
February 1992 Report No. STAN-CS-92-1419

Fast Approximation Algorithms
for Fractional Packing and Covering Problems

bY

S. Plotkin, D. Shmoys, E. Tardos

Department of Computer Science

Stanford University
Stanford, California 94305

Fast Approximation Algorithms

for Fractional Packing and Covering Problems

Serge A. Plot&n* David B. Shmoyst
Stanford University Cornell University

ha Taxtot+
Cornell University

February 1992

Abstract

Thii paper presents fast algorithms that find approximate solutions for a general class of problems,
which we call fractional packing and covering problems. The only previously known algorithms for
solving these problems are based on general linear programming techniiues. The techniques developed
in this paper greatly outperform the general methods in many applications, and are extensions of a
method previously applied to find approximate solutions to multicommodity flow problems [23,15,18].
Our algorithm is a Lagrangean relaxation technique; an important aspect of our results is that we obtain
a theoretical analysis of the running time of a Lagrangean relaxation-based algorithm.

We give several applications of our algorithms. The new approach yields several orders of magnitude
of improvement over the best previously known running times for the scheduling of unrelated parallel
machines in both the preemptive and the non-preemptive models, for the job shop problem, for the
cutting-stock problem, and for the minimum-cost multicommodity flow problem.

*Research supported by NSF Research Initiation Award CCR-900-8226, by U.S. Army Research Office Grant DAAL-03-91-
G-0102, by ONR Contract N00014-8~K-0166, and by a grant from Mitsubishi Electric Laboratories.

+ Research partially supported by an NSF PYI award CCR-89-96272 with matching support from UPS, and Sun Microsystems,
and by the National Science Foundation, the Air Force Office of Scientific Research, and the Ofike of Naval Research, through
NSF grant DMS-8920550.

$Research supported in part by a Packard Research Fellowship and by the National Science Foundation, the Air Force Office
of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550.

1

1 Introduction

We consider the following general type of problem: given a convex set P C R” and a set of m inequalities
Az 5 b, decide if there exists a point LC E P that satisfies As 5 b. We assume that we have a fast
subroutine to minimize a non-negative cost function over P. A fractional packing problem is the special
case of this problem when P is in the positive orthant and A 2 0: The intuition for this name is that if P is
a polytope, then each z E P can be written as a convex combination of vertices of P; we are attempting
to fractionally pack (or combine) vertices of P subject to the “capacity” constraints As 2 b.

A wide variety of problems can be expressed as fractional packing problems. Consider the following
formulation of deciding if the maximum flow from s to t in an m-edge graph G is at least f: let the
polytope P G R” be the convex combination of incidence vectors of (s, t)-paths, scaled so that each
such vertex is itself a flow of value f; the edge capacity constraints are given by Ax 5 b, and so A is
the m ‘X m identity matrix; the required subroutine for P is a shortest-path algorithm. In words, we
view the maximum flow problem as packing (s, t)-paths subject to capacity constraints. We can similarly
formulate the multicommodity flow problem, by setting P = P1 x - - - x P” where P’ is the polytope of
all feasible flows of commodity e, and AZ 5 b describes the joint capacity constraints. In Section 6, we
shall discuss the following further applications: the Held & Karp lower bound for the traveling salesman
problem (11) (packing l-trees subject to degree-2 and cost constraints); scheduling unrelated parallel
machines in both the preemptive and non-preemptive models, as well as scheduling job shops (packing
jobs subject to machine load constraints); embedding graphs with small dilation and congestion (packing
short paths subject to capacity constraints); and the minimum-cost multicommodity flow problem (packing
paths subject to capacity and budget constraints).

Fractional covering problems are another important case of this framework: in this case, P and A are
as above, but the constraints are Az 2 b, and we have a maximization routine for P. The cutting-stock
problem is an example of a covering problem: paper is produced in wide rolls, called mws, and then
subdivided into several different widths of narrower ones, called finals; there is a specified demand for the
number of rolls of each final width, and the aim is to cover that demand using as few raws as possible.
Gilmore & Gomory proposed a natural integer programming formulation of this problem and studied
methods to solve it as well as its linear relaxation [5, 61. This linear relaxation is also the key ingredient of
the fully polynomial approximation scheme for the bin-packing problem that is due to Karmarkar & Karp
[131. We also consider problems with simultaneous packing and covering constraints.

In this paper we focus on obtaining approximate solutions for these problems. For an error parameter
E > 0, a point z E P is an E-approximate solution for the packing problem if Az 5 (1 + e)b. A point
2 E P is an E-approximate solution for the covering problem if AZ 2 (1 - e)b. The running time of each
of our algorithms depends polynomially on c-l, and the width of the set P relative to Aa: 5 b, as defined
bY P = maxi max,ep aix/bi, where six 5 bi is the ith row of Ax 5 b. Significantly, the running time
does not depend explicitly on n, and hence it can be applied when n is exponentially large, assuming that
there exists a polynomial subroutine to optimize c~ over P, where c = ytA (and t denotes transpose).

In many applications, there will also exist a more efficient randomized variant of our algorithm. When
analyzing one of these algorithms, we shall estimate only the expected running time. The primary reason
for this is that since the running time of any randomized algorithm exceeds twice its expectation with
probability at most l/2, if we make k independent trials of the algorithm, allowing twice the expectation

2

for each trial, then the probability that none of these trials completes the computation is at most 2~“.
Thus, by increasing the running time by a logarithmic factor, we can always convert the statement about
expectation to one that holds with high probability. In fact, for some of our applications, the stronger
statement can be made with no degradation in the bound. Furthermore, the improved efficiency of
these randomized algorithms can be obtained while maintaining the same worst-case running time as the
deterministic version.

All of the problems in our framework are known to be solvable in polynomial time (without relaxing the
right-hand-sides). Consider the problem of packing the vertices of a polytope P subject to the constraints
Ax 5 b. We can apply the ellipsoid method to solve the dual problem, which has a constraint for every
vertex of P, since the separation subroutine for the dual problem can be solved with the optimization
subroutine for P. The problem can be solved more efficiently by the algorithm of Vaidya [25]; it obtains
the optimal value in O(mL) calls to an optimization subroutine for P plus 0(mM (m)L) additional time;
L and &4(m) denote the binary size of the problem and the time needed to invert m by m matrices,
respectively. Alternatively, one can apply the other linear programming algorithm of Vaidya [25] for
problems where the polytope P can be described with few variables. Furthermore, if the problem has
an appropriate network structure then the ideas of Kapoor and Vaidya [12] can be used to speed up the
matrix inversions involved.

The algorithm in [25] obtains an optimal dual solution to a fractional packing or covering problem,
but no primal solution. One can use ideas of Karmarkar & Karp [131 to obtain a primal solution as
well. If Vaidya’s algorithm uses T calls to the separation subroutine for the dual linear program to find an
approximate dual solution, then Karmarkar & Karp obtain an approximate primal solution deterministically
by approximately solving O(T + m2 log(T/m)) 1’lnear programs, or by using randomization solving
only O(m log(T/m)) 1’inear programs, each with m variables and T inequalities. We can use Vaidya’s
algorithm [26] to solve these linear programs.

The parameter L in the bound of either linear programming algorithm of Vaidya depends on the quality
of the starting solution; for example, in [26], it depends on how close the point is to the central path. In
some applications, such as the bipartite matching problem, it is possible to find a starting solution with
L = log(nc-l), which is, roughly speaking, the number of bits of accuracy required [9]. Unfortunately,
we do not know of comparable results for any of our applications. For two of our applications, the
bin-packing problem and the Held-Karp bound, such results would yield algorithms with running times that
clearly improve on the algorithms based on the approach presented here.

Our algorithm outperforms Vaidya’s algorithm if c is large (e.g., a constant), p is small relative to m,
or the optimization subroutine for P is faster than matrix inversion. In many cases, p is not sufficiently
small (even exponential), so in Section 5 we give techniques that often reduce p. Figure 1 summarizes the
comparison of our algorithm to Vaidya’s for our applications, giving the speedup over his algorithms [25,
261 when we assume that E > 0 is any constant, and ignore polylogarithmic factors. A function f (n) is said
to be Q*(g(n)) if there exists a constant c such that f(n) log’ n 2 fl (g (n)) ; we define 0* analogously.

Our approach extends a method previously applied to find approximate solutions to multicommodity
flow problems, first by Shahrokhi & Matula [23], and later by Klein, Plotkin, Stein & Tardos [15] and
Leighton, Makedon, Plotkin, Stein, Tardos & Tragoudas [18]. Recently, extensions of this method to
other applications were found independently by Grigoriadis & Khachiyan [lo].

3

I Apdication I Deterministic Tie 1 SpedUP 1 RandomizedTime I SpeedUP I
Preemptive scheduling

of N jobs on M machines
Nonpreemptive scheduling
of N jobs on M machines

Min-cost K-commodity flow
in M-edge N-node graph

Cutting-stock with
M widths of finals

O*(MN2) Q* @f2*6N1.6) O*(MN) fl*w2*5M2*5)

O*(M2N) Q’(N) O*(MN) R*(MN)

o* (K2M2) S-l* (M.5 NKle5) o* (KM2) Cl* (Me5 NK2*5)

0*(M2) fl*(M2M(M)) 0*(M2) fl*(MM@fN
Job shop scheduling of N

pqeration jobs on M machines O’WPW2 + uw3) R* (N6-5p4) - -

hbedding an N-node bounded
degree graph into a bounded O*(N3$) fl*(N4a) O*(N2$) S2*(N5a)

decree graph with flux cy.

Figure 1: Summary of the performance of the described algorithms

An important theoretical aspect of our results is their connection to Lagrangean relaxation. The main
idea of our algorithm is as follows. We maintain a point 2 E P that does not satisfy Az < b, and repeatedly
solve an optimization problem over P to find a direction in which the violation of the inequalities can be
decreased. To do this, we define a “penalty” y on the rows of Az < b. Rows with six large relative to bi
get a large penalty, other rows get smaller penalties. We relax the Ax 5 b constraints, and instead solve
the Lagrangean relaxed problem min(yA$: 2 E P). The idea is that a large penalty tends to imply that
the resulting point Z improves the corresponding inequality. We then set x := (1 - a)x + 02, where CT
is a suitably small number, and repeat. These ideas are often used to obtain empirically good algorithms
for solving linear programs; however, unlike previous methods, we give a rule for adjusting the penalties
for which a theoretical analysis proves a very favorable performance in many applications. Lagrangean
relaxation has been recognized as an important tool for combinatorial optimization problems since the
work of Held & Karp on the traveling salesman problem [ll]; in our discussion of this application (in
Section 6) we examine the relationship between our algorithm and the traditional approach.

As in [151, our algorithms can also be modified to generate integral approximate solutions and thus
yield theorems relating the linear and fractional optima along the lines of Raghavan & Thompson [ZZ] and
give alternative deterministic algorithms to obtain the results of Raghavan [2 11. The modified algorithm is,
in some cases, more efficient than the original algorithm, due to the fact that it terminates as soon as it can
no longer improve the current solution while maintaining integrality. We will discuss this integer version
of the packing algorithm at the end of Section 2, and use the algorithm for the job-shop and network
embedding problems in Section 6. One could derive analogous integer approximation theorems for both
the covering problem and for problems in the more general form considered in Section 4. However, due
to the lack of applications we do not include the resulting theorems.

For simplicity of presentation, throughout the paper we shall use a model of computation that allows
the use of exact arithmetic on real numbers and provides exponentiation as a single step. In [181, it has been
shown that the special case of the algorithm for the multicommodity flow problem can be implemented in
the RAM model without increasing the running time. Analogously, we can use approximate exponentiation
and a version of the algorithm that relies only on a subroutine to find a nearly optimal solution over the

4

polytope P, and hence avoid the need for exponentiation as a step. However, in order to convert the
results to the RAM model, we need to perform further rounding; we must also limit the size of the numbers
throughout the computation. It is easy to limit the numbers by a polynomial in the input length, similar
to the size of the numbers used in exact linear programming algorithms. However, we do not know how
to find an c-approximate solution using polylogarithmic precision for the general case of the problems
considered.

2 Fractional Packing Problem

The fractional packing problem is defined as follows:

P&ING: 3?x E P such that Ax 2 b, where A is an m x n nonnegative matrix, b > 0, and P is a
convex set in the positive orthant of R”.

