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Artificial Intelligence: Cognition as Computation!

Avron Barr

- The ahility and compulsion to know are as characteristic of our human nature as arc our physical posture
and our languages. Knowledge and intelligence, as scientific concepts, arc used to describe how an organism’s
cxperience appears to mediate its behavior.  This report discusses the relation between artificial intelligence
(Al) research in computer science and the approaches of other disciplines that study the nature of intelligence,
cognition, and mind. The state of Al afier 25 years of work in the ficld is reviewed, as are the views of its
practitioners about its relation to cognate disciplincs. The report concludes with a discussion of some possible
effects on our scientific work of emerging commercial applications of Al technology, that is, machines that

can know and can take part in human cognitive activities. k’ -

Artificial Intelligence

Artificial intelligence is the part of computer science concerned with creating and studying computer
programs that exhibit behavioral characteristics we identify as intelligent in humin behavior—knowing,
rcasoning, lcarmning, problem solving, language urderstanding, and so on. Since the ficld's emergence in the
mid-1950s, Al rcsearchers have developed dozens of programs and programming techniques that support
some sort of “intclligent™ behavior. Although there are many attitudes expressed by rescarchers in the field,
most of these pcople are motivated in their work on intelligent computer programs by the thought that this
work may lead to a new understanding of mind:

Al has also embraced the iarger scientific goal of construciing an information-processing theory of
intelligence. 1f such a science of intelligence could be devcloped. it could guide the design of
intclligent machincs as well as explicate intelligent behavior as it occurs in humans and other
animals. (Nilsson, 1980, p. 2)

lTowh The Study of Information: Intendisciplinery Messages cdned by Friz Machiup and Una Mansfield, snd pubished by
Joha Wiley and Soms, New York, 1983.



Whether or not it lcads 10 a beiter understanding of the mind, there is every evidence that current work
in Al will lead to a new intelligent technalagy that may have dramatic cffects on our society. Experimental Al
systems have alrcady generated interest and enthusiasm in industry and are being developed commercially.
These experimental sysicms include programs that—

@ solve some hard probicms in chemistry, biology, geology, engincering, and medicine at human-
expert levels of performance;

o manipulate robotic devices to perform some useful sensory-motor tasks; and
e answer questions posed in restricted dialects of English (French, Japanese, eic.).
Useful Al programs will pi. v an important part in the evolution of the role of computers in our lives—a role

that has changed, in our lifetimes, from remote to commonplace and that, if current expectations about

computing cost and power arc correct, is likely to cvolve further from uscful to essential,

The Origins of Artificial Intelligence

Scicntific ficlds emerge as the concerns of scientists congeal around various phenomena. Sciences
are not defined, they are recognized. (Newell, 1973a, p. 1)

The intellectual currents of the times help direct scientists to the study of certain phenomena. For the
evolution of Al the two most important forces in the intellectual environment of the 1930s and 1940s were
mathematical logic, which had been under rapid development since the end of the (9th century, and new
ideas about computation. The logical systems of Frege, Whitchead and Russell, Tarski, and others showed

that some aspects of reasoning couid be formalized in a relatively simple framework:

The fundamental contribution was to demonstrate by cxample that the manipulation of symbols
(at least some manipulation of some symbols) could be described in terms of specific, concrete
processcs quite as readily as could the manipulation of pine boards in a carpenter shop. . . . Formal
logic, if it showed nothing clse. showed that idcas—at keast some ideas—could be represented by
symbols, and that these symbols could be altered in meaningful ways by precisely defined
processcs. (Newell and Simon, 1972, p. 877)

Mathcmatical logic continues to be an active arca of investigation in Al in part because general-purpose,
logico-deductive systems have been successfully implemented on computers. But cven before the advent of
computers, the mathematical formalization of logical reasoning shaped people's conception of the relation
between computation and intelligence.

Idcas about the nature of computation, due to Church, Turing, and others, provided the link between the
notion of formalization of reasoning and the computing machincs about 10 be invented. What was essential in



this work was the abstract conception of computation as symbol processing. 'The first computers were
numerical calculators that did not appear o cmbody much intelligence at all. But before these machines were
even designed, Church and ‘Turing had seen that numbers were an inessential aspect of computation—they

wcre just onc way of interpreting the internal states of the machine:

In their striving to handle symbols rigorously and objectively—as objects—logicians became more
and more explicit in describing the processing system that was supposed to manipulate the
symbols. In 1936, Alan Turing. an English logician, described the processor. now known as the
Turing machine, that is regarded as the culmination of this drive toward formalization. (Newell
and Simon, 1972, p. 878)

The model of a Turing machine contains within it the notions both of what can be computed and
of universal machines—computers that can do anything that can be done by any machine.
{Newecll and Simon, 1976, p. 117)

Turing. who has been callcd the father of Al not only invented a simple, universal, and nonnumerical model
of computation but also argucd directly for the possibility that computational mechanisms could behave in a

way Lhat would be perceived as intelligent:

Thought was still wholly intangible and incffable until modern formal logic interpreted it as the
manipulation of formal tokens. And it scemed still to inhabit mainly the heaven of Platonic ideals,
or the cqually obscure spaces of the human mind, until computers taughr us how symbols could be
processed by machines. A.M. Turing . . . made his great contributions at the mid-century
crossroads of these developments that led from modern logic to the computer. (Newell and
Simon, 1976, p. 125)

As Allen Newell and Herbert Simon point out in the “Historical Epilogue” to their classic work Human
Problem Salving (1972), there were other strong intcllectual currents from several directions that converged in
the middlc of this ccntury in the people who fouadced the science of artificial intelligence. The concepts of
cybemnctics ard self-organizing systems of Wicner, McCulloch, and others dcalt with the macroscopic
behavior of “locally simple” systems. The cyberneticians influcnced many ficlds because their thinking
spanned many ficlds, tinking idcas about the workings of the nervous system with information theory and
control theory, as well as with logic and computation. Their idcas were part of the zeitgeist, but in many cases

the cybemeticians influenced carly workers in Al more directly—as their teachers.

What eventually connccted these diverse idcas was, of course, the development of the computing
machines themselves, conceived by Babbage and guided in this century by Turing, von Neumann, and others.
It was not long after the machines became available that peoplc began to try to writc programs to solve
puzzies, play chess, and translate texts from one laaguage to another—the first Al programs.



