
Mover Move q=xaTo Move g=sq)v(CASTLE Move ga(Alsomover Move q=xaAlsoto Move
a=5q)))))JASUCCESSOR(r,p))o¥sq x.{{Pos{p,sq)sxa~(Pos(P0,sq)=x))>3q.((
PREDEGAME(q,p)va=p)a({Mover Move g=xaTo Move qesq)v(CASTLE Move qn{Alsomover
Move q=xaAlsoto Move q=3q))))))

Having satisfied both requirements, the theorem is now ours. We call it Mobl/lity.
ssxzs label Mobility:
sssnstaut L1:sH2 1,L2-1,L1;
36 ¥r sq x.{{?os{-r.sq}am-(i’os{Po,sqjsx)):3q.{tPREBiGME(q,r)van}n{(Havar
Move q=xATo Move Qqesq)v(CASTLE Move ga(Alsomover Move gsxaAlsoto Move g=5q))
1)

Section 3.3.3 Segregate

For our last example of a chess inductive proof, we prove the well known chess fact that bishops
stay on squares of the same color. The key predicate for this proof is WHI TESQUARES, a sort on
squares, which is true, of course, on the white squares.

3.3.3. Chess Lemmas and Theorems Page 89.

In proving this theorem we employ the lemma BishopStcysanSameCo!or.w
BishopStaysOnSameColor states that between any position, r, and a successor, p, if a bishop ybi is
on square sql in r, and sq in p, then sql and sq are of the same color. Expressed as a WFF in our
axiomatization, this is:

¥r p ybi sgl sq. { (SUCCESSOR (r,pla(Pos{p, sqi;‘gginl’osir,sqli-ubi}b
(WH1 TESQUARES (sq) skH] TESQU Sl{sql)}lss

This theorem also employs the lemma WasHere, which states that for any piece x, in a position p, if
x is On some square in p, then x was on some square in the position previous to p31

The proof of BishopsisOnSameColor follows the form of our other chess inductive proofs. First the
simplified form of chess induction, Chsind, is instantiated with the theorem to be proven.

sssssiabel Ll

ssxseen]l Chslndlaedp. (Ysgl sq2 bi‘i(Pos(?ﬁ.aqli-gbinPos€p.aq2¥-ybi23 {
«WH1 TESQUARES (sql) sWHI TESQUARES (sq21 11114

1 (¥sql sq2 ybi.{(?os(?a.sql)sybin?os{?ﬁ,sqi):yb1):{HHZIESQU&RES sgls
WHITESQUARES sq2))a¥r p.{(¥sql sqZ ybi.((Pos{Pﬂ.sql}-ybinPos{r,sQZ)sybi}:{
WHITESQUARES sqlsWHITESQUARES $q2))ASUCCESSOR(r,p))2¥sql sqZ ybi.{(Pos(PO,
sql)nybinpos{p.sa23-ybi}:{HHITESOUARiS sqlaWHITESQUARES sq2))))oVr sql sq2
ybi.({Pos({PO,sql)=yb inPos{r,sq2)=ybi }5{WHITESQUARES sq1aWHITESQUARES sqé)

Proving the proposition for the initial position is trivial. No piece can be on more than one square
in any position. So, of course, our bishop ybi is on the same color square in P2 as in P.

ssseaVE Unique P8,sql,sq2,ybis
2 Pos(P&,sql}sybi:{Pus(?o.sqz}-yhissqlssqz)

ssssstauteq (Pos(PB,sql)sybinPos (P8, sq2} =ybi) > (WHI TESQUARES (sql) =
sWH] TESQUARES (sq2)) 14
3 (Pos{P0,sql)=ybiaPos(P0,3q2)syb1)o(WHITESQUARES sqlsWHITESQUARES sq2)

sssssxlabel L2;

ssxss Y] 1 sql sq2 ybis

4 ¥Ysql sq2 ybi.{(Pos(P&,sql}-yhif\?os(?o,sqz)sybﬂ:(iﬂill’isoﬂaﬁs sqls
WHITESQUARES sq2))

We make the two usual assumptions for chess inductive proofs.

ssssxlabel L3;

sssssassume L1:#1H2814101;

5 ¥sql sq2 ybi.({Pos(Pﬁ.sql)=ybin?os(r,sq2)syh1}::(RHITESQUARES sgls
WHITESQUARES $q2))ASUCCESSOR{r,p) {5)

srsEEaSEUME Pos (P8, sql) =ybinPos (p, 8q2) =ybi;
6 Pos{P0,sql)=ybiaPos(p,sqZ)=ybl {6)

sesssnE L3: 41
7 ¥sql sq2 ybi.((?os(PB,sql)whin?os{r.qu)lybi)::(HHITESOBARSS sql=
WHITESQUARES sqZ)) (5)

50. The proof of BishopStaysOnSemeColer is in saction AS3Z
51 The proof of WasHers is in section A11.1.2.1.

Page 90. Chess Lemmas and Theorems | 333,

As ybi is on square sq2 in p, it must have been on some square in r. Let us cail that square sq.

ssessVE WasHere r,p,892,ybit
8 [SUCCESSQR(I'.9)“?0&?9,“&2}!351)3381}.?05{!.8&}’3!11

ssssetaut Jag.Posir,sql=ybi L3ttt
¢ 3sq.Pos{r,sq)sybi ?5 é)

sssssdE T sqxy
10 Pos(r,sqx)sybi (10)

This square sq is, by our assumption, the same color as the square ybi started on (eql)

ssesaYE 111 sql,sax,ybis
11 (Pos(P0,sql)=ybiaPos(r, sqx)sybi)>(WHITESQUARES sqlaWHITESQUARES sqx) (5)

And by the lemma 8ishopStaysOnSameColor, it is the same color as the square ybi is on in p
(sq2).

ssseeYE BishopStaysOnSameColor r.p,ybi, 8qx, 8q:
12 (SUCCESSOR({r,p)al Pos(p, sa2)zybiaPos(r,sqx)=ybi))o{WHITESQUARES sqZs
WHITESQUARES sqgx)}

So it obvious!y follows that the initial square, sql is the same color as the final square, 8q2.

ssssstauteq WHI TESQUARES (sq1) sliH] TESQUARES (sq2) L3:6, 1111
13 WHITESQUARES sqlaWHITESQUARES sq2 (5 6)

We remove the dependencies and generalize in the appropriate order.

sxzss>] L3+10%;
14 (Pos{ P0,sql)=ybiaPos(p,sq2)=ybi o (WHITESQUARES sqlaWHITESQUARES 3q2) (5)

sss32¥] * sql sqZ ybi:
15 ¥sql sq2 ybi.{(Pos(PO, sql)sybiaPos(p,sqZ)sybi)>(WHITESQUARES sqls
WHITESQUARES sq2)) (5)

sessa>] L30T

16 (VYsql sq2 ybi.{{Pos(90,sql)-ybinPa;{r.qunybi3:(UHITESQUAR£S sqle
WHITESQUARES sq2) JASUCCESSOR(r,p))oVsql sqZ yb1.(tPcs(?ﬁ,sql)-yMaPost.qu)
zyb1 }o(WHITESQUARES sqlaWHITESQUARES $q2))

sssss¥] T r p1

17 ¥r p.{{¥sql sq2 yht.((Pos(Po,sql}syhin?os{r.qu}-ybi):{HHII‘ESQUARES sglm
WHITESQUARES qu))nSUCCiSSOR(r,p}b’V:a'i $G2 ybi.({-Post?ﬁ.;ql;-ybinPos(p,mZ)
=ybi)o(WHITESQUARES sqlaWHITESQUARES $q2})))}

Having satisfied both chess inductive requirements, we have our theorem.

ss2xs iabel Bish nSameColori

sessstaut L1:#2 L1,L2, %

18 ¥r sql sq2 ybi.{{Pos{?ﬁ.sq%)-ybin?cs(r.sqz}syhi}:(HHIYESQBARES sgls
WHITESQUARES sq2))

34 Chess Lemmas and Theorems Page 91.

Section 3.4 More Complex Chess Theorems
Section 3.4.1 Proof by Cases: Symmetric Orthogonality

The ORTHO relation, on a board and two squares, {s true if the argument squares are on the same
orthogonal (row or column), and all squares between the two are empty of that board. It is used in
defining the rook and queen moves. There is an attachment to ORTHD that, given 2 board and
squares, will compute the value of the ortho refation. However, much as LISP can not compute call
by name function evaluations, the simplify mechanism cannot handle simplifications of equally
fragmentary information. We will have occasion to conclude the ORTHO relation on sub-boards from
that on of total boards, and vice-versa.

One can conclude this equivalence, of course, when none of the squares between the given squares is
undefined.

The proof itself is an example of procf by cases. We will have to prove the theorem for both rows
and the columns, and in each direction. We will accomplish this by the use of four parallel proof
threads, which, properly Riemannian, will converge to the our theorem.

We begin by assuming that board a is a sub-board of of board b, that our two squares, sal and
sq2, are different, and that either the two squares are in the same column, and every square between
them on that column is not undefined (UD) on @; or that they share the same row, and every square
between them on that row is not UD.

ssexsiabel Ll:

sessE3sSUNE SUBDARD (a,b) a(~(sql=sq2ln ({(Column{sql}=Column{sqg2) A ¥sq3. {{
+«BETWEEN (Row (sql} ,Rou{sq3) .Hou{sqznntoiuanlsqm =Column{sgl))> —~{¥alueon {a,
+sq3)=UD11) v{Row{sql)=Rou{sG2) A ¥sq3. (-IBE?LEENICoEuunEsQH,ColunnisqSl .
*Cctumn(qu%lnﬁoulsq3l-ﬁoulsq1}}: ~{Valueon{a,eq3}=UD}} 1114

1 SBBBRRO(;,b)n{-r(sqisqu)n((Co]umn sgl=Column quuVsaS.{{BﬁTHEEN(aow sgl,
Row s$q3,Row sqZ)aColumn sq3=Column sqi):r-(’laluaon{a.sq&)-{m}))v{rtoﬁ sgl=Row
qunVsqS.{(BEWEEﬂ(Cnium sqgl,Column $q3,Column 5QZ)AROW sq3=Row sql)o>~{
Vailueon{a,sg3)sUD})}))) t1)

If a is a sub-board of b, then they differ only on the squares where 3 is undefined.

ss2ssYE SUB_BOARDSG a , b ¢
2 SUBOﬁRﬂ{a,b):qu.(Va'iumn{:.sq)ﬂh‘Iueon(b.sq}wa%uaon(a,sq)-m})

ssssstaut T2 .Y
3 V¥sq.(Valueon(a,sq)-Va‘uaon{h.sq}v%lumﬂh.xq}sﬁﬂ) {1}

Let us call the typical square between sql and sq2, sq3. Either this square is undefined (UD) on 3,
or it has the same Yalueon it in both 3 and b.

sssss label L8:
sssss¥YE ¢ sqd;
4 UaIueonta,sqa}sva‘iueon(b.sqaijﬁuaon(l,sqS)tBB {1}

We invoke the lemma RowColumnSquareThm, which states that if two squares have the same row

Page 92. Chess Lemmas and Theorems 34.1

and column, they are equal.5?

sssss¥E RouColumnSquereTnm sql , 8q2
5 Row sql=Row $q2>{Column sql=Column 5q2>5ql=sqZ)

Since sql and sq2 are assumed to be unequal, they must differ in row or column.
We consider each possibility. They might be equal by columns, or equal by rows.

sssae | abel L%:
seseeISSUME olumn{sgl)=Column{sq2};
6 Column sql=Column saq2 (6)

sssssassume Rou(sql)=Roulsq2):
7 Row sql=Row sq2 (7)

The definition of ORTHO, applied to both a and b.

sseeelabel L5:

«ssssYE MOVINGZ a , sql , 8q2:

8 ORTHOIa,sql.qu}-(—-(sqhqu)A((Coium sql=Column $q2AYsq3.((BETWEEN(Row
sql,Row sq3,Row sq2)aColumn sq3sColumn ;ql):Vl‘iuun(a,;qa}-n‘rnv{aw sqlsRow
sq2AYsq3. ((BETWEEN(Column sql,Column sg3,Column sq2)aRow sqisRow sql)>

Vaiueon(a,sq3)=MT})))

s«sesxVE MOVINGZ b , sql , sa2;

9 ORTHOIb*sqi.qu}-{—-?sqlsqu]a({Co‘iumn sql=Column $q2AYsq3.{ (BETWEEN(Row
sql,Row sad,.Row sq2)aColumn sq3=Column sql):‘lﬂuun(b,sq.’a)-m))v{Rw sql=Row
sq2a¥sa™ , BETWEEN({Column sql,Column sq3,Column $q2)ARow sq3=Row sql)o

Valueon(b,sq3)=MT))})

As we seek to prove equivalence, we assume each of the ortho conditions and try to prove the other.

ssssslabel L3:
sssasassume TT:iHl;
10 ORTHO(a,sql,sq2) (10}

sssasassume T1Ti#¥ls
11 ORTHO(b,sql,sqZ) (11}

There are now four paraliel cases through the proof, determined by whether the presumed
orthogonality Is horizontal or vertical, and on board b, or its sub-board, 8. Note the dependencies.

We can conclude, in each case, from our assumptions and the definition of orthogonality, that every
square between sql and sq2 is MT.

ssssslabel L&

sxssetauteq LO:H2H2RLNZ L5,L2,L1,L8+1,L3;

12 Ysq3.((BETWEEN(Row sqi,Row 3q3,Row 3q2)aColumn sq3sColumn sql)oValueon{as,
sq3)=MT) (1 6 10)

sssestauteq LS H2N2H2H2 LS,L2+1,L1,L8+1,L3;

52. The proof of this lemma is in section Adl

34.1. Chess Lemmas and Theorems Page 93.

13 Vsq3.((BETWEEN{Column sql,Column $q3,Column $q2)aRow sq3=Row sgl)oValueon
(a,sq3)=MT) (1 7 10)

sssss tauteq LS+11 H2W2H1N2 LS+1,L2,01,0L8+1,L3¢1s
14 ¥Ysq3.{(BETWEEN{Row sql,Row sq3,Row 3q2)aColumn sq3sColumn sql)oValueon(b,
sq3)=MT) (1 & 11)

ssssstauteg LS+11 #ZH202H2 LS+1,02+1,L1,0L841,L3+1;
15 ¥sq3.{(BETWEEN({Column sgl,Column $q3,Column $G2)ARow sq3=Row sql)oValueon
{b,sq3)=MT) {17 11)

We apply this fact to our typical square, 8q3.

sxseslabel LB

sx2s3¥YE 1111 8q3;

'ﬁ {%Tgﬁfﬂgnw sql,Row 5q3,Row sq2)aColumn sq3=Column sql)oValueon{a,sqd)s
i ¢

sssssVE 1111 8g3;
lj?ng_BE‘(ﬂgEgN{zggium sql,Column $q3,Column 502)aRow sqizRow sGgljoValueon{a,sqd
. E

ssassYE 111 803
gig (?ET:E?{%RW sql,Pow sq3,Row 5q2)aColumn sq3=Column sgl)oValueon(b,sq3)=

sxsssVE 11 8q3;
§9ﬂ§8£{g€§ﬂ{€giumn sql,Column sq3,Column $q2 JaRow sqisRow sql)oValueon{b,sq3
E 11

sq3 must either be the same on both boards, or undefined on 3. By our assumption, ali squares on
a between sql and sg2 are not undefined. Therefore, 8q3 will have the same Yalueon it in both
boards.

ssasstauteq L1:#2420142 L1,L2,L8+1;
20 Ysq3.((BETWEEN{Row sql,Row sq3,Row sq2)aColumn sg3=Column sql)o~{Valueon{
a,sq3)=UD)) (1 6)

ssass tauteg L1 H2H2H2H2 L1,02+1,L8+1;
21 ¥sq3.{{BETWEEN{Column sql,Column $q3,Column $G2)ARow sq3s=Row sql)o~(
valueon{a,sq3)=uD})} (1 7)

sseselabel L7

ssee2YE 11 8q3:

ZZB?EP;E?)"RW sql,Row sq3,Row 5q2)aColumn sq3=Column sql)o~(Vaiveon{a,sq3d)
=l

ssessVE 11 8q3;
23 {BETWEEN(Column sql,Column sq3,Column $q2)ARow sqlaRow sql)o~{Valuson{a,
sq3)sud) (1 7)

And, in each case, this value will be MT.

ssssslabel L3;
ssssstauteq L7:#1oValueon{b sq3i=Ml L7,L6,L8;

Page 94. Chess Lemmas and Theorems 34.1.

54 {?ET:EEﬁgﬂow sql,Row s5q3,Row 3q2)aColumn sq3=Column sql)>Valueon(b,sql)=
T i 10

ssasstauteq L7+11#1oValueon(b 8q3) =T L7+1,L641,L8s
l;sﬂ‘{rﬂi?{egitggglum sql,Column 5q3,Column 3q2)ARow sq3sRow sql)oValuson(b,sql
=

se2ss tauteq L7:#1oValueon(a sq3) =T L7.0L6+2,L8;
fﬁ {ﬁ?’giizn()aw sql,Row 5q3,Row sq2)aColumn sq3=Column sql)oValueon{a,sqgld)s=
1

ssesetauteq L7+1:1#1oValueonia sq3)=MT L7+1,L6+3,L8;
§7R(BE'{{UE£ﬁ{C?‘ium sql,Column sq3,Column sqZ)ARow sq3=Row sql)oValueon{a,sqd
=MT 1711

We generalize this result to all squares sq3.

ssxsa¥]1111sq3;
28 ¥sq3.((BETWEEN{Row sql,Row sq3,Row s5qZ)aColumn sg3sColumn sql)oValueon(b,
sq3)=MT) (1 6 10)

sxsas¥][1111sq3s
29 ¥sq3.{(BETWEEN({Column sql,Column sq3,Column $qZ)aRow sq3zRow sgql)oValueon
{b,sq3)=MT} (1 7 10)

sesse¥] $111sq3:

30 Vsq3.{(BETWEEN{Row sql,Row sq3,Row 3q2)aColumn sq3=Column sql)oValueonia,
sq3)=MT} (1 6 11)

seess¥| P 11sq3s

31 ¥sq3.((BETWEEN{Column sgl,Column $q3,Column $q2)ARow $q3=Row sql }oValueon
{a,sq3)=MT) (1 7 11)

But this is the defining condition for ORTHO on the other board.

ssess tauteq ORTHO (b sgl sq2) $444,15+1,L1,L8+1,L2s
32 ORTHO(b,sql,sqZ) (1 6 10}

sseastauteq ORTHO(b sql sq2) +494,10541,0L1,L84+1,L2+1
33 ORTHO(b,sql,sq2) (17 10)

sssss tauteqg ORTHO(a sql sq2) 2494,1L5,L1,L8+1,L2s
34 ORTHO(&,sql,sq2} (1 & 11)

ssssstauteq ORTHO(a sgl sq2l 29044,1L5,0L1,L8+1,L2+1;
35 ORTHO(a,sql,sq2) {1 7 11)

We remove the dependencies of each case assumption.

s>l L3N
36 ORYHO{a,sql,sq?}:ﬁﬂ‘lﬂ&(b.sql,sq?) (186)

sssssa] L3>
37 ORTHO(a,sql,sq2)o0RTHO(b,sql,5q2) {(17)

34.1. Chess Lemmas and Theorems Page 95.

sesxes] L3+10MMMY
38 OR?HOih,sql,sqz):ORTHO(:,“}..SQZ} {1 6)

esssnn] L3+t
a9 ORTHO(b..sql,saz):OR?HO(i.sql,mZ} {17)

szasen] L2OMMMY
40 Column sgl=Column sq?:{oﬂﬂou,sal.qu}aonT-Ho(b.sql.qu)) {1)

ssaesd] L2+1ottHMy
41 Row sql=Row qu:{DRTHO(a,sqI.sq!inORTﬂG(b.sql.ﬂzﬂ (1)

sesxs>] LMY
42 Column sqi=Column sqz:){ORTHO(b.sqI,sqz):aﬂmotl,:qi,sq!}a (1)

sezeed] LZ+10TMM
43 Row sql=Row sqb{{}ﬁ.?m(b.sql..sq?)DOR!'HO(a,sqi,qu)} {1)

Having proven the theorem for each case, we can conclude that it is always true.

ssses tauteq ORTHO(a sql 8q2) =ORTHO (b =gl sq2} +M:4.LL
44 OR?HOIa.sql.sqz)-DRTﬂOKb,sql.sq?) {1)

seens>] LiD?:

45 (SUBOARD{:,MA{-(sqlzsqn.«{(Cn'lum sqi=Column sq2a¥sq3.{{BETWEEN(Row sql,
Row sq3,Row sg2)aColumn sq3=Column sql)o~(Valueon{a,sq3)=UD)) Jv(Row sql=Row
sq2AYsq3.{(BETWEEN(Column sql,Column 3q3,Column sq2 JaRow sg3=Row sql)>~(
vﬂueon{-n,sqsalua))))))3(01!?80{-,“1.qu)-DRTHD{b,sqI.sqzn

sssss label uilr thoThm;

seess¥ita b sql sqds

46 Ya b sql an.{{SUBOARD{a..b)n(-(sqhsqz}n{{fsolum sql=Column sq2n¥sq3.{{
BETWEEN{Row sql,Row sq3,Row sq2)aColumn sq3sColumn sql}:—-{\ia!uaon(a,sqf!)lua)
) }v(Row sql=Row $q2AYsq3. { {BETWEEN({Column sql,Column sq3,Column $q2)ARow sq3
=Row sql)::--(Ua%ueonh.sqS)tUU})}}}):{MTHO(:,SQ!,;QZ)-MIHO{b,sql,qu}))

Section 3.4.2 Cornered Checking Pieces

This is a theorem about checks. [t states that if a piece is checking the opposing king on a board,
and, if on each of the squares that the piece can move to on that board, the piece still checks the
king, then the original check was a discovered check. This situation is illustrated in figure 28, where
the marked white queen is a cornered checking piece. This check must have been produced by the
white bishop moving out from between the black king and the white queen. The theorem excludes
certain exceptional conditions, such as pawn promotions, castles, en passant captures, and checks by
pawns. These restrictions are necessary for these non-reversible moves. If this sounds like a
complicated theorem, please be patient; it is the most intricate "general chess theorem™ we prove.

Page 9. Chess Lemmas and Theorems 342

?//’//
////,,,‘7

///14/’4//,
////

A

*" iy
s

l

The white queen it cornered

figure 28

We start with the assumption of some of the conditions for the theorem. We presume to have a
position, g, whose immediate predecessor was r. The transition from r to q was not accomplished by
a castle or en passant. q has a board, b, and, on some square of this board, sq, is a white value, vis.
On some other square, sqx, is the black value KB {kmg black), and a piece of vu can move on b
from sq to sqx. vu is not a pawn; sq is not in white's last rank. These last two conditions prevent
the move from being either a pawn promotion, or a pawn's move.

We label this assumption L17.

ssxsslabel L1

saxssagsume CESSOR(r, q) A (~EN_PASSANT (r, q) A{-CASTLING {r, q) A (~JLASTRANK sgn
(BOARD (q, b}n{‘d’atucon{b, eq) =vun(Valuson (b, squ) «KBa (MOVETO (b, viu, 8g, sgx} -
sVALUEP vull1)1))

1 SUCCESSOR{r,q)a(-EN_PASSANT(r,q)a(~CASTLING(r,q)a{~WLASTRANK sqa{BOARD(q.b
gnilg;uunn{b »8G)=2vwa(Valueon{b, sqx)=KBA(MOVETO(b, vw, 50, SGX JA-VALUEP ww)}})})

Since there is a white value on sq, it must belong to a chesspiece. Let us call that piece x.

ssxs:2YE PiecevaluesAreChesspisces q,b,8q;
2 (BOARD{q,b)APIECEVALUES Valueon{b,sq))>CHESSPIECES Pos(q,sq)

sesxssimplify PIECEVALUES vu;
3 PIECEVALUES ww

sxxsstauteq Poslqg, sqlsPos{g,sq)
4 Pos{q,sq)=Pos(q,sq)

ss2223] T Pos{q,sqlex occ 2;
5 dx.Pos{q,sq}=x

ssess tauteq 3Ix.Pos{q,sq)=x L1,2:3,5;
6 3x.Pos{q,sq)=x (1)

sssssiabe! CALL X;

342 Chess Lemmas and Theorems Page 27.

seexedE T x;
7 Pos(q.sq)=x (7)

We have presented sufficient conditions to prove the black king in check. We establish this fact,
with the help of the lemma AlternateBlack>3 AltarnateBiack also incorporates the knowledge that
when black’s king is in check, it must be black's turn to move.

ssesstaut Yaiuennib.sqx}-KBn(¥alueonib.sq1-vuAHU?ETDib.vH;GQ.Sqﬁli L1
8 Va!ueon(b.sqx}txanwa!uenn{b,sq)umﬂﬁ\iﬂﬁ(b,w, sq,sqx)) (1)

seass3] T squ sg v
9 3vw sq sqx.{Va!uaon{b.sqx)sKBﬁ(vaiuenn{b.sq):mHOVETO(b.W.SQ.SG!))3 {1)

s+s2s¥YE CHECKERSZ o3
10 BLACKINCHECK bm3dvw sqi sqz.Wa'luaon(b,sqz):Kh{vﬂceon(b,sql)zmﬂWETG{b
,vw,sql,sq2)))

ss332YE AlternateBlack q,b;
11 (BOARD{q,b)ABLACKINCHECK b)>{POSITIONINCHECK{ q,BLACK)A-WHITETURN gq)

szseslabel L2;
esssstaut POSITIONINCHECK (q,BLACK) A~WHITETURN q L1:%:
12 POSITIONINCHECK(q,BLACK)A-WHITETURN q (1)

Also, if black is checked, then the color of position q must be black.

sesesYE POS_COLORS q,BLACK:
13 Color q=BLACKs({WHT BLACK«WHITETURN q)

The various type simplifications needed in the rest of the proof.

ssssssimplify Yvu vb,~(Valuecolor vu=Valuecolor vbls
14 Yvw vb.~(Valuacolor vw=Valuecolor vb)

ssene¥YE 1t vu,KB;
15 ~(Valuecolor vw=Valuecolor KB)

exsessimplify -UHT BLACKAVALUEK KB;
16 =WHT BLACKAVALUEK KB

The proof will also employ parts of the definition of successor, and various facts about the colors of
pieces.

ssssxiabel L3;
ssaseYE MCONSEQGA r.q;

17 SUCCESSOR{r,q)>{{-WHITETURN raWHITETURN q)a{Prevpos qsra(~POSITIONINCHECK
(q,Color r)A({WHITEPIECE Mover Move qeWHITETURN r)a{Pos{r,From Move q)=Mover
Move an{Pos{q,To Move q)sMover Move agn{Pos{q,From Move q)sEMPTYA{ (CAPTURE
Move goPos(r,To Move g)=Taken Move q}n(casn:m;{r,q)v{EH_PASSAa?{r,q}v

SIMPLELEGALMOVE(r,q)))))))))))

ssssstaut Prevpos ger L1,L3;
18 Prevpos qar (1}

53. Proven in section A75.1.

Page 98. Chess Lemmas and Theorems 34.2.

By the theorem _Checklypes_, there are four ways a check can occur. The piece that is making
the check can have moved into the check, the check could have occurred on a discovery from an en
passant capture, the rook of a castle could have moved and checked, or the check could have
resulted from a piece moving out from between the king and the checking piece, 2 discovered check.

sssssVE _CheckTypes_ q,D, 84, sqx, X, vi, KB1

19 (POS!TIOHIHCHiCK{q.Co‘ior q)n{MB(q,b)n{ﬂWi‘l’O{h,w,:q,:qx)n{?as(q., $q)=X

n(Va‘Iueon-(b.sq):wnwnueon{b.sqz)akantvawﬁx KBa-~{Valuecoior vw=Valuecolor
K8))))))))>{Mover Move -qnw((EL?ASSHT(Puml n.q)n(SQUARUEWEEN{sq,Frm
Move -q.sqx}vSQUARE_si"{HEﬂE(sQ.Takmon Move q.:quvucasn"{us{ Prevpos qQ,9)
aAlsomover Mave q=vw)v(ORDINARY Move qASQUARE_BETHEEH(:Q.Fron Move q,sax))))

)

sxssssubstr 1 in k3

20 (PGSITIOHIﬂCHEtK(q,CoMr q}n(BOARB(Q.b)a(HOUE?O{h.W.sq,sqx}n{Pos{q,sq)ux
A{’Uﬂueon(h.sq)-vm{\!a’ﬁuaan{h.sqx}si{hw&wa ¥Ba-~(Valuecolor vw=Valuacolor
KB)}))))))o(Mover Move qr-xv{{EH_.P;\SSANY{r.Q)A{SOUME;BEMER{&Q,F:'M Move g,
sqx)vSQUhRE.BENEEN(:q.Takannn Move u.sqx)})v{{CASTLING{r,q)MBmwr Move
q-w)v{ORBIHARY Move MSQUARE_BENEEN(SQ.&M Move q,sa%x))))) {1)

By our assumption L1, we can eliminate the special move (capture en passant, castie) possibilities.

sssselabel L&:

ssssetauteqg Hover Hove q=xv (ORDINARY Move anOUAHE_B&TH&iN{aq.From Hove Q.
ssqx)) Ll.tf\LL__X.L?:I&iﬁ:iG.h

21 Mover Move q=xv(ORDINARY Move QASQUME_BEWE?I(;Q,F!'-M Move g,sqx)) (1 7

)

Let use assume that the move was not a discovered check, but rather, that the checking piece, x,
made the last move, into the checking position. We call this assumption umption.

ssssx iabel umption;
sssssassume lover Move q=xi
22 Mover Move Q=X {22)

If the last move was not 2 pawn promotion, then x has the same value in g as it had in r.

sesaeiapel sume;

sssssassume Yeql. {MOVETO (Tboard q.vu.sq,uqli:i-{?aiuamﬂbnard g, 8qli=MTiv
sMOVETO(Toboard q.vu,sqn.aqliii:

23 VsqL{HOVETO(Tboard q.w.sa.sql}:{-(’vﬂuton{Yboard q,8q1)sMT)vMOVETO(
Tboard q.w.sqx.an 3)

We assume that every square that this piece could have moved from, either is not empty, or also
checks the black king.

sesssYE sume From Move G
24 MOVETO(Tboard q,vw,s5q,From Move q):{-(\h!ueon{ Tboard g,From Move qisMT)v

MOVETO(Tboard g,vw,sax,From Move Q))

sssssYE _MoveBack_ r,G.vH, 10 Move q.From Move qi
25 KSHCCESSOR(r,q)n{ORDImR'{ Move gA-VALUEP w}}:(HOVETG{Thoard q,vw,To Move
q,From Move q)-aGVETO(Thcard r,v,From Move q,To Move q))

34.2. Chess Lemmas and Theorems " Page 99.

Now, most piece moves are commutative. We need only show that this (non-pawn valued) piece did
not just promote, and this value is also the value of the piece on the square sq in the boards of r
and q.

sxsxs¥YE MCONSEQK r,q:

26 SIMPLELEGALMOVE(r,q)s(-~(From Move g=To Move q)n(MOVETO(Tboard r,Valueon{

Tboard r,From Move g),From Move q,To Move a)a{ (SINPLE Move gqnValueon(Tboard

r,To Move q)=MT)v(CAPTURE Move an{ PIECEVALUES Valueon(Tboard r,To Move q)n-{
valuecolor Valueon{Tboard r,To Move g)=Color r))))))

sxxexYE MconseamX r,q:
27 SUCCESSOR(r,q)>{(CASTLE Move quCASTLING(r,q))A((ENPASSANT Move quEN_
PASSANT(r,q))A(ORDINARY Move quSIMPLELEGALMOVE(r,q))))

sssxxlabel LS:

txs32YE UnpromotedFrom r,q,b,x,sq:

28 {SUCCESSOR{r,q)a{-WLASTRANK sm{ﬁﬁﬂﬂb{q,h)n{wluaon{b,sq):m(Pos(ﬂ.sq)=x
AMover Move g=x)))))oValueon(Tboard r,From Move q)=vw

+2eseVE MOVETYPES] Move a:
20 ENPASSANT Move qv{CASTLE Move qvORDINARY Move q}

+ee22VYE Unique q,To Move q,sq.x:
30 Pos{q,To Move q)=x>{Pos{q,sg)=xsTo Move q=sq)

szzsxtauteq ~(Valueon(Tboard q.From Move q) »MT)VMOVETO (Tboard q,vu,sqx,From

sMove gl L1.CALL_X,L3,umption,sume+i:?;

?I ;{‘gg%ggnﬂbonrd q,From Move q)=MT)vMOVETO(Tboard q,vw,sqx,From Move q)
1 b

New, the source square of this move is obviously empty. Hence, the MT squares of our assume sume
can be eliminated. The piece must be able to make the indicated move.

sxs2e¥YE ValueTranspositionC q,From flove qi
32 Valueon{Tboard q,From Move q)=zVai(q,Pos{q,From Move q))

sssssYE EmptuyFrom q,Pos(q,From Move q),From Move qi
33 CHESSPIECES Pos{q,From Move q)>(Pos{(q,From Move q)=Pos{q,From Move g)o>—(
From Move qzFrom Move q})

s+x++YE EmpoiylsMT g,Posig,From Move gl:
34 Pos{qg,From Move q)=EMPTY=Val(q,Pos(q,From Move q))=HT

ss33sYE NotChesspieceEmpty_ Posi{q,From Move gl;
35 ~CHESSPIECES Pos{g,From Move q)=Pos{q,From Move q)=EMPTY

stsee tauteq MOVETO(Tooard q,vu,sqx,From Move q) 1ttt
36 MOVETO(Tboard g,vw,sqx,From Move @) (1 7 22 23)

The movement commutivity rules aiso hold for this MOVETO. We need to show that the vaiues of the
pieces haven't changed by this last move. As the move was not a pawn promotion, this follows.

ses2sVE _MoveBack_ r,q,vw,sgx,From Move qi
37 (SUCCESSOR(r,q)a{ORDINARY Move an-VALUEP vw) }>(MOVETO(Tboard q,vw,SQX,
From Move q)=MOVETO(Tboard r,vw,From Hove q.59%))

Page 100. Chess Lemmas and Theorems 342

sssss tauteq MOVETO{Tboard r,vu,From Move g,sqx} L1,L5-1,15+1,%1: %
38 MOVETO{Tboard r,vw,From Move q,sqx) (1 7 22 23)

sesssYE OtherSideStays r,q,sqx,BK;
gz (SUCCESSAR{r,q)a{{WHITEPIECE BKaWHITETURN q)aPos{q,sqx)=BK))>Pos{r,sqx)=

sseseVE KingValueThm r,Tboard r,sqx;
40 (BGARD(r, Tooard r)a~{Valuson{Tboard r,sqx)=UD)})o((Pos(r sqx)=¥KsValuson{
Tboard r,sqx)sKW)a{Pos(r,sqx)=BKeValuson{Tboard r .3qx)eKB) 5

sssesiabel LG
seeesYE BoardTboard r;
41 BOARD{r,Tboard r)

sssssYE SUB_BOARDSZ Tboard r,sqx;
42 -~{Valueon{Tboard r,sqx)=U0)

sessssinplify ~WHITEPIECE BKa-~(KB=UD};
43 -~WHITEPIECE BKa—-{KB=UD)

sxsex¥YE KingValueThm q.b, sqx;
44 {BOﬁRD{mb)n—-N&‘luam(b,sqx}cuuj):((Pon{q.sqx’j:\m-v;‘iuton{b,:qx)-KH)a{?os
{q,sqx)=BKeValueon{b,sqx)=kB))

Hence, black must also have been in check in the previous position.

sex23tauteq Valueon(Tboard r,sqx)=KBa(Valueon{Tboard r.From Move g)=vua
«MOVETD {Twoard r,va,From Move g,sqx)) L1,CALL_X,L2,umption,L5, t111414: 1,

45 Valueon(Tboard r,sqx)=KkBa{Valueon{Tboard r,From Move q)=vwAMOVETO(Tboard
r.ww, Foom Mo q,sqx)) (1 7 22 23)

=~«s3H30 1 sg9g2 From Move gqe-sql vu i
a® Ivie aql sv (Valueon{Tboard r,sq2)=KBa{Valueon(Tboard r,sql)svwaMOVETO(
Titoard ¢,vw,$q2,5q2))) (1 7 22 23)
spers¥E CHACKERSZ Thoard ri
47 BLAKARTHELY Tboard re3dww sql $q2.(Valueon({Tboard r,sqZ)sKBa(Valuson(
TbodXda r,$88 vrntOVETO(Thoard r,vw,sql, $q92)))

This is clearly *odpokaible.
seeas¥E XirwgnateBlack 7, Too@rd ri
43 (BOGRPTe, TOward r)ABLACKINGHECK Tboard r)>(POSITIONINCHECK(r,BLACK)A~
WHITETURN #)

exsps tanteq FALSE L1,L2.03,L6, M1 h
49 FALSE (1 7 % 23)

Therefore, we ca negate our assumpvion dat this cornered piece made the last move.

sssex—] 1,Vover Move gex;
50 ~(Mgver Move q=ix} (1 7 23)

We arrange this conclusio® in a more useful form.

342 Chess Lemmas and Theorems Page 101.

tt:s;tfzi?iORDINARY Move QASQUARE_BETWEEN(sq,From HMove g, 8qx)) a=~{Mover love
¥Q=x s 1%

?1712221?«\” Move QASQUARE_BETWEEN(sq,From Move q,5qx))a~(Mover Move g=x) {

sszszsubst CALL_X in %;
52 ggﬂaﬁ»&g)ﬁw& QASQUARE_BETWEEN(sq,From Move q,sqx))a~{Mover Move q=Pos{q
» 3G} :

And, after removing the dependencies, we generalize.

sssse>] sumed?;

53 ¥sql.(MOVETO(Tboard q,vw,sq,sql)>(~{Valueon{Tboard q,5q1)=MT)VMOVETO(
Tboard q,vw,sqx,sql)))>((ORDINARY Move GASQUARE_BETWEEN(sq,From Move q,sqx))
a-~(Mover Move q=Pos{q,sa))) (1)

ssssa>] Liot;

54 {SUCCESSOR{r’q)h{-EN_PASSAHT{r,q}n(-CASTLINB(r.Q)n{-’!ﬂ.)\STRMK sqa(BOARD(q
,bia{Valueon(b,sq Yevwa(Valueon(b, sqx }sKBA{MOVETO(b, vw, sq, SqQx)A=VALUEP ww})})
})))>(V¥sql.(MOVETO(Tboard q,vw,sq ,8q1)3(~{Valueon{Tboard q,sql)=M7)vMOVETO(
Tboard q,vw, sqx,sql)))>{(ORDINARY Move QASQUARE_BETWEEN(sq,From Move q,sqGXx))
a-{Mover Move q=Pos(q,sq))))

We call this theorem WhiteCornered. BlackCornered is the same theorem for black checking white.
We forego the repetition required for its proof.

ssssslabel WhiteCornered:

ss322¥] T r q b v 8q sgx;

55 ¥r q b vw sq sqx.{(SUCCESSOR(?,q)n(-*ﬁﬁ_PASSﬁ.N!{r.Q)n{-CASTLING(r.q}n(-»
WLASTRANK sqn{BO&RB{q.b)n{Uaiueon(b,sqjtmwa'lueon{b,sax):K%IHOVETO(I:.W.
$q, SqX JA~VALUEP ww))))))))>(¥sql.(MOVETO(Tboard q,vw, sq,sql)>{~(Valueon(
Tboard q,sql)=MT)vMOVETO(Tboard qQ, VW, $qx, 5q1)))o((ORDINARY Move GASQUARE_
BETWEEN({sq,From Move q,sqx))a~(Mover Move q=Pos(q.5q0)))))

The corresponding result for checking the white king is:

define BlackCornered:

¥r q b vw 54 sqx.[{SﬁCCESSOR(r,q)ntqiﬂ_PASSAﬂT{r.q)a{-C&STtINB{r,q)
n{-HLaSTRANK(sQ}n{{BOARD(q,b)n(Valaaon(h,sq)svun{Va%uaoﬂ(h.sqx}-xan
MOVETO(b,vw,5q,5qx})) JA-VALUEP ww)})))2{¥sql.{MOVETO(Tboard q,ww,
$q,3ql1)>({~{Valueon{Tboard q,sql)sMT)vMOVETO({ Tboard q,vw,sqx,8ql)))>
{{gﬂﬁ%ﬂﬂk?)?gg; qASQUARE_BETWEEN(sq,From Move q,8ax) Ja~(Mover Move
q=Yosiq.8q H

Section 3.4.3 No Black Pawns on the First Row

A final annotated chess lemma. We prove the theorem NoBlackPawnsOn1Row, which states that no
piece whose value is PB (black pawn) is ever in on any square of the board’s first row. This is of
course true, as all the black pawns start on the second row, and, while they still have the value of
pawn, never move backwards.

An elenctic proof. We assume that such a condition exists. In some position p, a chesspiece x is to
have value PB. In p, x is on square sql. The row of sql is 1.

Page 102. Chess Lemmas and Theorems 3.4.9.

ssssslabei Ll
ssses assums Yal{p,x)=PBAPosi{p,sql)=x;
1 Val(p,x)=PBaPos(p,sql)sx (1}

sssssassume Rowleql)=1;
2 Row sql=1 (2}

x must, of course, be a black piece.

ssssxiabel Ld:
sssss YE ColorChoices p,x;
3 (BVALUES Val(p,x)sBLACKPIECE % JA(WVALUES Val{p,x)=WHITEPIECE x)

ssssssimplify BVALUES PBAVALUEP PB ¢
4 BVALUES PBAVALUEP PB

sss22VE PieceChoices_ xi
5 (WHITEPIECE xsPiscecolor xsWHITE JA(BLACKPIECE xaPiececolor xsBLACK)

esssslabel L33
sssss tauteq Piececolor xBLACK L1,L2:%
6 Piececolor x=BLACK (1)

Every piece started on some square. Let us call the square that x was on in the initial position, sq2.

sssssVYE AlIStart_ x3
7 3sq.Pos(P0,sq)=x

zss3s3E T 892s
8 Pos(P0,sq2)=x (8)

If % has pawn value, it must be a pawn. Sincex isa blackpiece, it must be a black pawn.

ss2ssYE PaunValuedPaunsThm p,x:
9 VALUEP Val(p,x)oPAWNS x

sssssYE BlackpiecePaunsire_ xi
10 (BLACKPIECE xAPAWNS x)mBPAWNS X

Simplification tells us that all black pawns start in the second row.

sssss label L&
sssss YE BlackPaunsOn2Start_ sqZ;
11 BPAWNS Pos{P0,sq2)sRow sq2=2

sssss tauteq Row(sq2)=2 L1,L21L2+2,L3+2:L4;
12 Row sg2s2 (1 8)

Each of sql and 8q2 is the composite of its row and column.

+3ss¢YE SQUARED] sqZ;
13 sqZsMakesquare{Row $q2,Column 3q2)

sssssYE SQUAREDL sqli

3.4.3. Chess Lemmas and Theorems Page 108.

14 sqlsMakesquare(Row sql,Column sql)

sxsxasubstr 11t In ™y
15 sq2sMakesquare(2,Column sq2) (1 8)

ssssssubstr L1+l in 1
16 sql-ﬂakssquara(l,to?umn sql} (2}

By the theorem __PawnStructure_1, every path that a pawn takes must satisfy the predicate
MAY_PAUN_CAPTURES. We substitute the Makesquare value for sql and 8q2 in this WFF.

essssVE _PaunStructure_l PB,p,.x,sql,802:
17 (Pos{p.sql}xm{Pos{?ﬂ,qu}-m{?REDiﬁmE(PO.;’JAVALBE? Vai{Prevpos p.,X)})))>
HAV_MU&.C!PTURES(:QZ,sql,?iocnco}nr x)

sssessubstr 1% in * occ 23
i8 (Pos{p,sqi}sm(Pos{PU.sqz)nxa(PREDEWE(PG,p}nW\i.‘JEP Val{Pravpos p,X)}}>
nkY-PNH.i‘:AP!’URES(Hakasquara{2.toiuan $q2),sql,Piececoior X} 8}

ssssssubstr Tt in T occ 23

19 {Pos{p.sqi}:m{?os(?ﬂ.sq2)rxn(PREDEGAHE{PO.;;}MALHE? val{Prevpos p.X})))>
HAY_PJWH_CAPTURES{aakasquare(Z.Coiunn $q2),Makesquare(l ,Column sql),
Piececolor x) (1 2 8)

sssexlabel LS;

exsss substr L3 in T

20 {Pos(p.sql)=m{?os(?0.su2}=xn{?R£DEGAHE{Pu.;)nVALUEP val{Prevpos p,x))))>
???}.PQX;N_CMTURES (Makesquare(2,Column $q2),Makesquare(l ,Column sql), BLACK)

We know P8 to have occurred in the game of p.

sssssYE POSITION_RULES pi
21 SUCCESSOR(Prevpos p,P JAPREDEGAME(PO 0}

And that if a piece has pawn value, it has always had pawn value.

¢ssssVE PreviousPaunValue Prevpos P.P.Xi
22 Prevpos psPrevpos po>{ VALUEP val{p,»)oVALUEP Val{Prevpos p,x})

Simplification reveals that there are no two squares satisfying the MAY_PAUN_CAPTUURES predicate
for black, such that the transition goes from the second row to the first. Thus, we have a

contradiction.

essesVE NotMPC_Black2tol_ Column(eq2},Colunnisqlls
23 EH?Y_-P&HN_C%PIURES(ﬂakesquara(2,Co‘lum qu),Hakesquarc(l,Calum sql),
BLACK

sssxe tauteq FALSE L1,L2+1,L342,L5: %
24 FALSE (1 2)

Our original assumption must be wrong. No piece with value black pawn <an be on a square whose
row is one in any GAMEPOSITION.

Page 104. Chess Lemmas and Theorems 343

sesas-] % Roulsqgllely
25 ~{Row sql=1l} (1)

ssessd] Lioh
26 (Val({p,x)=PBaPos{p,sqlj=x)o>~(Row sqizl)

ssssslabel LD
sxsss Y T p sql;
27 ¥p sql.{(Val{p,x)=PBaPos(p,sql)sx)o>~(Row 5qls1))

However, we wish to prove our theorem for ail POSITIONS, not just GAMEPOSITIONs. Hence, we
must establish it for the initial position. This is trivial, as all black pawns are on the second row at
the beginning of the game, not the first. We first establish that all things with value of pawn black
in the initial position are the black pawns; we then instantiate our just concluded lemma to any
position, r, show by simplification that that if r is P@the theorem is still true. As all positions are
either GAMEPOSI TIONs or P8, we have our theorem.

sssassimplify Yx. (Val (P8, x) =PBaBPAUNS x};
28 ¥x.(Val{P0,x)=PBaBPAWNS x)

ssse2VE T x3
29 Val{P0,x)=sPB=BPAWNS x

ssssssimplify ~(2=1);
30 ~{2=1)

sssss tauteq (Val(PB,x)=PBAPos (P, 8q2) sx)>~(Roulsq2l=l} L&, 11: %
31 (Val{P0,x)=PBaPos{P0,sq2)=x)>~(Row sq2=1)

sssssassume r=P8;
32 r=P0 (32)

ssssssubst T in ™y
33 (Val{r,x)=PBaPos{r,sq2)sx)o~(Row sq2s1) (32)

sxesen] ot
34 r=P0>((Val{r,x)=PBaPos{r,sq2)=x)o>~(Row sq2=1)})

sssssVE LB r,sq2;
35 GAMEPOSITION ra{(Val{r,x)=PBaPos(r,sq2)sx)>~(Row sq2=l))

sssssYE POSITION_TYPES r;
36 ~{r=PO=sGAMEPOSITION r)

ssssetaut (Val(r,x)«PBAPos(r,sq2)=x}>~(RoulsqZi=1) #1111y
37 {Val(r,x)sPBAPos(r,sq2)=x)>~(Row sq2sl)

sssss |abel NoBlackPaunsOnlRou;
ssess Y] T r x sqlesq;

38 ¥r x sq.{(Val{r,x)sPBaPos{r,sq)=x)>~{Row sq=1))

4. A FOL Solution to the Chess Puzzie Page 105.

Chapter 4 A FOL Solution to the Chess Puzzle

Systsms of nataral deduction . . . constitute a form
for the development of logic that is natural in many
respects. In the [irst place, there is a similarity
botween natural deduction and intuitive, informal
roasoning. The inference rules of the systems of
natural deduciion correspond closely to procedures
common in intuitive reasoning, and when informal
proofs -~ such as are encountered in mathematics
for example — are formalized within these systems,
the main structure of the informal proofs can ofien
be proserved. This in itsel] gives the systems of
natural deduction an interest oz an explication of
the informal concept of logical deduction.

Dag Prowiis®*

This chapter details our proof, in FOL, of the solution to the chess puztle presented in section 1.6.
This proof follows closely with the solution presented in that section.

Section 4.1 Declarations for this Proof

First order logic is somewhat distinguished by the proliferation of constants. If one needs a new
entity, one creates a new contlant; if a particular formula is a frequent referent, one defines a new
predicate to abbreviate that formula. This particular proof shall not spawn any new predicates for
the chess world. However, perhaps obviously, we shall need names for the individuals mentioned in
the problem and solution. More particularly, we define INDCONSTS for some of the more important
boards of section L6.

Most obviously, we need a constant to represent the puzzle board, the board illustrated in figure 29.
Let us cali this individual GIVEN.

declare INDCONST GIVEN ¢ BOARDS:

54 [Prawitz$5], pags 7.

Page 106. A FOL Solution to the Chess Puzzle 4.1

nas. 7, 5
71 f,/ g

7

77 7
x; &%
'’ o,

27 % U %

7
[/

N

Uiy %
27
75

.77 Yy Yy
LY %

W
%,
The board GIVEN

E,
2
Sigure 29

N

The attachment to GIVEN is therefore:

attach GIVEN «[CHESS] ((MT MT NB RW MT MT MT KW) (PB KB MT RW PB MT PB MT)
(PB MT MT PB MT MT HT MT) (MT HT PB MT HT MT HT HT)
(MT MT PB MT MT MT MT UD) (MT PW MT PU NT MT PU MT)
(PR MT P MT HT PU MT PW) (MT NB MT NT NT AT NT NT)),

Our proof aiso dealt at length with the position of the board just prior to the last move. We
concluded that a white pawn on WOB7 had captured some black piece on BGl. We shall need to refer
to several of the possible identities of that piece. In the base situation, that piece is undefined, and
we get the board QBUD.5® When we wish to consider that piece a rook or a queen, we will use the
boards QBR and GBQ. Recalling the definitions of section 2.1.5, we see that QBUD is a sub-board of
both QBR and QBQ. OBUD is illustrated in figure 30.

declare INDCONST QBUD QGBR QBQ ¢ BOARDS;

§5. In this proof, we will refer to the position presented in the problem ss px, its previeve position, qx. Thue, the neme QBUD
signifies that this in position Qx, this Board is UnDefined on the interesting square (BQI). Similarly, QBR hoe o block rook on that
square; OBQ, » black queen

4.1. A FOL Solution to the Chess Puzzle Page 107.

D% W, &
7z YA

;///? H y//é /r/?: VA
',

1%

7 /;

n, & T, 0,
% %} %y %’Wﬁ
//4’3 ////'/3 %? ///'éﬁf;/ (/A
VIV

The board QBUD
figure 30
attach OBR « [CHESS] ((MT MT NB RB MT MT MT KW) (PB KB PW RUW PB MT PB MT)
(PB MT MT PB MT MT NMT HT} (MT MT PB MT MT HMT MT HT)
(MT MT PB MT MT NT HMT UD) {MT PU MT Pid MT MT PU HT)
(PU MT PUW MT MT PU HMT PW) (MT NB MT MT MT MT MT MT))s
attach OBQ « [CHESS) ((MT NMT NB 0B MT MT MT KW) (PB KB PW RU PB MT PB MT)
(PB MT MT PB MT MT MT MT) (T MT PB MT MT MT MT HT)
(MT MT PB MT MT MT MT UD) (KT PU MT PW MT MT PW HT)
(P4 MT PW MT MT PU MT PW) (N7 NB MT HMT MT MT MT MT)),
attach QBUD~ [CHESS] ((MT MT NB UD MT MT MT KW} (PB KB PU RU PB MT PB MT)
(PB MT MT PB MT MT HMT MT) (MT MT B MT MT MT M7 HMT)
(M7 MT PB MT MT NT MT UDy (MT PU MT PU NMT MT PU MT)
(PU MT PU MT MT P MT PH) (NT NB MT MT MT MT MT MT}):

Section 4.2 The Proof

Declarations completed, we plunge forward into our proaf. One of the major propositions of this

aper is the existence of a correspondence between the Auman solution to our chess puzzle (presented
in 16.2), and our FOL encoding of that proof. In support of this hypothesis, this chapter is
organized like section 162; we number the description of our FOL proof to illustrate the
relationship.

Section 4.2.1 Black is in Check

We seek to prove that, if the given board (GIVEN) is the board of some legal position, and there is a
chesspiece on the square WKR4, then that piece must be the white queen's bishop (WGB). Expressed as

1 FOL WFF, this becomes:3¢
¥p. ({BOARD (p G1VEN) ACHESSPIECES Pos(p WKRG)) > Pos{p WKR&4) = {aB}

It is therefore reasonable to begin our proof with the assumption of the antecedent of this WFF.
Rather than p, we select the distinctive parameter px to symbolize this original position. For future
reference, we label this line CALL _PX

ssssslabel CALL PX:
sssesaASSUME BﬁARDIp:.GWENiMSSPIECES Pos {px, WKR&} ;

56. Here ws have begun by presuming that the given board is a position of » GAMEPOSITION, not et any POSITIONS. This i,
of courss, trivially sstablished. The only non GAMEPOSITION POSITIONS is PO, the initial (game sisrting) position A quick consuitation
to the simplification mechaniem will show they differ bn many squarss. Hence, we iske the lberty of veing px, rather then some
POSITIONS variable.

Page 108. A FOL Solutiun to the Chess Puzzle 4.2.1.

1 BOARD(px,GIVEN)ACHESSPIECES Pos{px,WKR4} (1)

L We see that, on the given board, the black king is in check (figure 31). We obtain this
through a single invocation of the simplification mechanism. Notice how we have transformed this
observation into a simple computation. We will uz® this computational abtlity in this proof whenever
possible; more particularly, when we have the ground instances (constants) to compute about, and
have the appropriate functions to do the computing.®’

\ 7, X YU W

7, A ////%
WANAW,, P,
ﬁ"& //%.’;& %%’ fé’?’ é&?;
ol Y Y.