We shall use ai to denote the ith row of A and bi to denote the ith coordinate of b. We shall assume
that we have a fast subroutine to solve the following optimization problem for the given convex set P and
matrix A:

Given an m-dimensional vector y 2 0, find 2 E P such that

cz = min(cx : x E P), where c = #A. (1)

For a given error parameter E > 0, a vector x E P such that Ax 5 (1 + c)b is an E-approximate
solution to the PACKING problem. In contrast, a vector x E P such that Ax 5 b is called an exact
solution. An e-relaxed decision procedure either finds an c-approximate solution or concludes that no
exact solution exists.

The running time of our relaxed decision procedure depends on the width of P relative to Ax < b,
which is defined by

six
= maxmax-.

i XEP bi
(2)

In general, p might be large, even superpolynomial in the size of the problem. We shall discuss techniques
to reduce the width in Section 5.

Relaxed Optimal&y. Consider the following optimization version of the PACKING problem:

min(A : Ax 5 Xb and II: E P), (3)

5

and let X* denote its optimal value. For each x E P, there is a corresponding minimum value X such that
Ax 5 Xb. We shall use the notation (x, A) to denote that X is the minimum value corresponding to x. A
solution (x,X) is e-optimal if x E P and X 5 (1 + E)A*. If (x, A) is an e-optimal solution with X > 1 + E,
then we can conclude that no exact solution to the PACKING problem exists. On the other hand, if (x, A)
is an E-optimal solution with X 5 1 + E, then x is an c-approximate solution to the PACKING problem.

Linear programming duality gives a characterization of the optimal solution for the optimization version.
Let y 2 0, y E R” denote a dual solution, and let Cp(y) denote the minimum cost cx for any x E P
where c = ytA. The following inequalities hold for any feasible solution (x, X) and dual solution y:

Xytb 2 ytAx 2 &(y). (4)

Observe that both ytb and Cp(y) are independent of x and X. Hence, for any dual solution y, X* 1
Cp (y)/y” b. The goal of our algorithm is to find either an e-approximate solution x, or an e-optimal
solution (x, X) such that A > 1 + E. In the latter case we can conclude that no exact solution to the
PACKING problem exists. The c-optimal@ of a solution (x, A) will be implied by a dual solution y such
that (1 + +‘p(y)/y’b > A. Since X > 1 + E, it follows that Cp(y)/ytb > 1; hence, X* > 1 and no
exact solution to the PACKING problem exists. Linear programming duality implies that there exists a dual
solution y* for which Cp (y*)/y*tb = X*. Hence, for optimal (x*, X*) and y*, all three terms in (4) are
equal.

Consider an error parameter 6 > 0, a point x E P satisfying Ax 5 Xb, and a dual solution y. We
define the following relaxed optimality conditions:

(Pl) (1 - +Iytb 5 ytAx;

(7’2) ytAx - C?(y) I e(ytAx + Xy%).

Lemma 2.1 If (x, A) and y are feasible primal and dual solutions that satisfy the relaxed optimality conditions
Pl and P2 and E 5 l/6, then (x, A) is GE-optimal.

Proof: From Pl and P2 we have that

CP(Y> L (1 - c)ytAx - cXytb 2 (1 - c)2Xytb - dytb 2 (1 - &)Xy$.

Hence, X 2 (1 - 3d-1c&d/(ytb) 5 (1 - 3+9* 5 (1 + 6+*. u

The Algorithm. The core of the algorithm is the procedure IMPROVE-PACKING, which takes as input a
point x E P and an error parameter E: 2 0. Given x, it computes X0, the minimum X such that Ax < Xb
is currently satisfied. IMPROVE-PACKING produces a new feasible solution (x, A) such that x is GE-optimal or
X 5 X0/2. It uses a dual solution y defined as a function of x, where yi = $eaaizlBi ; we call this choice
of y the dual solution corresponding to x. We will choose a so that the relaxed optimal@ condition Pl
is satisfied for (x, X) and its corresponding dual solution. Thus, if the current solutions (x, X) and y satisfy
P2, then X is sufficiently close to optimal, and IMPROVE-PACKING terminates. Otherwise, we find a point
5 E P that attains the minimum Cp (y), and modify x by setting x + (1 - a)x + a%. Although a single
update of x might increase its corresponding X, we will show that a sequence of such updates gradually
reduces X.

6

IMPROVE-PACKING(Z, C)
X0 + maxi aix/bi; a + 4X,k1 ln(2m~~); t.~ t &.
While maxi aix/bi 2 X0/2 and x and y do not satisfy P2

For each i = 1,. . . , m: set yi t teaaixlbi.
Find a min-cost point 5 E P for costs c = $A.
Update 2 4- (1 - 0)x + ait.

Return x.

Figure 2: Procedure IMPROVE-PACKING.

Lemma 2.2 If cy 2 2x-‘@ h(2mew1), then any feasible solution (x, A) and its corresponding dual solution
y satisfy Pl.

Proof: For this proof, it is useful to introduce a localized version of Pl:

(pl) For each i = 1,. . . , m, (1 - c/2)Xbi 5 six or yibi 6 $-ytb.

Let I = {i : (1 - c/2)Xbi 5 six}. Condition Pl implies Pl, since

btb = A c y&i + X c yibi 5 mm!-
iEI igr

Cyi”ix + Ax tytb 5 &y'Ax + ;Xy”b,
l - 42 iEI igI 2m -

and therefore (1 - E-)Xytb L (1 - e/2)2Xytb 5 ytAx.

Next we have to show that the hypothesis of the lemma implies that Pl is satisfied. Notice that
ytb = xi eaaix/bi. By the minimality property of X we have that ytb 2 eax. Consider any row i for
which six < (1 - c/2)Xbi. This implies that yibi < e(1-c/2)aX, and so yibi/(ytb) < escaXj2 < e/(27-n).
Hence, 7% is satisfied. 1

At the beginning of IMPROVE-PACKING (see Figure 2), Q is set to 4X,1c-1 ln(2me-l); hence, the
relaxed optimal@ condition Pl is satisfied throughout the execution of the procedure. The following
lemma shows that moving the right amount towards a minimum-cost point 5 results in a significant
decrease in the potential function @ = ytb = xi eaaixlbi.

Lemma 2.3 Consider a point x E P and an error parameter 0 < E 5 1 such that x and its corresponding
dual solution y have potential function value @ and do not satisfy P2. Let Z E P attain the minimum Cp(y).
Assume that 0 5 -&. Define a new solution by 2 = (1 - 0)x + a& and let & denote the potential function

value for 2 and its corresponding dual solution @. Then @ - 8? 2 aa&k

Proof: By the definition of p, Ax 5 pb and Ati? 5 pb. This implies that cyalaix - a$1 /bi 5 e/4 5 l/4.
Using the second-order Taylor theorem, we see that if ISI 5 e/4 5 l/4 then, for all x, ez+6 5 e” + Se” +

7

$51ez. Setting 6 = ~(a$ - aix)/bi, we see that

ii
’ aa(aiS - aix)eaai2/bi

I yi+b
i bi

5 &(aiZ + UiX)yi.
i

Using this inequality to bound the change in the potential function, we get

@ - 6 = C(yi - $i)bi > CYOC(U~X - Uiii?)yi - CV.O~ C(UiX + Uiii?)yi
i i i

= aa(ytAx - ytAZ) - +ytAx + ytAi?) 2 cua(ytAx - Cp(y)) - mytAx.

The fact that P2 is not satisfied implies that the decrease in <p is at least aa&@. [

During IMPROVE-PACKING, 0 is set equal to &, which implies that the decrease in the potential
function due to a single iteration is s2(9 (a). Observe that throughout the execution of IMPROVE-PACKING

we have eaxoi2 < @ 5 meQXo.
ea(l+o(cJ)-‘XO <-@ 2 meaAO.

If the input solution is O(c)-optimal, then we have the tighter bound,
- Together with the previous lemma, this can be used to bound the number

of iterations in a single call to IMPROVE-PACKING.

Theorem 2.4 The procedure IMPROVE-PACKING terminates after O(c-3X;1plog(me-1)) iterations. If X0
is O(c)-optimal, then IMPROVE-PACKING terminates after O(~~2X0-1p log(mc-l)) iterations.

We shall use the procedure IMPROVE-PACKING repeatedly to find an co-approximate solution for any
given co > 0. We first find a l-approximate solution, thereby solving the problem for co > 1, and then
show how to use this solution to obtain an co-approximate solution for any smaller value of co. Set E = l/6;
and call IMPROVE-PACKING with an arbitrarily chosen solution x E P; repeatedly call this subroutine with the
output of the previous call until the resulting solution (x, A) is GE-optimal or X 5 1 + 6~. If, at termination,
X51+6~= 2, then x is a l-approximate solution. Otherwise, X > 2 and x is l-optimal, and hence
no exact solution exists. The first part of Theorem 2.4 implies that the number of iterations during such a
call to IMPROVE-PACKING with input (x, X) is 0(X-l p log m). Since this bound is proportional to X-l and
it at least doubles with every call, the number of iterations during the last call dominates the total in all of
the calls, and hence O(p log m) iterations suffice overall.

If co < 1, then we continue with the following c-scaling technique. The rest of the computation is
divided into scaling phases. In each phase, we set E + e/2, and call IMPROVE-PACKING once, using the
previous output as the input. Before continuing to the next phase, the algorithm checks if the current
output (x, X) satisfies certain termination conditions. If x is an co-approximate solution, then the algorithm
outputs x and stops; otherwise, if X > 1 + 6~, the algorithm claims that no exact solution exists, and stops.
First observe that if the algorithm starts a new phase, the previous output (x, A) has X 5 1 + 6~ 5 2,
and this is the new input. As a result, for each e-scaling phase, the output is an exact solution or is
GE-optimal. Hence, if the output of a phase (x, X) has X > 1, then x is Geoptimal; if X > 1 + 66, then
the algorithm has proven that no exact solution exists. Furthermore, if no such proof is found by the point
when E I: CO/~, the output (x, A) has X 5 1 + 6~ < 1 + co, and hence x is an eo-approximate solution.

8

Finally, note that for each phase, the input is a 12c-optimal solution with respect to the new value of E.
The second part of Theorem 2.4 implies that the number of iterations needed to convert this solution into
a 6c-optimal one is bounded by O(E-~P log(m@)). Since the number of iterations during each scaling
phase is proportional to the current value of es2 and this value doubles each phase, the bound for the last
scaling phase dominates the total for all the scaling phases.

An iteration of IMPROVE-PACKING consists of computing the dual vector y and finding the point Z E P
that minimizes the cost cx, where c = ytA. Assuming that exponentiation is a single step, the time
required to compute y is O(m) plus the time needed to compute (or maintain) Az for the current point Z.

Theorem 2.5 For 0 < E 5 1, repeated calls to IMPROVE-PACKING can be used so that the algorithm either
finds an e-approximate solution for the fractional packing problem or else proves that no exact solution exists;
the algorithm uses O(e-2plog(mc-f)) calls to the subroutine (1) for P and A, plus the time to compute Az
for the current iterate z between consecutive calls.

Notice that the running time does not depend explicitly on n, the dimension of P. This makes it
possible to apply the algorithm to problems defined with an exponential number of variables, assuming
we have a polynomial-time subroutine to compute a point z E P of cost Cp (y) given any positive y , and
that we can compute Aa: for the current iterate z in polynomial time.

Randomized Version. In some cases, the bound in Theorem 2.5 can be improved using randomization.
This approach was introduced by Klein, Plotkin, Stein, & Tardos (151 in the context of multicommodity
flow; we shall present other applications in Section 6.

Let us assume that the polytope P can be written as a product of polytopes of smaller dimension, i.e.,
P=Plx a l . x P”, where the coordinates of each vector z can be partitioned into (z’ , . . . , zk) and
z E P if and only if x1 E P’, l = 1 , . . . Ic. The inequalities AZ < b can then be written as C A%’ 5 6,
and we shall let a! denote the ith row of AL, i = 1, . . . , m, e = 1, . . . , lc. Let pe denote the width of P’
relative to AL& < b i! - 1- , k. Clearly, p = Cz pe. A subroutine to compute CF (y) for P consists of
Ic subroutines, where the !thsubroutine minimizes cxL subject to zL E PL for costs of the form c = gtAe.

Randomization speeds up the algorithm by roughly a factor of k if # = p for each !!, or the k
subroutines have the same time bound. This assumption is satisfied, for example, in the multicommodity
flow problem considered in [181. One way to define the multicommodity flow problem as a packing
problem is to let Pe be the polytope of all feasible flows satisfying the &h demand and the capacity
constraints ze 5 u, and let the matrix Ax 5 b describe the joint capacity constraints Ce xe 5 u. For this
problem we get that pe = 1 for every JJ. We shall present other applications in Section 6.

