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FOREWORD

Tilc IIGftd6001c oJArtiJicitt.llntclli,cftcc Will conceived in 1975by ProCeeeor
Edward A. Feigenbaum u a compendium of knowledge of Al and ita ap­
plication.. In t.he clIlluin,; yrafl, student.a and AI racarchcr. at. St.anford'i
Department. of Comput.cr Science, u major cenl.er for AI researeh, and at.
univer.itiea and laboral.oriCllacrollS the nation have cont.ribut.cd to the project..
The scope of the work is broad: About. 200 sbort. arwclcs cover moat of the im­
portaat. ideas, Lec:hniquea, and II)'lteml developed during 25 ycara or research
in AI.

Overview articles in each chapter describe t.he basle iuues, alt.crnat.ive
approachc:s, and unsolved problema that characterile arelUl of AI; they are
the beat. critical diM.ulllliona anywhere of activity in the field. These, as well
as the more technical articlc:s, are carcf.ully edited to remove c'\nfusing and
unCll1lCntial jargon, key concept.a are introduced with thorough cxplanatioDi
(usually in the overview artidc:s), and the three volum.... are completely in·
dexed and crOllll-referenced to make it clear how the important, ideas or AI
relate to each other. Finally, the lIandbook ~ organiled hierarchically', 110

that readers can eheese how deeply into the detail oC each chapter t,hey wish
to penetrate.

This technical report. is reproduced rrom Chapter XII, "Automatic Deduc­
tion," of the JlGndboolc (Vol. III, edited by Paul R. Cohcn and Edward A.

. FeigenbauDI). The overview was writl.cn by Robert C. Moore, who a1Io
reviewed tbe other articles. W. W. Bledsoe provided t.be article nn raolu­
tion theorem-proving and edited the article on natural dcduction, which wu
prepared by MiclaR.e1 Ballantyne. Stanley J. ROl'ICnlcbein wrot.e tbe article on
tacic programming; Richard Pat.till, the article on the Boyer·Moorc ihcorem
provcr; and Jon Doyle, the artlele on non monotonic logic. Janice Aikins or­
ganiled t.hc chapt.er and edited MOIIt or the articles.



A. OVERVlEW

A CE~TRAL PROBLEM in AI research is how to make it possible for corn­
puters to draw conclusions automaticalJ:r from bodies of facts, I\n)' attempt
to address this problem requires choosing an application, a re}jr~entation for
bodiesof facts, and methods for deriving conclusions. Thill article provides an
overview of the Issues involved in drawing conclusions b~' meens of deduetive
inference from bodies of commonsense knowledge represented by logical ror­
mules. We first review briefly the history of automatic deduction-c-its origin~,

its faU into disfavor, and its recent re\;val. We show wh)' deductive methl)(is
art neCnllary to solve problems that involve certain t~-pel! of incomplete infor­
mation and how supplying domain-specific control information offers a solu­
non to the difficulties that previously led to disillul!ionment with automatic
deduction. We distuss the relationship of automatic deduction to the new
fieldof logic programming. Finall)', wesurvey some of the issues that arise in
txt ending automatic-deduction t«hniques to nonstandard logics.

Aldomatic dedvc:tiora, or mechanical theorem-prcving, has been a major
concern of AI since its earliest days. At the first formal eonfe"nee on AI, held
at Dartmouth College in the summer of 1956, jl;e",-ell and Simon (1956) die­
cussed the Logic Theorist. a deduction I)'stem for propositional logic. Minsk)'
\\'1$ concurrently develuping the ideas that were later embodied in Gelnnt.er's
theorem prover for elementar)· geometry (see~1cCorduck, 19;9, p. 108;GeJern­
ter, 1963). Shortly after this, Wanl (1960~ produeed the first implementation
of a reasonably efficient, complete algorithm for proving th~DUI irl propoli­
tional logic.

Follnwing t.heM early efforts, the next important step in the development
of automatic-deduction t.echniquee ".. Robinlan'. (l98Sb) description or •
relatively simple, logicallyeomp~method tor provina theorems in &rst-order
predicate calculus (seeArticle m.ci, in Vol. I). Robinaon'. procedure and thOM
derived from it are usuall)' referred to AI re.olutitm. proeedures (Artiele D,S),
beeause the basic rule of infe"nce they use is the resolution principle:

From (A v B) tnt4 (..,A v C), ift/tr (8 v C).

Robinson's work had a major influence on two somewhat distinct lilMl
of resea.rc:h. One of these wu mathematical theorem-prO\'ing, which aims at
providing practical tools for discovering new results in mathematics. (That
line of research is not the main focus of this chapter, altbouab Art.iclexn.c
is oriented in t.hat direction.) But RobiD80D'. work also had a major impact

77
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on research into commonsense reasoning and problem solving. Hi! ide~ in
this area brought about a rather dramatic shift in attitudes toward automatic
deduetion. The earl)' attempts at automatic theorem-prO\'ing were generall~'

thought of as exercises in expert problem solving: the Logic Theorist WI8

regarded as an expert in propositional logic and Gelemt.er'. program waa
considered an expert in geometry. However, the resolution method seemed
po"..erful enough to make it possible to build a completely general problem­
solver by describing problems in lirst-order logic and deducing solutions b~' a
general proof procedure.

TIl<' idea of using formal logic as a representation scheme and deductive
inference as a reasoning method was apparently first suggested 85 an approach
to commonsense reasoning and problem solving by ~1cCarth)' in 1959. in his
"Advice Taker" proposal [see ~fcCarth)'. 1968). Black (1968) made the lirst
serious attempt to implement McC&rth)"s idea in 1964. Robinson's work
provided encouragement for this approach, and a few years later Green (1969)
carried out extensive experiments with a question-an!wering and problem­
solving system based on resolutlon (see Article m.el, in Vol. I, on the '~A'J

program).
The results of Green's experiments and sever/ll similar projetts \\~re di;·

appo:nting, however. The difficulty was that. in the general cue, the search
space generated by the resolution method grows exponfntially with the num­
ber of formulas used to describe a problem, 10 that problems of even moderate
complexity cannot be solved in a reasonable time. Several domain-independent
heuristics (e.g" ~et 01 aupport; see Article XII,S) were propoeed to deal with
this issue, but they proved too weak to produce satisfactory results.

It Appears that thae failures resulted principal1)' from t.wo constraint.3
the researchers had imposed upon themaeh-ea: The)' 'attempted to use onl"
uniform. domain-independent proof procedures. and the)' tried to force all
reasoning and problem-solving behavior into the (rl.mework of logical deduc­
tion, Like a number of earlier ideas such .. self-organizing systems and
hellristie search. automatie theorem-proving turned out not to be the masie
formula t.hat. would 101ve all AI problema at once. In the reaction that fol­
lowed, however, not only was there a t.urning away from attempts to \de

dedue.t.ion to create general problem-eolven, but there was al80 widespread
condemnat.ion of aft' uae 01 Jocic or deduction in COmmODleIIlIe reuoninc or
problem solvinl' Arguments made by Minsky (1080, Appendix) and Hewitt
(1975; Hewitt et al., 1973) teem to have been part.ieularly influential in this
regard.

Despite the disappoint.ments of the late 196Ol1 and early 19701, there h.
recentl}· been a revival of interest in deduction-baaed approaches to common­
sense reasoning. This is apparent in the work of ~feDermott (1978), Doyle
(1979,1980), and Moore (198Oa,198Ob);in the current work on nonmonotonic
reasoning (Bobrow, 1980); and in recent textbooks b,. ~ilsson (1980) and
Kowalski (1979). To a large extent. this rene-oed interest seems to stem from
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the recognirion of an important class of problems that resist solution h~' ftn~'

other method.

If'hll the Deduction Problem lI'ili ....·ot Go AW411

If a description of a problem situation ill complete in terms or the objects,
properties, and relations relevsm to the problem. we can ans\\oer an~' qu~tion

by et:aluation-deduction is unnecessar~'. To illustrate, suppose we have a
knowledge base of personnel information for a company and we want to know
whether there is any programmer who earns mort' than a vice-president earns.
We could express this question in first-order logic as:

SOJa: (X. Y) ( (TITLE (X) • PROGIWO!ER) AJlI)

(TITLE(Y) =VICE-PRESIDENT) AJlI)

(SAUJtY (X) > SALARY (Y») .

If we have recorded in our knowledge base the job title and salar)' of every
employee. we can simply find the salary of each programmer and compare
it with the salary of every vice-president. :'\0 deduction is involved in this
process, On the other hand. we mar not have speeifie !'alarr information for
each employee. Instead. we ma~' have general information about d~~ of
emplovees. such as:

All t1te·"t,itltfltl art manager,.
ALL (X) «TITLE (X) • VICE-PRESIDENT) •

(CATEGORY (X) • tWrAGEIl»

.4t1"ogramme'l'l lITt "o/euif1fl4k.
ALL (X) ( (TITLE(X) • PROGRAMIIER) •

(CATEGORY(X) • PROFESSIONAL»

All "o/t"ioruUI tGrn It" thon all manager"
ALL (X. Y) « (CATEGORY ex) • PROFESSIONAL) AJID

(CATEGOIY(Y) • lWIACER» •
(SALAIlY (X) < SALARY (Y) » ,

From t.his information we CUI deduce t.hat. no pfOIrammer earnl more than
any vice-president, although we have no information about. the exact salary
of any emplO)'ee,

A representation formalism based on Jocic gi,·es us the abilit;)· to express
manr kindtl or Keneralizations. even when we do not have a complete d~ri~
tion of the problem situation. l"sing deduction to manipulate o:pr"!'ions
in the representation formalism allows us to make logirallr complex queries
of'a knowledge base containing such generalizations. even when ,,~ cannot
e\'aluate a quef)' direct I)'. On the other hand, Al inference S)'Stem5 that are
not based on automatic-deduction techniques either do not permit IogicaIl)'
complex qu,>ties to be made or they an!'wer such queries by methods that
depend on the presence of complete information, For an .t.llYstem to handle
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the kinds of incomplete information peeple can understand, it must at least
be able to do the Ioilowing:

Sa~' that something hu a certain property ...ithout sa~'ing which thing
hu that property:

3(X) P(X);

2, Sa)' that e.'p.rythin& 'i'l a certain el.,.. Oab a cel't&in property without
saling wh,,~ eV~l"rthing in that elus is:

V(X)(P(Xj - ,'!X»;

3. ~a~' that at leut one or two statements if true without ~a."ing which
statement i~ true:

P'JQ;

4, Say explicitly that a statunent ill false. u distinguished from simply not
saying that it is true:

~P),

Any representation formaliam that has these capabilities will be. at the ver,'
least, an extension of classical first-order logic (see Article 111.('1. in \'01, I), and
any inference system that can deal adequatel~' with these kinds of g~neralila­
tions will have to have at least the capabilities of an automatie-deduetion
srst~m. Thus, although AI'rejected logic as a representation method and
deduction &l! a rea!!Oning method. AI systems that rea!Oll with incomplete
informe.tion are actually equivalent to automatie-deduction ~"Stema.

Thc N(cd for Specific ControllnJom&4tion

A.! we remarked abo\'e, the fundamental diflicul~' with attempting to
base a general. domain-independer:t problem-solver on automatic-deduction
tr ehniques is that there are too ma!l~' possible inferenCft that can be drawn
..t an)' one time. Findilll the in~e:.·en{8 that are re1e\'ant to a particuW
problem can bean impoaible tuk. unleu domain-speeific guidance is supplied
to control the deductive proeea

One kind of guidance that is often aitieal to efficient system perl'ormaac:e
is information about whether to u.e raets in • J~-eltoini", or __",­
chaining manner. The deductive process can be tboupt of u a IritlircdiMaal
search procea (see Article D.CJcI, ill. Vol. I). pard)' working rorward from
knOYo"ll facts to newones, partly working baclcv...,d from goals to !ubsoals. and
mftting somewhere in ben\oeen, Thus, if,,~ have a faet of the form (P - Q).
,,~ can use it either to generate Q as a fact. gh-en P as a faet, or to generate
P as a goal, gh'en Qas a goal. Earl)' theorem-provingl)'stems used e\~' fact
both ways, leading to highly redundant. searches. More eophiaticated methods
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that eliminate these redundancies were graduall:: devised. Eliminating redun­
dancies. however. creates choices as to which way facts are to hi- used, In the
systems that attempted to apply only domain-independent. control heuristics,
3 uniform strategy had to be imposed. Often the strat~· wu to use all facts
in a backward-chaining manner only, on the grounds that this would at least
guarantee that all the inferences drawn would be relevant to the problem at
hand,

The difficult)· with this approach is that the question of whether it is
more effieiealt to use a fact for forward than for backward chaining depends
on the speeifie content of that fact. For instance. according to the Talmud.
the primary criterion for determining whether someone is Jewish is:

~(XI (J~uvh(mothtr(X)) -- Jcu;$h(X')j.