What was it about computers that triggered the development of Al? Many ideas about computing
relevant to Al emerged in the carly designs—ideas about memories and processors, about systems and
control, and about levels of languages and programs. But the single attribute of the new machines that
broughit about the emergence of the new scicnce was their inherent potential for comiplexity, encouraging (in
scveral ficlds) the development of new and more direct ways of describing complex processes—in terms of

complicated data structures and proccdures with hundreds of different steps:

Problem solving behaviors, even in the relatively well-structured task environments that we have
used in our rescarch, have generally been regarded as highly complex torms of human
behavior—so complex that for a whole generation they were usually avoided in the psychological
laboratory in favor of behaviors that seemed 1o be simple. . . . The appearance of the modern
computer at the end of World War 11 gave us and other rescarchers the courage to return to
complex cognitive performances as our source of data . . . a device capable of symbol-
manipulating behavior at levels of complexity and generality unprecedented for man-made
mechanisms. . . . This was part of the general insight of cybernctics, delayed by ten years and
applied to discrete symbolic behavior rather than to continuous feedback systems, (Newell and
Simon, 1972, pp. 869-870)

Computers, Complexity, and Intelligence

As Pamela McCorduck notes in her entertaining historical study of Al Machines Who Think (1979), there
has becn a longstanding connection between the idea of complex mechanical devices and intelligence.
Starting with the fabulously intricate clocks and mechanical automata of past centurics, people have made an
intuitive link betwecn the comploxity of a machinc's operation and some aspects of their own mental life.
Over the lasi few centutics, new technologies have resulted in a dramatic increase in the complexity we can
achieve in the things we build. Modern computer systems are more complex by scveral orders of magnitude
than anythirg humans have built before.

The first work on computers in this ceutury focused on the numerical computations that had previously
been performed collaboratively by tcams of hundreds of clerks, organized so that cach did one small
subcalculation and passed the results on to the clerk at the next desk. Not long after the dramatic success of
the first digital computers with these claborate calculations, people began to explore the possibility of more
generally intelligent mechanical behavior—could machines play chess, prove theorems, or translate
languages? They could, but not very well. The computer performs its calculations following the step-by-step
instructions it is given—the method raust be specificd in complete detail, Most computer scientists are
conceriied with designing ncw algorithms, new languages, and ncw machincs for performing tasks like solving



equations and alphabcetizing lists—tasks that pcople perform using methods they can cxplicate. Howeve:,
people cannot specify how they decide which move to make in a game of chess or how they determine that

two seritences “mean the same thing.”

The realization that the detailed steps of almost all intelligent human activity were unknown marked the
beginning of artificial intclligence as a scparate part of computer science. Al researchers investigate differcnt
kinds of computation, and diffcrent ways of describing computation, in an attempt not just to create
intelligent artifacts but also to und :rstand what intclligence is. A basic tenet of Al is that human intellectual
capacity will best be described in the same terms as the ones researchers invent to describe their programs.
However, they are just beginning to learn enough about those programs to know how to describe them
scientifically—in terms of concepts that illuminate their naturc and differentiate among fundamental
categorics. Thesc ideas about computation have been developed in programs that perform many different
tasks, somctimes at the level of human performance, often at a much lower level, Most of these methods are

obviously not the same as the ones that people use to peiform the taskc—some of them might be.

The Status of Artificial Intelligence

Many intelligent activitics besides numerical cakulation and information retrieval have been carried on
by programs. Many key aspects of thought—Ilike recognizing people’s faces and reasoning by analogy—are
still puzzles; they are performed so unconsciously b; people that adequate computational mechanisms have
not been postulated. Some of the successes, as well as some of the failures, have come as surprises. We will
list here some of the aspects of intelligence investigated in Al rescarch 2nd try to give an indication of the
stage of progress.

There is an important philosophical point here that will be sidestzpped. Doing arithmetic or learning the
capitals of all the countries of the world, for example, are certainly activitics that indicate intelligence in.
humans. The issuc here is whether a computer system that can perform these tasks can be said to know or
understand anything. This point has been discussed at length (sce, ¢g., Scarle, 1980, and appcnded
commentary) and will be avoided here by describing the behaviors themselves as intelligent, without
commitment as to how to describe the machines that produce them.,

Probiem solving. The first big “successes” in Al were programs that could solve puzzics and play games.
Techniques such as Jooking ahead several moves and dividing difficult problems into easicr subproblems



cvolved, respectively, into the fundamental Al techniques of search and problem reduction. Today's programs
play championship-level checkers and backgammon, as well as very good chess. Another problem-solving
program, the onc that does symbolic evaluation of mathematical functions, performs very well and is being
used widely by scicntiSts and engineers. Some programs can cven improve their own performance with

expcrience.

As discussed below, the open questions in this arcél involve abilities that human players exhibit but
cannot articulate, such as the chess master's ability to see the board configuration in terms of meaningful
patterns. Another basic open question involves the original conceptualization of a problem, called in Af the
choice of problem representation. Hum;ns often solve a problem by finding a way of thinking about it that
makes the solution casy; Al programs, so far, must be told how to think about the problems they solve (i.e.,

the space in which to search for the solution).

Logical reasoning. Closely related to problem and puazie solving was early work on logical deduction.
Programs were developed that could “prove” assertions by manipulating a data basc of facts, each represented
by discrete data-structures just as they are rebrescnted by formulas in mathematical logic. Thesc mcthods,
unlike many other Al techniques, could be shown to be complete and consistent. That is, given a sct of facts,
the programs theoretically could prove all theorems that followed from the facts, and only those theorems.
Logical reasoning has b=.n one of the most persistently investigated subareas of Al research. Of particular
intcrest are the problems of finding ways of focusing on only the relevaat facts from a large data base and of

keeping track of the justifications for beliefs and updating them when new information arrives.

Programming. Although perhaps not an obviously important aspect of human cognition, programming
itseif is an important area of research in Al. Work in this area, called auromatic programming, has investigated
systems that can write computer programs from a variety of descriptions of their purpose, such as examples of
input/output pairs, high-lcvel language descriptions, and cven English-language descriptions of algorithms.
Progress has been limited 1o a few, fully worked-out examples. Autom.atic-programming rescarch may rsul;
not only in semiautomated sysiems for software development but also in Al programs that learn (i.e., modify
their behavior) by modifying their own code. Related work in the theory of programs is fundamental to all Al
research.

Language. The domain of language 'nderstanding was also investigated by carly Al rcsearchers and has
consistently attracted interest. Programs havc been written that retrieve information from a data base in



response to questions posed in English, that translate scntences from one language to another, that follow
instructions or paraphrase statements given in English, and that acquire knowledge by rcading textual
maicrial and building an internal data base. Some programs have even achicved limited success in
interpreting insmmtion§ that are spoken into a microphone rather than typed into the computer.  Although
these language systems are not ﬁcaﬂy 50 good as people are at any of these tasks, they are adequate for some
applications. Early successes with programs that answered simplc queries and followed simple dircctions, and
carly failurcs at machine-translation attempts, have resulted in a sweeping change in the whole Al approach to
language. The principal themes of cuﬁent language-understanding research are the importance of vast
amounts of knowledge about the subject being discussed and the role of expectations, bascd on the subject
matter and the conversational situation, in interpreting sentences. The state of the art of practical language
programs is represented by useful “front ends” to a variety of sofiware systems. These programs accept input
only in some restricted form; they cannot handle some of the nuances of English grammar and are usefut for
interpreting sentences only within: a relatively limited domain of discourse. Although there has been very
limited success at translating Al results in language and specch-understanding programs into ideas about the
nature of human language processing the realization of the importance in language understanding of
extensive background knowledge, and of the contextual setting and intentions of the speakers, has changed

our notion of what language or a theory of language might be.