Simplification sees the check of the black king.
figure 31
ssexs | abel QIE%HEEK;
sessasinplify BLACKINCHECK GIVEN:
2 BLACKINCHECK GIVEN

Ll One of the more trivial chess lemmas, AlternateBlack, informs us that any position which
has a BLACKINCHECK board must have black on move. Additionally, the lemma fills in the
POS1TIONINCHECK predicate for us. Let us call this line BLACK_GOES.

ssssslabel BLACK GOES;
sssxs¥YE AlternateBliack px,GIVEN;
3 {BOARD{ px, GIVEN)ABLACKINCHECK GWEH):{POSITIONIHCHECK{M.-BL!CK)n—-HRI?ET{JRN

px)

1.2, If this position is black’s turn, then white must have made the previous move. We want a
name for this position, too. We will call it ax. Implicit in using a name from the sort of
LEGALPOSI TION, rather from POSITIONS is the obligation to show that the stated position is not the
initial position. It is obvious to us that the board GIVEN was not achieved one move from the siart
of the game. But to convince our proof checker, we invoke the lemma PREVLEGAL, which demands

57. We have iried to have all of the spproprisi® functions defined in our axiomstizstion {chapter 2). Occosionsily, computing
somathing with the chess sys, snd thersby considering sach case of s quentified WFF, would be 100 time coneuming. in those instances,
we may sttemp! the proof through the veust deductive means.

42.1. A FOL Solution to the Chess Puzzle Page 109.

the display of a black piece not on its original square. What piece to use? Kings are the easiest
commodity; from the lemma KingValueThm we know that any king valued piece must be the king,
and we can see (can simplify) the black king on BANZ.

ssa2sVE KingValueThm px,GIVEN, BONZ;
4 {BOARD({px,GIVEN)A~(Valueon{GIVEN, BONZ)=UD))o{ (Pos(px,BQN2 jsbiKuValueon(
GIVEN,BQN2)sKW)A(Pos{px,BQNZ y=BKaValueon(GIVEN, BON2}=¥B))

sesessimplify 1
5 BOARD(px,GIVEN)>{~(Pos{px,BQN2)=WK yaPos{px,BQN2)=BK}

ssss¢YE PravGameposition px,BONZ,BK;
6 (((WHITEPIECE BKeWHITETURN px)p.m{px.aouz}-nx)n-(mm,souz)-m}:zq.
Prevpos px=q

sesassimplify T
7 (~WHITETURN pxaPos{px,BQN2)=BK)>3q.Prevpos px=q

sexsestaut 3q.Prevpos px=q CALL_PX:BLACK_GOES,*11, %
8 3q.Prevpos px=zq (1)

sssse fabel CALL QX:

sexesdE T qx;
9 Prevpos px=gx (9)

It is also useful to have around (for the conditional parts of various theorems) facts about the
ancestry and relationships of px and qx. We create and label these auxiliaries.

sssssiabel PXIS:
sxsss¥YE POS _RULES px:
10 SUCCESSOR{Prevpos px,px}n?aioﬁsiﬁiiﬂﬂ,px}

sxssslabel OXIS:
sssssVE POSITION_RULES gx:
11 SUCCESSOR{Prevpos qx,qx}nvﬁosmﬁﬁ'o,qx)

ssessiabel P

XSUC;
n:utauteq-%ESSDR{qx.mi CALL_QXsPXIS;
12 SUCCESSOR(ax,px) (9)

Section 4.2.2 White's Last Move

2. Our attention turns to discovering white's last move, the one that put black into check. We
consider each of the possible checking maneuvers (castling rook makes the check, a pawn captured
en passant leaves a discovered check, the checking piece made the last move, and the piece that move
last discovered check) and discard the first three.

Page 110. A FOL Solution to the Chess Puzzle 422

2.1. We wish to prove that white did not castle to reach this position. This is easy. We
observe that on GIVEN, a board of px, white's king is on BKR1. This is not, of course, a square a
castle can leave the king upon, {as the lemma Whnecastlefhm informs us) (figure 32).

db?%;,zsfﬂv %
/// /i"{ ,// Y,
//’//f///ﬂ
/ L7
”/,;M/ % ’///
The king did not just castle.

figure 32

sssssVE KingValueThm px,GIVEN,BKR1;
13 (BOARD(px, GIVEN)a~(Valueon(GIVEN BKRI}IUD)}::({Pos(px,BKRl}ﬂl‘KlVﬂaOont
GIVEN, BKRI}IKH)&(?G!(QX BKRI)RBKlVaWOOR(GIVEﬂ BKR1)=KB))

s«ssesYE WUhiteCastieThm gx.px, BKR1:
14 {SUCCESSOR{qx,px)h(ﬁﬁSTLIﬂG(qQx,px JA-WHITETURN px))o{Pos{px,BKR1 y=WKo(BKR1
aWKN1vBKR1sWQB1))

sessxsimplify 11
15 BOARD({px, SIﬂEK):{Pos(px,BKRl)zh'Km{Pos(px.sxﬂl}nm\:}}

ssssasimplify ™
16 {SUCCESSOR{ax,px)n(C&STLING(qx.px)n—»\ii-lITETURK px) Jo~{Pos{ px,BKR1)=WK)

We can conclude, tautologically, that white did not just castle.

sssse |l abel ﬁgTPX%ﬂSTtE
ssssstauteq ~CASILING{qx, pxi CALL_PX:BLACK_GOES, PXSUC,t1: %
17 ~CASTLING{qx,px) (18

2.2. Similarly, if white has just captured ¢n passant, then he would have a pawn on black’s
third row (from the theorem WhiteEnPassantThm2). Since GIVEN is a board of px, and inspection
reveals neither an undefined piece on the third row, nor a white pawn, we can quickly dismiss en

passant capture as a possibility (figure 33).

4.2.2. A FOL Solution to the Chess Puzzle Page 111

,/aa" % ?f&%
KoY RN

4

“rw 0 %
//3/ / ?’

. // B
/M/ % //

No white pawns on black’s third row.

figure 33

sesxsVE UWhiteEnPassantThm2 gx px GIVEN
18 {SUCCESSOR{qx,px)n{EH_PASS&H?{qx,px}mﬂHITETUR?t px))o{¥dex.~{Valueon(
ggg:;}!aknquan(s _dex))sPWwValueon(GIVEN, Makesquare(d, dcx) JsUD)o~BOARD(pX,

sxsxxsimplify
19 (SUCCESSOR{qx,px)ﬁ{EH_?ASSﬁﬂT(qx,px)n-HHITiTURﬂ px} }o~BOARD(px,GIVEN)

sssss [abel TPXEP:
sssss tauteq ASSANT (ax, px) CALL_PX1BLACK_GOES,PXSUC, *3
20 -~EN_PASSANT{qx,px) {)

Page 112. A FOL Solution to the Chess Puzzle 422.1.

Section 4.2.2.1 The Check Must Have Been Discovered

2.3. Proving that the piece that moved last generated the check is more difficult. Knowing
chess, and with broad pattern recognition abilities, we can see that the checking white rook is
blocked on ever side except the king's, and that only moves that started with the king in check could
have lead him to that square {figure 34):

A
- /;%// %
,///5/}// n
Dal Uy

The white rook is cornered.

Sfigure 34

We have a theorem, WhiteCornered, with that effect: if a checking piece is trapped on all sides, then
that piece did not make the last move, but, rather, the check was a discovered check. (This is only
true with assumptions which eliminate the special moves.) The validity of this condition is obvious
on the problem board (GIVEN). However, some deduction is needed to show that it still holds on the
total board of px (which is not undefined on WKR4, the x-ed square.) We have shoved this deduction
to the background; it is presented in the lemma BlockedGivenThm in section B.2. That derivation is
a good example of both the problems accruing to different representations of the same ob ject, and
the difficuities involved in proving predicates true on simi/ar ob jects.

We invoke our theorem about cornered checking pieces.

ss+x22VYE WhiteCornered gx px GIVEN RW BQ2 BANZ;

21 (SUCCESSOR{qx,px)A{-~EN_PASSANT{qx,px)a{-CASTLING{qgx,px)a{-~WLASTRANK BQzZal
{BOARD{px,GIVEN)A{Valueon{GIVEN,BQZ)=RWA{Valueon{GIVEN,BQONZ }=KBAMOVETO{GIVEN
,RW,BQ2,BQN2Z))))A-VALUEP RW)))))>{¥sql.{MOVETO{ Tboard px,RW,BQZ,sql)o{~{
Valueon{Tboard px,sql)=MT)vMOVETO(Tboard px,RW,BQN2,s5ql)})>{{ORDINARY Move
PXASQUARE_BETWEEN(BQZ,From Move px,BQNZ} Ja~{Mover Move px=Pos{px,BQZj)})})

Some of the antecedents of this WFF have been established earlier in this proof (such as the
successor relationship between gx and px, and the non castling nature of the last move). Others we
can see by observation. We need here observe that the checking piece is not on the last rank, it can
capture the king, and pieces on that board are where we claim them to be.

seseesimplify ~HLASTRANK BQ2aValueon!{GIVEN,BQ2])=RHAYalueon{GIVEN,BON2) =KB
s AMOVETO(GIVEN,RW,BQ2,B0ON2) A~VALUEP RU;
22 -WLASTRANK BQ2a{Valueon{GIVEN,BQ2}=RWA{Valuson{GIVEN,BQNZ }=KBA{MOVETO{

4221 A FOL Solution to the Chess Puzzle Page 113.

GIVEN,RW,BQ2,BQN2)A~VALUEP RW)))
The quantified part of the conditional is obtained through the use of our lemma.

ax:33¥YE BlockedGivenlhm px:
73 BOARD(px,GIVEN)>Ysql. (HUVETQ:Tboard px,R¥,BQ2,sql)o{~(Vaiueon(Tboard px,
salitﬂT)vHOVETD{?baard px,R¥,BQNZ,sal1)))

24. Hence, the check was a discovered check; the piece that made the last move moved out
from between the king and rook.

sesxx | abel ORDPX;:

sesextauteq ™11 “T1T: #2842 11:1,PXSUC,NOTPXEP, NOTPXCASTLE,CALL_PX;

24 (ORDINARY Move pmS(}UARE_BEWEEHIBQZ From Move px,BQN2))a~(Mover Move px=
Pos(px,8Q2)) (1)

Section 423 Which Piece Discovered the Check
Section 4.2.3.1 Where the Last Move Originated

"3 We seek the identity of the piece that moved last.
3.1 We observe that there is only one square between the rook and the king, BAB2. If the
piece that moved last moved out from between them, if must have come from this square.

T2E 7 B
”93} /_ »
B P
U, i /’/
“ury //x

’7///

2?’2
) 4y

The FROM square of the move.

figure 35

sxsesimplify Ysa. {SQUARE _BE TWEEN(BO2 sq BONZ) >sq=B0OB2) :
25 ¥sq.{SQUARE_BETWEEN(BQZ, sq, BQN2)>sq=BQB2)

o

ss22x3¥YE * From Move pxi
26 SQUARE_BETWEEN(BQZ,From Move px,BQNZ)oFrom Move px=BQB2

Page 114. A FOLtSolutson to the Chess Puzile 42.3.1.

sssssiabel | t
szssstauteq From Move px=BOB2 11,4
27 From Move px=BQB2 (1)

Section 4.23.2 The Last Move was & Pawn Promotion

3.2. Perhaps the last move was not special. We have already eliminated the possibility that the
move was a capture en passant or a castle. Let us assume that the last move was not a pawn
promotion.

We know several facts about all moves. In particular, moves are either castles, captures en passant,
or satisfy the SIMPLELEGALMOVE predicate.

sesxs label APX:

xxsweYE MC A qQx px;

28 SUCCESSOR{qx,px)>{{~WHITETURN qxsWHITETURN px)a(Prevpos px=qxa(-
POSITIONINCHECK{px,Color aqx)A({(WHITEPIECE Mover Move pxuWHITETURN qx)a(Pos(
qx,From Move px)=Mover Move pxa(Pos{px,To Move px)=Mover Move pxa{Pos{px,
From Move px)=EMPTYA((CAPTURE Move pxoPos{qx, To Move px)=Taken Move px)al
CASTLING{ qx,px)v{EN_PASSANT(qx,px JvSIMPLELEGALMOVE(qx,px))})))) 13333

We have a lemma MovedValues (section A.72.1) applicable to this situation. It states that for all
ordinary, non-pawn promoting moves, the moving piece, with its current value, could MOVETO, on the
totai board of the previous position, from the From square of that move, to the To square.
Additionally, when the ensuing position has black on move, then a white piece occupies the To
square of that move (and similarly for white). We consider each of the white and undefined pieces

on GIVEN in turn (figure 36).
/zf% s

‘//
2 Y 23 Y
s XY Y

Y

il B

Which of these pieces made the last move?
figure 36

4.2.3.2. A FOL Solution to the Chess Puzzle Page 115,

ss23+YE MovedValues qx p» GIVEN BUBZ2 To Move px;

29 ((SUCCESSOR{qx,px)a(—~EN_PASSANT(qx, px)a(-CASTLING(qx, px)A(~PAWNPROM Move
pxABOARD(px,GIVEN}))))a(From Move px=BQB2aTo Move px=To Move px))}>{MOVETO(
Tboard qx,Val(px,Mover Move px),BQB2Z,To Move px)a(=({Valueon({GIVEN,To Move px
)=UD)>(MOVETO(Thoard qx,Valueon(GIVEN,To Move px),BQB2,To Move px)a((
WHITETURN px>BVALUES Valueon{GIVEN,To Move px))a(~WHITETURN PXoWVALUES
Valueon({GIVEN,To Move px)))})))

2.2, There are ten white pieces on the board GIVEN. Could any of them have made the last
maove, out from between the rook and the king?

sxxesVE GivenldV To Move px;

30 WVALUES Valueon(GIVEN,To Move px)>(To Move px=BKRlv{To Move px=BQlv{To
Move px=BQ2v{To Move pr=WOR2v(To Move px=WQN3v(To Move px=WQBZv{To Move pxm
WQ3v(To Move px=WKB2v{To Move px=WKN3vTo Move px=WKRZ))))11}

3.3.1. Obviously, the king on BKRI could not have made that jump.

s2323VE MayMove Tboard ox Valueon(GIVEN, To Move px} BOB2 BKRI;

31 MOVETO(Tboard qx,Valueon{GIVEN,To Move px},BQBZ,BKR1)>{Column BQBZ=Column
BKRIV(KNIBHTHOVE{BDBZ,BKR])v(ﬁow BQBZ=Row BKR1v(SAMEDIAG{BQB2Z,BKRI)vw(

KINGMOVE(BQB2,BKR1)v(TWOTOUCHING(Column 8QB2,Column BKR1)A{WSUC{Row BQBZ,Row
BKR1)vBSUC(Row BQB2,Row BKR1)))}))))

sexxxsimplify %
32 -MOVETO(Tboard gx,Valueon(GIVEN,To Move px),BQB2,BKRI)

3.3.2. We check each of the white pawns on GIVEN, and observe (using our Chess Eye, the
simplification mechanism) that none of them could have just moved from BOB2.

sss33YE MayMove Tboard qx Valueon(GIVEN, To Move px} BOB2 WKB2; _

33 MOVETO(Tboard qx,Valueon({GIVEN, To Move px),BQB2,WKB2)>{Column BQB2=Column
WKB2v(KNIGHTMOVE(8QB2,WKBZ)v(Row BQB2=Row WK82v({SAMEDIAG(BQBZ ,WKB2)v(

KINGMOVE(BQBZ,WKB2)v(TWOTOUCHING(Column BQBZ,Column WKB2)A(WSUC(Row BQBZ,Row
WKB2Z)vBSUC(Row BQBZ,Row WKB2)}}}}))))

ssssssimplify 4
34 ~MOVETO(Tboard qx,Valueon{GIVEN,To Move px},BQBZ,WKB2Z)

ss222VE MayMove Tboard gx Valueon(GIVEN, To Move px) BOBZ WG3;

35 MOVETO(Tboard qx,Valueon({GIVEN,To Move px),BQB2,WQ3)>({Column BQBZ=zColumn
WQ3v(KNIGHTMOVE(BQB2,WQ3)v(Row BQBZsRow WQ3v(SAMEDIAG{BQBZ,WQ3)w{KINGMOVE{
BQB2Z,WQ3)v(TWOTOUCHING(Column BQBZ,Column WQ3)a(WSUC{Row BQB2,Row WQ3)vBSUC(
Row BQBZ,Row %Q3))))))))

ssssesimplify 13
36 -MOVETO(Tboard qx,Valueon{GIVEN,To Move px),BQBZ,WQ3)

sssssYE MayMove Tboard qx Valueon(GIVEN, To Move px) BQB2 HAN3y

37 MOVETO(Tboard gx,Valueon{GIVEN,To Move px),BQB2,WQN3)>{Column BQB2=Column
WON3v(KNIGHTHMOVE (BQBZ , WON3 Jv{Row BQB2=Row WQN3v(SAMEDIAG(BQB2,WQN3)v(

KINGMOVE(BQBZ,WQN3)v{ TWOTOUCHING(Column BQBZ,Column WON3)A{WSUC{Row BQBZ,Row
WQN3)vBSUC(Row BQB2,Row WQN3))})))))

ssasssimplify 1;

Page 116. A FOL Solution to the Chess Puzzle 4.2.3.2.

38 -MOVETO{Tboard qx,Valueon{GIVEN,To Move px),BQBZ,WQN3)

sss3:YE MayMove Tboard qgx Valueon (GIVEN, To Move px) BOB2 HORZ;

3% MOVETO(Tboard qx,Valueon{GIVEN,To Move px),BQB2,WQRZ)>(Column BQBz=Column
WQR2v (KNIGHTMOVE(BQB2 ,WQR2 yv(Row BQB2=Row WQR2v(SAMEDIAG{BQB2,WQR2 vl

K INGMOVE (8QB2, WQR2)v{ TWOTOUCHING(Column BQB2,Column WQRZ)A(WSUC(Row BQBZ,Row
WQR2)vBSUC(Row BQB2,Row WOR2)})11ID))

sssassimplify T
40 -MOVETO(Tboard qx,Valueon({GIVEN,To Move px),BQBZ,WQR2)

Note that we are invoking two different lemmas here. MayMove is useful for showing that, between
a pair of squares, no piece can ever move. WhitePawnMovement (white pawn motion) is more
specific: it applies only to white pawns, and is basically a telescoping of the conditions on white pawn
movement (as defined in the axioms MOVINGT and PAWNMOVING) so that they can be checked in a
single simplification.

sasss¥E WhitePaunMovement Tooard qx GIVEN To Move px BOBZ WKRZ:

41 To Move px-HKRZ:(valuaoniﬁIVEN,HKRZ):?H:{HOVETO(Tboard gx,Valueon{GIVEN,
To Move px),BQBZ,WKR2)=((Column BQB2=Column WKR2A(WSUC{Row BQBZ, Row WKRZ In
Valueon{Tboard ax, WKR2)=MT))v({Column BQB2=Column WKRZA(Row BQB2=7Aa(Valueon{
Tboard qx,Makesquare(6,Column BQB2))=MTARoOw WKR225)))v({Valueon{Tboard qx,
WKR2)sMTA{ TWOTOUCHING(Column BQB2, Column WKRZ)A{WSUC(Row BQBZ,Row WKRZ)a
BVALUES Valueon{Tboard qx,WKR2)1)111)))

ssssssimplify T
42 To Move px-HKRZ:«HDUETO(Tboard ax,Valueon{CIVEN,To Move px),BQB2Z,WKR2Z}

sssssYE WhitePauntiovement Tooard gx GIVEN To Move px BOBZ WKN3:

43 To Move px-HKNS:(VaIaaon(GIv£H.HKN3)sP93(HOVETO{Tboaré gx,Valueon(GIVEN,
To Move px),BQB2,WKN3)=({Column BQB2=Column WKN3A{WSUC{Row BQBZ,Row WKN3 }A
Valueon{Tboard qx,WKN3)=MT))v{(Column BOB2=Column WKN3A(Row BQB2=7a(Valueon(
Tboard qx,Makesquare(6,Column BQB2) J=MTaRoOw WKN3z25)))v(Valueon(Tboard qx,
WKN3)=MTA(TWOTOUCHING({Column 8QB2,Column WKN3)A(WSUC(Row BQB2Z,Row WKN3)a
BVALUES Valueon(Tboard ax,WKN3))311))))

sessssimplify s
44 To Move px=WKN3>-MOVETO(Tboard ax,Valueon({GIVEN, To Move px),BQBZ ,WKN3}

s2sxsVE WhitePaunMovement Tooard qx GIVEN To Move px BOBZ WQB2:

45 To Move px=UOBZ:(VaIueon{ﬁlUEﬁ,HQB?)=PH3{HOVE¥O{Tboard qx,Valueon{GIVEN,
To Move px),BQB2,WQBZ)=((Column 8QB2=Column WQB2a(WSUC{Row BQB2,Row WQBZ)A
valueon(Tboard qx,WQB2)=MT))v((Column BQB2=Column WQB2A(Row 8QB2=7a{Valueon{
Tboard qx,ﬂakesquara(é.Calumn BQBZ) }=MTAROW HQBZtE)})v(Va!uson{Iboard qQX,
HQBZ)sHTn{THO?OUCHIHG(Co!umn BQ82,Column WQBZ Ja{WSUC(Row BQBZ,Row ¥QBZ)a
BVALUES Valueon{Tboard qx,VQBZI)}))}))

sessssimplify T
46 To Move panQ-BZ::-HOVETO(?board qx,Valueon{GIVEN,To Move px).BQBZ,WQBZ)

3.7.3. We have already eliminated the checking rook as the moving piece in the last move.

sssssassume To Move px=BOZ;
47 To Move px=BQ2 (47)

4232 A FOL Solution tc the Chess Puztle Page 117

ssssssubst T IN OROPX;
48 {ORDINARY Move pxASQUARE_BETWEEN(To Move px,From Move px,BQNZ))n—~(Mover
Move px=Pos{px,To Move px)) {1 47}

ssssed] 1701
49 To Move px=RQ2>({. RBDINARY Move pxASQUARE_BETWEEN(To Move px,From Move pXx,
BQNZ2))a~{Mover tiove pxzPos{px,To Move px))) (1)

3.34. Nor could the rook on BQl, if it was a rook in the last position, have moved on the
diagonal.

sseseVE MOVINGZ Tooard gx BOBZ BQl;

50 ORTHO{Tboard qx,BQB2,BQ1)=(~(BQB2=BQ1)Aa({Column BQB2=Column BQlAYsqg3.((
BETWEEN{Row BQB2,Row sq3,Row BQl)aColumn sq3=Column BQB2)oValueon(Tboard gx,
$Q3)=MT))v{Row BQB2=Row BQlAYsq3.({BETWEEN{Column BQB2,Column sq3,Column BQl
JaRow sq3=Row BQB2)>Valueon{Tboard qx,sq3)=MT})))

ssssssimplify ~Column BGBZ=Column BOln-Rou BOBZ2=Row BQia

¢ Valueon(GIVEN,BQ1)«RUAVALUER RUA-VALUEB RUA-YALUEN RWA-VALUEK Run

s =VALUEP RUa-VALUEQO RW;

51 —{Column BQB2=Column BQl)a(~{Row BQB2=Row BQl)Aa{Valueon{GIVEN,BQI)=RWa(
VALUER RWA(-VALUEB RWA{-~VALUEN RWA({-VALUEK RWA{-VALUEP RWA-VALUEQ R¥)})))))

sx222¥YE MOVING! Tboard gx Yalueon(GIVEN BGl} BGBZ BQl;

52 MOVETO{Tboard gx,Valueon(GIVEN,BQ1),B8QB2,8Q1)=({VALUER Valueon{GIVEN,BQ1)
AORTHO(Tboard qx,BQBZ,BQ1))v{{VALUEB Valueon(GIVEN,BQl)ADIAG(Tboard qx,BQBZ,
B8Q1))v{{VALUEQ Valueon{GIVEN,BQl)AORTHO(Tboard qx,BQB2,8Q1))v({VALUEQ
Valueon{GIVEN,BQl)ADIAG(Thoard gx,BQB2,8Q1))v{{VALUEK Valueon(GIVEN,BQl)a
KINGMOVE{BORZ,BQ1))v((VALUEN Valuson{GIVEN,BQl)AKNIGHTMOVE({BQBZ,BQ1))v(
g?%?E? Valueon({GIVEN, BQl JAPAWNMOVE(Tboard gqx,Valueon(GIVEN,B8Q1),80Q82,8Q1))))

sxsxsassums To Move px=BQI1;
53 To Move px=BQI (53)

sseszsubst * IN #* OCC 1,2;

54 MOVETO{Tboard qx,Valueon{GIVEN,To Move px),BQB2,To Move px)=({VALUER
Valueon{GIVEN,BQI JAORTHO(Tboard qx,8QB2,BQ1))v({VALUEB Valueon{GIVEN,BQl }a
DIAG(Tboard qx,BQB2,BQ1))v{{VALUEQ Valueon{GIVEN,BQ1)AORTHO(Tboard qx,B8Q8Z,
BQ1))v({VALUEQ Valueon{GIVEN,BQl)ADIAG(Tboard qx,BQB2,8Q1))v{(VALUEK Valueon
{ GIVEN,BQI JAKINGMOVE(BQB2,BQ1))v({VALUEN Valueon{GIVEN,BQ1)AKNIGHTMOVE{BQBZ,
BQ%i;ggf?L?E?{gg;uann{GIVEN,BQi}APAﬁNHGUE{IboarG qx,Valueon{GIVEN,BQI),BQB2,
BQ) i

sz T1TOM;

55 To Move px=BQI>{MOVETO(Tboard qx,Valueon(GIVEN,To Mova px),BQBZ,To Move
px)= ((VALUER Valueon{GIVEN,BQ1)AORTHO(Tboard qx,BQB2,BQ1))v{{VALUEB Valueon(
GIVEN, BQ:)ADIAG(Tboard qx,BQB2,BQ1))v{{VALUEQ Valueon{GIVEN,BQ1)AORTHO{
Tboard qx,BQBZ,BQ1))v((VALUEQ Valueon{GIVEN,BQl)ADIAG(Tboard qx,BQBZ,BQ1))v(
{VALUEK Valueon{GIVEN,BQ1)AKINGMOVE({BQBZ,801))v{{VALUEN Valueon{GIVEN,BQl)}
KNIGHTMOVE{BQB2,8Q1))v(VALUEP Valueon{GIVEN,BQl)APAWNMOVE(Tboard qx,Valuson{
GIVEN,BQ1),BQB2,BQ1}))1}3)))

3.3.5. We have shown tha_ .. che last move was not a pawn promotion), none of the white pieces
on the board could have moved out from between the rook and king, discovering the check. We

Page 118. A FOL Solution to the Chess Puzzie 4.2.3.2.

must also consider each of the undefined pieces on GIVEN. We can see (simplify) that there is only
one such piece, and can show that, (if it was white) it was also incapable (no matter what value it
might have had) of discovering the check. Once again we turn to the lemma MovedValuves, and
observe that no piece can make that giant knight's move.

ssassYE GivenUD To Move pxi
56 Valueon{GIVEN,To Move px)=UDeTo Move pxsWKR4

ss3s2YE Maytlove Tboard gx Valueon{Tboard qx From Hove px) BOB2Z WKR&4:

57 MOVETO(Tboard qx,Valueon{Tboard qx,From Move px}.BQBZ,WRﬂ:{Co'Ium BQB2=

Column ﬂKR-ﬂv{KHIGHTH‘WE{GOE?.Hﬁ‘}v(ﬂw BQBZaRow WR‘V(SMEO&E{BQBE.HKR*‘ vl
KINBHO%{-BOBZ,’JKR#)v{MTDUCﬁEHG(Co%um BQ82,Column VKR4)A(WSUC(Row BQBZ,Row
WKR4 }vBSUC(Row BQBZ ,Row WKR4}j})} 133}

sssessimplify T3
58 -~-MOVETO(Tboa~d qx,Valueon(Tboard qx,From Move px),BQB2,WKR4)

sesssVE MCONSEGK gx px;

59 SI-HPLEL£GALHOVE{Q!.§:)-{-(From Move pxsTo Mové px JA(MOVETO(Tboard gx,
Valueon{Tboard qx,From Move px),From Move px,To Move px)a{(SIMPLE Move DxA
valueon{ Tboard qx,To Move px)=MT)v{CAPTURE Move pxa{PIECEVALUES Valueon{
Tboard gx,To Move px)a~{Valuecolor Valuson{Tboard gx,To Move px)=Color ax)})

)

34 It therefore tautologically follows (all other akernatives having been disposed), that the last
move must have been a pawn promotion.

ssses|abel PROMPX:

sssss tauteq PAUNPROM Move px

P PXSUC,NOTPXCASTLE, NOTPXEP ,FROMPX, CALL_PX, BLACK_GOES, B! NCHECK,
s ﬁCDNﬁPX.ZS,33.32.3‘t.3S.33.ﬁ3,62.44.48,"09.53.51,55.53.53.59;
60 PAWNPROM Move DX

Section 4.2.4 How the Pawn Promoted

4. - The promoting pawn could, of course, have moved to only one of three squares. In any
case, the square he moved to must now have a white piece on it. We prove a lemma (section B.3) to
condense this computation. This lemma states that, for any position just reached by a pawn
promotion, a promoting white pawn on BG82 could have moved to one of three squares, BGB1 by a
simple move, or BONL or BO1 by a capture. In either case, there is now a white piece on any board
of that position (that isn’t undefined on those squares). In the latter case, there must have been a
black piece on the capture square of the previous position’s board.

seeesYE PXPaunTo ax, px, Gl VEN;

61 (SUCCESSOR(qx,px)n(~Cﬁ$¥LIHG{qx,px)A(-'ELPASSART(qx,px)n{?ﬁﬁﬂ?ﬁﬁ& Move pXx
A(~-WHITETURN pxa(From Move axsﬁQBZnBDARD(px,BIVEH}}})1)):({10 Move px=BQNIA{
{WVALUES Vﬂuenn(ﬁlﬂﬁ,ﬁom)v!iﬂuaon(BIVE‘H,EQHI)!HB}AWALUES Valueon{Thoard
gx,To Move px})Ivi{To Move px=BQla((WVALUES Va!u-on{GIVEﬂ.BQi}Wn‘lueon(GIViK
,BQ1)=UD)ABVALUES Valueon{Tboard qx,To Move px}})v{To Move px:BQBin{WALUES
valueon{GIVEN,BQBI)vVa!uaon(BIVEH,BQBU:BD})))

4.1 We observe that only one of these three squares has a white piece on it on the board
GIVEN.

124. A FOL Solution tc the Chess Puztle Page 119.

szssssimplify 3

62 (SUCCESSOR{qx,px ya{~CASTLING(qx,pX ya{~EN_PASSANT{qx
A(~WHITETURN pxa(From Move pstQBZnBOﬂRD(px.EWEH}))J3
BVALUES Valueon{Tboard gx,To Move px))

, DX)A{ PAWNPROM Move px
})o(To Move px=BQla

5. Hence, the destination (To) square of the last move must have been BG1. Additionally, this
pawn promotion resuited in the capture of some black piece.

sssss¥E ValueTranspositionC ax, To Move pxi
63 Valueon(Tboard gx,To Move px)=Val{qgx,Pos{qx,To Move px))

sssss¥YE ColorChoices ax.Pos {gx,To Hove pxli
64 {(BVALUES Vali{qx,Pos{qx,To Move px))sBLACKPIECE Pos{gx,To Move px) Ial
WVALUES Val{qx,Pos{qx,To Move px))=WHITEPIECE Pos({qx,To Move px})

ssasstauteq To Move px=BA1ABLACKPIECE Pos(gx, To Hove px) A

* BVALUES Valueon!(Tboard gx_To Move px)

+ CALL_PX:BLACK_GOES, PXSUC, NOTPXCASTLE , NOTPXEP, FROMPX, PROMPX, 141: %

65 To Move px=BQIa(BLACKPIECE Pos(qx,To Move px)ABVALUES Valueon{Tboard qx,
To Move px)) {1 9)

seses label TOPX:
sssss taut Tifl 1
66 To Move px=BQl (1)

Let us call that black piece zb.

ssseretauteq Poslqx To Tove px) =Pos{gx To Move px) 3
67 Pos{qx,To Move px)=Pos{qgx,To Move px)

cesxsd]l 1, 1142 « zb OCC 24
68 BLACKPIECE Pos{ax,To Move px):ﬁzh.?csth.?o Move px)szb

sessetaut 3zb.Posigx To Hove pxls=zb *, 1114
69 3zb.Pos{qx,To Move px)=zb {189)

ssxaxs fabel CALL Z83

sssxs3E T zbi
70 Pos{qx,To Move px)=zb (70)

We proceed to seek the identify of the captured black piece.

5.1 Black's king is on BON2. As white moved last, and didn't capture this king, we know that
he was on BONZ in qx. A black king that just castled would not be on this square. Hence, we can
conclude that black has not just finished a castling move.

ssssslabel PX BK;

ssses¥E KingYaiueThm px.GIVEN, BON2:

71 (BOARD{px, GIVEN)Aa-~{Valueon(GIVEN, BONZ)sUD))o((Pos(px, BON2)sWKaValueon(
GIVEN, BON2 JskW)a{Pos{px ,BONZ ysBKsValuson(GIVEN,BQNZ)sKB))

s+223sYE OtherSideStays qx, px, BONZ,BK4
72“{§U§§Esm(qx,9x)n{{WI?E?IECi BKaWHITETURN yx)nl’os{yx.mZ)-BK)):Pos(qx,
BQNZ)=

Page 120. A FOL Solution to the Chess Puzile 424

sssssVE BlackCastieThm Pravpos qx, ax, BAN2:
73 {SUCCESSOR({Prevpos qx,qz}n(t&STuﬂG(?rwpos m,qx}nﬂﬂlTiTUﬂﬂ qx))>(Pos{ax
,BQNZ)-BK:{EQRZ-EKHWSQM:BQ%H)

ssssesimplify Yalueon IGWEH,B@IZ)-KBA—K'B-WMKHITEPIECE BrA
. ~BONZ=BKN1A-BON2=BGB14
;za\m;;gontszvsu,aouz)-K%{-(KS:BD)A{-HHITHIRE BKA(~(BQN2BKN1 Ja-~{ BQNZ=

ssssslabel @TQKCA&TLE:

sssss tauteq -CASIL NG (Prevpos qx qx}

% P SUC.CALL_PX.BEMCK,BLACK_GES.WX,OKIS,‘H?hh
75 ~CASTLING(Prevpos qx.ax) (1 %)

Proving that black’s last move was nol an en passant capture ls slightly more dificult. More
particularly, we must account for either each of his pawns, each of the squares that a black pawn,
capturing ¢n passant, would land in, or demonstrate the existence of all of the white pawns.
However, it is sufficient for our purposes to show that if QBUD is a board of gx, then a capture &1
passant was not just completed.

ssess¥YE Blackin?assant?hﬂz Pravpos gx QX QBUD;

76 (SUCCESSOR{Prevpos qx,qx}n{iﬂ_?kssmi(?rwpos qx,qx}nﬂﬂl?iwkﬂ gx) jo{V¥dcex
~{Val unon{oauo,mhuquarnlj Ldex) ;-psvmummaua ,Makesquare(6,dcx })=UD)o—
BOARD{ qx,QBUD))

ssssssimplify s
77 (SUCCESSOR{Prevpos ax.qx)n{ER.‘P&SSKHY{ Prevpos qx.qx)nﬂﬂi?ﬂumi ax})o—
BOARD{ qx,QBUD)

sssss label zg_@%ﬁ%ﬁ&

+ssss tauteg BOARD (gx QBUD) >-~EN_PASSANT (Prevpos gx ax)
* +,PXSUC,QX1S, MCONAPX, BLACK_GOES, CALL_PX,BI NCHECK
78 BOARD{Q:.QBUB):«EN_?&SSANT'{?rww: ax,qx) (1 9)

Section 4.2.4.1 The Pawn Did Not Capture a Rook or Queen

5.2. We proceed by assuming the promoting white pawn captured a black rook oOr queen
(valued) piece on BOl. This part of the proof is the first time we employ any of the move undoing
functions, UNMK___JOVE. The axiom delimiting their use requires we establish the sort of the last
move.

We know that all pawn promotions are ordinary moves, and that any move (by white) to a square
occupied by a black piece is a capture.

sessssimplify Ympp. OCROINARY mpp:
79 Ympp.ORDINARY mpp

sssss¥YE T Move pxi
80 PAWNPROM Move px>ORDINARY Move pX

sssesVE 8lackCapturedThm px To Move pxi
81 To Move pxsTo Move px:({ORDImR'f Move PXABVALUES valuson{Tboard Prevpos
px,To Move px))oCAPTURE Move pX}

424.1. A FOL Solution to the Chess Puztle

ssseslanel CAPTURE PX;
ssesssubstr CALL_OX IN %4

Page 121.

82 To Move px=To Move px>{{ORDINARY Move pxABVALUES Valueon{Tboard qx,To

Move px))>CAPTURE Move px) (9)

We can therefore conclude that the last move was a capturing pawn promotion.

sssssYE CAPPP_SortThm lMove px;
83 (PAWNPROM Move pxACAPTURE Move px JoCAPPP Move px

sssss | abel CAPPPPX;
ssess tauteq CAPPP Move px 4,94, 1441, TOPX-1,PRONPX;
84 CAPPP Move px (1)

If the last move (the capturing pawn promotion) captured a black rook, the

board of that position. If it captured a queen, then QBQ;

+sexsVE UNDO4 qx px GIVEN BGBZ BQl RB:
85 {SUCC£SSOR{qx,px)a{BOhﬂD{px.GIVEHJ;\(CAPPP Move pxa(Val

n the board QBR was a

{qx,Taken Move px)=

RBA(From Move px=BQB2ATo Move pxaBﬂl}))}):EOARD{qx.ﬂnnkclppmvc(GIVEN,BQB2Z,

8Q1,RB))

sxsesYE UNDOG gx px GIVEN BGBZ BQl 0B;

86 (SUCCESSOR{qx,px ya{BOARD{px,GIVEN)A({CAPPP Move pxa{Val
QB?(F;?? Move px=BQBZaTo Move px=BQ1)))))>BOARD(qx,Unmkca
BQ1,Q

The board QBUD is a sub-board of both.

{qx,Taken Move pxji=
pppmove(GIVEN,BQBZ,

sessssimplify 11:#24#208RA%: #2#2=080ASUBOARD (QBUD, 0BQ) ASUBOARD (QBUD, GBR) ¢
87 Unmkcapppmove{GIVEN,BQB2,BQ1,RB)tOBﬁA(Bnnkclpopmw(GIUEH,BQBZ.BQZ,QB):

QBQA{ SUBOARD(QBUD, QBQ)ASUBOARD(QBUD,QBR)))

s«ssssYE SubboardTransitivityX GBUD GBU qxi
88 (SUBOARD(QBUD,QBQ)ABOARD(qx,Q8Q))oBOARD(qx,QBUD)

+ssssVE SubboardTransitivityX 0BUD OBR qx;
89 (SUBOARD{QBUD,QBR)ABOARD{qx ,QBR))>BOARD{ qx,QBUD)

Therefore, if the captured piece (zb) was rook valued, GBR is a board of
In either case, QBUD is a board of gx.

qu; if queen valued, GBG.

ssses tauteq {(Val {qx Taken Move px)=RB > BOARD{qx GBR)) A
* (Val {gx Taken Move px)=0B > BOARD(gqx QBQ}) A
P ((Val (g« Taken Move px)=RB vwWal(gx Taken Move px)=08 } >

® BOARD (gx QBUD}Y)
* 44444414 PXSUC, CALL_PX,FROMPX, TOPX;

90 (val{gx,Taken Move ax)taaaamaqu,ma)}n((Vai(-qx.?nken Move px)=QB8>BOARD

()?:;.e%?)%?({!iﬂ{qx.hun Move px)=RBvVal{gx,Taken Move px

We know that the captured piece of position px was z0. We substitute
previous conclusion.

y=Q8)>BOARD{ qx , QBUD

that equivalence into the

Page 122. A FOL Solution to the Chess Puzzle 124.1.

ssssstauteq Taken Move px = 2b
® MCONAPX PXSUC,CAPTURE PX,CAPTURE_PX-2, PROMPX, TOPX-1,CALL _Z8;
¢1 Taken Movs pxs=zb (1 9 70)

sssss |abe’ m&.a

sssss substr T IN %

92 (Val{qx,zb)sRBoBOARD{qx,QBR))al{Val {qx,zb)=QB>BOARD{qx,QBQ))a{(Val{agx, zb)
sRBvVa1{qx,zb)sQB)>BOARD(qx,Q8UD}})} {1¢70)

Section 4.2.4.1.1 The Cornered Rook or Queen

5.21. Just as the white rook on BO2 was comered, unable to have moved into its check, the
(presumed) black rook or queen on B0l is cornered. We use the same theorem to show its last move

was a discovered check.

D28 7, %
57 % WA, » 1%
2% X T
Y K. U W
W W &%
s %/ %I %I ”/%
WADIM,, A,
25, K K

The cheeking queen is 11/ ped.

figure 37

cxsssYE BlackCornered Prevpos gx gx QBQ OB BAl BKRI;

93 (SUCCESSOR({Prevpos qx,qx)a{~EN_PASSANT{Prevpos qx, qx)A(~CASTLING{Prevpos
qx, Gx Ja(~BLASTRANK 301&{(BG%RD{Q:,QBG)ﬁ{¥aiuson{QBQ.301)lﬁﬁn{VﬂTUcon{QBQ,
BKRI}=K¥AROV£TOCQBQ.QB.BQI,BKRI}33}ﬂﬂVﬁiﬂEP 08)))1)>(¥sql.(MOVETO(Tboard gx,
Q8B,BQ1,sql)>{~(Valueon{Tboard qx, sql)=MT)vMOVETO(Tboard qx,0B,BKR1,sql))})a({
0R0§HA?§)?9?9 axASQUARE_BETWEEN(BQ1,From Move qx,BKR1})}a~{Mover Move gx=Pos{
qx,BQl

sssssYE BlackCornered Prevpos gx qx OBR RB BAl BKRL;

94 (SUCCESSOR{Prevpos ax, qx)a{~EN_PASSANT(Prevpos ax, qx a(~CASTLING{Prevpos
qx,ax JA(~BLASTRANK GOIn((BOARD{qx.QBRMW&BWON{QBE,BQI}-RBA(Vﬂueon{QBR,
BKR1)=KWAMOVETO(QBR,RB,BQ1,8KR1}}))A~VALUEP RB}})))2{V¥sql.{MOVETO{Tboard qx,
RB,BQ1,sql)>(~(Valueon(Tboard qx,sql)=MT)vMOVETO(Tboard qx,RB,BKR1,sq1)}))>{{
ORDINARY Move qxASQUARE_BETWEEN(BO1,From Move qx,BKR1))a~(Mover Move gxsPos{

qx,BQl))))

424.1.1. A FOL Solution to the Chess Puzile Page 123.

The quantified portion of the premise of this WFF is somewhat more complex. We need to prove
theorems about the movements of the pieces on the total boards of gx, when we have only partial
boards. Once again, we retreat to the security of a lemma. The theorem
TRAPPED _QX__BQ1_THM, proven in section B.4, shows that, for any position which has QBUD as a
board, a rook or queen valued piece is cornered on BQl, in just the form we need for steps 93 and 94.

ssx2eYE Trapped_0X_0B1_Thm gx 0B:
95 BD#.RB(qx,Q‘BUB}D{{QB=RBVQB=QB}:N5Q1.(HOVE?O{Tboar:I qx,Q8,BQ1,sql)>(~(
valueon{Tboard gx,sql)=MT)vMOVETO(Tboard qx,08,B8KR1,s5G1))))

s2322YE Trapped_OX_QB1_Thm gx RB;
96 BOARD({qgx,QBUD)>{(RB=RBvRB=QB)>¥sql .{MOVETO(Tboard qx,RB,B8Ql,sql Yo {~(
Valueon{Tboard qx,sql)=MT)vMOVETO(Tboard qx,R8,BKR1,sq1)}))

Other conditions for this theorem are more easily established. For example, we can observe that, on
both BAR and BOB, the white king on BKR1 is checked by a black officer on BAl. We imply that this
officer did not just complete a promotion move.

ssssssimplify -BLASTRANK BOla-VALUEP QBA-VALUEP RBAMOVETO(QBR,RB,BQ1,BKR1)

2 AMOVE T0 (0BQ, 0B, BG1.BKR1) AValueon (0BQ,BA1) =0BAYaiueon{GBR,BO1} =

¥ AValueon (QBQ, BKR1) «KlaValueon {OBR, BKR1) =KW;

97 -BLASTRANK BQla{-VALUEP QBA{-VALUEP Rﬂn{HGVETO{QGR,ﬂB.SQI,BKRi)n(HOVETO(
QBQ,0QB,8Q1,BKR1)a(Valueon(QBQ,BQl y=QBa{Valueon(QBR,8Q1 y=RBa{Valueon{QBQ,BKRI
)'-'KUAVG!UEGMOBR,BKRI}!K’dnJ)J}}

3.2 It therefore tautologically follows that, if zb was a biack rook or queen, the check must
have been a discovered check.

ssexslabel DISOX;

ssses tauteq (Val (gx,zb)=RBwWal (gx,2b) =(B}>{ (ORDINARY Move gxa

« SQUARE_BETWEEN(BQ1,From Move qx,BKR1)) a-tiover Move gu=Pos{qx,BAl})

* GX15,NOTGXCASTLE,NOTGBUDEP, GBUDLBL: 13

98 {Val{aqx,zb)=RBvVai{qx,zb)=QB)>({ORDINARY Move QxASQUARE_BETWEEN(BQl,From
Move qx,BKR1))a~{Mover Move gqx=Pos{qx,8Q1)}} (1 9 70)

Section 4.2.4.1.2 Which Piece Discovered the Check

We have concluded that the discovering move must have started upon a square between the
(presumed) queen (or rook), and the white king. We consult the simplification mechanism, which
informs us that the only squares between these two are BK1, BKBI, and BKN1. Hence, (if the captured
piece had rook or queen value), one of these squares must have been the From square of the last
move (figure 38).

Page 124. A FOL Solution to the Chess Puzzle 424.1.2.

{/ 4 :f L ‘I‘;
A EWW
//l/ ?J/’/ﬁ- 7 7

s
7
227007 % A

'

27 X, %///4
9. % 0,
A0 5
WA, 1,

1] a black piece moved to discover check,
then it moved from one of these squares.

figure 38

sessesimplify Ysq. (SQUARE_BETHEEN(BOL, 8q,BKR1) > (8q=BK1v(8q=BKBlveqeBKN1) })4
99 VYsq.{SQUARE_BETWEEN(BQ],sq,BKR])>(sq=BK lv{sq=BKBIvsq=BKN1)}}

sssseYE * From Move qx:
100 SQUARE_BETWEEN(BQ],From Move ax,BKR1)>(From Move qx=BKiv(From Move qx=
BXBlvFrom Move qx=BKN1))

531 So we must consider each of the black (possibly) pieces, to determine if any of them could
have moved from one of these three squares on the last move. The theorem NotBPFromiThm is
useful in this respect. From several suitable premises (black’s move, the source square of the move is
on the first row, and this isn't a special move) it permits various useful conclusions. Most relevantly,
it asserts that the destination of the last move is now either occupled by a non-pawn, black value, or
by the undefined value, and that the last move needed to satisfy several MOVETO conditions.

ss232sVYE NotBPFromlThm gx,0BUD:

101 (~CASTLING(Prevpos qx,qx)ntamﬂl}{qx.QBUD)n(-»ER_PASSART{Prevpas qx,qx }a{
WHITETURN gxaRow From Move gx=1}}})2({{~(Valueon(QBUD,To Move qx)=UD)oMOVETO{
Tboard Prevpos qx,Valueon{QBUD,To Move qx},From Move qx,To Move qx})a(-
PAWNPROM Move qxn{MOVETO(Tboard Prevpos ax,vVal{Prevpos qx,Mover Move qQx),
From Move qx,70 Move qx)a{~{Valueon(QBUD,To Move qx)}=U0)>{~VALUEP Valueon(
QBUD,To Move qx)}ABVALUES Valueon{QBUD,To Move ax}))}})))

This simplifies our task enormously. There are now only four possible destination squares for the
last move, BON2, occupied by the black king, BBl and WONI, occupied by black knights, and, of
course, WKR&, whose occupant is still unclear. The other undefined square {of the partial board we
compute upon), Ba1, has already been dismissed as a possible destination.

424.1.2. A FOL Solution to the Chess Puztle Page 125.

T 7 5%
w{/l}//é‘{/fI/@
2% 7%

250 3 &
YA, Y
s, W, A
WA, A
27 3%,

% W
w%. % %

The squares that need checking.
figure 39

ssssssimplify Ysq. ((BVALUES Valueon(QBUD, sq} A-YALUEP Yalueon{QBUD, sq})>

& (sq=BON2v {sq=BOB1vsq=lON1) 114

102 Ysq.({BVALUES Valueon{QBUD, sq)A~VALUEP Valueon{QBUD,sq))o{sq=BQN2v(sa=
BQB1lvsq=WQN1}))

sxssssimplify Ysq. (Valueon(OBUD, sq) =UD> (sq=HKR4vsq=BA11) ¢
103 \'sq.(Va!ueon{QBUB.sq)sﬂ&:{sqzwﬂdvsqﬂﬁl))

sssssYE 1 To Move qgxi
104 {BVALUES Valueon{QBUD,To Move qx JA-VALUEP Vvalueon{QBUD,To Move qx))2{To
Move gqx=BQN2v{To Move qx=BQB1lvTo Move qx=WQN1))

ssxes¥YE 11 To Move ax:
105 Valueon{QBUD,To Move qx)=UD>{To Move gx=WKR4vTo Move qx=B8Q1)

We consider each of the possible pieces (and its associated square) in turn, showing how a piece with
that value (on GBUD) could not have moved to any of the possible From squares. Note that six steps
are required for each piece: three o instantiate the axiom, and three for simplification.