That is. a person is Jewish if his or her mother is Jewish. Suppose we were to
try to use this rule for backward chaining. a.s most uniform proof procedures
would, It would apply to an~' goal of the form JnISH (X). produeing the
subgoal JEriISH(WOTHElt(X». This expression. however, is also of the form
JE"lISH(X). so the process would be repeated. resulting in an infinite descend­
ing chain of subgoals:

GOAL: JErISH(MORRIS)
COAL; JErISH(MOTHElt(MORRIS»
COAL: JEWISH (YOTHER (1i0THE1t OIORIlIS) ) )
GOAL: JEWISH (MOTHER (JIOTHER (IIOTHER (MaRllIS) ) ) )

If. on the other hand, we use the rule for forward chaining, the number of
applications is limited by the complexit)· of the fact that original!)' triggen
the inference:

,.ACT: JEWISH (IIOTHER (1i0THE1t OIORRIS) ) )
FACT: JEWISH(MOTHER(1I0RRIS»
fACT: JEWISH(IIORRIS) .

It turns out, then, that the efficient use of a part.icular fact often depends
on exactly what. that faet is and also on the context. or other fact.; in which
it is embedded. Many examples iUustratinc this point are liven b~' Kowallld
(1979) and Moore (1980&), invohing not only the distinction bet"'een (ort.wd
and backward chaining but other eontrol d~isions as well.

Since specific control informat.ion needs to be associated \\ith particular
facts, the question ari!eS as to how to previde it. The !implat war i$ to embed
it in the facts themselves. For instance, the distinction between forward and
backward chaining can be encoded by having t.wo versions of implication,
for example, (P - Q) to indicate forward chaining and (Q - P) to indi­
cate backward chaininl. This approach originat.ed in the di~inct.ionmade in
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the programming language PLA.:'\:\ER (see Artidp \l.A. in \'01 II) bt'twppn
antecedent and consequent theorems. A more sophisticated approach is to
make certain decisions (such as whether to use a fact in the forward or
backward direction) themselves questions for the deduction system to reeson
about. by using "meta-level" knowledge. The first detailed proposal along
these lines appears to have been made by Ha~'es (19;3). while experimental
systems have been built by McDermott (1978) and de Kleer et al, (19;9),
among others. We:rhrauch (1980) has perhaps done the most to explore the
kind of system arehitecture in which .this sort of reasoning would be possible,

Tf,cory Formation and Loqic Programming

Another factor that can greatly affect the efficiency of deductive reasoning
is the way in which a body of knowledge is formalized. That is. logically
equivalent formalizations can have radically different behavior when used with
standard deduction techniques. For example. we could define the relation
ABO\"E as the transitive closure of 0:" in at least three ways:

~(x.Y) (ABOVE(X,Y) ~

(ON(X,Y) OR 3 ez) (ABOVEeX,n AHD DN(Z,Y»» .

': (X.Y) (ABOVE(X,Y) -

(ON(X,Y) DR 3 (Z) (OI(X,Z) AJlD ABQVE(Z,Y»» •

\' (X, Y) (ABOVE (X,Y) -
(ON(X,Y) OR 3 (Z) (AB(JVEex,z) AHD A1IO\'!(Z,Y»» .

(These formalizations are not quite equivalent, as they allow for different pas­
sible interpretations of ABOVE if infinitely many objects are involved. They
are equivalent, however. if only finitel)' many objects are being eonsldered.)

Each of these formalizations will produce different behavior in a standard
deduction system, no matter how we make local control decisions of the
kind discussed in the previous l!ection. Kowalski (1974) noted that choosing
among such alternath'es involvesdecisions similar 1.0 those made when wrhine
programs in a conventional Pl'OlJ'amming language. In fact, he cbserved that
there are \\'a~'S to formalize many functions and relations so that appl~'ine

standard deduction methods willhave the effect of executing them as computer
programs. These obltc=rvations have led to the development or the fipld of IDgie
programming (Kowalski, 1979) and the creation of ne"· computer languages
such L" PROLOG (Warren. Pereira, and Pereira. 1977). Such developments
are discussed in Article XlJ.F.

Automatic Deduction in NonatGndard LogiC8

So far. we have discussed automatic dedurtion for classical first-order
logic only. ~tany commonsense concepts, however. are moet naturally treated
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in eit her higher order or nonelassieal logies. This presents a problem. because
classical first-ordet logic if. th, most general logic for which the teehniqul'l' of
automatic deduction are at all well developed. It turns out. though, that there
are a number of techniques for reformulating representations in nonstandard
logics in terms of logically equivalent representations in classical first--order
logic.

Higher order logic differs from fiN.t-order logic in that it allows quantifi­
cation o\'er properties and relations as well as individuals. That is. if we have
:I fir~t-order logic that allows us to make stat.ementf.about all ph~'sical objects.
the corresponding second-order logic would allow us to make statements about
all properties of and relations among physical objects: a third-order ](1!:ir
would allow us to make statements about properties of and ,,·Iations among
these properties and relations: and so forth.

In some cases, the transition from first-order to higher order logic presents
feweor difflcultil!!! than might at first appear. In fact, the standard deductive
procedures for first-order logic also work for higher order logic, except that
general predicate abstraction il! not performed: that is. these procedures will
not construct predicates out of arbitrar~' complex formulas. If John is a man
i~ represented ~ IWf(JOHN). the predicate MAW can be retrieved when we ask
thE' second-order question, Wh4t pt'opertiu dot! John haw? All the deduction
system has to do is match X(JOHII) againl!t IWI(JOHli) and return MAX as the
value of the variable x. But from the assertion that John i'l either a butcher
or a baker. represented as

IUTCHEIl(JOD) OR BAICEI(JOIDf) •

the !~'stem could not infer, without using predicate abstraction.-that John
has the disjunctive property of being a butcher-or-baker. The ~.. tern would
have to recognize that this complex expression could be reformulated u a
one-place predicate applied to JOIIJr.

(LAMBDA (Y) (BUTCHER (Y) OR BAICEI (Y) ) ) (JOHJI) ,

which is of the right form to match X(JDIII).

If this IOrt of predicate abstraction is not required, stanciard first-order
deduction techniques are lufficient. There haa been lOme work extending the
standard techniques to handle tbe more general cue (e,g" Huet, 1975). but
this makes the dedueuon problem much harder becauee of the combinatorica
of all the different ways predicate abetraction may be performed.

Another problem common I)' encountered is how to do automatic deduc­
tion in logie! that allow intcuionol operataI'!. These are operator!!. such ~
BELI£\"£ and K~OW. that produce sentencee whose truth values depend full)"
on the meanings, not just the truth values, of their arguments. CIMsicallogic
i~ purely erten8ional. because the truth value of a comple>. formula depends
onl~' on the extensions (denotations, referents) of it! !luhexprf'!'~ion!', The
extension of a formula is considered to be its truth value, so the operator OR
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is extensional because the truth of (P or Q) depends only on the truth of P
and the truth of Q: no oth~r properties of F and Q matter. The operator
BElIE\"E. on the other hand. is intensional beeause the truth of A believe» that
P depends generally on the meaning of P, not just on its truth value.

~lan~' of the rules of classical logic, such as substitution of equals for
equals, do not apply within the scope of an intensional operator. To use a
classic example, since the morning ,tar and the evening ,tar refer to the same
object, it must be the ease that The morning 6eOr iI Yen"" is true if and only
if The ,"vening star is Yen"" is true. However. it might be that John believe,
the morning star is l'enu, is true. but that John belie~'u the fHning "tar i8
1t nus is false because. although the two embedded sentences have the same
truth value, they differ in meaning.

Fortunately. many of the difficulties presented by intensional operators
can be overcome b~' reformulating the statements in which they occur. There
are a number of methods for doing this, but one that is particularly elegant is
to reformulate intensional oper vors in terms of their po.-6ible-world ,emantiu
(Kripke, 19i1: Hintikka, 19i1,:. The idea is that, rather than talking about
what statements a person believes, we talk instead about what states of
affairs, or possible worlds, ar-. compatible with what he believes, Essentially,
A btliel'el that Pis paraphrued as P iI erue in everr world that is comJ)4tible
u:ith what A be/ievu. This can be expressed in ordinb.r~' first-order logic
by making all predicates and functions depend explicitly on the particular
possible ·...·orld they are evaluated in. The failure ef equality substitution in
the preceding example is then accounted for by noting that what John believes
depends on what is true in all possible worlds that are compatible \\ith what
he believes, but an assertion that the morning star and the evening star are
the same is a statement only about the achull world. Application of this idea
to reasoning about intensional operators in AI S)'stems has been explored in
depth by Meere (l980b).

Finall~.. a type of nonstandard logic that has received much recent atten­
tion is nonmonotonic logic. Minsk)' (1980, Appendix) has noted that the treat­
ment of commonsense ressonini as purel)' deductive ignores one of iw crucial
aspects-the ability tI"i retract a conclusion in the face or further evidence.
A frequentl)' cited example is that, if we know IOmething is a bird, we nor­
mally assume it can 8)'. If we find out that it it an ostrich, howe\'el', we
will withdra\\' that conclusion. ThitlOrt or reasonina is ealled nonmonotonic
because the set of inferable conclusions does not increase monotonicall~' "ith
the set of premises as in conventional deductive logiC!. The addition of the
premise that something is an ostrich results in relDO\'ing the conclusion that
it can ftr. While man)' procedures have been implemented that support this
type of reasoning. their theoretical foundations are questionable. :\to!t of the
recent work on nonmonotonic logic (Bobrow, 1980: !ee Article XII.E) has thus
been directed at developing a coherent logical basis for this kind of reasoninc,
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~lcCB.rthy (1968). Black (1968), and Green (196") discuss formal logic as
8 repre!ent&tion scheme and deductive inference .. a reasoning method for
commonsen!l! reasoning and problem 1Oh.·ing. This theme is amplified in two
readable texUI by l':iJseon (1971, 1VSO). For relerenees on lOme of the other
topict discussed in the overview, lee the reference IleCtiona of the lubeeQuent
articles.



B. THE RESOLUTION RULE OF I!'ifERENCE

0:"£ of the best known methods of automatic theorem-proving is the rese­
lution procedure introduced by S. A. Robinson (19Mb). In this article. ~
describe the method, present some examples, and discuss extensions to it,

Derivation 01 the Re~olutiDn Rule

The resolution method shows whether a theorem logic"lI~' follow~ from
its axioms. If a theorem does follow from its axioms, then the axioms and
the 1'I.egation of the theorem cannot all be true-the axioms and the negated
t heorem must lead to a contradiction. The resolution method is a form of
proof by contradiction that involves producing new clauses, called T!4olt'f!ntl.
from the union of the axioms and the negated theorem. Theee resoh'ents
are then added to the !et of clauses from which t.hey wert' derived. and new
resolvents art' derived. This process continues. reeursively, until it produces
a ecntradietlen. Resolution is guaranteed to produce a eontradietion if the
theorem follows from the axioma. The simple resolution rule that produces
resolvents is derived in the rollo..-·ing paragraphs.

By tht' t'xpression (P ..... Q) we mean q P u true, then Q is true; for
example. John is C1 bor - John u male. A central rule of inference in logic is
modUlI pofteft.!l:

«(P - Q) and P) ~ Q),

which means that if (P ..... Ql is true and if P is true. then we can conclude
that Q i& true. All extension of this is the choin rule:

«(P -.. Ql and (Q - R) ~ (P - R».

When the implications in the chain rule are re-Titten in their logic:all~' equiv­
alent form (..,p V Q), the chain rule beeomes

(-.p V Q) and (-.<;I V R) ~ (..p V R).

which can be written as:

(....p v Q)
(-.<;I v R)

(....PVR).
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There i~ an apparent cancellation of the Q and .....Q. ThE' disjunctions
(-P V Q). t""'Q V R). and (.....p vR) are called claum. and (-P \' R) is called
the resolvent of (-P V Q) and (...Q 'v' R).

Implications in this simple form, called clawe form. can be resolved
against each other; two clauses can be resolved to a single one. The heart
of the resolution proof method is to negate the theorem to be proved and
then to simplify and resolve clauses until a contradiction is found.

:1" Example

A.I: an example of resolution. consider proving that (D V E! follows from
:.4 - C V D) .\ (.-1. .' D " E) 1\ (.4 - .....C). The fir!!l step is to negate the
theorem: (-(D V E)). This is logically equivalent to (...D II -.E,. ThE' next
step is to convert the axioms and theorem to clot/US, The procedures for
this are explained in the last section of this article and in several texts
(e.g .. Xilsson, 1980): all WE' need to know here is that the implication (A - B)
ran be rewritten as the equivalent clause (...A V B).

The axioms are:

(A - C V D) 1\
(A V D V E) 1\

(A - ~).

They are rewritten as the clauses, and the t.heorem is added to the list:

(...A v C v D) 1\

(A V D v E) II
(-A V ...C)
(-D 1\ -E).

The t· conjunctions are dropped. leaving fh'e clauses:

J. (-.AvC vDJ

2. (A V D V E)

3. b" v ...C)

4. (...D)

&. (-.E).

]f the theorem follows from its axioms, the axioms and the negation of the
theorem cannot all be true, Contequently. a contradiction must be implicit
in the five clauses jU!\t derived: the~' cannot all be true simultaneously. The
purpose or resolution is to find the contradic:tion. We \\in resolve clauses
against each other until a contradiction "drops out":
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Resol ution 1:

Resolution 2:

Resolution 3:

Resolurion 4:

Automatic Deduction

1. (--A V C V D)
2. (A V D V E)

(C vDv E)

2. (A V D V E)
3. (...A V ...C)

(D vEv ..,C)

Resolution 1. Ie v D v E)
Resolution 2. [D V E V ...C)

(Dv E)

Resolution 3. (D V E)
-t. (...D)

(E)

Resolution -t. (E)
5. (...E)

CO!\"TRADJCTJON

-A and A
cancel each other.