Learning. Centainly one of the most significant aspects of human intelligence is our ability to leamn.
However, this is an example of cognitive behavior that is so poorly understood that very littlc progress has
been made in accomplishing it in Al systems. Although there have been several interesting attempts at this,
including programs that learn from examples, from their own performance, or from advice from others, Al
systems do not exhibit noticeable learning.

Robotics and vision. One area of Al rescarch that is receiving increasing atiention involves programs that
manipulate robot devices. Rescarch in this ficld has looked at everything from the optimal movement of
robot arms to methods of planning a sequence of actions to achicve a robot’s goals. Some robots “sce™
through a TV camera that transmits an array of information back to the computer. The processing of visual
infortnation is another very active, and very difficult, area of Al rescarch. Programs have been developed that
can recognize objects and shadows in vnsual scenes, and even identify small changes from one picture to the
next, for example, for aerial reconnaissance. The truc potential of this rescarch, however, is that it deals with
artificial intelligences in pereeived and manipulable cnvironments similar to our own,



Systems and languages. 1n addition to work dircctly aimed at achieving intelligence, the development of
new tools has always been an important aspect of Al research. Some of the most important contributions of
Al to the world of computing have been in the form of spin-offs. Computer-systems idcas like time-sharing,
list processing, and interactive debugging were developed in the Al research environment.  Specialized
programming languages and systems, with teatures designed to facilitate deduction, robot manipulation,
cognitive modeling, and so on, have often been rich sources of new ideas. Most recent among these has been
the many kuowledge-representation languages. These are computer languages for encoding knowledge as
daia structures and rcasoning methods as procedures, developed over the last five years to explore a varicty of
idcas about how to build rcasoning programs. Terry Winograd's 1979 article “lieyond Programming

' anguages” discusscs some of his ideas about the future of computing, inspired in part by his research on Al.

Exgert systems Finally, the arca of “expert,” or “knowledge-based.” systems has recently emerged as a
likely arca for uscful applications of Al techniques (Fcigenbaum, 1977). Typically, the user interacts with an
expert system in a form of consultation dialogue, just as he (or she) would interact with a human expert in a
particular area: explaining his problem, performing suggested tests, and asking questions about proposed
solutions. Current experimental systems have performed very well in consultation tasks like chemical and
geological data analysis, computer-system configuration, completion of income tax forms, and even medical
diagnosis. Expert systems can be vicwed as intermediaries between human experts, who interact with the
systems in knowledge-acquisition mode, and human users, who interact with the systems in consullation mode.
Furthermore, much research in this area of Al has focused on providing these systems with the ability to
explain their reasoning, both to make the consultation more acceptable to the uscr and to help the human

expert locate the cause of errors in the system’s reasoning when they occur.

Because its imminent commercial applications are indicative of important changes in the field, much of
the ensuing discussion of the role of Al in the study of mind will refer to the expert-systems research. That
these systems . ’

e “represent” vast amounts of knowledge obtained from human experts,

© are used as fools 1o solve difficult problems using this knowledge,

® can be viewed as intermediaries between human problem solvers,

o must explain their “thought processes™ in terms that people can understand, and
o arc worth a lot of money to people with real problems



are the essential points that will be truc of all of Al someday, in fact, of computers in general, and will change

the role that Al research plays in the scientific study of thought.

Open problems. Although there have been much activity and progress in the 25-year history of Al, some
very central aspects of cognition have not yet been achicved by computer programs.  Our abilitics to reason
about others’ beliefs, to know the limits of our knowledge. to visualize things, to be “reminded” of relevant
cvents, to learn, to rcason by analogy, and to make plausible inferences, realize when they are wrong, and

know how to recover from them are not at all understood.

Itis a fact that these and many other fundamenial cognitive capabilities may remain problematic for some
time. But it is also a fact that computer programs have successfully achicved a level of performance on a
range of “intclligent” behaviors unmatched by anything other than the human brain. Al's failure to provide
some scemingly simple cognitive capabilitics in computer programs becomes, in the view of Al to be

presented in this paper, part of the set of phenomcna to be explained by the new science,

Al and the Study of Mind

Al research in problem solving, language processing, and so forth has produced some impressive and
uscful computer systems. It has also influenced, and been influenced by, research in many other fields.
What, then, is the relation between Al and the other disciplines that study the various aspects of mind, for

example, psychology, linguistics, philosophy, and sociology?

Al certainly has a unique method—designing and lesting computer programs—and a unique
goal—making those programs secm intelligent. 1t has been argued from time 10 time that these attributes
make Al independent of the other disciplines:

Artificial Inteiligence was an anﬁnpt to build intelligert machines without any prejudice toward
making the system simple, biological, or humanoid. (Minsky, 1968, p. 7)

But one does not start from scratch in building the first program to accomplish some intclligent behavior: the
ideas about Low that program is to work must come from somewhere. Furthermore, most Al rescarchers are
interested in understanding the human mind and actively seck hints about its nature in their experiments with
their programs.

The interest within Al in the results and open problems of other disciplines has been fully reciprocated
by interest in and application of Al rescarch activity among rescarchers in other fields. Many experimental
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and theorctica! insights in psychology and linguistics, at least, have been sparked by Al techniques and results,
Furthermore, this flow is likely to increase dramatically in the future; its source is the variety of new
phenomena displayed by Al systiems—the number, quality, utility, and level of activity of which will soon
dramatically increase. But first let us examine what kind of interactions have taken place between Al and the

other disciplines.

The Language of Computation

As we defined it at the outset, Al is a branch of computer science. [ts practitioners are trained in the
various subficlds of computer science: formal computing theory, algorithm design, hardware and operating-
systems architecture, programming languages, and programming. ‘The study of cach of these subarcas has
produced a language of its own, indicating our understanding of the important known phenomena of
computing. The undcerlying assumption of our rescarch is that this language (which involves concepts like
process. procedure. interpreter. bottom-up ang top-down processing, object-oricnted programming, and
trigger) and the experience with computation that it embodies will, in turn, assist us in understanding the

various phenomena of mind.