The knight on white's first row:

«2ss¢YE MayMtove Tooard Prevpos qx.NB,BK1,WON1

106 MOVETO(Tboard Prevpos qx.ﬂB,BKI,HON!b(CcMmﬂ BK1=Column WQNIv(
KNIGHTMOVE (BK1,WQN1)v(Row BK1=Row HQva{SAHEBIaG(BKi.HQNi}v(XINGHOVE(BKL
HQNi}v(THOTWCHING{Co?um 8k1,Column WQN1 JA{WSUC{Row BK]1,Row WQN1)vBSUC{Row
BK1,Row WON1)))IN))

sx2ssYE Mayllove Tboard Prevpos qx.NB,BKB1 ,WONL;

107 MOVETO(Tboard Prevpos qx.ﬂB,BKBi.’dONl):(Co!um BKB1=Column WQNIv{
KNIGHTMOVE(BKB1,WQN1)v{Row BKB1xRow WONIv(SAMEDIAG(BKBI LWON1 }{KINGMOVE (BKB1
,HQN])V(WO?OUEHIHG(CGNM BKB1,Column WON1)A(WSUC(Row BKB1,Row WQNI)vBSUC(
Row BKB1,Row WONIYIDI D)

ssassYE MayMove Tboard Prevpos ax.NB, BKNI , HON1
108 MOVETO(Tboard Prevpos qx,ﬂB,BKHl.Wl):iCa!um BKN1sColumn WQN1v{
KNIGHTMOVE (BKN1,WQN1)v{Row BKN1sRow HQﬂIv(SMEDIlG{%Kﬂ!,’&QNI)V{KIHGHDVE(SKM

Page 126. A FOL Solution to the Chess Puztle 424.12

,WQN1)v{ TWOTOUCHING(Column BKN1,Column WON1)A(WSUC(Row BKN1,Row WQN1)vBSUC(
Row BKN1,Row WQN1))))))))

sessxpimplify MY
109 -MOVETO(Tboard Prevpos qx,NB,BK1,WQN1)

sxssssimplify T
110 -MOVETO(Tboard Prevpos qx,ﬂS,EKEI.HQHI)

sssaesimplify ™M
111 ~MOVETO{Tboard Prevpos qx.ﬂB,BKHl.ﬂQRI)

The knight on black’s first row:

sss3ssYE MOVING1 Tboard Prevpos qx,NB,BK1,BAB1+

112 MOVETO(Tboard Prevpos qx,HB,BKl.BQBi)-{{VALUER NBAORTHO{ Tboard Prevpos
qx.BKi,EOBl))v((VALUEB NBADIAG(Tboard Prevpos qx.BKI,BQBi}}v{{VALHEQ NBA
ORTHO(Tboard Pravpos qx,BKi,BOBi))v{{UALUEQ NBADIAG(Tboard Prevpos qx,BK1,
8081})v{{VALUEK HBnKINGHOVE(BKl.BQBE})v((VALUEﬂ NBaKﬁIGﬁ?HOVE(%Ki,BQBI))v(
VALUEP NBAPAWNMOVE(Tboard Pravpos Q:,NB,BKI.BOE&))})})))

ssxssVE MOVINGl Tboard Prevpos qx.NB,BK81,B0B1;

113 MOVETO(Tboard Prevpos qx.ﬂB.GKﬁI,BOBI):{{VALGER NBAORTHO(Tboard Prevpos
qx.ﬁKBl.%OBi))v{(UALUEB NBADIAG{ Tboard Prevpos qx,BKBl,BQBl))v((VALBiQ NBA
ORTHO(Tboard Prevpos qx.BxBI.BOSI))v{{VﬂLGEQ NBADIAG(Tboard Prevpos qx,BKB1,
BQB1))v{ (VALUEK HBnKINGHOVE{BKBl,EOBI})v({UALUER HBnKNIGHTﬁOVE(BKBi,BQBI))v(
VALUEP NBAPAWNMOVE(Tboard Prevpos qx.NB.BKﬁi,BQBII)}))}))

ssseeVE MOVING1 Tooard Prevpos qx.NB.BKNl,BGBI:

114 MOVETO(Tboard Prevpos nx,NB,BKNl,SQBI}-({VALUER NBAORTHO(Tboard Prevpos
qx,BKNI,BQBI)}v{(VALUEB NBADIAG({ Tboard Prevpos qx.BKNI,BQBi}}v{{V&LUE@ NBA
ORTHO{ Tboard Prevpos qx,BKNI,BoBl}}v{(vﬁLUEG NBADIAG{Tboard Prevpos aqx,BKN1,
8Q81))v{{VALUEK RBaKINGHOVE(BKNl.BQEI}Ev((VkLUER NBnKﬂIGﬂTHOVE(BKHl.SOBX))v(
VALUEP NBAPAWNMOVE(Tboard Prevpos Q!.NB,BK&I,&GBI})}))})}

ssxxssimplify M5
115 -~-MOVETO({Tboard Prevpos qx,NB,GKl,BQBl)

sssessimplify T
116 ~MOVETO(Tboard Prevpos qx,ﬂB,BXBZ,BQBl}

ssasesimplify TN
117 ~MOVETO(Tboard Pravpos nx.na,nxxl,aoaz)

And, of course, the black king is too far away to have discovered the check.

sssss¥E MOVING! Tboard Prevpos ax,KB,BK1,BON2;

118 MOVETO{Tboard Prevpos qx,xB.BKI.BQNZJa({UALUER KBAORTHO{ Tboard Pravpos
qx,BK1,BQNZ2))v((VALUEB KBADIAG(Tboard Prevpos qx.BKl.BO&Z))v{{VALUEQ KBa
ORTHO(Tboard Prevpos qx.BKl.BONZ}}v({VﬁLUEQ KBADIAG{ Tboard Prevpos qx,BK1,
BON2Z) Jw{ (VALUEK KBaKINGﬁOVE{BKl,BONZ})v((UALUEﬁ xBAKHIGHTHOVE{BKI.BQNZ}}v(
VALUEP KBAPAWNMOVE(Tboard Prevpos qx,KB,BKI,BQ&Z))}})}}}

sssssYE MOVINGL Tboard Prevpos qx.KB,BKB1,BANZ;
119 MOVETO(Tboard Pravpos qx.KB,BKBl,SONZ}-({VﬁLUiR ¥ SAORTHO{ Tboard Prevpos
qx,BKBl.ﬁQﬂZ)}v({UALUEB KBADIAG{Tboard Prevpos qx,BKBi,BQNZ))v({V&LUEQ KBa

4.24.1.2. A FOL Solution to the Chess Puztle Page 127.

4

ORTHO(Tboard Prevpos qx,BKB1,BQN2) Jv((VALUEQ KBADIAG(Tboard Prevpos qx,BKB1,
BON2))v{ (VALUEK KBAKINGMOVE(BKBI ,BQON2))v({ (VALUEN KBAKNIGHTMOVE (BKB1,BON2) v (
VALUEP KBAPAWNMOVE(Tboard Prevpos ax,KB,BKB1,BQN2))))))))

«x+eeYE MOVINGl Tboard Prevpos ax,KB,BKNL ,BONZ;

120 MOVETO(Tboard Prevpos qx,KB,BKN1,BQN2)e{ (VALUER KBAORTHO{ Tboard Prevpos
ax,BKN1,BQN2))v({(VALUEB KBADIAG(Tboard Prevpos qx.BKHi.ﬂQHZ))v{{UALUEQ KBa
ORTHO{ Tboard Prevpos qx.BKHI,BQRZI)v{{VALUEQ KBADIAG{ Tboard Prevpos ax,BKNI,
BONZ) yv({ VALUEK KBaK INGMOVE (BKN1,BQNZ))v{ (VALUEN KBAXNIGHTMOVE(BKNI,BONZ) v
VALUEP KBAPAWNMOVE{Tboard Prevpos qx,KB.BKHi,BQHZ)}))))))

sxexxsimplify 1%
121 -~MOVETO(Tboard Prevpos ax,KB,BK1,BQNZ}

zxesesimplify T4
122 -MOVETO{Tboard Prevpos qx,KB,BKB1,BQNZ)

ceexssimplify ™M
123 -MOVETO(Tboard Prevpos ax,KB,BKN1,BQNZ)

A little substitution for the tautology decider.

sxsxxnl Substitutiun{5~1u.¥atueonEGBUU‘n}}:
124 Y k.(j=k:\la1ueon(0389.J}waluaon(OBUI}.k))

«xxs:YE 1 To Move qx,BONZ:
125 To Move qxaBQHE;\!a!ueon(OEUB.To Move ax }:Ua!uenn{QEUB,BQﬂE)

ssxss¥VE 1 To Move qx,BGBI1:
126 To Move qx=BQBl1oValueon({QBUD,To Move qx)wsiueon{ﬁﬂuo.ﬂﬂai}

sxexx¥YE 7% To Move ax,WONL;
127 To Move qx=WQN1oValueon{QBUD,To Move qx)-Vaiuaon{DBUB,H@Rl}

And we appeal to the chess eye, to confirm that various squares of QBUO have the values we asserted:

ssesxsimplify Valueon{OBUﬂ.BGMZl-KBnValuaon(DBUU.BQBil-NSn
% Valueon (QBUD, HONL) =NB;
128 Valueon{QBUD,BQN2 y=KkBa(Valueon({QBUD,BQBI }=NBaValueon(QBUD, WQN1 J=NB)

Our attention turns to proving the undefined squares of QBUD do not harbor the last move mover.
This piece must, of course, be on the To square of the last move. And we have already determined
(step 98) that this is not the square BO1.

sssxex | abel MCONAQX;
sxrx:YE MCONSEQA Prevpos Ox,ax;

129 SUCCESSOR(Prevpos ax,qx)>{ (~WHITETURN Prevpos qxeWHITETURN gx)a{Prevpos
qx=Prevpos qxn{—PUSITIOHINCHECK{ax.tu!or Prevpos ax)al{(WHITEPIECE Mover Move
qxeWHITETURN Prevpos qx)n{Pos{Prevpos qx,From Move qx)=Mover Move qxaf{Pos(
ax,To Move qx)=Mover Move axa(Pos{qx,From Move qx)=EMPTYA((CAPTURE Move gx>
Pos{Prevpos gx,To Move qx)=Taken Move ax)JA{CASTLING(Prevpos qx,qx Jv{EN_

PASSANT(Prevpos qx.qx)vSIﬁPLELEGAtMOVE{Pravpos ax,ax)} 1NNy

sxsssn] Substitution(f = A x.Pos(gx x}]
130 ¥J k.{jzk:Pos{-qx,J)zPos(nx.k})

Page 128. A FOL Solution to the Chess Puzzie 424.12.

sssesVE 1 To Move qx,BQL;
131 To Move gx=BQloPos{qx,To Move qx)=Pos{qx,BQ1)

All of the candidate source squares for this move are in the first row.

sssssn] SubstitutioniB « A x.Row x]¢
132 Vj k.(j=koRow j=Row k)

sss3sYE T From Move qx,.BKl:
133 From Move gx=BKi>Row From Hove gx=Row BK1

sesss¥YE 1t From Move qx,BKBl:
134 From Move qx=BKB1l>Row From Move gx=Row BKBI

ssxesVE 4% From Move qx,BKNL:
135 From Move gqx=BKNI>Row From Move qx=Row BKN1

ssssesimplify Rou BKl=ln(Rou BKBl=lnRou BKN1=1)y
136 Row BK1=1a{Row BKBl=1aRow BKN1=1)

And, the fallen piece, no matter what vaiue it might have had could not have moved to one of these
first row squares.

ssx4¢YE MayMove Tooard Prevpos qx,Val (Prevpos ax,Mover Move gx),BK1,WKR&;
137 MOVETO({Tboard Prevpos qx,Val(Prevpos qx,Mover Move gx),BK1,WKR4 Jo(Column

BK1=Column WKR4v(KNIGHTMOVE(BKI ,WKR4)v{Row BK1=Row WKR4v (SAMEDIAG(BK1,WKR4)
v{KINGMOVE (BK1,WKR4)v(TWOTOUCHING{Column BK1,Column WKR4)A{WSUC{Row BK1,Row
WKR4)vBSUC{Row BK1,Row WKR4)))))))

s«x+32YE Maytlove Tboard Prevpos aqx,Val (Prevpos qx,lover Hove qx) ,BKB1,WKR4;
138 MOVETO{Tboard Prevpos qx,Val{Prevpos qx,Mover Move qx),BKB1,WKR4 =1
Column BKBl=Column WKR4v (KNIGHTMOVE(BKB1,WKR4)v(Row BKBizRow WKR4v{SAMEDIAG(
BKB1,WKR4)v({KINSMOVE (BKB1, WKR4 Jw{ TWOTOUCHING(Column BKBI ,Column WKR4)A{WSUC(
Row BKB1,Row WKR4)vBSUC{Row BKB1,Row WKR4))) 1))

+xexsYE MayMove Tboard Prevpos qx,Val (Prevpos gx,lover Move qx),BKN1,HWKR4;
139 MOVETO(Tboard Prevpos qx,Val{Prevpos qx,Mover Move qx)},BKN1,WKR4)o{
Column BKN1=Column WKR4v (KNIGHTMOVE (BKN1, WKR4)v{Row BKNi=Row WKR4v({SAMEDIAG(
BKN1,WKR4)v (KINGHMOVE (BKN1,WKR4)v(TWOTOUCHING{Column BKN1,Column WKR4 JA{WSUC{
Row BKN1,Row WKR4)vBSUC(Row BKN1,Row WKR4)))))})})

exesssimplify 11
140 -MOVETO{Tboard Prevpos gx,Val{Prevpos qx,Mover Move qx),BK1,WKR4)

sesesnimplify 4
141 -MOVETO(Tboard Prevpos qx,Val{Prevpos qx,Mover Move qx),BKBI,WKR4)

sxsessimplify T4
142 ~MOVETO(Tbeard Prevpos qx,Val(Prevpos gx,Mover Move qx),BKN1,WKR4)

It then tautologically follows that the value of the captured piece in gx, zb, was neither a rook nor a
queen.

ssssslabel NOT_QB OR RB;
sssss tauteg —(val lgx,zb)=RBvVal {qx, zb) =0B)

424.12. A FOL Solution to the Chess Puzzle Page 129.

¥ CALL_PX:BLACK_GOES,QX1S, PXSUC, MCONAPX, NOTQXCASTLE , NOTOBUDEP,

% ﬂBtDLBL.DISﬁX.l’E{NADX,lBE:lﬂl.i%d%.189:111.3i5=11?.1211123.
s 125:129,131,133:136,148:142;

143 ~{Vai{gx,zb)=RBvVai{qgx,zb)=QB) (1 9 70)

Section 4.2.4.2 The Pawn Did Not Capture a King or Pawn

There are six varieties of black pieces that the promoting pawn could have captured. We have
already eliminated a black rook or queen as a possible victim. What about the others?

54. Perhaps the captured piece had pawn value?

54.1. But that black pawn would have been in black’s first row. We have a theorem that
prohibits black pawn (valued) pieces from black first row. Hence, the captured piece (while it might
have been a pawn) did not have pawn value.

«s33sYE NoBlackPaunsOnlRou gx,zb,B01;
144 (Val(qx.zb):PBnPosth,BQI)-zb):-ctkw BQi=1)

ssxssiabel ON_Z28;
ssssssubstr TOPX IN CALL_Z28;
145 Pos{qx,BQl)=zb (1 70)

ssssssimplify Row BAls
146 Row BQl=1

ssszslabel NOT_ZB PB:
sxssstaut ~(vVal lgx,zb)=PB} 1t hy
147 -{Vai(qx.,zb}xPB} (1 70)

5.3 The captured piece was certainly not the black king. We have already shown the black
king to be on BGN2 on GIVEN (steps 71 through 74). As the king did not just move, he must still be
there.

sx2esVE BlackKingThm gx,B0l;
148 Va!{qx,?os{qx,aol})=KB-Pos{qx,BQl)!BK

ssse2VE Unique qx,BON2,BQ1,BK;
149 Pos(gx,BQNZ)=BK>{Pos{qgx,8Q1 y=BKaBQN2=BQl)

ssssssimpiify ~(Vaiueon(GIVEN,BON2) =UD}A {(Yalueon{GIVEN, BONZ) =KBA

s (~LH] TEPIECE BKAa -~{BON2=BO11));:

lﬁgiqijgaiueaﬂ(ﬁwEﬁ,B(}NZ y=UD Ja{ Uﬂu.oh{ﬁﬁfiﬁ.SQNZ}SK-htﬁilHITEPIiCE BKA-~{BONZ
=RQ1)

esssstauteq ~Val iqx,Pos(qx BQl))=KB
* 1‘1'1‘:1'.PHSLK:.CﬁLL_PX,BINCHECK.ELEK_GGES.PK_BK,PH_BKH;
151 -~(vali{qgx,Pos{qgx,B8Q1))=K8) (19)

sxses label NOT 7B KB:
ssssesubstr ON_ N
152 ~{Val{qx,zb)=KB) (1 9 70)

Hence, the captured piece must have had, just before being captured, eitiver bishop or knight value.

Page 130. A FOL Solution to the Chess Puzzle 4242

sxesxsimplify Yvb. (vbaKBvvb=0Bvvb=RBvvb=PBvvb=NBvvb=BBj;
153 VYvb.{vbzKBv{vb=QBv{vb=RBv(vb=PBv({vbzNBvvbzBB)}}))})

sxees¥YE T Vallgx zblg
154 BVALUES Val{gx,zb)>(Val{qx,zb)=KBv{Vai{qx,zb)=QBv(Val(gx,zb)=RBv(Vai{qgx,
zh)=PBv{Val{qx,zb)=NBvVal{gx,zb)=BB})))})

sseeeVE ValueTranspositionA gx zo To Tove px;
155 Pos{qx,To Move px)=zboValueon{Tboard gx,To Move px)sVal{gx,zb}

seseelabel NB_OR BB;
sxeestauteq val (gx zb)=NBvVal (gx zb)=BB

* 21:1,TOPX-1,CALL_ZB,NOT_0OB_OR_RB,NOT_28_PB,NOT_ZB_KB:
156 Val{gx,zb)=NBvVai{qgx,zb)=BB (1 9 70)

And we can also deduce, from this limited selection, that QBUD was, in either case, a board of the
position gx.

sssssYE TransitiveUNMKCAPPP qx,GIVEN,QBUD,BQGB2,B01,Val {qx,zb) ,BB;
157 (BOARD({qx,Unmkcapppmove(GIVEN,BQB2,BQ1,Val(gx,2b}) }a{SUBOARD(QBUD,
Unmkcapppmove(GIVEN,BQBZ,BQ1,B8B))avai{qx,zb)=BB))>BOARD{qx,QBUD)

sssssYE TransitiveUNMKCAPPP qx,GIVEN,QBUD,BQBZ,BA1,Val (gx,zbl ,NB3
158 (BOARD{qx,Unmkcapppmove(GIVEN,BQB2Z,BQ1,Val{qx,zb)))a{SUBOARD{QBUD,
Unmkcapppﬂeveiﬂzhﬁﬂ.aoBZ,301.*3)3ﬁV‘1{nx.zb)833}}DBD*R?(QX,QﬂUﬂ}

exzaesimplify ™
%59 égggf;h(qx ,Unmkcapppmove(GIVEN,BQB2,BQ1,Val{qx,2b)))aVal (qx,zb)=88)>BOARD
qx,

sexsssimplify 1
{260 é ggal;ﬁi qx,Unmkcapppmove(GIVEN,BQB2,BQ1,Val{qx,zb)) }aVal{qx,zb)=NB)>BOARD
X,

sesesVE UNDOG ox,px,GIVEN,BOB2,B01,Val (qx, Taken Move px}3

161 (SUCCESSOR{qx,px)A{BOARD{px,GIVENja{CAPPP Move pxa({Val(qgx,Taken Move px)
=Val{qx, Taken Move px)a{From Move px=BQB2aTo Move px=BQ1)})})))>BOARD{gx,
Unmkcapppmove{GIVEN,BQB2,8Q1,Val{qx, Taken Move px)))

seesssubstr QBUDLBL-1 IN 1

162 (SUCCESSOR{qx,px)a{BOARD(px,GIVEN)A{CAPFP Move pxa{Vel{gx,zb)=Val{qx,2b)
n(From Move px=BQB2aTo Move pxs=BQl)))))>BOARD({qx,Unmkcapppmove(GIVEN,BQBZ,
BQl1,Vai{agx,zb))} (1 9 70)

sxsxx [abel OX _0BUD:

ssxss tauteq BOARD (gx,QBUD)

® CALL_PX,PXSUC,FROMPX, TOPX, CAPPPPX,NB_OR_BB, 1104, 400, %
163 BOARD{qx,QBUD) (1 9)

Section 4.2.4.3 The Fate of the Black Bishops

56. We have already determined that the captured piece was either a black bishop, or a black
knight valued. However, we can infer other results from this fact.

424.3. A FOL Solution to the Chess Puztle Page 131.

56.1. We know that one of black’s bishops, the BOB, is the black on white bishop. That is, that
bishop never moves to a black square. But the capture square, BQl, is a black square. Hence, the
captured piece could not have been the BOB.

«ssssVE BishopsleOnSameColor qx,BaB1.B01,B8Q8;
164 (Pos{P0,BQB1)=BQBAPOS{qx ,BQ1)=BQB)>(WHITESQUARES BQB1aWHITESQUARES BQl)

ssssesimplify 1
165 -(Pos{qx,BQ1)=808B)

56.2. Nor could the captured piece have been the BKB. The black pawns on BK1 and BKN1 trap
this bishop, preventing his moving until they have moved, and freed one of his exit squares. But
we can see that these pawns are still on their original squares. Hence, the BKB can be on no square
except Ais original square. (He is not, of course, on that square; rather, that bishop has been
captured earlier in this game.)

sssssYE Blocked_BKB qx,08UC,BQ1:
166 {BOARD{qx,QBUD)AWa!uaon(QBUO.ﬁKZ)-P%{?aiuaoa(QBBB,BKNZ)nPBAPosth,801)
=BKB)))>BQ1=BKBI1

sesessimplify
167 -{BOﬁRD(qx,QBUB)nPos{qx.BQI)IBKB)

5.7. However, any black bishop valued piece must be either the BOB, the BKB, or a promoted
black pawn. Hence, if the captured piece was a black bishop, it must have been a promoted pawn.

sxassVE MightBeBB gx,zb;
168 Va1l(gx,zb)=BB>{{zb=BKBvzb=BQB)v(BPAWNS zbAPROMOTEDPAWN(Gx,2b)))

sssselabel JF _BISH:
ssssstauteq val (qx,zb) =BB> (BPAUNS 2bAPROMOTEDPAWN (gx, zb})

s ON_28,0X_QBUD, 111,14, %
169 Val{ax,zb)=BB>(BPAWNS 2bAPROMOTEDPAWN{ax,2zb)) (1 9 70)

5.8. We know that QBUD is a board of qx. Hence, there must be black knights on both Ba1 and
LGN on the total board of ax (or, equivalently, knight valued pieces on these squares in the position
qx). If the captured piece was a black knight, then black had three knights on the board in ax.
Having three black knights is proof of having a promoted pawn on one of those three squares.
However, the conditions (and conclusions) of the lemma we really invoke are stronger. It states that
if at most one black pawn has promoted, and the three black knight valued squares situation exists,
then that pawn is on one of the three squares, and no other square (in particular, its not on the
fallen square.) In this step, we're looking forward to phrase our conclusion in the form that will be
most useful in the future.

Page 132. A FOL Solution to the Chess Puzile 4.24.3.

’1); il /5’1%’1 .
YW
NA, W, 7
YA Y, %
\R U2, % %
MY Y 7

1f the captured picce were a knight,
then black had three knights in QX.

figure 40

ssxxe2YE ThreeNB qx QBUD BKRP BQl BQBL WONI WKR&;

170 ¥t .{{BPAWNS MPROHOTiBPﬁHN(qx,t}):tlBKRP}D((E*(anlBOBI)A{-{BQk‘n'Qﬂi)a-'(
BQB1=WQN1)))Ia((Val{qx,Pos(qgx,BQl))INBV{BO&RD(qx.QBUD)&Vﬂuaon(QBUD,BO! }=NB)}
a{(Val{qx,Pos{qx,BQ81)):i&ﬁv{ﬁﬂﬁ\nﬂ(qx.ﬁauu).\Uﬂuaon(QBUD.BQBI}-ﬂB) n{Vai{gx,

Pos(qx,’dom)}INBV(BUJ&RD(Q:(,OBUD)nVaiueon{QBUQ,WHI)lHB)iH):(MOHOTﬁDPAUN(qx
,BKRP}AI{~t801¢9¥ﬂ4)n{-(80§1-ﬂx34)M{Hf}fﬁswnl}}J:{-(Pos{qx,ﬂl(ﬂil)-lkﬁ?)n(-n(

Pos{qx,WKR4)=BKN)Aa~(Pos(qx,WKR4)sBQN}}))))

We consult the simplification mechanism for several useful equalities and inequalities.

sssssgimplify -B01=B0B1A~801 «HAN1A-80B1 =WAN1AValueon (QBUD BOB1) =NBA

* Valueon(QBUD WON1)=NB;

171 —'{BQIIBOBI35(*(30139031)h{ﬁ(ﬂQBil’vaHl)i\(Vﬁﬂ!Oﬂ(OﬂUB.BQﬂl)Iﬂﬂhﬂliﬂtna{
QBUD,WQN1)=NB)))

A little renaming, and we get a useful result from our tautology decider.

59.

ssssssubstr ON_ZB IN 11

172 ¥Yt.((BPAWNS MPROHOYEBPA\JN(QX,!;}):ttBKRPb({{"(BQIIS(}BE)J\{-'{BQIIVQNI)N*(
BQB1=WQN1)))a({Val{qgx,2zb y=NBv{BOARD{ qx,QBUD }aValueon{QBUD,BQ1)=NB) In{(Val{gx
,Pos(qx,BQB1))=NBv{BOARD{ax,QBUD yaValueon{QBUD,BQB1)=NB))a(Val {qx,Pos{qgx,
WON1))=NBv{BOARD(qx,QBUD)aValueon(QBUD, WQN1)=NB))})>(PROMOTEDPAWN{ qx , BKRP)A
((-{801=W34)n{-:(8051=$ﬁ(ﬂ4)n«{woulzﬂmd});:(-«{Pos(qx,ﬂlkd}=BKRP)A(-IPos(qx,
HKRd}!BKN}A-'{Pos(qx,HKR‘l}BBQHH))” {1 70)

sssss label PROM KNIGHT:

ssssstauteq (Yal (gx, zb) =NBaYL. { {BPAUNS tAPROMOTEDPALN (gx, t))>t=BKRP))>

« (PROMOTEDPALIN {qx, BKRP) A ((-B01 «WKR4A-BQB1 «WKR4A-WON1 =WKRG) o

+ {~Pos (gx, UKR4) =BKRPA-Pos (gx, WKR4) =BKNA-Pos {qx,WKRG) =BON))) OX_QBUD, *, 1%

173 (Val(qgx,zb)=NBaYt.(({BPAWNS tAPROMOTEDPAWN({qx,t))ot=BKRP})>(PROMOTEDPAWN({
qx, BKRP)A((~(BQ1sWKR4)a(~(BQBI=WKR4 Ja~(WQN1sWKR4)))o>(~(Pos(qx,WKR4)=BKRP)A(~
{ Pos{qx,WKR4)=BKN)a~(Pos(ax,WKR4 }=BQN))))) (1 ¢ 70)

From the fact that the captured piece had either bishop or knight value (step 156), we

4.24.3. A FOL Solution to the Chess Puztle Page 133.

could now conclude that black has promoted one of his pawns. However, we defer that deduction
for a few steps, until we can prove which black pawn it was that promoted. To do this, we need to
examine the biack pawn structure of GBUD.

Section 4.2.5 The Black Pawns

6. Our attention turns towards identifying the black pawns on QBUD. We will be (aimost) able
to identify each of the pawn value pieces on that board.

6.1 We consider first the pawns in black’s second row. These pawns have not moved, and are
obviously the pawns that started on those squares. Of course, we have a lemma for this situation. It
states that if a black pawn value is upon some square, and there was also a black pawn value upon
that square in P8, the initial position, then it is the same piece is on that square as was upon it in Pe.
More concisely, certain black pawns have obviously not moved.

s2s2sYE UnmovedBlackPaunThm qx, GBUD, BORP, BORZ;
174 (Pos{P0,BQRZ):BGRPA(Valuaon(QBUD.BQRZ):PBABO&RD(Q!,QBUB}H::(-Pos(P0,BQR2)
=Pos({qx,BQRZ)aPospcf(qx,BQRP y=BQR2)

ss2s43YE UnmovedBiackPaunThm gx,0BUD, BKP,BKZ:

175 (Pos(PO .BKZ}xBKPn-WHuenn{QBUD.BK'Z}-PB:\BO&RD(qx,QBUD)))o{ Pos(P0,BKZ)=Pos
{qx,m(zjnPospcf{qx,BK?)sBKZ)

ssss2YE UnmovedBlackPaunThm qx, 0BUD, BKNP, BKNZ;

176 (Pos(PO,BKHZ}=BKNP&(V&Iueon(QBUB,BXHZ}IPEABOARB{qu,QBUD))}:(?os(?ﬂ,BKNZ)
--Ms{qx.BKﬁZ)nPosptf{qx,B&NP}sBKNZ)

We consult the simplification mechanism to verify our asserted arrangement.

s, W, 7%
WA, 2,
5:’& %5’3. %f/ 2 ’/:V fﬁ%
a% Y %

Simplify can quickly and easily
find the velue on ¢ squers.

figure 41

Page 134. A FOL Solution to the Chess Puzzle 4.2.5.

sssessimpl i fy Pos(P8,BOR2) «BARPAVaiueon (0BUD, BOR2) «PBAPos (P8, BKZ) =BKPA

® Valueon(QBUD, BK2) «PBAPos (P8, BKN2) «=BKNPAVa [ueon (QBUD, BKN2} ~PB;

177 Pos{P0,BQR2)=BQRPA(Valueon{QBUD,BQR2)=PBA(Pos{P0,BKZ }sBKPA{Valueon{QBUD,
BK2)=PBA(Pos({P0,BKN2)=BKNPAValueon({QBUD,BKN2)=P8})}}

Hence, the black pawns on the second row squares are the BORP, BKP and the BKNP,

s+sss ! abel ROWZ BP:

sxese tauteq TTHTsH2ATTTid2AM0: 42 QX_QBUD, +94%: %y

178 {Pos(P0,BQRZ)=Pos{qx,BQR2)aPospcf{qx,BQRP)=BQRZ)a((Pos(P0,BKZ }=Pos{gx,
??23? Pospcf(qx,BKP)sBKZ)a(Pos{P0,BKN2)sPos{qx,BKNZ jaPospcf(qx,BKNP)=BKN2))

6.2. The remaining deductions on the pawn structure are produced with the lemma
WhichBlackPawn. This lemma employs the fact that, if a pawn is to move between two squares, the
MAY_PALN_CAPTURES predicate must be satisfied between those squares. Each of the eight black
pawns is considered, resuiting in a WFF which, when simplified, eliminates from consideration those
pawns that could not be on the requested square. There are only two black pawns which can reach
BOR3. We have shown that BORP is on BURZ in qx. Hence, the pawn on BOR3 must be the BANP.

sxsssVE WhichBlackPawn gx,0BUM BOR3:

179 (BOARD(qx,QBUD)aValueon{QBUD,BQR3I)=PB)>((Pos{qx,BQRI}=BQRPA(Pospcf{qx,
BQRP)=BQR3AMAY_PAWN_CAPTURES(BQRZ,BQR3,BLACK)))v{{Pos(qgx,BQR3)=BONPA(Pospcf(
qx,BONP)=BQRIAMAY_PAWN_CAPTURES(BQN2,BQR3,BLACK)))v((Pos({qx,BQR3)=BQBPA(
Pospcf({qx,BQBP)=BQR3IAMAY_PAWN_CAPTURES(BQB2,8QR3,BLACK)))v({Pos{qx,BQR3)=BQP
n{Pospcf(qx,BQP)=BQR3IAMAY_PAWN_CAPTURES’8Q2Z,BQR3,BLACK)}))v{{Pos{qgx,BQR3)=BKP
~{Pospcf{qgx,BKP)=BQR3AMAY_PAWN_CAPTURES(BK2,BQR3,BLACK)}))v({Pos(qx,BQR3}=
BKBPA(Pospcf{qx,BKBP)=BQRIAMAY_PAWN_CAPTURES(BKB2Z,BQR3,BLACK)))v{(Pos(qgx,
BQR3)=BKNPA{Pospef{qx,BKNP)=BQRIAMAY_PAWN_CAPTURES(BKN2,BQR3,BLACK)) Jv{Pos{
?§580R3}!BKRPn{Pospcf;qx,BXRP)=BQR3nHAY_PAHH_CAPTURES(SKRZ,BQRS,BLACK}))})))

sxsssgimplify 1
180 BOARD{qx,QBUD }>{(Pos{qx,BQR3)=BQRPAPospcf{qx,BQRP)=BQR3)v{Pos(qgx,BQR3)=
BQNPAPospcf{qx,BQNP)=BQR3})

ssssssimplify ~(BOR2-BAR3};
181 -(BQR2=BQR3)

sxsss | abel RDH% BP;
ssess tauteq Pos{gx,BAR3) «BANPAPospcf (qx, BONP) «BOR3 QX_QBUD,ROWZ_BP, 113 %
182 Pos{qx,BQR3)}=BQNPAPospcf(qx,BQNP)=BQR3 (1 9)

6.3. Of the remaining pawns, only the BO8P and BQP could reach BOB4 and BA3. We have not
established which of these pawns is on which square, but we can show that, between them, they fill
these two locations.

sxs3sYE WhichBlackPawn qx,0B8UD,BQOB4;

183 (BOARD(qx,QBUD)AValueon(QBUD,BQB4)=PB)>{(Pos({qgx,BQB4 }=BQRPA({Pospcf(qx,
BQRP)=BQB4AMAY_PAWN_CAPTURES{BQR2,BQB4,BLACK)))v{(Pos(qx,BQB4)=BONPA(Pospcf(
qx, BQNP)sBQB4AAMAY_PAWN_CAPTURES(BQN2,BQB4,BLACK)))v({Pos(qx,BQB4)=BQBPA{
Pospcf{gx,BQBP)=BQBAAMAY_PAWN_CAPTURES(BQB2Z,BQB4,BLACK)))v((Pos{qx,BQB4)=BQP
a{Pospcf{ax,BQP)=BQB4AMAY_PAWN_CAPTURES(BQ2,BQB4,BLACK]))v((Pos{qx,BQB4)=BKP
A{Pospcf{gx,BKP)=BQB4AMAY_PAWN_CAPTURES(BK2,BQB4,BLACK))})v{{Pos{qx,BQB4)=
BKBPA(Pospcf{qx,BKBP)=BQB4AMAY_PAWN_CAPTURES(BKB2,8QB4,BLACK)))v((Pos(qx,

4.2.5. A FOL Solution to the Chess Puzzie Page 135.

8084)BBKN?A(?ospcf{qx,BKNP}=BOB¢AHhY_?AHH_C§PTURES(BKNZ.BQBQ,BLkEK)}}v{?os(
?§33084)lBKRPA{Pospcf{qx,BKRP)saﬂﬁﬁnﬁhY_?AUN_ChPTHRES{KKRZ,BOBQ.BLACK)J})})l

ssssx¥E WhichBlackPaun gx,QBUD,BA3;

184 {BO#RB(Q:,OSUDJnﬂaluaun{QBUD,QQSJ-PBJ:{{Pus(qx,BQ3)-BQRPA(Pospcf(qx,aoaP
}-BQBAHAY_PEHN_£A9TURES{BQRZ,BOS.QLACK)3}v({Pos(ux,Baa)SBQHPA{Pospcf(qx.aoﬂ?
}-BcsnﬂAY_PhNN_CAPTUﬁES(80H2.BOS.BL&CK}))V({Pos{qx,303)-308Pn{Pospcf(qx.BQB?
)=8¢3nhh?_PhHN_CQ9TURES{BOBZ,303,3Lﬁ€&)))v((Pos{qx.BQS)!BQPntfnsncf{nx.EQP)I
BOanHRY_P&UN_C&P1URE5{802.303.8L&€K}))v{(Pos{qx,BQS)=BKPA(9¢spcf{Q¥.“.”}=803
AHﬁY_PAHR,C&PTURES(BKZ,BQS,BLQCK)))v((Pas(qx,303)=BKB?A(Paspcf{qx,akﬁﬂ;=8035
HAY_PAHN_cﬂPTURES{BKBZ.BQS.EL&CK)}}V{{?os{qx.BQS}zBKN9n(Pospcf{qx,BKNP)z303n
HAY_PAHN_CAPTURES{BKNZ,BQ3,BLACK)))v(Pcs(qx.BQ3)¢BKR?A(Pospcf{qx,aKR?)BBQ3A
ak?_PAUN,c&?TURESKSKRZ.803,BLACK))}))}}3})

ssesssimplify ™

185 BOARD{QK?QBUD):({Pos{qx.8084)-BORPAPospcf(qx.80&9):8084)v((?os(ax.BQB#}:
BQNPAPospc!{qx,aauP)-BQBd}v((Pos{qx,3084):BOB?nPospcf{qx.BOBP)!GQB&)v((Pos(
qx,3084)-Bopnvospcf(ax.BQ?}-BQB4)v{?os(qx.8084)-BKPn?ospcf(Qn.BKP)sBQBd3})))

sssxssimplify
186 BOARD{qx.QBUB)aiiPos{qx.333}=BQBPAPosacf{nx.BQBP)aaoa)v{{?os{qx.aqunaoP
n?ospcf(qx.BQP)sBQS}v(Pos(qx,803}zBKPaPospc!{qx,BK?}-BQS})}

ssssesimplify -8082-8034a-BQR3-BQ84a~BK2-8084na803~3ﬁ2n-8036-903;
187 *(30R253684)n{H{BOR3=BQB4)n(*(BK2=BOB4}n(ﬂ(803=BK2}&~{3034!303})}}

seseslavel OB BP;

sssss tauteq {Pos!qx,BQB&}-BQBPAPospcf(qx.BOBPl-BGBﬁn

* Pos!qx.303}-BOPnPospcf{Qﬂ.BGP)-BGEiv

* (Poa(qx.BGBQ}-BﬁPnPospcf(qx.BGP}-BﬂB&A

% Pos(qx,BQS)-BDBPAPaspcf{qx,BDBPi-BD3I

% QK_QBUB.RDHZ_BP,RUHBR_&P.1??:?;

188 {Pos(qx,8034)IBOBPn(?ospcf{qx,BQB?)-BOBRAIPos(qx,aeijBOPnPospcf{qx,BQ?)

;ggg;}%5§§g§(q?.ag?ﬁ)aﬁopn{Pospcf{qx.SQP}tBeﬂdn{Pos(qx,aoa)-BQB?nPospcf(qx.
s 1

6.4 This implies that the black pawn on BOBS must be the BKBP.

sssss¥E WhichBlackPaun qx,0BUD,HGB4:

189 (BOARB{qx,OBUB)anTuson{OBﬁD,Hoaﬁ)tPa):[(Pos{qx.ﬂﬂal)-BQRPn{Pospcf{qx,
BQRP)=HQS4nﬂAY_PAHN_C&PTURES{BQRZ,2034.BLﬁCK}}}v((Pos{qx.ﬁOBd}!BQHPn{Pospcf(
qx.BQN?}!HQB#nH#Y_PAHN_B&PTURES(BQNZ,WQH&.3LACK)))v{{?os{qx,ﬂﬂﬁd)tBOBPA(
Pnspcf{qx,BOSP)-HQB#nH&?_PﬁHN_CA?TURESKBOBZ.H084,BLACK))}v((?os{qx,ﬂcﬂdjlaov
A{Pospcf(qx.BOP):HQB4nNAY_PﬁwH_ChPTURES{BQZ,HQB#.BLACK}))v{{?os(qx,ﬂeni)snkP
A(Pospcf(qx,GKP)!VQE4nHAY_PAHN_€&PTBRES{BKZ,UOBd,GLACK)))v({Pes{qx.Hbsdjt
BKBPA{Pospcf{qx,BKBP}tHQBdAHAY.?ﬁVﬁ_CA?YURES{EKBZ,ﬂQB4.8L&CK}}}v{(?os(qx,
NQB4}=BKHPA{Pospcf(qx,8KﬂP}:HQBdAHkY_P&HH_CAPTURiS{BKHZ,HQB‘.BL&EK)))v{?os(
qx,ﬁOB4)tBKﬂPA(Pospcf{qx,BKRP}:HQB&AHAY_P&QH_CAP?BRiS(BKRZ,9034.BLACK}))))})

1))

ssssasimplify 1

190 BOARO(Q:,Q&UO))({Fos(qx,ﬂQB4)SBOR?nPospcf{qx.BOR?}-HQBQ)v{{Pos{qx,wﬁs4}n
BQHPnPospcf(qx,ﬁONP)sHQBd)v{(Pos(qx,ﬂQS&)zSQB?n?ospcf{qx.8QBP}-HOB4)V((Pos{
qx,woad)!BQPnPospcf{qx,BQP}-HOB4)V((?os{qx,ﬂos4}-BKRAPospcf{qx,BKP}-HQB4}v{
Pos{qx.Hoad3-BKBPnPoxpcf(qx,BKGP):HQB4)))}})

Page 136. A FOL Solution to the Chess Puzzle 4.2.5.

sxssssimplify —~BOR2=H0B4A~BOR3=HOB4A-BK2=H0B4A-BO3=H0B4A~BUB4 =H0OB4 3
191 —(BQR2=4QB4)a(~(BQRI=WQB4)a(~(BK2=WQBA)A(~(BQI=WQB4)A~(BQBA=WQB4))))

ssseslabel BS_BP;

sssss tauteq Pos {qx.mahi-BKBPAPnapcf(qx,BKBP!-m
* ax_uam,Rmz_ap.musa_ap,aa_ap,ﬂm

192 Pos(qx.HQB-%)BBKBPnPospcf(qx,BKBP)N&M {19)

Section 4.2.5.1 Which Pawn Promoted

6.5. Which pawn was the promoting pawn? A pawn that has promoted, no longer has pawn
value on a board of that position (theorem BlackPawnValueSquares) We consider each black pawn
in turn as a possible candidate for having promoted.

The BORP is, unpromoted, on BARZ.

sesxz [abel WHEREPROM;
sssssYE BlackPaunValueSquares qx, 08UD, BORP, BAR2

BAR
193 —(PROMOTEDPAWN{ qx,BQRP)A(BOARD{qx,QBUD)n{\hi'lulvn(ﬁilﬂ ,BQR2)=PBAPOS(QX,
BQR2)=BQRP)))

Similarly the BONP is on BGR3.

ssee2YE BlackPaunValueSquares ax,QBUD, BONP, BOR3s

194 ~{PROMOTEDPAWN{qx,BQNP }A(BOARB(qx.Qwﬁ)a(Va!uton(ﬁlub,miﬂv?h%s{ qx,
BQR3)=BQNP)))

The BGBP and BOP split the squares BB4 and BA3 between them.

sssssVE BlackPaunValueSquares gx,0BUD,BOBP,BUB4;
195 ~(PROMOTED PAWN({qx,BQBP)n{BOARD{ gx ,Q8uUD)A{Vﬂﬁioﬂ(QBUD,BQB4 }sPBaPos{ax,
BQB4)=BQBP)})

sss2sVE BlackPaunValueSquares qx, QBUD, BOBP, BA3;
186 --(PF;OHOTiDPAHN(qx,GQBP)n{-BOARD{qx,QBUO}A(‘Uﬂman(0800.803}-?31\?05{133:.BQJ
)=BQBP)))

sss3s¥E BlackPaunValueSquares gx,0BUD, BQP, BAB4; -

197 -(PROHGTEDPKUN{Q:,BOP)n(BOARO(Q:,QBUD}A{V:IMOMQBUD.WJi?h?os{qx.
BQB4)=BQP)))

sss3sVE BlackPaunValueSquares gx,08UD,BOP,BQ3;

igg ;gl;ﬂOHOTEDPMIN{QX,BQP)a{BO&RD{qx,QBUD)n{\fﬁuoon(QOUB,SQ.’i)tPMPe:{qx,BQS}
=BQP

The BKP occupies its original square, unpromoted.

sssssYE BlackPaunValueSquares qx,0BUD, BKP, BK2;
199 -;-4} gROHOTEBPAHH{ux,BK?}MSOARB(qx.OBUB}Aws3000»{0000.8&2)-93n90t(ﬂ3.ll(2)
=BKP

WQB4 is occupied by a pawn valued BKB.

sssssYE BlackPaunValueSquares qx, 0BUD, BKBP, HQB4;s

4.2.5.1. A FOL Solution to the Chess Puzzie Page 137.

200 —{PROMOTEDPAWN{qx,BKBP)a(BOARD(qx ,QBUD)A(Valueon{QBUD,WQB4)= PBAPos{ax,
wQB4)=BKBP)))

And, similarly, the BKNP pawn sits on its original squares.

sssssVE BlackPaunValueSquares qx,0BUD,BKNP,BKNZ:
201 -~{PROMOTEDPAWN(qx,BKNP)a{BOARD(qx,QBUD)A(Va lueon{QBUD, BKNZ)=PBAPOS(GX,
BKN2)=BKNP}))

We confirm our expectations about the value of the occupants of these squares.

ssssssimplify Valueon{QBUD,BQR2)=PBA Valueon (QBUD, BAR3) =PBA

Y valueon (QBUD, BOB4) =PBA Yalueon(GBUD, BQ3} =PBA Valueon(OBUD,BOB4) =PBA

% Valueon{QBUD,BQ3)=PBa Valueon (QBUD, BK2} =PBa Valueon (QBUD, WGB4) =PBA

* Valueon (QBUD, BKN2) «PBAPos (P8 BOR2) =BORPAPos (P8 BK2}=BKPa

» Pos (P8 BKNZ2}=BKNP:

202 vaaueon(OBUD,BQRZ}-PSAWaIuaon{QBUD,BOR:%)-PGA{Vﬂunon(QBUB,8084)!?3:\{
Valueon(QBUD,BQ3)=PBa(Valueon{QBUD,BQB4 }sPBA(Valuaon{QBUD, BQ3)=PBa{Valueon{
QBUD,BK2Z)=PBA(Valueon{QBUD,¥QB4 }sPBA{vaIuann(QBﬂb,BKHZ}lPBni Pos{PO,BQR2)=
BQRPA{Pns{?o.axz}-aKPnPos(Pﬂ.BKNZ}-BKHPi))}}})})}

Now, there are eight black pawns.

sssssVYE BlackPaunsAre_ t;
g giﬂ§i §=BKPvIt= BQPv(t=BKNPv{ t=BKBPv(t=BKRPv(t=BQBPv(t=BQNPvt=BQRP}))))))=
t

Hence, if one of them has promoted, it must be the BKRP. We generalize this WFF to all possible
black promotions in qx.

sssee tauteq (BPAUNS tAPROMOTEDPAWN(qx t) } >t=«BKRP
<IHEREPROM: 4, QX_QBUD, ROWZ2_BP,ROW3R_BP,0B_BP, BS_BP;
204 (BPAWNS tAPROMOTEOPAWN(gx,t))ot=BKRP (1 9)

ssess label THE ONLY ONE:

sesns¥] Tt
205 Yt.{(BPAWNS tAPROMOTEDPAWN{qx, t) }otsBKRP) {(19)

So it zb was a promoted pawn, it must have been the BKRP.

ssss¢VE THE_ONLY_ONE zb:

206 {BPAWNS zbAPROMOTEDPAWN(gx,zb))>zbsBKRP (1 9)

But, as we pointed out before, we have established sufficient conditions to prove that a black pawn
has promoted. Since a black pawn has promoted, and the only black pawn that could have
promoted is the BKRP (line 205), then BKRP has promoted.

sasss labe! PROM _BKRP;

sssss tauteq AUN (gx BKRP)

* NB_OR_BB, iF_ﬁISH.“P,PROH_KNIG*IT.THE_MY_%ES
207 PROMOTEDPAWN{qx,BKRP) (1 ¢!

Page 138. A FOL Solution to the Chess Puzzle 4.26.

Section 4.2.6 Did a Black Piece Fali?

7. Did a black piece fall from the board? We consider each black piece, in turn, to show that
it could not have been the fallen piece. But first, we pause to point out that, as the square HKRG was
not involved in the last move, its occupant was identicai in both px and qx. Axiomatically, a square
not source, destination, or special square of a special move, retains the same contents from position to
position.

sxsssYE MCONSEQD gx px WKR&4;

208 (SUCCESSOR(qx,px)a{-~(WKR4=From Move px)a(~{WKR4=To Move px)a{~{CASTLE
Move pxa{WKR4=Alsofrom Move pxvWKR4=Alsoto Move px) Ja~{ENPASSANT Move pxa
WKR4=Takenon Move px)))))oPos{ax,WKRd)= Pos{px,WKR4)

We know the source (From square) and destination (To square) of the Move px. Neither of them is
UKRG. We also know that Move px was neither an en passant capture, nor a castle.

ssssssimplify -WKR4=BQL A - WKRG = BOBZ:
209 —(WKR4=BQ1)a~(WKR4=BQB2Z)

sssssYE MconseqmX qx px;
210 SUCCESSOR{qgx,px)>((CASTLE Move px:%S?LING{qx,px}}nt(£NPA55!|H'{ Move px=
EN_PASSANT{qgx,px))a{ORDINARY Move px-SIHPLEE.EGlLHWE(Q!’bx) 1)

Hence, the fallen piece was aiso on WKR& in gx.

sesss labe! SAME ON WKR4:
sssss tauteq Poslgx WKRG)=Pos{px WKR

4)
* #44: %, PXSUC,FROMPX, TOPX, NOTPXCASTLE,NOTPXEP:
211 Pos{qgx,WKR4)=Pos{px,WKR4) {19}

We return to consideration of the each of the black pieces as a candidate fallen piece. We
established that the promoted pawn, BKRP, was on one af the squares BQl, BAB2 or WANZ in ax.
Hence, the fallen piece was not the BKRP.

ssssslabel ON gu«%i(SQS;
ssesesimplify “TiKRGA -BOB1=WKR4A -BORZ=WKRGA -BONZ2=WKR4A
* ~BK2=UKR4n ~BKN2=WKR4A ~BOR3=UKR4A -BU3=WKR4A -BAB4=LKR4n

. ~LI0B4 =WKRGA ~WON1=WKRG 1

212 -(am:mm)n(-(:aosmxna)n(-(aonzaacmn{-{aouz:uuaa)a{wtaxz-uxu)a{«(
3&:2:;?;;;;mﬁaoaa-uxm)ncqcsqa-wxn4)n(~(ses4-wxa«i)nin(wom-uxat)mwoﬂa-
WKR4

sxsas¥E Unique qx,B01,UKRG,BKRP;
213 Pos(qx,ﬂ@i}:ﬁkﬂb(Pos{qx,HKRil)aBKRPaaQI:HKM}

ssssstauteq ~(Pos (qgx,UKRG) =BKRP) ON_28,NB_0OR_BB,
s IF_BISH, PROM_KNIGHT, THE_ONLY_ONE 1286, ON_BLACK_SQS:213;
214 ~{Pos{qgx,WKR4)=BKRP} (1 9)

We know squares for each of the seven unpromoted black pawns. None of these squares is WKRG.

sx2ss¥E Unique gx,BOR2,WKRG,BARP}
215 Pos{qx,Boﬂz}-BDRP::{Pas{qx.mﬂ)-a&hmz-ﬁﬂ)

126 A FOL Solution to the Chess Puzzle . Page 139.

sssssYE Unique gx,BK2,UKR4L,BKP
216 Pos{qx,BX2)sBKP>{Pos{qx,WKR4)=BKPuBK2ZsWKR4)

s2384VE Unique qx,BKNZ, KR4, BKNPy
217 Pos{qgx,BKNZ)=BKNP>(Pos(gx, WKR4 ysBKNPaBKN2sWKR4)

sxsaeVE Unique gx,BOR3,UWKR4,BONP;
218 905{ux,ﬁQkS}aBQRP:(?os{qx.HKR4}=BQHP:BQR3=HKRi)

ss232¥YE Unique qx,B0aB4,WKR4,BOBP;
219 Pos(qx,BQB4)=BOBP>(Pos(qx,WKR4)=BQBP=BQB4=WKR4)

sssssYE Unique qx,BQ3,HKR4,BOBP;
220 Pos{qx,B8Q3)=BQBP>{Pos(qx, KR4)=BQBPeBQ3=WKR4)

sssssYE Unique gx,B0B&4,WKRG,BQP;
221 Pos(nt.8084}*BQ?J{P&&(Q!,NKRd)=BQPlBOB4¢HKR4)

sss22YE Unique qgx,B03,HKR4,BOP:
222 Pos{qx,BQ3)=BQP>({Pos{qx,WKR4)=BQP=BQ3=WKR4)

sssssVE Unique qx,W0B4, UKRG, BKBP;
223 Pos{qx,WQB4)=BKBP>(Pos(qx,WKR4)=BKBPaWQB4sWKR4)

7.1 This accounts for all of the black pawns. Hence, the fallen piece was not a black pawn.

ss:33YE BlackPaunsAre_ Posl{qx WKRG):

224 (Pos{qx,ﬂKR#)zaKPv(Pos(qx,ﬁﬁRé)-BO?v(Pos(qx,ﬂKRi}lBKﬂPv{Pos(qx,ﬂkﬂ4)l
BKBPv(Pos{qx,WKR4 }=BKRPv(Pos(qx,WKR4)=BQBPv(Pos{qx, WKR4)=BQNPvPos(qx,WKR4)=
BQRP)))))))=BPAWNS Pos({qx,WKR4)

sesss |abel NOT BP:
sssus tauteq ~T:42 212:1.ROUZ_BP.HON3R_8P.QB_BP.85_£P.RBHQ_BP-I;
225 ~BPAWNS Pos{qx,WKR4) (1 9)

7.2. If the fallen piece were a black knight, we would suffer from a surfeit of black knights.

We use the same lemma as before, ThreeNB in this demonstration.

essss¥YE ThreeNB qx,(QBUD,BKRP,BQBI1,WQN1,WKR4,BOL:

226 Yt.((BPAWNS tAPROMOTEDPAWN(qx,t) yoteBKRP)o({ {~(BQB1sWQN1)A(~{ BQB1=WKR4 A
~(WQN1sWKR4)))a((Val{qgx,Pos{ax, BQB1) }tﬁﬁviaomoéqx,oaﬂb)nVa!uaon{QBUB,BQBZ j=
NE)}A((V&!(qx,Pes{qx,uoxl))sﬂav(BG&ﬁD(Q:,QBBD)AV!1U|0R{QBUD,HOH!)IHB))n{Va!(
qx, Pos{qx,WKR4))=NBv{BOARD(qx ,QBUD)AValueon{QBUD,WKR4)=NB)))) }>{ PROMOTEDPAWN
{qx,BKRP}A{(-(8032!801)A{-(UQKlnaai)a«(itniliﬂl})}:{q(?ﬁt{ﬂ:,i@i}-BKRP)h(w{
Pos(qx,BQ1)=BKN)A~(Pos({qx,BQl)=BQN}}))))

If a black knight fell, it would have had N8 value (knights do not promote).

ssassVE OfficerValueThmX qx,BKN,Pos{qx,WKR4)
227 (~PAWNS BKHABKH-?os(qx,HKMI):Ua!{?b,lxﬂltvn(qx,Pos{qx,‘imaal}}

sssesYE OfficerValueThmX qx,BON,Pos(gx, WKR4) ¢
228 {-~PANNS aomsosspcsth.wmbvn{pn.aou;-mth.?n;th,wxaia)

ssssseimplify -PALNS BONA(Val (P8, BON) =sNBA (~PAUNS BKNAYa! (P8, BKN) =NB)) 4

Page 140. A FOL Solution to the Chess Puzzle 4.26.

229 ~PAWNS EQNA{Val{P0,BQN)=NBA{~PAWNS BKNAVal(P0,BKN)=NB})
Hence, the fallen piece was not a black knight.