-A and A
cancel eoch other.

...,Cande
cancd each other.

..,D and D
conrei each other.

This illustrates the process b)' which we determine that clauses and their
resolvents cannot all be true simultaneousl)"

The example just presented is from proposiiional logic. ~o", let us con­
sider first-order predicate calevlus, where variablu. predicates, qua"tifier~. and
[unctions are permitted (~Article1JI.C1. in Vol. I, for a discussion of logics).
The expression P(z) means Pi, true lor z, For example. P(z) might mean
z is a positil'e number, 1IO that. P(2) is true, whereas P( -3) is false. Or per)
might mean that z iI Cl boll, in whieh ease we v.'Ould expect. P(John., to be true
and P(Pegw) to be falM.

We will use the notat.ion "Ir. P(z) and 3% P(%) to mean For all % P(r)
and For 80me : P(z), respect.ively. The tint form is called a un.iverlcl quan­
tification. since it. ~ve)'S the meaning that. t.he daule i~ true for all obje<-ts:
the seeond is called an emtential quantification, since it says that the clause
is true for at lea.~t one object. For example.

'f%(!\'(z) _ %2 ~O). and

3%(;Y(z) /\ z < 0)

are true formulas. The first says that if z is a number, then the square of all
z ls either posirlve or zero. whereas the second says that there is at least one
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object th:it ill' a number and i~ negative. ~otice that ..."i!z p(z) is t'qui\'a~nt

to =I ...Pix). and ...3r P(r) is equivalent to "t r "'P(:r).
It is also possible to have runction symbole such u f and g. For example,

flI) can mean jathfr of z. Thus, if M(r) means r u a l'n4le. then M{f(z)) is
always true,

Two complications arise when proving theorems with variables, quanti­
fiers. predicates, and functions. One is getting them into clause form: the
other is the process of unification, Converting predicate logic to elauR form
is fOT .tlal!y straightforward (see the IRt section or this article). HO\\'e\'er. it
I': important to understand the conceptual operations as well 8.!! the formal
onee, l'~pt'('jalJ,\" those associated with eliminating quantifiers, To eliminate
existential quantifiers. we simply choose 8 constant: for example. :.l P(z) is
replaced by P(a). We instantiate the claim that an z exists br choosing a
pnrti<'u!l\r (l to take its place. However, if an existential t 1 Jant ifier is ..ithin
the scope or a universal quantifier. there is the possibjJjt~· t hat the z that exins
somehow depends on the identity of the universally quar.ttficd \'&riable. Thus.
we ran not replace it with an arbitrary constant. To account for this, whenever
an exisu-ntial quam ifier occurs within the scope of a .,r.i"erul quantifier. its
\'~fi~,bl,-, j. r-placed with a function of the universally quantified \'ariable.
For example. 7r::y Pir.y) is rewritten as ~:r P(r,f(z», denoting that the
second argument or the predicate P is a fur etion or the first. In this e"-'.lO.ple,
f i< called a ~kolcm [unction, and f(r) is called 8 skolem frprU8ion.

\\"~ have discussed the rationales for eliminating existential quanti&ers.
L'niversal quantifiers are simply dropped from clause form, because after exit­
temlally quantified variables have been replaced by constant! or Holem func­
tions. we may assume that the remaining variables are universally quanti&ed.
In the previous example, 1/was replaced b)' a skolern function and z is ..umed
to be universally quantified; thus, the quantifier ":I is deleted. resulting in the
clause PII. f(:r)L

The ot her complieation in proving theorems in predicate calculus arise
during resolution itself. Recall that during resolution we would have constants
"cancel:n," each other outj for exam~le, --A V B and .4 V C would resoh-e
to B V C after canceling A and ......t. But how are resolvents 1.0 be produced
when there are \wiables and akolem functions~ For example, does p(a) eaneel
-.P(r) in the following resolution?

~P(%) V Q(r) and
PCa) \I R(z)

Q(a) V R(z)

Tn this t'300c. the answer is yes: pea) cancels ...P(r). because the expr~sion

-J'IT) is claiming that tt.!.'re is no z for which per) is true Ireeall thaI ;r is
universally quantified). and P(a) is claiming that there i! an object Cl for which
Pill \ i~ true. Thjc i!' an example of unification. the process of deciding whether
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the arguments of predicates are comparable for the purpose of resolution, and.
if they an' comparable. what common $ub$titution inlltanc! should be used.
In this case. the substitution instance was 0; it replaces all instances of z,
including that in the predicate Q. The process of unification i! analogous
to that of finding a cornmon denominator for fractions: In order to make
comparisons between numbers expressed as z/3 and numbers expressed as
x/17, each is re-expressed as r/51. Similarly, thtre is a unification algorithm
that finds a common substitution instance for the arguments of predicates.

With these prelirninaries over. we can now proceed to examples of resolu­
tion theorem praying in the predicate calculus.

The first step is. again. to negate the theorem and then put the axioms
and the theorem in clause form:

(-P(a) ~ to X (P(x) V QU(x»)))

3: Q(:)

'I: ....Q(:)

(Ax iem.• )

l"il~orem)
1""$!:atKi Theorem)

In this case. Q is 8 constant symbol. and there 1" ~ no existential quantifiers
and so no need for skolemiaation. Universal quantifiers are simply dropped.
The 1\ connectives are also dropped to yield three clauses:

J. ....Pla)

2. PIx) V Q(f(x))

3.....Q(z).

These are resolved against each otber as follows:

l. Clause 1 and c1aUle 2 are reIQl"K1 to produce Q(f(a)): the lubltitution
is 0 for z ; or a[».

2. Q(J(a)) is resolved against clause 3 to ~'ield a contradiction: the !\I~

stitution i! /(0) ror s, or /(aJ/:.

Since a contradiction is produced, we can conclude that the tl.eorem followed
from its axioms.

Another example is proving that there is a1wa~'s a number &re&teT than
another number from the axiom tbat a number is less than ita lIuccea80r. (In
this case, infir arithmetic functions are used in the clauses: tbe~' could equally
well be written in pre/iz notation; e.g.. "It < (t, pws(t.I)).)

'it (t < t ... J)

'1z::y (Z' < y)

First we negate the theorem:

(Axiom)

(Theorem)

3z:V~ ....(z < y).

Then. since r is an existentially quantified variable that is not within the scope
of a universal quantifier, we replace it with a constant. Thill eliminetes the
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existential quantifier: universal quantifiers are simp1r dropped at before. The
result ing clauses are:

1. t<,.1

2. -(0 < ~).

But this immediatel)' results in a contradiction when a is substituted for t
and Q .. I is substituted for y.

A final example illustrates skolemization:

'9'%3~ P(%,~)

=z Pea.z)

(Axiom)

(Theorem)

where Q it' a eonsrant , First. we negate the theorem. ~;C'lding 'fi: ...pea. a),
Xext, we eliminate quantifiers. Since =y is within the scope of the umversal
quantifier ':'.r. the variable II is replaced. not with a constant, but. instead.
with a skolem function. Universal quantifiers are dropped as usual:

1. P(:c. g(:c))

2. ...,P(a.z).

These clauses obviously resolve to a contradiction under the substitution
a:», glol,':.

It can be shown that resolution is complde for (i.e.. can prove all theorems
in) fir!'t-order predicate logic (Robin80n, 1965b) and is ,ound (i.e .. "ill not
indicatt' that nontheorems are true).

Str4tegiu

Although resolution is complete. it can beextremely time-consumin&. As
brought out in (h.. overview (Article XI!.."). resclution-based approachef to
problem solving fell into disfavor for just this reason.

Several strat~iea have been propolt.d to minimize the branchinl factor
of reselutien prooftrees. Several are disc:uaed in detail in ~ill8On (1980) and
in Chanl and Lee (19i3), and, thus, onl)' two are brieR)' discutwd here.

Set-of-.upport .trat,esy. When at leut one parent or each r~h-ent it
eheeen from the negation of the theorem or from the eet of cla~ that are
derh'ed from it. a llet-of·lIupport etrat.e&Y is heinl used. This strat~· clearly
re!trirl$ the number of c:1auses that can be resolved at an~' giVfll time. It ia
ulluall~' more efficient than breadth-first 8eUch.

Lin..r-inpu~rorm arateeY. This strate&\' invol\'ft rhOOlina reeol­
"~nu so that one resol\"ent is al\\'a~"I from the ba..~ let (the let of orilinal
clauses]. It is more effirient than the previous l!trat~·. but it is not complde.
which is to sa~' that there are cases in which it will not find a contradic­
tion when one ..xists. ~ont'thel('S$. the stratt'g)' is often used ~nUR of it.
simplicitr and effie~n('y.
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In addition to stra~ies designed to reduee the combinatorial explosion
involved in resolution. other simplifications can be made. One is to eliminate
talltologi~ from the eet of clauses. A tautology is a trh'iall~' true clause
containing the subexpression A V ...A.

Converting a Formula to Clauaal Fonn

A formula, F, to be proved by resolution must fint be D.ated and
converted to clausal form. It is assumed that F is a &rst--order formula that
is ful1~' quantified. Conversion to clausal form is done br a eeries of steps:

1. :'\egate F: Replace F b~' ~F.

2. Remove - and - b) replacinl (A - B) b~' (...A V B) and (A - B) by
«~A V B) 1\ (-B V A)).

3. Move..., inward, usinl the rul.:

-,(...A)-A.

~A 1\ B) - ...,A V ...,B.

-.(A V B) - ...,A 1\ ...,B,

...'fz A(z) - 3z "'A(z)..

...3zA(z) - "Iz -.A(z) .

... Move "I and 3 inward (optional).

5. Rename VIol'iabl.1Othat no two quant.i8en quaDtify the I&Ine VIol'iab1el.

6. Exchanle 3 for akolemfUDct.ioDI Uld \hen dl'OJl V'I (1M below).

7. Convert t.o CNF (eonjeetive normal form) by repeatedly appl)'ina
De Morpn'I Laws:

-.(A f\ B) - A V B

-.(A V B) - A A B.

In step 6, if 311 P(II) is within thucope of umvenal quantifierf V%1V%2' •• VZII'
and not. within the acope of any exi8tenUal quantifier, then replace 3, P(,)
by P(!(Zl, ... , ZII»' where / is • DeW function I)'IDbol (a akolem-CunetiOll
S)"mbol). All umvena1 quantifiers are then dropped from the formula. Thus,

I(z 3,1(.3. p(z", .,.)

is replaced suceeasively by

VzV Z 3111 P(z, '.(z), 6,.)

V z"l 6 p(z, fa(z), 6,/,(Z. a))

p(z. I. (z), a,/.(z. a)).

If " =- O. then 1/ is replaced by a akolem constant 1'0 [i.e., a function of
oucumenta).
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11 i~ usually r8!ter to replace ~(P - Q) b)' (P 1\ -Q) bt/orf con\-enin&
IP - Q) to (-P V Q). when P is a large formula.

Re!erencu

The raolution rule of inference was fim described by RobiDlOn (l965b).
Resolution has been extended to handle the equalit)' relation; thia if diseulMd
in Robinson and Wos (1969). This extension permits one to prove theoreru
such 8! P(a) 1\ a - b - P(b).

Strategi", for speeding up resolutien thfOrem pro\'ing ha\'e been dileulMd
in !'e\'f'r:ll places. WO!!o Robinson. and Carson (196:;) discussed Itt Ollllpport:
hvprr.rtloilltion was eonsidered by Robinson (196:;8): (orkin, was the subject
of Boyer'~ thesis (19:'1): and SL·ruo(utio71 was discussed b)' Kowalski and
Kuehner. ~l~;I). Model elimination Wall introduced b)' Loveland (19;8). Cen­
eral texts on theorem proving are Loveland (19;8) and Chang and Lee(19;3).

~i15'SOn'5 two textbooks (19il. 19BO) are dearl)' written introduction. to.
among other things, theorem proving as a prcblem-solving tool for AI ~·I!t~ru.
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Ir.: nonre,oltdion or nGtural-tletludion theorem-proving systems, a proof is
derived in a goal-directed manner that is natural for the humans using the
theorem prm·~r. Natural-deduction ~'St.ems repre!ent proof. in a wa)' tha..
maintains a distinction between goals and antecedents. and the)' use inferenee
rules that mimic the reuoning of human theorem-provers.

In resolution theorem-provers. no distinction is made between goals and
antecedents. But in natural-deduction systems. the distinction is cuefuJly
mair.tained for the duity that it brings to the proof process. For example,
a natural-deduction system might display the following "worksheet" duriqa
proof:

H•. P
HI. (P-Q)
H,. (R;\ Q - S)

C•. Q
Ct. (R- S).

It indicates t.hat H II H2. and H3 are three hypotheses and C1 and C, are
goala. A resolution S)'Ittm would represent the l&D'Ie situation uniformly with
a eel of claul!elI:

I. P

2....PvQ

3. ...R v (-.q v S)

t. -qvR
~. -qv ...S.

Altboup tbae repreeeotaLiona are locicaUy equivalent, we have IoIt all infor­
matioD in the IeCODd one about ~about wbat we want to prove.