The idea of the more efficient algorithm is as follows. To find a minimum-cost point it in P, IMPROVE-
PACKING calculates k minimum-cost points 3? E Pe, l! = 1, . . . , k. Instead, we will choose JJ at random
with a probability that depends on pf (as described below), compute a single minimum-cost point Ze,
and consider perturbing the current solution using this Z! The perturbation is done only if it leads to
a decrease in @. In order to check if P2 is satisfied by the current solution, it would be necessary to
compute Cp (3). Th’is is no longer done each iteration; instead, this condition is checked with probability
l/k. This particular method of randomizing is an extension of an idea that Goldberg [7] has used for the

9

multicommodity flow problem, and was also independently discovered by Grigoriadis & Khachiyan (lo].

The key to the randomized version of our algorithm is the following lemma. The proof of this lemma
is analogous to the proof of Lemma 2.3.

Lemma 2.6 Consider a point (z~,. . . , zk) E P1 x l . . x Pk, with corresponding dual solution y and potential
function value a, and an error parameter E, 0 < E <, 1. Let 2’ be a point in P” that minimizes the cost cszs,
where cs = ytAs, s = 1,. . . , k, and assume that 0’ 5 min{~/(4psa), 1). Define a new point by changing
only Y, where 9 + (1 - #)x8 + &P. If & denotes the potential function value of the new solution, then
fD - 6 2 aa’((1 - c)ytAsxs - ytAS?).

In this lemma, we have restricted os 5 1 to ensure that the new point is in P; to get the maximum
improvement, the algorithm uses # = min{ 1, ~/(4ap’)}. Since the algorithm changes x only when
the update would decrease the potential function, the decrease in the potential function associated with
updating xs is cy#A, where As = max{ ((1 - c)ytAax8 - ytA8S8), 0). Let S = {s : 4ap” < E} and
define p’ = CeBS p”. The probability p(s) with which we pick an index s is defined as follows:

P(s) =
{

I$ for s $! S
& for s E S

Using Lemma 2.6, we get the following theorem:

Theorem 2.7 For 0 < E 5 1, repeated calls to the randomized version of IMPROVE-PACKING can be used
so that the algorithm either finds an c-approximate solution for the fractional packing problem defined by a
polytope P = P1 x . * * x P” and inequalities Cr Afxf 5 b, or else proves that no exact solution exists; the
algorithm is expected to take O(cm2p log(mc-‘) + k log(pe-l)) iterations, each of which makes one call to
the subroutine (1) for Pe and Al, for a single value of A!, e E { 1, . . . , k}, plus the time to compute Cc Aexe for
the current iterate (xl, . . . , x”) between consecutive calls.

Proof: We first analyze a single call to the randomized variant of IMPROVE-PACKING, and show that it is
expected to terminate within 0(~-~pX,l log (me-’) + e-l k) iterations. There are two types of iterations:
those where P2 is satisfied, and those where it isn’t. We bound these separately. In the former case, since
the algorithm checks, with probability l/k, whether P2 is satisfied, and if so, the algorithm terminates,
then we expect that O(k) of these iterations will suffice to detect that P2 is satisfied, and terminate. In the
latter case, we will show the expected decrease of the potential function Q during one iteration is at least
min{c2X/(8p), 1n (2me-‘)/k}@. Since P2 is not satisfied, we have that C, A, > EM, where c&A,
is the decrease in @ associated with updating x,. Using this fact and applying Lemma 2.6, we see that
the expected decrease in Cp is

c CXFAJ(S) = ~CX’.&&+~~A.
.9 sgs 4P”Qf 2P’ sES 2lsl

2 m i n

10

Since a 1 2X-1c-1 ln(27~-‘), the claimed bound on the expected decrease of @ follows.

We use a result due to Karp (141 to analyze the number of iterations used by the randomized version of
IMPROVE-PACKING. Let &, denote the ratio of upper and lower bounds on the potential function Q during a
single execution of IMPROVE-PACKING. Each iteration of the algorithm when P2 is not satisfied is expected
to decrease the potential function by pa, where (1 - p) = min{e2X/(8p), ln(2mc-‘)/k}; let b = l/p.
The potential function never increases. Let the random variable T denote the number of iterations of the
algorithm when P2 is not satisfied. Karp proved a general result which implies that

Prob(T 2 log, S* + w + 1) 5 ~P’-‘pl’~~~ ‘*‘+l&. (5)

To bound the expected number of iterations, we estimate Cj Prob(T 2 j); since p < 1, (5) implies that
this expectation is O(log, 6,). Note that S* 5 meaxo12, and in the case when the input is O(e)-optimal,
Sa 5 meeaXo. Hence we see that the randomized version of IMPROVE-PACKING is expected to terminate
in 0(cm2pa + c-‘k) = O(E-~PX,~ log(mc-‘) + e-‘k) iterations, and is an e-l factor faster if the input
is 0(E)-optimal.

We use this randomized version of IMPROVE-PACKING repeatedly to obtain an co-approximate solution
in exactly the same way as in the deterministic case. First we set E = l/6, and then we use c-scaling. The
expected number of iterations in total, is the sum of the expectations over all calls to IMPROVE-PACKING.
The expected number of iterations in each call to IMPROVE-PACKING with E = l/6 is O(pX,’ log m +
k), and each call during c-scaling is expected to have O(~-~plog(nac-~) + k) iterations. For both
of these bounds, the first term is identical to the bound for the deterministic case. There are at most
log p calls to IMPROVE-PACKING with E = l/6, and log E;’ calls during e-scaling, and hence there are
O(ci2p log(mc,‘) + log(pc,‘)k) iterations expected in total.

To complete the proof, we must also observe that the routine to check P2 is expected to be called in
only an 0(l/k) fraction of the iterations. This implies the theorem. 1

In fact, it is straightforward to bound the expected number of calls to optimize over each P’, t =
1 Y”‘7 k, by O(em2pL log(m@) + log(@)). Let TL denote the time required for the minimization over
PC. Assume that the minimization over P, used by the deterministic algorithm, takes time T = Ce T’.
Noticethatifwehave,inaddition,thatT1 =T/kforeache= l,...,k,or# =fiforeachC= l,...,k,
then the time required for running the subroutines in the randomized version is expected to be a factor of
k less than was required in the deterministic version.

If T = x1 T’, then we can combine the deterministic and the randomized algorithms in a natural
way. By running one iteration of the deterministic algorithm after every k iterations of the randomized
one, we obtain an algorithm that simultaneously has the expected performance of Theorem 2.7 and the
worst-case performance of Theorem 2.5, except that it will need to compute Aa: (for the current solution
2) k times more often than is required by Theorem 2.5. Finally, in the introduction, we mentioned that
results about expectation could be converted into results that hold with high probability by repeatedly
running the algorithm for twice as long as its expected running time bound. In fact, the structure of our
algorithm makes this “restarting” unnecessary, since the final solution obtained by IMPROVE-PACKING is at
least as good as the initial solution. Thus, all of our results can be extended to yield running time bounds
that hold with high probability, without changing the algorithm.

11

Relaxed Versions. It is not hard to show that our relaxed decision procedure for the packing problem
could also use a subroutine that finds a point in P of cost not much more than the minimum, and this
gives a bound on the number of iterations of the same order of magnitude as the original version.

Theorem 2.8 If the optimization subroutine (1) used in each iteration of IMPROVE-PACKING is replaced by an
algorithm that finds a point 2 E P such that ytAii 5 (1 + ~/2)&(y) + (e/2)Xytb for any given y 2 0,
then the resulting procedure yields a relaxed decision procedure for the packing problem; furthermore, in either
the deterministic or the randomized implementations, the number of iterations can be bounded exactly as in
Theorems 2.5 and 2.7, respectively.

Proof: It is easy to prove that the analog of Lemma 2.3 remains valid, using CT 5 E/(8crp). The only
change in the proof is to use the second-order Taylor theorem with 1st 5 c/8 5 l/8, in order to bound the
second-order error term for es@ by c]6]e” /4; this yields that the improvement in the potential function is
at least (c/2)aoX@. Lemma 2.6 can be modified similarly. Since this improvement is of the same order,
the rest of the proof follows directly from these lemmas. 1

In some applications, there is no efficient optimization subroutine known for the particular polytope
P, as in the case when this problem is NP-hard. However, Theorem 2.8 shows that it suffices to have a
fully polynomial approximation scheme for the problem.

Another use of this approximation is to convert our results to the RAM model of computation. In
this paper we have focused on a model that allows exact arithmetic and assumes that exponentiation can
be performed in a single step. As was done in [18] for the multicommodity flow problem, we can use
approximate exponentiation to compute an approximate dual solution jj in O(m log(mpc-l)) time per
iteration. This dual has the property that if we use E = fit A in the optimization routine, then the order
of the number of iterations is the same as in the stronger model. This still does not suffice to convert the
results to the RAM model, since we must also bound the precision needed for the computation. It is easy
to limit the length of the numbers by a polynomial in the input length, similar to the length of the numbers
used in exact linear programming algorithms. However, it might be possible to find an c-approximate
solution using decreased precision, as was done in [18] for the multicommodity flow problem. We leave
this as an open problem.

In the application to the minimum-cost multicommodity flow problem, even approximate optimization
over P will be too time consuming, and we will use a further relaxed subroutine. In order to be able to
use this relaxed subroutine, we must adapt the algorithm to solve a relaxed version of the packing problem
itself. The relaxed packing problem is defined as follows:

RELAXED PACKING: Given c > 0, an m x 12 nonnegative matrix A, b > 0, and convex sets P and p
in the positive orthant such that P c p, find 2 E p such that AZ 5 (1 + c)b, or show that JZ E P such
that Ax 5 b.

The modified algorithm uses the following subroutine:

12

Given a dual solution y, find 5 E p such that

#Ait 5 min(#Ax : x E P). (6)

It is easy to adapt both the algorithms and the proofs for the relaxed problem using this subroutine.
For example, it is necessary to change only the second relaxed optimal@ condition, which becomes:

(92) y-x - #Ai? 2 @Ax + ii$b),

where (x, A) and y denote the current solution in p and its corresponding dual, and 2 denotes the
solution returned by subroutine (6). Furthermore, CT is determined by /j, the width of p with respect to
Ax 5 b. We shall state the resulting theorem for the case when P and @ are in the product form such
thatP=Plx-xPk,P=P1x l l l x pk and P’ C @ for e = 1, . . . , k.

Theorem 2.9 The relaxed packing problem can be solved by a randomized algorithm that is expected to use
a total of O(e-2@log(mc-1) + k log(jc-l)) calls to any of the subroutines (6) for PL, pL and ALxL 5 b,
e = l,... , k, or by a deterministic algorithm that uses O(EP2@ log(m@)) calls for P’, ? and A’x’ 5 b,
foreache = l,.. . , k, plus the time to compute x1 ALxL, e = 1,. . . , k, for the current iterate (x1, . . . , x”)
between consecutive calls.

Integer Packing. In some cases, a modified version of the packing algorithm can also be used to
find near-optimal solutions to the related integer packing problem. This approach is a generalization of
the approach used in [15] to obtain integer solutions to the uniform multicommodity flow problem. In
Section 6, we will apply this algorithm to the job-shop scheduling problem and the network embedding
problem.

To simplify notation, we outline the modification to IMPROVE-PACKING to find integer solutions for the
case when P is not in product form. If the input solution x is given explicitly as a convex combination
of points xs E P returned by the subroutine, x = C, usx8, then each iterate produced by the algorithm
is maintained as such a convex combination. Furthermore, if the values V, for the input are all integer
multiples of the value of o for this call to the algorithm, then this property will also be maintained throughout
its execution.

The original version of the packing algorithm updates x by setting it equal to (1 - a)x + 02, where
2 E P is the point returned by the subroutine. Even if both x and 02 are integral the new point
(1 - 0)x + 05 might not be. The modified algorithm computes ytAx” for every point x5 in the convex
combination. It selects the point XQ with maximum yt Ax9 , and updates x to x + a(? - x4). Since the
current iterate is represented as a convex combination where each u8 is an integer multiple of O, the
updated point is in P; furthermore, the updated point can be similarly represented. To bound the number
of iterations, we again use the potential function @, and the same calculation as in Lemma 2.3 shows that
the decrease in Q during one iteration is at least aa(1 - +jAxQ - Cp (y) . Since yt AxQ 2 gt Ax by the
choice of Q, it follows that this decrease is at least aa&D; thus we get an identical bound for the number

13

of iterations for this modified version of the algorithm. The disadvantage of this version is that we need
more time per iteration. In addition to the call to the subroutine, we must find the current solution XQ with
maximum gt AxQ .