Before we go on to discuss the utility of these computational concepts, it should be stated that, in fact, our
understanding of computation itself is quite limited. Von Neumann (1958) dreamed of an “information

theory™ of the nature of thinking:

The body of experience which has grown up around the planning, evaluating, and coding of
complicated logical and mathematical automata will be the focus of much of this information
theory. . . . It would be very satisfactory if one could talk about a “theory™ of such automata.
Regrettably, what at this moment exists—and to what | must appcal—can as yct be described only
as an imperfectly articulated and hardly formalized “body of expericnce.” (p. 2)

And ten years later, in their superb treatise on perceptronlike automata, Minsky and Papert (1969) lament:

We know shamefully little about our computers and their computations. . . . We know very little,
for instance, about how much comautation a job should require. . . . The immaturity shown by our
inability to answer questions of this kind is exhibited cven in the language used o formulate the
questions.  Word pairs such as “parallcl™ vs. “serial,™ “local™ vs. “global,” and “digital” vs.
“analog™ arc uscd as if they referred o well-defined technical concepts. Even when this is true,
the technical mcaning varies from uscr o user and context to context. But usually they arc treated
50 looscly that the species of computing machine defined by them belungs to mythology rather
than science. (pp. 1-2)

There is still no adequate theory of compulation for understanding the nature and scope of symbolic

processcs, but there is rapidly accumulating experience with compulation of all sorts—useful new concepts
emerge continually.
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The Computational Metaphor

The discipline most closely related to Al is cognitive psychology. These two disciplines deal primarily
with the same kinds of behaviors—perception, memory, problem solving. And they are siblings: Modern
cognitive psychology ecmerged from its behavior-oriented precursors in conjunction with the rise of Al. That
there might be a relation hetween the new ficld of Al and the traditional interests of psychologists was evident

from the beginning:

Our fundamental concern was to discover whether the cybernciic ideas have any relevance for
psychology. ‘The men who have pioncered in this arca have been remarkably innocent of
psychology. . . . There must be some way Lo phrase the new ideas so that they can contribute to and
profit from the scicnce of behavior that psychologists have created.  (Miller, Galanter, and
Pribram, 1960, p. 3)

What in fact happened was that the existence of computing scrved as an inspiration to traditional
psychologists to begin to theorize in terms of internal, cognitive mechanisms.  Use of the concepts of
computation as metaphors for the processes of the mind strongly influenced the form of modern theories of

cognitive psychology—for cxample, theories cxpressed in tcrms of memories and retrieval processes:

Computers accept information, manipulate symbols, store items in “memory” and retrieve them
again, classify inputs, recognize patierns. and so on. Whether they do these things just like people
was less important than that they do them at all. ‘The coming of the computer provided a
much-necded reassurance that cognitive processes were real. (Neisser, 1976, p. 5)

The metaphorical use of the language of computation in describing mental processes was found to be, at

least for a time, quite fertile ground for sprouting psychological theories.

During a period of concept formation, we must be well aware of the metaphorical nature of our
concepts. However, during a period in which the concepts can accommodate most of our
questions about a given subject matter, we can afford to ignore their metaphorical origins and
confuse our description of reality with that reality. (Arbib, 1972, p. 11)

When pioncering work by Newell, Shaw, and Simon and by other rescarch groups showed that
“programming up™ their intuitions about how humans solve puzzles, find thcorems, and so on was adequate
to get impressive results, the link between the study of human problem-solving and Al rescarch was firmly
cstablished.

Consider, for example, computer programs that play chess. Current programs are quite proficient—the
best experimental systems play at the human “expert” level, but not as well as buman chess “masters.” The
programs work by scarching through a space of possible moves, that is, considering the aliernative moves and
their consequences scveral sieps ahead in the game, just as human players do. These programs, cven some of
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the carlicst versions, could search through thousands of moves in the time it takes humaa players to consider
only a dozen or so alicrnatives. ‘The theory of optimal search, developed as a mathematical formalismi
(parallcling, as a matter of fact, much of the work on optimal decision theory in operations rescarch)

constitutes some of the core ideas of Al

‘The reason that computers cannot beat the best human players is that looking ahcad is not all inere is W
chess.  Since there are too many possible moves to scarch exhaustively, even on the fastest imaginable
compnlcrs, alternative moves (board positions) must be evaluated without knowing for sure which iove will
lead to a winning game, and this is onc of those skills that human chess cxperts cannot make cxplicit.
Psychological studies have shown that chess masters have lcarned to see thousands of meaningful
cor.figurations of picces when they look at chess positions, which presumably helps them decide on the best

move, but no one has yet suggested how to design a computer program that can identify these configurations.

For the lack of theory or intuitions about human perception and lcarning. Al progress on computer chess
has virtually stopped. but it is Quite possible that new insights into a very general problem were gained. The
computer programs had pointed up. more clearly than ever, what would be useful for a cognitive system to
learn to sce. It takes many years for chess experts to develop their expertise—their ability to “understand™ the
game in terms of such concepts and patierns that they cannot explain casily, if at all. The general problem is
of course, to determine what it is about our experience that we apply to future problem solving: What kind of
knowledge do we glean from our experience? The work on chess indicated some of the demands that would

be placed on this knowledge.

Language Translation and Linguistics

Ideas about getting computers to deal in some uscful way with the human languages, called “natural”
languages by computer scientists, were conceived before any machines were ever buill. The first linc of attack
was to try to usc large, bilingual dictionaries stored in the computers to translate sentences from onc language
t another (Barr and Feigenbaum, 1981, pp. 233-238). The machine would look up the translation of the
words in the original sentence, figure out the “meaning” of the sentence (perhaps expressed in some
interlingua), and produce a syntactically correct version in the target language.

It did not work. h bocame apparent carly on that processing language in any useful way involved
understanding. which in turn involved a great deal of knowledge about the world—in fact, it could be argued



13

that the more onc “knows,” the more onc “understands™ cach sentence one reads.  And the level of world
knowledge necded for any useful language-processing is much higher than our original intiitions ked us to

expect.