The repreeentat.ion of proofs in natural-deduction syItemlI is eIpeciaIly
advantapous for man-m.achine iJlteraelh-etbeoI'em-pfO\inl. in whieb a bWDall
is required to int.erwne oeeasionally to help with the proof. It do facilitaw.
the implementation of llelDantic or domain-specific heuri!tics that belp to
Cuide the eearcb.

However, the dowell representation baa one powerful advaotqe: A proof
can be derived ",ith a sinlle inference rule-the ruoluti,," rule. In contrut.
naturaJ-df:duction S)·!tems ha,'e r~lath'~I)' eomplex inference rules that limu­
late the kind" or re.uoniDI atepe that. hullWll U8e to develop proof.. For
example, !Uppose ,,~ "'ant to PfO\'e that Fred has a hot tub, and \\~ know
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that everyone who lives in California has a hot tub and that Fred Ih·P!' in
California:

Antecedents: (Lit·r·CtJli/omia(Fred)) 1\ (Lit'(·CtJll/omia(X) - Hottvb(Xj)
Goal: ..... Hottub(Fred) ,

To prove Hottub{Fred) , we scan the antecedents for anything that will
enable us to conclude Hottub(Fred). and. if \\~ find such a hypot.hesis. we set
up the subgoal of proving it. In this case, we can conclude Hottub{Fred) if
we ran prove (Lit'e·CoJi!or"ia(X) - Hottub(X) and (Lit,'e-Ctlli!ornia(Fred».
SO WP $e\ up the subgoal of proving Lire- California! Fred), Formalb- ,,~ can
derive a bacK·rlIQ;n rule of inference:

To prove iH', (A ..... B) ..... C]:
Ir (8 ..... C), then prove (H - Il).

In the next section. we present several of the proof rules from the ThtPLY
system. developed at the University of Texas (Bledsoe and Tyson. 1975).

l.\fPLY

l~tpLY views a conjecture to be proved as a conjunction of goals to be
achieved, and it considers a goal achieved when it finds a ~ubdtitutiDn under
which the goal is valid. A substitution is simpl~' an assignment of term! to
each variable in the conjecture. In other words, L\fPLY considprs a conjecture
proved when it finds some object or objects for which the conjecture is valid.
For example, the conjecture

(P(z) - Q(z») 1\ P(o) - Q(a)

is valid for the substitution a]z; that is. if every r in the formula were replaced
by 4, then the statement would be a valid inference.

Let C be a conjecture we wish to prove and let H be the conjunction of
h~'potheses that. hopefully, implrC. L\[PLY will attempt to find a fubstitution
~') sl..ch that (H - C)(9) is a propositionally valid formula. For example.
if Hi.

!\4) " (p(z) - Q(z))

and C is

Q(a) ,

then the substitution (9) - a/r will make (H - C)(9) valid,
In the following diseusslon, we 3S!Ume that all formulu are quantifier

free. That is. before the proof process starts. all universal and maUD·
tial quantifiers, '1 and 3. are removed by ,kolmaizatlora 1,S('e Article xn.a).
Skolemization for both resolution and natural deduction is done in much tM
~ame way, except that the role of 'd and 3 in natural df'duction an the
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opposite of their roles in resolution. because resolution is a refutation pre>
cedure and natural deduction is not. For example. for natural deduction.
!'t"r P(r) -+ Q(a)) skolemizes to [P(r) -+ Q(a)] and iH - 3rV'y P(r.y)]
skclemizes to [H - P(r, g(r))].

Formulas are submitted to IMPLY, which attempts to prove them by
application of the rules discussed below. If F is a formula. [F] denotes the
value of IMPLY applied to F.

IMPLY rules. Some of the IMPLY proof rules are shown below.

1. !o.iATCH: [H - C]
If H(6) = G(6).
then (9)
(the empty substitution is T).

This is the simplest of IMPLY's rules. The goal C is matched to the hypoth­
esis H and, if a substitution can be found. that substitution is returned. For
example, (P(r) - P(a)) is MATCH because a substitution aIr makes Hand
C equal. The substitution is found b~' unification (see Artlcle XI1B). ~tATCH

would fail for the clause (Q(r) - Pta)) because the predicates P and Q are
different.

2. ""''\L>-SPLIT: [H - A f\ B]

If [H - Aj is (8)
and IH - B(8)J is (x},
then (6)(>').

If we want to prove that H implies A and S, we first prove that (H - A)
for some substitution. and then, using that substitution in S, we prove that
(H -+ B). For example, to prove IP(r) -+ P(a) 1\ (Q(z) -+ P(a))], we obtain
the substitution aIr when we prove IP(z) - P(a)], and that substitution is
carried into the second step, namely, to prove IP(z) - (Q(a) - P(a))j. If. in
prO"ing this, we obtain another substitution, >., then eand X are compo4eJl
to produce a substitution under which the entire expression [P(r) - P(a) 1\

(Q(r) - P(a))1 is valid.

3. CASES: [HI V H2 - C)

If [H. - C) is (I)
and [H2(I) - Cj is (>.),
then (1)(>.).

To prove that either or H. or H2 implies C, we must prove that the)' both
do. Thus. we attempt first to prove [Hi - CI ror some substitution, then
!H2 - C] under the previous substitution, and. ir this second proof produces
a substitution, the two are composed.



c Xonrescluuon Theorem Proving

... OR-fORK: !A /I B - C]

If;A - C] is (I).
then (8);
else [H - C).

To show that A and B imply C, we must prove that A implies C or thAt B
implie! C. For example, [Q(z) /\ Pta) - P(z)] is valid if either [Q(z) - ptz»)
or [P(a) - P(z») is valid.

5. PRO"fOTE: [H - (A - H)]

B' .-1- 8:.

This rule says simply that in trying to prove an implication (A.- BI we can
use A as an additional hypothesis.

6. B.-\CK-CH..\.I~: [H 1\ (A - 8) - Cj

[( [B - C~ is (6)
and iH - A(S)] is (>.),
then IS)(>").

This rule applies when a term that implies the goal has an antecedent that
must be proved. It says that if C can be implied from p. and (A - B), tht>n
\\~ must try to prove A For example, we can prove Q in IP 1\ (P - Q) - Ql
if \\'e art: able to prove P. If we instantiat.e H. A, B, and C in t.he8ACK~
rule with P and Q. we obtain

UIQ-Ql ill (')
and !P - PC')) i, (>').
then (I)().).

Ob\'iousl~·. [Q - Qj and [P - PJ fol1O\\" from the ~1ATCH rule. In th~ example
we have not considered substitutions.

Consider what these inference rules do and how tt.e)· differ from the
resolution rule. Each, with the exception of MATCH, reduces a Coal to IU~

Coals. Most of these lubgoals are easily~ by MATCH; it wmply tala
~'bether there is a substitution inItanee for t.he expression. The reIOlutiOll
rule, by contrast, reduces clauaes but. does not propqate aoals from one inC..
mce to the next.

nfPLY'1 rules are incomplete, but in most cases this does not prevent
it from finding proof. of theorems. In fact, in many are8$ of mathematics.
the great majorit)" of proof. can be found without the extra inference rules
required to make ~IPLY complete. Hov.'e\'er. it can be made complete (Lo\~

land and Stickel, 19;3) and, in fact, one application warranted this (Bledsoe,
Bruell, and Shostak, 19;9).
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Some proof procedures slmilar to P.\1PLY are described ill Reiter (1976),
Bibel and Schreiber (1974). Ernst (1971. 1973), and ~e\"in!' (1974. 1975).

Incorporating HeuNtic8 into Theorem Prover»

Most of the advantages derived from the use of natural-deduction theorem
pro\"en are not due to an~' decrease in the theoretieal complexit)' of proor.
but. rather, to the ease with which the proofs and the heuristic information
incorporated into the prover can be understood. ~1ost domain-dependent
heuristics are discovered only after much analysis of attempted proofs, and
the more intelligible proof structure of natural systems facilitates this anal~'si5,

The next paragraphs describe kinds of heuristic knowledge that are t~·pi·

cally grouped together under the heading of nonresolution theorem proving.
Reduetion. The term reduction ill used in two distinct but analogous

ways. One interpretation is that reduction is the replacement of one logical
expression by an equivalent, simpler expression. Alternately. reduction refer!'
to the replacement of a term denoting an object by a simpler term. In both
cases. the expression

L-R

stands for a reducer. The reducer L - R is applied to'a formula or term F
b:-' replacing an expression of the form L(9) (where (9) is a subetltutten) by
the expression R(8). The resulting formula or term is called an immediate
reduction. Reductions are simpler in that they have fewer l)'Mbol. or are
smaller: formal requirements for simpler relations are diseuseed b)' Knuth and
Bendix (1970) and Lankford (1975).

From elementar)' !!let theory, IMPLY uses (among others) the rollov.;ng
reducers:

t E (A n B) - tEA" t e B

t E (AuB) - tEA V t e B

t ~ (A n B) - t ~ A " e~ B.

Examples of reducers from algebra include:

Z+ (-1') - 0

-(I' + r) - (-z) + (-1/).

~fPLYmaintain•• list or reducer!' that are applied to a newly created expres­
"ion until it cannot be reduced further: the resulting expression is called the
'·'T€ducible Jorm of the original expression relative to the list of reducers.

There are two '-ery important propertie! of certain sets of reducers. A set
or reducers (.Il) is !'-aid to ha'\'e the following:
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1. Thr finn« fcnniraafio" proptrfll (FTP). if I here is no sequenee of t'Xprrl'!sion~

f(l, fJ .... , where ' ••• is an immediate reduetjon of f ••

2. The unique ttnni"atlo" pro,trtll (L·TP). if. for e"e~' expression t. all irre­
dueible form" of tare ident.ical.

An~' set of reducers that has both the FTP and the UTP i! called a complete ad
01 reducers. There are algorithms for deciding whether a set of reducers "it,h
the FTP has the LOTP (see Knuth and Bendix, 19iO: Lankford 19;5; Peter!On
and Stickel. 19ii). In fact. the same algorithm can be used to extend a Nit

of reducers thai fails to have the L'T? to one that does. Much research i~

('t1m·ntl~· being done on extending these algorithms.
Forward chaining. In addition to the rules rnenrioned earlier. 1~IPLY's

set of rules includes:

FOR\\:.\RD-CHAI~I~G: [(A /\ (A' - B» - C]

If A is ground [i.e., has no variables) and .4' = A(B),
then :(B(9) /1 A /\ (.4' ... B» ... C].

This rule differs from backward chaining in that it adds a new term to the
set of hypotheses: From (.4 f\ (A' - 8». this rule add! 8(9) to the !et of
hypotheses when A' - A(9). that is. when a substitution instance can be
found for A and .4'. :"011' that this rule does not produce smaller subgoa)s.
~ do the other rules we described, but, rather. it is used to infer auxj)j~'

terms.
The rule contains an explicit ground re,triction that. A should have no

variables. An intuitive justification for the ground restriction is that, sinee
.A i! an assertion made by the hypothesis about specific objects (the ground
terms) in the world. immediate consequences (8(9» should beexplored.

~Ian~' theorem pro\'ers have carried this forward-chaining rule a step
further and have incorporated domain-specific knO"'ledge into a set or 4c:mOftl
that scan the hypotheses for sets of assertions. l~pon finding the auertion it
is jooking for, a demon makes its own assertions. For example, a theo,.m
pfO"er might contAin the following demon from elementary let theory:

Scan the h;:.·pothelil for leta A, S, and C, II the ueertionl A S; B aDd
C ~ B are present, aDd if'the let AUC is mentioned IOmn'here, then
...rtAUC~ B.

pfO\'ers using \wiations of t.his technique are described by Ballant)-u. and
Bennett (19;3). Ballantyne and Bledsoe (19i7), Ne\ins (19i5), and Hnitt
(19il).

Deei.lon proeedurea, Certain theories, unlike number theo')', ha\"e the
property that there are algorithm! to decide whether a sentence i! true or
ral!! in the theory, Significant I;:.', these algorithms are ohen direct and can
make such declsions very quickly, For example, H'ts of linear incqua1itif'lil ("'tor
the real numbers can be decided \"er)' quickly by the ,implez algorithm. The



100 Automatie Deduction XII

theory of arithmetic restricted to addition and multiplication by constants can
be decided (Presburger, 1930). and. in fact, if or.e restricts the quantification
on sentences in prenex form to universal quantification. that theory can be
decided quickly (Bledsoe. 1974; Shostak. 1975). Decision procedures dealing
with integration (Risch, 1969) are a main component of MACSY~lA. Many
fragments of theories useful in program verification have fast decision proce­
dures (Nelson and Oppen. 19;8).

A particularly interesting extension of this idea is to let the theorem
prover "grow" its own decision procedures for classes of equational theories
using the concept of complete sets of reducers (see Knuth and Bendix. 1970:
Lankford. 19jj: Huet. 1972: Lankford and Ballantyne. 19;7: Ballantyne and
Lankford. 1979: Peterson and Stickel. 1977).

Induction. Induction is another area in which the addition of heuris­
tics C3n improve the performance of a prover. Since the development of a
sophisticated set of such heuristics is one of the major achievements of the
Beyer-Moore theorem prover, we refer the reader to Article xn.D.

Examplea and eounterexamplea. Examples and counterexamples play
an important but poorly understood role in automatic theorem proving. Spe­
cifically, if T is a set of axioms for a theory' and jf H - C is an attempted
theorem. then an example is an interpretation of the predicate, function, end
constant symbols that satisfies H and the axioms.