#sssx iabel NOT_NB;

sssss tauteq -(Pos{qgx,WKR4) =BKN) A—(Pos (qx,UKR4) «BAN}

* ON_Z8,NB_OR_BB,QX_0BUD, IF_BISH, PROM_KNIGHT-2, PROM_KNIGHT,

& THE_ONLY_ONE, THE_ONLY_ONE+1,0N_BLACK_SQS, ON_BLACK_SQS+1, 1ttt 1

230 -~{Pos{aqx,WKR4}=BKN)a~(Pos{qx,WKR4)=BQN) (1 9)
7.3 The black on white bishop could not have fallen from the black square WKR4.

sssssYE Bishops!sOnSameColor gx BOB1 WKR4 BQB;
§31 {Pos{PO,BQBZ}-BOBAPOS{QK.?KR4}IBQB):{RHITESQUARES 3QB1aWHITESQUARES WKR4

=xs2s label NOT _BGB:
srses simplify 73
232 -(Pos{qx,WKR4)=BQB)

7.4. The black on black bishop, as we have already asserted, did not escape from his starting
square.

sss3sYE Blocked_BKB gqx QBUD WKR4;:
233 (BOARD(qx,QBUD)A(Valueon{QBUD,BKZ)=PBA(Valueon(QBUD,BKN2)=PBAPOS(qx, WKR4
)=BKB)))JoWKR4=BKB1

sexs% iabel NOT_BKB:
sxxex simplify
234 -~{BOARD{qgx,QBUD)aPos{qx,WKR4)=BKB)

7.3 The black king is on BONZ, not WKRé.

ssssxYE Unique px BONZ WKR4 BK;
7225 Pos{px,BQN2Z)=BK>{Pos(px,WKR4 y=BKuBGNZsWKRE)

sszss label NOT BK:
seass tauteg —Poslgx WKR&G)=BK 1,212,5,1,211;
236 ~(Pos{qx,WKR4)=BK) (1 9)

76. If a black rook or black queen value were on the square WKRé in px then white would be
in check in px. Note the employment of a single simplification to observe this check on the
constructed board.

sxsssla3bel BO _OR %R:

sxesesimplify WHITEINCHECK (Makeboard(GIVEN WKR4 QB}1a

* WH] TEINCHECK (Makeboard (GIVEN WKR& RB}) ;

237 WHITEINCHECK Makeboard{GIVEN,WKR4,QB)AWHITEINCHECK Makeboard{GIVEN,WKR4,
RB)

sesesYE SUB_BOARDS! px GIVEN WKR4 Pos(px WKR4) QB
238 (Val(px,Pos(px,WKR4))=QBA(Pos(px,WKR4)=Pos(px,WKR4)ABOARD(px,GIVEN)))>
BOARD{px,Makeboard{GIVEN,WKR4,Q8))

4.26. A FOL Solution to the Chess Puzzle Page 141.

sssssYE SUB_BOARDS! px GIVEN WKR& Pos(px WKR4) RB:
23¢9 (Ux!(ox,?os{px,ﬁ(kd)}rRBA{Pos{px,ﬂﬁﬂd}s?os{px,ﬂkid)nﬂmblbx.,GIVEN)H:>
BOARD{px,Makeboard(GIVEN,WKR4,RB))

And if white were in check, it would be white's turn in px.

sxse¢¥YE Alternatelhite px M1 H242;
240 (BOARD{px,Makeboard(GIVEN,WKR4,QB) JAWHITEINCHECK Makeboard{GIVEN,WKR4,QB
))>(POSITIONINCHECK(px,WHITE)AWHITETURN px)

ssexxVE Alternatelhite px T1:14242;
241 {BOARD(px,ﬁakeboard{GIVEH.wKM.RB))MIHITHNCHECK Makeboard{GIVEN,WKR4,RB
))5 (POSITIONINCHECK(px,WHITE)JAWHITETURN px)

If the fallen piece would be rook or queen valued if a rook or queen had fallen.

sexexVE OfficerValueThmX px BQ Pos(px WKR4);
242 (—PAWNS BQABQ!PGS(Q!,HKR#)):Va'!{PQ.BD)!V!T{;}X,’PGS{px,U‘KﬂA}3

sxessVE OfficerValueThmX px BOR Pos{px WKR4):
243 (~FANVNS BQRnBORzpos{px.Hxﬂd)}:)Va'i{i’a.eaﬁ}t*la'l{px.Pos{px.iﬂ(ﬁ#))

exexe¥YE OfficerValueThmX px BKR Pos{px WKR4);
244 (-~PAWNS BKRABKR=Pos(px,WKR4))oVal (P0,BKR)=Val{px,Pos{px,WKR4)}

ssxsssimplify ~PAUNS BOA-PAUNS BORA-PAUNS BKRa

* Vai (P2 BQ)=GBaVal (P2 BORI=RBAVal (P8 BKR)«RB;

gdg;PAﬁ;g&?}BQn{-?AﬂﬂS BQRA{~PAWNS BKRA(Val{PO ,BQ)=QBA{Val{P0,BQR)=RBAVE1(PO,
KR)=RB);

But we have already determined (back in steps 1, 2 and 38), that black is in check in px, and its his
turn to move. If white were also in check, we would have a contradiction. Hence, the fallen piece
could not have been a black rook or queen.

ssxsstauteq ~Pos{gx WKR4G)=BOA-Pos (gx WKR4) =BORA-Pos (qx WKR4) =BKR
x BQ_OR_BR:*, SAME _ON_WKRG,CALL_PX, BINCHECK, BLACK_GOES:
246 -(Pos{agx,WKR4)=BQ)a(~(Pos(ax,WKR4)=BQR)A~(Pos(qx,WKR4)=BKR)) (1 9)

8. We have considered each of the black pieces. None of them could have fallen from the
board. Hence, the fallen piece was not a BLACKPIECE.

sssssVE BlackpieceArePaunsOr_ Pos(gx WKR4);

247 BLACKPIECE Pos{qx,WKR4)=(BPAWNS Pos{gx,WKR4 yv{Pos{qx,WKR4)=BKv(Pos{ax,
’HKR#}sBOv{Pos{qx,mnﬁ}zsxuv{%s(q:,wm}zBKBv(Poa(qx,wnd}-ﬂﬂv[?os{qx,ﬂxm)
=BQBv{ Pos(qx,WKR4 }=BQNvPos(qx,WKR4)=BQR)}}}})))

zxeeziabel NOT B:
ssesstauteq ~T:#1 404, 0X_0BUD, NOT_BP,NOT_BK,NOT_NB,NOT_BGB,NOT_BKB;
248 -~BLACKPIECE Pos(qx,WKR4) (1 §)

But all chesspieces are either black or white. We know (from our original assumption) that some
chesspiece did fall. Hence, it must have been a white piece.

sxsssVE Borl_Piece_ Pos(qx,WKRG):

Page 142. A FOL Solution to the Chess Puzzle 4.26.

ngd?;ESSPIEﬁS Pos{qx,WKR4)o~(BLACKPIECE Pos(qgx,WKR4)aWHITEPIECE Pos{qx,
WK

Let us call that piece yyw.

ssss23] SAME_ON_MWKRSG Pos(px, WKR&G) eyyus
250 WHITEPIECE Pos{qx,WKR4)>3yyw.Pos{qx, WKR4)=yyw

ssxesx tauteq Jyyw.Poslax,WKRG) syyw CALL_PX,SAME_ON_WKR4 ,NOT Bt %3
251 Jyyw.Pos{qx,WKR4)=yyw (1 9)

=exe+ label CALL_YYW;
sesxe 3E T yyus ;
252 Pos{qx,WKR4)=yyw (252)

Section 4.2.7 The Fallen Piece Wasn't 2 White Pawn

9. By a process similar to that employed for the black pawns, we can identify the locations of
each of the white pawns.

There are four white pawns on white's second row.

sesesVE UnmovedWhitePaunThm gx,QBUD,HORP,HORZ;
253 {?05{?3.HQRZ)*HQR?A(Vﬂ!ﬁaen{QBUE,UOﬁE]IPHhBDﬁRQ(ﬁx.QQUﬂ})):I?bl{?ﬂ.ﬂﬁﬂ?}
=Pos{qx, WORZ)aPospcf(gx,WQRP }=WQR2Z)

sxsss¥E UnmovedWhi tePaunThm gx,QBUD, WOBP,WAB2:
254 {Pos{P0,WQBZ)=WQBPA(Valueon{QBUD,WQBZ)=PWABOARD{ qx,QBUD)) }o(Pos{P0,WQB2)
=Pos(qx,WQB2)aPospcf{qx,WQBP)=WQB2)

sexesYE UnmoveddhitePaunThm qx,0BUD, WKBP, WKBZ;
255 (Pos(P0O,WKB2)=WKBPA(Valueon (QBUD, WKB2)=PWABOARD(qx,QBUD)))o({Pos{P0,WKB2)
=Pos(gx,WKkB2Z)aPospcf(qx,WKBP)=WKB2)

sxss2YE UnmovedWhi tePaunThm qx,08UD, WKRP,UKRZ;
256 (PDS{?U,HKRZ)=UKRPn(Valuaﬁn{QBHB,UKRZ]!PHﬁBOARG{qx.QBUB}})3(?0!(PO,UKEZ)
=Pos(qgx,WKR2)aPospcf{qx,WKRP)=WKR2)

ssesagimplify {Paa{Pﬁ.NQRZ}-NGRPAVaIueoniDBUG,HﬂEZI-Puin

* (Pos (P2, HOB2) «LQBPAVaiueon (QBUD, HOB2Z) «PU) A

s {Poa(PQ.HKBZE-HKBPﬁVaIueon{QBUD.HKBZ}-PH)n

s (Pos (P8, WKRZ) =WKRPAVaiueon (QBUD, UKRZ) =PH) §

257 {Pos{P0,WQRZ)=WQRPAValueon(QBUD,WQRZ y=PW)A{ (Pos{PO,WQB2)=WQBPAVaTuson(
QBUD,WQB2)=PW)A({Pos(P0,WKBZ)=WKBPAValueon(QBUD,WKBZ)=PW)a(Pos(PO,WKRZ)sWKRP
AValueon{QRUD,WKRZ)=PW)}))

sssselabel ROUZ WP:

ssess tauteq (Posl(gx WOR2)=WORPAPospcf (gx WORP) «WQR2} A

* (Pos (gx WOBZ2}=WOBPAPospcf (gx WABP) =WHUB2)A

® {Pos (gx WKBZ2] =WKBPAPospcf {gx WKBP) =lKB2) A

* (Pos (qx WKR2) «WKRPAPospcf (gx WKRP)=WKRZ) +444414,0X_0BUD;

258 (Pos(qx,WQR2Z)=WQRPAPospcf(qx,WORP)=WQRZ ya{(Pos{qx,WQBZ }=WQBPAPospCT(Qx,
WQBP)=WQB2 Ja({Pos{ﬂx,\ﬂ(BZ)=HKBP&?05M1"(ﬂx,‘dKﬂP)IWKBZ}J\(?o&Iqx-,ﬁKRZ J=WKRPA
Pospcf(qx,WKRP)=WKR2))) (1 9)

4.2.7. A FOL Solution to the Chess Puzzle Page 143.

The white pawns on WON3 and LIKN3 are therefore the WONP and WKNP, respectively.

sssesYE WhichihitePaun gx GBUD WON3:

259 {BOARD(qx,QBUD)avalueon{ QBUD,WQN3)=PW)({Pos{qx,WQN3 }=WQRPA{ Pospcf(ox,
HQR?)!HQNSnﬁA?_PAHN_CAPTURES(NORZ,HQN3,HHITE)3}v{{?os{aK,HQHS)BVQHPn{Paspcf{
QR,HQNP)tHQN3nHA¥_?AHN_CAPTURES{NQNZ,HQN&,HHITi}))VK(Pos(Qx.HQN3)tHQ8PA(
pospcf{qx,WQBP }-HON%HM_PAHN_CA?IURF‘E!_NQBZ JWON3, WHITE)) Iv((Pos(qx,WQN3)=WQP
n(?ospcf{qx,ﬁQP)tVQH3nHAY_PAHN_€ﬁPTURES{HQZ.HOH3.HHITE)))v{{Pos(qx.ﬂQN3)sﬂK?
A(Pospcf(ux,ﬂKP}=HQH3thY_PANN_CA?TURES(HKZ,HOH!.UHITE)))v({?os(ax,HQH3}=
HK%PAi?ospcf{Qx.UKBP):HQ&SthY_PAHN-Cﬁ?TURﬁS(HKBZ,HQHS,HHITE}))vi(Pos(qx.
UON3)!NKHP&{?05¢CF{qx,ﬂKN?)=H0&3nﬁﬁ¥-9&UH_CﬁPTURES(UKHZ,UON3,HHITE})}v{?os(
?§5VQ83}=HKRPA{?ospcf(ax,HKRP)lUOH3AﬁA?_PhHN_CﬁPTUR£S{HKRZ.HQHS.HHITE}})})J)

s3s3sYE WhichilhitePaun gx QBUD WKN3;

260 {-BOARD(Q:(.QBBD)nVaTueon{OBUD,HKN:HsPH):;{(Pos(qx,wms):m)a%{Pospcf{qx,
HORP]tHKN3AM&?_P#HN-CR9TURES(HORZ.HKNS,RHITi}})v{(Pos(qx.ﬂKN3)=HONPn{Pospcf(
nx.HONP)tVKN3AHhY_PAHH_CAP?UR£S(HOHZ.HKN&,HHITE)))v({Pos(qx,ﬂK33)=HQBPn(
POSpcf{qx,UQBP)=HKR3hHAY_PAHﬁ_CAPTURES(HOBZ.UKNZ,VHITE}}}VK(?OS{QI.Hﬁﬂa)tﬁQP
a(Pospcf{qx .HQP}=HKN3AHM_PAHN_£AP¥URES{NQZ KNI, WHITE)) vl {pos{ax, WKN3)=WKP
A(Pospcf{qx,HKP):HxﬁSnHkY_?auN_CAPTGRES(HKZ,NKNS,UHIIE}))v((?as(ux,ﬂkﬂ3}=
WKBPA{Pospcf{ax ,ﬁKBP):‘JKNSAHAY_?»\’#&_CAPTBRES{HKSZ,HKN:;,HHITi 1))v({Pos{ax,
WKN3)=WKNPa{Pospcf{ax .HKNP)--NKH?.AHM_PAHH_C&PTURES{HK&Z JWKN3, WHITE)) v(Pos{
?§3UKN3)=HKRPn(P05pcf{qx.HKRP}SHKHSAHRY_PAHN_SﬁPTHRES{HKRZ,HK%S.HHITE}}}))})

ssssxsimplify ™
261 BOARD{qx,QBUD):s((Pos(ax.UONB):HORPaPaspcf{qx.HORP):HQ&IS)v{(Pos{qx,HQN3}=
WQNPAPospcf{aqx ,WQNP)=WQN3)v{ ?as{ax.ﬂﬁﬁ&}tﬂqsi’a?cspcf {qx,WQBP)=WQN3))

ssesesimplify 1
262 EOARﬁ{qx.OBBD):{(?as(ux,HKN&)xh‘i(BPnPaspcf{qx,\-‘KBP)-?KHI‘}V{{Pns{qx.h‘Kﬁ)-
&?KHPnPospcf(qx.HKNP)!HKH.’S}ViPnsl,qx.HKﬂ3}=HKRPn¥osp¢¥(qx,HKRP}:HKNS)))

ssssxsimplify —-HDRZ-HON%-!JQBZ-HGNBA-MKRZ-NKNBNHKB?-HKNS*:
263 ~(NQRZ:NQN3)A{~(UQBZ=UQN3}&{~{UKRZ:HKN3}&H{HKBZ=HKN33))

ssxsslabe! ROU3 WP:

ssxxstauteq TT1:H H2HL AT H2H2H] as4:4 ROWZ_WP,QX_QBUD:

264 (Pos{qx .HQNS&:NQNPAPospcf{qx LHQNP)=WQN3)A{ Pos{qx ,HKNS}:HKHPnPospcf(qQx,
WKNP)=WKN3) (1 9)

Therefore, the white pawns on B0B2 (in gx) and WQ3 are the WKP and QP (though we don't know
which is which).

sssssYE HhichUlnitePaun ax QBUD WQO3;

265 {BOAﬂath.QBUD)nUalueon{QBUD,wQ3):PH}:((?os{qx.ﬂﬂa)sHQRPn{Pospcf(qx.HQRP
)=HQSAHAY_9AHR_£APTURES{HQRZ,HQ3,HHITE}})v{(Pos(qx,V93)l¥QNPn{Paspcf{qx,ﬂOHP
}=903AHﬁY_PAVH_ChPTURES(HONZ,Uﬁa,HHITi}))v{(Pos(qx,HQ3}=U03Pﬁ{?059cf(ax.HQBP
):HOSAHAY_P#UN_CAPTHRES(HQBZ.HO3,HHIT£))}v((Pos(qx.HOB]=H0PA(Pospcf(qx,HQP}=
NOSnHAY_PAHH_CAPTURES(902,UQ3.HRIT£])}v((Pos{qx,ﬂQ3)=VK?A(?ospcf(qx.HKP}!ﬂOS
AHAY_PaHH_CAPTURES{HKZ.HQS,HHITE)})v{(Pos(qx.Hﬁ3}-ﬂKBPn{Pospcf(qx.ﬁKBP}!Ho3n
HﬁY_PAHH_CAP?BRES{HKBZ,HQ3.UHITE}))v{(Pos{qx,?ﬁa)zﬂKNPA{Pospcf{nx.HKHP}!HQSA
HAY_PAHN_cﬁ?TUﬁES(HKHZ,HQS.HRI?i}}}v{?os(qx.ﬂ03}-HXRPh{9aspcf(qx,iKRP}lHO3n
NAY_PAUN;C&P?URES{HKRZ,Hos,HHIYi}})}}}))}}

Page 144. A FOL Solution to the Chess Puzzie 4.2.7.

ssx3sYE WhichWhitePaun gx GBUD BGBZ:

266 {BO&RD(qx,OBUD)nVaiueon{QBUB.BQBz3=PH):((Pos{qx,8082):80RPA{9osp:f{qx,
HQRP}!3QBZnHA¥_PﬁHN_CAPTURES(HQEZ,BQBZ,HH&YE)})v((Pas{qx,BQBZ)tﬂOXPA(Puspcf{
qx.HQNP)=QQBZAHAY_PAHN_ChPIURES(UQNZ.GGBZ.HHI?E}))v({Pos(qx,Boaz)tﬁoapn{
Pospcf{qx,HQBP)=BQ82AHAY_PAﬂH_€ﬁPTﬂﬂES{9032,BQBZ,UHIIE})}v{(?os{qx,aﬁsz)tﬂﬁP
n{?ospcf(qx,ﬂ@?}-SQBZAHAY_PAHN_CﬁPTURES(HQZ,BGBZ.HHI?i))}v{(?os{qx.BQﬂZ}siﬁP
A{Pospcf{qx.UKP]nBQBZAHﬁY_PAHH_CAPTURES{HKZ.BQBZ.UHITi)))v{{?ol(qx,BQBz)-
HKBPA(Paspcf{qx,HKBP)aBQBZnﬂ&?_PAﬂﬂ_CAPTURES(HKBE,BQBZ,HHIIE}}IV{{?os(qx,
BQBZ)=HKHPA{Pospcf{qx,ﬂﬁﬁ?)=BOB2thY_PhHH_CﬂP?UR£S{HKHZ,BQBZ,H%I?E}})v(Pns(
g§38032):HKRP&(Pospcf{qx.HKRP)=BQBZnHA¥_PAHH_E&PTUR£S(HKRZ,EQBE.HHITE}})})})

sesxxsimplifytt;
267 80ARB{Q:.QBUB):{(?os(qx,HO3)=ﬁQBPnPosgcf{qx,HOBP}=HQ3}v((Posqu.ﬁOS)-HQP
aAPospcf(qx,WQP)=WQ3)v{Pos(ax .HQB):HK?nPnspcf{qx,VKP}-HQBJ 3]

sesensimplify ~WHOBZ=WG3AValiueon (QBUD BQOB2) «PlA -WORZ2=BOB2A -1i0B82=B0B2A
+-LIKB2=B0B2A -WKR2=BOBZA -WON3=B0B2A ~UKN3=B082~ -WQ3=-B0B2Z;

268 «(HQBZ:UO3)&{UaIﬁaan(OBUQ,BOBZ}s?UA{~(HQR2-EQBZ)A{H{HQBZ:BQSZ}a{ﬁtﬁkazs
8953)h(~(ﬂxR2!3032]n(*(WON3=BQBZ)A{*{HXR3!BQBZ}ﬁﬂ(ﬂQBIBQBE}}}}))}}

sssxs |abel ROYAL WP;

ssssxs tauteq
s {(Pos (gx WO3) =WOPAPospcf (gx WOP) =WO3) A

s {Pos (gx BOB2) =WKPAPospcf (gx LKP) =BOB2} } v
% { {Pos (gx Li03) =WKPAPospcf {gx WKP} =WQ3) A
2 {Pos (gx BQB2) =WOPAPospcf {gx WQP) =BOBZ))

2 ¢+$:?,RONZ_HP,RDN3_yP.Ox_ﬂBUD:
269 {{Pos(qx,HQS)sHQPnFospcf{qx.UOP):UQ3}A{Pos{qx,BQBz}tHK?APospcf[qx,HKP)-
?Oggé%\;g { ?{n?(ga}:.ﬂaa)wﬂn?ospcf {ax,WKP)=WQ3)a(Pos(ax ,BQB2)=WQPAPospcT(qx QP

Hence, any square in qx which is not one of these cquares, does not have a white pawn on it.
Similarly, no white pawn has been captured in the game that reached qx.

ssxssYE WherellnitePauns p gx x sG WORZ WON3 WOB2 WO3 BOB2 WKBZ WKN3 WKR2:

270 {?as(qx.UQRZ)BHQRPA(Pos(qx,ﬁQ&E):Hﬂﬁ?a{Pos{qx,ﬂQBZ):HQB?A(Pns(qx.HQ3}=
WQPA{Pos{qx,BQB2)=WKPA(Pos{qx,WKB2)=WKBPA(Pos(nx,VKNS}tHXNPnPos(qx,HKRZ)t
VKRP))))})}:({{~€sa=H0R2)A(~{sa=HQﬂ3)al~(sn=YOBZ)n(~(sq=303)n(~(sa=30323h{~(
sq=WKBZ Jn{w{sqﬂ‘KNS}n—{sq:WRz)}}})))}D-HPMIHS Pos{qgx,sq))a{{x=Taken Move pA
{PR£OEGAH£{o,qx)vp=qx}}3~H?AUHS X}

exsssYE WherelhitePauns p gx x sq WURZ LON3 WOB2 BOB2 WQ3 WKB2 WKN3 WKRZ;
271 {?os(qx.HQRZ}=HQRPn(Pos{qx.VQN3)=UQNPA{Pos(qx*H0B2}=HQB?n(Pas{ax.ﬂQﬂE}-
UQPA(Pos{qx,H03)=UKPA{Pos{qx.ﬂKBZ}=HKBPa{Pas(qx.ﬂkﬂ!)zﬂtkpnPnsiqx.ﬂKRZ}:ﬂKRP
}))))))3({[~€sﬁnﬂORZ)n{~{sq=90N3}n(~(sa=HOBZ)n{~(sq=BQB2)h(~{sa=ﬂb3)nt~(sq-
HK%Z)n(w(sqﬂmsanqtsq:wmﬁ}H}})):~HPA¥JHS bos{qx,sq))a((x=Taken Move pn{
PREDEGAME (p, qx Jvp=ax) }o-WPAUNS x))

sxssstaut T H2 1,??.RGUZ_HP.ﬂOuS,HP.RGYhL*HP;

272 ((~(5q=WQR2Z)A(={sq=WQN3)A(~($q=W0B2Z)a(~(5q=BQB2)a(~(5q2¥Q3)a(~{sqsWKBZ)A
{--(sqzwxﬂsan—-{sq:uxaznm}))rwmus Pos(ax,sq))a((xsTaken Nove pal
?REQEBAHE(D.qx)vp=qx)}:~UPAHNS x} (19)

sseee l3bel OX WPALINS:

ssssa¥Yi? p x 8qi

4.2.7. A FOL Solution to the Chess Puzzle Page 145.

273 Yp x sq.((<—(sq=HOR2}n{~(sq=90ﬂ33n(*(sq=ﬂeﬂzJﬁ(ﬂ(sa=8082)n(~(sq=ﬁo3)n{~i
sq=WKB2)A{n(sqsﬂKNS)m(squﬁRZ}})})}}}3—-\1?&%5 Pos{qx,sq))A{(x=Taken Move pn
(PREDiGME{p,qx)vp:qx)}rwmms x}} (19)

9.1 More particularly, the fallen piece, on WKR&, was not a white pawn.

ssseeYE OX_WPAUNS p, x,WKRG;

274 {((~{WKR4=WQR2 }A(-{VKR4=H0N3)M~(HKR4=HQBZJh{w(ﬂKRhBQB?}n{-(UKRiﬁ:VQS}AI-
(WKRA=WKB2)A (~({WKRA=WKNI)a-~(WKR4=WKR2))))))))o~WPAWNS Pos{qx,WKR4))a{{x=
Taken Move p.«{pnanzamch.qx)upmx}3:~upmns x) (19)

sexsesimplify s
27?1-51)’&%8 Pos{qx,WKR4)a({x=Taken Move pa{?ﬂEBEGMEtn.qx}va-ﬂx)):r*‘dP»WNS x)

Section 4.2.8 The White Rook and King

9.2. There are two other white (valued) pieces on the board QBUD. There is a rook value on
BG2. This is either one of the two original white rooks, BGR or BKR, or a promoted white pawn.

sexssVE MightBeRU qx,Pos (qx,BQ2}:
276 Va‘t{qx.Pos(qx.aoz)}zR\b((Pas{qx,BQZ)sHKﬂvPos(qx,BGZ}:m)vw?mﬂs Pos{n~
,BQ2 }nPRONO?fOPAHN(qx,Pos(qx,BQ2))

But none of the white pawns is on B2.

sxx2eVE OX_WPAUNS p,x,BOZ:

277 {{-~(BQ2=WQR2 ya(~{BQ2=WQON3 ya{~(BQ2=WQB2)n(~{BQ2=B8QB2)n(~{302=v033n{-(302=
UKB?)&(H(BOZBHKN3}&*(BQZSHKRZ}}}}))}3:~HP8UNS Pos(gx,BQ2))A((x=Taken Move pA
(PREDEGAME (p, qx)vp=qx))>~WPAWNS x) (19)

ssxe¢VE ValueTranspositionB gx,B02,08U0;
ﬁg&} BOARD(Q:,OBUD):(Va!ueon(QBUD,EQ?.}:Va}{qx,?os(qx.aoz))v%‘a!uaon{ﬂaﬂB,BQZ}z

ssssxsimplify ~B02=L0OR2 A-802-1-1GN3A-ﬁQZ-NQBZJ\-BQZ-BGBZ:*-BQZ--HQS&%GZ-HKB%

] -BQ2=UKN3A-BO2=WKR2AValueon {QBUD, BO2) =RUA-RU=UDA

® WROOKS WKRAWROOKS WORA-WKR=WOR; _

279 ~(BQ2=WQR2)A(~{BQ2=WQN3)A(~(BQ2=WQB2Z)a{~{BQ2=BQB2Z ya({=~(BQ2=WQ3)Aa(~(BQ2Z=
WKB2)a(~(BQ2=WKN3)A (~(BQ2=WKR2Z }A(Valuean(QBUD,302}=RW\(~(QUIUB)A{‘HROGKS WKRA
(WROOKS WQRA—~(WKR=WQR))))))))))))

Hence, the piece on B2 must be either the BOR or the BKR.

ssssx tauteq Pas{Qx.BQZI-&I{}RvPos{qx.BGZ}-UKR QX_08UD, t141: %y
280 Pos(qx.%QZ):HQRVPQS{QK.BOZ):UKR {19)

However, this is not the most useful formulation of this fact. What we really need is names for each
of the white rooks. We maneuver to obtain a more pliable WFF.

sxesstauteq Posigx BA2}=WOR> (Pos (qx BQO2)=WARA (LQR-UORVIHOR=UKR] A

-Pos (gqx,BA2} =WKRA (WKR=MHCRVIWKR=WKR] A ~Li0R=WKR} 11:%;

281 Pos{qx,BQz)=WQR>(Pos(ax, 8Q2)=WQRA{ (WQRsWQRVWQR=WKR)a(~(Pos(qx,BQ2)=WKR)A
((WKR=WQRvWKR=WKR ya~{WQR=WKR})})) (1 $)

Page 146. A FOL Solution to the Chess Puzzle 4.28.

ssssstauteq Pos(gqx BO2)=WKR> (Pos(ax BQ2) =MKRA (WKReWORVIKR=WKR) A

* -Pos (gx, B02) =UGRA (LOR=WORVWAR=WKR) A ~WKR=WQR} 400

282 Pos{qx,BQZ)=WKR>(Pos(qx,BQ2 JeWKRA({WKReWQRVWKR=WKR)A(~(Pos(qx, BQZ)=WQR A
{ {HQR!HQRUHQR!IVKR}N-'(WR-HQR} 1IN 19)

sssssunify Pos(gqx BO2)=HOR> 3ywr ygurl. ((Pos{gx BAZ)=yura (wr=lQRvyur=WKR]} A
* ~Pos (qx,BQ2) syurla (yur1=KORvyur1=WKR} A ~yur=yurll)} ?*1

283 Pos{qx,BQ2)=WQRo>Iywr ywrl.{ Pos{qx,BQ2)eywra({ywrsWQRvywr=WKR yn{~(Pos{ax,
BO2 Jeywr 1)a{ (ywr 1sWQRVYwr 1sWKR)a~(ywr=ywr1))))) (1 9)

More specifically, we want to rename the two white rooks to be yur and yurl, where we know that
ywur is on the square B2, and that yurl is not ywr. With the proper manipulations, we obtain:

sssssuni fy Pos(gx BA2) =WKR> 3ywr ygurl. {(Pos{gx BAZ}=yura {ywr =WORvyur=HKR) A
* ~Pos{gx BAZ2)=yurla {yur1=HORvyur 1 =HKR}A —ywr=yurll] ?g;

284 Pos{qx,BQ2)=WKRodywr ywrl.{Pos{qx,BQZ}:wmt{ywr-ﬂoavw-%a)n(-'ﬁos(qz.
BQ2)=ywr1)a{ { ywr 12MQRvywr 12WKR)a~(ywrzywr1))))) (1 9)

ssssstaut 1142 A A0, PPN
285 3ywr ywrl.{Pos{qx,BQ2)=ywra((ywrsWQRvywr sWKR)A(~(Pos{ax,BQ2)sywrl n{(
ywr 12WQRvywr 12WKR)A~(ywrzywr1)}))) (1 9)

permitting the renaming:

sssxx fabel CALL YWR:
ssxee 3E T yur yurl;
286 Pos{q:,BQZ)zwrn((ywr:\ioavym':wn}n{-(?os(qx,BQZ}lwl)n{{wllmvywrh
WKR)A-(ywrzywr1)))) (286)
which implies that the rook yur was not the fallen piece (though the rook ygurl might have been).

ssxssVE Unique qx,B02,WKRG, yur;
287 Pos{qx,BQ2)=ywr:{Pos{qx.,wxﬁd)syw:ﬂoz:m(ﬂﬂ

The white king, on square BKR1, was certainly not the fallen piece.

sss#sYE Unique qx,BKR1, WKRG, HK;
288 Pos(qx,BKR1)=WK>(Pos{ax , WKR4 }=WKuBKR1sWKR4)

ssxsxlabel QX WK:

ssessYE KingValueThm gx,QBUD,BKRL:

289 (BOARD{qx,QBUD Ja~(Valueon{QBUD,BKR1)=UD) ya{(Pos{qx,BKR1 }aWK=Valueon{QBUD
.BKRI}ﬂ(!}n{?os(qx.BK'R!}:BK:V;!U&M{QBUG,EKR}}'KB}} _
9.3. The whitepieces include the white pawns, w0 rooks, knights, and bishops, and a white
king and queen. But we have eliminated ali but six of these pieces as candidates to be the fallen
piece. Hence, it must have been one of them.

sssss¥E WhitepieceArePaunsOr_ yyu;
290 WHITEPIECE yyws(WPAWNS yyw{yw:ﬂkv(yw-m{mwﬂv{mﬂkav{mwav{
yywsWQBv (yywsWQRvyywsWQR)}1)))))

ssssssimplify WHITEPIECE yynA-802=WKR4A-BKR1 =WKR4A
* Valueon (QBUD, BKR1) =sKWA~KW=UD;
2}?; }UHiTﬁPIECi yywa (~{BQ2=WKR4)A(~(BKR1=WKR4)a(Valueon(QBUD, BKR1)sKWA~(KW=UD

4.28.

ssssk | abe
sssss taut
Y X

A FOL Solution to the Chess Puzzle Page 147.

| WHICH YYU:
eq Buu- v yyusHOB v yyusiKB v yywsyurl v yyns=HON v yyw=kKN
QBUD, SAME _ON_WKR4 , CALL _YYW ,OX_WPALING+2, CALL _YWR: 14

292 wﬁw{wuqav(wmv{wmmivzwwmmﬂxn}m (1 9 252 286)
We set the stage for further deductions.

Similarly, only

these six white pieces were ever captured. Furthermore, If the capture occurred on a

white square, then the white on black bishop (W08} was not the captured piece.

ssssa¥E M

conseafX qx,p,BKR],HK;

293 {(p=qxvPREDEGAME(p,ax))aTaken Move psWK)o>~(Pos{qx,BKR1)=¥WK)

seesaVE M
294 ({p=q

sseseYE W

conseafX ax,p.BAZ,yurs
wwPREDEGAMC(p,ax))aTaken Move paywr)o~(Pos{ax,8Q2 Juywr)

hitepisceArePaunsOr_ xi

295 WHITEPIECE x=(WPAWNS xv{nlvkv{xtﬂov(xSHKNv{xtﬂKBv(:tHKﬁv{xsﬂosv{xsﬁﬂﬂvx-

WQR) I
sxxssVYE W

)
hereBishopTaken p, 0B, sq, HAB1

296 {To Move pzsqn{Pos{?o,mi)sﬂosn-{inlﬁiﬁsamkis WQB 1sWHITESQUARES $G)})o—
{Taken Move p=W(B)

ssssss8imp

1ify -WHI TESQUARES LOB1APos (P@, WQR1) «H0B;

297 -WHITESQUARES WQB1aPos{PO,WQB1)=W(B

sssssYE MconseqfX nx p WKR& yyw;

298 ((p=q

sesestaut
P {{x

yyus
xvPREDEGAME (p,qx))aTaken Move ptm)r{?as{qx,ﬂku)-yw)

eq {{PREDEGAME (p qx) vp=gx} aTaken love psxalH] TEPIECE x)>
-Nﬂvx-ﬂﬂ&vs-ﬁﬂﬂvn-NﬂBux-UKBvxagurl}A{-x-ggu}A

5 {{To Move p=sgalH] TESQUARES sq) o-x=WQB))

® Tt
299 ((PRE

1, OX_MK, QX _WK+2 .{JX_GBUD.C;ELL_YHR.QXJPMZ. CALL_YYWs
DEGAME(p, qx)vp=ax)a(Taken Hove pexAWHITEPIECE x)):{[xﬁﬁv(xt%ﬂv(xr

wm(x-msv(xswavx-wz)))})a(ntxzm)a{('{o Move p=sqAWHITESQUARES $Gjo~{x=

WQB)1))

zssss labe
zssas¥] *
300 Yp
x=WQNv{x=

(1 9 252 286)

1 WHICH gx TAKEN;

p x 8Q:
sq ,{‘ {{ PREDEGAME (p,qx)vp=ax)a(Taken Move pexaWHITEPIECE x})2 { (x=WQv(
ﬂxuv(xsweav(xsmavxswrl 133} n(~(xsyyw)a({To Move pesqAWHITESQUARES

sq)>~(x=WQB))))) (19 252 286)

Section 4.2.9

Black Pawn Captures

10. We see that the BONP and BKBP have, between them, captured white pieces on the squares

BQR3, BK3, B4

sssssVE B
301 {Pos{
pPiececolo

, and WOB4.

{ackPaunCaptureThm gx , BONP , BONZ2 , BOR3 , BOR3 , 0BUD :
PO.BQNE)SBQHPn(?os(qx.BOR3}!BONPA{HHST_?AUH_ﬁﬁPIHRES(BQNZ,BQR3.
r BDRP)n(BO&RB(qx,QBUB)nﬂllytan(QBUD.SQRS}lPB})l):{(80R3=30R3v{

SmEDIAG'{BOR.'i.aoks}n{SMEBIhG(BOB.EORZ}aBET’EﬂEﬂ{aw BQR3,Row BQR3,Row BQN2)
}))o3ad xs.({PREDiGMi(qs,qxlvqalqﬂa(tTA.KIIIGS Move g3a(Mover Move q3=BGNPA(

To Move q

3=BQR3ATaken Move qssxan)a(?RiDEGMEIPrwpos q3,qx)Aa(To Move q3=

Page 148. A FOL Solution to the Chess Puzzle 4.28.

BOR3>{Mover Move q3=BQNPo((Taken Move q3sx3a~-WHITEPIECE BONP)>{WHITEPIECE x3
a{~{Row BQR3=6)>Pos(Prevpos q3,BQR3)=x3)))1 1))

sssssVE BlackPaunCaptureThm ax , BKBP . BKB2 , WOB4 , BK3 , GBUD

302 (Pas(PD.BKB?}-BKBPn{Pos{qx,ﬂOB#)laxspn{HUST_PAHH_CAPTURES(BKBZ.HOB#,
Piececolor 3KBP)A{BOAR0{nx,OBUD}nVaTuaon(QBUD.Uqai}-?B}))}:t(8K3tﬂos4v{
SAHEDIkG{HQB4,Bkaja(SAHEDIAG(BKS.BK&Z}nGETHEEN(Raw WQB4 ,Row BK3,Row BKBZ))))
>3q3 xs,{{FREDEGhHE{qa.qx)vq3=qx)a({?AKINGS Move q3a{Mover Move g3=BKBPA(To
Move q3=BK3aTaken Move q3=x3)))a{PREDEGAME(Prevpos q3,q9x)A(To Move g3=BK3>{
Mover Move q3=BKBP>{(Taken Move q3=x3A-WHITEPIECE BKBP) (WHITEPIECE x3a(~(
Row BK3=z6)>Pos(Prevpos q3,BK3)=x3)))11)1))

sssssYE BlackPaunCaptureThm gx , BKBP , BKB2 , WOB4& , BO4 , QBUD

303 (Pos{PD.BKBZ}=BKBPA{Pos{qx,woad}:BxSPn{HUST_P&HH_CAP?URES(BKBE.HQB#,
piececolor BKBP)a{BOARD(qx,QBUD)aValueon(QBUD,WQB4)=PB))) ¥o((BQ4=WQBAv(
SAHiDIAG(HQB4,BO¢)A(SﬁHEBIaG(BOd.BKBZ}nBiTHEEH{Raw WQB4,Row BQ4,Row BKB2))))
>3q3 x.’s.{-(PREDEEME{QS.qx}vqhux)n((ThKINGS Move q3a{Mover Move Qq3=BKBPA(To
Move q3=BQ4aTaken Move q3=x3)) Ja(PREDEGAME(Prevpos q3,qx)a{To Move q3=BQ4>(
Mover Move q3=BKBP>({{Taken Move q3=x3A-WHITEPIECE BKBP)> (WHITEPIECE x3a(~(
Row BQ4=6)>Pos{Prevpos q3,8Q4)=x3))11)1)))

«sseeYE BlackPaunCaptureThm qx , BKBP , BKBZ , WOB4 , WaB4 , GBUD

304 (Pos{PD.BKBZ}=8KBPn{Pos{qx,H084}=8K8Pn{HUST_PA?H_CRPTURES(BKBZ.HOB#.
piececolor BKBP)A{BOARD(qx,QBUD)aValueon{QBUD,WQB4 y=PB))))o((WQB4=WQBAV(
SAMEDIAG(WQB4,WQB4)A(SAMEDIAG(WQB4,BKB2Z JABETWEEN(Row WQB4,Row WQB4,Row BKB2Z)
Y})>3q3 :3.{(?RGQEEME(qs,qx}vqhqx)A{(TAKIHSS Move q3a{Mover Move q3=8BKBPal{
To Move q3=WQB4aTaken Move q3=x3)))a(PREDEGAME(Prevpos q3,qx)a(To Move q3=
WQB4o>(Mover Move q3=BKBP>{(Taken Move q3=x3a-WHITEPIECE BKBP)>(WHITEPIECE x3
A{~(Row WQB4=6)>Pos{Prevpos q3,WQB4)=x3)))13) 1))

sssssiabel PISINP:

ssses simplify (Pos(P8,BON2) =BONPA

* NUST_PANN_EAPTURES{BQNZ,BUR3.Piecacolor BONP) AValueon (QBUD, BOR3) =PBA
BQR3=BAOR3) A (Pos (PE,BKBZ} «BKBPA

MUST_PALM_CAPTURES (BKB2Z,W0B4,Piececolor BKBP) AYa lueon (QBUD, WGB4) =PBA
(SAMED 1 AG (WQB4, BK3) ASAMEDI AG (BK3, BKB2) A

BETWEEN (Row W0B4,Row BK3,Rou BKB2))) a{Pos (P8, BKB2) =BKBPA
MUST_PAWUN_CAPTURES (BKBZ,WQB4,Piececolor BKBP} aValueon (GBUD, HOB4) =PBA
(SAMED] AG (LQB4 , BQ4) ASAMED I AG (BQ4, BKBZ] A

BETWEEN (Row WQB4,Row BO4,Rou BKB2))) a{Pos (P8, BKB2} =BKBPA
NUST_PAHN_EAPTURES(BKBZ.NQBQ.Piececanr BKBP) A

}
305 {POS(PO.BQHZ}lﬂON?ﬂ(HUST_P&HN_C&PTURES(BOHZ,BOR3.Piaceco1or BONP)a{
Valuaon(OBUD,BORS}:PB&BQR3SBOR3)})n({POS{PB,BKBZ)IBKBPA{HUST_PAHN_C%PTU&ES(
BKB2Z,WQB4,Piececolor BKQP)A{VaIuaan(OBUD,VQBd)tPBA{SAHEDI£G(HQB4.BK3)A{
SAMEDIAG{BK3,BKB2)JABETWEEN(Rcw WQB4,Row BK3,Row BKB2))))))a((Pos(P0,BKB2Z)=
BKBP&{HUST,PAHN_C#PTURES(BKBZ,UOB4.Piecncotor BKB?)&{V:1H¢00(QB¥D.HQB4)l?B&(
SAHEBIAG(HQB&,BQd)h(SﬂH£31h8(804,BKBZ)ABET?EE“(ROH WQB4,Row BQ4,Row BKB2))))
)}n(Pos{?O,BKBZ}8SKBPn{HUSY_PkHﬁ,CAPTURES{3KBZ.HOB‘.?!!C!:O%O? BKBP Al
va1uaon{oauu.u034;=?sauoa4=qua));}3

"ERERRRERS

Hence, there must have existed four positions in the course of this game where the move that
reached that position was one of these captures.

sssss tauteq 1T H2H2 #4444 PTSIMP,ROU3R_BP,QX_QBUD:
306 3q3 xs.((Pnzussmchs,u}vqa:qx)n{(mmss Move q3a{Mover Movse q3sBQNPA(
To Move q3=BQR3aTaken Move q3=x3)))a(PREDEGAME(Prevpos q3,ax)A({To Move Q=

4.2.9.

BOR3>(Mover Move q3=BQNP>(({Take
A{~{Row BQR3=6)>Pos{Prevpos q3,

seess tauteq T H2H2

307 3q3 33.{(PREDEG&HE{Q3,qx}vq3=qx}h{{IAKINGS

To Move q3=BK3aTaken Move q3=x3)))A{ PREDEGAME(Prevpos q3
s(Mover Move q3=BKBP>((Taken Move qsaxSAHVHgTE?IECE BKBP)>(WHITEPIECE
19)

Row BK3=6)>Pos{Prevpos q3,BK3)=x3)}))))))

A FOL Solution to the Chess Puzile

Page 149.

n Move q3=x3A~WHITEPIECE BQNP)>(WHITEPIECE x3
8QR3)=x3)))))))) (1 9)

#1414, PTSINP,BS_BP,QX_0BUD:

qin{Mover Move q3=BKBPA(
,qx)a{To Move q3=BK3
x3a(—~{

Move

sxexs tauteq P11 4242 11144, PTSIMP, BS_BP,OX_0BUD;

308 3q3 x3.{ (PREDEGAME({q3,qx)vq3=gx
To Move q3=BQ4aTaken Move q
o>(Mover Move q3=RKBP>((Take
Row BQ4=6)>Pos{Prevpos q3,BQ4

sessstauteq THH1TiH202 T114,PTS
309 3q3 x3.({ PREDEGAME(q3,qx)va3=qx
To Move g3
WQB4> (Mover Move q3=BKBP>({{Taken Move Q3
a{~{Row WQB4=6)>Pos(Prevpos q3,WQB4

n({TAKINGS

ya({ { TAKINGS

Let us call these positions pl, p2, p3, and p&, respectively. w
as xa, xb, xc, and xd.

sxkszlabel CALL PN:
sx3zz3E 111 pl xa:
310 (PREDEGAME(pl,ax)vp
pl=BQR3aTaken Move pl=xa
Mover Move pl=BQNP>({Taken M
Row BQR3=6)>Pos(Prevpos pl,BQR3

sasssdE T p2 xbi

311 {PREDEGAHE{92,qx)vasqx)n{{TAKING
p2=BK3aTaken Move p2zxb)))a{ PREDEGAME(Prevpos
Move p2s=BKBP>((Taken Move p2exba~WHITEPIECE BK
6)>oPos{Prevpos p2,BK3)=xb}}))))) (311}

sesesdE 1111 p3 xc:
312 {PREDEGRHE{93.qx)vp3=qx
p3=BQ4nTaken Move p3=xc))ia

}) Ja(PREDEGAME(Prevpos

3,804)=xc))))))) (312)
ssseeJE 1111 pl xd:

313 (PREUEGAﬁE(pd,qx}vpésqx)
p4=WQB4nTaken Move pd=xd)))a

6)>Pos{Prevpos p

{ PREDEGAME{Prevpos

3=x3)))a(PREDEGAME(Prevpo
n Move q3=x3A-WHITEPIECE
3NN (1 9)

{MP,BS_BP,0X_0OBUD;
=WQB4aTaken Move q32x3)))A(PREDEGAME(Prevpos

ex3A-WHITEPIECE BKBP)>{WHITEPIECE x3
)=x3)))))))) (1 9)

1zqx)a{{ TAKINGS Move pla(Move

ove plexaa-~WHITEPIECE BQNP }o (WHITEPIECE
y=xa))))))) (310)

Move q3a{Mover Move q3=BKBPA(
s q3,qx)a{To Move q3=8Q4
BKBP)o{WHITEPIECE x3n{—(

3an{Mover Move q3=BKBPA(
q3,aqx)a{To Move q3=

Move Q

¢ will refer to the white pieces captured

r Move plsBQNPA({To Move
jn{To Move p1=BQR3I>(
xan{~(

pl,qx

S Move pZa{Mover Move p2=BKBPA(To Move
pZ,qx)a{To Move
BP)o(WHITEPIECE

p2=BK3>(Mover
xba{—~(Row BK3=

JA{{ TAKINGS Move p3a{Mover Move p3=BKBPA({To Move
(PREDEGAME(Prevpos p3,qx
Move p3=BKBP>({(Taken Move p3=xca~WHITEPIECE BKBP)o(WH

)a{To Move p3=BQ4>(Mover
1TEPIECE xca(-{Row BQ4=

A{ (TAKINGS Move pda(Mover Move p4=BKBPA(To Move

pd,qx)a(To Move p4=WQB4>{

Mover Move p4=BKBP>{(Taken Move pd=xda-WHITEPIECE BKBP)o{WHITEPIECE xda{—{

Row WQB4=6)>Pos(Prevpos p4,WQB4)=xd)))))))

Clearly,

szsss label SIMPUWS;

sssss simplify (=WHITEP]
aiqﬁHITESOUhRES BOR3AWH
3

A(WHITESQUARES BQ4AWHITESQUARES WQB4)))

each of xa through xd must be one of the white pieces that could have been ca

{313)

ptured.

ECE BONPA-WH] TEPJECE BKBP)A
[TESQUARES BK3aWHI TESQUARES BQ4
{~WHITEPIECE BQNP. ~WHITEPIECE BKBP)a(WHITESQUARES

AWHI TESQUARES WQBé&:
BOR3A(WHITESQUARES BK3

Page 150. A FOL Solution to the Chess Puzzle 4.2.9.

sssssYE WHICH_QX_TAKEN pl,xa,BOR3:

315 ((PREDEGAME(pl,qx)vplzgx)a(Taken Move pl=xaaWHITEPIECE xa))o{{xasWQv{xas=
WONv (xa=WKNv{xa=WQBv (xa=WKBvxasywr 1)))))a{~({xasyyw)a({To Move pl=BQR3A
WHITESQUARES BQR3)>~(xa=WQB)))) (1 9 252 286)

sssseYE WHICH_QX_TAKEN pZ2,xb,BK3:

316 ((PREDEGAME(p2,qx)vp2sqx)a(Taken Move p2exbAWHITEPIECE xb))o({xbsWQuw{xbs=
WQNv { xbsWKNv({ xbaWQBv{xbeWKBvxbeywrl})})) YA(=~(xbsyyw)a{({To Move p2sBK3A
WHITESQUARES BK3)>~(xbsWQB)))) (1 9 252 286)

ssxsesYE WHICH_OX_TAKEN p3,xc,BQ4;

317 ((PREDEGAME{p3,qx)vp3=qx)a(Taken Move p3=xcaWHITEPIECE xc))o({xc=WQv{xce
WONv { xc=WKNv{xc=WQBv(xc=WKBvxczywrl))) YIa{~{xczyyw)a{{To Move p3=BQ4n
WHITESQUARES BQ4)>~(xc=WQB)))) (1 9 252 286)

sssssYE WHICH_OX_TAKEN pb, xd,H0B4;

318 ((PREDEGAME(p4,Gx)vpa=qx)a(Taken Move pa=xdAWHITEPIECE xd))o{ (xd=WQv{xd=
Hoﬂv{xd-wwtxdzwosvixdn\-.'xavxdswri}3 1) In{~{xd=yyw)a({{To Move pa=¥QB4A
WHITESQUARES WQB4)>~(xd=WQB)))) (1 9 252 286)

Since these are white squares, each of xa through xd was neither the HOB {white on black bishop),
nor, of course yyu (the piece that fell from the board).

sssxaslabel WHO XA;

sssss tauteq (%3 =W0vxa=WONvxasWKNvxaslKBvxanyurl) A~xa=yyw

s CALL_PN , SIMPUS, 1%

319 (xasHQv{quQNv(xa:ﬂl&ﬂv{xvﬂﬂvzaswﬂ))}}n—-(xazyw) (1 9 252 286 310)

ssssstauteq (xb=WQvxb=WONvxb=lKNvxbeHKBvxbeywr 1} A~xbDeyyw
* CALL_PN+1 , SIMPUS , ™11
320 (xb:’n‘Qv{xbsﬂoﬂv{xbawxﬂv(xhawavxbsywri))})A-(xbzm) (1 9 252 286 311)

ssssstauteq (xc=WQvxc=HONvxcsWKNvxcalKByxcayurl } A=xCoyyH
® CALL_PN+2 , SIHPUS, 1111
3zl (xcauov(xanQHv(xc:HKNv(xcsHKvacsml}))}h-(xctyyw) (19 252 286 312)

sssss tauteq (xd=WQvxd=HONvxd=lKNyxd=HKBvxdeyurl) A-xd=yys
2 CALL_PN+3 , SIMPUS, ttt%:
322 (xd=¥0v(deHONv{xd=ﬂXﬁv(xd=HK3vxd=ywri)))Jﬁﬂ(xd=yyw) {1 9 252 286 313)

We need also establish that these moves all captured different pieces. A lemma, DifferentTaken,
serves us well here. It states that if a capture took place on differing squares, or by differing pieces,
or any other way of proving the capturing positions different, then the captured pieces were not the
same piece. As there are six equalities to establish, we invoke the theorem six times.

sssa2VE DifferentTaken pl p2 qx xa xbi

323 (({DZWKVPREOEGME{DZ,QX)}A(pl:QWPRZBEGME{DI,Qx)})n({-(TG Move pl=To
Move p2)v(-~(Mover Move pl=Mover Move p2)v{PREDEGAME(p1,p2)v~(pl=p2))))A(
Taken Move pl=xaaTaken Move p2zxb)))o~{xasxb)

sssssYE DifferentTaken pl p3 gx x3 xCi

324 {{(pacqxv?niOEGAHE{pS.qx))n{pl=quR£BESAﬁEtpi,qx}})n{(~(Te Move pli=To
Move p3)v(~(Mover Move pl=Mover Move pa}v(PREDEWE(pl,p&}v—-[pl-ﬁ}))}A{
Taken Move plsxanTaken Move p3sxc)))o~{xasxc)

4289 A FOL Solution

sssssVE DifferentTaken pl pb gx
325 (((p4=qxvPREDEGAME(p4,ax))A
Move pd)v{-(Mover Move pl=Mover

Hag X

Move

di
(pl=qxvPREDEGAME(pl

to the Chess Puzzle Page 151.

,ax)))al{~({To Move pl=To
pd)v(PREDEGAME(p1,p4 Jv~(pl=pd)) yinl

Taken Move plzxanTaken Move pd=xd)))o-~(xasxd)

sxsssVE DifferentTaken pZ p3 gx xb xCi
326 (((p3=qxvPREDEGAME(p3,ax) }a(p2=qxvPREDEGAME(p2,qx)))al

Move p3)v(-~(Mover Move pZ=Mover Move
Taken Move pZ=xbaTaken Move

sssssVE DifferentTaken p2 p4 qx xb xd

327 {({ {p4=qxvPREDEGAME(p4, qx y)al
Move pd)v(~(Mover Move p2=Mover Move
Taken Move p2=xbaTaken

sssasYE DifferentTaken p3 pé gx xc

Move pd)v(={Mover Move p3=Mover Move

p2=qxv

{~(To Move p2=To

p3)v(PREDEGAME (p2,p3)v~(p22p3) 1)l

pzxc)))o~{xbzxc)

:
PREDEGAME(p2,qx)))al(
pd)v{ PREDEGAME(pZ,pd)v-

-~{To Move p2=To
(p2=p4))))a(

Move pd=xd)))o~(xbaxd)

wil
328 (({p4=qxvPREDEGAME(p4 ,qx))n{p.‘i:qm?REﬂEGMi(pﬁ,

ax)) Ia{{=(To Move p3=To

pd)v{ PREDEGAME(p3,p4 v~{p3=pd))))al

Taken Move pl=xcaTaken Move pdzxd)))o~{xcaxd)

And compact its result to a single step.

sessesimplify -BANP=BKBP A
329 -{BQNP!:BKB?)A(-(HOB#SBQQ}A(-'

ssssslabel NOT XN EQ:

s tauteq -xa=xba -xa=xCA ~xasxdsa =xbDeXCA

stt489%:t , CALL_PN:CALL _PN+3;

330 -a{xalxb}n{-(xatxc}n{-(xatxd)n{-(xbu¢}n{~

312 313)

-NOBQ-BQGn-ﬂ&B&-BKS&-BQ‘U = BK3;
(WQB43BK3)A~(BQ4=BK3)))

~upexdn =xc=xd

(xbsxd)a~{xc=xd})))) {310 31l

Section 4.2.10 The Black Pawn's Path to Promotion

1. We have proven (back on step 207)

that the black king rook's pawn had promoted.

Therefore, there must have existed some position (in the course of this game) where he moved onto

the eighth row. Letus call this position ay.

sssssYE BlackPromtesOn8A qx BK
331 PROMOTEDPAWN(qx,BKRP)23p.(
Move p=BKRP))aRow To Move p=8})

ssssstaut T:1#2 1,PROM_BKRP
332 3p.((PAWNPROM Move pa{
Move p=8) (1 9)

ssssslapel CALL OY:
sxxse 3E T qus

333 (PAVWNPROM Move qya{ { PREDEGAME(qy,
Move qy=8 (333)

1.1

RP;

Our final lemma specifically applicable

the BKRP promoted on any square {0 the left of WKN1, figure 42

two white pieces on the way to his elevation.

{PAWNPROM Move pA{ { PREDEGAME(p, qx)vp=Qx)aMover

;
(FREDEGmE{p.qx}vgsqx}nﬂovar Move paBKRP))aRow To

qx)vqy=qx)aMover Move qy=BKRP) }aRow To

to this proof, FarTaken (section B.4.2) states that if

then this pawn must have captured

Page 152. A FOL Solution to the Chess Puzzle 4.2.10.