There has been a serious debate about whether Al work in computational linguistics has enlightened us
at all about the nature of languagce (sec Dresher and Hornstein, 1976, and the replies by Winograd, 1977, and
Schank and Wilensky, 1977). The position taken by Al rescarchers is that if our goal in linguistics is to
include understanding scntences like Do you have the nme? and We'll have dinner afier the kids wash their
hands, which involve the total relationship between the speakers. then there is much more to it than the
syntactic arrangemen! of words with wéll-dcfincd mcanings—that although the study in linguistics of the
systematic rcgularities within and between natural languages is an important key to the nature of language
and the workings of the mind, it is only a small part of riie problem of building a useful language processor

and, therefore, only a small part of an adequate undersianding of kanguage (Schank and Abclson, 1977):

For both people and machincs, cach in their own way, there is a serious problem in common of
making scnsc out of what they hear, see, or are told about the world. The conceptual apparatus
nceessary to perform even a partial feat of understanding is formidable and fascinating. (p. 2)

Linguists have almost totally ignored the question of how human understanding works. . . . It has
nevertheless been consistently regarded as important that computers deal well with natural
language. . . . None of these high-sounding things arc possible, of course, unless the computer
really ‘understands’ the input.  And that is the theoretical significance of these practical
questions—to solve them requires no less than articulating the detailed nature of "understanding’.
If we understood how a human understands, then we might know how to make a computer
understand. and vice versa. (p. 8)

This idca that building Al systems requires the articulation of the detailed nature of understanding, that
is. that implcmenting a theory in a computer program requires onc to “work out” one’s fuzzy idcas and
concepts, has been suggested as a major contribution of Al rescarch (Schank and Abelson, 1977):

Whenever an Al researcher feels he understands the process he is theorizing about in ¢nough
detail, he then begins to program it to find out where he was incomplete or wrong. . . . The time
between the completion of the theory and the completion of the program that embodics the theory
is usually extremely long. (p. 20)

And Newell (1970), in a thorough discussion of cight possiblc ways onc might view the relation of Al 10
psychology, suggests that building programs “forces psychologists to become operational, that is. to avoid the
fuzziness of using mentalistic terms” (p. 365).

Centainly the original conception of the machine-transiation cffort, although it was intuitively scnsible,
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fell far short of what would be required to enable a machine to handle language, indicating a limited
conception of what language is. [Lis in the broadening of this conception that Al has contributed most to the
study of language (Schank and Abclson, 1977, p.9). Thus. Al can show, as in the cxamples of chess and
language understanding, that intuitive notions and assumptions about mental processes just do not work.
Furthermore, analyzing the behavior of Al programs implemented on the basis of cxisting, inadequate

concepts can offer hints on how the concepts of the theory affect the success of its application.

Scientific Languages and Theory Formation

Lawrence Miller, in a 1978 articic that reviews the dialoguc between psychologists and Al rescarchers

about Al's contribution to the understanding of mind, concludes that

the ertics of Al belicve that it is casy to construct plausible psychological theorics: the difficult
task s demonstrating that these theories are true. The advocates of AT believe that it is difficult to
construct adequate psychological theories; but once such a theory has been constructed. it may be
relatis cly simple to demonstrate that it is true. (p. 113)

And Schank and Abclson (1977) agree:

We are nit oriented toward finding out which pieces of our theory are quantifiable and testable in
isolation. We feel that such questions can wait. First we need to know if we have a viable theery.
(p-21)

Just as Al must consider the same issues that psychology and linguistics address, other aspects of knowledge
dealt with by other traditional disciplines must also be considered. For example, current ideas in Al about
linking computing machincs into cohcrent sysiems or cooperative problem-solvers forces us to consider the
sociological aspects of knowing. A fundamental problen in Al is communication among many individual
units, each of which “knows™ some things rclcvant to some problems as well as something about the other
units. The form of the communication between units, the organizational structure of the complex, and the
naturc of the individuals' knowledge of cach other are all questions that must find some enginecring solution
if the apparent powcr of “distributed processing” is to be realized. '

Thesc issucs have been studied in other disciplines, albeit from very differont perspectives and with
diffcrent goals and methods. Wc can view the different control schemes proposed for interprocess
communication, for examplc, as attempts to design social sysiems of knowledgeable entities. Our intuitions,
once again, form the specifications for the first systems. Reid G. Smith (1978) has proposed a contract net
where the individual entitics negotiate their roles in attacking the probiem, via requests for assistance from



15

other processors, proposals for help in reply. and contracts indicating agreement o delegate part of the
problem to another processor; and Kornfeld and Hewitt (1981) have developed a model explicitly based on
problem solving in the scientific community. Only after we have been able to build many systems based on

such modecls will we be able to identify the key factors in the design of such systems.

There is another kind of study of the mind, conducted by scientists who seck to understand the workings
of the brain. The brain as a mechanism has been associated with computing machines since their invention

and has puzried computer scientists greatly:

We know the basic active organs of the nervous system (the nerve eells). There is cvery reason W
believe that a very large-capacily memory is associated with this system. We de most emphatically
not know what typc of physical entitics arc the basic components for the incmory in question.
(von Ncumann, 1958, p. 68)

If research on Al produces a language for describing what a computational system is doing, in terms of
processes, memories, messages, and so forth, then that language may very well be the onc in which the
function of the ncural mechanisms should be described (Lenat, 1981; Torda, 1982). And, as Herbert Simon
(1980) points out, this functionality may be shared by nature’s other brand of computing device, DNA:

It might have been nccessary a decade ago to arguc for the commonality of the information
processes that are employed by such disparate systcms as computers and human nervous systems.
The evidence for that commonality is now overwhelming, and the remaining questions about the
boundarics of cognitlive science have more 10 do with whether there also cxist nontrivial
commonalitics with information processing in genctic systems than vith whether men and
machincs both think. (p. 45)

Onc more cxample of the overlap of concerns between Al and the relawed disciplines is the following.
Making it possible for an individual 10 know something about what another knows, without actually knowing
it, involves defining the nature of what is known clsewhere: who the experts are on what kinds of problems
and what they might know that could be useful. This relates directly to the categorization of knowledge that
is the essence of library science. Instead of dealing with categories according to which static books will be
filed, however, Al must consider the dynamic aspects of systems that know and keam.,

The relation, then, between Al and disciplines like psycholugy, linguidtics, sociology, brain science, and
library science is a complex one. Certainly our current understanding of the phenomena dealt with by tiese
disciplines—cognition, perception, memory, language, social systems, and catcgorics of hnowledge—has
provided the intuitions and modcls on which the first Al programs were built.  And. as has happened in
psychology and linguistics, these first sysicms may, in turn, show us new aspects of the phenomena that we
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have not cansidered in studying their natural occurrence. But, most important, the development of Al
systems, of usefis/ computer tools for knowledge-oriented tasks, will expose us to many new phenomena and

variations that will force us to increasce our understanding.