For example, let T be the axioms for the real numbers, and let H be
[f(o) $ 0/\ f(b) ~ 01\ CONTlNUOVS(J, a, b)], where I, ."t. and b are constants
and CO~Tl:--"UOUS(f, a, b)means that the function I is continuous on the clOled
interval [a, b]. Then the assignment

0-0

II-I

1- «>')%)(2% -1)

is an example,
To see how this example might be useful in controll.ing the search for

a proof, suppose that the theorem prover is asked to prove the ccnclUliOll
C == (SOME %)(1(%) == 0), given the above axioms and hypotheses. Suppoee
that, in the course of provine C, the prover encounters the subgoal I(t) $ 0,
where t is a term that evaluates to 3/4 in the example. Since I(t) - /(3/4) ~":.

2 . 3/4 - 1 == 1/2 and since 1/2 ia not less than or equal to O. the prcJ\"lll' is
allowed to discard this subgoal. Several theorem provers have incorporated
examples as a "u~JD1 filttr(Gelernter. 1959:Reiter, 1976; Bledsoe and Ballan­
tyne, 1979). In all these provers, the examples must be generated by the
user. However, Bledsce and Ballantyne describe a program that, when given
an example, extends the interpretation to include the skolem functions and
constants that result from quantifier elimination.

It seems likely that mathematicians use examples much more often as IU~
goal p,opo,c" than as subgoal rtjedon. Mathematiciao. often use examples
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to guide the search for a proof from beginning to end. Since thf)' usuall:r
discover theorems b)' building and inspecting examples, it st'ems likely that
the same examples would be useful in proving these theorems. COllstructing
good examples is a "er)' difficult task but one that mUlt be undersrocd if
rea.sonabl)· competent theorem prcn'ing is to be done by computer. Lenat'.
A.\f system (1976; Article XJV.D4e) constructed and uaed examples to help
make conjectures.

Conclul'ion

Xcnresolurion. or natural-deduction. proof procedures are designed to
develop proofs in a goal-directed manner that is eas)' for humans to under­
stand, Unlike resolution methods, natural deduction uses many proof rules to
reduce goals t.osubgoals, In addition. natural-deduction systems often include
domain-specific heuristics to speed up parts of a proof.

All)' proof that can be derived b)' natural deduction can also be derived
b)' resolution, given enough time. The advantage of natural deduction is
chiefly that the proofs it produces are relatively ea!)' to understand, This is
very important whenever there is interaction between an automatic theorem
prover anef a human.

Reference,

The ThIPLY system is discussed in Bledsoe and 1)'80n (197i),
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THE Boyer-Moore Theorem Prover (BMTPj Boyer and Moore, 1979) embod­
ies an v ctensible mathematical theory [recursive function theery] in which
theorems can be stated and automatically proved. The system is designed
to prove theorems by continuously re"Titing the current formula (Bledeoe,
1971. 197;) without ever having to backtrack and alter a decision•. While
each rewriting rule is sound. formal equivalence is not necessarily preserved:
thus. the system is not complete. But heuristics are employed to guide the
rewriting process, applring rules that the system believes will allow reten­
tion of the "theorem ness" of a formula. The theory can be extended by
new function definitions and new data types. Xovel features include the
automatic use of structural induction (Buntall, 1969) and recursive quantifi.
cation (Skolem, 1967). The relations between recursion, termination, and the
inducth'ely defined data objects allow the BMTP to produce induction proofs
autornatieally. Recursive functions. used u an alternative to quantification.
offe: a powerful form of expression when dealing with finitely constructed
objects such &ll the disc,ete mathematical structures 'employed by computer
programs.

Rather than operate in the predicate calculus (see Article m.ci, in Vol. I),
the 8o)·er.Moore Theorem PrOV't'r treats axioms and theorems as fUDctions.
Axioms have the values non-F (true) or F (faille). A theorem is proved by
showing that the value of its function ill non-F. For example, a statement
that multiplication is distributive over addition would hav·e appeared in Q.o\3
(Green, 1969: see also Article m.CI, in Vol. I) u:

FORALL :I F'OULL J PORALL z SUY(1.I.a1) AlII) PRODUCT(z.al.a) AIID
PRODUCT(x.,..bU AIm PROIlUCT(x.z.b2) AID SUK(bl,b2,b) AIm
EQUAL (a,b)

("'here z, ", %, 4, 01, b, bl. b:r are all variables). In the BMTP, the theorem
becomes:

(EQUAL (TIKIS x (ADD ., z» <ADD mMlS z 1) (TIllIS z zn) .

The Boyer-Moore Theorem Prover automaticallr proves the theorems it
is presented with, possibly using rewrite lemma that ha\"f' been retained
from the proofs of previous theorems or axioms that have been added by the
introduction of new clata types. Most theorems cannot be proved from first
principl". so the user must structure the proof by determining intuith-ely
which lemmas will be necessary, These are then proved as theorems in their
own right and saved. Sinee lemmas must be proved before th~' can be
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automatically used. the B:\ITP is assured of the ,·alidit)· of the proof of the
final rhecrem. Even theorems that can be proved without lemmas can han·
their proofs speeded up by the use of lemmas. If the B~fTP fails to prove the
desired result, the proof attempt helps the user determine where the proof
went awry and formulate new lemmas. Thus, the B:\ITP i! an automatie
theorem prover in the sense that the user specifies only what to prove, not
how to prove it. But if a proof fails, the user provides a bit of the "how" b:.·
torrnulating an appropriate lemma.

The system is experimental and is conunually being tested and improved.
It has proved approximately 400 theorems. including the soundness and com­
pleieness of a taut ology checker far propositional calculus, the equivalence of
Interpreted and optimized compiled rode for a simple arithmetic language.
the correctness of the Boyer-Moore fast string-searching algorithm. and the
prime-factorization theorem,

Th« Theory

ThE' syntax of the theory is elosely related to the prefix notation in LISP.
Terms art' variables or are specified b)' (f XI ... z,,). where I if an n-ar:.·
function symbol and all %, are terms. Constants are represented 8! O-ary
Iunctions (e.g .. (TRL·E). (FALSE). (ZERO). The variables in anr formula are
implicit I)' universally quantified.

Functions are introduced by adding the equality axiom:

(f %•.•• z,,) ,., (function bod)') .

To retain consistency, the B~fTP requires that each newly defined function be
either nonrecursive or recursive but prO\'abl)' total. The proof of toralitv is
based on the notion of measure functions and well-founded relatiOn!. Thi' i'
discussed in detail later in this article in the section on induction.

In making Iunctien definitions it is ohen nece!S&f)' to include tests that
allow the returned value of a function to be one of a set of terms. The usual
treatment o~ !ogic does not allow for the embedding of proposition! "ithin
terms. so the B~fTP recreates the effects of prop<lSitions at the term level.
Boy~r and Moore create four axioma to define the functions EQl!AL and IF;
these form the core of the BMTP. We abbreviate (TRl'E) as T and (FALSE) as
f. and add the axiom that T and F are distinct:

l. T ~ F

2. X ,. Y .. (EQUAL X Y) • T

3. X ~ Y ,. (EQUAL x Y) • F

-I. X ,. F .. (IF X Y Z) ,. Z

5. X __ F .. <IF X Y Z) ,. y
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(For those readers who are not familiar with LISP notation, (IF X Y Z) means
II X, then Y; el"e Z.) Thus, the term (IF X Y Z) has the value Z if the
proposition X = F is true and it has the value Y if X • , is false.

Boyer and Moore do not define predicate! but, instead. deal within a
theory of functions. Proying that the value of a function is not F is the
wa~' the BMTP proves that a function is • theorem. Functional versions of
common logical connectives are defined with IF. These definitions capture the
semantics of the common logical connectives:

J. (NOT P) = (IF P , T)

2. (Ah~ P Q) = (IF P (IF Q T F) F)

3. (OR P Q) = (IF P T (IF Q T F»

•. (IllPLIES P Q) • (IF P (IF Q T F) T)

In addition to these and other functions, the B~ITP allows the creation
of arbitrary data types. These are typically defined inductively and made
known to the system b~' the Shell mechanism (discussed below). which adds
axioms that are guaranteed to leave the theory consistent. Data objects are
considered to be finitely constructed. Data t~·~ are mutually exclusive yet
not assumed to be exhaustive. This guarantees that the subsequent addition
of new data types will not in\'alidate previously proved theorems.

Proofs within the BMTP are accomplished by absorption, idempotency,
the law of excluded middle [e.g., T V X -+ T, F V X -+ X, X V ...X -+ T,
and their commutative counterparts), and induction principles. Recursion as a
control structure is analogous to inducti\'ely defined data t)·pes as a data struc­
ture. The proof-theoretic counterpart of these two is the Generaliaed Principle
of Induction. or Noetherian Induction. A consistent induction mechanism is
presented within the theory'. It allows a base cue u well as Ie remaining
induction steps, each of which can contain M'\'eral induction hypotheses. It
requires a relation that is well-founded on a measured eet of variable! O\'er
nll substitutions required to instantil'te the k + 1 eases. Heuristic rrethods
are employed in the B~{TP to formulate this schema; they are discuued later
in this article in the section on induction. A ",'ell·founded relation r is one
that admit!! no infinitely decreasing sequences. That is, there cannot exist an
infinite sequence 1,2, ... such that (rXi+1Xi), A simple well-founded relation
is < on the nonnegative integers. since for any Xl we cannot find an infinite
sequence of x, such that

... X,•• < X, < X'_I < ... < x i .

The Shell meehanlem, The Shell mechanism is \L.~ to introduce new
data types. It is just a syntactic form from which consistent find eomplete
type-axioms are created. As an illustration, the definition of lists by the Shell
mechanism is as foUows:
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add tha ahall COIS. of 2 ar~Dt.

ncopiz.r LISTP
aee •••ora CAR. CDI
dafaul~ Yalu•• "IlL". "IlL" .
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A few of the important axioms that were added (";th symmetric CDR
axioms) are the following:

(LISTP (CONS E 1»

(EQUAL (CAR (CONS x 1) x»

(!Il?LIES (USTP x) (USSP (CAR x) x»

(EQUAL (EQUAL (CONS. b) (CONS x y»
(AND (EQUAL a x) (EQUAL b J»)

(IIa'LIES (USTP x)

(EQUAL (CONS (CAR x) (CDI x»
xn

- a CONS of tVlV thillli ia alwa)',
a list

- definition of the CAR aeeellini
function

- a measure pTopert~· used in
pro\'ing terrnmation

- two CO:'\Set are equal if their
parts are equal

- the system can trade CARl
and CDRIfor CO:'\5ell

Ol'trt';etl' of the Theorem Prove«

The B:\fTP proves that a formula is a theorem b)' continuaUr rewriting the
formula until it is reduced to T, The BMTP operates in. strictly linear manner
withou; backtracking. This .tra~' leads to a stratification of the cJUIeI or
r4!'\Tit~ rules, !O that the more conservative transformations [l.e. thOle wbich
guarantee equivalenee] are attempted first. Induction rewrite rules are applied
13!t. since they are the least conservative transformations and it i. important
that induction be applied t.o the simplest. and most general form of a formula,
As a consequence, man)' of the rewrite rules have been designed to preduee a
formula that is more amenable to inductive arguments. We will now discu..
th~ rule classes, Rules at level i + 1 are tried only when all rules at level
I fail to be applicable. H a rewrite rule applies at an)' level of the hierarrh)',
the formula is rewritten and the entire theorem prover i. recursn'e1r ul\'Oked
on the new formula,

Simplificlltion

The formula is Tt!"'ritten by the logical proof rules, the initial axiomI,
the axioms added by function and data-t)·pe definitions. and retained lemma
that were previously prO\-ed as theorems, (The formwa i. also Te\\Titten to
ecnjunctive normal form. or clGwe form; lee Article XII.8.) AJI tht!Sf' r"Titine
ruJ~ retain truth-...a1ue equivalence, The Simplifier is a small theorem-pl'O\'er
in its own right. Examples of the information known te the Simplifier are:

J. I.ogieal Proof Rule:
X : T .. T
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2. Initial Axiom:
:It • ., .. (IF :It ., z) • .,

3. Function Axiom:
(APPERD :It.,) • (IF (LISTP x)

(CONS (CAR x) (APPERD (CDR x) .,» .,)

XlI

4. Data-type Axiom:
(CDR (CONS :It .,» • .,

5. Lemma:
(APPEJID (APPEHJ) :It 1) z) • (APPERD x (APPERD ., z»

Simpllflearicn is sufficient to prove the following formula (which is the
base ease of the induction needed to prove that APPE~'l> is assoeiative]:

(IMPLIES (NOT (LISTP A»
(EQUAL (APPERD (APPERD A I) C)

(APPEND A (APPEND B C»»

Knowing that A is not a list allows the .a.PPE:'\'l> functions to open up and
return their second arguments: see the functional definition of APPEND above.
The formula simplifies to:

(IMPLIES (NOT (LISTP A»
(EQUAL (Al'PERD 8 C)

(APPEJID B C»)

Since the two APPEr-.'l> terms are identical, this simplifies to:

(IMPLIES (trOT (LISTP A» T) "

This in tum simplifies to T, since the formula is eqeivalent to the clause
(l.ISTP .~) V T, which b~" the above proof rule is rewritten :.0 T.