,@, f/j x .1‘/29,
//Z,,;xf / _
zé

//;/, W,
/ﬁm’/

”/
f’

We assume that the BKRP promo:d on one of these squares.

figure 42

ssx33YE FarTaken qu;

334 (PAWNPROM Move qya(Mover Move qy=BKRPA(-~{To Move qy=WKRI}a~{To Move qy=
WKN1))))o3q1 q2 x1 x2.{({{PREDEGAME(ql,qy)val=qy)a{PREDEGAME(q2,ql)a(
PREDEGAME({PG,q2)A{ TAKINGS Move qln(mc:uss Move q2a({Mover Move ql=BKRPA{
Mover Move q2=BXKRPa{Taken Move ql=xlaTaken Move qZ-xZ}J)))}))A~€xlnx2)}

Let us assume that the promotion was on one of these squares

sssssiabel TAK$ 2 ASSUMPTION:
sssesassume —~(To Move qg-uKNlia -~{To Move queWKR1);
335 -~({To Move qy=WKN1l)a-~{To Move qy=WKR1} (335)

We call the positions in which the two white pieces were captured ql and g2, the respective captured
pieces, x1 and x2.

sxxsxtaut P42 MY

336 3gql1 92 x1 x2. {{{PREBEGAHE(QI qy)vagl=ay)a{ PREDEGAME(q2, ql)JA{PREDEGAME(PO,
q2)a{ TAKINGS Move qla{TAKINGS Move q2a{Mover Move qitﬂKRPn{Hov.r Move qil=
BKRPA{Taken Move ql=xlaTaken Move q2sx2)))))))ia~(xlsx2)) (333 333)

sxsss label CAL

ssss33E T gl,q2,.xl, xZ,

337 ({PREBiGAHE(Ql.qy}vqisqy)n(PREBEGAﬁE(qz Gl JA{PREDEGAME (PO, q2 Ja{ TAKINGS

Move QlA{TAKINGS Move qZa{Mover Move qizaxn?n{ﬁowr Movs quBKaPa(hhan Hove
glsxinTaken Move q2=x2))))))))a~(xl=x2) (337)

As gl and g2 occurred in the game that led to qy, and qy occurred in the game that reach gx, both
ql and g2 are ancestors of gx.

s2sssYE TransitiveGenealogy ql.qu.q
338 (PRCDEGAME(ql,qy)APREDEGAME(qy, qx)):PREDEGhﬂE(ql,qx)

sssss¥E TransitiveGenealogy q2.ql,qx:

4.2.10. A FOL Solution to the Chess Puzile Page 153.

339 (PREDEGAME(qZ,ql)APREDEGAME(ql,qx))oPREDEGAME(q2,qx)

sssssiabel PRED ON:
sssestauteq (PREDEGAME (ql qx)vql=qx) APREDEGAME (g2 qx) *1%:%,CALL_QY;
340 (PREDEGAME(ql,qx)vql=qx)APREDEGAME(qZ,ax) (333 337)

And x1 and x2 must also be in the capture set.

sssusYE WhiteCapturedOnThm Prevpos ql.ql,BKRP,x1,To Move ql;

341 Prevpos ql=Prevpos ql>(To Move ql=To Move ql>{Mover Move gql=BKRP>{(Taken
Move ql=x1A~WHITEPIECE BKRP)>{WHITEPIECE x1a{~(Row To Move ql=6)>Pos(
Prevpos ql,To Move qll=xl1)))))

ssessYE WhiteCapturedOnThm Prevpos q2,42,BKRP,x2,To Move qZ;

342 Prevpos q2=Prevpos q2>(To Move q2=To Move g2>(Mover Move q2=BKRP>{{Taken
Move q2=x2A-WHITEPIECE BKRP)>{WHITEPIECE x2a({~(Row To Move qZ=6)>Pos{
Prevpos qZ2,To Move q2)=x2})}))

sseesVE WHICH_OX_TAKEN ql,xl,To Move ql;

343 ((PREDEGAME(ql,qx)vql=agx)a(Taken Move ql=xIAWHITEPIECE x1))o{({xI=WQv(xls=
WONV{x 1=WKNv{x1=WQBv(x1=WKBvx1l=zywrl))}))a{~{x1l=yyw)a{(To Move ql=To Move gla
WHITESQUARES To Move ql)>-(x1=WQB))}) (1 9 252 286)

ssxesYE WHICH_QX_TAKEN q2,x2,To Move q2;

344 ((PREDEGAME(Q2,qx)vq2=qx)a(Taken Move q2=x2AWHITEPIECE x2))>({x2=WQv(x2=
WONv { x2=WKNv { x2=WQBv{x2=WKBvx2=ywrl)))))a{=(x2=yyw)a{(To Move q2=To Move qla
WHITESQUARES To Move q2)>~({x2=%¥QB))}} (1 9 252 286)

ssssssimplify ~WHITEPIECE BKRP;
345 -~WHITEPIECE BKRP

sssss [abel WHO X1;

ssssstauteq 111 H241AT111 420201 1,11, 19194, PRED_QN, CALL_ON, CALL_QY;

ae (x12WQv (X 1sWQNv { x 1sWKNv{x13WQBv (x1aWKBvx1sywr1)))) Ja~(x1eyyw) (1 9 252
286 333 337)

seesntaut TPOIH2HIAMMAIHZHZEL A1, 440, 41114, PRED_AN, CALL_QGN, CALL_QY;
ggg (xztgl}\;gxzxﬂom{xhvﬁﬁv(xZIHQBv{xESHKBvthWI}})))n—dka) {1 9 252
333 33

Since x1 and x2 were captured by BKRP, and xa through xd, by BONP and BKBP, x1 and xZ are not
equal to any of xa through xd. DifferentTakenFour is merely four instantiations of Differentlaken,
compressed into one WFF. This is a good illustration of the inaccuracies involved in measuring
proof size merely by counting steps.

ssxesVE DifferentTakenFour gx ql pl p2 p3 pé xl xa xb xc xd;

348 ((ql=gxvPREDEGAME(ql,qx))a((pl=qxvPREDEGAME(p1,qx))a((p2=qxvPREDEGAME(p2
,ax))a({ (p3=qxvPREDEGAME(p3,qx))a{ (pd=qxvPREDEGAME(p4,qx))a{~{Mover Move pl=
Mover Move ql)a(-~(Mover Move p2=Mover Move ql)a(-~(Mover Move p3=Mover Move
al)a(~{Mover Move pd=Mover Move ql)a(Taken Move qlzxia{Taken Move pi=xan{
Taken Move p2=xba(Taken Move p3=xcaTaken Move pd=xd))})})))})}})))a(~{xa=x1)a(
~{xbex1)Aa{~{xc=xl)a~{xd=x1}})}

sesesYE DifferentTakenFour gx q2 pl pZ2 p3 pé x2 xa xb xc xd;
349 ((02=qxvPREDEGAME({q2,qx))A((pl=gxvPREDEGAME(p1,qx))A((p2=qxvPREDEGAME(p2

Page 15¢. A FOL Solution to the Chess Puzzle 4.2.10.

,qx))a{ (p3=qxvPREDEGAME(p3, qx))a{ (p4=qxvPREDEGAME(pd, qx} Ja(~(Mover Move pls=
Mover Move q2)a{-~{Mover Move p2sMover Move qz)a(~{Mover Move p3sMover Move
q2)a{~{Mover Move pd=Mover Move q2)a{Taken Move q2sx2a(Taken Move pls=xan(
Taken Move p2=xba{Taken Move plsxcaTaken Move p#-xd}}}))}}}}))}}:(-v{xnxz)n(
~{xbex2)A(~{xcex2)a~{xd=x2)))

sssss label DIFFMOVERS;
ssxss simplify ~BKRP =BKBPA-BKRP=BANP;

350 ~(BKRP=BKBP)A~{BKRP=BQNP)

sssss tauteq PHHIH2 CALL_PN:CALL_PMB.CALE._QV.C&LL_GN.PRED_ON.H‘I‘. 7
351 -(n-xl)n(—~(xhsx1)a{-(xcaxl)nn(xduljjJ (310 311 312 3§ 333 337)

sasastouteq M2 CALL_PN:CALL_PN+3,CALL QY,CALL_QN,PRED_CN, t1%, 1%y

352 =(xasx2)a{~{xbsx2)a(~{xcsx2 Ja-~(xdex2)}) (310 311 312 313 333 337)

1111, ‘We have presume a situation that is clearly impossible. We have pusited the existence of
six captured white piece, all different, and a fallen piece, all to be selected from the poot of six
unaccounted for white chessmen. Our pigeon will not fit into this hole. We can tautologica'Py
produce the contradiction:

ssses tauteq FALSE .
® +4:4,NOT_XN_EQ, WHICH_YYW, WHO_XA: wriO_XA+3,WHO_X1:WHO _X1+1, CALL_QN;
353 FALSE (1 9 333 335)

11.2. This permits us to negate one of our assumptions. We of course choose the assumption
that the BKRP promoted to the left of WKN1. Hence, we get something equivalent to specifying the
promotion square of BKRP to be either WKN1 or WKR1.

sxxeslabel N1 OR Rl:
ssxas—~] T TAKE_Z2_ASSUMPTION:
354 ~(~(To Move qy=WKNlj)a~(To Move qy=WKR1)) (1 9 333)

Za 7%%/%%yu/% P ,;@;;
vampa r,
VL ////jf”ff %f/ %V _
%gf/ ¢A%7 %gf/ %/x .
% %} ////17 %yu/%’/é
W27 /ﬁ} % %

z/? Vi

VIV '?%é]

BKRP promoted on one of these squares.

figure 43

42.11. A FOL Solution to the Chess Puzzle Page 155.

Section 4.2.11 The Source of the Promoting Move

In either case, there was a move when the pawn valued BKRP was on WKN1 or HKR1. Notice that for
the next few steps, we are compelled to follow two parallel proof strands, one for each of the possible
promotion squares. We will merge these strands as soon as possible.

ssxxxsVE BlackDidPromote qy BKRP WKNl;
355 To Move qy=WKNI>{Mover Move ay=BKRP>(PAWNPROM Move qy>({Val(Prevpos QY.
BKRP)=PBAPos(qy.WKNI }=BKRP}))

ssss¢YE BlackDidPromote qy BKRP WKR1s
356 To Move qy=WKRi>{Mover Move qy=BKRP>(PAWNPROM Move qy>{Val({Prevpos ay,
BKRP)=PBAPos(qy,WKR1)=BKRP)))

[1.2.1. Properly composed, we can use our chess eye to see backwards as well as just looking about.
A black pawn on WKN1 came from one of WKB2, WKN2, or WKR2; on WKR1, from either WKNZ or WKR2.

sssxe2¥YE BlackPaunlovelnm ax, qu, BKRP,WKNL '

357 {Pos{qy,uxﬂi)=an?n(w{Pos(Pﬁ.HKNl}zEKRP)A((PREDEBﬂHE(qy,qx}vqy:qx}nvai{
Prevpos Qy,BKRP}=?B})):BQ.{{PREDEGAHE!Q.Q:)quqx)n{ﬂaver Move q=BKRPA{To
Move q=WKNIA(VALUEP Val{Prevpos q,BKRP)Aa{ (~(Row WKN1=6)a~{Row WKN1=4})o({
From Move gq=Makesquare(Wsucf Row WKN1,Column WKN1)aPos{Prevpos q,WKN1)SEMPTY
Jw({Taken Move q=Pos(Prevpos q,WKN1)AWHITEPIECE Pos{Prevpos aq,WKN1))a(From
Move q=Makesquare(Wsucf Row WKN1,L2touchf Column WKN1)vFrom Move Q=
Makesquare(Wsucf Row WKN1,R2touchf Column WEKNIIIIMIOD

+xxss¥E BlackPaunMovelhm ax, qy.BKRP, WKR1

358 (Pos{qy,wxnl]:BKRPn{~(?os(PD,9KR1)=Bxﬂp}n{(PREDEGAHE{qy,qx)vqysqx)AVa1(
Prevpos ay.BKRP}zPB)}}330.((?REDEGRHE(Q,Qx}vq=qx)n(ﬂover Move g=BKRPA(To
Move q=WKRIA(VALUEF Val(Prevpos q,BKRP)A((~(Row WKR1=26)a~(Row WKR1=4))o{(
From Move gq=Makesquare(Wsucf Row WKR1,Column WKR1)aPos(Prevpos q,WKR1)=EMPTY
yv{(Taken Move g=Pos{Prevpos q.WKR1)AWHITEPIECE Pos{Prevpos q,WKR1})a(From
Move q=Makesquare(Wsucf Row WKR1,L2touchf Column WKR1)vFrom Move Q=
Makesquare{Wsucf Row WKR1,R2touchf Column WKR1J)1D 1))

sxsxssimplify H{PnsEPB.HKRE}-BKRP}nﬂiposipﬁ,Uﬂﬂli-BKRP};
359 *{Pos{PO.NKR!}=BKR9)&~(POS{PQ,Uﬁﬁi)tﬁKRP)

In either case, there was a position when BKRP was on this From square.

sxssslapel Nl _assume;
sxsssassume 10 Hove qu=WKNl:
360 To Move qy=WKNl1 (360)

ssexe lapel Rl _assume;
sssxsassume 10 Hove qu=HKRl:
361 To Move qy=WKRl (361}

ssssstauteg TTIH1:H2 1??#??%,??T?T.SSS*T?.CALL_QY;

362 3q.((?REDEGAHE{q.qx}uq:qx}n(ﬁover3Hove q=BKRPA(To Move q=WKNIA(VALUEP
Val({Prevpos q,BKRP)A{(~{Row WKN1=26)a~(Row WKN1=4))o((From Move g=Makesquare(
Wwsucf Row WKNI.Column WKN1)aPos{Prevpos q,WKN1)=EMPTY)v((Taken Hove q=Pos{
Pravpos q,WKN1)AWHITEPIECE Pos{Prevpos q,WKN1) }a(From Move q=Makesquare(
Wsucf Row WKN1,LZ2touctf Column WKN1)vFrom Move g=Makesquare(Wsucf Row WKNI,
R2touchf Column WKN1))OI N)) {333 360)

Page 156. A FOL Solution to the Chess Puzzle 42.11.

seses tauteq THH11:H2 244044, 14444, 368, 11, CALL_QY;

363 Eq.{(PREDEG&HE{q,qx}vqrqx)n{nover Move q=BKRPA(To Move q=WKRIA(VALUEP
Val(Prevpos q,BKRP)A((~(Row WKR126)a~(Row WKR1z4))>{(From Move q=Makesquare{
Wsucf Row WKR1,Column WKRI)aPos(Prevpos q,WKR1)sEMPTY)v({Taken Move q=Pos{
Prevpos q,WKR1)AWHITEPIECE Pos{Prevpos q,WKR1))a(From Move g=Makesquare(
Wsucf Row WKR1,L2touchf Column WKR1)vFrom Move q=Makesquare(Wsucf Row WKR1,
R2touchf Column WKR1))))))))) (333 361)

We call that position gl. We use the chess eye to simplify the defining WFF of al.

«sxss3E M ql;

364 {PREDiGiﬂE{Ql.qx)vqlqujaiﬂuvar Move ql=BKRPA{To Move ql=WKN1A{VALUEP
Val(Prevpos ql,BKRP)a((~(Row WKN126)a~(Row WKN1=4})>((From Move qls
Makesquire{Wsucf Row WKN1,Column WKN1)aPos{Prevpos ql ,WKN1)=ENPTY)v{(Taken
Move ql=Pos({Prevpos ql,WKN1)AWHITEPIECE Pos(Prevpos ql,WKN1))Aa(From Move ql=
Makesquare{Wsucf Row WKN1,LZtouchf Column WKN1)vFrom Move ql=Makesquare(
Wsucf Row WKNI,R2touchf Column WKN1)))))))) (364)

sss3:3E 11 ql:

365 (PREDEGAME(ql,qx)vgl=agx)a(Mover Move ql=BKRPA(To Move ql=WKR1a(VALUEP
Val(Prevpos ql,BKRP)A{(-(Row WKR1z6)a~(Row WKR1z4))o((From Move gl=
Makesquare{Wsucf Row WKRI,Column WKR1)aPos(Prevpos ql,WKR1)=EMPTY)v{(Taken
Move ql=Pos{Prevpos ql ,WKR1)AWHITEPIECE Pos(Prevpos ql,WKR1))a(From Move qls=
Makesquare(Wsucf Row WKR1,L2touchf Column WKR1)vFrom Move gl=Makesquare{
wsucf Row WKR1,R2touchf Column WKR1)))))))) (365)

ssexasimplify 1M

366 (PREDEGAHE{ql.qx)v&1=qx)n(ﬂovar Move ql=BKRPA(To Move ql=WKNIA{VALUEP

Val{Prevpos ql,BKRP)a((From Move ql=WKN2aPos(Prevpos ql,WKN1}=EMPTY)v((Taken
Move gl=Pos(Prevpos ql,WKN1)AWHITEPIECE Pos(Prevpos gl,WKN1))a(From Move gl
=WKBZvFrom Move qlsWKR2}))}}) (364)

szexssimplify T4

367 (PREDEGAME(ql,qx)vql=axja(Mover Move ql=BKRPAa(To Move ql=WKR1A{VALUEP

val(Prevpos ql,BKRP)A((From Move ql=WKR2aPos(Prevpos ql,WKR1)=EMPTY)v((Taken
Move ql=Pos{Prevpos ql,WKR1)AWHITEPIECE Pos(Prevpos ql,¥WKR1))a{From Move ql
=WKNZvFrom Move ql=WKN2)))))) (365)

Hence, the from square of either gl was one of the three possibilities.

cxssstauteq (PREDEGAME (gl gx)vgl=gx)aiover Move ql=BKRPAVALUEP Val (Prevpos
sql, BKRPIa (From Move qi=WKR2vFrom Move ql=WKB2vFrom Move gl=WKN2) 1
368 {?RﬁQEﬁhﬁE{qi,qx}vql:qx}n(ﬁover Move qleBKRPA(VALUEP Val{Prevpos ql,BKRP
ya(From Move ql=WKR2v(From Move ql=WKB2vFrom Move ql=WKNZ}})) {364)

ssssstauteq (PREDEGAME (al ax) valegx)Alover fMove ql=BKRPAVALUEP Val (Prevpos
=ql, BKRPIa (From lMove ql=WKR2vFrom Move ql=HKB2vFrom Hove ql=HKNZ) s
369 {PRﬁDEGﬂHE{ql,qx}vql=qx}n(ﬂover Move ql=BKRPA(VALUEP Val{Prevpos ql,BKRP
ya(From Move gl=WKR2v(From Move ql=WKB2vFrom Move ql=WKN2)})) (365)

By existential quanufication, we obtain the same WFF as a consequence of either {promotion square)
assumption.

ssses3] 1T gl
370 qu.{{PREQEG&Hi{ql.qx)vql=qx)a{ﬂover Move qlsBKRPA{VALUEP Va

1{Prevpos gl
,BKRP)a(From Move glsWKR2v(From Move qlsWKBZvFrom Move ql=WKN2}}}))

(333

42.11. A FOL Solution to the Chess Puzzle Page 157

360)

sxsxs3] 11 gl
371 3q1.{(?RiDESME(ql.qx)vq!:qx}n(uover Move ql=BKRPA{VALUEP Val(Prevpos gl
52!?[){?)&{&% Move qlsWKR2v(From Move ql=WXB2vFrom Move ql=WKN2))))) (333

We know the promotion square to be either WKN1 or HKRI.

sssestaut To Move qu=WKN1 v To HMove qy=HKR1 N1_OR_Rl:
372 To Move qy=WKNlvTo Move qy=WKR1 (1 9 333)

Hence, the presumed position al certainly exists, regardless. We have used an uncommon
dependency removing inference rule, or elimination to generate this step. Without vE, we would have
needed an aadition inference.

sxsssvE T, T1E. MM
373 3q1.{{PR!DEGAME(QI.qx}vqlsqx)a(novnr Move ql=BKRPA{VALUEP val{Prevpos gl
,BKRP)A(From Move ql=WKR2v(From Move qlsWKB2vFrom Move qlaWkNZ))))) (1 9)

Iet us call the position from which black promoted his pawn qz. We know that the From square of
qz must be one of WKB2, LKN2 or WKR2Z.

sxssslabel CALL _QZ:

sxess3E T qz;

374 (PREDEGAME(qz,qx)vqz=ax)a(Mover Move qz=BKRPA{VALUEP Val(Prevpos qz,BKRP
jn({From Move qz=WKR2v({From Move qz=WKBZvFrom Move qz=WKNZ2}})) (374)

11.2.2. We notice that the WKBP has not yet moved. Hence, in gz, the HKBP was on WKBZ.

sssss¥YE ShortPaunPathlhm az. gx. WKB2, WKB2, KKBP,0BUD;

375 ?sq.{{HM’_PMJN_CAPTUHS(HKBZ. sq, Piececolor WKBP)AMAY_PAWN_CAPTURES(sq,
WKB2,Piececolor UKBP}}3{53:%82vsq=¥!<82}):{{Fas{qx.WBZ)r-HKBPA(Pas(PO,HKBZ)=
HKB'Pn{{PREDEGAHE(qz.qx)qu:qx}a(’dﬁ.wEP Val(qx,WKBP)v{BOARD({qx,QBUD)a{Valueon
Lﬁgg?,}wsz}=PWVa!ueon(QBUD,ﬁKBZ 13983}3})15{Fos(qz,’uﬂ(BZ}lHKBPvPestqz,HKBZ)=

ssssslapel ON _LKBP:

ssssesimplify T

376 {Pos{qx,ﬁk&!)ﬂﬂ%((?REDEGAﬁE{qz,qx}qurqx)AWALUEP Val{qx,WKBP)vBOARD(
qx,t}BUl}}3}}:{Pos{qz.wxaz}swxaP'vPos(qz,ﬂKBZ}:HKBP}

A similar statement can be made about the WKRP. It, too, was on WKRZ in gz.

ss23sYE ShortPaunPathThm qz.qx.ﬁKRZ.ﬁKRZ,EJKHP.ﬁBUB:

377 Vsq.((MAY_PAWN_CAPTURES(WKRZ,sq,P jececolor WKRP)AMAY_PAWN_CAPTURES(sq,

WKRZ,Piececolor ’JKR?})aisqSHKRZUsq:VKRZ))3({?05(@.2&&2)-\&3%(Pos(?ﬁ,iﬂ(RZ}c

WKRPA({PREDEGAME(q2Z,qx)vqzsax Jn{VALUEP Vﬂ{Qx,ﬂKR?]v{BOARB(qx.QBUD}A(VaIUﬁon

‘(‘EBU?,}WRZ}-NWﬂuaon{QBUD.HKRZk?B)})})):{Pos(qz.’dxaz}:HKR?vPos(qz,’thﬂZ)-
RP)

ssseslabel ON_WKRP:

sssexsimplify T:

378 {Pos{qx,\maz)-HKR%{(?R£DESME(Q2,qx)qu:qx}n{%hﬂi? va1{qx,WKRP)vBOARD{
ax,QBUD))))o(Pos{az,WKR2 y=WKRPvPos{ qz,WKR2Z }=WKRP)

Page 158. A FOL Solution to the Ches; Puzzle

4211

But the From square of any move is empty immediately subsequent to that move. Hence, neither of

these squares was the source square of the move of qz.

sssssVE EmptyFrom qz WKBP WKBZ;
379 Pos{qz,WKB2)=WKBP>~(WKBZ=zFrom Move qz)

sx23sYE EmptyFrom gz WKRP WKRZ:
380 Pos{qz,WKR2)=WKRP>~(WKRZ=From Move qz)

11.3. Hence, the From square ofgz must have been WKNZ.

sssxxe lapel FROM OZ:
sssxs tauteq From Hove qze=WKNZ EALL_QZ.DN_HKBP,W_NKRP,ﬂa‘l‘,m_w’,ﬁx_m:

381 From Move qz=WKNZ (1 9 374)
Section 4.2.12 The Route to BKN7

And, as the From square of qz was WKNZ, there must have existed yet another position, (we will call

it py) for in which BKRP, pawn valued, was on WKNZ.

ssxssYE PaunlasOnThm qx,qz,BKRP,WKNZ;

382 {tPREDEskﬂE(qz,qxquz:qx}n{\meP val{Prevpos qz,BKRP)a(Mover Move Q=

BKRPA(From Move q2zWKNZa-{ Pos{P0,WKN2)=BKRP)))))>3p. ((Pos{p,WKN2)=BKRPA{
PREDEGAME (p, qx JAVALUEP Val(p,BKRP)))AVALUEP Val(Prevpos p,BKRP))

sxesesimplify ~{Pos(P@,UKN2) «BKRPI;
383 ~(Pos{P0,WKN2Z)=BKRP)

ssssstaut T1:42 CALL_QOZ,FROM_QZ:1%;

384 3Ip.{(Pos{p,WKN2)=BKRPA(PREDEGAME(p, qx)JAVALUEP Val{p,BKRP)) JAVALUEP Val{(

Prevpos p,BKRP)) (1 9)

ssxxslabel CALL PY:

ssxsx_C T pyi

yi
385 (Pos(py,¥KN2)=BKRPA(PREDEGAME (py,ax JAVALUEP Val{py,BKRP)) JAVALUEP Vai(

Prevpos py,BKRP) (385)

And, similarly, a move that got him there.

sssssYE BlackPauntioveThm qx,py,BKRP, HKNZ

386 (Pos(py,w.ﬁz)=8K-R?n{-{Pos(PO,\ﬂ(NZ)=Bi(RP)n({?REDEGME(ﬂy.Qx)vpymx}nVa?{

Prevpos ay.BKRP):?B)}}::3:;.{(PREDEGAHE{q.qx)quqx)nmour Move q=BKRPa(To
Move q=WKNZA(VALUEP Val(Prevpos q,BKRP)A{{~{Row WKN2=6)a~(Row WKN2=4))a({

From Move q=Makesquare(Wsucf Row WKN2,Column WKNZ)aPos(Prevpos q,WKN2)=EMPTY
)v((Taken Move g=Pos(Prevpos q,WKN2 JAWHITEPIECE Pos(Prevpos q,WKNZ))a(From

Move g=Makesquare{Wsucf Row WKN2Z,L2touchf Column WKNZ yvFrom Move q=
Makasquare{Wsucf Row WKNZ,R2touchf Column WEKN2IIDIN)

ssxssYE PaunValuedBlackPieces Prevpos py.BKRP;
387 VALUEP Val{Prevpos py.BKRP)>Val(Prevpos py,BKRP)=PB

ssssstauteq 11142 CALL_PY-2,CALL_PY:*t;
38& 3q.{(PREDEGAME(q,qx)vq=ax ya{Mover Move q=BKRPA(To Move gq=WKNZa{VALUEP

vai{Prevpos q,BKRP)A((~(Row WKN2=6)A~(Row WKN2=4))o((From Move q=Makesquare(

Wsucf Row WKNZ,Column WKNZ)aPos{Prevpos q,WKN2)=EMPTY)v({(Taken Move q=Pos{

42.12 A FOL Solution to the Chess Puztle P.ge 159.

Prevpos q,WKN2)AWHITEPIECE Pos(Prevpos q,WKN2) Ja(From Move gq=Makesquare(
Wsucf Row WKNZ,L2touchf Column WKN2)vFrom Move q=Makesquare{Wsuclf Row WKNZ,
RZtouchf Column WKN2))))))))) (1 9)

We call that position, pz.

s2ssslabel CALL PZ;

sssas 3E T pz:

389 (PREDEGAMF (pz,ax)vpz=ax)a(Mover Move pz=BKRPA(To Move pz=WKNZA{VALUEP
Val{Prevpos pz,BKRP)a({-(Row WKN2=6 Ja~{Row WKN2=4))>((From Move pz=
Makesquare(Wsucf Row WKNZ,Column WKNZ)JaPos{Prevpos pz,WKN2)=EMPTY)v((Taken
Move pz=Pos{Prevpos pz,WKN2)ANHITEPIECE Pos{Prevpos pz,WKN2))a{From Move pz=
Makesquare{Wsucl Row WKNZ,L2touchf Column WKNZ)vFrom Move pz=Makesquare(
Wsucf Row WKNZ,RZtouchf Column WKN2))))I)))) (389)

Applying the theorem that sees the possible st~ -uares for a given pawn and square, we get that
BKRP reached this square from one of WKB3, HKNJ v wKR3.

sexsssimplify ¥

396 (PREDEGAME(pz,qx)vpz=qx)a(Mover Move pz=BKRPA{To Move pz=WKN2A{VALUEP

Val{Prevpos pz,BKRP)a((From Move pz=WKN3aPos{Prevpos pz,WKN2 }=EMPTY)v((Taken
Move pz=Pos{Prevpos pz,WKNZ JAWHITEPIECE Pos{Prevpos pz,WKN2})a{From Move pz
=WKB3vFrom Move pz=WKR3)))))) (389)

HA. Now, we note that the UKNP, on the third row, has spent the entire game on the squares
WKN2 and WKN3.

see22¥E Shor tPaunPathihm pz, gx, WKN3, WKN2, WKNP, 0BUD;

391 Vsq.{(MAY_PAWN_CAPTURES(WKNZ, sq,Piececolor WKNP JAMAY_PAWN_CAPTURES(sq,
WKN3,Piececolor HKHP)):{sq:HKNszq':wKNS}b{{Pos(qx,uﬂa}ﬂmh(?os{Pa,uxwz)s
WKNPA{ (PREDEGAME(pz,qx yvpz=qx)a{VALUEP val{qx,WKNP)v{BOARD(qx,QBUD }a(Valueon
{QBU?,}HKNS)sPHvV&Iueon{{}BBO.’dKﬂs)sPB}})))}::{ Pos{pz,WKN3)=WKNPvPos{pz,WKN2)=
WKNP

sassxsimplify 3
392 (Pos{ax ,WKN3)=WKNPA({ PREDEGAME(pz,qx)vpz=qx)Ja(VALUEP Val{qx,WKNP)vBOARD(
qx,QBUD))) }>(Pos(pz ,WKN3)=WKNPvPos{pz,WKN2Z J=WKNP)

11.5. In the move that brought BKRP to WKN2 (pz) he was certainly on the latter.

sssssYE MoverOnTO pz,WKNP UKNZ;
393 {Pos(pz,WKN2)=WKNPATo Move pz=WKN?1 | ."zMover Move pzZ

116. And, as the From square of any move is subsequently {immediately) empty, and WKNP was
on WKN3, then the from square of the move gz must have been either WKR3 or WKB3.

sssssYE EmptyFrom pz, WKNP WKN3;
394 Pos{pz,WKN3)=WKNPo>~(WKN3=From Move pZ)

12. But either of these squares implies the capture of a white piece on the white square, WKNZ.
This piece must, of course, have been one of the white =-ces eligible for capture.

sssssYE WHICH_OX_TAKEN pz,Pos({Prevpos pz. HKN2) HKNZs
365 CHESSPIECES Pos{Prevpos pz,ﬂKNZ):{{(PRfﬁEEME(pz.nx)vpzqujn(Tnkaﬁ Move

Page 160. A FOL Solution to the Chess Puzzle 42.12.

pzePos{Prevpos pz,WKN2)AWHITEPIECE Pos(Prevpos pz,WKN2)))o{{Pos(Prevpos pz,
WKN2)=WQv{Pos(Prevpos pz,WKN2Z)=WQNv{Pos{Prevpos pz,WKNZ }=WKNv{Pos(Prevpos pz
,WKNZ)=WQBv(Pos(Prevpos pz,WKNZ)=WKBvPos(Prevpos pz,WKN2)sywrl))) YIn{~{Pos(
Prevpos pz,WKN2)=yyw)a((To Move pzeWKNZAWHITESQUARES WKN2)o>-~{Pos(Prevpos pz,
WKNZ)=WQB))))}) (1 9 252 28%)

ssssxsimplify WHITESQUARES WKNZA- (WKNP=BKRP) 3
396 WHITESQUARES WKN2a-~{WKNP=BKRP)

Let us refer to the white piece captured on WKN2 in pz as Pos{Prevpos pz, WKN2). This was
certainly a CHESSPIECE (only chesspieces are ever captured).

ssssesimplify Yp,CHESSPIECES Taken love p:
397 Yp.CHESSPIECES Taken Move p

ssxseYE T pz;
398 CHESSPIECES Taken Move p2

12.1. Hence, it must have been one of the white traveling white officers, and not the fallen piece.

ssssetauteq CHESSPIECES Pos(Prevpos pz, WKNZ)A
Taken Move pz = Pos(Prevpos pz WKNZ)A
{Pos (Prevpos pz,WKN2)=WQv Pos(Prevpos pz, HKNZ} «WGNv

Pos (Prevpos pz,WKN2} =WKNv Pos{Prevpos pz,HKNZ} =WKBv

Pos{Prevpos pz,HKN2)=yurlla
s ~Pos (Prevpos pz,WKN2]=yyw CALL_PZ+11114,1,ROW3_WP, QX_QBUD:
169 CHESSPIECES Pos{Prevpos pz,WKNZ)a(Taken Move pz=Pos{Prevpos pz, WKN2 A (
Pos({Prevpos pz,WKN2)=WQv(Pos(Prevpos pz,WKN2)=WQNv(Pos{Pravpos pz ,MKN2)=WKNv
{Pos{Prevpos pz,WKNZ)sWKBvPos({Prevpos pzZ,WKNZ)=ywrl)}))a~{Pos(Prevpos pZ,
WKN2)syyw))) (1 9 252 286 389)

L N

We need also point out that these are five different pieces.

7 =% 7 V2
W%, I,

Kang A

., %W,
7,8 7, W,
A, W, 7%
NI N2, 0,
AU, A I
Dol % 7

W hite of ficers were captured on these squares.

figure 44

42.12. A FOL Solution to the Chess Puztle Page i61.

sssssVE DifferentTakenFour qx,pz,pi.-p2.p3‘pﬂ.Pos{Prsvpos pz,WKN2) ,xa,xb, xC,
axdg

400 CHESSPIECES Pos{Prevpos pz.NKHZ):({{pz-qvaREDEGhﬁEtpz,qx})n{(plthv
?REDEGAHE(p},qx)}n((pZtQtvPREOEGAHi{pZ,qx})a{(p&:qvaRiDEGAHE(pS.qu))A{(94:
qvaﬂED£GAHE(p4,qx))A{H(Hovar Move plsMover Move pz)a{=~(Mover Move p2=Mover
Move pz)a(~(Mover Move pl=Mover Move pz)a{~(Mover Move p4d=Mover Move pz)al
Taken Move pz=Pos{Prevpos pz,WKNZ)a{ Taken Move pl=xan{Taken Move p2axba(
Taken Move p3=xcaTaken Move pdsxd}}}j))))l)}}}:(n{xasPos(Prevpos pz,WKN2))al
;é;g;§?§§§ravpns pz,WKNZ) Ja(~(rc=Pos{Prevpos pz,ﬂKNZ)}Aa{xdaPos{Prnvoos pZ,

sssss tauteq TiN2H2 H:‘?,CN.L_PZA.CALL_PN:CALL_PH+3.DIFF?‘D¥ERS;
401 ~{xa=Pos{Prevpos pz,WKN2))a(~(xbsPos(Prevpos pz,ﬂKHZ})A{—-(xu?os{?rwpos
pz,WKN2))a~{xd=Pos(Prevpos pz,WKN2)))) (1 9 310 311 312 313 389)

13. Hence, by the usual counting argument, the only piece that could have fallen from the
board was the white queen’s bishop.

sssss tauteq yyu=W0B ?.1??,““1EH_XYH,HHO_X&:HHB_XA+3,NO?_XN_EQ;
4u2 yyws=¥MQB (1 9 252}

ssssstauteq Pos(px WKRG)=W0B CALL_VYN.SME_ON_;KH&,?;
403 Pos{px,WKR4)=WQB (1)

Removing dependencies, and generalizing, we see that, as a consequence of our chess axioms, if a
chesspiece fell from LKR& in a position which had GIVEN as a board, that chesspiece must have been
the white queen's bishop, quod erat demonstrandum.

ssssed] CALL_PXot:
404 (BOARD(px,GIVEN)ACHESSPI ECES Pos{px,WKR4))oPos(px,WKR4)=¥QB

sesss label THE THEOREM:

seens¥] T pxi
405 Ypx.{{BOARD(px, GIVEN)ACHESSPIECES Pos(px,WKR4 })oPos{px,WKR4)=WQB)

Page 162. Conclusions 5.

Chapter 5 Conclusions

Section 5.1 Perspective

We have here a mass of verbiage and proof. It is certainly important to step back and, in
perspective, assess just what we have learned in its generation.

Let us reiterate: we have taken a difficult problem of retrograde analysis chess, detailed a set of
axioms for the rules of chess, and have proven the solution to that puzzle within our axiom system.
While not modeling the human process of proof discovery, we have modeled the human ability to
accept a valid proof. That is, our FOL proof parallels and corresponds to the human proof,
particularly in two important dimensions. We have, in FOL, been able to model both the ability to
accept and structure inference {the basic deduction framework), and the ability to jump to the
immediate conclusions of observation (our chess eye). We are exploring the nature of (adequate)
reasoning sequences, rather than finding the (appropriate) heuristics for generating such sequences.

We also need to stress what we haven't done. We have not presented a program which would, in
any sense, model the way the human intelligence arrives at the proof. Such a system would need
elements of intuition and search, in addition to ability to correctly perform inference steps and
computations. Like almost all proofs, our chess proof gives little explanation as to why some step
was taken (other than that it worked); no dead ends or useless inferences litter the way.

Adequately modeling the human ability to generate a proof is an extremely difficult problem,
essentially equivalent to solving (much of) the A.l. problem itself. Presenting a solution acceptable
both to a human and a machine was, in itself, a hard problem. In a strong sense, being able to
accept correct reasoning is a prerequisite for general intelligence. We do not foresee solution of the
more difficult problem, that of a general computer intelligence, in the near future. Rather, we view
examinations of representational systems (such as this paper) to be part of the (long) process of

achieving the necessary understanding to eventually create an artificial intelligence.

Let us also emphasize that we are not, of course, asserting that the solution of the falien piece
problem reveals all aspects of knowledge and representation. We have been examining in this proof
only several issues, particularly the interactions and interfacings of deduction and observational
computation. This 18 by no means adequate for a thorough representational system. We have dealt
in a highly structured and complete domain. We have not touched upon many modalities
(knowledge, belief, desire) that a truly intelligent program would need to manipulate. Our
expression of events (moves) and tiiw_« he relationship between positions in the same game) while
useful and revealing, is that of a discrete system, not a general continuum. There are certainly many
properties required of generally intelligent systems that we are not even aware of, and will not
perceive the need for until we stumble into them.

Section 5.2 Representation and this Proof

One of the more interesting facets of this investigation is the comparison and selection of the
various representational devices employed in our chess axioms.

Representational choices aré based upon two primary criteria. We want that our representation
should be convenient. We should be able to express (as easily as possible} the range of expected

52 Conclusions Page 163.

problems and solutions within the model. Our representation must, however, retain integrity with
respect to the problem domain. We are not Interested in seeing how we can pervert the original
problem into another, more tractable (though equivalent) domain. Rather, we must represent the
given problem 3%

Perhaps, while we are discussing natural representations, a pair of examples from our chess world
would be appropriate. When chess pieces are captured, they cease, (in some strong sense) to exist.
There is no square which we can point to, saying, that piece is on that square. Captured pieces
vanish without a trace. Most theorems about pieces and squares must therefore begin: if a piece x is
on a square sq in a position p then .. . Imagine instead that a captured piece merely changed its
value, and became a ghost, nevertheless retaining reference to its capture square. Our axioms and
proof would then be much simpler. Every piece would have a square of its own. Additionally, a
position could reference those pieces captured in reaching it by pointing to the ghosts on various
squares, rather than creating a hypothetical ancestor position in which they had been captured, and
reasoning about that position {as we do now). Our counting arguments (most of the last hundred
steps of the main proof) would then be much briefer.

Consider secondly, the notion of value and piece (which we will explore in greater detail further on).
Let us now merely point out that the king pieces and the empty piece have unique and constant
values (we have several theorems to this effect: see, for example, KingValueThm1 and EmptylsMT).
But these theorems could be dispensed with, and several proofs reduced several steps, if we were to
blur the distinction between YALUE and PIECE, and assert, for example, that BK=KB%9 and
EMPTY=MT.60 What would result would be (slightly) smaller but less natural proofs. ™t is not that it
would be wrong to axiomatize in this fashion, so much as unpleasing.6)

In the following subsections, we will examine some of the more interesting representational decisions
embodied in our chess axioms.

Section 5.2.1 State Variables and Computable Ob jects

The major representational dichotomy in this system is the balance between POSITIONS, a state
vector containing all of the information required to reconstruct a particular game (perhaps a list or
moves or boards), and BOARDS which is a (concrete) representation of (most of) the current status of
a game.

A passing glance at chess would reveal the necessity for the latter, though, presumably, not the
former. After all, chess probiems are (typically) presented in terms of chess boards, not as the entire
game played to reach some position. Similarly, (almost all) chess moves are defined in terms of a
chess board; this rook can move so, regardless of what line he used to reach his square, or which

U SO R PRETNINTRRSRRRAS S e s

58 it goes almost without saying, of courss, that the rapresantation must be correct (we must really be solving the problem). in
most domsine, penerahily 1+ s deswsble stiributs: to be sesthatically plessing, the selected axiom system should be sble to sxpress mors
than the lmited issue at hand

59 The prece BX is the same 2 the value ¥B
60 After alt, sesthetics s an 1ssve of lasts
&l Kum.Mmmin-nhmwnieﬂtmmwhwuﬁnmmmumswﬂmu

te kings, this simphfication would get i sur way.

Page 164. Conclusions 52.1.

square he began the game upon.52

One does not become really aware of the necessity for the state variable, (what we have called the
position) until one approaches retrograde analysis. We frequently refer to (for example) the identity
of a particular piece (which pawn was it in the opening?), to captures and moves of the game that
reached some arrangement, and to the path some piece traveled. These notions are naturally those
of the position, not inherent to a particular board. Many different games can be played to reach a
given chess board; therefore, these are not aspects of the board per se.

The importance (in retrograde analysis) of this sort of temporal reasoning is reflected in the axioms
by the predominance of the POSITIONS over the BOARDS (and over everything else). Rules are
typically defined in terms of their effect on the state of the worid (position), rather than their local
effect on the playing board. Boards are employed almost exclusively for defining and computing the
local moves of the various chess values. Thus, the predominant predicate for positions becomes
SUCCESSOR, defining the (legal) transitions from position to position; for boards, MOVETO, expressing
the local, legal paths of the various values. The basic movement consequence axioms begin at the
positional level, only to descend to boards when considering the actual move.

The concepts of board and position are tied together in a predicate and a function. The function
Tooard (total-board) extracts the board that would result from playing out a given position. The
predicate BOARD is true when its second argument is either the Tboard of its first, or a less defined
board (section 2.1.5).

Within the concept of observation and inference, this position and board dichotomy has further
significance. Positions, as expressed in these axioms, are an elusive, intangible concept. There is
nothing we can point to and say: "that is the position of interest”. Rather, positions are the child of
the inference scheme; we never {except the initial position) observed something to be true of a
particular position. Boards, on the other hand, are concrete objects. The observations
(computations) on boards are more important than the deductions applied to them. Each board has
a distinct LISP model representation; they are the primary vision of the chess eye.

In retrospect, this separation into state variables and computable objects seems to have been a good
decision. The problem would have been very intractable without the ccherence provided by the
state selectors. Similarly, Chess induction (Sections A.2 and 2.2.4.1) has proven lo be a very useful
and unifying concept, alien to the temporalities of a pure-board approach. The ability to compute
on board representations has resulted in tremendous reduction in the total inference required.

Early in this research, there existed a distinction between legal positions and ordinary positions.
Legal positions were those that (presumably) could be reached in a legal chess game. After the first
iteration of proof, we observed that, essentially, we never proved anything about the illegal positions.
The distinction between the two was then deleted from the axioms. On reflection, we find a parailel
between those “illegal” positions, and several of the other unused sorts (such as EXSQUARESS3). If we
were to use these axioms in a forward direction (as opposad to this retrograde example) to create
legal successors to a given position, we would probably axiomatize the "Nextpos” function (section
9.1.7.1), which would take a position and a move, and return the position resulting from making that

---------- SAssssEEsSssssSsTESEEEEESEEEEEESESSsRSRsR R RS T rrrmasesas sesesniic st snnnanes

63 Those squares the taptured pwces occupy. For sxample, the function Pospef rsturne an slement in the domain of
EXSQUARES

52.1. Conclusions Page 165.

move in that position. This general function would not be obliged to return a legal position (and
would not, if not referencing a legal move). Hence, the range of this function would therefore be
declared to be on all positions, not merely the legal ones. The earlier impulse towards legal positions
is therefore seen as an anticipation of this extension.

Positions, as described, are virtually not expressible within the model space; representational systems
that depend to heavily upon doing model computation as the only inference mechanism will be
unable to deduce results of the complexity of our given prodlem.

Section 5.2.2 Incompletely Defined Ob jects

Another perspective illuminated by the distinction between positions and boards is that of partially
defined objects. That is, we neec a mechanism for expressing predicates about objects not all of
whose features are known to us.

There are two different kinds of partial definition which we consider here. The first is illustrated by
the positions sort. Positions are fully defined, in that, any question we might have about a position
can be answered by examining that position. This may seem paradoxical. After all, we never know
anything about any position until we infer it. We resolve this paradox by never having any "real”
positions.84 Rather, all statements about positions are of the form Assume we have a position with the
following properties... . Notice that there are no positional constants; only positional variables (and
parameters). We perform no observational computations upon positions. And we have no explicit
partial positions. Rather, an entire game can be replayed from any position.

Boards, on the other hand, are concrete objects. We want our LISP functions to be able to
manipulate these ob jects. Within the current structure of FOL, this is possible only if the ob ject is a
constant. But we are confronted immediately, in the very problem statement, with a variable board,
our problem being to complete the definition of the given, partially defined board.

There are only twelve different chess values. Clearly, one possible stratagem would be to consider
each of the twelve possible totally defined boards, and prove that only only one of them could have
arisen in a legal chess game. This approach fails, however, to satisfy both esthetic and practical
considerations. Aesthetically, we are examining reasoning, and seek to handle more than simple case
analysis. We certainly do enough of that in the rest of the proof. Practically, these case
considerations can grow exponentially with the depth of analysis. If each possible board spawns a
board with two more unknown squares, we soon have the cube of twelve cases to consider. Each
consideration is likely to be a fair sized proof in itself. And this method will flounder on any
consideration of unbounded sets.

Rather, we surmount this obstruction by the introduction of an undefined constant, to be inserted in
the board structure whenever the value of a particular square is unknown. While this is a clever
and transparent solution of the immediate problem, it has ramifications throughout the entire axiom
structure. Most obviously, values on boards and values in positions are no longer trivially identical.
Rather, that equality is conditional on the board being defined on that square.8% This is usually

painfuily obvious, but demands another step. Not, however, a terrible penalty. Greater confusion

e sEssslIEE NSRS RS ——

G4 This subsequent discussion rightfully ignores PO, the initial position

85 That is, Vai(p Pos(p sq))eVakson(b sg) if Vaieon(s sq =D {(and BOARD(p b)) (this is the sxiom VALUETRANSPOSITION).

Page 166. Conclusions 522

arises, however, in the cases of more complicated predicates. What should the value of MOVETO be,
say, if an undefined square blocks the way? It is certainly not true, but, in another sense, is not really
false. That is, we would (sometimes) like to use HOVETO to show some move impossible; other times,
to demonstrate (with the appropriate zssignation of values to the undefined squares) that such a
move could be accomplished. The sclution adapted in this axiomatization is to make MOVETO
demand a fully demonstrated possible move. Various theorems, such as
TransitiveSubboardOrthogonality (section A.922) and DiagonalThm (section A.9.3.1) relate
movement on partially defined boards to that on more complete boards.

An alternate possibility was not employed. One can easily imagine, within the present axiom
structure, predicates such as MIGHT_MOVETO and MIGHT_ORTHO, which would be true if, say, the
squares on the move's path were either empty or undefined (MT or UD) instead of only explicitily
empty. Such predicates might simplify the definitions of several of the movement axioms, but
complicate the translation to the more precise forms.

Section 5.2.3 Representation of Aspects

What may seem, paerhaps, the most aberrant distinction embodied in these axioms is that between
piece and value. Pieces, we recall, embody the identity of each of the thirty two chessmen, including,
particularly, their initial squares. Values, on the other hand, are a reflection of the rank of an
individual piece at a given point in the game. In playing chess, the names of the particular pieces
are never invoked. Rather, the current value of any piece is adequate for determining its available
moves. For the naive player, experience with chess comes from playing chess games, not from
solving chess puzzies. Additionally, except for the rare occasion when a pawn has promoted, pieces
do not change their value. Only in concocted retrograde analysis chess problems, is the path a piece
followed important. Only in puzzles does one see such a bizarre collection of promotions.
Therefore, perhaps, only to experienced puzzle solvers is the importance of this distinction obvious.

Let us point out that this is not an entirely happy arrangement, even though it is a necessary one.
We need shave our lemmas and theorems to a tight tolerance of their intended use, matching piece
and picce, value and value, unless we are wiliing to expend precious steps demonstrating to the
machine (again) that this particular bishop does in fact have bishop value. Additionally, this
equivalence, performed so naturally and immediately by the human, requires theorem invocation in
the proof. We take consolation, however, in noting that the human tendency to jump to the
conclusion that any officer (especially a non-queen officer) is not a promoted pawn is avoided by this
deductive approach. Within a formal logic framework such as FOL, that rook valued piece is as
likely to be a promoted pawn as one of the original rooks. It seems that any system withing to
generate a solution to real prohlems must rely heavily on grabbing the immediate, almost obvious
device [McCarthy79h)

Some of the trouble associated with the Yal function could have been avoided. It is not a necessary
operator, the same result being indicated for pieces still uncaptured by the corresponding valueon
the appropriate board. That 15, Val (p x) = Yalueon (Tboard p, Pospct (p x}}. This wouid
result in a clean partition between piece and value, along the same line that divides position and
board. It would, however, result in a larger and more cumbersome proof, as the transiation, and its
preconditions, would need frequent justification. Hence, we see Yal to be a simplifying function, a
short expression of a common notion.

524. Conclusions Page 167.

Section 5.2.4 Expanding the Vision of the Chess Eye

Along with the more obvious (or, at least, having selected the system framework, obvious) functions
and predicates of our system, we note several more creative and intrusive functions and predicates.
These functions and predicates serve two funcuons. In some cases the predicate is of a definitional
nature. That is, it is a short expression of a frequently invoked notinn. An example of this
definitional form is the predicate PROMOTECPAWN. This predicate could be dispensed with by
substituting its definition (axiom MCONSEQ for each of its occurrences, a mechanical process. Its
sole value lies in providing economy of expression.

This use of definitional predicates is a common device in first order logic, and deserves no further
comment. More interesing are the constructive functions of this axiomatization, such as the
Unmkmove and SQUARE_BE TWEEN operators. They different from the simpler definitional axioms, and
from all conventional logic definitions, in that they have associated aftachments in the chess eye.

Consider the example of the Unnknove funciions, which take a board and a move, and return the
board of the previous position. We are performing here what 1s (for a human) an essentially
mechanical and observational task. However, to do the same work 1n a purely inierential framework
requires both the declarations of another individual board, and a quantification check of the
essential identity of that board, and the original board, on all of the uninvolved squares. Much
efiort 1s saved through the pure computation. Or, in the local colloquial, it’s a winner.

What we must catalogue here instead is a pair of retrospecuive regrets. For one thing, a regret at not
using this device to greater advantage. A second regret at the imits of the application of this device
in our present FOL system. As the chess eye 1S limited to computing on constants, there is no
mechanism for computing on the known properties of parametric objects, other than the clumsy use
of a constant undefined. We will consider this regret in greater detail in section 58.

Section 5.2.5 Other Natural and Unnatural Notions

We conclude with a few additional comments on several of the minor sorts mentioned in section
2.1.1.

Many of the declarations and much of organization of this proof is devoted to simphfying the
inference process. However, we must reporn that such simplification has not been pursued at the cost
of sacrificing aesthetic values. An example of this devotion is the sort MOVES. It is a very common
notion to speak of, for example, the move that reached this position, or the possible moves available
in this position, or of the move that brought some piece to some square. Hence, the sort of MOVES,
and the function Move, which extiacts the last move made to reach its argument position.

However, careful examination of the entire proof reveals that never is a move referred to, except to
speak of the move of a position.5¢ Each of the common functions on a move, such as From and
Mover is inv>riably invoked on the fove of some GAMEPOSITION. The proof would be somewhat
simplified by the deletion of the MOVES predicate. However, the aesthetic criteria (it 13, after all, a
natural notion) demand its retentioi.

Perhaps one of the most obvious soTis 1S that of COLORS. After all, the combat of the black and

60 A siight sxception occurs hers wilh raspact fo lemmas solsly concerned with the slructurs of the move hwrarchy {(such ss
MOVETYPES) Howsver, ike the major vees of moves, the vee of 8 "sort” of maves s not raquired hers, siiher

Page 168. Conclusions 525

white armies is fundamental metaphor of the game. But even within this natural division, there
remains room for choice. It is convenient to have one's functions always evaluate to some -value.
We speak, for instance, of the Piececolor WK as WHITE. What then should the Piececolor ENPTY
be? We considered introducing GREY, the color of the piece on any emply square. But, once again,
this can hardly be defended as a natural notion. Secondly, and perhaps more importantly, it is not
clear that having a GREY would serve to reduce the size of proofs.

Even as obvious a sort as the squares of the chessboard requires some decisions. We did not
originally perceive the need for referencing the coordinates of squares (rows and column) at all.
Later, as we needed to squeeze proofs where simplification could not carry us, these sorts became
required. It is clear that we do not want 1o depend solely on coordinate pairs, however. Most
square references need be only to fixed squares. The differences between rows and columns in the
axioms could have been deleted, at the cost of a slight increase in incomprehensibility, and a slight
decrease in length of proofs. Of course, if these axioms were to be used in situations requiring more
algebraic manipulation of row and column values, the definitions of these sorts would require
suitable expansion.

Section 5.3 Alternatives

So far, we have been examining the "micro” decisions involved in generating these axioms,
considering choices from within our selected framework. While we believe that the representations
chosen have been generally appropriate, it is still worthwhile to consider the consequences of various
alternate choices.

Section 5.3.1 Levels of Axiomatization

Elsewhere in this paper (chapter 2) we spoke biiefly about the choice of level of the axiomatization.
Let us resterate on that notion.

Almost any large mathematical proof can be made arbitrarily easy or difficult by the selection of the
;mitial axiom structure. The situation 1n the chess world is essentially similar. For example, if we
had taken all of the lemmas in appendix A as theorems (all of them are "facts” obvious to any
experienced puzzle soiver), this paper would be considerably smaller. Even beyond merely
presentation of muluple lemmas, it should be possible to restructure the prodiem so that it is no
longer a formal proof, but, rather, the sequential application of various “rules” for the solution of
chess puzzles. But certainly, the more specific and useful the given rules to this particular problem,
the less capable they would be of expressing other kinds of chess puzzles.

We could, of course, have proceeded in the opposite direction, defining, for example, the various
piece movements as mathematical relationships, and entangled ourselves in the mathematical
structure when proving even a simple move. While there are certainly many things thereby
expressible that are difficult to state in the present axiomatization, the resulting proofs might easily
be an order uf magnitude larger.

Perhaps the only moral to this section is that one can make any problem arbitrarily difficult (and
most problems arbitranily easy) by selecting a suitable starting place, the given conditions. And that
the size of this paper, and the complexity of the proofs is a reflection of our opinion of the
appropriate generality of our axioms. Though this “moral” may seem obvious, it is an important
criterion in the evaluation of any intelligent computer system.