We state the resulting theorem for the version of IMPROVE-PACKING for packing problems in the product
form P = pl)(. . . x P” and inequalities Cz ALxL 5 b. The algorithm maintains each xL E Pe as a
convex combination of points in Pe returned by the subroutine with coefficients that are integer multiples
of the current value oL. We further modify the deterministic version in order to maintain o as large as
possible: in each iteration, we will update only one x’, deterministically choosing 4! to maximize a&Al;
the analysis of the randomized algorithm is based on the fact that the expected decrease of @ is the
expectation of c&At, and so by choosing the maximum, we guarantee as least as good an improvement
in @. Furthermore, in contrast to the randomized version, we still check if P2 holds each iteration, and so
there is no need to count iterations when P2 is satisfied, but this is not detected.

Theorem 2.10 For any 6, 0 < E < 1, given an input solution (xl,. . . ,x”) E P1 x l l l x P”, where
each x’ is represented as a convex combination of solutions returned by the subroutine (1) for P’ and A’,
and the coefficients are integer multiples of the current step size &, J? = 1, . . . , k, the modified version of
IMPROVE-PACKING finds a similarly represented solution to the PACKING problem which is GE-optimal, or else
the corresponding value of x has been reduced by a factor of 2. The randomized version of the algorithm is
expected to use a total of O(&‘e-3plog(mc-1) + k@) calls to any of the subroutines (1) for PC and AL,
e l,...= , k; the deterministic version of the algorithm uses O(&‘c-3plog(me-1) + kc-‘) calls to the
subroutine (1) for PC and AL, for each e = 1, . . . , k. If the initial solution is O(E)-optimal, then the number of
calls for both the deterministic and randomized versions is a factor of e-l smaller.

We use this result to obtain an integer packing theorem. For simplicity of notation, we shall state
the result in terms of p = maxi p’, instead of the individual pe values. We shall assume that there is a
parameter d such that each coordinate of any point returned by the subroutine is an integer multiple of d.
If each 0’ is an integer multiple of l/d, then the current solution is integral. We will set 0’ equal to the
minimum of 1 and the maximum value 2’/d that is at most -$& , where r is an integer. The algorithm
will work by repeatedly calling the modified version of IMPROVE-PACKING, and will terminate as soon as
& < f. The main outline of the algorithm is the same as above. First set E = l/6, and repeatedly call
the modified version of IMPROVE-PACKING until a Gc-optimal solution has been found. Then we begin the
E-scaling phase, and continue until C? becomes too small, where s is such that p” = j% Unlike the previous
algorithms, this algorithm continues even if it has been shown that there does not exist x E P such that
Ax 5 b. This algorithm finds an integer point in P, but it might only satisfy a greatly relaxed version of
the packing constraints. The following theorem gives a bound on the quality of the solution delivered by
this algorithm. The theorem is an extension of a result in [151 for the multicommodity flow problem with
uniform capacities. The existence of an integer solution under similar assumptions has been proven by
Raghavan 1211. However, Raghavan constructs the integer solution using linear programming.

Theorem 2.11 Let X’ = max(A*, (p/d) log m). There exists an integral solution to CL Afxf < Xb with
xL E P’ and X 5 X* + 0(X$/d) log(mkd)). Repeated calls to the randomized integer version of
IMPROVE-PACKING find such a solution (3, x) with an expected total of O(dp/p+ p log(m)/i + k log(dp/p))
calls to any of the subroutines (1) for PL and At, e = 1,. . . , k. A deterministic version of the algorithm uses
O(dp/p + p log(m)/i + k log(dp/p)) calls to each of the k subroutines.

14

Proof: We first analyze the number of iterations of the deterministic algorithm given above, using
Theorem 2.10 in a way similar to the analysis of the algorithm for the fractional packing problem.
Let (Z, 1) denote the solution output by the algorithm. First we compute the number of iterations when
fz = l/6. The first term of the bound in Theorem 2.10 depends on A-l, which doubles with each
call to IMPROVE-PACKING, and so its total contribution can be bounded by its value for the final call with
E = l/6. Since the value of X changes by at most a factor of 2 during c-scaling, this term contributes a
total of O(p log(m)/X) iterations to the overall bound. The contribution of the second term is k times
the number of times that IMPROVE-PACKING is called with E = l/6; this yields a term of O(k log(p/i))
in the overall bound. To bound the number of iterations during c-scaling, we first bound the value of
E at termination. Focus on the call to IMPROVE-PACKING for which 0’ < l/d, where s is such that
P” = p. Recall that A* 5 A 5 2X* throughout c-scaling. Since 0’ = O(c2A/(p log(mc-l))), it suffices
to have E = Q(J1?1og(mkd)/(ii*d)), in order that (T’ < l/d. The total contribution of the first term
of the bound in Theorem 2.10 throughout c-scaling can again be bounded by its value for the final call
to IMPROVE-PACKING, which is O(pd/p). The total contribution of the second term can be bounded by
0(k log e-l) = 0(k log(Ad/p)). This yields the claimed bound. The analysis of the randomized version
is identical.

Next consider the quality of the solution found. The algorithm can terminate due to reducing Y below
l/d either while 6 = l/6, or during the c-scaling. Suppose that the former option occurs. We know
that 0’ 2 ~/(8cyp’) = st(X/@logm)). This implies that i = 0((p/d) log m), and this is within the
claimed bound. Next assume that E < l/6 when CT’ becomes less than l/d. Since A* 5 r\ < 2X*
and C? = O(E/(Q@)), we see that 0’ = O(E2A*/@log(me-‘))) in this case. This implies that
E = O(&log(m+)/(dX*)), which is O(&og(mkd)/(d/*)). The output, which is obtained at the
end of the previous scaling phase, is O(E)-optimal. Therefore, 1 meets the claimed bound. 1

3 Fractional Covering Problem

The fractional covering problem is defined as follows:

COVERING: 3?x E P such that Ax 2 b, where A is a nonnegative m x n matrix, b > 0, and P is a
convex set in the positive orthant of R”.

In this section, we shall describe a relaxed decision procedure for the fractional covering problem
whose running time depends on the coidth p of P relative to Ax 2 b; as in the previous section, the width
is defined maxi max,ep aix/bi.

We shall assume that we are given a fast subroutine to solve the following optimization problem for P
and A:

15

Given an mdimensional vector y 2 0, find 5 E P such that

cii = min(ca: : x E P), where c = ytA. (7)

For a given error parameter E > 0, an E-approximate solution to the COVERING problem is a vector
x E Psuchthat Ax 2 (1 - c)b; an exact solution is a vector x E P such that Ax 2 b.

Relaxed Optimal@. Consider the following optimization version of the COVERING problem:

rnax(A : Ax > Xband x E P), (8)

and let X* denote its optimal value. For each x E P there is a corresponding maximum value X such that
Ax 2 Xb. We shall use the notation (x, A) to denote that X is the maximum value corresponding to x. A
solution (x,X) is c-optimal if x E P and X 2 (1 - E)X*.

The method to solve this problem is analogous to the one used for the fractional packing problem. Let
y 2 0, y E R” denote a dual solution, and let Cc(y) denote the maximum value of c~ for any x E P
where c = ytA. Let (x, A) denote a feasible solution, and consider the following chain of inequalities:

iiytb 5 ytAx 5 Cc(y). (9)

Observe that for any dual solution y, the value Cc(y)/y”b is an upper bound on X*. We will use the
following two relaxed optimal@ conditions.

(Cl) (1 + c)Xytb 2 ytAx

(W CC(Y) - ytAa: I +‘c(Y> + ytb).

Note that the last term in P2 is X times the last term in C2. This is done to improve the running times.
Due to this difference in the definition we cannot claim that a pair (x, X) and y satisfying condition Cl and
C2 are c-optimal unless X is close to 1. We have the following lemma instead.

Lemma 3.1 Suppose that (x, A) and y are feasible primal and dual solutions that satisfy the relaxed optimality
conditions Cl and C2. If X 5 1 - 3~, then there does not exist an exact solution to the fractional covering
problem. If X 2 1 - 3~, then x is 3E-optimal.

Proof: Cl and C2 imply that

Cc(y) L (1 - E)-l(y’Ax + cytb) 5 (1 - c)-‘((1 + E)X + f)ytb.

Consider the case when X 2 1 - 3~. For any dual solution y, X* 5 Cc(y)/ (y” b). This implies that

X8 Cc(y) < (1 + e)X + E < 1 + e
-i- ’ Xytb - X(1 - E)

1
- 1 - E + (1 - & - 34 < 1 - 3E’

16

IMPROVE-C• VER(2, c)
A0 4- mini aiz/bi; cx + 4X,16K1 ln(4me-‘); u + &.
While mini aiz/bi 5 2x0 and x and y do not satisfy C2

For each i = 1, . . . , m: set yi t temaaixlbi.
Fti a rnaximurn-cost point 5 E P for costs c = $A.
Update x + (1 - 0)x + 0%.

Return x.

Figure 3: Procedure IMPR~VE-C~VER.

On the other hand, if X 5 1 - 3q we have

A* <- Cc(Y) < Cl+ w - 34 + fz < 1
ytb - l--E

Hence, in this case, there is no exact solution to the fractional covering problem. 1

The Algorithm. The heart of the covering algorithm is the procedure IMPROVE-COVER (see Figure 3),
which is the covering analog of the procedure IMPROVE-PACKING. It uses a dual solution y defined as a
function of z, where yi = keVaaizlbi for some parameter a; y is the dual solution corresponding to x.
Throughout the procedure, he current solution (x, A) and its corresponding dual solution y will satisfy Cl.
If C2 is also satisfied, then we can either conclude that no feasible solution exists, or that X is sufficiently
close to optimality, and we can terminate. Otherwise, we find the point 2 E P that attains the maximum
Cc(y), and we modify x by moving a small amount towards 2. This will decrease the potential function
@ = ytb, and gradually increase A.

The following lemma is similar to Lemma 2.2.

Lemma 3.2 If (I! > 2X%-’ ln(4me-l) and 0 < c < 1, then any feasible solution (x, A) and its corre-
sponding dual solution y satisfy Cl.

Proof: For this proof, it is useful to introduce a localiied version of Cl.

$1) For each i = 1,. . . 9 m, (1 + c/2)Xbi 2 six or aixyi < kX$b.

Note that c^l implies that

aixyi 5 (1 + El2)Xyibi + &Xytb

Summing up over all i, we see that c^l implies Cl.

Next we show that the hypothesis of the lemma implies that c^l is satisfied. Notice that ytb =
Cie *-ClaiX/iJi By the maximal@ property of A, we have that ytb is at least emax. Consider any row i for

17

which (1 + e/2)Xbi < six and let Xi = aix/bi. This implies that Xi > (1 + c/2)X. If QIX 2 1, then
xe --a’ is a monotonically nonincreasing function of x. Since, by definition of cy, we have &a > Xa! 2 1,
we get that

aiC!li
ytb =

(aix/bi)e-aaix’bi Xiemuxi < (1 + e/2)Xe-QX(1+‘/2) = (1 +=-
Ytb Ytb e-CYX E

,2)Xe-aCX,2 < c~
-G’ I

Next we prove that for an appropriately chosen 0, the new solution significantly reduces the potential
function @ = ytb = Ci e-aaizlbi.

Lemma 3.3 Consider a point x E P and an error parameter E, 0 < E < 1, such that x and its corresponding
dual solution y have potential function value @ and do not satisfy C2. Let 2 E P attain the maximum cc(y).
Assume that o < -&. Define a new solution by 2 = (1 - 0)x + a& and let & denote the potential function

value for 2 and its corresponding dual solution y. Then @ - & 2 HYO@.

Proof: By the definition of p, Ax 5 pb and AZ 5 pb. This implies that aalaix - aiZl/bi < c/4 < l/4.
Using the second-order Taylor theorem we see that if ISI < e/4 2 l/4, then, for all x, ez+6 5 e” + Se” +
$Sle”. Setting 6 = oa(aix - ai5)lbi, we see that

A ’ aa(aix - aiz) e-aaix/biYi I Yi + G bi ’ ‘aalaix - aigl e-aaix/bi
+ G 2bi

5

Using this inequality to bound the change in the potential function, we get

Q-6 = C(yi - #i)bi 2 CYCT C(aii? - aix)yi
i i

- C&U; C(Uii? + UiX)yi

i

= acr(y’AZ - ytAx) - aa;(ytAii + ytAx)

= w(Cc(y) - ytAx) - c.+C,(y) + ytAx) 2 aa(&(y) - ytAx) - aacCc(y).