If simplification cannot determine the truth value of a formula. it will
probabl)' be nec:essar)' to appl)' the inc'uction rr\\Tiung rules. The next fou..
cases illustrate how the formula is prepared ror induction.

ElimiPl4tion oj UnduiT4ble Concepti

The BMTP restates a rormula. tradinc lOIIIe functions Cor othen "'hen
the substituted Cormulas are easier to rnTit.e or have more lemmas involvinc
them. This type of rule is a special subclass of the ceneral simplification rules
and is handled separateb' since it requires special processing. An example of
this kind of rule is:

(p x) • (p (COlIS A B». if :It is known to be a Ii,t.

An example of its application is found in the proof of the theorem that
the function RE\'ERSE is its own inverse:
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(IMPLIES
(AMD (l.ISTP X)

(EQUAL (REVEItSE (REVERSE (CDR X») (CDR X»
(PLISTP (CDR X»)

(EQUAL (REVERSE (APPENIl (REVERSE (CDIt xn
(COlIS (CAll Xl ·.XL"»))

X»

JO~

• (IMPLIES
(AID (LIST? (CONS 1 I»

(EQUAL (REVERSE (REVERSE (CDR (con A I»» (CDR (con A I»)
(PLISTP (CDR (CONS A I»»

(EQUAl. (REVERSE (APPEJIlD (REVERSE B>
(COIS A "NIL"»)

(CONS 1 I») .

Here we have traded a C.\R and CDR for a CO~S. Note that thi&transformation
We! applicable since X was known to be a list from the hrpothesil of the
implication. A and I are nn' variable names.

This fairl:,' complicated formula is passed back to the Simplifi~. whicb
rewrites it 85:

(IMPLIES
(AID (EQUAL (JtEYEJlSE (REVERSE I» .)

(PLISTP I»
(EQUAL (R!VEItSI (APPEIIJ) (UVDS£ 8)

CCOI$ 1 ·.IL"»)
(con A I») .

Uu 0/ Equalitiu

The B:\fTP U!eS equalities by substituting equal! for equals, and then it
usualJ~' remove! the equality term from tbe formula. This is not guaranteed \0
be complete, but the heuristic decision preeedure in B.\ITP that decides ""hieb
terms to substitute pertorma excellent I)'. The equalit~· term is removed \0
simpUr)' the statement of the formula(",..hieh hopefully illstill a theorem). Two
distinct classes or subltitutiona-unirorm substit.ution and e~lerti1izat.ion­

are performed.
Uniform IUb8tltUtiOD. If the term (IQUAL II ••) is found, _he,. II is a

term and e. is an explicit ,-alue. then ev is uniformly substituted ror II "'ithin
the rer-t or t he formula. The symmetric cue applies.

Croe..tertiU••tion, It the term CIQUAL It J) is found, ""here both I: and
., ar'! not explicit \'alua, and another term of the form "Cp (an:,' term) ;term
that eontains ,)" is found, then I: is subst.ituted ror '1onl~' in the right-hand
fide or p. and the equality is removed from the formula. The .,-nunetrit' cue
applie!. This heuri"'tic is closely related to tM " ..y induction is perforlMd: it it
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designed to allow maximum use of the lnduetien hypothesis. The connection is
a bit subtle and the reader is referred to ~'er and ~foore's (1979) description.

Continuing the above example. the antecedent has an equalit)· of the
form "(EQUAL x 8)" and the consequent term is of the form "(p (term) {term
with I»." so we cross-fertilize. This results in:

(IIIPLIES
(PLISTP 8)
(EQUAL 0tEVE1tSE (APPEIID (REVERSE 8)

(COIS A "NIL"))
(CONS A (REVERSE (REVERSE I»»)) .

Cl neralization

:\ further simplification can be accomplished by replacing a term in the
formula by a variable. thus generalizing the formula and allowing an induction
on the new variable position in the formula. Hopefully, by the time ~ reach
this point, the internal structure of the term hu nlreadr contributed its
significance to the proof and can be ignored. To prevent the formula l'rom
becoming overgeneraliaed. the B~ITP can add certain type-restrictions to the
variable introduced. The REVERSE ecample that we'have been following does
not adequatel~' ilIustrat.e generalization. so we move tempcrarlly to a different
example:

(EQUAL (APPEIII) (FLATTEII Z)
(APPEIID (FLAnD V) AIlS»

(APPEND (APPEID (FLAnD Z) (FLATTEI V»)
AIlS»

• (IMPLIES (AJIJ) (LISTP A) (USTP I»
(EQUAL CAPPEIID A (APPEID B AIlS»

CAPPEID (APPEND " B) AJIS»)

Here, (FLATTEJI Z) and (FLATTII V) have been generalized to A and I,
respectively. 1)'pe information baa been added ahowing that both A and I are
Iiat data types, since the system is aware or a theorem statin& that. FLATTEN
a]",..)'1 produef'JI a list. The formula no.",. is just the ltatement. that. APPEND
is anociau""e.

EliminAtion o/lrreutlOnt Tmru

In performing the abcn-e transformations. it is often the CMe that irrele­
"'ant tel ms are left in a formula. Removing these terms deans up the formula.
While these terms are difficult to spot in general, there are two special C&IeI!,

shown u rules 1 and 2 below, that frequently occur. In both casef. all the
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terms of a formula art' first partirioned into equivalence classes with term 1
in thp same ('I&'~ M term 2 if thev share a common variable.

Rule I, Ir a class contains onl)' ncnreeursrve functions, then all terms in
the class are removed from the formula. If these formulas were
aly,..~·s non-F. the Simplifier should have been able to prO\'e thil
fact. Paning thfte termll on t'J the Induction mechanism "'i11 not
help, since the terms are not recursinl,Y defined.

Rule 2. If a class corualns a single recursive function. it is removed. A
single function that cannot be shown to be alway! non-F b~' the
~in;plifkr probably ean assume non-F values.

Continuing our example or the proof (EQUAL (REVERSE (REVERSE X» n.
the theorem is generalized to:

. (IIO'LIES
(PLISTP 8)
(EQUAL (REVERSE (APPEIII) X (COJIS A "JIlL"»)

(CONS A (REVERSE X»»

by replacing all occurrences of (REVElSE 8) with X. ;\C' extra type information
i! added during generalization. The antecedent is eliminated by rule 2. lea,-ins
the formula:

(EQUAL (1lEVEIlSE (APPEIII) X (CONS A "NIL"»)
(COIS A (REVERSE X») •

which is a statement userting that reversing the concatenation of X and A is
equi,-alent to concatenating A with the reverse of x.

PtrformiJtf on Induction

If. in the course of these rewrite. the theorem hu still not been reduced
10 T, the B~fTP automaticall)' rormu:ata a valid induction argument to tr)'
to prove the theorem. The beuristics em~loyed here repreRnt t.he heart 01
the B~TP. Inductions are rormulated by usinl information collected at the
time the function is defined and at the time the actual induction is needed.

Function-definition time. When a function is defined, the srstem mUll
preve that the function terminates before allO"inl tbe definition, Termination
i~ proved by finding a well-founded function that decrease! when applied to
a subset (measured set) or 1M arluments used in all recursive calls. The~...
tern exhausti\'C!I)' searches throulh al1lexicozraphic orders of all well·rounded
function. (LESSP if initial!)' the onlr one. but others are added b)' the Shell
mechanism] applied to all subsets and permutations of a funt'tion's arguments.
These are all collected in a set or inducti:>n :emplates that are usociated \\ith
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the newly defined function. These templatee include the form of the induc­
tion to be performed and all of the variable substiturions that will need to be
made.

The following illustrates the creation of induction templates at function­
definition time for REVERSE, which is defined as:

(REVElS! X) '" (IF (LISTP X)
(APPEMD (REVERSE (CDR X» (CONS (CAl X) "NIL"»
(COMS X -'IL-» .

The proof of termination is fairly simple, since REVERSE is monadic and there
is only one recursive function call within its body. The B~ITP utilizes the
information that the recursive function call is executed only if X is known
to De a list. Thus. to prove that REVERSE terminates, it tries to prove the
theorem:

(IMPLIES (LISTP X) (LESSP (CDR X) X» .

The system proves this theorem (it retursi'\'ely calls it~lf) b)' noticing that
this formula is equivalent t.o an axiom added by the Shell mechanism during
the definition of lists. This ill the only v,'lly the syste~ can prove termination.
so the only induction template produced is:

(AHD (IIO'LIES (IIOT (LISTP x» (p x»
(IIO'LIES CAHD (LISTP x)

(p (eDI x»)
(p x») .

This state! that, to prove the formula (p x) wbere p in\"oh'es the REVERSE
function, it is sufficient for the BMTP to prove that:

1. If x is not a list (the bue cue). then (p x) can be proved.

2. If 1I' is a list and (p (CDR x» ia asaumed to be true (the induction
h)'potheaia), then (p x) can be proved.

Typicall)', the formula p will allO involve other recursive functions that have
their own induction templates. The problem of which induction template to
use cannot be bandied at function-definition time (since the BMTP has no
way to determine how a newly deftned function v.iU be UIed) and is handled
when the induction rewrite rules are tryin, to rewrite the formula.

Inetantlation time. When an induction rewrite rule ls attempted, the
induction templates for all recursive runctioM in the formula are retrieved.
These templates are then sifted by the folJawing rules:

1. Only lelal templatel ("ith valid IUbstitution instances) are retained.
Substitutions may be in'·alid for many reasons. the most rommon that
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th~ template requires that a nonvartable argunlt'nt !'If' used lIS an indue­
tion variable. The RE\T.RSE induction template could not be u~ ir
the formula p involved only terms like (REVEJlSE (f x»: hopefull~·. th~

gl'n~ralizationheurisries will substitute a ' ..nable for the function (f xl.

2. Induction Khemata are obtained ",ben the l~al templates are install­
tiated by performing th~ r~ired substitutions.•o\Ilsubtumed induction
schemata ar~ diKard~d. This m~ans that the s~·Iit~m wilJ discard y,'eak~r

induction arguments for enes with a richer ease structure (duplieates ar~

removed by this rnethed alse).

3. The rt'maining templates are then merged. Two tf'mplatel! are merged if
thf';' ront ain a «ornmon induct ior, variable. allowlnc for the flr.al indrc­
tion scheme 10 contain induction hypotheses for ~\'~ry relevant induction
variable. Thus. if one induction scheme requires induction on the "lui·
ables x and r and another requires induction on the '·ariables ., and

. z. i; seems plausible to require simultaneous induction on all of x. .,.
and z:

IlJ

4. If more than one scheme still ~xists and there is one "unfta\\-ed~ seheme,
then all hftaw~d" Kh~mel! are diKarded. An induction scheme is unftawed
if every occurrence of an induction '·.riable i~ in a pofition where it is
decomposed.

5. Finall:-. if more than one sch~m~ still exists. a scorinl function d~ter­

mines which one to use.

6. The final scheme is then inltanti.ted for the speeiflc formula to be
proved.

8o)'er and ~Ioore (1979) report that 90% of all inductions' arguments yield
only one unfta\l\'ed scheme and. or the remaining 10%. half have no unique
correct scheme (i.e .. the theorems are symmetric in some variables).

Continuing the REVERSE example, the B~fTP is about to create an induc­
tion argument for proving:

(EQUAL (1tEVDSE (APPPD X (COliS A -NIL-»)
(COIfS A (JtEVEJtSI X») •

It determines the induction eehemata for REVERSE and APPEND, and sinee
both functions perform CDR recursions on X, their schemata are merced to
create the unique induction schema, which is finally used:

(AJm (IMPLIES (IIOT (LISTP X» (p X A»
(IMPLIES WID (LISTP X)

(p (CDR X) A»
(p X Al» .
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Tlu mee of the Boyer-lvfoore Theorem Prover

Proof by induction. The outstanding feature of the B~ITP is that it
automates induction proofs. Since most common data-types (integers, lists.
trees. formula.s) are defined inductively, it is imperative that theorem provers
that prove properties of programs have the capability of performing inductive
arguments (automatically or manually). The excellent performance of the
B~ITP is in a large part due to the heuristic methods employed in constructing
induction proofs. These heuristics form the core contribution the B~ITP has
made to AI research.

Referencing problem. A key problem in current theorem-proving sys­
terns i~ the performance degradation due to increased knowledge. While
increased knowledge should improve a system's performance. it typically just
expands the possible solution space, causing excess searching. This has been
named the referencing problem by Bledsoe (19i4). Resolution theorem-provers
suffer greatly from this problem, Such methods as proof by an810~' (Kling,
19;1) have been used to restrict the reference set. but they have met with little
success. The BMTP does not address this issue with 8.1Y more sophistication
than trying the rewrite rules in reverse chronological order (with complex
results first J. This simple strategy has proved effective even when operating
within an environment that contains apprcximately 400 theorems.