5.32. Conclusions Page 169.

Section 532 Prior's Modal Tense Logic and Positions

We have not, of course, presented enough evidence 10 conclude that first order logic, even augmented
by semantic procedural attachments, 15 a general enough scheme 10 express all of the representation
issues our intelligent computer will ever need. It's probably not. Even within the context of first
order logic, our system examines only a minute corner of the universe of systems.

One notable omission 15 the lack, in our system, of equivalents of the various modal operators. Our
retrograde chess puizie embodies complete knowledge; there is no issue of the beliefs of individuals
(in fact, no individuals). While a forward (competitive) analysis might include operators referring (o
the desires and goais of the players. our backwards attention precludes even this 87

Perhaps the one paraliei to modal systems we can draw is 10 modal fense logics, for exampie, the
modal tense logic of Prior ({Prior57), [PriorG8])

Simply stated, Prior's system employes (wo modal operators, ¥ and ¥, which sigmify Past and
Future, respectively. Thus, for some proposition 1, ¥ W states that @ was true at some time in the
past; similarly, IT'w asserts u's occasioned future truth.

Now, as we deal with retiegrade analysis, Y@ 15 certainly the interesting operator. Thus, we might say,
if that pawn is on this square, then it i3 frue that, in the past, fhat pawm captured an opposing piece on
that square. This may be contrasted with our present formulation of, if that pawn is o this square,
then there existed @ position in the (ouTi of this game, for which the move of that position was a capture
by that pawn on that square cf an opposing chessman.

Notice that Our present NOIANON is stating moze than this modality. The hypothesis asserts not only
the capture, but also presents us with the occasion (posiion) in which the capture occurred. More
particularly, we can easily express in the present sysiem anything asserted in the modal system.
Thus, if there is to be any advantage 10 employing the modal ¥ operator, it must come from
permitung the deletion of some part of our present sysiem. The obvious candidate for this
elinination is our siate vector, the position.

Now, by explicitly inventing the state where some proposition was ilrue, we easily get both
quantifications, there existed @ time when it was rue, and it was clways truc. Expressed in a modal
form, these become if was Irud in the wast (¥2 W), anG there was no time when it was not true (~F-1),
somewhat clumsier, but sull useab: Expressions of more complicated notion compound the
complexity produced by the mocal operator, on the other hand, there are a few situations where its
employment woulG save a few steps.

Perhaps the major conirast beiwee: the current posifions and the modal ¥ operator is that the
proposition asserted by the moGal operalor is one about the current situation; while the poutional
state veclor makes a statement about a sumilar state vecor, and then reiates the two. This would be
true even if the modai operator was Cefned upon a board like" vector, rather than our present
positions. As the axioms necessarily “efine auributes of states. they can easily be used to mar .pulate
the resulting contrivea state Efec: ely. the current system gives 3 more particuiar incividual to
manipulate A general moral of thi: =search, echoed elsewhere {section 56.4) is that one is better off
with a function that returns an inc: Zual, than a predicate presumec true about some less soecified

&7 This suDect 1 tOUChES Upon n SeCiK 542

Page 170. Conclusions 532

thing. But just as the predicate could work, our system could probably the transformed (kicking and
screaming) into the modal form.

Section 5.3.3 Filling in the Blanks

A naive approach to this representation problem, particularly that of someone used to programing
computers, and not considering the philosophical representation issues of artificial intelligence, would
be what we call the fill in the blanks approach. This approach goes somewhat like this:

We have a situation (a board) as a problem. This board consists of sixty four squares. We “write” on each
square whatever we know about that square. For example, in the given problem, we might state that the
BQ)2 square has some white rooked value, while the WQR4 square is unknown. We might have another
table, that of the location of cach piece (the white king is on BKRI), and so forth. Eventually, by
manipulating the rules relating these tables, and filing in entries of the tables, we would amive at ou”
answer.

This approach bears a cursory resemblance to formal logic. The information contained in any table
entry 18 simply expressible as 2 WFF of the predicate calculus. The table entry form is probably
more convenient for heuristic manipulation. The programming table entry system differs from the
proof approach (and resembles the planner-like languages) in that things can be both “true” and
“false” at different points in the proof.

This system fails, however, in WO important respects. For one, Jacking the development and
dependencies of the formal proof, it s difficult to express case analysis, a very important technique.
While it is true that case selections can be made in this system by employing a recursive branching
scheme, one might then discover that one is proving the same fact repeatedly for each of the
different cases.®®

More importantly, this simple scheme 15 unable to express first order facts about the chess world.
Thus, while we could tell this system Bishops always siay on the same color square, (and have it use that
rule its derivations), there is N0 way to derive or express that notion within the system.

We see that what we have here a confusion of a possible data structure (a representation) for an
epistemology (another kind of representation)$3 We have inserted this straw man not so much as an
example of a competitive system we wish to denigraie, but, rather, in the hope of clarifying the
confusion surrounding the word representation as we have been using it in this paper.

Section 5.4 Our Representation Applied to Other Problems

So far, our attention has been concentrated on one specific example. It is worthwhile to examine
how other problems would jook 1n our formalism, without having to detail the entire proofs.

--- —————— -

6E Cose analyss here rofars 1o consderng ach of the possibia values 3 giveh ynknown might have Thus, in our orginsl
problem, there we twelve possile chess vehes for the falien pwce in soch 0f these cases, thers sre B possbie vales for the
captured biack pecs, and so forth Ciearly, a0 ynwigidy schame

69 Wcumhuomﬁinmdmimiiﬂa

54.1. Conclusions Page 171

Section 5.4.1 Where was the King

Consider the following problem of retrograde analysis. We are presented with the board in 1ﬁg‘urz
45, and told that the white king has fallen off; our problem is to determine his falling square.

WEWS Y, I,
% Wl %

W hore was the white king?

figure 45

This problem, while of similar retrograde form, differs in a very important respect from our earlier
problem. Our earlier proof, and its axiom structure, are primarily concerned with aimost completely
defined boards. Here, too, we have an almost completely defined board. In the former problem,
however, the undefined element wat confined to a single square. Here we must contend with finding
the undefined square.

Note that our earlier proof used, essentially, a list of squares and the pieces occupying them; here, we
would prefer a list of pieces and their squares.

However, despite these difficulties, the problem is sull tractable within our notation. We outline its
solution.

The first step is, of course, (o express the goal WFF in our fortnalism. Let the board of figure 45 be
called WHERE_KING. We know that there 15 some position, px, whose total board is the same as the
board WHERE_KING, except that on some square sq, px is not empty, but rather contains the white
king. We must 'herefore assume a WFF of the form:

Ysql. iVatueoniLH-tERE_i(iNG,sqli-Valueon{Tbnard px,8qllv
Valueon{Tboard px, eql)} =KW)

That is, the total board of px agrees with WHERE_KING, except in those squares where the total board
of px has a white king value.

We will be able to conclude a WFF of the form:

-

70 Tiie problem is from [Gardner 73]

- ——

Page 172. Conclusions 54.1.

Valueon({Tooard px,sql) =KW
where 5q is the name of some individual square. (W0B3 in this case).

The proof first splits into three cases. Either the white king is on WQB2, WON3, or some other
square. We can easily prove the general chess theorem:

Ypx. 3sq. Pos{px sql=WK

that is, the white king is on some square in every (implicitly legal) position. We obtain a parameter
for this square, let us call it sgx. Hence, it tautologically follows that:

sqx=liB2 v sgx=WON3 v (-sgx=W01B2A-5gx=L0ON3)

It is a simple chess theorem to show that the two kings cannot coexist on neighboring squares.
Hence, sqx is not HOB2.

¥Ypx b sql sq2. ((BOARD{px b)AKINGMOVE {sql sq2))>
-{Yalueoni{b sqil)=KWaValueoni{b sq2i=KB))

If the white king were on WON3, then would be checked by both the black rook and bishop. Now,
checks can occur only four ways (theorem _CheckTypes). Black’s last move was certainly not a
castle, for his king is not on a castling square. There is rio black pawn present to have just captured
en passant. Therefore, for each check, either the checking piece made the last move for black, or the
check was a discovered check. Since neither the bishop nor the rook could have move out of the
other's way and given check, the situation is clearly impossible. Hence, the white king is not on
either of these squares.

But then these squares must be empty, and the white bishop checking the black king.
Vaiueon(Tooard px, WGBZ)=MT A Valueon(Tboard px, WON3)=MT
MOVETO{(Tboard px, BW, WOR4, WQI) A Vaiuson(Tboard px, WOR4)=BUW A
Yalueon(Thoard px, WQl)=KB
It must be black’s move.

Now, this bishop is cornered (secion 3.4.2), unable to have moved to have created this check.
Hence, white's last move must have taken 2 white piece out from between the bishop and the king.

SQUARE_BETWEEN(WOR4, From Move px, WAL} A -~ Mover Move px = Pos{px WGR4)

But there is only one other available piece, the white king, to have made this discovery, and only
two squares, (WOBZ and WGN3, again) beiween the bishop and the black king. The white king was
certainly not on WaBZ, as we have stated, kings are never in mutual check.

Therefore, the white king much be on WON3 in Prevpos px. Now, we know that all the squares in
Prevpos px have the same value as in px, except the To and From squares of that move. The From

54.1. Conclusions Page 173.

square had the white king. The To square was either empty, or was occupied by a soon to be
captured black piece.

If the white king is on WON3, a situation sintilar to the previous one arises. Black did not create the
check by castling, nor did the bishop nor the ook move to cause that double check. But wait. The
boa- * in this position is not the same as the given board. We know that all of the squares have the
same value, except the square to which the white king moved in generating the position px. This
square could have contained a to be captured black piece, or, more specifically, the black pawn that
has created this double check situation through an en passant capture. That pawn must have been
on WOB3, and that must be the current square for the white king.

VYaiueon(Tboard px, WGB3} = KW

Section 5.4.2 Berliner's problem

Of course, the problem we argued in the last section is basically similar to sort of retrograde analysis
for which these axioms were composed. Let us briefly consider then, how an entirely different sort of
problem might be expressed in a suitable extension of this notation.

We consider board 1.7 from Berliner's thesis [Berliner74], the position diagrammed in figure 46.

I, DA
W, AR
WAE T, 0
%, %, 7,

0,5 00
Borliner’s problem.
figure 46

Here the problem is of a different nature; rather than analyzing the ingredients that composed this

Page i74. Conclusions 54.2.

osition, we instead have a more familiar task:7! proving a stral to lead white to victory.
P P g %y y

What is essential here is expressing the notion that white can move his king around the pawn
formation, and then to either capture the diagonal of black pawns, or promote his own. We expect
some evaluation function to recognize that both of these are won positions.

Our current axiomatization obviously requires some extension before tackling this task. Our axioms
look backwards; there is no expression that defines the legal successors of a position. Rather, we only
restrict these successions. We hypothesize that suitable conditions from the appropriate MCONSEQ
axioms (section 22.1.1) have been assembied into this definition, and that our simplifier easily
recognizes the trivial cases of succession. We also hypothesize the simplification predicate
WHITE_HAS_WON on some board or positional object, and a predicate on (wo positions,
WH1 TE_CAN_ACCOMPLISH. uHITE_ChN_ACEWLISH{pl.pﬁ will be true if white can force a position
with the properties of position p2, starting at position pl. We might have an axiom schema of the
form:

¥pl p2. ((WHI TF_CAN_ACCOMPLISH(pl p2)a WHITETURN p2 A
¥p3. (SUCCESSOR(pZ p3}1> 3pb . ({SUCESSOR(p3 pb) A o p4 111 D
3p. la pa ﬁHITE_CAN_ACEOHPLISH(pI pla ~WHITETURN pn Prevpos Prevpos p=p2}}

That is, we assume that p2 could be accomplished from a position pl, and p2 has black on move.
For each of black’s legal replies, p3, white has an answer, p&, for which some predicate ¢ holds. It is
therefore the case that there then exists’2 a p which white can reach from pl, is black’s turn, and
can be accomplished by white, is two moves after p2, and in which the predicate « i3 still true.73

It is fundamentally true that:
Yp. WHITE_CAN_ACCOMPLISH(p, p}

that is, white can always accomplish the current state from the current state.

----------------------- - - e -a e

7i Or, st leas! 10 those whose paperance with chess comes from playing it, famiur task.

72 Tiie 15, sdmitedly, 3 rather fanciful aximts What sxiets hers 13 not 30 much & posiion, 8 & position for sach possibie
responss, ail of which share some common properies (1hose indcated by the predicsts parameter} Howsver, e nothing can be proven
asbout the sbstract positions beswdes 1he informaton the parsmeter, and the knowledgs impheit in thew specific common grandfather
(p2), this device will succeed

73 A similar sxom for white's furn may be formed by reversing the second tisuse's quantifers.

542 Conclusions Page 175.

We first establish that for any position with the given pawn structure, if the black king is not on one
of the boxed squares in figure 47, then WH] TE_HAS_LION.

v/ %7'
%%%@131/
7% AN A7
W, DAK, &
WA, 0
., % W, 0,
T, 5 0,0

The black king is limited to these squares.

figure 47

o

Let us call the given position px.
Now, by the hypothesized rules of WHI TE_CAN_ACCOMPLISH, the successive predicates

3p;. (WHITE_HAS_MON p; v (PREDEGATEE (px, p;)aHHITE_CAN_ACCOMPLISH(px, p;la
(Pos (p;,BQL)=BKv. .. (through each of the boxed squaresi] A
Pos(p;,sq;)=kK 1)

(where the sq; range through the sequence WGB2, HONZ, WQR3, WON4, BOB4) are all derivable.

Having brought the white king around to black’s side, we could complete our proof by describing
the little dance the monarchs engage as the white king pushes the black king away from the pawn
on BK3. When the white king arrives at BOB&, either the black king is on 802, or some other of the
boxed squares (or white has a won position). The case analysis continues for a few more ply, and is
not very instructive.

We hope with these two examples that we have indicated that our axiomatization structure is
general enough to express more that the single problem whose detailed solution we have presented.

Section 5.5 The Limitations of this Axiomatization

Of course, any statement about epistemological or heuristic approaches to Al ought to include a
disclaimer cataloguing what that formalization is unable to solve Or express.

We have are listing two different sorts of limitations; first, those places where our proof, as presented
in chapter 4, fails to adequately model the human solution, and secondly, a consideration of our
axiomatization's ability to handle various other sorts of chess problems.

Page 176. Conclusions 5.5.1.

Section 5.5.1 Difficulties Encountered in Generating this Proof

A comparison of the informal proof of section 16.2 and the FOL proof of chapter 4 shows the FOL
proof to be substantially longer in handling two particular kinds of reasoning. A human puitle
solver can quickly check if a condition is satished by all pieces on the board. For example, the single
human step 5.3.1, a check that none of the black pieces could have moved to discover check (if the
captured piece, Z0, had been rook or queen), is transformed Into steps 101-143 in the FOL proof. In
simple cases, the quantification checking ability of FOL simplification mechanism can handle this
situation. However, in the case of complicated predicates such as those used in steps 101-143, the
preparation required to satisfy the proof checker about the appropriate simplifications was much
greater than even the forty steps expended. More concisely, FOL is not as capable of checking

predicates true of several ob jects on the board (for different reasons) as is a human.

Nor have we approached the human capacity for set ma pu. o For example, in observing pawn
captures, such as step 11, the human quickly and naturally perceives the mutual exclusion
(inequality) of the members of the capture set. That is, the human can say, "Black captured four (or
five, or six) white pieces on white squares.” He understands quickly and easily the essential
inequality of these captured pieces, and the various restrictions on their values (for example, none of
the pieces currently on the board was captured). Our axiomatization, reluctant to do either
arithmetic or set theory, and bound, as it is, to the heavy quantifier manipulations of natural
deduction, cannot express this notion as easily. Rather, we must, for each capture, hypothesize the
move that the capture was made on, and the captured piece, and prove the pairwise inequality of
the various captured chesspieces. Thus, for example, the information quickly apparent to the
human puzzle solver, after he notices the four piece captures, requires steps 301-330 of the main
proof.

This problem is not, we feel, due to the clumsiness of the position (state vector) approach. Rather,
our restriction to first order formalism, and our refusal to enmesh ourselves in a generalized set
theory, has created a situation which requires dealing with each individual, individually. Our
problem is still small enough that this is a reasonable activity; however, a system that would need to
deduce truths about many ob jects would certainly need a more universal mechanism (set operators,
for example) for manipulating sets of ob jects.

Section 5.52 Epistemological Axiomatic Limitations

There are more things in heaven and earth, iloratio,
than are dreamt of in your philosophy.

Hamlet, Act I, Scene §

One of the nice things about a formal logic systems 1S the ability to easily extend the formalism, by
the addition of new constants, axioms and attachments, to handle unforeseen or incompletely covered
situations. Thus, while we have interpretted our task to be axiomatization of retrograde chess, it is a
simple extension to include a definition of the SUCCESSOR relation, appropriate and useful Makemove
functions (with attachments) and thereon to do forward analysis for chess. We have briefly touched
upon these notions in considering Berliner's problem, section 54.2. However, as currently
constituted, our axioms of chapter 2 are not capable of handling problems requiring this kind of
forward analysis.

5.5.2. Conclusions Page 177.

In any case, the purpose of this section is to detail which kinds of chess puztles this axiomatization,
in its current form, has trouble expressing.

Certainly the most common of all chess puzles are the white to play and mate in moves variety.
For n sufficiently small, we really must confess lack of interest in most examples of this type of
puztle. Given the definitions of forward movement, and appropriate attachments, such puzzles are
easy single step simplifications in FOL. A few of these puzzles rely on the ability to castle or capture
en passant, and the justifications for en passant capture are occasionally quite complex, involving the
sort of retrograde analysis we have been doing in this paper. These axioms are, of course, quite
suited for that kind of analysis. Castling in mate in n puziles has a more complex position; one can
almost never prove that castling 1s legal, though often there is no reason to presume it illegal. These
axioms can be used to prove, in the usual retrograde way, castling illegal, or the problem statement
appended to include the appropriate restrictions on the position to imply its legality.”¢ A minor fillip
can be provided to these mate in n problems by the addition of fairy chess pieces [Dawson78)7% Of
course, our axioms would need the natural extensions to handle fairy chess pieces.

A more complex situation is presented by the problems of the form white to play and win (draw).
What we have here is an extension described by the LH4!T£_CAN*ACCGHPLISH predicate of section
542 Additionally, there is the necessity of defining the predicates WHITE_HAS_WON and
THIS_1S_A_DRAW. Clearly. they are non-trivial predicates, though they can be well defined in certain
circumstances (particularly if white has a forced mate in n, an overwhelming material advantage of
certain kinds (king and queen against king, for example) or insufficient material exists to force a win
(king and bishop against king and knight). What might be a trivial win for a chess master can be
completely opaque to average player. We imagine the attachments to such predicates would rely
heavily on the | _DONT_KNOW response available in the attachment mechanism (section 2.1.7.2).
Similarly, self mates and help mates require different definitions of the CAN_ACCOMPISH predicates.

In some sense, these are examples of construction problems: the problem solver is 0 present a
sequence satisfying some property. Another type of construction problem, for which these axioms
are very ill-equipped. and which lies on the periphery of chess problems, are problems of the form,
construct the board with the most (fewest) legal moves (captures, promotions, ..). Solutions to these sorts
of problems are usually presented as “this 1s the best known solution”, rather than "here is the
solution, and this is why one can't do any better.” As our system is directed towards proof and
confirmation, it is naturally incapable of commenting on such results.

But, needless to say, these are not the tasks this axiomatization has been directed towards. Rather,
we were considering retrograde analysis in our definitions, and it is more reasonable o inquire
where our retrograde failures would lie.

It should be clear by now that the mathematical knowledge represented Dy these axioms is Very
minuscule. All mathematical manipulations have been accomplished by considering each case on
our finite board separately, or by actually performing the implicit caiculations in the simplification

B ettt enmsaaEsseansssLnLeReSanE ------.--a.--.--.-----.----“-

74 One resder of 8 drafl of tms paper inquired how the question “Assume casthing n legal uniess you can prove otherwise”
might be handied |In ganeral, thie s an undecidable question; sy sxm sysiom 2¢ powerful s ours » incapable 1o proving whathar or
not cortam statements srd theorems. This foliows from the Gdel undecidability resuit

75 Fary chess prces 379 fanciful chess preces with ususl moves Consider, for sxampla, Dawson's Grasshopper and Nightrider
A Nightrider may make conseculve kmght's moves, s straight hne; the Grasshoppsr moves slong the orthogonsis and diagonais, but
only by hopping over one man of either color 1o 1he next squars beyond The reader interesied in this mythology is invited 1o consult
Dawson's book

Page 178. Conclusions 5.52.

mechanism. This is clearly impractical for problems that rely on more complicated mathematical
deductions. Similarly, those inferences promoted by set theoretic and counting arguments are painful
tautology decisions in the current system; it is easy to construct examples of sets too large to be
handled this way.

The current axiomatization is orient~” .wards unknowns centered around particular squares.
Unknowns centered around unknown syuaies would cause greater difficulty for the simplification
oriented system, though ought not to be impossible (section 5.4.1).

Another difficulty with this axiomatization is its insistence upon centering the problem around a
specific squares and boards. For example, the question Is white in check on the piece of a board in

figure 48:

YRY)

15 white in check on this fragment?

figure 48

is obviously observationally true, but its phrasing in this axiomatization would appear as:

Waiuaon(b.ﬂakesqnare(drx,dcx}’;sxlin'daIueon{b,nakasauaraﬂsucf drx,
dex))=MT A Valueon(b, Makesquare(Bsucf Bsucf drx, dcx))=RB) >
WHITEINCHECK b

Hardly the natural interpretation. It is perhaps true that a notion of board fragment should have
been included in the axiomatization. This points to 3 greater difficulty in this axiomatization; that
the functions and objects of the chess model are not robust enough to handle perversions of their
original sense. These attachments were the obvious simple direct functions to compute the obvious
values; they were adequate (with some pushing and pulling} to function as the chess eye for this
problem. However, it is now clear that a more flexible eye would be appropriate to handling a
larger variety of problems. This more flexible eye would probably involve much more complicated
functions.

A more germane example i provided by the following problem [Gardner59)

552 Conclusions Page 178.

/;

B § QWA AE

) .
SAC AV BE B

%y %// //@ %y
) %y %ﬂ, %y %
///@ . //@ %{,
TENIME QR

White to play and mate in four.
/i usual, this is o lagal position.

ﬁgw(+?

The puzzle here is to recognize that (as the black king and queen are on the wrong color squares)
that black and white have switched sides, with the black pawns advancing to the seventh rank.
While the current axiomatization could be used to prove that the given board, supposing the black
pawns on the second rank, is not the board of any legal position, the "trick” of the problem cannot
be expressed in this fixed board form.

There are also some chess puzzle concepts, such as “blocking structure™ and “path” which fack the
necessary counterparts in our axiomatization. These have their fumbling expression in our system
{see, for example, much of the last seventy steps of the main proof), but this expression is not
entirely satisfactory.

Section 5.6 General Representation Issues

Most of this paper has been dealing with representation issues of the chess world. If we did not
think that these examinations were relevant to epistemological issues in general, we could not justify
the attention we have given them. It is worthwhile, therefore, to turn our consideration to general
representations issues, considering the light shed upon them by our example. -

Section 5.6.1 Multiple Representations

A description must be able to represent partial
knowledge about an entity and accommodate
multiple descriptors which can describe the
associated ontity from different viewpoinis.

Bobrow and Winograd7®

One of the more complicated proble... . vy generally intelligent computer will have to face is the
dificulty of manipulating the various aspects and forms of particular objects. Any real world ob ject
(or class of objects) has a set of properties. For example, the book in front of me is red, weighs

76 {Bobrow77)

Page 180. Conclusions 56.1.

about four pounds, is made of paper, occupies a certain position (particularly, its near the phone and
my drinking glass), not to mention the diversity of the information recorded within it.

Let us consider merely the problem of manipulating and examining the book in space. In general,
the color, content, and composition of the object are not relevant to this task, and can be ignored.”’
They serve merely to confuse the heuristic portion of the program.

Even within the narrow domain concerned with the locus of the book, there exist many formats for
storing locational information. The bulk and location of the book might be represented by marking
the occupied squares on a visual grid [1] We might encode much of the same information at a
higher level, as a series of coordinates for the vertices of that rectangular parallelepiped [2]. 1f we've
analyzed the scene, a linguistic description, such as the book is to the right of the glass, and in front of
the telephome (3] or as a WFF or network, with explicit links or predicates, such as
RIGHT_OF(Book, Glass), and IN_FRONT_OF(Book, Telephone) [4] might be the appropriate
structure. Notice that we have here four different ways of representing what is essentially similar
information.

It is not the case that one of these forms 1s the corect one. Rather, each is heuristically appropriate
to uses at some time. The grid is both a typical input expression, and a possibly useful form for an
algorithm seeking to quickly comparing scenes. The coordinate structure could be used to easily
locate the desired object. A program whose primary task was human interaction might find <toring
sentences such as (3] a useful facility, while inference might require (4] A program that needed to
do all of these might very well keep several or even all four representations. Nor is it the case that
these are equivalent representations. They represent different combinations of inference and
deletion, and are not mutually rederivable.

We feel the pain of this problem very acutely, even within our limited set of chess problems.
Particularly the dichotomies of board/position and value/piece reveal an aspect of this problem. As
we have already devoted a section to their comparison (section 52), we shall restrict ourselves to a
few brief conclusions here.

It is clear from this experience that representing information in canonical form (every fact has a
particular, highly structured format to which it must fit) 15 a losing proposition. Such structuring
must, of course, be to the most general form; however, most frequently, it is the particular form, with
its implicit information, that is the most pliable for heuristic manipulation. Thus, while the
positional notation is the most general form of representing 2 chess situation, actual computation is
easiest when dealing with concrete bcards. The same constraint applies, of course, to dealing with
pieces and values.

Multiple representations require the ability to translate between forms. In the case of the
board/position dichotomy, this translation is explicitly related in the TRANSPOS axiom and theorems
(sections 2.1.92 and AB). It is considerable trouble to interchange representational forms in mid-
proof; unfortunately, unless great care is taken in matching proo! segments and lemmas, it is a
frequent occurrence.

An alternate facet of the multiple representation problem is the difficulty of transferring properties
between different, but similar states of the world. The book is on the table. If I walk out of the

- P

77 Howevaer, imagine 1he halum balioon; the manipulator ignores e compositional properties st its owh penil

56.1. Conclusions Page 181

room, around the building, and back In, will the book still be on the table in this new state? Thne
entire issue transferring properties between similar states 1s a very complex “can of worms.” This
problem is visible in our chess system; while any move changes only a few of the pieces on the
board, it creates an entirely new state, with unexplained properties. We have, however, one
prominent success to report on this matter, that our the chess induction schema. We have found this
schema to be very useful in tying together the properties of not only “close” states, but also relating
states separated by many moves.’$

In many respects, this requirement of transfeiring between different representations can be viewed as
a metaphor for the heuristic portion of the A.lL problem uself. In that view, intelligent action
consists of transversing some search space; multiple representations merely pervert that space (like
other operators), adding short cuts and cul-de-sacs.

Section 5.6.2 Abstract and Concrete Representations

The previous section discussed the varieues of representations. Our experience with this chess proof
leads us to an important conclusion about these formats: a system requiring complex and detailed
deductions must frequently retain both absiracl and concrete representations of its input.

Let us consider this vision example. The program knows that it 15 viewing some "scene”. In some
general sense, this 13 the abstract form for this hypothetcal vision understanding system. As it
manipulates the raster input, abstracting and specifying features, the abstract form becomes qualified,
just as the abstract form of the position px is qualified In the course of our proof. Practically, the
vision system might extract features, manipulate the resuling data structurés, and return to the
concrete input format only for clarifcation. Rarely, an inconsistency might force another analysis of
the input.

The chess example has a paraliel structure. Any problem is explicitly an element of the set of
positions. Various features, such as the values on a given square, re concrete facets of the input
analysis. In forward analysis (as, for example, outhned in seciion 5.4.2) we would use less of the
abstract form, preferring to live in the secure computation of specific boards. Retrograde analysis, on
the other hand, deals with a more “unsure” situation, and demands a more flexible representation.
Hence, the predominance of the more abstract form (the position) in our proof.

Section 5.6.3 Heuristics and Representation

As we mentioned in section 1.2, the general Al problem naturally divides into epistemological and
heuristic parts. This paper has been concerned with the minimal requirements for an
epistemologicaily effectve representation. However, 2 few words on the heuristic devices employed
in generating this proof might prove interesting. It 1s 10 be remembered that these comments are of
an introspective nature; that s, we describe what we found difficult and easy. and how a heuristic
system might eventually be organized o acheive such a long deduction.

Both the generation of this proof, and its surface structure, show a clear division into three types of
activities. First, a specification of the general proof outline must he obtained. In this proof, that
corresponds to the "human” proof described in section 16.2. Then, into this outline, the appropriate

78 Thare is 3 third “muiliple “sprasentation” issus that FOL handies for ve avtomatically, that of kesping the context of any
deduction Ths dependency mechanam perfarms this task fairly wall, though naturally, « 2 very conservatva fashon

Page 182. Conclusions 56.3.

lemmas and theorems must be formed. Finally, individual proofs must be constructed for each of
the particular theorems.

This outline misstates shghtly, in that the second and third activities, lemma selection and proof,
occur concurrently, difficulties in proof often prompting new subgoals (lemmas) for the selection
process.

It is clear that both for the human proof solver, and any future program, that these steps are listed
in order of increasing difficulty. It 15 not clear how to generate an outline of the correct solution,
given the problem. It is also clear that this more efficiently done the more the solver knows about
the tricks and short cuts of solving chess puzzles. Thus, 3 human unacquainted with chess, and
presented only the rules, would finding solving this problem a very difficult task, while it is trivially
easy for the chess master. Proving actual lemmas, once one had the “hang" of it, was relatively easy.

Working within the context of a proof outhine, the main difficulty in generating this proof arises
from specification of the lemmas and sub-theorems 0 be used along the way. In a strong sense, the
proof of almost all of the lemmas is relauvely trivial, given the existence of all of the axioms they
employ. In practce, if the proof of some theorem became 100 difficult, a useful lemma was assumed,
the lemma's proof becoming another subzoal Within the proof of any lemma, almost all of the steps
are either axiom instantiations or simplifications.

Effectively, we are offering a personal confirmation of a judgment of Sacerdott [Sacerdoti73]). that it
1s more important (and more cifficult) to determine the plan for a course of action, than to worry
about filing in the detailed descriptions of that plan. Of course, one's proof can flounder on either
set of hard places.

There has recently been some work on incorporating goal direction Into the FOL system. The
reader 1s referred to [Bulnes 79] fo. a description of that work.

Section 5.6.4 Functions and Predicates

In section 5.2.5 we mentioned the use of special functions, essentially, the use of an algorithm o
compuze a value (when the algorithm is xnown). This principle can be expanded into a general
“moral” for axioma.;. . . n.ons are (usually) more tractable objects than predicates. In this
section, we contrast the funcional and predicate styles of axiomatizations.

A funcuional axiomatization 1s one where (relatively) unique relationships are expressed as the
values of particular funcuons, a predicate system denotes these relationships as predicated
relationshups. That 15, to find the instance satisiying some predicate, one manipulates the axioms of
that relationship, and proves a unique correspondent.

What we are contrasting here 1s an intra-representational choice. That 13, in generating an axiom
system to represent some domain, one often has the choice of expressing some notion as either the
value of a function, or the set of things true of some predicate.

An example of a "bad” axiom from our axiomatization may clarify this issue.

Consider the axiom MCONSEQL which defines the pawn promotion.

AXIOM MCONSEQL:

56.4. Conclusions Page 183.

¥p . (PALNPROM Hove pe (LASTRANKER (To TMove p,Color Prevpos pin
SIMPLELEGALMOVE (Prevpos p pin
PALINS Mover TMove pa
VALUEP Valueon(Tboard Prevpos p,From Move pin
((BVALUES Promoted Move psBYALUES Val (Prevpos p Mover Move pllia
{UVALUES Promoted Move pesWVALUES Val {Prevpos p Mover Hove pilia
Yal (p Mover Move p)=Promoted Hove pllis
It states that a pawn promotion takes a pawn 10 the last rank, by an ordinary move, that the piece
must have had pawn value at the start of the move, that black pawns promote to black pieces, that
white pawns promote to white pieces, and the promotion value is from the set of possible promotion
values (as defined by the definition of Promoted).

Now, this axiom is not incorrect. It is merely clumsy, and we regret having written it this way. We
leave it in, however, to be the object lesson of this section. The axiom would have been more easily
used if it had stated: 79

AX10M MCONSEQL:
Yp . (PAWNPROM Move p-{SIPPLELEGﬁLﬂB\'E{Prevpos p, pint
{WHITETURN p A
Rou To Move p = 8 A
Val {(Prevpos p, HMover Move p} = PB A
{(Val (p, Mover love p}=08 v Val (p, lover Move pl=RB v
Val (p, Mover Move pl=BB v val {p, Mover Move p)=NB})
v (-WHITETURN p A
flow ToMove p = 1 A
Val (Prevpos p, Mover Hove p) = Pl A
{(Val {p, Mover Move pl=QW v val (p, Mover Move pl=RUd v
val (p, Mover Move p)=BHd v val {p, Mover Move pr=NW)II})ss
that is, if it had explicitly stated, referring to individuals and equality, what was intended, rather

than referring, through the indirection of predicates, to sets of ob jects.

If this lesson seems too obvious, perhaps it is important to mention there are reasons for a predicate
approach, to wit, that the various tautology deciders currently in FOL (TAUT, TAUTEQ) are
much happier with predicates than with either equality {which TAUT cannot handle) or functions
(with which TAUTEQ_ has trouble),

Section 5.6.5 Whorf's Law

The last section illustrates an important moral of representation theory, a Whorf's law of artificial
intelligence [Whorf56].

Whorf's hypothesis was a linguistic one; that a person’s language shapes the way he thinks. Our
experience with fitting a chess proof into formal logic gives strong evidence that this notion extends
to include formal representational systems, and is a useful notion to remember in generating them.

Obviously, a limited representation can only express limited notions. More significantly, the
structure of the inference system, and the axioms, will subtly mold the resulting deduction. For
example, FOL tautology decider TAUTEQ is capable of substituting equals for equals in predicates,

76 Recall that "WHITETURN p" imphes BLACK st moved.

Page 184. Conclusions 56.5.

but not in functions.8® This promotes an axiom structure incorporating more predicates and fewer
functionals (an unhappy situation).

The FOL system has grown as this proof has progressed. When the proof was begun, the only
supplemental inference commands (beyond the Prawitzian natural deduction rules) were TAUT and
TAUTEQ, Semantic simplification, 50 essential to our chess eye, was developed concurrently with
our experimental axiomatization. Copious use is made of these commands. More recently, aiter the
first few iterations of proof had been completed, syntactic simplification (a massive substitution
command), and a decider for monadic predicate calculus were introduced. It is noteworthy, however,
that even if we wrote another iteration of this proof, these commands would probably not be
important. This is because the axioms are not structured to take advantage of their presence. Such
structuring would imply more equivalences and monadic predicates, while our current structure tends
toward implicatives and dyadic (and greater) predicates.

Similarly, it is difficult in FOL (largely because it is a formal mathematical proof system, partially
because a lot of effort would be required t0 check any change) to correct the course of a proof, to
delete an offending command, to make a slight ad justment to an axiom, t0 change an incorrect
declaration. This arrangement promotes a stiffness of expression; once incorporated, change is
dificult. Because change is so difficult, it is easier t0 become set in ones ways, and harder to
experiment. Again, we se¢ an example of language influencing representation.

Section 5.6.6 States and Representations

Perhaps a section on the value of state vector representations in general epistemological situations is
warranted. After all, the position, our state vector, has proven very successful at capturing some of
the important aspects of our domain. For example, the notions of must have happened in this game,
though | don’t know when and it was true then, and can’t have changed, hence is true now are very well
specified by having the position as a history vector, and through the use of chess induction.

We contend that a similar ideas can for the basis for powerful representational mechanisms for AL
For example, retaining a notion of the present state of the world, including the history of reaching it
resolves some of the confusions inherent in the naming of objects. A person who has lived but is
now dead does not, in some sense, exist in this world. However, by retaining the history of the
world in reaching this state, we are able to speak of him in the appropriate context. Similarly, a
God that was able to know the rules involved in all state transitions would be a good resolution of
the issue of omniscience.

But, of course, reasoning within this state of the world, and not knowing all of its rules, we cannot
predict the future. We can, however, if we know the current state, reference that state as the
expected descendant of some past state, and reason about the future (up to the current) in the past.
We can not reasonably reason about the future, even in the past, beyond the current state, other
than to say, "if the future has the following properties, then _* Note that of all possible states and
histories, we can distinguish one and call it, reality. This is typically the state we are in, just as the
game that reached GIVEN, the problem board, was reality for that situation. We can name
individuals in chess, such as the grasshoppers and nightriders, that have properties, just as we can
name mythical flying horses, and state that this fiying horse was named Pegasus, who sprang from
the body of Medusa at her death, and so forth. We can speak of Pegasus if we are careful of

80. From asb, TAUTEQ can deduce pla)-p(b), but not Fla)eFib).

56.6. Conclusions Page 185.

mentioning the context within which we are speaking, just as we can speak of nightriders, if we
move beyond the context of “real” chess, or “real” reality.58! A full notion of such a state/reality
duality might require additional predicates and individuals into that state.

Reasoning within specific siates can have other benefits. For example, the reasoning about
knowledge can sometimes be resolved by retaining the context within which each wise man is
reasoning. Note that as an omniscient observer, we retain the right to reason about all contexts.

Transitions between states can be seen as the flow of reality. This chess problem has been very over
simplified, for things happen in a discrete, regular fashion. In a more general, real world, processes
will not behave as nicely. We will be able to find some regular laws (if x is dead in state s, then X
will be dead in all successor states to s.), and able to use our induction schema to manipulate such rules
(if x is dead now, then, by induction, X will be dead in all future worlds).

Reasoning in this state transition formalism has a distinct disadvantage, however; we can rarely be
sure that what was true in state 5 will be true in the successor of x. We have heuristics for processing
such situations (if x leaves the room, all of x's clothes go with him) but even such ordinary rules as when
! awake, things will basically be the same can be violated, as Rip van Winkle discovered, much to his
discomfort.

Scction 5.7 Historical Context

It is perhaps useful to place this work within the historical context of representation systems in
Artificial Intelligence.

The inference mechanisms employed by A.l systems can profitably be divided into two varieties:
syntactic and semantic. Syntactic inference is performed by considering the form of a particular goal
and set of rules. If that form matches the standard required by the set of rules, one can conclude a
result whose form is determined by both the result form of the rules, and the binding of entities in
the match. Thus, for example, in a system structured as ours is, one employed the axioms and
already proven WFF's, through the natural deduction rules of inference, to obtain new WFF's.

Semantic inference mechanisms are magic. The particular goal WFF is offered to some set of
functions and data structures, and that oracle decides if the particular conclusion is correct. While it
is (theoretically) possible to describe these data structures and functions in & mathematical form,
raising them to the syntactic jevel of the first kind of structure, such an attitude is both unlikely to
succeed, and, in some Strong Sense, wrongthink. Typically, the "black box of semantic routines”
embodies some model of the world viewpoint of the system programmer.

This is not to imply that by calling such mechanisms "magic” we want to denigrate them. Rather,
they will be the fundamental mechanisms of any successful Al system. The interactions allowed in
purely syntactic constructs are too broad to be able to avoid exponential search.

However, it is also important to point out that model based reasoning is invariably too limited in its
expressive power to perform complicated and varied inference. We need not only to compute in our
models, but also to talk about them. It is the assertion and demonstration of this paper that deep
inference is possible through a combination of both forms of representation.

----- - T - -

8l Prior's modal logic approach to time was discusned i section 532

Page 186. Conclusions 5.1

Neither representational system is new {0 artificial intelligence. Purely syniactic approaches, such as
resolution based theorem provers were once in VOgue. But even in the ultimaie example of such a
system, QA3 [Green69] one sees the stirrings of the use of models. But Green einployed model based
computation only out of necessity and last resort.

At that time, Winograd's SHRDLU [Winograd72] was somewhat a competitor of QAS3. While the
Planner antecedent and consequent theorems employed in SHRDLU have a surface resemblance to
formal logic, their employment in a simulation system made them essentially semantic conventions.
While perceived as a great success al the time, the limitations of such a purely semantic approach
have now become apparent (section 1.3.1.2; see also [Moore75). Essentially, a purely model based
system can efficiently manipulate the objects in that model, but has no mechanism for talking about
those ob jects or the manipulations in a non-manipulative sense. Hence, Winograd's program could
fail to place a block on a pyramid, but could not talk about the possibility of placing a block on a
pyramid.

There have, however, been several successful combinations of - ~actic and semantic representations.
Perhaps the earliest and most impressive was the combination of diagrammatic based computarion
and syntactic deduction presented in the geometry machine [Gflemurﬁs.&]{GelmsterﬁsB]. Gelernter
and his associates employed computation on a geometric model to aid in the discovery of syntactic
proofs of elementary plane geometry thcorems. The mathematics of the model system employed by
the Geometry machine is explored in [Reiter]. Other, more recent programs have employed simple,
explicit models to perform some of their necessary inferences. Examples of these programs are the
electrical circuit systems at BBN [Brown73){Brown74] and MIT [Sussinan?5}, Funt's system for
predicting the paths of falling blocks [Funt77}. and Rieger's [Rieger76] [Rieger77] program for
approximating the workings of devices.

We can, perhaps, attempt a minor taxonomy of such model based systems. Besides the above
distinction about the use and availability of both syntactic and semantic forms, we note two other
distinctions. First certain of the above systems employ their models not only as inference
mechanisms, but also as heurisiic aids. The Geometry machine is a prime example of this use. The
deduction presented in this paper has, of course, ignored heuristic lssues, considering only
epistemological questions.

Secondly, these programs can be divided by the kind of model they employ. Our model for the
chess proofs has been an exact one. We are as sure of its correctness as we are of our axioms; we are
sure that its functions completely and accurately model our knowledge of chess. To the limit of their
electrical consideration (races, hazards, etc) the electrical programs were also accurate models. Funt's
block's program, however, applied an approximate model of the situation, performing a simuiation of
the falling blocks, under the watchful gaze of a simulated eye. Rieger's system |5 a similar
simulation. Gelernter introduced unnecessary approximations into his system to keep it from being
too accurate and helpful a model 82

Thirdly, all of the systems considered so far have employed a single model in their inference
mechanism. Whether only single models are appropriaie (to reflect the natural "human” single-
minded view of the world) or multiple models are merely a further step is an open research question.

One important, complex aies hecessaiy Step has been avoided by all these systems: a reification of

- e

8z Gelernter wanted to study using the model 3 8 heuristic, rather than nferential axd.

5.7. Conclusions Page 187.

models, treating the models themselves as oD jects of the system. One can see an important
suggestion in this direction in (Weyhrauch?78), though it remains a research opportunity.

Section 5.8 FOL

On many occasions in this volume we have complained about the various limitations and privations
imposed by our proof checker, FOL. This is not to imply that things are all that bad; FOL does
what it does fairly well. However, while familiarity may not breed contempt, it at least breeds an
awareness of deficiencies. We are obliged to attempt a rudimentry catalogue of our perceptions of
where FOL could be improved.

The most elementary changes (at least from a structural point of view) involve the inclusion of
additional inference rules. For example, a tautology resolver that could do substitutions inside of
functions as well as on predicates would be 2 "relatively” simple fix that would have a large
beneficial effect on total proof size. One can imagine, for example, that most of the uses of SUBST
and SUBSTR, and many of the applications of ASSUME could be dispensed with were it not for
the necessity of convincing TAUTEQ (again) that a=b > F(a)lsF(b). We have partially
circumvented this constraint by the uses of the § functional parameter and the Substitution axiom;
these temporary solutions are not, however, completely satisfactery.

Similarly, the FOL user should be allowed to define his own inference rules, providing the code to
decide them. This proposal works in parallel to the more powerful semantic simplifier discussed
below. Merely being able to substitute for parameter predicates and functions is not enough.

There are, of course, several more radical changes that the earnest FOL user would desire. The
primary emotional complaint about writing FOL proofs is the necessity for stiffly expressing each
(almost incorrectable) step. This problem is exhibited in several ways. In its simplest form, it can be
perceived in FOL's refusal to forget any (unreferenced) declarations, or remove any (unused)
inferences from the proof. The relatively inflexible syntax is also a source of annoyance. Similarly,
the necessity of generating a permanent, particular proof step, particularly one that is only a
propositional derivative of some other inference line (what FOL calls a VL) for use in only one
instantiation, is a corresponding clumsiness.

In a larger sense, this stiffness is seen in the necessity of repetition of identical (or nearly identical)
arguments (on different ob jects) to produce simiiar results. One frequently wishes to say. fhis case is
just like the last one, but use the axioms for white rather than black in proving it. In its simplest form,
this proposal might be incorporated as a proof schema; that is, follow arguments of the following
form, and reach a similar result. A more grandiose schema might include a provision for reasoning
by analogy, that is, taking a proof and finding the parallels to generate a similar proof.83 The moral
here, perhaps, is that communication is facilitated by informality, the ability to omit or abbreviate
objects. FOL (like most programming languages, particularly the "lower level” programming
languages) requires a fairly formal statement of action. This is uncomfortable. Writing a rOL
proof of this size leaves one with the same feeling as writing a large assembly language program.

FOL can be a very uncooperative proof checker; while it is quit willing to deny the legality of some
step, it is usually unable to explain why. It would be easer to write interactive proofs if the proof

esEEs s .—-———

&3 Ws sse some of the slementry steps for this work in the thesis of Kling [Kling7 1] on reasoning by analogy. Kiing, however,
only used the previous proof for selscting the stoms 1o be gven 1o rasolulion theorem prover; we suggest that this infarence
scheme try 1o foliow the form of the gven proof.

Page 188. Conclusions 5.8.

process included some guidance. We are all familiar with how debugging facilities easy the
programming process. However, the inclusion of such facilities is not a trivial request; while a
quantification check in semantic simplification could easily trace a failed step, such a facility within
the present decision procedures would certainly be a difficult to implement.

We have here a giant example of a FOL proof; many different lemmas and theorems have boen
pieced together to accomplish the end result. However, we have received virtually no help from
FOL in producing this structuring. While FOL permits one to declare any arbitrary WFF an axiom,
it has no other mechanisms for structuring a proof. Two possible improvements might be suggested.
One would like a theorem command, which would take and save a given resuit. Additionally, either
a block structuring method or an analogical inference command would aid the engineering aspect of

roof generation. The recent meta level facilities [Weyhrauch79] and goal structure commands
[Bulnes?9] could be used to alleviate these difficulties.

Of course, our major impressions and recommendations are reserved for the semantic simplification
mechanism.

Qur primary complaints concerning simplification center on the inability to apply all of the
observational knowledge available to a given simplification. This Hydra rears its heads in many
ways. In its simplest form, it is seen in the demand of simplification that all arguments to functions
be "well defined" before they can pass through the FOL - model barrier. For example, if A is a
constant, and y, a variable, simplification (and the common call by value implementations of LISP)

are unable to compute:
(CAR (CONS A yi) = A

Having such a ,..oolic evaluation would have been quite helpful in generating this proof. For
example, on many occasions we would have a parameter board, a parameter value, and two constant
squares, and wish to show that MOVETO was not true on these arguments (the squares resting at an
angle beyond the movement of any piece, say, BKRl and WORZ), A parameterized semantic
simplification would accomplish this; as it is, we need to resort to the hack of instantiating the axiom
MayMove, and simplifying the result.84

There are times when even this dodge will not work. It these axioms we employed to do forward
analysis, then the following object would prove useful: a position built up from a parameterized
position (presumably, the given position of a problem) with successive generations of moves and
boards appended. Now, there are many simplifications that are, by nature, observations, and should
possible on such an ob ject. However, as it is not an INDCONST, it would not even be passed to the
simplification mechanism.

A partial solution of this problem would include tagging those objects that were "variables” to
simplification, and allowing the user program to distinguish those tags.

Permitting the user program (o see the variables of the FOL model could have other beneficial
results. Consider the case of quantification checking. In the current simplification mechanism, the
only quantification checking permitted is the check of a finite sort whose elements have been listed in

84. MayMove is defined ae: Vb v 8qi sq2 (MOVETO (b, 8gl, 9q2) > {Column sq] = Column sq2 ¥ KNIGHTMOVE (sql, sq2) v
Row sql » Row #q2 v SAMEDIAG (eql, 892} ¥ KINGMOVE (sq], #32) ¥ (TWOTOUCHING (Colume oq!, Column 2q2) A (WSUC (Row sql,
flow 3gq2) vBSUC (Row 3g], Row sg2)))).

58. Conclusions Page 189.

an EXTENSION command. This usually works well enough in the chess world for the simple

roblems we have considered (there are, however, some jemmas we have not proven because the
desired simplification were 100 complex). But quantification checks can also be accomplished by
other divisions of the variable set than into individuals. For example, it is true that all integers are
either positive integers, negative integers or 2¢i.. A division into these sorts might permit the
simplification and verification of some sentence of number theory or arithmetic. However, we would
certainly not want to check every integer in establishing the validity of that WFF. Rather, the user
should be allowed to define his own quantification checking mechanisms, either in addition to, or
instead of the current extension checks.

In the current organization of FOL one must invariably know what one wants {that is, what WFF
one wants in one's FOL proof) when commanding any inference st 25 A more powerful scheme
would be to permit the prompting of the simplification mechanism, which would then complete the
assertion in the appropriate manner. In a simple form, as prompt of ¥ x. WFF might, instead of
returning Y x. WFF instead counter with the more useful ¥x. { WFF v x=y v x=2). If =Y x.WFF
were what was desired, it would have been asked for.

On a grander scale, this mechanism could begin a approximation of the inference schemes of
humans. Our proof is a very good case in point. The competent human puzzle solver can observe
our problem chessboard and state: The only legal move for white was 10 have just promoted a pown to G
rook, moving from BQB2 to BA1, and capturing a black piece. This (for the good puzzle solver) is an
observation, not the deduction. It is the only possible legal (last) move for white. To generally mimic
this ability in FOL, however, would require a simplification mechanism that could take an input
board, and return a set of WFFs, one of which would be true of that board. This might be
accomplished with an appropriate set of meta level reasoning commands.

A final point on the relationship between the FOL level WFFs and the semantic simplification’s
attachments. These attachments, you may recall, were presented in the axiom section (chapter 2) of
the proof. This is because they share many attributes with the axioms, both conceptually and
functionally. Conceptually, they are among the building blocks from which the rest of the proof was
created. Functionally, these attachments can serve the same crucial role as axioms. That is, defects
in these functions can permit the horror of a contradictory deduction {(and hence the deduction of
any WFF.) By the semantics of the LISP programming language in which they are imbeded, these
axioms acquire meaning. It is an unhappy circumstance that the meaning incorporated by these
semantics is not somehow transferable to the FOL axiom level. Similarly, it is unfortunate that the
FOL levei axioms cannot be compiled, somewhat automatically, into simplification level attachments.
While it is true that this inability places the burden of a redundant inefficiency on the FOL user,
this is not our major point. Rather, our intention points towards the time when some similar scheme
might be incorporated into an intelligent program. Optimally, such a program would build up
frequent action patterns, effectively learning new processes. With our representation formalism, this
could well be modeled by the compilation of FOL WFFs into the corresponding model attachments.

35. Thers is & amall, but important sxception 1o this rvis. One can semantically simpiify an suprassion of the form ﬂ"i"‘z'“'n"
and obtain s an inferred step: Flx Xo, % jey, for function F and terme X, and Y.

Page 190. Conclusions 5.9.

Section 5.9 Evaluation and Summary

The reader is probably by now feeling somewhat overwhelmed by the mass of argument and detail,
proof and text that we have presented. Let us conclude, therefore, by summarizing and evaluating
our important points.

Many doctoral dissertation seems to be of the form: "I've solved the Al problem, except for a few
implementation details I've not bothered to work out” It is a primary premise of this work that
"solving the Al proolem” is a very difficult task, and much fundamental work on both
representations (epistemology) and search (heuristics) remains to be done before its solution.

This particular paper has been centered upon consideration of epistemologically effective
representations. There is 2 common fallacy in most Al work, that because some particular
representation, invariably employed in some particular task, was sufficient to solve some of the
problems of that domain, that that representation can be extended to the rest of that domain, and
onwards to the rest of whatever we want our computers to do. Our perspective has been from the
opposite direction. We have started with a very general representation (formal logic),8 discovered it
inadequate for modeling even a limited problem domain (chess puzzies), and extended it (by the use
of the Chess Eye) to where it can more easily and naturally represent certain interesting problems.
However, there are many questions about chess puzzles that are inconvenient or impossible to ask
within our representation as presently formulated.

It is important to remind the reader that the fact that our representational formalism is based on
first order logic does not imply that we are suggesting the use of general purpose theorem provers.
Rather, our comments in this work have been reserved primarily for the epistemological part of the
Al problem; we have spoken very little, if at all, about appropriate heuristic mechanisms. Our
approach has been, in some sense, bottom up (consideration of the nature of reasoning sequences)
rather than top down (discovery of the appropriate state search methods).

It should be remembered in evaluating all of the particulars of the individual representational
choices that we have made, that first order logic is a family of representations. The failure of one
particular example of a formal logic system is a failure of that selection of individuals, predicates
and functions, not the failure of the entire notion of formal systems.

There are several general representational issues illuminated by this work. In earlier sections, we
have pointed out the distinction between concrete (board) and abstract (positional) entities, and the
importance and vaiue of state vectors {positions) in durational deductions. We have seen many
facets of the multiple representation issue, such as differing representations for the same ob ject
(board and position, piece and value) and preserving properties between similar objects (chess
induction) illustrated by our axiomatization. We have noted the necessity for both syntactic and
semantic representations; there are many important syntactic type deductions which are not
expressible within a model.

Our major emphasis, however, has been on the interrelation between observation (the Chess Eye) and
deduction (the overlying FOL language). We have closely examined a particular observational
framework and found it adequate for computing certain properties {functions on closed ob jects).

86. it is true that formal logic is & genersl rapresentation schems. it is slso trve that cortain Turing mechines ars universsl
computing devices. However, this lstter knowledge s of little use I actusily programming computers.

5.9. Conclusions Page 191

However, we have been left with the sense of the impotence of this scheme: not all of the
computation and observation we wish to make is on fully defined, weil structured objects. The issue
of adapting and generalizing the simplification mechanism to include these observations réinains a
major place for future exploration.

Page 192. Chess Lemmas A.