Since C2 is not satisfied, the decrease in Q is at least aa&?. fi

Next we show that the chosen value of cy is large enough to guarantee that condition Cl is always
satisfied during the execution of IMPROVE-COVER.

Lemma 3.4 If 0 < E < 1, then throughout the execution of IMPROVE-COVER, the current solution (x, X) has
x > 3x014.

Proof: The value of the potential function @ does not increase during the execution of IMPROVE-COVER.
Initially, @ 5 mesaxo, and for any current solution (x, A), @ 2 eBax. Therefore

18

This implies that X 1 3X0/4. 1

Since we set a = 4c%i1 log(mc-l), Lemma 3.2 implies that Cl is satisfied throughout the execution
of IMPROVE-COVER. Since 0 is set equal to &, the decrease in the potential function due to a single
iteration is R($D). Observe that during a single call to IMPROVE-COVER we have e-2aXo 5 @ < mesa%
If the initial solution is GE-optimal for 6 5 l/12, then we have the tighter bound, e-a(1-6’)-‘Xo 5 @ <
meeaxo. This, together with Lemma 3.3, can be used to bound the number of iterations in a single call
to IMPROVE-COVER.

Theorem 3.5 The procedure IMPROVE-COVER terminates in O(ES3plog(m@)) iterations. If the initial
solution is 6c-optimal for E 5 l/12, then IMPROVE-PACKING terminates in O(E-2plog(m~-1)) iterations.

We use the procedure IMPROVE-COVER repeatedly to find an co-approximate solution. Before this, we
must specify how to obtain an initial solution of sufficient quality, which is somewhat more involved than for
the packing analog (where any initial solution in P suffices). For each i = 1, . . . , m, we find xi E P that
maximizes six; this takes m calls to the subroutine. If there exists an i such that mux(uix : x E P) < bi,
then we can conclude that no exact solution for the COVERING problem exists. Otherwise, we take
(l/m) Ci xi as the initial solution, for which the corresponding value of X is at least l/m.

Lemma 3.6 With m calls to the subroutine (7) for P and A, we can either find a solution x E P satisfying
Ax 2 (l/m)b, or conclude that there does not exist an exact solution to the COVERING problem.

The basic approach to using IMPROVE-COVER to obtain an co-approximate solution closely parallels
the packing algorithm. First set E = l/6 and start with the point x E P given by the previous lemma;
this is a solution (x, A) with X 2 l/m. Between consecutive calls to IMPROVE-COVER, we increase X0
by at least a factor of 2, and so within log m iterations, IMPROVE-COVER must output an exact solution
or else find feasible primal and dual solutions (x, A) and y that satisfy Cl and C2. Suppose the latter
occurs. If x 5 1 - 3E = l/2, then the algorithm concludes that no exact solution exists (by Lemma 3.1);
otherwise, X > l/2 and x is l/2-optimal. If co 2 l/2 then the algorithm outputs x and stops; otherwise,
we proceed to e-scaling. Each scaling phase decreases c by a factor of 2, and then makes a single call to
IMPROVE-COVER. The algorithm checks if the resulting solution (x, A) is an co-approximate solution, and
if so, outputs x and stops. Otherwise, it checks if X < 1 - 3~, and if so, claims that no exact solution
exists and stops. If neither termination criterion is satisfied, the algorithm proceeds to the next phase. The
input to each scaling phase has X 1 1 - 36 2 l/2, and so the output is either an exact solution, or else
satisfies the relaxed optimality conditions. Note that the output must be 3eoptimal in the only case when
further phases are needed. Hence, each call to IMPROVE-COVER has an input that is a GE-optimal solution
with the new E 5 l/12. Furthermore, the algorithm is guaranteed to stop by the point when E 5 ~0/3.
IMPROVE-COVER uses 0(p log m) iterations for each of the 0(log m) iterations with e = l/6, and the
number of iterations during c-scaling is dominated by the the number of iterations during the final call to
IMPROVE-COVER, which implies the following theorem.

Theorem 3.7 For 0 < E < 1, repeated calls to IMPROVE-COVER can be used so that the algorithm either
finds an c-approximate solution for the fractional covering problem, or proves that no exact solution exists; the

19

algorithm uses O(m + p log2 m + cV2p log(m@)) calls to the subroutine (7) for P and A, plus the time to
compute Ax for the current iterate x between consecutive calls.

Randomized Version. As was true for the fraction packing problem, we can use randomization to speed
up the fractional covering algorithm if the polytope is in product form. Suppose that P = P1 x . . . x P”
and the inequalities, when written to reflect this structure, are C A’x’ 2 b. In this case, a subroutine (7)
to compute Cc(y) for P and A consists of a call to each of k subroutines: subroutine (7) for Pe and A’,
e= l,... , k. Instead of calling all k subroutines each iteration, the randomized algorithm will make a call
to the subroutine (7) for P" and A” for a single value s E { 1, . . . , k}. The choice of s is made at random,
according to a probability distribution that we will describe below, independently of choices made in other
iterations. A tentative modification of the current iterate (x1, . . . , xk) is made, where only the coordinate
xs is updated. If this change causes the potential function to decrease, then it is really made; otherwise,
the current iterate is unchanged by this iteration. Since Cc(y) is not computed each iteration, we cannot
check if C2 is satisfied; instead, in each iteration, with probability l/k, the algorithm does the additional
work needed to check this condition.

Let pL denote the width of PC subject to ALxL 2 b, t = 1, . . . , k. As in the case of the PACKING

problem, randomization speeds up the algorithm by roughly a factor of k if p1 = p2 = - - . = pk, or
the k subroutines have the same time bound. The key to the randomized version of our algorithm is the
following lemma, which is analogous to Lemma 2.6.

Lemma 3.8 Consider a point (x1, . . . , xk) E P1 x . . . x P" with corresponding dual solution y and potential
function value @, and an error parameter E, 0 < E < 1. Let 3 be a point in P" that maximizes the cost csxs,
where cs = ytAs, s = 1,. . . , k, and assume that 0’ 5 min{c/(4p”a), 1). Define a new point by changing
only xs, where x8 t (1 - Y)xs + #5?. If & denotes the potential function value of the new solution, then
@ - 6 2 a#((1 - ~)y~A”i? - ytAsxs).

Since the algorithm updates x only when @ decreases, the change in @ associated with updating x, is
ad A,, where As = max{((l - ~)y~A”i? - ytAsxS), 0). We have restricted & < 1 to ensure that the
new point is in P; to get the maximum improvement, the algorithm sets aL = min{ 1, E/ (4apf) } . Let
S = {s : 4ap” 5 E} and define p’ = Cses pd. The probability p(s) with which we pick an index s is
defined as follows:

P(s) =
{

6 for s 4 S
& for s E S

Using Lemma 3.8 instead of Lemma 3.3, we get the following theorem:

Theorem 3.9 For 0 < E < 1, repeated calls the randomized version of IMPROVE-COVER can be used so
that the algorithm either finds an E-optimal solution for the fractional covering problem defined by the polytope
P=Plx - . - x P” and inequalities Cc AfxC 2 b, or else proves that no exact solution exists; it is expected
to use a total of O(mk + plog2 m + k log c-l + ce2plog(mc-‘)) calls to any of the subroutines (7) for PL
and AL, A! = 1,. . . , k, plus the time to compute CL ALxl between consecutive calls.

20

Proof: We find an initial solution using Lemma 3.6. This requires m calls to the subroutine (7) for each
P’ and A’, C = 1, . . . , k . Hence, we can assume that our initial solution (x, A) has X 2 1 /m.

Next we analyze a single call to the randomized variant of IMPROVE-COVER, in a way completely
analogous to the analysis of the randomized version of IMPROVE-PACKING. There are two types of iterations:
those where C2 is satisfied, and those where it isn’t. We separately bound the expected number of each of
these. For the former, since C2 is checked with probability l/k in each iteration, there are O(k) of these
iterations expected before the algorithm detects that C2 is satisfied, and terminates. In the latter case, we
shall show that the expected decrease of Q during each iteration is R{ mint e2/p, X-l log(m@)/k}Q.
Since C2 is not satisfied, Es A, 2 E@, where a& A, is the decrease in Q associated with updating x,.
Using this fact and applying Lemma 3.8, we see that the expected decrease in Q is

~&ASP(s) = xo’. .~As+~~As
S +s 4P”a 2P’ SES 2lsl

2 m i n

Since (;Y = R(C9-’ log(m@)), we get the claimed decrease in a.

To analyze the number of iterations, we once again apply the result of Karp [14]. This implies that
the randomized version of IMPROVE-COVER is expected to terminate in O(pce3 log (me-’) + ke-’ X0)
iterations, and is a factor of E- ’ faster if the initial solution is GE-optimal for c 5 l/12.

We use this randomized version of IMPROVE-COVER repeatedly to find an co-approximate solution in
exactly the same way as in the deterministic case. First we set E = l/6, and then use c-scaling. The
contribution of terms that depend on X0 or cm1 can be bounded by their value for calls in which these
parameters are largest. For the remaining terms, we need only observe that there are O(log m) calls to
IMPROVE-COVER with E = l/6, and O(log ~0’) calls during e-scaling. To complete the proof, we note that
condition C2 is expected to be checked in an 0(l/k) fraction of the iterations. 1

Relaxed Version. It is not hard to see that a subroutine that finds a point in P of cost not much less
than the maximum can be used in the algorithm, and gives a bound on the number of iterations of the
same order of magnitude.

Theorem 3.10 If the optimization subroutine (7) used in each iteration of IMPROVE-COVER is replaced by an
algorithm that finds a point Z E P such that ytAZ 2 (1 - ~/2)&(y) - (E/2)Xyt b for any given y > 0, then
the resulting procedure yields a relaxed decision procedure for the fractional covering problem; furthermore, in
either the deterministic or the randomized implementations, the number of iterations can be bounded exactly as
before, in Theorems 3.7 and 3.9, respectively.

Proof: It is easy to prove that the analogs of Lemmas 3.3 and 3.8 remain valid. The rest of the proof
follows from these lemmas. 1

In some of our applications, the optimization over P required by the original version of the algorithm
is difficult or even NP-hard. However, if there is a fast fully polynomial approximation scheme for the
problem, then Theorem 3.10 allows us to use it.

21

4 The General Problem

Consider the class of problems in the following form:

GENERAL: 3?x E P such that Ax 5 b, where A is an arbitrary m x n matrix, b is an arbitrary vector,
and P is a convex set in R”.

We shall assume that we are given a fast subroutine to solve the following optimization problem for P
and A:

Given an m-dimensional vector y 2 0, find a point 2 E P such that:

&= min(a : x E P) where c = ytA. (10)

Given an error parameter E > 0 and a positive vector d, we shall say that a point x E P is an
c-approximate solution if Ax 5 b + cd; an exact solution is a point x E P such that Ax 5 b . The
running time of the relaxed decision procedure for this problem depends on the U&MI p of P relative to
Ax 5 b and d, which is defined in this case by

P =
max zii

I six - bil
i di ’

This formulation of the problem is quite general. We shall also be interested in a special case of this
problem, where the constraints can be viewed as simultaneous packing and covering constraints.

SIMULTANEOUS PACKING AND COVERING: 3?z E P such that Ax 5 b, and J&E 2 6 where a and A are rit x n
and (m - T?L) x n nonnegative matrices, b > 0 and b > 0, and P is a convex set in the positive orthant of R”.

In other words, this is the special case where the coefficients of each row of Ax 5 b are either all
positive (a packing constraint) or all negative (a covering constraint). Furthermore, given this interpretation
it is natural to define d as di = I bil, for i = 1, . . . , m.

To simplify notation for this special case, we will let uix < bi denote the ith row of Ax < b and let
bix 2 bi denote the ith row of Ax > 6. Then, for a given error parameter E, 0 < E < 1, an c-approximate
solution is a vector x E P such that Ax < (1 + 6) b and ax 2 (1 - E$. In the next section we will give
techniques to reduce the width p, which for this problem is max,ep m&x{ mitxi aix/bi, mai &ix/bi}.