The Practice of Al

Al and computer science in general, employs a unique method among the disciplines involved in
advancing our understanding of cognition—building computers and programs, and observing and trying to
cxplain patterns in the behavior of these systems. The programs arc the phenomena to be studicd (Newell,

1981):

Concepiual advances occur by (scientifically) uncontrolicd experiments in our own style of
computing. . . . The solution lies in more practice and more attention to what emerges there as
pragmatically successful. (p. 4)

Observing our own practice-—that is, secing what the computer implicitly tells us about the nature
of intelligence as we struggle to synthesize intelligent systems—is a fundamental source of
scientific knowledge for us. (p. 19)

Thus. Al is ore of the “sciences of the artificial,” as Herbert Simon (1969) has defined them in an influential
paper. Half of the job is designing systems so that their performance il be interesting. There is a valuable
heuristic in generating these designs:  The sysiems that we are natrally inclined 1o want to build arc those
that will be usefiul in our environment, Our environment will shape them, as it shaped us. As Simon described
the development of time-sharing systems:

Most actual designs have turned out initally to cxhibit serious deficiencics, and most predictions
of performance have been startlingly inaccurate. Under these circumstances, the main routc open
o the dev:lopment and improvement of time-sharing systems is w0 build them and see how they
behave, (p. 21)

The Genus of Symbol Manipulators

Newell and Simon’s psychologically phrased idea of “abscrving the behavior of programs™ follows from
their pioncering rescarch program in what they have called information processing psychology. Newcll and
Simon developed, in the early years of this enterprise, some of the first computer programs that showed
reasoning capabilities. This rescarch on chess-playing, theorem-proving, and problem-solving programs was
undcertaken as an explicit attempt to model the corresponding human behaviors. But Newell and Simon took
the strong position that these programs were not to serve simply as metaphors for human thought but were
themsaclves theorics. In fact, they argued that programs were the natural vehicle for expressing theories in
peychology:
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An abstract concept of an information processing system has cmerged with the development of the
digital computers. In fact, a whole array of different abstract concepts has developed, as scientists
have sought to capture the essence of the new technology in different ways. . . . With amaodel of an
information processing system, d becomes mceaningful to try o represeat in some detail a
particular man at work on a particular wask. Such a representation is not metaphor, but a precise
symbolic model on the basis of which pertinent specific aspects of the man's problem solving
behavior can be calculaied. (Newell and Simon, 1972, p. 5)

Taking the vicw that artificial intclligence is theoretical psychology, simulation (the running of a
program purporting to represent some human behavior) is simely the caleulation of the
consequences of a psychological theory. (Newell, 1973a, p. 47)

A framework comprehensive enough to encourage and permit th.-aking is offered. so that nat only
answers, but questions, ciiteria of evidence, and relevance all become affected.  (Newell, 1973a,
p. 59)

Newell and Simon, in their view that computer programs are o vchicle for expressing psychological
theorics rather than just scrving as a metaphor for menial processes, were aircady Liking a strong position
relative to even the new breed of cognitive psychologists who were talking in terms of computerlike mental

mechanisms. As Paul R. Cohen (1982) puts it. in his review of Al work on modcls of cognition:

We should note that we have presented the strongest version of the information-processing
approach, that advocated by Newell and Simon.  Their position is so strong that it defines
information-processing psychology almest by exclusion. It is the ficld that uses incthods alien to
cognitive psychology to cxplore questions alien to Al This is an cxaggeration. but it scrves to
illustratc why there are thousands of cognitive psychologists, and hundreds of Al rescarchers, and
very fow information-processing psychologists. (p. 7)

However, Newell and Simon did not stop there, A further development in their thinking identified brains

and computers as two specics of the genus of physical symbol systems—the kind of system that, they argue,

must underlic any intelligent behavior,

At the root of intelligence are symbols, with their denotative power and their susceptibility to
manipulation. And symbols can be manufacturcd of almost anything that can be arranged and
patterned and combined. Intelligence is mind implemented by any patternable kind of maiter.
(Simon, 1980, p. 35)

A physical symbol system has the accessary and sufficient means for general intclligent action.
(Ncwcll and Simon, 1976. p. 116)

Information processing psychology is concerned essentially with whether a suceessful theory of
human behavior can be found within the domarn of symbolic systems. (Newcll, 1970, p. 372)

The basic point of view inhabiting our work has been that programmed computer and human
problem solver are both specics belonging to the genus IPS. (Newell and Simon, 1972, p. 869)
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It is this view of computeis—as systems that share a common, underlying structure with the human
intelligence systcm—that promotes the behavioral view of Al computer rescarch. Although these machines
arc not limited by the rules «f development of their nawral counterpart, they will be shaped in their

development by the same naturil constraints responsible for the form of intelligence in nature.

The Flight Metaphor

The question of whether machines could think was certainly an issue in the carly days of Al research,
although dismissed rather summarily by those who si*=pea the emerging science:

To ask whether these computers can think . s:tsguous. In the naive realistic senie of the term, it
is peoplc who think, and not cither brains o- »:achines. If. however, we permit oursclves the
cllipsis of referring to the operation of the brain as “thinking,” then, of course, our computers
“think.” (McCulloch, 1964, p. 368)

Addressing fundamental issucs like this one in their carly writing, several rescarchers suggested a paraliel with
the study of flight, considering cognition as another natural phenomenon that could eventually be achicved

by machines:

Today. despite our ignorance, we can point to that biological milestone, the thinking brain, in the
same spirit as the scientists many hundreds of ycars ago pointed to the bird as a demonstration in
naturce that mechanisms heavicr than air could fly. (Feigenbaum and Feldman, 1963, p. 8)

It is instructive to pursuc this analogy a bit farther. Flight, as a way of dealing with the contingencics of
th: cnvirconment, takes many forms—from soaring cagles to hovering hummingbirds. If we start to study
flight by examining its forms in nature, our initial understanding of what we are studying might involve terms
like feathers, wings, weight-to-wing-sizc ratios, and probably wing-flapping, wo. This is the language we
begin to develop—identifying regularities and making distinctions among the phenomena. But when we start
to build flying artifacts our understanding changes iramediately:

Consider how people came to understand how birds fiy. Certainly we obscrved birds. But mainly
10 recognize certain phenomena.  Real understanding of bird flight came frons understanding
Jlight; not birds. (Papert, 1972, pp. 1-2)
Even if we fail a hundred times at building a machine that flics by flapping its wings, we leam from every
attempt. And cventually we abandon some of the assumptions implicit in our definition of the phenomena
under study and realize that flight does nok require wing movement or 2ven wings:

Intelligent behavior on the part of a machine no more implics completc functional equivalence
between machine and brain than flying by an airplane implics compicte functional equivalence
between plane and bird. (Anmer, 1963, p. 392)
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Every ncw design brings new data about what works and what docs not, and clues as to why. Every new
contraption trics some different design alternative in the space defincd by our theory language. And cvery

attempt clarifics our understanding of what it means to fly.

But there is more to the sciences of the artificial than defining the “true nature™ of natural phenomena.
The exploration of the artifacts themsclves, the stiff-winged flying machincs, because they are wseful to
society, will naturally cxtend the exploration of the vario.us points of intcrface between the technology and
society. While naturc’s exploration of the possibilitics is limited by its mutation mechanism, huma:: inventors
will vary cvery paramcter they can think of to produce cffects that might be useful—exploring the constraints
on the design of their machines from c;'cry angle. The spacz of “flight” phenomena will be populated by

examples that naturc has not had a chance to try.