Appendix A Chess Lemmas

Due to space limitations, Appendix A, the proofs of the general chess lemmas and theorems, has not
been included in this volume. Those proofs may be found in the author's Ph.D. dissertation, which
is available from University Microfims, 300 North Zeeb Road, Ann Arbor, Michigan 48106.

B. Proof Lemmas Page 193.

Appendix B Proof Lemmas

This appendix presents the various lemmas and theorems relevant only to our given puzzle, yet t0o
detailed to belong in the main exposition, chapter 4. As such, its form is essentially similar to
appendix A. However, unlike that appendix, these iemmas are listed chronologically; that is, in the
order of their use in the main proof.

Section B.l Undefined Squares on the Given Chessboard

Our first problem lemmas are, trivially, a single simplifications. Just as there are many useful facts
about chess derivable in a single simplification, and useable in many contexts (as presented in section
A1), similarly, there are observations about the interesting boards of this problem. {Observations
we prefer to have to compute only once.)

We observe that the only undefined square on the problem board is WKR&

ssessiabel GiveniD
sessssimplify Vsg. (VaiueoniGIVEN sq)sUDsuqalikRil)

1 ¥sq.(Valuson (GIVEN, sq) sUDusqalikRE}
We also note which squares on GIVEN have white pieces on them.

seansiabei GivenlVy

ssasssimplily Vaq. (WALUES Vaiueon (GIVEN u):tsg-ill!1vucﬂﬂl.m-iﬂzm-quum3nq-m2nq-w3wq-HKB 2vig
sulkNIveqslkR2))

2 ¥sq. (WVALUES Vaiueoni{GIVEN , 593 slsq-lﬁlivilq-lﬂlvitq-ld?vllq-ﬂﬂ!v{“um\v{u-ma {3quiQ3visgalikd2v (sq=
HKN3vaqebkR211331IIIDD

Section B.2 "Blocked on the Total Board, Too"

This lemma proves a precondition for the CORNER theorem. That theorem assumes that a piece
checks the opposing king, and that the check did not arise from a castle, en passant capture, or pawn
promotion. We wish to show that the checking piece does not have any entry square to move to
make the check that does not also check the king. (Starting a move with the opposing king in check
is clearly impossible.) The theorem will then let us conclude that the check was a discovered check.

Unfortunately, the theorem must speak of the total boards of the relevant positions. We do not have
a total board, rather, a (fairly complete) board fragment. What can we conclude of the relationship
between these two? We would like the appropriate predicates (MOVETG, Yalueon) to correspond
between the two boards. But proving this is some work. This illustrates the difficultly of
transferring properties between similar ob jects within our formalism.

Our lemma begins with a lemma of its own. One of the orthogonality theorems, OrthoThmX (section
A.9.2) states that the ORTHO relation (on a board, two squares lie on the same horizontal or vertical,
with no pieces between them) is sometimes equivalent between a board and its sub-board More
specifically, ORTHO will remain true around a square if that square has no undefined squares sharing
its rows and columns. The lemma considers orthogonality between GIVEN and the total board
(Tboard) of some position for which GIVEN is a BOARD. A square sq is proposed, which shares
neither a row nor a column with the x-¢d square, HKRG. As this i3 the only undefined square on
GIVEN, then orthogonality is equivalent, on this square, between the two boards. We label this
lemma BLOCKLEM (blocking lemma).

Page 194. Proof Lemmas B2

soessiabel L1
sssssagsune ~(Row HKRésRou sq)a~iColumn WKR4sColvan &l
§ ~{Row HXRésRou sa)a~iloivan HKRéaloiumn sq) (D)

sesssassuns sqleliiRé
2 sqd=lKRE (2}

sessssubst T in 1Ty
3 ~{Rou sq3sRom sg)a~(Coluan sqisCoivan sq) €1 2)

ssaeeal 11T
4 sqI=HKRE>(~(Ro= sqlefow sg)a={Column sqlsCoivan sqi} {1}

seesa¥E GivenlD sad;
§ Valueon(GIVEH,sy3) sUDs :q3=lKRe

sssnrthut ’J&!uomlﬁl’&ﬂ,wﬂ-Uﬂ:(u!-nv (~(Rox sqlsRou sqia={loiumn $§3sCoiumn sqilif, 1t
] Viiuoon{GIWK.lQS:tW:laqﬂn“v(-iﬂu sq3sRou sqia=iColumn sqlsColumn sq)} (D)

seaee¥] T 3q3;
7 ’uq!.Walmniswtll,sq}i-uﬁzin‘.l-nw(-(kw sq3=Ron sqiz=ilolumn sqislolumn sq)idd {11

ssses¥E Or thoThal 4,GIVEN,sq,8al)
8 BORARD (q,GIVENI{(Ysqd. wnuunfﬁlﬁﬂ.lqihlﬂbttq.‘nsqv‘-ilw sg3aRow sq}a~{Column sqlsColumn sq} 311> (ORTHO(
Tooard q.m,sqlilﬁltmﬂtclﬂﬁ,tq,“lﬂ)

sesestaut BOMBZQ,BWEN):(ORTMNTM.H q,sq.:qmuu‘m(nma,n,um .
9 BOARD (q,GIVEN)>(ORTHO (Thoard q.u,:qi)sﬂRTHNGIV{!.“,quH 4]

ssssssl LioTy
18 (~(Row WKRd4sRou sg)r=~(Column WKR&slolumn nm:am«,smm:mm*m q.u,:qlhhﬂm{cl?ﬁ,n,nh)
3

sseselabet BLOCKLEN;

seass¥] T 4 5q sgl;

11 ¥q sg sgl. ({~(Rou UKREsRou sqia=~{lolumn WKRésColumn sq::;asmo{q.czm:;mmsmwo q,ta,nlhﬂ?ﬂﬂt
GIVEN,sq,sqilli}

We know that for rooks, the MOVETO predicate is equivalent to the ORTHO predicate.

sasse¥E MOVING1 Thoard q,Ru,B02,56l;

12 BOVETO{Thoard q,lﬂ,iﬁz,tqllsﬂmuﬂ RUADRTHO (Theoard u,B0Z,sql1)v{(VALUEB RUADIRC (Thoard q,802,sqi))ivit
VALUEQ RUADRTHO (Tboard 5,832,810) vI{VRLUED RUADIRS{Thoare q.%ﬁz,sqmmmm AUAK [NGNOVE (802,393 v L
VALUEN RHAKNIGHTROVE (BQ2,sql}) v (VALUEP RUAPRUNPOVE (Tooard q,RM BQ2, 511NN}

sosse¥E NOVINGL Thoard o, RY,BON2, 50l '

i3 NOVETC(Tboard q,au,anaz,:qn.mawtn READRTHO (Tooard ,RON2,8q1) v (VALUES RUADIAG (Thoard o,BONZ,sql)ivil
VALUEG RUADRTHO{Tooard q,B0N2, sqlidvl (VALUEQ RUADIAG(Thoard Q.Bw.uu)v({?ﬂuﬁll NPK‘W!SMZ,IQIHv{{
VALUEN RUAKNIGHTROVE (BONZ, sql}) vIVALUEP RUAPRUNNOVE (Thoard . R4, BON2,sq10 101D}

c.e:elabel LZ;
¢ ssesimplify 11y
14 NOVETO (Thoard n,ll!-l,tﬁz,iqihbﬂmﬂ'mﬂ q,802,sql}

ssssenimpiify 11
15 MOVETO(Tboard «, R4, BONZ, 8q1) sORTHO (Thoard «,B0N2Z,85ql}

And, by our lemma above, on the interesting squares (802 and BGN2) orthogonality is equivaient
between GIVEN and the total board.

B2 Proof Leinmas Page 195.

seose¥E BLOCKLEM g,B802,2ql; .
16 (=(Row WKRésRow BRRIANICeTivmn #24alolumn Qhﬂatimiq,-ﬂﬁﬁatmtmﬂm =q,'m,aqmwmmmn,-nuz.
sgill}

seeesVE BLOCKLER 4,BONZ,sgly .
;?u;..mw UKRésRow BANZ1A=(Column HKEGeT viven -WH:MN&IW:’WMIW -q,mz,.ummmwmn.
BON2,8al)})}

seesslabel L3;
sesessimplify 11
18 BORRD{(q,GIVEN)>{0RTHO (Thoard l,“l,ui%‘lﬂﬂﬂlﬁ&fﬂiﬂ.m,uin

sossesimplify 11
19 BOARD (g, CI1VEN) > (ORTHO (Tooard q,BONZoHqISCHRTIG (G1VON,50N2,811)

We would have our result, except tha; e must prove that the rook could not have moved from the
undefined square. But no piece can m3ke that gient L jump, as consultation to a move excluding
theorem shows.

sssasVE Naylove Tbosrd g,RM,BA2,HKRE,

28 HOVETO(Tboard q,RW,B02,HKR&)I>(Lolumn BO2eColuth WKR&v (XN IGHTHOVE (B0Z, WKR&) v (Row BO2=Row UKRév (SAREDIRG (BO2
,uzmvmmcmmnz,uxmv:mrwcxm{wm‘-m Column HKRA)AIHSUC (Rou BG2,Rou UKRE)VBSUC (Row $02,Rou HKR4
NN r

sosssiabei L&;
sessesimpiify T
21 -MOVETO{Tboard g,RM, BAZ,HKRE)

We can see the desired result is true on the given board. The steps above prove the equivalence
between this observation, and the result on the total board.

ssseesimplify ¥sg2. (ORTHO {GIVEN,B0Z,8q2)2{~Valuson (GIVEN,sq21 o171 VORTHO (GIVEw,BON2,39230)3
22 Ysqi. (ORTHO (CIVEN,BO2,3q2)5(~(¥a iu:ﬂlﬂﬁﬂ,lﬂ!rﬁﬂvﬂﬁmﬁ 15}-‘-1“,-'“%“2”)

soseelabel L5;
sesosVE T mqiy . ‘
23 umao(cwsu.suz,um{-.m:mnatcmu,sqn-nnm‘.‘m:crm.m,-arw_.;

esessVE SubBoardséX q GIVEN salj ; . .
24 iDﬂﬂMQ,BZ‘U'Ell'.*:{?aiuonnlclﬁﬂ,:qllshlmmlmuﬂ n,aq‘fﬂ#ﬁlwﬁiﬁl,ﬂlfm}

scoesVE GivenUD sal;
25 Va luson{GCIVEN,sql) =UDEsglebKRE

seessassune BOARD(g,GIVEN];
26 BOARD(q,GIVEN) (26}

ssssstaureg NOVETO (Tooard g RE 302 sqlisi-Vaiveon{Tooard g sqiisNT VIOVETO (Teoard § RU BONZ sqid) L2,L2+1,13,
slldel L1 Ty
27 MOVETO(Tbosrd 4, R¥, 802, sql)3(~(ValusoniTooard q,8¢1)sNT)VAOVETO (Thoard o, RN, BON2,5q1)) (26

Generalization and removal of dependencies.

ssess¥] T sqly
28 Vsgl. (NOVETC(Tooard q,RU,lﬂz,uB:l*{\hlmﬁ{W q,8q1)=NT) VAOVETO (Thoard o, RU,BONZ,8q1))} (26)

sessss] T1at
29 SMMq,GWEH!:ﬂ“i.(m?G(TM a,tﬂ,m,un:ht\mmiw 4,8q17oAT) VIOVETO (Thoard «,RU,BONZ, aql)
1}

Page 196. Proof Lemmas B2

ssessiabe! BlockedGivenThu,

seses¥]l T q;
Sil’h- {BOARD (g, CIVEN) aVaql. (NOVETO (Thoard q,ﬂﬂ,!ﬂi.aqli;l-{%iumlm 5,841)=ATIVIOVETO (Theard «, U, DONZ,
sqid’ ¥}

Section BS Where A White Pawn on BQB2 Goes

A lemma for the main proof, to derive the possible moves of the promoting pawn on BOBZ.
Naturally, we turn first to the move defining axioms, MCONSEQ.

sessniabel L1

sesssassume SUCCESSOR tr.pm-cnsnmcr,pne-tunssaut {r,p) »(PRUNPROR Tiove pALUHITETURK palFrom Hove peBOB2

#ABORRD (p,B) 11301

i. S?ECESSM {r,p)YA(=CASTL iﬁ&ir,;h(-{ﬁ.?ﬂssml'l {r,p}a(PRUNPROR Tove pal-HHITETURK pA (From Neve peBOB2ABORRD(p,b
13133 (1)

sesssVE Neonseg!X r,p;

2 SUCCESSOR (r,p)> (PRUNPRON Nove ps {LRSTRANKER{Tc Nove p,Cotor 3 A1SINPLELEGALMIOVE (r, p) A (PAUNS Nover fove pal
VALUEP Valuson{Tboard r,Fro= Hove pIAC{{BVALUES Promoted Move paBVALUES Vai{r, Nover flove p) YA (UVALUES
Promated Move paMVALUES Vai(r Nover fove pi}iavai(p,fiover Nove p)eProncted Move pi¥iNy

sesss¥E NCONSEQK r,pi

3 SINPLELEGALNOVE (r,piz{~(Fro= fove psTo fove p)a(NOVETO (Thoard r,Vaiveon(Thoard r,From Nove p),From flove p,
To Nove pia{{SINPLE MNove paValuson(Toosrd r,To flove p)=NTIVICAPTURE Hove pA(PIECEVALUES Vaiueon(Thoard r,To
Nove pla~(Valuscolor Valueon(Tboard r, Te fiove plaleior SEEEEE)

seess¥E NCONSEQR r,p;

& SUCCESSOR(r,p) > {-UHITETURN ralRITETURN plalPrevpos p-ra{JBS!TIMIMCK{p,Celw rial{UHITEPIECE Nover
Tove psUHITETURN r)a(Pos {r,From Novs plsfiover fove paiPosip,To Nove plsfiover Hove palPosip,From Nove p)«ENPTY
AC(CRPTURE NMove poPos(r,Tc Nove plsTaken Rove ;thﬁSﬂ.!ﬂGlr,piviB‘JﬁSmT(r,piv&lﬂiiﬁﬁﬂ.mtr,p”!i‘HHI
3}

We not that the Yal, Valueon, and Pos functions all express different representations of similar
ob jects, and that these representations are intimately connected.

ssesssVE ValusTranspositionR r, Nlover fove p,From Rove p;
§ Posir,From Nove plisfiover Move paVaiveon{Tboard r From flove plaValir, Nover fove p)

One awkward point is the nez=ssity of reminding the proof checker of the differences between black
and white.

ssess¥E Bord _Pisce— Mover Move pg
§ ~{BLACKPIECE NMovar Nove pali1TEPIECE fover fove p}

And we can see that any pawn valued white value piece must be Pi.

sessnsingl i fy Yv. ((VRLUEP va-BVRLUES visvePi)y
7 ¥v. ({VALUEP va-BVRLUES viavePil}

sssss¥E 1 Valuson(Toosrd r, From Hove g
8 (VALUEP Vsiueson(Thoard r,From fove p) a=~BVRLUES YaiveoniTeoaré r From Hove p}1aVaiveoniToosrd r,From Nove p)
aPi

ssavsiabel (2}

sesss¥E ColorChoices r,Mover Tiove 3§
g (BVALUES Val(r, fover Nove p)aBLACKPIECE Mover Move p)A(UVALYES Vailr,Tlover fove pIaHITEPIECE Nover fove p)

More specifically, we consult the definitions of the PW's moves, and simplify the result.

B.S. Proof Lemmas Page 197.

sasesVE NOVING] Tooard r,PH,From llove p,To Hove pi

18 NOVETO(Tboard r,PH,From flove p,Te fiove p)e{(VALUER PUADRTHO(Thoard r,Frou feve p,Ts flove p) v ((YALUEB Pila
018G {Toosrd r,From Nove p,To Tove p}IvI(VALUEG PHAORTHO (Tooard r,From Nove p,To Nove P vI{VALUER PHADIRGC
Thoard r,From fove p,To Nove pYIvU{VRLUEK PLAX INGNOVE (Froa fleve p,Te Hove pHv{(VALUEN PUAKNIGHTROVE (From
Hove p,To Move s})v(VALUEP PLAPRUNNOVE (Teoard r, PH, From Nove p,Te Pove pHIINIY)

sessosimplify Ty
i1 NOVETO(Tooard r PU,From Rove p,To fleve 21 sPAUNNOVE (Tooard r,PU,Frea fieve p,Te Nevs p}

ssstoVE PAUNHDVINGL Tooard r,PU,From Neve p,To Hove p =
12 PAMNMOVE (Tboard r Pi From flovs p,To fove piu C (RPAUNNOVE (Thoard r,From flove »,Ts fleve) ANVRLUES PHIvi
BPAUNNOVE (Tocard r From Nove p,Te Nove p) ABVALUES PH})

ssemasimplify Ty
13 PANNNOVE (Tboard r,PU,From Nove p,To fleve 1 RUPRUNNIOVE (Thoard r,From fove #,Te Hove p}

seaseVE PRUNNOVINGZ Toosrd r From Wove p,To Nove py

14 HPANUNNOVE {Tooard r,From Nove p,To flove pint(Coivan From Nove peCoiumn To fove pA{USUC{Rou From fove p,Rou
To Move p)aVaiuson{Teoard r,To fove plafiTdiviiCoiumn From Nove pstoluan To Nove palRow from Move pa7alVaiueon
(Tooard r,To Move plefiTalVaiueon(Tboard r,Nakesquars (§,Cotuan From flove 9} 1afTARex To Nove paS)ilivi
TUOTOUCHING (Column From Nove p,Column Te Fove p)ACUSUC (Row From flove p,Rou Te Neve p)ABVALUES Valuson(Thosrd
r,To fiove pil}il}

It therefore tautologically follows that a white pawn can move in only one of three (ordinary)
motions.

sossstautaq 112 L1t

15 (Column From Nove psCoiumsn To Move pAUSUC (Row From fiove p,Rox To Tiove piavaiveen (Tooard r,To fove p}=AT))
v{{Column Erom Nove pelotumn Te Hove palRou From Ylove ps?aVatusoniThoard r,;Te fove gafTaiVaiveon(Toosrd r,

Hakesquars (5 ,loiumn From love pi)sfTaReu To Move pe51) 1) vITHOTOUCHING (Cotumn fron Revs g,Colunn To Hove piat

USUC (Rou From Nove p.Row To Neve p) ABVALUES Vaiuson(Thoard ¢, To Reve piiid {1}

Substitution the square we know it moved from, and simplifying, we get:

sossstaut From Nove peBOBZ Li;
16 From Nove p=BOBZ (1}

sessesubslr T in 1T

17 (Coiumn BOBZeColumn To Hove pA(HSUC (Row 3QBZ,Rou To flove p)aVaiueon (Teoard +,To fove plafTHvi(Column BQB2
=Column To Fove paiflon 8052x7A(Vaiuson(Toosrd r,To love prafiTa(Vaiveon (Thosrd £, Nakesquareif,Column BQRZNI=NT
ARow To Move ps51))1vITHOTOUCHING (Column BGBZ,Celumn To Move p)a(NSUC (Row BQBZ,Rou To Nove p)ABVALUES Vaiueon
(Tooard r,To flove p}ii} (1}

ssesslabel LY

sseessimplify T3

18 {3elolumn To Move pA(HSUC {2, Hou To Move p)aValveoniTeosrd r,To feove) afiT) v ITHOTOUCKING (3,Cotumn To flove
pIALNSUL{Z,Rou To Nove $) ABVALUES Valusen(Thoard r,To fove pi¥) 1)

Now, we check all of the squares, and discover only three possible destinations for our promoting
white pawn.

ssenspingl iy Yaq, (((3aCoiumn sqaHSUC (2, Rou sqnwmummmm:a,uum 8q) AMSUC (2, Rox 8q))5(sq=BONL
sveqeBllill;
18 ¥Ysq. {{{3=Column sqANSUC (2, Rouw unm-wzhﬂleﬁﬂ,h!m sq}ANSUC (2, Rou sq) 12 (sqsBONivaqeBli}))

sonss¥E t To Nove p;
28 ((3sColumn Te Move pANSUC (2, Rou To Nove p}iaTo Heve MIIA((MWI“{S,&IM Te Move p)ANSUC (2, Rou
To Nove pliaiTo flove peblKivTe fove peblid}

Page 198. Proof Lemmas B.S.

A little rearrangement of the result, molding it into a more convenient form for the main proof.
Effectively, we clutter this lemma with substitutions, rather than the main proof.

sssasVE VALUETRANSPOSITION p,flover Tlove p,To Nove p,b}
:;i (Posip,Te Nove plafiover fiove pABOARD (p, b1)3 (Vaiuson (s, Te Nove piaVal (p,Never Neve piwaiveenis,Te fove pis=
}

sseastauieg HVRLUES Valuson (b To Nove piwaluson(s To fove plsll t,LLiL1ed, L2
22 UVALUES Yaiveon(b,To fove piv¥alueonis,To flove pysll 1)

sssssassuna To fove psaqxj
23 To Nove pesgx 123}

ssseesubstr T in T4
24 UVALUES ?ttmﬂ!t.tqu}wnum!h,nxhuo {129

sseasnl Tt 2 Ty
25 To Nove pezqud {UVALUES 1'.iuun(b.iqxiv\mum{b,sqthl ()

sosea¥]l T saxj
26 ¥Yaqu. {To Nove posgx> (WVALUES Vaiuson (b, sqx)vVaiuson (s, squ)sU0}) D

sessseVE T BONI;
27 To Nove psBOMI>{WVRALUES v.rmniu.mxmuumu,mu-;m i

sosee¥E 117 BQBI;
28 To Move p=BOBLS (WVALUES Yo iueon (s, 80811 vWaluson (b, 80811 U0} i

ssewe¥E 117 BOl;
29 Teo Nove psBGI>(NVALUES Yaluson(b,801)vWalueson(e,8011=U0) (1)

sssastauteg (To Move p=RONLA C (UVALUES Voluoonlb,lﬂlll#ﬂumlb.wn-%mnlmuts Vaiveon(Thoard r,To Nove p)
3}3v{{Te Nove psBOlal(NVALUES Valmnih.annv\himn(b,mn-ﬂ»ﬂnﬂmﬁs Vaiveon(Thosrd ¢, Ts Nove p))iviTo
stove p=BOB1A(MVRLUES VaIuwnlh,mnv’h!maﬂ{b.mlhwnl t14:1,18,28

30 (To Mo« paBONIA{(WVALUES v;mma,anmm-|u.onts,mn-mmmxs Valueon(Thoard r,To fove p)))viiTe
Move peBOiA{{UVALUES wamm{b,m;w.tmm,son-mnsmms VaiusoniTooard r,Te flove piiiviTe Hove puBOBia
(MVALUES ?lIm(b,%ﬁlllvﬁim(t,!ﬂﬁlhiﬁill {1

Removing dependencies, and generalizing, we get our lemma.

sssssa] LIoT;

31 (SUCCESSOR(r,p) al-~CASTLING tr,pht-tﬂmm'ﬂr,ylatmm fiove pa(~BHITETURN pa(From Hove peBUB2ABORRD (p
,b3133311)3{To fove paBON1A ({UVALUES V'aImon{b,aﬁﬂlhhInmth,lﬁﬂih%lmmms Vaiuson{Thoard r,To Move p}}
3vi{To Move paBUla{{NVALUES 'hiuunib,aﬂl}wnunn{a.wn-iﬁ)dﬁtﬂi! Vaiueon(Tooard r,Te Nleve phllviTe fiove

peBQB 1A (HVALUES VlIm(b.mlh’hiuu{b.imnltﬁ)?’H

ssesaiabei PXPaunTo;

sokos¥]l T r p By

32 ¥r p b. ({SUCCESSOR ir.p)A{-CRS?i.!Nﬁlr,pia({ﬂ)ﬂi&ﬂf{r,,lalmm flove pal-MHITETURN prifrom fovs p=B0B2
ARORRD (p, 530331)15((To Heve paBOMia({RVALUES ?olw&.mi)waIumth,lﬂ!thtﬂld\'ﬂ.i‘& VaiueoniTooerd r,To
Move p}iiviiTe Hove peBQia{ LUVALUES ?oiumli,Iﬂllv’hiuwtt.&ﬂlhw}dﬂm Yaiveon{Toeard r,To feve pilivl
To Move psBOBIA{MVALUES v-mmu.mummwu.mn-w::m

Section B4 A Rook or Queen on BQJ is Cornered

The purpose of this lemma is to set up one of the more complicated conditions of the corner theorem
for the main proof. Effectively, somewhat similar in direction to the proof of section B.2, though a
bit more complicated.

B4 Proof Lemmas Page 199.

We seek to prove that, for any position q, which has a a board 0BUD, that 2 black rook or queen
valued piece on Bl can move only to squares that still check the white king on BKRL. We will use
this conclusion in the main proof to show that if the piece the pawn captured was a black rook or
queen, then that checking rook or queen must have arrived at that state by a discovered check.

We begin, of course, by assuming the existence of a position g, which has QBUD as a board.

ssessisbel L1i
88 BESURS BOARD (q,QBUDY ;
1 BOARD{q,QBUDY {1}

We consider first the case of diagonal moves. As QBUO is & board of this position, and, as we can
observe, GBUD is well defined and not empty on the two diagonal blocking squares (80BZ and BK2),
we know that the total board (Tooard) of q must also have those squares occupied.

sssseVE SubBoardséX «,0800,8082y
2 BORRD tq,usum:walmmuc.mzhm“mm ‘.mmmmtm.mn-w

ssseeVE SubBoardséX §,08U0,8K2;
3 amotq,num:.wumamam,mmumnnw mmm-nmmw,un.um

sespesimplily -Nlium(m,lﬂhﬂﬂa{-{hiuﬂnlﬂm,lﬂi-Wlat-iﬁlimoﬂtw.m)-tm! a=(Va1ueon (QBUD,BQB2)
*aliTI))
4 - Wlluoen{OWO,%IZJ-H‘E}.a(-WMMM{Q!UU.KH-UDIM-NIimlm,mhﬂmA-Wllmlw,lﬂihﬁﬂ 3

sssssiabel LI
sosss tauteq ~{Vaiueon(Tooard q.!ﬂﬂl’hﬂﬂmwaimmﬁbwd q,BK2)eNT) L
5 ~{VaiusoniTboasrd i,iﬂ&?l-ﬂna-wniwmﬁb«rd q, Bk=AT) {1}

Of course, TAUTEQ, will not be pleased unless we do its function substitutions for it.

ssessassune 3qlaB0B2)
6 sqleBOBZ (&)

sssssassune sqleBK2j
7 sql=B8K2 (7}

ssssssubst 11 in 11T
8 «{Vaiueon{Tooard q,mihﬂ‘()a-t\'ﬂmmﬁuﬂ 5,21 e0D) {18

ssseasubst 1T in EERRF
8 ={VaiuvsoniTboard q,l&%?l-ﬂ!ia-ﬂmmmﬁwt q,8ql)eliT} U 4]

sssssal TITIOTY
10 sgl=B8082> (=(ValveoniTboard g,ulhﬁ?h-(‘hiumﬂuﬂ g, BK2)=AD}} ()

asessa] TTI3TY
11 sqleBK23(~(Valueon(Tboard q,m)-a‘m-mlmﬂnw 5, 8gldefT} (D)

We employ a lemma, DiagBQ1Lemma, which states that for any position with chesspiece on BGB2
and BK2, there are no diagonal moves from BQl. DiagBQ1Lemma is proven in the next subsection.

eosssVE DiagBliLenms Thosrd 5,381}
12 ~{D1RC(Tboard !,lﬂt.ulhi-iuhwuhtulwhhﬂaimiw i,m!-ﬂ!a-{vnm(‘l’bmt «q,BK2) =T
3 D)

Page 200. Proof Lemmas B4.

We can therefore tautologically conclude that, on *he total board of g, the only squares diagonally
reachable from BQl are occupied.

senseiobel L4
ssees tautes ~DIRG(Thoard a,801,8ql)v~(Vaiveon(Thoard w, sqilsliT) L3, 11Ty
13 ~DIAG(Thoard w,301,sql}v=(ValveoniTacard g, sqlieltl} (D)

We proceed to the orthogonal cases. The board GBUD is undefined on exactly two squares, BAl and
WKRG (the fallen piece square). Essentially, we seek those conditions which must be true of a sub-
board, before we can deduce that movement relations on it are equivalent to those on a more defined
board. We have a theorem, OrthoThmX®7 that related orthogonality between sub-boards and total
boards. It states that undefined squares that neither share a row nor a column with the given
square {or are equal to it) do not effect the ORTHO relation. We seek to establish that the undefined
squares of QBUD (BQl and WKRG) are not relevant to the current orthogonality question. As usual, we
require copious substitutions.

sssassinglify ~(Row UKRésRou BA1)A~(Column UKRésColumn BOLY
14 ~{Row MKRésRow BQ1)A=(Coluen WKRésColumn BO1)

seassassune BqlsiiRée;
15 sq3=MKR& (15)

sesessubst T in 11y
16 ~(Rou sgq3sRow BOl)A~{Coiumn sqlsColuan 82D (IS}

seestdl TTo%
17 sqI3sUkRéo(~{(Row sq3show §G1)a={Column sqlsCeivan §41))

ssesssimplify ¥sq. {Vaiuaoni{QBUD,sq)=ll> (sqeBQlvaashkRi) };
18 ¥sq. wammtm.m.un:i.q.mm.mu:

soese¥E T 5q3;
19 Vaiueson(QBUD, 5531 sUD> (59380 iveqlabkRé}

sssneiduieg Vaiveon{QBUD, 53} sU03 (8q3sBOlv {~(Roux sqleRou 341a={Coluan sqlsColvan $Q1Y3) T, 1Yy
20 Valuson (QBUD, 593} 2UD> (sq3=BUlv{~(Row pq3sRow BG1)a~{Coivan sqisColumn BOLIID

sesesiabei L5
sssss Y1 T 5q3;
21 ¥sq3. (Vaiveon lﬁwﬂ,u!huﬂ:(tq!-!ﬁlv{-mw sqleRou BQ1}a~iColumn sqlsCoivan BAINID

We invoke our chess eye, the simplification mechanism, to show that BQl is orthogonally cornered,
and adequately defined.

seasesimpl iy V3q. (ORTHO (QBUOD, BO1,5q) >(ORTHD {QBUD, BKRI ,lqiﬂ«ﬂilmm{m,iqi 2UD) A~{Vaiveon{QBUD,sq)=NTI 1))
22 Yaq. tunmnmw,lnz.umo&mmuo,mz,mvumimnmw,u:-unn-mmmzw,m.mm

ssessliabel LE;

seees ¥E T 3qlj
23 ﬂktﬂotm,lﬁl,uﬁ:ili‘ﬁ?ﬂﬂtw,#l!,uun«{himﬂ(W,ull-in)mt'htmtm,ulhaﬁH

And, of course, invocations of various theorems (0 show the equivalence of our different
representations.

essesVE DrthoTheX «,Q8UD,BG1,sqls

87 Section AB21.

B4 Proof Lemmas Page 201.

24 BORRD(q,0BUD)>(¥sq3. (Va Juson (0BUD, 5q3)sUD> {vqdeBliv {~{Rou nqieflou BUlia~{Colvan sq=Coivan 801)3} }>{ORTHO(
Tooard q,am,un-nnmﬁmuo.ana,.qm:

sees4VE TransitiveSubboardOr thogonality QBUD, Thoard g, BKR1, Bql
25 SUBORRD(QBUD, Tooard qmomaumuo.mz.unmm (Tesard q,BKR1,8ql)}

sesssVE SUB-BOARDS3 1,0BUD;
26 GDRﬂB{q,QBUDI:SUBORRDiQBUDJHu'! a)

sesesiabel L7
seess YE SubBoardséX q QBUD sql;
27 aonumq.uauomva:unnmaw,un:v.uumumra q,-qnmtmwmw.un-m:

We have enough here to show the desired relationships for orthogonality and diagonality. However,
the theorem stipulates the relation be on MOVETO, not some lesser predicate. So we must show the
adequacy of our deduction for each of the rook and the queen. Ladies first.

MOVETO is defined by the axiom MOVINGT. Simplification narrows the choices.

sseseVE NOVINGL Thoard g,08,801,8ql;

28 NOVETO(Tvoard ,08,801,sq1) s ({VALUER QBADRTHO (Tooard 4,301, 5q1) 3 vU{VALUER QBADIRG(Tooard s,801,8a10)v
VALUEQ 0BADRTHO (Tboard ,B0%,891)) v{VALUEQ 0BADIAG{Thoard n,B01, 9911 v (VALUEK OBAKINGNOVE (BQ1, 01} vii
VRALUEN EBAKNIGHTMVEﬂﬂi,uiﬂvwﬂluﬂ OB APAUNIOVE (Thoard n,ﬂl,l&i.ummm

soseeVE MOVINGL Thoard q,08,8KR1,sal;

29 NOVETO{Tboard q,ns,azaz,uu:umuzn QBEADRTHO (Thoard n.lﬂl,ulnvimlﬁl QBADIRG (Thoard q,ml,iqlnvl(
VALUEQ QBAORTHO{Tboard q,m:u,;qmvmauﬂ QBADIRG (Tooard l.lﬂli,nll!vumtﬁl ummmn,umv{t
VALUEN QBAKNIGHTHOVE (BKR1,sql}Iv{VALUEP GBAPAUNNOVE (Thosrd .,m,um,uimmn

sessaginpliify 11
38 ROVETO(Thoard q,aa.ana,sqmmm (Tooard q,lﬁi.tqlhﬁiﬂﬁlmﬂ g,B01,sql))

sossvesimplify 14
31 ROVETO(Tboard q,na.axax.nmmmummé q,8KR1, 5511 vDIRG (Thoard q,BKR1,sq1)}

We can then tautologically conclude the desired WFF for the black queen (valued) piece.

sasselabel QUEENNOVE;

sssss 1autleg NOVETO(Tboard q,05,805,8q10> {=~{Vaiveon(Tooard ‘..qn-ammmetmi w,08,0KR1, 3qi}} L1,L4,LB
o, LE:L7, T Ty

35 ROVETO(Tboard g,08,801,8a1)3(~(Vaiueon(Tooard a,8q1)sTIVHOVETO (Tooars 4,08,BKR1,sq1)) (1)

Similarly for the rook.

sosssYE NMOVINGL Thboard q,R8,B01,3qd;

33 NOVETO(Tboard o, RB,BO1,sqlls {(VALUER RBADRTHO(Tboard ﬁ.ﬁﬂl,tqlﬂvﬂ\'ﬂ.ﬁi RBADIAG (Tooard 5,801, sgldivil
VALUEQ RBAORTHO(Tboard ﬂ,!&i,;ql}}vﬂmiﬁﬁ READIAG {Tooard q,Bm,uiHvaﬂ{K lWlMﬁﬁ!,uD?vﬂ
VALUEN RBAXNIGHTHOVE {BQ1,sql} v {VALUEP RBAPRUNNOVE {Toodrd o, k6,801,822) 3

soassVE NOVINGL Tboard g, RB,BER],3qly

34 MOVETO{Tboard q,as.arn,;quuwm.ma RRAORTHO (Tooard g, BKR1,5ql) v{ (VALUER RBADIAG (Thoard q,8KR1,sql vl
VALUEQ RABAORTHG(Tboard q,BERL, salldvi (VALUEDQ RBADIAC (Thoard ﬂ,ull,sqliiv(mut Iinﬂ!ﬂlﬂﬁi“ﬁ!.“l”v“
VALUEN RBAXNIGHTHOVE (B‘ﬁi.,lql}ivEWLuE? RBAPAUNNOVE (Thoard q,u,mi,“lliﬂﬂn

ssesesimplify 11
35 ROVETC(Tooard q.RE,BOl,sqnaaﬂ'{ﬁbﬂmwd 5,001,341}

sessssimplify T
36 ROVETO(Tboard q,Ri,iﬂi,qulMTHﬂﬂmd q,BKK1,sql)

Page 202. Proof Lemmas B4

sasssiabel ROOKNOVE,

::;u;muq BOVETO {Thoard «,R8,801,54002 {~{Vaiveon{Thoard q,nn-mmmum w,R8,BKR] , 8al)} £1,L5,l6:
ity

37 NOVETO{Tboard n,Ii,lﬂl,aqna{-{hlumﬂnri 4, 8q11a1TIVIOVETO (Teoard 5, R85, 0501, 5q1)} (1)

It will be more convenient for use to have the theorem in terms of some rook or queen valued v. So
a little more fiddling.

sssesassuns vaRByvvelB)
38 veRBvvalB {38)

sssssiauteg QUEENNOVE: 10Bev) GUEENNOVE , RODKNOVE, T}
39 HOVETO(Teooard ;,v,lﬂi,ull:{-ﬂllum(‘luui g,841) oNTI VAOVETO(ThoSrd a,v,0KR1,sql)) (1 33}

seexe¥l T sgl;
&8 Ysql. (NOVETO(Thboard q,v,lal,sqn:i-i%iuuﬂﬂhuﬂ g,8q1)=ATIVIOVETO (Thoard g, v,BKR1L,sq’} U 3w

Removing dependencies, and generalizing, we obtain our theorem.

sssasn]l TIT 2 Ty
41 (veRBvve0B)2Vsql. (NOVETO(Thoard q,v,iﬁi,lqlhi*(hiuuﬂﬂwi q,5q1)sAT)VIOVETO (Thoard w,v,BKRL, sql30)
i

seedanl L1 2 Ty
42 BOARD (g, UBUDI > (veRBvva0B}3Vsql. (ROVETO (Tooard q,w.sﬁl,nl}:{-(hlmm(hwt q,ui}-ﬂ?lmthaM o,V
.BK‘RI,IQNH)

seeselabet Trapped_QOX ~Tha;

svass ¥1 T q v

43 ¥q v. {B&ﬂﬂulq,ﬂ%ﬂﬂ!:&twﬂim&h\'ul.(I‘Iﬂ\!t'm{wﬂ q,v,sal,sqi}:{-waIuoonﬂbolri q,lqihﬂﬂvm%m(
Thoard q,v,lﬂl,nn)h)

Section B.4.1 Blocked Diagonal Movement

We promised a proof of the blocked diagonal movement lemma used in the previous section. We
seek to prove that pleces on BKZ and QB2 are sufficient to block bishop like movement (DIAG) from
Bal.

We observe that any square sharing 2 diagonal with BAl must either have BK2 or BGBZ on that
diagonal, or be one of those squares.

sosastabel Li;

soesesimpl ify ¥sqd. (SANEOIAG(BQL,sq3)> ((BETHEEN (1,2,Rou “SlMS&I‘IEMIIG&QS,SINMGINhﬂ,mnHv{mc
#BOB2veqI=BK2) 3} :

i Yaqd. !MDII‘NBG&.!;S?»H“MiHH,2,!0&! uﬁ&liﬂﬂ[ﬁiﬁﬂ&ﬂ.“?lv‘ﬂ““iﬂ’,ﬂzﬁWimmmiﬂ

Diagonal movement is defined in terms of the SAMEDIAG predicate.

ssesaVE NOVINGS b,B0L,sq;
Z DIRG ib,mi,:qhtsmnlﬂﬁllﬁi,sq)ﬂul. HSWGIEGQM,uﬂA(MMﬁGtu,uﬁhﬂﬁﬁiﬂ(ﬂu BG1,Reu 343, Row sy}
3)sVaiusonib,sqdisfTi}

We assume these squares are occupied, and that it is possible to diagonally move to some other
square. We will show this supposition to be false.

SsERsABEUNG MHG!I;.NI,lqh(-‘.’u-iﬂﬁha(-(sqclﬂh(-l’h!uton{b,lﬂnhﬂ'ﬁa-l‘ihlumib,iﬁ)-l!ﬂ)n|
3 DIMlb,&ﬁl,nqia{-(sq-iﬁ!hl-(aqaaﬁ)M-Wnlumlb,lu?ioﬂna-(\’aimh.uﬂ-m)ni {3

B4l Proof Lemmas Page 203.

We abstract part of the definition of diagonal movement.

t;utuul ﬁ’:qZ.1iSRHEDIﬁGiIHI,uSia(iﬁﬂ!ﬁlﬁﬂn,mh SETUEEN (Row BQ1,Rou sqd,Reu lqnh\‘l!umti,;q!hﬂﬂ 2
.34
4 Ysql. 1:mn:ausm,-qammcmm,usmmxmau 301, Rew 0q3,Rou “Nlmlmti.uﬁhﬂﬂ (k3

This condition on diagonal movement is true for both BKZ and BGB2.

ssees¥E T BKZ)
5 lSﬂﬂiﬂlﬂféﬂQl,“ﬂalsﬁﬂiﬁi%(“.lﬂiﬂiﬂﬁﬂﬂw BQi,Rou BX2,Row sq})ioVaiueon (s, BK2) AT (3}

sssus¥VE 17T 30B2;
5 :smamtam,lnazmsnmtachq.-auzmemmm 301 ,Rou 80B2,Rou ul)h‘!ﬂm&,ﬂl)-ﬁ? {3

We apply our original observation to the parameter square q.

sssesVE L1 5q;
7 SANEDIAG(BG1,sq)>({BETHEEN(],2,Ron maxmnzuiu.mammﬁm.m;mupw):

We compute the rows and columns of the relevant squares.

ssoessimpiify Row BUlsla(Row BUBZe2A(RoM $K2a24 (SANEDIAG (301, BKX2) ASRRECIRG (301,80821)1)3
& Row BQlsla{Ron BAB2s2aiRom 3K2s2A (SANEDIAG (BQ1,BK2) ASANEDIAG (BQ1, 3082011}

Which is enough to produce a contradiction. We negate our assumption, and generalize to our
theorem.

ssssstauteq FALSE L1t %y
9 FALSE (3}

soeng-] !‘,ﬁlﬂGib,%ﬁt,iqhhtsq-Suzin-‘-'-hq-lﬂ)a(~('uimn&,iﬂ&?l-ﬂ?}hﬁtlmlb.mi-!m})}|
18 ~{DIRC a-,lﬂi,iqiﬁi-isq-mni\i-{“-lﬂln(-wtimh.)ﬂiihﬁ‘l'u-mﬂmih,luhﬂﬂHH

sssssisbel DiagBliLenmy;

saess¥l T b sq;
11 Yo iq.-IBIIIG{b,Bﬂi,tnIa(n{n-lﬂHht-tu:it!)aI-W.liuonlb,wl’!-llTla-Wllmth,lﬁ)-ll‘anJ

Section B.4.2 Consequences of a Distant Pawn Promotion

Our final specific lemma. We apply the fact that every promotion square to the left of WKN1 requires
the capture of two white pieces, and to express this fact in the form most convenient for the main
proof.

To begin with, we need to convince the proof checker that each of the eighth row squares that aren't
WKN1 or WKR1 require two captures from BKR2. The simplest way to convince the program, is to let it
see for itself.

ssesssimplify Ysq. (Row sqeBa(Pauncaptures uq.mnzzmmmg.mum;
i Ysq. (Rox n-n:r(PmamruinmIKR!)zzvlu-xlimmin)

We assume we have the appropriate pawn promotion move. Hence, by the axioms of chess, this
move must have been to the eighth row, and the piece must have had pawn value at the start of the
move.

sssesiabel LLs

Page 204. Proof Lemmas B42.

sssssassune PRUNPRON Move qallover Hove qeBkRPa=Tc fove qaiKR1A=To Nove qebiKNI}
2 PANNPRON Nove gaillever fleve qudkRPA{={Te Fove gebiRila=(Te Neve UkNLHY)

ssseaVE 11 To Hove g3
3 Rou To Nove gub>(PauncapturesiTe fove . BKR2122v(To Rove qsHKR1vTe Nove qabKNi})

seseaVE BlackProntesOndB q,BKRP|
& (PAUNPROM Nove gallover Nove qeBXRZioRou To Move qed

seeaa¥E NCONSEQL 43

S PRUNPROM Move qu (LASTRANKER(Te fove u,Cotor Pravpos @) A{SINPLELEGALROVE (Provpos u, 8} A (PRUNS Fover fove qaft
VALUEP Valuson{Tbosrd Prevpos gq,From flove q)ALL{BVALUES Promoted fove qaBVALUES Val (Prevpos q,Nover Move q}la
(UVALUES Promoted Move gqedVALUES Vi {Pravpos g,llover Tieve q)12aVai g, Nover Hove §)sProwsied fNove TR REE)

ssossVE ValusTranspositionR Prevpos 4, BKRP, Fros Move q;
6 PosiPrevpos q,From Hove q) sBKRPoVa luson (Tooard Prevpes q,Fros fove qlsVai{Pravpos 5, BKRP)

seoe¥VE NCONSEQR Prevpom 4,83

7 SUCCESSOR (Prevpos q,q)>{(~UHITETURN Prevpos QINKITETURK qlalPrevpos qePravpos qA{-~POSITIONINCHECK (q,Coior
Prevpos qlA{{URITEPIECE Tover MNove qENHITETURN Pravpos a)a(Pos (Prevpos q,From flove gq)sliover Hove qalPosiq,To
flove glsMover love ga(Posiq, From Nove qYsENPTYA({CRPTURE fove q>Pos (Pravpos 4, To Move gqisTaken Nove qial
CASTLING (Prevpos ﬂeﬂiviﬁﬁ.’ﬂsmﬂﬁ‘l\mot t.qlvﬁiﬂﬂ.ﬁimﬂo%{?rtm' %,

saess¥E POSITION_RULES q;
& SUCCESSOR (Pravpes q,-qh@ﬂiﬂﬂ;m PR,)

The BKRP started the game on BKRZ. If he has made at least two captures, then, of course, in two
positions of this game, BKRP captured white pieces.

sssesnimplify Pos (P, BKR2);
8 Pos (P8,BKR2) =BKRP

seossVE FPaunStructursd P9,q,BKRP,To Nove q,BKR2;

16 (VALUEP Vai{Prevpos q,3KRP) A {Pos {q,To Tove q) «BKRPA (PREDEGRNE (P8, q) A (Pot {?i,l&ﬂli-u”aﬂmuiwolﬁo
Hove q,BKR232211)153ql &2 x1 x!.H?REDEMtql,qhqI.-qh.t?liﬂiﬂﬁ!(qz,nlhll’ﬂtﬂmlPl,qﬁMTﬁ!iiﬁs fiove qla
{TRXINGS Nove g2aifiover Nove qisBKRPA (Rover fove q2sBKRPA{Taken fiove glaxiaTaken fove g2ax21131 130

ssssntauteg Ti#Z L1th

11 3qi g2 x1 az.4maozcmtqi,qmz-qmmosmtq:,qna{?nsmmm,qzmm;m Move qia(TRKINGS Move a2
alfiover Nove gqlsBKRPA(Nover fove q2eBKRPA{Taken fove glexiaTaken Move q2=x21111111} 23

scese3f T gl,q2,xi,%x2;

12 (PREDEGAME (al,u)vgl=g)A(PREDEGARE :qz,wmnzazcmm,.zmzmm fove glA(TRKINGS Nove q2alfiover Hove
gl=BKRPA (Nover flove q2=BKRPA (Taken Nove gqlexlaTacan flove qex2BiIN) D)

These pieces were not the same piece.

ssces¥E DifferantTaken 92,ql,8,x2,x1;
13 ({{gqleqvPREDEGANE (ql,q?)niq!-qv?ﬂiﬂiﬁﬂﬂiGq?,q}naﬂuﬂc Nove gq2=To Move qllvi=(Nover fiove g2sfiover Nove ql
lviPREO{GﬂHEtq!,qllvu‘lqbqt)ﬂhﬂ'&on Hova q2ex2aTakan Heve qleni) 1o~ (n2exl)

And both these captures occurred during the game that reach the presumed position.

cosss¥E TransitiveGenealogy 42,4l,8)
1é (Pﬂinicﬂﬂilqz,nnﬂmmﬂnﬂql,q:hPﬂEOiGRhE(qz,ql

Hence, all the good things we desire of them are true.

sosentauteog THTiA~xiaxd tT"thiY
15 {(Pﬂi&iﬁﬂﬂilqi,qiul-autmﬁmiqz,qi}a-ll’liﬂimEPI,QZMH%K!NGS Nove ala(TAKINGS Move aZaiflover fiove

B4.2. Proof Lemmas Page 205.

GqleBKRPA (Nover fove q2eBKRPA({Taken feve qlexiaTokon Bove 42eu2) 131113) aminiond} {12}
Removing dependencies and quantify, we get our lemma.

sseendl T x2 xi 42 &l
16 Jal 42 x} x2.{((PREDEGANE (g1,) valeg) A ({PREDEGANE (42, 41) A (PREDEGANE (P, 42 A (TAK INGS Neve qlA(TAKINGS Fove
q2alliover Nove gladKRPa(Bever Nove a2eBKRPA(Taken Nove glexiaTaken Heve a2sx21 111) a=inian2)) (2}

sseepsnl] LioTy

17 (PRUNPROM Nove ga(Mover Nove qeBXRPa{=~(Ts feve qeikR1)A=(Ts Move qolikKN1)}}))o3x2 x1 §2 ql. ({{PREDECANE {ql,q
$vgleg) A {PREDEGANE (q2,41} A (PREDEGARE (P9, 421 A(TRKINGS Move qla({TRKINGS Peve 2a{flever Rove qisBKRPA(Rover fove
q2eBKRPA(Taken Move glexiaTaken feve aZ2ox2) 11111) aninlexd})

sssaniabel Farlaken;

seene¥] T gq;

18 Vg. ({PRUNPRON Movs galflover Nove q=BKRPAI=~{Ta Nove iRl a={Te Neve qelKN1))1)03x2 x1 92 qi. ({(PREDEGRRE(
ql,qlvglsq) A (PREDEGRNE (q2, 51} A (PREDEGANE (PR, 42) A (TRKINGS Tove SIALTRECINGS fleve a2aiNever fleve gleBERPA (Never
Hove q2sBKRPA(Taken Neva glexiaTeken feve 42eu2) 1 1 10 aninienddd)

Page 206. FOL Command Frequency C.

Appendix C FOL Command Frequency

Command frequency for FOL rules of inference used 1n this proof, grouped by command. type and
use location.

Inf. rule Main proof M.P.8App B Chap 38App A Total Per cent

Quantifier manipulation: 1281 53%

YE 191 2642 724 966 43%

¥i 4 15 158 173 8%

31 4 3 28 25 1%

3 15 16 21 37 2%

Chess eye: 225 16%

Sl IFY 98 115 188 225 i8%

Decision procedures: 381 17%

TAUTEQG 66 79 168 247 11%

TAUT 11 15 118 125 B%

UNIFY 2 2 7 g 2%

Substitution commands: 93 4%

SUBSTR B 8 Bl 69 3%

SuUBST 2 6 24 30 1%

Dependency introduction and removali 322 14%

AS 6 i8 139 157 7%

ol 3 14 139 153 7%

-] 1 2 S 11 8%

vE 1 1 8 i 8%

Miscel laneouss 25 1%

al 3 3 13 16 1%

AE 2 8 8 8 8%

sl) 8 1 1 2x
Total: 485 841 1782 2253

LABEL 77 183 302 485

D. A Constructive Solution to the Puztle Page 207.

Appendix D A Constructive Solution to the Puzzle

To assauge the fears of those still not convinced that the fallen piece must have been a bishop, we
present a constructive proof. More particularly, & game that reaches the given position.

I P-K4 P-KR4 18. PeQ N-Q4
2. B-QR6 PsB 19. P-KNS N-QN3
3, N.-KB3 P-KRS 20. R-N2 PR

1. N-KN5 B-QN2 21. RKI P-N8N
5. N-K6 PIKB2:N 22 R-K4 N-KB6
6. K-K2 B-Q4 23. R-QN4 K-NI
1. PeB P-QB4 24. Q.KB5 K-RI
8. K-KB3 N.QB3 25. Q-Q5 N-QBI
9 K-KN4 Q-QB2 %. R-N7 N.Q7
10. K-KN5 0.0-0 21. ReR PeQ
. K-KN6 P-Q3 28. N.QB4 PN

12. P.Q3 R-Q2 29. KR N.N8
13, B-KN5 R-KR2 %0. P-QN3 K-NI
4. Q.KB3 N.Ql 31. P-B7¢h K-N2
15. Q:B Q-QB3 12. K-R8 K-N3
16. N-QR3 P-KR6 383, B-KR4 K-N2

17. R/IKRI-KNI N-KB3 34. PeN-R

Page 208. Listing of the Chess Theorems E.