Relaxed Optima&. Consider the following optimization version of the GENERAL problem:

min(X : Ax 5 b + Xd and x E P),

22

(11)

and let X* denote its optimal value. There exists an exact solution to the GENERAL problem if X* 5 0.
For each x E P, there is a corresponding minimum value X such that Ax 5 b + Xd. We shall use the
notation (x, A) to denote that X is the minimum value corresponding to x. A solution (x, X) with x E P
is an c-approximate solution if X 5 E.

The algorithm for this problem is similar to the packing and covering algorithms discussed in the
previous two sections. Let y 2 0, y E R” denote a dual solution, and let CG(y) denote the minimum
CG(y) = min(ytAx - ytb : x E P). Let (x, X) denote a feasible solution, let y denote a dual solution
and consider the following chain of inequalities:

Xytd 2 ytAx - ytb 2 C,(y). (12)

It follows that for any dual solution y, X* 2 CG (y)/y” d. Notice that if there exists an exact solution to the
GENERAL problem, then CG(y) 5 0 for each dual solution y. The relaxed optimality conditions for this
problem are defined as follows:

(Gl) iiy’d 5 4yt(Ax - b)

(62) yt(Ax - b) - G(Y) L P/5)Ytd~

The relaxation in S2 seems weaker than in the case of the packing or covering problems, since neither
CG (y) nor yt Ax is included on the right-hand side. However, CG (y) 5 0 whenever there exists an exact
solution, and ytAx is not known to be positive. The following lemma is the analog to Lemma 3.1.

Lemma 4.1 Suppose that (x, A) and y # 0 are feasible primal and dual solutions that satisfy the relaxed
optimality conditions 61 and 62, and X > 0. Then there does not exist an exact solution to the GENERAL

problem.

Proof: Conditions sl and G2 imply that

Xytd 2 5(yt(Ax - b) - G(Y)) 2 ;Xs'd - GdY),

which implies that

The assumptions that d > 0 and y # 0 imply that ytd > 0. Since X > 0,

A’ > c,(Y) > 1
- ytd +o,

and hence there does not exist an exact solution. m

23

X0 + mai(aix - bi)ldi; Q + 4Xi1 IxI(G~/A~‘); Q + v&f.
While mwi(aix - bi)/di 2 Ao/2 and x and 9 do not S&&I 92

For each i = 1, . . . , m: set pi t $ecr(aiz-bi)/di.
Find a minimum-cost point 5 E P for costs c = ytA.
Update 2 + (1 - 0)x + OZ.

Return x.

Figure 4: Procedure IMPROVE-GENEFUX.

The Algorithm. The heart of the algorithm is procedure IMPROVE-GENERAL (see Figure 4), which is
the analog of procedures IMPROVE-PACKING and IMPROVE-COVER. For each x, let y be the dual solution
corresponding to x, where yi = kea(aiz-bi)ldi for some choice of the parameter a. Condition &Z will
be satisfied throughout the procedu;e. If the current solution (x, A) has X 5 E, then x is an e-approximate
solution. If X > E, and 62 is satisfied as well, then, by Lemma 4.1, we can conclude that there does not
exist an exact solution. Otherwise, we use the point 2 E P that attains the minimum CG(y) to modify
x by moving a small amount towards 55 This decreases the potential function @ = ytd, and gradually
decreases A.

We first prove that if cy is sufficiently large, then Gl is satisfied.

Lemma 4.2 If a 2 2X-l ln(GmpX-‘), then any feasible solution (x, A) and its corresponding dual solution
y satisfy Sl.

Proof: Consider the following localized version of G 1:

(Cl) for each i = 1,. . . , m, 2(aix - bi) 2 Xdi or yidi < Xytd/(6mp).

We first show that & implies Sl. Let I denote the set of indices such that 2(aix - bi) 2 Xdi. Then,
using X 5 p, we see that

‘Ytd = x C Yidi + XC yidi 5 2 C (UiX - bi)yi + C A2ytd/(6mp)
iEI igI iEI igl

5 2yt(Ax - b) + 2 C yilaix - Ibil + Aytd/6 = 2yt(Ax - b) + 2 C yidi aixdT biI + Aytd/6
+I igI a

< 2yt(Ax - b) + 2pC yidi + Xytd/6 5 2yt(Ax - b) + (1/2)Xytd.
i$ZI

Hence, condition cl implies that Xytd < 4yt(Ax - b).

Next we show that our choice of o implies that 01 is satisfied. Consider any row i such that
Xdi > 2(aix - bi). By the definition of pi, we have that yidi < eaAi2. Also, by the minima&y property
of A, ytd > e”? Therefore,

g& < e-aX/2 < x

Ytd
- I- 6mp’

24

We prove next that for an appropriate choice of 0, updating the solution significantly reduces the
potential function @ = ytd = xi ea(aix-bi)ldi.

Lemma 4.3 Consider a point z E P and an error parameter E, 0 < E < 1, such that (2, X) and its
corresponding dual solution y have potential function value @ and do not satisfy G2. Let 5 E P attain the
minimum C&B-J). Assume that 0 5 &. Define a new solution 2 = (1 - o)a: + a$, and let d denote the

potential function value for 2 and its corresponding dual solution jj. Then @ - 4 = n(cyaA@).

Proof: By the definition of p, we have that X 5 p, as well as luia: - bi l/d, 5 p and la$ - bi 1 /di 5 p,
i = l,...,m. Hence, B 5 1/(24&p), and this implies that ob(uiz - aiZl/di = ctal(aiz - bi) -
(a&i - bi)l/di 2 l/12. Using the second-order Taylor theorem, we see that if ISI 5 l/2, then, for all z,
ex+’ < ex + Se” + b2ex. Setting S = aa(ai31: - aix)/di, we see that-

@i L yi + z' aa(ai' - 'ix> ea(aix+)/di ' a2a21aiz - 'ix12 ea(aix-bi)/di
s 4 +& 4

’
Ly2u2

Yi + ua$((aig - bi) - (aix - bi))yi + FI(ai$ - bi) - (aix _ bi)lsyi.a i

We use this inequality to bound the change in the potential function:

a-4 = C(Yi - $i)di
i

> CyO C((aix - bi) - (aiii - bi))yi - a2a2 C I(six
-

- bi) - (ai% - bi)12 y

i df
d

i i

= ao(yt(Ax - b) - WY>> - 4a2a2p2ytd > ix+,5 - 4aap2)@.

Since 0 5 A/(24ap2), we see that the decrease in @ is Q(Xaa@). 1

During IMPROVE-GENERAL, 0 is set equal to &, and so the decrease in the potential function

due to a single iteration is a(3 a). Observe that during a single call to IMPROVE-GENERAL we have
eaXo/:! < @ < m&O.- This, together with the previous lemma, can be used to bound the number of
iterations in a single call to I~~PROVE-GENERAL.

Theorem 4.4 The procedure IMPROVE-GENERAL terminates in O(p2Xi2 log(mpXil)) iterations.

We use the procedure IMPROVE-GENERAL repeatedly to find an c-approximate solution. We start by
calling IMPROVE-GENERAL with any point in P and let (x, A) denote its output. We check if X 5 6, and if so
output the c-approximate solution x, and stop. If A > E and condition (g2) is satisfied, then we conclude
that there does not exist a solution and stop. If neither termination condition is satisfied, then this process
is repeated, where the new input to IMPROVE-GENERAL is its previous output. Note that if the output (x, A)
of any call to IMPROVE-GENERAL does not satisfy G2, then the value X must have decreased by at least a
factor of 2. By observing that the number of iterations during the last call to IMPROVE-GENERAL dominates
the total number of iterations, we obtain the following theorem.

25

Theorem 4.5 For any 6, 0 < E < 1, repeated calls to IMPROVE-GENERAL yields an algorithm that finds
an E-approximate solution to the GENERAL problem or proves that no exact solution exists; the algorithm uses
O(p2c 2 log(m&)) calls to the subroutine (10) for P and A, plus the time to compute Ax for the current
iterate 5 between consecutive calls.

Randomized Version. As was true for the fraction packing and covering problems, we can use ran-
domization to speed up the algorithm for the general problem if the polytope is in product form. Suppose
that P = P1 x . . l x Pk and the inequalities, when written to reflect this structure, are C Aed 5 b. Let
pe be the width of P’ relative to A%? 5 b and d, e = 1, . . . ,1. If p1 = p2 = . . . = pe = 6, then we
can speed up the algorithm by roughly a factor of k. The idea of the improved version is analogous to the
randomized versions of the packing and covering algorithms.

A subroutine to compute CG (y) for P consists of calls to k subroutines: subroutine (10) for PL and A’,
e = 1,‘. . . , k. In each iteration, the modified IMPROVE-GENERAL randomly picks an index s E { 1, . . . , k},
calls subroutine (10) for Pa and A”, and uses the solution computed by this call to compute a tentative
update for z’, whereas all other components of the current iterate z are unchanged. We update 2’ only
if this results in a decrease in @. Since G2 is not computed by this subroutine call, in each iteration, with
probability l/k, the algorithm does the additional work needed to check if G2 is satisfied.

The key to the improved version of our algorithm is the following lemma, which is analogous to
Lemmas 2.6 and 3.8.

Lemma 4.6 Consider a point (x1,. . . , zk) E P1 x . . . x P” with corresponding dual solution y and potential
function value @, and an error parameter E, 0 < E < 1. Let 5:” be a point in P” that minimizes the cost cszs,
where cS = ytAs, s = 1,. . . , k, and assume that CP < min{X/(24ap”p), 1). Let the new solution be
defined by changing only x5 where x8 + (1 - 0’)~’ + cPP. If 6 denotes the potential function value of the
new solution, then Q - & = ~(cw8(ytAsxs - ytA8i?) - 4c~~(a~)~(p~)~y%).

Since the algorithm updates x only when @ decreases, the change in @ associated with updating
x, is c&A,, where As = max{(ytAsxe - ytAsi?) - 4o# (ps)2y%, 0). We have restricted 0’ 5 1
to ensure that the new point is in P; to get the maximum improvement, the algorithm sets CP =
min{X/(24ap”p), 1). Let S = {s : 24cup”p 5 A} and p’ = CeeS p”. The probability /3(s) with which
we pick an index s is defined as follows:

P(s) =
{

Y$ for s 4 S
$jj for s E S

The following theorem is analogous to Theorems 2.7 and 3.9.

Theorem 4.7 For 0 < 6 < 1, repeated calls the randomized version of IMPROVE-GENERAL can be used
so that the algorithm either finds an E-optimal solution for the general problem defined by the polytope P =
pl)(. . . x Pk and inequalities CL ALxL 5 b and tolerance vector d, or else proves that no exact solution
exists; it is expected to use a total of O(p2C 2 log(pmc-l) + k log(@)) calls to any of the subroutines (10)
for PC and A’, l = 1, . . . , k, plus the time to compute CL AexC between consecutive calls.

26

Proof: The proof of this theorem is analogous to the proofs of the randomized algorithm analyzed above.
We first consider one call to IMPROVE-GENERAL. Once again, there are two types of iterations: those
where G2 is satisfied, and those where it isn’t. To bound the expected number of the first type, we
note that we terminate after each such iteration with probability l/k, and hence we expect that O(k)
suffice. For the second type, we first give a lower bound on the expected decrease of the potential
function a. Recall that CYCPA, is the decrease in @ associated with updating x,. Furthermore, since
0s I ~l(24+), c cy~P(p~)~ 5 A/24. Applying this along with the fact that G2 is not satisfied, we
have that C, A, > ME?/5 - 4X@/24 = M/30. Hence, we get that the expected decrease in @ is

Once again, we use the result of Karp [14] to analyze the running time. The above bound on the
expected decrease in @ implies that the randomized version of IMPROVE-GENERAL is expected to terminate
after O(p2 A02 lo&m&‘) + k) iterations. The number of times we call the modified IMPROVE-GENERAL
is bounded by O(log(p@)). The overall time bound follows from the fact that X0 decreases by a factor
of 2 each time we invoke the procedure, as well as the fact that the routine to check 52 is expected to be
called in a 0(1 /k) fraction of the iterations. 1

5 Decreasing the width p

The running times of our algorithms are proportional to the width p. In this section we present techniques
that transform the original problem into an equivalent one, while reducing the width. Each of the techniques
assumes the existence of a particular fast subroutine related to optimization over P; different subroutines
might be available in different applications.