The language of the theorem prover. Since the main application
of the B~fTP has been to prove properties of programs, a possible misconcep­
tion should be avoided, There is a difference between the language used to
express formal statements whose validit)" is being proved and the languag~

used to express a program. The theory is just a mathematical tool for mak­
ing precise assertions about the properties of discrete mathematical objects.
The language used to express the theory is closely related to the pure LISP
programming language and should be considered as an alternanve to the use
of the predicate calculus. Frequentlr. programs can be written as functions
within the theory (since the semantics of a LISP-like program can be e8$ilr
captured within the language of the theory) just as it is possible to use predi­
cate euleulus as a programming language (Kowalski, 197.). But a distinction
should be made between the languace used to express theorems and the pr~

gramming language used to describe an algorithm about which the BMTP it
proving theorems. When prO\iDI properties about programs, the user applies
a reJe,..nt theory of program Ilemanties to derive formal statements whose
validity implies that the program has the desired properties. These statementa
are then translated into the theory on which the B~fTP operates. The B~fTP

can then be instructed to try to establish the validity of these statements, To
illustrate thia fact, the proof of the correctness of the compiler is expressed b~'

~lcCarth~"s functional method, while the correctness of the string-searching
algorithm is expressed by Floyd's method of lnduetive assertions.
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Perrormanet!. Two performance measure! art' relevant to theorem prO\'­
ers. The fir!'t is the system'e ability to represent typical facts and theorems in
the domain of interest (epistemological 8dequ8c)·). The second is !he sbilit),
to prove theorem! within a reuonable amount of time. Both pt'rformanct'
measure. contain ambiguit)' (e.g" "typical," "reuonable"). But in the B)fTP,
man)' interesting facts and theorems Ujl be represented, and proof times are
commensurate with a user's patience when debugging proofs interactively,
The B)ITP has been applied to a large number of theorem-prm'ing taska, IOm("
of which are "eT)' difficult b)' human standards, ~foet theorems are prO\-ed
in well under a minute, although most proofs require lemmas to be prO\"ed
PrE",,:o·~~I~·. Xevertheless. this is one of the most powerful theorem provers
available.

Rt!trt.nre8

Boyer and Moore diecuss their theorem prover in their 1979article.



E. NONMONOTONIC LOGICS

SE\'ERAL FORMS of ncndeduetive reasoning have attracted earefulscrutiny.
Pur('lr deductive reasoning techniques have long been recognized as inade­
quate for capturing all intelligent thought. Statistical and inductive reasoning,
which concern inexact and generalizing reasoning. have received much study
as possible extensions or alternatives to deductive reasonlng. Xonmonotonlc
r":"oning. recemly formalized in nonmonoronic logics. i!' the latest extension
to deductive reasoning. This article sketches the nat un of. reasons for. and
approaches to nonmonotonic logics.

The Ta~k of Logie

The task of logic is the judgment of arguments. Historically, logic has
been the science of argumentation. the study of which arguments are good and
w~ich are not good. Different purposes engendered diff..rent conceptions of
good . Arguments to convince capricious. distracted. and sometimes irrational
humans were judged by the standards of effective rhetoric. which concern,
among other things, the size, structure, motivation, and emotional impact
of arguments and their steps. Inductive logics judged arguments that made
generalizations; statistical logics judged arguments that dealt \\ith frequencies
and probabilities; and deductive logics judged arguments that made restate­
ments, that is. truth-preerving inferences.

While important insightll \\~re gained into the philOlOphicai and practical
questions underlying rhetorical, statistical, and inductive reasoning, perhaps
the philosophically most striking advances were made in eonneerion with
deduenve reasoning. Philosophers, logicians, and mathematicians explored
t.he powerful ide.. of formal languages, trutt.-theoretic: semantics, let theof)',
and the mathematics oC formal systems, model theory, and proof theory.
These ideas proved 80 Cruitful that logie Cor the most part came to be identified
with dedueuve logic, the study of truth-preserving inferences. ThiB identifi­
cation grew 10 strODe that many of the proposed nondeductive 1o&ics have
been attacked .. falae logics. But tacic is • science of thought and arlUment,
not merely a l!Cienee of trut.h-preservinc inferences.

The Tuk oJNonmonotonic Logic

The task of nonmonotonic logics is to judge ea.ees of nonmonotonie rea-eco­
ing. that ill. reL.'"Oninc that. invoh-es adopting assumptions that ma~' ha\'e to ~
abandoned in light or new information. For example, a scheduling secretary

114
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may employ the inference rule that he (or she] should schedule each new
meeting on the closest future Wedn~da~' unless and until he find! rf'3!'Ons for
~('ht'duling the meeting otherwise. While working out the week's schedule. the
!lecretar~' may tf'ntatively schedule the first meeting on the next Wedneda~',

onh' to reschedule it later, thereby abandoning his initial assumption, when he
learn! that a meeting is requested for that Wednesday specificall~' to accom­
modate a visitor,

This reasoning is called nonmonotonic in ccntrast. to the monotonicity of
the set of theorems of a set of a.'~ioms in deductive logic. In deductive logic,
the addition of new axioms to a set of axioms ran never decrease the ~t of
theorems..-\ot mo-r. the new axioms can give rise to new theorem•. so that the
set of theorem!' grow! monotonically with the set of axioms. In nonmonotonic
logic!', the set (If theorems may 1000e member!' :1S well as gain members when
new axioms are added.

Rttuoning bU IH/oult

Two C8!'t'! of nonmonotonic reasoning have been studied: reasonlng b:r
d..fault and reasoning by circumscription.

The default! of reasoning by default are statements or rules according to
which (M in the scheduling example above) some statemeht is to be believed.
unless and until otherwise demonstrated, Defaults can be found in man)'
plaCe! in ftandard AI t.ee:hnique!, They are used in stating generalitie! to
which exceptions ma~' be acknowledged without catastrophe. For example, ..
default might be that all birds can 8:)'; penguins and ost.riche! are exceptions.
In structured knowledge-representation systems (seeArtiele m.cr, in Vol. J).
such defaults often take the form of default fillers of frame slots, For exam­
ple. an airline reservation I)'stem might describe each customer with a TJO'­
~tngt~ frame in which the dtull slot has the d~f.ult "alue coach. Defaults .IKl
enter into man~' knowledge-representation systems implicitly through what is
known 8.! the cloud-w?Tld CII,umption. The clOled·world L'"!umption ia t~lat

all relationships not explicitly atated to hold do not hold. For example. t)'pica!
procedures for inheriting atatements in one frame Irom more general framet
by ~'ay of geneTaliHtioftlinka uaume that a frame is generaliled onl)' by thOle
frame! explicitl)· liated as ceneraJi&ationa or, in turn, b)' their ceneralizationa.
Thus, if the eleph4nt frame has a IOle generalization link to the mGmmal
frame. the inheritance preeedures ~'iIJ search on~' mommal and not any
other frames. in spite of the po!'!'ibilit)' that new generalitation Iinb ma~' be
attached to elephGnt later and \\'Ould then be searched as well. Yet another UR
of defaults is in the t)·pical STRIPS tu'Vmption that performed aetionl!' chanae
none of the program', beliefs about the world except those explicitly listed in
the description of the action (see Article >""\'.8). For example, a description of a
robot's action of moving from one location to another would list onl~' changt'S
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in beliefs about the robot's position. When the robot moves, the STRIPS
assumption default would leave its belief about world geography intact.

RetUoning b., CirCUm6Cription

Another cue of nonmonotonic re8l!lOning, whieh may welloverlap defaults
in some (or even all) ca..~, is that of parsimonious reasoning, or reasoning by
elreumseriptien. In reasoning about some problem, one often assumes that
the problem involves only those objeets and relationships that it mentions.
and no others. The inheritance procedures mentioned above made such an
assumption (the closed-world assumprion) about the nonexistence of unlisted
generalization links and generalizing frames. As another example, in the well­
known missionaries-and-cannibals problem of traversing a river uneaten. one
typically does not think of solutions involving bridges, rocket ships, handcuffs,
murder of the cannibals, or holes in the boat. Another wa~' of viewing
the circumscription principle is the assumption that all qualifications to the
problem have been stated explieitly.

Formal Characterizationl 01 Delo.ulu

Two sorts of detailed formalizations of nonmonotome defaults have been
proposed. namely, Reiter's logic of defaults and McDermott and Doyie's non­
monotonic logics,

Both logics roughly interpret Dela.vlt SuS oil prot1Q.ble UnlUI end until 5
can be duprowd. The difficulty with this interpretation is its circularity, that
what can be inferred depends on what inference rules .~e applicable, while,
at the same time, what inference rules are applicable depends on what can
be inferred. For example, suppose that \\-e decide to use only the ordinary
lo~ical rules of inferenee in attempting to disprove statements and that the
information to becaptured eonsist.!! of three statements: Default A, Default B,
and ....(A 1\ B). Here, neither A nor B can be disproved using the ordinary
logical rules of inference, 10 wedeelare both .Aand B to be prO\-able by means
of the default statements. Theee two new conchaions are inconsistent "ith
....(A 1\ B). Instead of declaring the initial three statements to be inconsistent,
the nonmonotonic Jocica try to reline the notions of provability to say that
there are two coherent interpretations of theee woma, namely, one in which
A and ....B are provable and one in which B and ........ are provable, This is a
big departure from ordinaT)' logic, in whieh a single set of axiom. hu exactly
one set of conclusions that can be drawn from it. The ker problem addressed
by the nonmonotonic IOCics is that of providing lOIfte "-ell-defined semantlca
for defaults that allows a single set of axioms and defaults to ha\-e lIeveral
coherent interpretations.

In all the nonmonotonic logies, the meanings of provable and COfllutent for
a statement and a set of axioms are defined noneonstrucrively by a
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mathematical definition of what coherent sets .,f conclusions are, rE'I at in' to
a given set ofaxiom~ and defaults. These definitions are nonconstructive
primarily because the coherent interpretations supplied by the logics art' in
general not even recursively enumerable. Roughly put, the logtes declare that
interpretations are found by adding in 85 many statements (assumptlons] as
possible, in accordance \\ith the defaults, but at the same time avoiding add­
ing in so many assumptions u to produce an ordin~' logical incensistency.
In the above example. for instance, the two coherent int~rpretations of the
three statements are produced by adding in just one of the assumptions. A or
B. By the time one assumption is added in, the negation of the other C3n be
deduced by ordinary logical rules of inference. so that the other assumption
i! ruled out. 8!! it would lead to an inconsistency. This rough description of
the semantics provided by the logics does not do them justice. For the precise
definitions involved, the reader is referred to the original papers (Reiter. 1980:
;\lcDermott and Doyle, 1980).

While Reiter's and McDermott and Doyle's approaches to formalizing
defaults have much in common in the way they interpret defaults and in
their major theoretical properties, they differ in logical form. as one approach
formalizes defaults as inference rules and the other as modal formulas. t"nle.
one is vitally interested in logic for its own sake, or in pursuing the future
development of better non monotonic logics. these differencE'S in logical form
can be passed over as small differences in notation for capturing the same
ideas.

Reiter (1980) formalizes defaults by adjoining a new sort of inference
rule called a default to an ordinary logic or statements and inference rules.
Default inference rules are of the form II P, Clnd it u cortlutent to (U,vme
Q, then inler R, written P: Q/R, where P, Q, and R are ordinal')' formulas.
Given condition P, a default allows the inference of R providing that Q i~ not
disprovable. With this notation, the simplest sort of default. that of A~"ume
.4 if it cannot be di.!proved, is written simply u ": .-\/A": that is. P is empty
and Q== R =A.

Instead ohtating defaults &II inference rules, McDermott and Do,vle(1980;
McDermott, 1980) state defaulta as modal formulas. The~' use an ordinar~'

100icallanguage extended b)' the unary modal operator not.dil"rovcablt. The
analogue in nonmoDotonic logic of a default inference rule P : Q/ R of the logic
of defaulta is P 1\ not·dilprovcable Q - R. Thus the simplest sort of default is
stated in these nonmonotonic IOCics as not·diqrovcable A - A. Althouah we
said earli-r -"1at nonmonotonic logics and the logic of defaults are for man~'

purpose!' 'nl\ctic \'Briants, that is not real I)' true. The modal nonmonotonic
logic: form\uations are, for better or worse, actuall)· more expressi\'~ than the
nonmodal logic of defaults. This is because one can make statements about
defaults: for example

not·duprolHl6le(not.d~A - A) - (no'·dilprOI'06It.4 - Al,
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in nonmonotonic logics......hereas in the logic of defaults no means exists for
referring to the default inference rules.

The G(ne~i8 of Practical Nonmonotonic Inference Ruttl

Neither of these approaches &a)'S anything about which nonmonotonic
statements or rules should be used in representing information about a par­
ticular domain. The logics all leave that decision to the AI system designer.
However, McCarthy (1980) and Dacey (19i8) have each developed theories
that appear to bear on the problem of formulating defaults. ~1cCarth~' for·
rnalizes reasoning by circumscription as an explicitly nonmonotonlc rule of
inferem '. Ducey. on the other hand. Iorrnalizee his theory oJ conclusions
in terms of classical decision theory. rather than in terms of nonmonotonic
reasoning.