Exploring the Space of Cognitive Phenomena
‘This argument, that the utility of intelligent machines will drive the cxploration of their capabilities,

suggcsts that the d.vclopment of Al technology has begun an exploration of cognitive phenomena that will
involve aspects of cognition that are not casy to study in nature. In fact, as with the study of flight, Al will'
allow us to sec natural intelligence as a limited capability. in terms of the design trade-offs made in the
evolution of biological cognition:

Computer scicnce is an empirical discipline. . . . Each new machinc that is built is an experiment.

.. . Each new program that is built is an experiment. 1t poses a question to nature, and its behavior

offcrs clues to an answcr. . . . We build computers and programs for many reasons. We build them

to serve socicty and as tools for carrying out the economic tasks of socicty. But as basic scicntists

we build machines and programs as a way of discovering new phenomena and analyzing

phenomena we alrcady know about. . . . The phenomena surrounding computers are deep and
obscure. requiring much experimentation (o assess their naturc. (Newell and Simon, 1976, p. 114)

For what will Al systems be uscful? How will they be involved in the economic tasks of society? It has
certainly been argued that this point is one that distinguishes biological systems from machines (Norman,
1980):

The human is a physical symbol system, yes, with a componcent of pure cognition describable by
mechanisms. . . . But the human is more: The human is an animate organism, with a biological
basis and an evolutionary and cultural history. Morcover, the human is a social animal, interacting
with others, with the cnvironment, and with itsclf. The core disciplincs of cognitive science have
tended to ignore these aspects of behavior. (pp. 2-4)

The difference between natural and artificial devices is not simply that they arc constructed of
different stufT: their basic functions differ. Humans survive. (p. 10)



0

Tools cvolve and survive according to their utility o the people who use them. Either the uscrs find better
tools or their competitors find them. This process will ~ertainly continie with the development of cognitive

tools and will dramatically change the way we think about Al:

We measure the intclligence of a system by its ability to achieve stated ends in the face of
variations, difficultics and complexitics posed by the task environment. This general investment
of computer science in attaining intelligence . . . becomes more obvious as we extend computers o
more global complex and knowledge-intensive tasks—as we attempt o make them our agents,
capabile of hendling on their own the full contingencics of the natural world. (Nev.cil and Simon,
1976, pp. 114-115)

In fact, this change has alrcady begun in Al laboratorics, but the place where the changing perception of Al

systems is most dramatic and accclerated is, not surprisingly in our socicty, the marketplace.

Al Inc.

To date, three of the emerging Al technologies nave attracted interest as commercial possibilities: robots
for manufacturing. natural-language front-ends for information-retricval systems. and cxpert systems  [he
reason that a company hike General Motors invests millions of dollars in robots for the assembly line is not
scientific curiosity or propaganda about “retooling™ their industry. GM believes these robots arc essential to
ts cconomic survival. Al technology will surcly change many aspects of American industry. but its
application 1o rcal problems will just as surely change the emerging technology~—change our perception of its
nature and of its implications about knowledge. The remaining discussion will focus on this issuc in the

context of expert systems.

Expert Systems

With work on the DENDRAL system in the mid-1960s, Al rescarchers began pushing work on
problem-solving systems beyond constrained domains like chess, robot planning, blocks-world manipulations,
and puzzics: They started to consider symbolically expressed problems that were known to be difficuit for the
best human rcscarchcts' to solve (sce Lindsay, Buchanan. Feigenbaum, and Lederberg. 1980).

One needs to move toward task cnvironments of greater complexity and openness—to cveryday
reasoning. to scientific discovery, and so on. The tasks we tacklced, though highly complex by prior
psychological standards, still are simple in many respects. (Newell and Simon, 1972, p. 872)

Humans have difficulty keeping track of all of the know'edge that might be relevant to a problem, cxploring
all of the alternative solution-paths, and making sure none of the valid solutions is overlooked in the process.
Work on DENDRAL showed that when human cxperts could explain exactly what they were doing in solving
their probicms, the machine could achicve expert-level performance. ‘
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Continued research at Stanford’s Heuristic Programming Project next produced the MYCIN system, an
experiment in modeling medicai diagnostic reasoning (Shortliffe, 1976). In production rules of the form If
<condition> then <action>, Shortliffe encoded the kind of information about the reasoning processes of
physicians that they were most able to give—advice about what to do in certain situations. In other words, the
if part of the rules contains clauscs that attempt to differentiate a certain situation, and the then part describes
what to do if one finds oneself in that sitwation. This production-rule knowledge representation worked
surprisingly well: MYCIN was able to perform its task in a specific area of infectious-discase diagnosis as well

as the best experts in the country.

Furthermore, the MYCIN structurc was scen to be, at least to some cxtent, independent of the domain of
medicine. So long as cxperts could describe their knowledge in terms of If. . . then . .. rulcs, the reasoning
mechanism that MYCIN uscd to make inferences from a large set of rules would come up with the right
questions and, eventually, a satisfactory analysis. MYCIN-like systcms have been successfully built in
rescarch laboratorics for applications as diverse as mineral exploration, diagnosis of computer-equipment

failure, and cven advising users about how to use complex systems.

Transfer of Expertise

There is an important shift in the view of expert systems just described that illustrates the changing
perspective on Al that is likcly to take place as it becomes an applied science. The carly work on expert
systems. building on Al research in problem solving, focused on representing and manipulating the facts in
order to get answers. But through MYCIN, whose reasoning mechanism is actually quite shallow. it became
clear that the way that these systems interacted with the people who had the knowledge and with those who
needed it was an important, deep constraint on the system’s architecture—on its knowledge representaticas
and reasoning mechanisms: .

A key idea in our current approach to building cxpert systems is that these programs should not
only be able to apply the corpus of expert knowledge to specific problems, but they should also be
able to interact with the uscrs and experts just as humans do when they karn, explain, and tcach
what they know. . . . ‘Thesc rransfer of expertise ('OE) capabilitics were originally necessitated by
“human enginecring™ considerations—the people who build and use our systems necded a varicty
of “assistance™ and “explanation™ facilities. However, there is more to the idea of TOE than the
implementation of necded user featuses: These social intcractions—lcarning from experts,
cxplaining one's rcasoning, and teaching what onc knows—are cssential dimensions of human
knowledge. They arc as fundamental to the nature of iniclligence as expert-level problem-solving,
and they have changed our ideas about representation and about knowledge. (Barr, Bennett, and
Clanccy, 1979, p. 1)
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Randall Davis’'s (1976) TEIRESIAS system, built within the MYCIN framcwork, was the first to focus on
the transferral aspects of expert systems. TEIRESIAS offered aids for the experts who were entering
knowledge into the system and for the system's users. For example, in order for an expert to figure out why a
system has comce up Qith the wrong diagnosis or is asking an inappropriatc qQuestion, hc (or she) has to
undcerstand its behavior in his 6wn terms: The system must explain its reasoning in terms of concepts and
procedures with which the expert is familiar. The same sort of cxplanation facility is necessary for the
cventual user of an expert system who will want to be assured that the system’s answers are well founded.
Expert-systems technology had to be ;:xlCndCd to facilitate such interactions, and, in the process, our
conception of what an expert system was had changed. No longer did the systems simply solve problems;

they now transferred expertise from people who had it to people who could use it:

We are building systems that take part in the human activity of transfer of expertise among cxperts,
practitioners, and students in different kinds of domains. Our problems remain the same as they
were before: We must find good ways to represent knowledge and meta-knowledge, to carry on a
dialogue, and to solve problems in the domain. But the guiding principles of our approach and
the urderlying constraints on our solutions have subtly shifted: Qur systcmns are no longer being
designed solely to be expert problem solvers, using vast amounts of cncoded knowledge. There
are aspects of "knowing™ that have so far remained unexplored in Al rescarch: By participation in
human transfer of expertise, these systems will involve more of the fabric of behavior that is the
rcason we ascribe knowledge ard intelligence to people. (Barr, Bennett, and Clancey, 1979, p. §)

The Technological Niche

It is the goal of those who are involved in the commercial develop.nent of expert-systems technology to
incorporate that tcchnology into some device that can be sold. But the environment in which expert systems
operate is our own cognitive environment; it is within this sphere of activity—pcople solving their
problems—that the eventual expert-system products must be found uscful. They will be engineered to our
minds.

With these systems, it will at last become economical to match human beings in real time with
really large machines. This means that we can work toward programming what will be, in effect,
“thinking aids.” In the years to come we expect that these man-machine systems will share, and
pcrhaps for a time be dominant, in our advance toward the devclopment of “artificial
intelligence.” (Minsky, 1963, p. 450)

It is a long way from the expert systems developed in the rescarch laboratorics to any products that fit into
people’s lives; in fact, it is difficult even to envision what such products will be. Egon Locbner of Hewlent-
Packard Laboratorics tells of a conversation he had many years ago with Viadimir Zworykin, the inventor of
television techuology. loebner asked Zworykin what he had in mind for his invention when he was
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developing the technology in the 1920s—what kind of product he thought his efforts would produce. The
inventor said that he had had a very clear idea of the cventual use of TV: He envisioned medical students in
the gallery of an operating room getting a clear picture on their TV screens of the details of the operation

being conducted below them.

One cannot, at the ontset, understand the application of a new technology, because it will find its way
into realms of application that do not yet exist. Locbner has described this process in terms of the
technological niche, parallcling modern cvolution theory (1.ocbner, 1974, i.ocbner and Borden, 1969). Like
the specics and their environment, inventions and their applications are co-defined—thcey constantly cvulve

together, with niches representing periods of relative stability, into a new reality:

Morcover, the niches themselves are . . . defined in considerable mcasure by the whole
constellation of orgamsms themselves.  There can be no lice without hairy heads for them to
inhabit, nor animals withoul plants. (Simon, 1980, p. 44)

Thus technological inventions change as they are applied to people’s needs, and the acuvities that people
undertake change with the availability of new technologies. And as people in industry try to push the new
technology toward some profitable niche, they will also explore the nature of the underlying phenomena, Of
course, it is not just the scientists and cnginecrs who devcloped the new technology who are involved in this

exploration: Half of the job involves finding out what the new capabilitics can do for people.

Recognition of the commercial applicatiun of 7'V technology was accomplished by David Sarnoff, after
the model he Liad uscd for the radio broadcasting industry. It is imporiant to note that the “commercial
product” that resuited from TV technology, the TV-set receiver, was only part of a gigantic sysiem that had to
be developed for its support (actually imported from radio, with modifications and extensions), involving
broadcast technology, the networks, regulation of the air waves, advertising. and so forth., Locbner refers to
this need for systemwide concern with product development as the Edisonian model of technological
innovation: Edison’s achicvement of the invention of the long-life, commercially feasible light bulb was
conducted in paralic! with his successful development of the first dynamo for commercially producing electric

powecr and with his design and implementation of the first electric-power distribution network.

The Knowledge Industry

Amcng the scientific disciplines that study knowledge, the potential for commercial applications of

artificial intelligonce presents unique opportunitics. To identify and fill the niches in which intelligent
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machines will survive, we must ask questions about “knowledge™ from a rather different perspective. We
must identify the role that the various aspects of intelligence play, or could play, in the affairs of men, in such

a way that we can identify correctable shortcomings in how things are done.

There is no question that the current best design of an intelligent system, the human brain, has its
limitations. Computers have alrcady helped people deal with such shortcomings as memory failure and
confusions, overlvading in busy situations, their tendency to boredom, and their need for sleep. These
extended capabilities—total recall, rapid processing, and uninterrupted attention—arc cognitive capabilitics
that we have been willing to concede to the new specics in the genus of symbol munipulators. They have
helped us do the things we did before, and have made some cntirely new capabilitics possible, for cxample,
airline reservation systems, 24-hour banking, anc Pac-Man (although the truly challenging computer “games™
arc yet to come!). Intelligence is also going to be present in this new species, as envisioned 20 years ago by

Marvin Minsky (1963):

[ believe . . . that we are on the threshold of an era that will be strongly influenced. and quite
possibly deminated, by intelligent problem-solving machines. (p. 406)

Finding a way to apply this new intellectual capability, for cffectively applying relevant cxperience to new
situations, is the task ahead for Al, Inc.

We have hardly begun to understand what this abundant and cheap intellectual power will do to
our lives. It has already started to change physically the rescarch laboratories and the
manufacturing plants. It is difficult for the mind to grasp the ultimate consequences for man and
society. (Riboud, 1979)

It may be a while in coming, and it may involve a rethinking of the way we go about some cognitive activitics.
But it is extremely important that the development of intelligent machines be pursued. for the human mind
not only is limited in its storage and pmcesing capacity but it also has known bugs: It is easily misled,
stubborn, and even blind to the truth, especially when pushed to its limiits. .

And, as is nature’s way, everything gets pushed to the limit, including humans. Wc¢ must find a way of
organizing oursclves more cffectively, of bringing together the encrgics of larger groups of people toward a
common goal. Intclligent systems, built from computer and communications technology, will somcday know
more than any individual human about what is going on in complex enterprises involving millions of people,
such as a multinational corporation or a city. And they will be able to explain cach person’s part of the task.
We will build more productive factorics this way, and maybe someday a more peaceful world. We must keep
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in mind, following our analogy of flight, that the capabilities of intclligence as it cxists in nature ar¢ not
necessarily its natural limits:

‘There are other facets to this analogy with flight; i, too, is a continuum, and some once thought
that the spced of sound represenied a boundary beyond which flight was impossible.  (Armer,
1963, p. 398)
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