Relaxation of Integer Programming. In some cases, the primary interest in solving a particular
fractional packing problem is to obtain a lower bound on an integer program of the form: minimize cx
subject to A’x < b’ and x E P, where the constraints constitute an integer packing problem and c 2 0.
As a result, we wish to decide if there exists a fractional solution x E P that satisfies packing constraints
Ax 5 b, that consist of A’x < b’ and c=l: 5 bo, for some value bo. We shall give a technique to reduce the
width of fractional packing problems that arise in this way.

The assumptions that A > 0 and P is in the nonnegative orthant imply that any integer solution
must satisfy X~ = 0 whenever there exists an index i such that eij > bi. Hence, instead of using
P, we can tighten the fractional relaxation, and use P = {x : x E P, xj = 0 if j E J}, where
J = {j : 3i such that aij > bi}. The width /3 of P relative to AX 5 b is bounded by C = max,ep Cj xj.
For example, if the variables of the integer program are restricted to be 0 or 1, we get C < n.

Theorem 5.1 For any E, 0 < E 5 1, there is an E-relaxed decision procedure to solve a fractional packing
problem that is derived from an integer packing problem in O(cm2C log(mr-l)) calls to the subroutine that finds

27

a minimum-cost point in the restricted polytope P, plus the time to compute the value of the left-hand side of the
packing constraints for the current iterate after each update. If x 5 1 for all x E P, then c 5 n.

If P is a direct product of convex sets, then so is P, and hence the same technique can be applied for
speeding up the randomized version of the packing algorithm as well.

Restricting P? The next technique can be applied for some packing problems where P is a product
of convex sets in smaller dimension. The idea is to define the same packing problem using a different
polytope that has a smaller width. This technique can be applied for multicommodity flow problems (to
obtain the formulation used in [18]) and for the preemptive machine scheduling problem, which will be
discussed in the next section.

Consider a packing problem defined by the convex set P = P1 x . . . x Pk, and the inequalities
Cp Aeze < b. It is easy to see that the convex set p = p’ ⌧ l . l ⌧ pk, where pe = {xe E Pe : Aexe < b},
e= l,.. .Sk, and the same inequalities define the same fractional packing problem, and has p < kr It is
possible that one of the polytopes, PC, ! = 1, . . . , k, is empty, and if so, the optimization routine for FL
will detect this, and thereby prove that there does not exist an exact solution to the original problem.

Theorem 5.2 For any C, 0 < E 5 1, there is an E-relaxed decision procedure to solve a fractional
packing problem defined by P = P1 x . . . x P” and CL Aexf 5 b that is expected to use a total of
O(cm2k log@-&) + k log k) calls to a subroutine that finds a minimum-cost point in pe, A! = 1,. . . , k, and
a deterministic version that uses O(eB2k2 log(m@)) such calls, plus the time to compute the value of the
left-hand side of the packing constraints for the current iterate after each update.

Recall that the multicommodity flow problem can be defined with Pe being the dominant of the convex
combinations of all paths from the source of commodity e to its sink. In this case, optimization over Pe is a
shortest path computation, but the parameter p defined by the problem can be arbitrarily high. The above
technique imposes capacity constraints on the flows of individual commodities (since a flow is a convex
combinations of paths). The resulting equivalent formulation has b 2 k, but the required subroutine is the
more time consuming minimum-cost flow computation.

Decomposition for Packing Problems. Consider the packing problem defined by a polytope P
and inequalities Ax 5 b. We introduce a decomposition technique that defines a related problem with
decreased width by replacing P and A by an equivalent problem in the product form. This decomposition
can be used in cases where P is a polytope and we are given a subroutine that is more sophisticated than
an optimization routine for P; the details of this routine will be given below. This technique will be used
to solve the minimum-cost multicommodity flow problem in the next section.

For simplicity of presentation, we shall initially work with fractional packing problems where the
polytope is a simplex. This is, in fact, without loss of generality, since each packing problem is equivalent
to a problem in this form. To see this, let v1, . . . , v, denote a list of the vertices of P. Each point
x E P can be written as a convex combination of the vertices of P: x = Cj tjvj, where Cj tj = 1
and <j 2 0, j = 1,. . . , S. If we let cj, j = 1,. . . , s, be the variables of the transformed problem, then
this yields a problem in which the polytope is a simplex, possibly with exponentially many variables; the
packing constraints are now represented as Ht 5 b, where H = (hij) and hij = aivj. Observe that

28

this change of coordinates does not change the width. In order to apply the packing algorithm to the
transformed problem, we need a subroutine that finds j such that the jth coordinate of the vector ytH is
minimum. Substituting the definition of H, this means that we need a subroutine that finds a vertex vj of
P that has minimum cost mj where c = #A.

Now we show how to obtain an equivalent problem for which the width is roughly half of its original
value p. In order to facilitate recursion, we will assume that the simplex is defined by S = { (& , t2, . . . , &) :
xtj = d,<j > 0,j = l,...

-l = {j : 3’
, s} for some d. We introduce two copies of each variable cj : [j and

<i. I f w e l e t J 2 such that h,d > 2mbi}, then the new polytope is S1 x S’, where
S’ = (1/2)S = {< : Cj <j = d/2,(> 0) and S1 = {tl : c1 E S’, <i = 0 if j E P}. The new system
of packing inequalities is H(’ + H<’ 5 b. Note that the width of S’ relative to H[’ 5 b is p/2; for any
t’ E s,

j jQJ1 j
and hence the width of S1 relative to H(’ 5 b is at most m.

If we apply the same transformation to S’, after k = [log pl applications we obtain a fractional packing
problem where the polytope is a product of k + 1 polytopes, S1 x l . . x Sk x S’, and a set of inequalities
of the form Ce Hc’ + H<’ 5 b, where S’ = 2-kS, and ,S = {<” : 5’ E 2-LS, tj = 0 if j E Je} where
Jf = {j : 3 such that h,d > 2tmbi}. Since, for any tf E Se,

the width of Se relative to H<’ 5 b is at most m, ! = 1, . . . , k. Furthermore, the following lemma implies
that the new problem is equivalent to the original one.

Lemma 5.3 If the fractional packing problem defined by S and HJ 2 b has an exact solution, then so does
the problem defined by S1 x - - - x Sk x S’ and Cc Hc’ + Hc’ 5 b. For any E > 0, any E-approximate
solution to the latter problem can be used to find an qqroximate solution to the former.

Proof: We first note that if (<l,. . . , ck, c’) is an c-approximate solution to the transformed problem, then
c = Cc ce + 6’ is an E-approximate solution to the original problem.

Now assume that we have an exact solution 5 to the original problem. We will show that this implies the
existence of an exact solution of the transformed problem, and in fact, give an algorithm to construct such
a solution, given the solution for the original problem. Initially, set [’ = 5 and te = 0, J! = 1, . . . , k. The
algorithm consists of k phases. In phase e, e = 1, . . . , k, Cj ei decreases by d/2’, and Cj <j increases
by the same amount. All other variables are unchanged. Hence, the resulting solution ([l, t2, . . . , [“, St)
is such that c’ E 2~‘S, G = 1, . . . , k, and c’ E 2-“S = S’. We will perform each phase to ensure that,
infact,each[f E SCJ= l,..., k.

In phase e, e = 1, . . . , k, while Cj <i > d/2’, find j $ J’ with G > 0, and simultaneously increase
rj’ and decrease Si by the same amount. This maintains that Cc H(’ + Ht’ 5 b. If we continue
until Cj [i = d/2’, this ensures that the resulting solution tc E SL. We claim that we can always
continue while Cj [i > d/2’. Assume, for a contradiction, that for the current solution (cl,. . . , tk, <‘),

29

we have Cj C > d/2e, and j E JL whenever [i > 0. Hence, for each j such that <i > 0, we
have a row i(j) that contains a large coefficient in the jth column: hi(j)j > 2’mbqj,/d. Furthermore,
d/2’ < Cj <i = Ci Cj:i(j)=i G. Choose i such that Cj:i(j)=i C > d/(2lm), and consider row i of
Es Ht” + H<’ < b. We get that-

CC hij(: + C hijC 2 C hijC > F C tfi > bi,
9 i j j:i(j)=i j:i(j)=i

which contradicts Es H<” + H<’ 5 b. [

Having obtained this decomposition, we would like to express these polytopes and these constraints
in terms of the original coordinates; we also would like to express the optimization subroutine (1) for Se
and H in terms of a different, more intricate, subroutine for P and A. For the former, we can restate the
decomposed problem as P1 x . l -
where ‘P’

x Pk x P’ subject to the system of inequalities Ce Axe + Ax’ 2 b,
= 2-” P and P’ = { xf : xL = Cj [$vj 3 <’ E St}, e = 1, . . . , k. In other words, a point in

P’ is 2-! times a convex combination of vertices vj of P, each of which satisfies Avj 5 2!mb. Thus, in
these terms, the basic decomposition lemma can be restated in the following way.

Lemma 5.4 If the fractional packing problem defined by P and Ax 5 b has an exact solution, then so does
the transformed problem defined by P1 x . . . x P” x P’ and Cc AxL + Ax’ 5 b, where k 5 [log pl. For
any E > 0, any E-approximate solution to the latter problem can be used to find an E-approximate solution to the
former.

In order to apply the packing algorithms in Theorem 2.5 and Theorem 2.7 to the transformed problem,
we need subroutines that, given a dual solution y, find a point xf E P’ that minimizes the cost cexe, where
Ce = ytA, i? = 1, . . . , k. There is a vertex of Pi that attains this minimum; the vertices of PC are those
vertices vj of P that satisfy Avj 5 2’mb. Hence, it is sufficient to have the following subroutine with
u = 2lrn:

Given a constant u and a dual solution y, fmd a vertex 5 E P such that:

AZ 5 ub, and
ytA5 = min(y’Az : 2 a vertex of P s.t. AZ 5 vb).

(13)

Observe that there need not be a feasible solution to this further constrained optimization problem;
if this is detected, however, then Lemma 5.4 implies that there does not exist an exact solution to the
original packing problem. Since each polytope Pe has width at most m with respect to Ax 5 b, we have
the following theorem:

Theorem 5.5 For any 6, 0 < 6 5 1, there is a randomized E-relaxed decision procedure for the fractional
packing problem that is expected to use O(tzs2m log p log(mc-‘) + log p log log p) calls to the subroutine
(13), and a deterministic version that uses O(eB2m log2 p log(m@)) calls, plus the time to compute the value
of the left-hand side of the packing constraints for the current iterate after each update.

30

Observe that in order to obtain a decomposition where each subproblem has width at most m, it would
suffice to take the above decomposition with k = log (p/m). Th’is implies an improved version of the
theorem with log p replaced by log(p/m). However, in our applications of this theorem, p will be large
relative to m, and so that this improvement will not be relevant.

Subroutine (13) is, in some sense, similar to optimization over p, which is required by Theorem 5.2,
and was discussed in the previous subsection. However, if the packing problem is not in the product
form, then optimization over p solves the original problem, whereas (13) does not. Instead of finding a
minimum-cost point in P that satisfies Arz: < vb, subroutine (13) finds a minimum-cost uertex of P that
satisfies the same condition. Even if an instance is feasible, all vertices of P might violate Ax 5 b, and
hence we cannot directly use subroutine (13) with u = 1 to solve the packing problem.

In the case of the multicommodity flow problem the vertices of the polytopes defining the individual
commodities are paths, and subroutine (13) for a commodity finds a shortest path in an appropriate
subgraph of the original graph (induced by edges with relatively large capacity and relatively small cost).
On the other hand, optimization over the polytope p’ used in Theorem 5.2 is a minimum-cost flow
computation.

Taking advantage of the fact that we are only interested in approximate solutions, we can improve the
previous theorem by replacing log p by log E-l. Consider the packing problem defined by the inequalities
CL AxL < b and the convex set P1 x . l . x Pk with k = [log(3@)1 and Pf , e = 1, . . . , k, as defined-
above.

Lemma 5.6 Let 0 < E 2 1. If the fractional packing problem defined by P and Ax 5 b has an exact solution,
then so does the transformed problem defined by P1 ⌧ l l . x P” and Ce Ax” 5 b, where k = [log 3~~1.
An E/3-approximate solution to the transformed problem can be used to find an E-approximate solution to the
original problem.

Proof: By Lemma 5.4, if there is an exact solution to the original problem then there is an exact solution
to P1 x * * * x P” x P’. By ignoring the component of this solution for P’, we obtain an exact solution
for the transformed problem of this lemma.