The idea of circumscription, in McCarthy's (1980) treatment. becomes an
inference rule for formulating sets of assumptions on the basis of the available
information, The circumscription inference rule computes axiom schemata
from sets of axioms. schemata that can beapplied to make a varietv of &5!um~
tions, To circumscribe a set of axioms A with respect to Some predicate P
mentioned in.4. one constructs a sentence schema stating that the onl~' objects
satisf:;ing P are those whose doing 110 follows from the axioms A. All state­
ments following \'ia ordinary deductive rules of inference from that sentence
schema are said to be the conclusions reached by eireurrucriptive inference
with respect to P from tbe original axioms A. For example, suppose we know
only one red-haired person, our friend Jane. If we see someone looking like
Jane if! the crude sense of merely being red-haired, v,oe might, b~' circumscrip­
tion. assume that that person is Jane. beeause Jane is the onl)' person y,~ know
fitting that description. This inference is nonmonotonic. of course, since if M

now learn that Jane has an identical twin sister Joan, we can no longer con­
clude that anyone who looks like Jane is Jane. Expressed formally in terms of
~fcCarthr'!! circumscription, this example might be translated 8$ follows. We
!ltart with the set of axioms A = (red.h4ired(Jane» and circumscribe on the
predie-ne red-haired. The circumscription of thitl predicate in A is the axiom
schema

• (Jllnt) " 'iz (• (z) - red·IaairId(:r» - 'iz (rell·l&aire4(z) - • (:r» .

If we no..... substitute our only known inatance of a red-haired penon into this
schema. that is. if we substitute the formula z .. Jane for .(z). we get

Jan« .. JaRt /I "I z (z - Jant - rtd.laamd(z» - '" z (rtd.hairtd(:r) - :r - Jant).

The first two parts of tbis formula are true, and simplifying it lea\"e5 the
resulting assumption, or default. V% (red-haired(z) - %= Jane). which y,~

can appl~' to any new person who looks like Jane (i.e.. is red-haired). Yet this
inference is nonmonotonic in that. if we add the new axiom red-haired~JOt1rt)
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to A, we ran no longer draw an~' such identifring conclusion. At bo-t, we can
infer by another application of elreumscriptlon the less speetfle eonelusien
-;r (r~d.hair(d(r' - r = Jal,c,.' z = Joan).

Another approach to forming and rejecting tentative hypotheses, the
theorJ/ of condU3iofU developed b)' Daeey (1978) after a sugg~tion of Tuke)'
(1960). can be viewed as proposing a general rule about .....hen to adopt and
when to abandon defaults. Dace)' formulates conclusion theory in temll
of classical decision theory rather than in the proof.theoretic terms of the
preceding approaches. CIL4ISical decision theof)' anal~'ze! how the strength of
tach of one's hypot heses about the world should be revised with each new
svidennal fact. The intent of conclusion theory is to avoid the' continual
r~Y3luation of all hvpcrheses. to instead accept certain strong hypothese! U

conclusions. and to hold these conclusions unless and until the introduction
of very ~rong contrary evidence. Although Dacey apparentl~· intends that
the set of conclusions be the set of beliefs of the reasoner. his reasoner i!
isolated and unreflective, in that the rules of adoption and abandonment are
used in developing scientific laws de novo. Once communication or summaries
of conclusions are desired. 88 in writing an initially substantive .-\1 program.
ltlt' form of each conclusion seems to approximate that of a default. Thus.
conclusion theory might be adapted to the role of judging the propriety of
adopting or abandoning defaults.

The Mathefnatiu of TheorJl Evolution

Each of the approaches above treats in detail primarily the atoms of
reasoning. either individual inference steps or the sets of beliefs 'P~edinl and
following the inference step. So far. much less attention has been devoted to
clA!~ifring the larger, more complex wa~'s in which nendeduetlve inferenCe!
can change t he current set of beliefs of 8 reasoner. The beginnings of 8 larger
analysis of theory evolution are touched on by ~lcDermott and Doyle (1g~).

Doyle (1979. 19(0). Gumb (1978, 1979). \\"~'hrauch (1980), and. Ie!! formally,
in the philosophy of seienee literature in general (e.g., Quine and l1lian. 19;8).
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F. LOGIC PROGRAMMING

LOGIC PROCRAMMINC refers to a family of bigher levellancuac_ and aD

ueociated programming st)'le bMed on writing programs as seta of utertions.
These IWertions are \iewed as having deela,ctive meaning as descriptive
~tlltements about entities and relations. In addition, the ~rtion! derive
a procedura! meaning by virtue or being executable br an interpreter. Indeed.
executing a logic program is much like performing a deduction on a set of
(acts.

A logic progr.m COllsist!! or a set or clauses, where the general form of a
clause is:

(consequent) ;- (anteeedent.). (anteeedent2)•...• (antecedent...)

and each item in s clause is a podtive literal, t.hat is, an atomic formula
P(u~rml' ... , term,,) for 'Orne predicate P. ~ot all daIlIeS have smeeedents.

A simple logic program (or reversing a list is gh'en by the (oIlO\\ingset of
clauses:

APPEJII) (JlIL,X,X>
APPEJlI) (COIfS ex,T) ,Z,conex,U) ) : - APPEJII) (Y •z,U)
REVElSI(IIL.IIL)
KEVERSECCOIISOC, Y) .Z) :- IEVDSECT,It), APPEIDCl,CQI8OC,IIIJ ,Z)

Twoobservations must be made about this Pfosram; Fint, the terms involvinl
CO:":S are Dot evaluated as they would be in LISPi rather, they are treated as
S)'JDbolic objects. Second. both APPEND and REVERSE take one more ....u­
ment than the corresponding LISP function. This is beeaute APPE:'\"D(X.Y.Z)
does not name a function but, rather, names the relation Z iI the ,.Utdt
01 appending X and Y. Similarly, REVERSE(X,Y) means Y it the rCiult 01
rCI1e,.,inr X One couequeoee or this i. that • Josiepl'OlJ'Ul, unlike ita LISP
counterpart, CUI oftenberun b.dcwarda. For example, the APPEND procram
could be uaed to Rnd pain or liata that, when concatenated,yield a liwn lilt.

To execute a loIic propam, _ aupply a fOOl, for example, REVERSE
lCONS(A.CONS(B.CONS(C,ND..))},)C). The interpreter lInda IUbetitution. for X
that make the formula a conteqUenc:e or the clauaea in the prosram. This II
done b:r creling '''rough the cl.uses, matchinc the goal again.t the confeq\lent
(by unification; see Arti~ XII.B), recuni~)" IeWn& up ant«edenta .. sub­
goala, and backtrackiDl in eue or failure. If all t.he aubgoala earl be satisfied,
the goal i~ proved. and the !lubstitutions found durinc matehing eensrltute
an answer. Forced backtracking can be uled to produce S)..tematicall~· all
substitutions that make the goal provable. For the Coal above, the interpreter
would find the substitution CO:-;S(C,CO:":S(B.CO:"$(A.l'"tL))) for X.

120
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One feature that di!tingui,hetlogic programming from ordinary theorem­
IJro\'ing i~ t hat. while the declarative semantic' allow the clauses-s-and the
nntecedents within a clause-to appear in anr order, the procedural interpre­
tntion i, sensitive to the order. Thus. the programmer can rely on ~~rtions

being searched in sequence, top to bottom and left to right, and can structure
a program for maximum efficiency.

Another difl'erenl'e between logic programming and general theorem­
proving has to :10 with the restrictions on tbe form of the assertions them­
~h·es. In t heorem-proving terminologr, logic programs consist of set! of Horn
('Iau!'e~-di!'junl'ti\'e formulas with at mOllt one peshive literal. It i. easy to
;~ that t h(' clauses of :1 logic program are Horn clauses: .o\n~' di,junl'tion
of the form -.-\ . -8 ,.' ... v' -C \I D can be rewritten as an equivalent
implicational formula. A 6: B&:·· . k C - D, which is a notational variant
of the form of clauses in logic programs.

B~' enforcing this restriction to Horn clauses. logic programming ensures
relative tractability of deductions. It should be noted that. as with most "1.'1')'­

high-level programming languages, it is not hard to write extremely inefficient
logic prngrams-especiallr since the interpreter's buic stra~ is exhaustive
backtracking. ~fan~' implementations gh'e the programmer some control over
b3rktr:u'king and allow the insertion of a specil\1 ~"IIlbol (trpicaIl3' a slash,
.... i bPtwet'n antecedents in a dause to prevent backtracking past that literal.
This often improves effieiency, but at the expense of.semantic purity. since
some deductive consequences of the clauses ma~' be underh..ble ,,;hile other
formulas. not logical consequences of the clauses, ma~' be kdf'duced" from
failure to derive a fact. (This latter cue corresponds to the TH~OT construct
in the PLA;.~~ER languages.)

Logit Progrommin9 ond AJ

Although logic programming hu been applied to diverse problems. some
of which can hardl)' be considered exclush-ely AI problem. (e.g., databue
management). there are at least two rea..con!! why logil' programming hasspe­
cial importance for AJ. First, logic: programming offen an alternath-e to LISP
I! a PD"-erfullanguage for I)'IDbol manipulation, apart from the leJI'Iantic con­
lent of the symbols qua representations. The interpreters that drive IOCic pre­
grams do unification (Robinson, 1965b, and Article xn.a) and, thus, a1read)"
incorporate the pattern-matching machinei')' that man~' applications require
and that is programmed 6 ..plicitl~· in LISP.

The second. and more important, resson why logic programmins is of
interest to AJ has to do with its usefulness for knowledge repre!entation.
Predicate logic i~ a formalism considered b)' man3" to be a natural and powerful
rE'prHentation language marred onl)' by its perceived computational inef'­
fidpnt'~· (!et' Article IIl.e!. in Yol. I). A1I;\' approach based on logi<' that can
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demonstrate efficient execution (which logic programming does, in fact. claim)
would be a serious candidate as a representation language.

To FE'{- how a logic program could be used to represent real-world knowl-
edge, consider the following simple set of clauses:

S£ES(X.y) : - PERSONCX). PHYSOBJ(Y). OPElHEYES(X», IN-FRONT-OFCX. Y)

SEES (X.y) : - PERSON (X). EVENT m. IATCHINe CX, FILII-OF (Y»
PERSON (MOTHER(JobA»
EVENT (BIRTHDAY(Henry»
EVENT (GRADUATION (JobA»
WATCKIN~(W.OT~~RCJohn). FILII-OF(GRADUATION(JoQA»)

Consider the following three goals:

1. SEES(~OTKERCJohn), GRADUATION(John»
~. SEESCMOTKER(U), CRADUATION(U»
3. SEES(U,V)

These goal: can be viewed as queries to a deductive question-answering system.
The first can be paraphrased Did John'« mother ree hir graduation ?-a yes/no
question, The second and third goals resemble ·'Wh·que!tions"-the free
variables l." and \' indicating that the answer is to be tbe individual or indio
viduals satisfying the condition. In particular, the second goal corresponds
to the question Who if it who8e mother 8alL' hif graduation? The third asks
simply. Who sow what?

The logic-program interpreter would eyele through the asserted facts.
matching the goal against the consequent and solving the antecedents 811

subgoals. If the subgoals can besatisfied, the goal is proved and the answer to
the yes/no question will be YES. If, after exhaustively trying a1ternath-e facts,
t he goal still cannot beproved, the anS\\-er is r-;o. For goals with variables, the
system ran produce all substitutions that make the- goal provable, With the
clauses given above, the answer for goal 1 would be YES: the answer for goal
2 would be (' = JollD: and the answer for goal 3 would be F - MOTIID(Jollll) ,
V == G.~ATION(Jolm).

Det'elopment o! Logic Progromming end Current Statw

The parallels between computation and IOCical proof hsve long been reeos­
nized. especially in the theory of computation. An interf:l!\ting discussion of
the man)' connections between logic and computation can be found in an
earl)' work of ~fcCarth~' (1963), In a sense, ex~ting an applicath'e program,
for example. a program in "pure" LISP, can be thought of as calculating the
proof of an identity "!(argl' arg2' ... ) = result" by applying various axioms
of identity according to a fi.xed control regime. much u the a:54:rtions of a
logic program are applied.
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Ordinarily. logic programming is understood to refer more narrowly to
1he style of programming introduced and advocated by Kowalski (19~4. J9i9).
which waseventually incorporated into PROLOG, the best-known or the logic
program rning languages. PROLOG has several dialects and is supported in
numerous installations in the United States, in Britain, and on the Continent.
E,pecially active groups are in Edinburgh, London, Marseille6, and Budapest.
Di\'erse applications have been programmed in PROLOG, including natural­
language processing (Colmerauer et al., 19;3), database retrieval (Warren.
1981). and program synthesis and planning (Warren, 1974).

PROLOG. and logic programming in general. has increased in popularity
in recent years. In Europe. especially. PROLOG is a serious contender Ill!

1he major AI implementation language. :'.Iurh effort has been devoted 10

developing PROLOG compilers that compete favorabl)' with LISP in efficiency
of generated code (Wairen, Pereira. and Pereira, 19;;), In the I'nited Stall'S,

also. there has been interest in PROLOG. as well as in LOGLlSP, a LISP-based
logic-programming system developed at Syracuse University (Robinson and
Sibert. 1980).

To a certain extent, the development of logic programming has followed
the pattern of LISF. Both languages are founded on clear: mathematically
motivated formalisms. Both languages have a aide-eifert-free kernel and a
procedural interpretation that can bedefined in • simple and elegant fashion.
Yet both language families have yi.lded to the practical needs of their user
communities and have incorporated numerous features that detract from
their underlying elegance in favor of improved convenience and efficienc)".
In a sense. the fact that logic programming has progressed to the point of
incorporating such features attests to its practicalit)' and growing popularity.

References
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