Appendix E Listing of the Chess Theorems

For the convenience of the reader, a list of the general chess lemmas and theorems used in this
paper.

define AliStart_: ¥ t. 3 sq. Pos (PO sq) =t;;
define Al1StartX: ¥ x. 3 sq. Pospcf (PO, x) =5q;;

define AlternateBlack: ¥ rb. ((BOARD (r, b) A BLACKINCHECK b) > {POSITIONIﬁtHECK
{r, BLACK) n ~WHITETURN r)d);:;

define Alternatewhite: ¥ r b. ({BOARD (r, b) A WHITEINCHECK b) > (POSITIONINCHECK
(r, WHITE) A WHITETURN r));;

define BishopMovementValues: ¥ r p ybi sg sql. {{SUCCESSOR (r, P} A {ybi=Mover
Move p A (sq=To Move p A sql=From Move p))) > (MOVETO (Tboard r, Valueon (Tboard
r, From Move p) , From Move p, To Move p) = DIAG {Tboard r, sql, sq)})i

define BishopMoves: Y r p ybi sg sql. { (SUCCESSOR (r, p) a (ybizMover Move p A
(sq=To Hove p A sql=From Move p))) > (MOVETO (Tboard r, Valueon {Tboard r, From
Move p) , From Move p, To Move p) > (WHITESQUARES (sql) s 'WHITESQUARES (sq)})):;

define BishopStaysOnSameColor: ¥ r p ybi sql sq. ({SUCCESSOR (r, p} n (Pos (p,
sq) =ybi a Pos {(r, sql) =ybi)) > (WHITESQUARES (sq) = WHITESQUARES (sql})):;

define BishopsIsOnSameColor: Y r sql sq2 ybi. {({Pos (PO, sqgl) =ybi n Pos {(r, sa2)
=ybi} > (WHITESQUARES (sql) = WHITESQUARES {sq2)}}:;

define BlackCapturedOnThm: V r g ¥ X 5Q. {Prevpos q=r > (To Move g=sq > {Mover
Move q=y > ((Taken Move g=x A WHITEPIECE y) > {- «ITEPIECE x A {-Row (sq) =3 >
Pos (r sag) =x)))})):;

define BlackCapturedThm: ¥ p sq. (To Move p=sq > ((ORDINARY Move 2 A BVALUES
Valueon (Tboard Prevpos p, $q))} > CAPTURE Move p))is

define BlackCastleThm: ¥ r p sq. ({SUCCESSOR {(r, p) A {CASTLING (r, p) A
WHITETURN p)) > (Pos (p, sq) =BK > {sq=BKN1 v sg=BQBl))) i;

define BlackCheckingThm: ¥ r. - (POSITIONINCHECK (r, BLACK) A ~BLACKINCHECK
Tboard r);;

define BlackCornered: ¥ r g b vb sq sax. { (SUCCESSOR (r, Q) A (~EN_PASSANT (r, q)
n {~CASTLING (r, a) A (-BLASTRANK (sa) a ((BOARD (q, b) A (Valueon (b, sg) =vb A
(Valueon (b, sax) =KW A MOVETO (b, vb, sg, sax}))) a -~VALUEP vb}})}) > (¥ sql.
{MOVETO (Tboard g, vb, $Q. sql) o {~ {Valueon {Tboard a. sql) =MT)} v MOVETO
(Tboard q, vb, sax, sal}}) > { (ORDINARY Move g A SQUARE_BETWEEN (sq, From Hove g,
sax)) A - (Mover Move g=Pos (g, sa)))}i:;

define BlackDidPromote: ¥ p ybp sq. {To Move p=sq > (Mover Move p=ybp > (PAWNPROM
Move p > (Val (Prevpos p, ybp) =PB A Pos (p, sa) =ybpl}}il)i;

define BlackDoesNotStartInCheck_: ~BLACKINCHECK START;;

E Listing of the Chess Theorems Page 209.

define BlackEnPassantThm2: ¥ r q b. ({SUCCESSOR (r, Q) » (EN_PASSANT (r, q) A
WHITETURN g)) > (¥ dex. -~ (Valueon (b, Makesquare (6, dcx)) =PB v Valueon (b,
Makesquare (6, dcx)) =UD) > -~BOARD (g, b))):s

dafine BlackKingThm: ¥ r sq. (Val (r, Pos {r, sq)) =KB = Pos (r, sq) =BK);:

define BlackMPClLemma: ¥ p b s5q sax. ({{valueon (b, sg) =PB A BOARD {(p, b)) n Pos
(PO, sqx) =Pos (p, sa)) > MAY_PAWN_CAPTURES (saqx, sq. BLACK))

define BlackPawnCaptureThm: ¥ p ybp sal sq2 sq3 b. {(Pos (PO, sql) zybp a (Pos
(p. sq2) =ybp A (MUST_PAWN_CAPTURES (sal, sq2, Piececolor ybp) A (BOARD {p, b} ~
Valueon (b, sq2) =PB)))) > ((sa3=sqZ v (SAMEDIAG (sq2, sq3) » (SAMEDIAG (sq3,
sql) A BETWEEN (Row (sq2) , Row (sq3) , Row (sql}})))) > 3 @3 x3. ((PREDEGAME (a3,
p) v q3=p) A ({TAKINGS Move g3 A (Mover Move q3=ybp n (To Move g3=sgl n Taken
Move q3=x3))) A (PREDEGAME (Prevpos a3, p) » (To Move q3=sqd > (Mover Move q3=ybp
> ({Taken Move q3=x3 A ~WHITEPIECE ybp) > (WHITEPIECE x3 A {(~ (Row (sq3) =6} >
Pos (Prevpos g3, sq3) =x3))))N))is

define BlackPawnMoveThm: ¥ p al ybp sq. {(Pos (ql, 5q) =ybp A (- {Pos (PO, sq)
=ybp) A ((PREDEGAME (ql, p) v qi=p) A Val (Prevpos gl, ybp) =PB))) > 3 a.
({PREDEGAME (g, p) v Q=p) A (Mover Move g=ybp A (To Move g=sg A (VALUEP Val
(Prevpos q, ybp} A ((~ (Row sq=6) A -~ (Row sq=4)) > ({From Move g=Makesquare
{Wsucf Row sq, Column 5g} A Pos (Prevpos g, 5Q) ="MPTY} v {{Taken Move g=Pos
{Prevpos d, S4) A WHITEPIECE Pos {Prevpos q, sq)) A~ (From Move q=Makesquare
(Wsucf Row sg, LZtouchf Column sq) v From Move gq=Makesquare (Wsucf Row sQ,
R2touchf Column sq)))))))N))ss

define BlackPawnPathThm: ¥ p X sql sg2. {Mover Move p=X 3 {To Move p=sqZ > (From
Move p=sql > (Val (Prevpos p, x) =PB > (~ {Row {saZ) =6} > (ORDINARY Move p A
({Column {sqgl) =Column {sq2) n (BSUC (Row {sql) , Row (sq2)) A Valueon {Tboard
Prevpos p, sqZ) =MT)} v ((Column (sql) =Column (sq2) A {(Row {sql) =2 A {(Valueon
{Tboard Prevpos p, sq2} =MT A {Valueon (Tboard Prevpos p, Makesquare (3, Column
(sql))) =MT A Pow {sq2) =4}))) v (TWOTOUCHING (Column {sql) , Column (sq2)) A
(BSUC (Row {sql) , Row {sq2)) A WVALUES Valueon {Tboard Prevpos p,
sqZ3)INNININ;

define BlackPawnValueLemma: Y p b sq. ({(BOARD {p. b) a Valueon (b, sq) =PB) >
BPAWNS Pos {p, sa))::

define BlackPawnValueSquares: ¥ p b t sg. - (PROMOTEDPAWN (p, t) A (BOARD (p, b)
A (Valueon (b, sg) =Pb A Pos {(p, saq) =t}})i;

define BlackPawnsAre_: ¥ t. {{t=BKP v t=BQP v t=BKNP v t=BKBP v t=BKRP v t=BQBP v
t=BONP v t=BQRP) = BPAWNS (t));:;

define BlackPawnsOn2Start_: Y sq. (BPAWNS Pos (PO sq) = Row {sq} =2):;

define BlackPromtesOnBA: ¥ q ybp. (PROMOTEDPAWN (g, ybp) > 3 p. {((PAWNPROM Move p
~ {(PREDEGAME (p, q) v p=q} n Mover Move prybp)) A Row To Move p=8)});;

define BlackPromtesOn8B: Y p ybp. {(PAWNPROM Move p A Mover Move p=ybp) > Row To
Move p=8);;

define BlackValuesAre_: ¥ vb. (vbsKB v (vbeQB v {vb=zRB v (vb=NB v {vb=BB v
vb=PB)}))}

Page 210. Listing of the Chess Theorems

define BlackpieceArePawnsOr_: ¥ t. (BLACKPIECE t = {BPAWNS ¢t v t=BK v t=BQ v
t=BKN v t=BKB v t=BKR v t=BQB v t=BON v t=BQR});:;

define BlackpiecePawnsAre_: ¥V t. ((BLACKPIECE (t) A PAWNS (t)) = BPAWNS {t)):;

define Blocked_BKB: ¥ r b sq. ({BOARD (r, b) a (valueon (b, BK2) =PB A (Valueon
(b, BKN2) =PB A Pos (r, sq) sRKB)})) > sq=BKBl);;

define BlockedGivenThm: ¥ q. (BOARD (q, GIVEN) o V sql. (MOVETO (Tboard g, RW,
Boii}g?ii 5 {=~ {Valueon (Tboard 4, sql) =MT) v MOVETO (Tboard g, RW, BQNZ,
5Q HH ’

define BoardTboard: Y r. BOARD (r, Tboard o

define BorW_Piece_: Y X. = (BLACKPIECE x = WHITEPIECE x);;

define BorW_Value_: ¥ vpc. = (BVALUES vpc = WVALUES vpc)is

define CAPPP_SortThm: ¥V m. {{PAWNPROM m A CAPTURE m) > CAPPP m);;

define ChesspiecePiecevalueThm: V r x. PIECEVALUES Val (r, Xx)i;

define Chslnd: (# PO A Y rp. ({Pr A SUCCESSOR (r, p)) o7 p)) o> ¥ r.Pr;;

define ColorChoices: ¥ r t. ((BVALUES Val (r, t) = BLACKPIECE t) a (WVALUES Val
(r, t) = WHITEPIECE t))::

define ColorTaken: ¥V p. (TAKINGS Move p > ((WHITETURN p > WHITEPIECE Taken Move
p) A (-WHITETURN p > BLACKPIECE Taken Move p)))i:

define ColorsAre_: ¥ c. {csBLACK v c=WHITE);;

define Colours_: WHT (WHITE) a BLK (BLACK) A —WHT (BLACK) A -BLK {WHITE) A
~WHITE=BLACK;;

define DiagCommute: ¥ b sql sq2. (DIAG (b, sql, sq2) = pIAG {b, sqZ, sal))

define DiagonalThm: ¥ a b sql sqZ. (SUBOARD (a, b) > (V sq3. ((SAMEDIAG (sql,
sq3) A (SAMEDIAG (sq2, sq3) A BETWEEN (Row (sql) , Row (sq3) , Row (sg2)})) > -
(valueon (a, sq3) =U0)) > (DIAG (a, sal, sq2) = DIAG (b, sql, sa2)})):;

define DieOnce: ¥ q p x. (Taken Move p=x > {PREDEGAME (q, P} > - (Taken Move
q=x})):; .

define DifferentTaken: ¥ pl p2 Q X ¥. ((((p2=q v PREDEGAME {pZ, q)}) a (pl=gq v
PREDEGAME {pl, @))) A {(~ (To Move pl=To Move p2) v (= (Mover Move plsMover Move
p2) z (PR%DﬁGAHE {(pl, p2) v = (pizp2)))) A (Taken Move pl=x a Taken Move pezy})}
> =~ (x=y)):;

define DifferantTakenFour: Y q p pl p2 p3 p4 y x1 x2 x3 x4. {({{p=q v PREDEGAME
(p, q)) A ({pl=q v PREDEGAME (pl, q)) A ({p2=q v PREDEGAME (p2, Q)) A {{p3ag v
PREDEGAME (p3, q)) A {((p4=q v PREDEGAME (p4, a)) a (= (Mover Move pl=Mover Move
p) A {~ {Mover Move pZ2=Mover Move p) A (=~ (Mover Move pd=Mover Move p) A {~
{Mover Move pd=Mover Move p) A {Taken Move p=y A {Taken Move pl=xl A (Taken Move

E Listing of the Chess Theorems Page 211.

p2=x2 A (Taken Move p3sx3 A Taken Move pdsxd)}))INININD) 3 (= (xl=y) A (- {xZsy)
A (= (x3=y) A =~ (xd=y))))):;

define EmptyFrom: ¥ q x sq. {Pos (q, $Q) =X D> = {sq=From Move q});;

define EmptyIsMT: ¥ r t. (t=EMPTY = Val (r, t) =MT);;

define EquiOrthoThm: ¥ a b sql sq2. ({SUBOARD {a, b} A (- {sql=sq2) A ({Column
(sql) =Column (sq2) A ¥ sq3. ((BETWEEN (Row (sql) , Row (sq3) , Row (sq2)) A
Column {sq3) =Column (sql)) > ~ {Valueon (a, sq3) =UD))) v (Row (sql) =Row {sq2)
A Y sq3. ((BETWEEN (Column (sql) , Column {sq3) , Column {s5q2)) A Row {sq3) =Row

{sg%); > -~ (Valueon {a, sq3) =UD}})))) > (ORTHO (a, sql, sq2) = ORTHO (b, sqi,
$q2)j})i;

define FarTaken: Y q. ({PAWNPROM Move q A {Mover Move q=BKRP A (-~ {To Move
?=HKR1) A - (To Move gq=WKN1}}}) > 3 «1 q2 x1 x2. (((PREDEGAME (ql, q) v ql=q) A

PREDEGAME (g2, ql) A (PREDEGAME (PO, q2) A {TAXINGS Move ql A (TAKINGS Move Qe A
(Mover Move ql=BKRP A (Mover Move q2=BKRP A {Taken Move ql=xl A Taken Move

qQ2=x2)1)))1))) A = {x1=x2))) i;
define GameRelations5: ¥ r. ~PREDEGAME (r, PO);:;
define GivenUD: ¥ sq. (Valueon (GIVEN sq) =UD = $q=WKR4):;

define GivenWv: Y sq. (WVALUES Valueon (GIVEN sq) > {sq=BKRl v sq=BQ1 v sq=BQZ v
sq=WQR2 v sq=WQN3 v sq=WQBZ v sq=WQ3 v sqsWKB2 v sq=WKN3 v sqsWKR2));;

define GrandchildGenealogy: ¥ r q p. ((SUCCESSOR {r, q) A PREDEGAME (g, p)) >
PREDEGAME (r, p));;

dg;ine trandparentGenealogy: ¥ q p. (PREDEGAME (a, p) > PREDEGAME (Prevpos q,
Pilis

define GrandparentGenealogyX: ¥ q p pl. {((PREDEGAME (p, pl) v p=pl) A { PREDEGAME
(q, p) v q=p)) > PREDEGAME (Prevpos g, pl1)):;

define GrandparentGenealogyY: ¥ rl r p. {(SUCCESSOR (r, p) A {PREDEGAME {(rl, r} v
rl=r)) o PREDEGAME (rl, p));;

define KingCommute: V sql sqZ. (KINGMOVE (sal, sq2) = KINGMOVE (sq2, sql))

define Kinglemma: ¥ r p t. {{SUCCESSOR {r, p) A VALUEK Val (p, t))} > Val (r, t)
=Val (p, t)):;

define KingValueThm: ¥ r b sq. ((BOARD (r, b) A -~ (Valueon (b, sq) =UD))} > {{Pos
(r, sq) =WK = Valueon (b, sq) =KW} A {Pos (r, sq) =BK = Valueon (b, sq} =KB))});;

define KingValuesAre_: ¥V v. (VALUEK v = (v=kB v v=kW});;

define KingsAre_: ¥ t. (KINGS t = (t=BK v tsWK));;

define KnightCommute: ¥V sql sqZ. (KNIGKTMOVE {sql, sqZ) = KNIGHTMOVE (sq2, sql)}
define MayMove: ¥ b v sql sqZ. (MOVETO (b, v, sal, $q2) > (Column (sql) s=Column

Page 212. Listing of the Chess Theorems E.

{sq2) v (KNIGHTMOVE (sal, sq2) v (Row {sql} =Row (sq2) v (SAMEDIAG (sal, sq2) v
(KINGMOVE {sql. sq2) v { TWOTOUCHING {Column {sql) , Column {5q2)) A {WSUC (Row
(sql) , Row (sq2)) v BSUC (Row (sal) , Row (5G2))))))1)) s

define MconseqfX: ¥ r rl sq x. ({{rl=r v PREDEGAME (rl, r}) A Taken Move rlsx) o
-~ {Pos (r, sq) =x))i;

define MconseghX: ¥ r q b sq sal. ((Pos (q, sq) =P~ ', sal) A { (SUCCESSOR (r,
q) A (~PAWNPROM Move q v - {Pos (g, sq) =Mover Mov~ ~¥5) ~ (BOARD (q, b) A —
(valueon (b, sq) =UD}})) > Valueon (Tboard r, sql) =valueon (b, sQ})::

define MconseqkX: ¥ r p. ({SUCCESSOR (r, p) A ORDINARY Move p) > (~ (From Move
p=To Move p) A {MOVETO (Tboard r, Valueon (Tboard r, From Move p} , From Move D,
To Move p) A ({SIMPLE Move p > Pos (r, To Move p) sEMPTY) A {{CAPTURE Move p >
(€?§§§§IECE Taken Move p = WHITETURN p}) A = (CAPTURE Move p = SIMPLE Move

p HH

define MconsegliX: ¥ r Q. (SUCCESSOR (r, q) > { PAWNPROM Move q = (LASTRANKER (To
Move g, Color r} A (SIMPLELEGALMOVE (r, q) A (PAWNS Mover Move g A {VALUE?
Valueon (Tboard r, From Move q) A (((BVALUES Promoted Move q = BVALUES val (r,
Mover Move q)) A (WVALUES Promoted Move q s WVALUES Val (r, Mover Move q})) A Val
(q, Mover Move q) =sPromoted Move @)})))))is

define MconseqmX: V r . (SUCCESSOR (r, p) 2 ((CASTLE Move p = CASTLING (r, P)}) A
{ (ENPASSANT Move p = EN_PASSANT (r, p)) A (ORDINARY Move p = SIMPLELEGALMOVE (r,

PN

define MightBeBB: V r t.
PROMOTEDPAWN (r, t))))::

define MightBeNB: ¥V r t. {val (r, t) =NB > ({t=BKN v t=BQN) v {BPAWNS t A
PROMOTEDPAWN (r, t))))::

define MightBeRW: ¥V r t. (Val (r, t) =RW > ((t=WKR v teWQR) v {WPAWNS t A
PROMOTEDPAWN (r, t)}}))::

(Val {(r, t) =BB > ((t=BKB v t=BQB) v {BPAWNS t A

define Mobility: ¥ r sg X. ({Pos (r, sQ) =X A - (Pos (PO, sq} =x)) 2 3 q.
((PREDEGAME (g, r) v q=r) A ((Mover Move g=x A To Move q=sq) v (CASTLE Move q A
(Alsomover Move Q=X A Alsoto Move q=5q)))))i:

define MoveChoices: ¥V p. ({(CASTLE Move p = CASTLING (Prevpos p, P)) A

{ (ENPASSANT Move p = EN_PASSANT {Prevpos p, p)) A (ORDINARY Move p =
SIMPLELEGALMOVE (Prevpos p, p)))) A ((MOVES p 2 (ENPASSANT p v (CASTLE p v
ORDINARY p))) A ((MGVES p > - {ENPASSANT p A CASTLE p)) A ({MOVES p D> ~
(ENPASSANT p A ORDINARY p)) A (MOVES p > - (CASTLE p a ORDINARY p))1)}iis

define MovedValues: ¥ r p b sq sax. ({{SUCCESSOR (r, p) A {~EN_PASSANT (r, p) A

(~CASTLING (r, p) A {~PAWNPROM Move p A BOARD (p, b})))) A (From Move p=sQ A To

Move p=sqx)) > (MOVETO (Tboard r, val (p, Mover Move p) , s4, sqx) a {~ {Valueon
(b, sqx) =UD) > (MOVETO (Tboard r, Valueon (b, sqx) , $Q, SQX} A {{WHITETURN p O
BVALUES Valueon (b, sax}) A (~WHITETURN p > WVALUES valueon (b, sqx)))))))s:

define MovedvaluesX: ¥ r p X sq sSaX. {x=Mover Move p D {{~PAWNS X A ~KINGS x} >
({SUCCESSOR (r, p) A (From Move p=sq A To Move pesqx)) > MOVETO (Tboard r, Val
(PO, x) , sQ, sax)))):s

E. Listing of the Chess Theorems Page 213.

define MovementValues: Y ropx sqgsal. {(SUCCESSOR (r, p} A (x=Mover Move p A
{~PAWNS x A {sqsTo Move p A sqls=From Move p))}) > (MOVETO {Tboard r, Valueon
(Tboard r, From Move p) , From Move p, To Move p) s MOVETO {Tboard r, Val (PO, x)

, sql, sa)))ii
define MoverOnTO: V q ¥y sq. ({Pos (q, sq) =y A To Move qesgq) > ysMover Move Q)i

define MovetoCommute: V v b sql sq2. (-VALUEP v > {MOVETO (b, v, sql, sq2) =
MOVETO (b, v, 842, sql)))s:s

define NoBlackPawnsOnlRow: ¥ r x sq. ({val (r, x) =P8 A Pos (r, sq) =x) > = {Row
(sq) =1)}:;

define NoEndInChack: ¥rec. (- (c=Color r)o ~POSITIONINCHECK (r, ¢}l
define NoPromtedInPO: ¥ x. ~PROMOTEDPAWN {PO, X);;

define NonmoverStays: ¥ r q sa X. {{SUCCESSOR (r, q) n (Pos {q. sq) =x a (-~ROOKS
% A = (x=Mover Move q)))) > Pos (r, sq) =x)ii

define NotBPFromlThm: ¥ p b. {{~CASTLING {Prevpos p, p) a (BOARD (p, b) A
(~EN_PASSANT (Prevpos b, p} A (WHITETURN p A Row From Move p=1))}) 2 ({~ {valueon
(b, To Move p) =UD) > MOVETO (Tboard prevpos p, Valueon {b, 1o Move p) , From
Move p, To Move p}) A {~PAWNPROM Move p A (MOVETQ (Tboard Prevpos b, Val (Prevpos
p, Mover Move p) , From Move p, To Move p) A (= (Valueon (b, To Move p)} =UD) >
(~VALUEP Valueon (b, To Move p) A BVALUES Valueon (b, To Move P}))))))es

define NotChesspieceEmpty_: ¥ t. (~CHESSPIECES t = t=EMPTY) ;s

define NotFromBKBBlocked: Y r p sq. ({SUCCESSOR (r, p) A {Mover Move p=BKB A (Pos
{pé gK%% =BKP » (Pos {p, BKN2) sBKNP A Pos (p, sq) =BKB)))) > —~ (From Move
p=BKBlj});;

define NotMPC_Black2tol_: ¥ dex]l dex2. ~MAY_PAWN_CAPTURES {Makesquare (2 dcxl)
Makesquare (1 dcx2) BLACK):;

deggna NotPawnValuePromotedPawns: Y r yp. (~VALUEP Val (r, yp) > PROMOTEDPAWN ir,
ypliis

define officervValueThm: ¥Yrt. (-PAWNS t D val (PO, t) =Val {r, t)}:;

dg?;na officervalusThmX: V r t t1. {{~PAWNS t A tstl) o Val (PO, t) sVal {r,
tl)lss

dafine OnlyPawnsPromote: Y rrlt. ({(~VALUEP V&l {rl, 8 A PREDEGAME {(rl, r)) >
val (r, t) =val (rl, ti})i;

define OrthoCommute: ¥ b sal sq2. (ORTHO (b, sal, sq2) = ORTHO (b, saZ, sql))
define OrthoThmX: ¥ @ b sqx sql. (BOARD {q, b) > (¥ sq3. (valueon (b, s33) =UD O
(sq3ssqx v {~ (Row (sq3) sRow (sqx)) A = {Column (sq3) «Column {sax}}))} > (ORTHO
{Tboard q, SaX, sql} & GRTHO (b, sax, sql))))ss

define OtherSideStays: ¥ ropsqx. { (SUCCESSOR (r, p) A ({WHITEPIECE x =
WHITETURN p) A Pos (p, sq) =x)) > Pos (r, sq) *xX):;

Page 214. Listing of the Chess Theorems E.

define PXPawnTo: Y r p b. ((SUCCESSOR (r, p) A (~CASTLING (r. P} A (~EN_PASSANT
{(r, p) n (PAWNPROM Move p A (~WHITETURN p A (From Move peBQB2 A BOARD (p,
b))))))) o ((To Move pzBQN1 A ((WVALUES Valueon (b, BQN1) v Valueon (b, BQN1)
=UD} A BVALUES Valueon {Tboard r, To Move p))} v ({To Move p=BQl A ({WVALUES
valueon (b, BQl} v Valueon (b, BQl) sUD) A BVALUES Valueon (Tboard r, To Move
p)}) v (To Move p=BQB1 A (WVALUES Valueon (b, BQBl) v Valueon (b, BQB1) =UD)))))

define ParentGenealogy: ¥ r2 rl q. ({SUCCESSOR {rl, @) A PREDEGAME (r2, q)) >
(PREDEGAME (r2, rl) v r2zrl));,

define PawnValuedBlackPieces: Y r yb. (VALUEP Val (r, yb) > val (r, yb) =PB) ;;
define PawnValuedPawnsThm: ¥V r t. (VALUEF Val (r, t) D PAWNS t);;

define PawnValuesAre_: ¥V v. {VALUEP v = (v=PB v vePW});s

define PawnWasOnThm: ¥ q p X sQ. ({{ PREDEGAME (p, q) v pza) A (VALUEP Val
(Prevpos p, x} a (Mover Move p=x A (From Move p=5Q A = {Pos (PO, sq) =x})))) > 3
p. ((Pos (p, $Q) =x A (PREDEGAME (p, Q) ~ VALUEP Val {(p, X))) A VALUEP Val
(Prevpos p, X}})i;

define PieceChoices_: ¥ X. ((WHITEPIECE (x)
(BLACKPIECE (x) = {Piscecolor (x) =BLACK)});

define PiecevaluesAreChesspieces: ¥ r b sq. ((BOARD (r, b} A PIECEVALUES Valuseon
{b, sq)) > CHESSPIECES Pos (r, sq));:;

= {Piececolor (x) sWHITE}) A

define piecevaluesAreChesspiecesX: Y r sq. (PTECEVALUES valueon {Tboard r, sQ} 2
CHESSPIECES Pos (r, sq))::

define PrevGameposition: V¥ p sg X. ((((WHITEPIECE x = WYHITETURN p) A Pos (p, sq)
=x) A -~ (Pos (PO, sq) =x)) > 3 q. Prevpos p=q) i

?afina gravinuspaunValua: Yropt. (Prevpos p=r > {VALUEP Val (p, t) o VALUEP Val
r, t))ii;

define RetainValueColor: ¥ rl r2 t. ((BVALUES Val (r2, t) = BVALUES val (rl1, %)}
A (WYALUES Val (r2, t) = WVALUES Val (rl, tii)ss

define RooksAre_: ¥ t. (ROOKS t = (t=BKR v t=WKR v t=WQR v t=BQR));;

define RowColumnSquareThm: ¥ sql sq2. (Row {sql) =Row {sq2} > {Column {sql)
=Column (sqgZ} > sql=sq2));;

define SameColorsOnDiagonalis_: ¥ sql sq2. (SAMEDIAG {sql sq2)} > {WHITESQUARES
(sql) = WHITESQUARES {sq2)))::

define ShortPawnPathThm: Y r p sql sq2 x b. (V sq. ({MAY_PAWN_CAPTURES {(sq2, SqQ.
Piececolor X) A MAY_PAWN_CAPTURES (saq, sql, Piececolor x)) > (sq=sqZ2 v sg=sql)) 2
((Pos (p, sql) =x a (Pos (PO, $q2) =x A ({PREDEGAME (r, p) v r=p) A (VALUEP Val
{p, x) v (BOARD (p, b) A (valueon (b, sal) =PW v Valueon (b, sql) «PB)))))) >
{Pos (r, s¢l) sx v pos (r, sq2) =x))):;

E. Listing of the Chess Theorems Page 215.

define StandingBlackPawnThm: ¥ r p b sq. {{valueon (b, sq) =PB A (Row (sq) =2 A
{goaa? (p, ?%)A SUCCESSOR (r, p)))) o (Valueon (Tboard r, 8q) =PB A Pos {r, sq)
=Pos (p, 8GJ)}:;

define SubBoardsdX: ¥ r b sq. (BOARD {r, b) > (Valueon (b, sq) =Valuson (Tboard
r, sq) v Valueon (b, sq} sUD});;

define SubboardTransitivity: ¥ bl b2 bd. ({SUBOARD {bl, b2) A SUBOARD (b2, b3)) >
SUBOARD (bl, b3))i;

gefﬁng}Subboard?ransitivityx: Y a br. ({(SUBOARD {a, b) a BOARD {r, b)} > BOARD
r, &}

ﬁ;;;?g substitution2: ¥ jl jz k1 k2. {jl=j2 > (kl=k2 > (B2 (J1 k1) =p2 (J2

define Substitution: ¥ J k. (Jj=k 2 B =B k);;

define ThreeN8: ¥ r b x sql sqZ s5q3 sgx. (Y t. ((BPAWNS t A PROMOTEDPAWN {r, t))
5 t=x) o (({~ (sql=sq2} A (- (sql=sq3d) a -~ (sq223q3))) A ((val {r, Pos (r, sqi})
=NB v (BOARD (r, b) a Valueon (b, sql) =NB)) A ({val (r, Pos {(r, 5q2}) =NB v
(BOARD (r, b) a Valueon (b, sq2) =NB)) a (val (r, Pos (r, sq3)) =N8 v {BOARD (r,
b} A Valueon (b, sq3) =NB))))) > (PROMOTEDPAWN (r, x) A ({~ {sql=sqx) A (-
(sq2=sqx) A ~ (sqd=sqx))) > (= (Pos (r, s7x) =x) A (- {Pos {r, sqx) =BKN} A -
(Pos (r, sax)} =BQN}))))))i;

define TransitiveGenealogy: Y r p 3. ({PREDEGAME (r, p) A PREDEGAME {p, Q)) 2
PREDEGAME (r, q})::

define TransitiveSubboardMovement: Y a b v sql sq2. ((SUBOARD (a, b) A MOVETO (a,
v, sql, sg2)) > MOVETO (b, v, sal, $q2))i:;

define TransitiveSubboardOrthogonality: Y a b sql sq2. (SUBOARD (a, b} > {ORTHO
(a, sql, sq2) > ORTHO (b, sql, sa2))):;

define T-ansitiveSuccession: ¥ r p X. { (PROMOTEDPAWN {r, %) A SUCCESSOR {r, p}) >
PROMITEDPAWN (p, X))i;

define TransitiveUNMKCAPPP: ¥V p a b sql $32 v vi. {{BOARD (p, Unmkcapppmove {e,
§QI* ggz. v}}) A (SUBOARD (b, Unmkcapppmove (s, sql, $G2, vl)) A vsvl)} > BOARD
p, D))

define Trapped_QX_QBI1_Thm: ¥ g v. (BOARD (q, QBUD) > ({v=RB v vzQB) > V¥ sql.
(MOVETO (Tboard q, v, BQl, sql) > (= (Valueon (Tboard g, s¢l) =MT) v MOVETO
(Tboard q, v, BKR1, s5q1))))) i;

define UDIsNotVW_: ¥ ww. =vw=UD;;

define Unique: ¥ r sql sqz x. (Pos (r, sal) =x > (Pos (r, sqZ) =x = sql=sql));;

define UnmovedBlackPawnThm: ¥ r b ybp sq. {{Pos (PO, sq) =ybp A {valueon (b, sq)
=PB A BOARD (r, b))) > (Pos (PO, 3Q) sPos (r, sq) A Pospef {(r, ybp) =5q));;

define UnmovedWwhitePawnThm: ¥ r b ywp 3q. ({Pos (PO, sq) sywp A (Vvaluson (b, sq)
=PW A BOARD (r, b})) > (Pos (PO, sq) sPos (r, sq) A Pospef (r, ywp) =5Q)});;

Page 216. Listing of the Chess Theorems E.

define UnpromotedFrom: ¥ r q b x sq. ((SUCCESSOR (r, q) A (~WLASTRANK sq A (BOARD
(q, b) Ao (Valueon (b, sq) =vw A (Pos (q, sq) =x A Mover Move q=x))}}) > Valueon
{Tboard r, From Move q) svw) ;;

define ValueChoices_: ¥ vpc. ({WVALUES {vpc) = Valuecolor {vpc) =WHITE) A
(BVALUES (vpc) = Valuecolor (vpc) =BLACK));:

define ValueColorRetentionThm: ¥V r rl t. (PREDEGAME {rl, r) > ‘{BVALUES val {(rl,
t) = BVALUES Val (r, t)) a (WVALUES Val {rl, t) = WVALUES Val {r, t}}));;

define ValueFunctionChoices_: ¥ v. ({(WVALUES (v) > Valuecolor {v) =WHITE} A
(BVALUES (v} > Valuecolor (v} =BLACK));:

define ValueTranspositionA: ¥ r t sq. (Pos (r, sq) st > Valueon {(Tboard r, s5qQ)
=Val (r, t}) i;

define ValueTranspositionB: ¥ r sq b. {BOARD (r, b) o (Valueon (b, sq} =Val (r,
Pos {r, sq)} v Valueon (b, sq) =UD)});;

deggna ValueTranspositionC: ¥ r sq. Valueon (Tboard r, sq) =Val (r, Pos {r,
5Qji):

define WasAlwaysSomewhere: V r rl sg Xx. ((PREDEGAME (rl, r) a Pos (r, sq) =x) > 3
sql. Pos (rl, sql) =x);;

dagina)uasaera; Y r p sq x. {(SUCCESSOR (r, p) A Pos (p, sg) =x) > 3 sq. Pos (r,
Q) =X});;

define WasOn: ¥ p x. (Taken Move p=x > 3 sq. Pos (Pravpos p, 5G) =X};;

define WasPawnValue: Y rl r t. (({PREDEGAME (rl, r) A VALUE? Val (r, t)) v r=rl}
> Val {r, t) =Val (rl, t));;

define WasPawnValueX: ¥ g p t. ({(PREDEGAME (q, p} A VALUEP Val {Prevpos p, t)) v
q=p) > Val (Prevpos p, t) =Val (Prevpos q, t})::

define WhereBishopTaken: ¥ q ybi sq sgx. ({To Move q=sq A (Pos (PO, sax) =ybi » -
(WHITESQUARES sqx = WHITESQUARES sq))) > = (Taken Move g=ybi));;

define WhereOfficierTaken: ¥ q x sq. {{To Move g=sg A {Taken Move y=x A —~PAWNS
x}) o Pos (Prevpos q, sq) =X);;

define WhereWhitePawns: ¥ . q x sq sql sqZ sq3 s5q4 sq5 sq6 sq7 sq8. ({Pos (a,

sql) =WQRP A (Pos (q, sqZ) =WQNP a (Pos (q, sq3) =WQBP A (Pos {q, sqd) =WQP A
(Pos (q, sq5) sWKP A (Pos (q, sq6) =WKEP A (Pos (q, sq7) =WKNP A Pos (q, 5q8)
=WKRP))))))) > (((~ (sa=sql) A (~ (sq=sa2) A (-~ (sg=5q3) A (-~ (sq=sqd) A (=~
(sq=sq5) A (~ (5a=5G6) A (- (sq=sa7) A - (59=568)))))))) 2 -WPAWNS Pos (q, sq)) A
((x=Taken Move p A (PREDEGAME (p, @) v p=q)) > ~WPAWNS x}));;

define WhichBlackPawn: ¥ q b sq. ((BOARD (q, b) A Valueon (b, sq) =PB) > ({Pos
(q. sq) =BQRP a (Pospcf (q, BQRP) =sq A MAY_PAWN_CAPTURES (BQRZ, sq, BLACK))) v
((Pos (g, sq) =BQNP a (Pospcf (q, BQNP) =sq A MAY_PAWN_CAPTURES {(BONZ, sq,
BLACK))) v {{(Pos (g, sq) =BQBP A (Pospcf (q, BQBP) =sq A MAY_PAWN_CAPTURES (BQB2,
sq, BLACK))) v {(Pos (q, sq) =BQP A (Pospcf (q, BQP) ssq A MAY_PAWN_CAPTURES

E. Listing of the Chess Theorems Page 217.

{BQ2, sq, BLACK))) v ({(Pos (q, sq) =BKP A (Pospcf (q, BKP) =sq A
MAY_PAWN_CAPTURES (BKZ, sq, BLACK))) v ((Pos {q, sq) =BKBP A (Pospcf (g, BKBP)
=sq A MAY_PAWN_CAPTURES (BKBZ, sq, BLACK))) v ({Pos {q, sq) =BKNP A (Pospcf (a,
BKNP) =sq A MAY_PAWN_CAPTURES (BKN2, sq, BLACK))) v (Pos {q, sq) =BKRP A {Pospcf
{q, BKRP) =sq A MAY_PAWN_CAPTURES {BKR2, sq, BLACKYIINI NI)

define WhichWhitePawn: ¥ q b sq. ({BOARD (a, b) A Valueon {b, sq) =P¥) > {{Pos
{q, s5q) =WQRP A {Pospcf (q, WQRP) =s5q A MAY_PAWN_CAPTURES (WQRZ, sq, WHITE})) v
((Pos (q, sq) =WONP A (Pospcf (g, WQNP) =sq A MAY_PAWN_CAPTURES (WQNZ, sq,
WHITE))) v {{(Pos (a, sq) =WQBP a {Pospcf {q, WQBP) =3q A MAY_PAWN_CAPTURES (WQB2,
sq, WHITE))) v ((Pos (q, sq) =NQ? A (Pospcf (q, WQP) =sq A MAY_PAWN_CAPTURES
(W02, sq, WHITE))) v ((Pos (q, sq) sWKP A (Pospcf (g, WKP) =5Q A
MAY_PAWN_CAPTURES (WK2, sq, YHITE))) v ({Pos {(q, sa) =sWKBP A (Pospcf {q, WKBP)
=sq ~n MAY_PAWN_CAPTURES (WKBZ, sq, WHITE))) v ((Pos {q, sq) =WKNP A {Pospcf {aq,
WKNP) =sq A MAY_PAWN_CAPTURES (WKNZ, sq, WHITE))) v (Pos (q, sq) =WKRP A {Pospcf
{q, WKRP) =sq A MAY_PAWN_CAPTURES (WKRZ, sq, WHITENI DI

define WhiteCapturedOnThm: ¥ r Q ¥ X $Q. {Prevpos g=r > (To Move g=sq O (Mover
Move q=y > {{Taken Move Q=X A ~WHITEPIECE y) > (WHITEPIECE x A (=~ (Row (sq) =6) >
Pos (r, sq) =x)))IN)i;

define WhiteCapturedThm: ¥ p sQ. {To Move p=sq > { (ORDINARY Move p A WVALUES
Valueon (Tboard Prevpos p, $4)) 2 CAPTURE Move p});:

define WhitefastleThm: ¥ r p sa. { (SUCCESSOR (r, p) A {CASTLING {r, P} A
~WHITETURN p}) o (Pos {p, sq) =WK > (sq=WKN1 v sq=WQB1))) ::

define WhiteCornered: ¥ r g b vw sq SaX. ({SUCCESSOR (r, q) A {~EN_PASSANT (r, q)
A {~CASTLING (r, Q) A (~WLASTRARK {sq) an ({BOARD (q, b) A {valueon (b, sg) =vwW A
(valueon {b, sqx) =KB A MOVETO (b, vw, $Q, 5QX}})) A ~VALUEP ww)))}} o (VY sql.
{MOVETO (Tboard q, vw, 5Q, sql) o> (=~ (Valueon {Tboard q, sql) =MT) v MOVETO
{Tboard q, vw, sqx, sgl}}) 2 {{ORDINARY Move q A SQUARE_BETWEEN (sq, From MHove q,
sqx)) A ~ {(Mover Move g=Pos (aq, sq¥)) i

define WhiteEnPassantihml: ¥ r q. ({SUCCESSOR (r, Q) A (EN_PASSANT (r, q) A
~WHITETURN g)) > {Valueon (Tboard q, To Move q) =PW A Row (To Move q) =23});;

define WhiteEnPassantThm2: ¥ r q b. ({SUCCESSOR (r, 4Q) A (EN_PASSANT (r, q) A
—WHITETURN q)) o (¥ dex. -~ {Valueon (b, Makesquars (3, dcx)) =PW v Vaiueon (b,
Makesquare {3, dcx)) =UD) > -BOARD {g, b)));:: '

define WhiteKingThm: ¥ r sq. (val {r, Pos (r, sq)) =KV = Pos (r, sq) sWK}::

define WhiteMPCLemma: ¥ p b sq SQx. ({{valuson (b, sq) =PW A BOARD (p, b)} A Pos
(PO, sqx) =Pos (p, sq)) > MAY_PAWN_CAPTURES (sqx, 34, WHITE))::

define WhitePawnMovement: ¥ b bl sqx sgql sq2. (sqx=sqZ > (valueon {bl, sq2) =PW >
(MOVETO (b, Valueon (bl, sqx) , saql, sq2) = ((Column sgl=Column s$qZ A {WSUC {Row
sql, Row sq2) A Valueon (b, sq2) =HT)) v ({Column sqi=Column 342 A (Row sqi=7 A
(valueon (b, Makesquare (6, Column sql)) =MT A Row $q285))) v (valuaon (b, $Q2)
=MT A {TWOTOUCHING (Column sql, Column 5Q2) A (WSUC (Row sql, Row 5G2) A BVALUES
valueon (b, sa2)))))))))i;

define WhitePawnValuelemma: ¥ p b sq. ((BOARD {p, b) A Valueon (b, sq) =P¥W} >
WPAWNS Pos (p, 3Q))::

Page 218. Listing of the Chess Theorems E.

define WhitePawnsAre_: ¥V t. ((t=WKP v t=WQP v tzWKNP v tsWKBP v tsWKRP v t=WQBP v
t=WQNP v t=WQRP) = WPAWNS (t));;

define WhitepieceAre_: ¥ t. (WHITEPIECE t = (taWKP v tsWQP v tsWKNP v t=WKBP v
t=WKRP v t=WQBP v t=WQNP v t=WQRP v tsWK v tsWQ v tsWKN v tsWKB v tsWKR v t=WQB v
t=WQN v t=WQR));::

define WhitepieceArePawnsOr_: ¥ t. (WHITEPIECE t = (WPAWNS t v taWK v t=WQ v
t=WKN v t=WKB v t=WKR v t=WQB v t=WQN v t=WQR));;

Berliner74

Bobrow?77

Brown73

Brown74

Bulnes?9

Chomsky72

Dawson73

Filman76

Funt?7

Gardner59

Gardner73

Gelernterbla

Gelerntert3b

Gizycki?2

Bibliography Page 219.

Bibliography

Berliner, Hans], Chess as Problem Solving: The Development of a Tactics
Analyzer, (dissertation) Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, March 1974.

Bobrow, Daniel and Terry Winograd, “an Overview of KRL, A knowledge
Representation Language”, Cognative Science, Vol 1, No. 1., January 1977

Brown, J. S. R. R. Burton, and F. Zdybel, "A Model-Driven Question Answering
Sysiem for Mixed Initiative Computer Assisted Instruction”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, May 1978.

Brown, John Seely, Richard R. Burton, Alan G. Bell, and Robert]. Bobrow,
SOPHIE: A sophisticated instructional environment, BBN Technical report,
December 1974

Bulnes, Juan, GCOAL: A Goal Oriented Command Language for Interactive Proof
Construction, (dissertation), Department of Computer Science, Stanford University,
fortheoming 1979.

Chomsky, Noam, Language and Mind, New York, Harcourt Brace Jovanovich, 1972.
Dawson, T. R., Five Classics of Fairy Chess, New York, Dover Publications, 1973.

Filman, Robert E., and Richard W. Weyhrauch, An FOL Primer, Stanford Artificial
Intelligence Laboratory Memo 288, October 1976.

Funt, Brian V. "Whisper: A problem Solving System Utilizing Diagrams and a
Parallel Proessing Retina”, Proceedings of the Fifth International Joint Conference
on Artificial Intelligence, Massachusetts Institute of Technology, August 1977.

Gardner, Martin, "Mathematical Games”, Scientific American, Vol. 201, No. 5, May
1959. .

Gardner, Martn, "Mathematical Games”, Scientific American, Vol. 215, No. 5, May
1973.

Gelernter, H. TRealization of 2 Geometry-Theorem Proving Machine”, in
Feigenbaum and Feldman {eds), Computers and Thought, New York, McGraw Hill,
1963.

Gelernter, H., J. R. Hansen, and D. W. Loveland, "Empirical Explorations of the
Geometry-Theorem Proving Machine”, in Feigenbaum and Feidman (eds),
Computers and Thought, New York, McGraw Hill, 1963,

Gizycki, Jerzy, A History of Chess, translated by A. Wojciechowski, D. Ronowicz,
and W. Bartoszewski, London, The Abbey Library, 1972

Page 220.

Greent9

Hayes?7

Hewitt71

Hewitt73

Kling7l

Kowalski76

McCarthy68

McCarthy69

McCarthy?8

McCarthy79a

McCarthy7%

Minsky68

Moore75

Moore77

Bibliography

Green, Claude Cordell, The Application of Theorem Proving to Question
Answering Systems, Stanford Artificial Intelligence Laboratory Memo 96, June 1969.

Hayes, P. J. "In Defense of Logic", Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Massachusetts Institute of Technology, August
1977.

Hewitt, Carl, PLANNER: A Language for Manipulating Models and Proving
Theorems in a Robot, (disseration) Department of Electrical Engineering,
Massachusetts Institute of Technology, February 1971.

Hewitt, Carl, "A Universal Modular ACTOR Formalism for Artificial Intelligence”,
Proceedings of the Third International Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

Kling, Robert E., Reasoning by Analogy with Applications to Heuristic Problem
Solving: A Case Study, (dissertation) Computer Science Department, Stanford
University, Stanford Aruficial Intelligence Laboratory Memo 147, August 1971.

Kowalski, Robert A., Algorithm = Logic + Control, Department of Computing and
Control, Imperial College Research Report 77/3, November 1976.

McCarthy, John, "Programs with Common Sense”, in Minsky, Marvin (ed), Semantic
Information Processing, Cambridge Massachuseits, MIT Press, 1968.

McCarthy, John, and P. . Hayes, "Some Philosophical Problems from the Standpoint
of Artificial Intelligence”, in B. Meltzer and D. Michie (eds), Machine Intelligence 4,
Edinburgh, Edinburgh University Press, 1969.

McCarthy, John and Masahiko Sato, Takesht Hayashi, Shigeru Igarashi, On the
Model Theory of Knowledge, Stanford Artificial Intelligence Laboratory Memo 312,
April 1978,

McCarthy, John, "First Order Theories of Individual Concepts and Propositions”, in
D. Michie (ed), Machine Intelligence 9, forthcoming 1979.

McCarthy, John, "Circumscription Induction - A Way of Jumping to Conclusions”,
submitted to Artificial Intelligence 1979.

Minsky, Marvin, “Introduction”, in Minsky, Marvin (ed), Semantic Information
Processing, Cambridge Massachusetts, MIT Press, 1968.

Moore, Robert Carter, Reasoning from Incomplete Knowledge in a Procedural
Deduction System, (Master's thesis), MIT-AL-TR 347, December 1975.

Moore, Robert Carter, "Reasoning about Knowledge and Action”, Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Massachusetts
Institute of Technology, August 1977.

Moore79

Newell72

Nilsson71

Pratt77

Prawitz65

Prior57
Priort8
Riegor?6

Rieger?7

Reiter?2

Sacerdoti?s

Sussman75

Thomas78

Weyhrauch77

Bibliography Page 221.

Moore, Robert Carter, Reasoning about Knowledge and Action, {dissertation)
Department of Electrical Engineering, Massachusetts Institute of Technology,

forthcoming 1878.

Newell. Alan, and Herbert A. Simon, Human Problem Solving, Englewood-Cliffs,
New Jersey, Prentice-Hall, 1972,

Nilsson, Nils], Problem-Solving Methods in Artificial Inteligence, New York,
McGraw-Hill, 1971

Pratt, Vaughn, The Competance/Performance Dichotomy in Programming, MIT
Artificial Intelligence Laboratory Memo 400, January 1977.

Prawitz, Dag, Natural Deduction - A Proof-Theoretical Study, Stockholm, Almquist
& Wiksell, 1965.

Prior, Arthur N., Time and Modality, Oxford, Clarendon Press, 1957.
Prior, Arthur N., Papers on Time and Tense, Oxford, Clarendon Press, 1968.

Rieger, Chuck and Milt Grinberg, The Causal Representation and Simulation of
Physical Mechanisms, University of Maryland Computer Science Technical Report
TR-495, November 1976.

Rieger, Chuck and Milt Grinberg, The Declarative Representation and Procedural
Simulation of Causality in Physical Mcchanisms, University of Maryland
Computer Science Technical Report TR-313, March 1977.

Reiter, Raymond, The Use of Models in Automatic Theorem Proving, Department
of Computer Science, University of British Colurmbia technical report, 1972.

Sacerdoti, Earl D.. "Planning in a Hierarchy of Abstraction Spaces”, Proceedings of
the Third International Joint Conference on Artificial Intelligence, Stanford
University, August 1973.

Sussman, Gerald Jay, and Richard Stallman, "Heuristic Techniques in Computer-
Aided Circuit Analysis”, IEEE Transactions on Circuits and Systems, Vol CAS-22
No. 11, November 1975.

Thomas, Arthur J.. Representation and Conception: An Essay in Computational
Metaphysics, (dissertation) Special Graduate Program, Stanford University, 1978.

Weyhrauch, Richard W., A Users Manual for FOL, Stanford Artificial Intelligence
Laboratory Memo 235.1, July 1677.

Weyhrauch?8 Weyhrauch, Richard W., Prolegomena to a Theory of Mechanized Formai

Whorf56

Reasoning, Stanford Artificial Intelligence Laboratory Memo 315, December 1978.

Whorf, Benjamin Lee, Language, Thought, and Reality - Selected writings, John B.
Carroll (ed), Cambridge, Massachusetts, MIT Press, 1956.

Page 222. Bibliography

Winograd72 Winograd, Terry, Understanding Natural Laitguage, New York, Academic Press,
1972,

Winograd75 Winograd, Terry, "Frame Representations”, in Daniel G. Bobrow and Allan Collins
(eds), Representation and Understanding - Studies in Cognative Science, New
York, Academic Press, 1975.

z 72

Alsofrom 56
Alsomover 56
Alsoto 56
BBISHOPS 42
BETWEEN 47
BISHOPS 42
BKINGS 42
RKNIGHTS 42
BLACKINCHECK 50
BLACKPIECE 42
BLACKSQUARES 45
BLASTRANK 45
BLASTROW ¢7
BLK 52

BCARD 50
BOARDS 40
BPAWNMOVE 62
BPAWNS 42
BQUEENS 42
BROOKS 42
BSUC 47

Bsucf 47
BVALUES 48
CAP 5

CAPPP 56
CAPTURE 5%
CASTLE %
CASTLING 54
CHESSPIECES 39

© Color 54

COLORS 41
Column 47

DIAG 62
EMPTYPIECE 42
EN_PASSANT 5
ENPASSANT 5
EVALUES 48
EXSQUARES 40
From 56
GCAMEPOSITION 53
IS_EVEN 47
ISCOLUMN 47
ISDIMENSION 47
ISROW 47
KINGMOVE 62

Index to Predconst and Opconst Declarations Page 223.

Index to Predconst and Opconst Declarations

KINGS 42
KNIGHTMOVE 62
KNIGHTS 42

L2touchf 62
LASTRANKER 46
Makeboard 5!
Makesimplemove 56
Makesquare 47
MAY_PAWN_CAPTURES T2
Move 54

Mover 5

MOVES 4|

MOVETO 50
MUST_PAWN_CAPTURES 72
Nextpos 54

NUMBERS 72
NVALUES 48
ORDINARY 56

ORTHO 62
Pawncaptures 72
PAWNMOVE 82
PAWNPROM 5
PAWNS 42

Piececolor 42

PIECES 39
PIECEVALUES 48

Pos 54
POSITIONINCHECK 54
POSITIONS 39

Pospef 54

PREDECAML 54
Prevpos 53

Promoted 56
PROMOTEDPAWN 54
PROMVALUES 48
QUEENS 42

R2touchf 62

ROOKS 42

Row 47

SAMEDIAG 46
SIDEINCHECK 50

SIM 56

SIMPLE 56
SIMPLELECALMOVE 54
SIMPP 5
SQUARE_BETWEEN 46

Page 224.

SQUARES 40
SUBCARD 51
SUCCESSOR 53
Taken 56

Takenon 5
TAKINGS 5
Tboard 50

To 5
TOTALBOARDS 40
TWOTOUCHING 62
Unmkcapmove 70
Unmkcapppmove 70
Unmkmove 70
Unmksppmove 70
Vai 54

VALUEB 48
Valuecolor 49
VALUEK 48
VALUEN 48
Valueon 50
VALUEP 48
VALUEQ 48
VALUER 48
VALUES 40
VVALUES 48
WBISHOPS 42
WHITEINCHECK 50
WHITEPIECE 42
WHITESQUARES 43
WHITETURN 53
WHT 52

WKINGS 42
WKNIGHTS 42
WLASTRANK 45
WLASTROW 47
WPAWNMOVE 62
WPAWNS 42
WQUEENS 42
WROOKS 42
wWSsUC 47

Wsucf 47
WVALUES 48

Index to Predconst and Opconst Declarations

Index to Axioms and Theorems

Page 225.

Index to Axioms and Theorems
B5 BP 136 MCONSEQL 182, 183
BINCHECK 108 Mobility 88
BishopslsOnSameColor 90 Ni_assume 155
BLACK _GOES 108 Ni_OR_R! 154
BlockedGivenThm 196 NB_OR_BB 130
BLOCKLEM 194 NoBlackPawnsOn1Row 104
BQ, OR.BR 140 NOT_B 141
CALL_PN 149 NOT_BK 40
CALL_PX 107 NOT_BKB 140
CALL_PY 158 NOT_BP 139
CALL_PZ 159 NOT_BQB 140
CALL_QN 152 NOT_NB 140
CALL_QX 109 NOT_QB_OR_RB 128
CALL QY 151 NOT_XN_EQ 151
CALL_QZ 157 NOT_ZB_KB 129
CALL.X 9% NOT_ZB_PB 129
CALL_YWR 146 NOTPXCASTLE 110
CALL_YYW 142 NOTPXEP 111

CALL._ZB 119

CAPPPPX 121

CAPTURE_PX 121

ChesspiecePieceValueThm 80

DiagBQiLemma 203

DIFFMOVERS 154

DISOX 123

EmptylsMT 79

EquiOrthoThm 95

FarTaken 205

FROM QZ 158

FROMPX 114

GameRelations5 78

GivenUD 193

GivenWV 193

IF_BISH 131

L1 77, 79, 81, 84, 89, 91, 96, 102, 194, 196, 198,
202, 203

L2 81, 85, 89, 92

L3 81,85,89,92,9

L4 82, 86, 92, 98, 102, 195, 200

L5 82, 85, 92, 99, 103, 195, 200

L6 82, 86, 93, 100, 104, 200

L7 8%, 93, 201

L8 9l

L9 93

MCONAPX 14

MCONAQX 127

, 97, 102, 194, 196
7, 102, 195, 197, 199

-
-

NOTQBUDEP 120
NOTQXCASTLE 120
ON_BLACK_SQS 138
ON_WKBP 157
ON_WKRP 157
ON_ZB 129
OnlyPawnsPromote 84
ORDPX 113
ParentGeneaiogy 78
PRED_QN 153
PROM_BKRP 137
PROM _KNIGHT 132
PROMPX 118
PTSIMP 148

PX_BK 119

PXIS 109
PXPawnTo 188
PXSUC 109

QB_BP 135
QBUDLBL 122
QUEENMOVE 201
QX_QBUD 130
QX_WK 146
QX_WPAWNS 144
QXIS 109

R1_assume 155
ROOKMOVE 202
ROW2_BP 134

Page 226.

ROW2 WP 142

ROW3 WP 143
ROWSR._BP i3
ROYAL WP i44

SAME ON_WKR# 138
SIMPWS 149

sume 98

TAKE.2 ASSUMPTION 152
THE.ONLY_ONE 137
THE_THEOREM 16!
TOPX 119
TransitiveGenealogy 77
Trapped. QX _QB1.Thm 202
umption 98
WHEREPROM 13
WHICH_QX_TAKEN 147
WHICH_YYW 147
WhiteCornered 101

W hitepieceAre_ 78
WHO_X1 153

WHO_XA 150

Index to Axioms and Theorems