Now assume that we have an c/S-approximate solution (z’, . . . , xk) to the transformed problem.
We claim that x = & Ce xc is an E-approximate solution for the transformed problem. Observe that
x E P and

Ax
1=-

1 - 2-k c
Axe <- &Cl + ;)b 5 (- $q#l+;)bS (l++ I-

.f

Theorem 5.7 For any E, 0 < E < 1, there exists a randomized c-relaxed decision procedure for the fractional
packing problem that is expected to use O(cB2m log es1 log(m@)) calls to the subroutine (13), and by a
deterministic version that uses 0(C2m log2 es1 log(m@)) calls, plus the time to compute the value of the
left-hand side of the packing constraints for the current iterate after each update.

Subroutine (13) will not be available for the minimum-cost multicommodity flow problem. Instead, we
will have the following relaxed subroutine, for some parameters ‘yi 2 1, i = 1, . . . , m.

31

Given a constant Y and a dual solution y, find a vertex 2 E P such that:

AS 5 ub, and (14)
#AZ 5 min(y’Aa: : x a vertex of P with aix 5 ’

r bi vi)-a

Subroutine (13) is the special case of (14) when +yi = 1, i = 1, . . . , m.

In order to use subroutine (14) in place of (13) and still obtain a similar time bound, we need a
generalized decomposition instead of the one in Lemmas 5.4 or 5.7. For simplicity of presentation we
shall again focus initially on a fractional packing problem given by a simplex S = {< : C j tj = d, (> O},
and packing constraints Ht 5 b.

LetT = ciyi, KL = {j : 3i such that hijd > 2’(I’/yi)bi}, and SL = {c : c E 2-LS, <i = 0 if j E
Kc}, e = 1,. . . , k, and S’ = 2-“S. It is not hard to show that Lemma 5.3 still holds under these
more general definitions. The proof of this lemma is trivially adapted: we merely replace JL by Kt , and
substitute I’/yi for m; in particular, the choice of row i in the proof by contradiction is made so that it
satisfies Cj:i(j)=i <i > (d/2’)(yi/I’). The width of SC relative to Htt 2 b can now be bounded by r.

In terms of the original coordinates, this decomposition yields a polytope Q = Q’ x . . . x Qk x Q’, and
a system of inequalities Ce Axe + AX’ 2 b, where Q’ = 2-‘P, and Qe = { xe : xe = Cj <;vj, ee E Se},
e = I , . . . , k. In other words, a point in QL is 2-1 times a convex combination of vertices vj of P, each
of which satisfies aivj 5 2’rbi/Ti, i = 1,. . . , m.

Lemma 5.8 If the fraction packing problem defined by P and Ax 5 b has a solution, then so does the
transformed problem defined by Q’ x l l l x Qk x Q’ and CL Ax4 + Ax’ 5 b. For any E > 0, an E-
approximate solution to the latter problem can be used to find an e-approximate solution to the former.

If we were to apply Theorem 2.5 to solve the transformed problem, we need subroutines that find
minimum-cost points in the polytopes Q’, e = 1, . . . , k, where the cost vector c = yt A. Instead, we
will formulate a relaxed packing problem, and apply Theorem 2.9; to do this, we must first define the
polytopes &’ > Qc, ! = 1, . . . , k, on which this relaxation is based. Define Qe, f! = 1,. . . , k, to be the
polytope formed by taking the convex hull of all vertices 1-j of P that satisfy Avj 2 2eI’b, and resealing
by 2-e; & = &’ x . . . x &” x Qt. Since yi 2 1, i = 1, . . . , m, it is clear that Qe G Qe, e = 1, . . . , k.
Finally, note that subroutine (14) serves the role required by subroutine (6) for Theorem 2.9: it produces
a vertex of Qe with cost no more than the cost of a minimum-cost vertex in Qe. Hence, we can use
Theorem 2.9 to produce a point 2 = (2’) . . . , iik, x’) E & such that Ce Aege + AX’ 5 (1 + E)b, or
else to determine that there is no solution x E Q such that Cc Axe + Ax’ 5 b. In the latter case, we
can conclude that the original problem does not have an exact solution. Otherwise, since Qe G 2-eP,
e = I,... , k, and Q’ = 2-“P, if the algorithm returns a solution ? E Q, then x = Ce 2’ + x’ is in P,
and is an c-approximate solution to the original problem. Since the width of each QL, e = 1, . . . , k, is at
most r, we obtain the following theorem.

Theorem 5.9 For any E, 0 < E 5 1, there is a randomized E-relaxed decision procedure for the fractional
packing problem that is expected to use o(C2r log p log(mc-‘) + log p log(r log p)) calls to the subroutine

32

(14), and a deterministic version that uses O(EB2r log2 p log(mc-l)) calls, plus the time to compute the value
of the left-hand side of the packing constraints for the current iterate after each update.

An analogous result can be proved where the log p terms in this theorem are replaced by log c-l,
by using the convex sets Q’ x . - - x Qk and Q’ x . . . x Q” with k = [log(3c-‘)l as suggested by
Lemma 5.6.

Theorem 5.10 For any E, 0 < E 5 1, there is a randomized E-relaxed decision procedure for the fractional
packing problem that is expected to use o(EV21’ log em1 log(m@)) calls to the subroutine (14), and a deter-
ministic version that uses a factor of log 6-l more calls, plus the time to compute the value of the left-hand side
of the packing constraints for the current iterate after each update.

Analogous results can be proved if the convex set P is already in product form, P = P1 x - l - x Pk.
We use the decomposition technique to replace each set PC, ! = 1, . . . , k, by a product of 0(log e-l)
sets. Consequently, this approach assumes that the subroutine (14) is available for each Pe and Aext < b,
e= I,... , k. We get the following theorem.

Theorem 5.11 For any E, 0 < 6 5 1, there is a randomized E-relaxed decision procedure for the frac-
tional packing problem defined by P = P1 x l l . x P” and CL Aext 5 b, that is expected to use
O(C2 ICI log em1 log(mf-‘) + k log k log @) calls to the subroutine (14) for any of Pe and Aexe 5 b,
e= l,... , k, and a deterministic version that uses a total of O(cB2k21’ log2 6-l log(me-l)) such calls, plus
the time to compute the value of the left-hand side of the packing constraints for the current iterate after each
update.

Decomposition for Covering Problems.

We present a decomposition technique for the covering problem, which is analogous to the technique
used for the packing problem. The subroutine required for this approach is given by (15). This technique
will be used by our algorithm for the cutting-stock problem, as described in Section 6.

Consider the covering problem defined by the polytope P and the inequalities Ax 2 b. For simplicity
of presentation, we shall again assume that the problem was converted into the form H[2 b, t E S,
where S is the simplex: S = {s : Cg,, [j = d, s 2 0) for some d. As before, this reformulation does
not change the width.

We first show how to obtain an equivalent problem for which the width is roughly half of its original
value p. We introduce two copies of each <j : ci and <i. The new polytope is S1 x S’, where S’ =
s1 = (112)s. The new set of inequalities is H1<’ + Ht’ 2 b where H1 = (h~j) and h~j is h, if
hijd 5 2mbi, and 0 otherwise. Note that the width of S’ relative to Ht 2 b is p’ = p/2, and, since
Cj hij(j 5 Cj(2mbi/d)<i < mbi, i = 1,. . . , m, the width of S1 relative to H1c 2 b is p1 2 m.

If we apply the same transformation to S’, after k = [log pl applications we obtain an equivalent
covering problem with a polytope which is a product of k + 1 polytopes, S1 x . . . x Sk x S’, and a system

33

of inequalities of the form Ce Hece + Hc’ > b,where S’ = 2-‘S, Se = 2-eS, He = (ht), and ht is
hij if hijd 5 2’mbi, and 0 otherwise. For each of these subproblems, the width is at most m.

We shall give a slightly generalized version of the covering analog of Lemma 5.3. In this section, we
shall use this lemma with X = 1. The more general version with X < 1 will be used in the cutting-stock
application.

Lemma 5.12 Let X _< 1. If there exists t E S such that H< 2 Xb, then there exists (&e2,. . . , tk, 5’)
E s1 x s2 x a*- x S’ such that Ce He<’ + H<’ 2 Xb. For any E > 0, an E-approximate solution to the latter
problem can be used to find an E-approximate solution to the former.

Proof: We first note that if ([’ , t2, . . . , <‘) is an e-approximate solution to the transformed problem, then
< = CL 6’ + 5’ is an E-approximate solution to the original problem.

Now assume that we have a solution [E S such that H< 2 Xb. We claim that any such c corresponds
to an exact solution of the transformed problem, and we will give an algorithm that does this conversion.
Initially, set <’ = 5 and se = 0, e = 1,. . . , k. The algorithm consists of k phases. In phase e, 4! = 1, . . . , k,
Cj [i decreases by d/2’, and Cj e; increases by the same amount. All other variables are unchanged.
Hence, the resulting solution (cl, t2, . . . , tk, <‘) is such that cc E SL, !! = 1, . . . , k, and c’ E 2-“S = S’.

We will perform each phase so that the covering constraints remain satisfied. In phase .!, e = 1, . . . , k,
while Cj Sg > d/2’, find j with [i > 0 such that for each i with Es hit” + hi<’ = Xbi, we have that
ht = hi,. Simultaneously increase sj’ and decrease [i by the same amount, so that Es H’<’ + H[’ 2 Xb
is maintained. We claim that we can always continue while Cj <i > d/2’. Let (t’, . . . , ek, 5’) be the
current solution, and assume, for a contradiction, that for each <i > 0, we can select a row i(j) such
that h~~j)j # h,(j)j and Es h~~j,r’ + hi(j,c’ = Abi(j). By the definition of the matrix He, we have that
h.G)j > 2’mbitj,/d. Furthermore, since d/2’ < Cj ti = Ci Cj:i(j)=i <i, there exists an index i such
that Cj:i(j)=i ti > d/(2lm). Since i = i(j) for some j,

Xbi = C C hijci + C hij<i 2 C hijC > T C C > bi.
6 j j j:i(j)=i j:i(j)=i

This implies that X > 1, which is a contradiction. 1

In order to apply the covering algorithm in Theorem 3.7 or Theorem 3.9 to solve the transformed
problem, we need a subroutine that finds a vertex vj of (2-l) P such that Ci yiht is maximum. By the
definition of H, ht = aivj if eivj < 2’mbi, and 0 otherwise, and hence the required subroutine is as
follows:

Given a constant u and a dual solution y, find a vertex 5 E P such that:

c YiaiX- = max(C YiaiX : 5 a vertex Of P),
iEl(v,b) iEI(v,z)

(15)

where I(U, 2) = {i : UiX 5 Ubi}.

34

Theorem 5.13 For any E, 0 < E 5 1, there is a randomized e-relaxed decision procedure for the fractional
covering problem that is expected to use O(m log p (log2 m + C2 log(mesl))) calls to the subroutine (15),
and a deterministic version that uses a factor of log p more calls, plus the time to compute the value of the
left-hand side of the covering constraints for the current iterate after each update.

Analogous results can be proved if the convex set P is in product form, P = P1 x . . . x Pk. Assuming
that the subroutine (15) is available for each Pe and ACx 2 b, e = 1, . . . , k, we use the same technique
to replace the set Pe by a product of 1 + [log pl sets. We get the following theorem.

Theorem 5.14 For any E, 0 < E < 1, there is a randomized c-relaxed decision procedure for the fractional
ecovering problem defined by P = P1 x . . . x P” and Ce A x ’ > b that is expected to use a total of

O(mk log p (log2 m + e--2 log(mesl))) calls to any of the subroutines(E) for PL and At 2 b, l = 1, . . . , k
and a deterministic version that uses a factor of k log p more calls, plus the time to compute the value of the
left-hand side of the covering constraints for the current iterate after each update.

Decomposition for Simultaneous Packing and Covering. A combination of the techniques used to
derive Theorems 5.5 and 5.13 can be used to obtain an analogous version for problems with simultaneous
packing and covering constraints. The subroutine that we will use is given by (16).

For simplicity of presentation, we shall again reformulate the problem so that the polytope is the
simplex: S = { [: Cj [j = d, < 2 0) for some d. Let H< 5 b and & 2 b denote the packing and
covering constraints in the converted form.

The polytope for the equivalent problem constructed by the decomposition technique is a product of
k + 1 simplices S1 x l . . x Sk x S’ where k = [log pl . If we let Je = {j : Eli s.t. hijd > 2embi},
then the simplices are S’ = 2-“S and S4 = { tL : te E 2-%, <i = 0 if j E Je}, e = 1, . . . , s. The
packing and covering constraints are Cc HtL + HI’ < b and & fiece + &St 2 6, where Be = (~:)
and jLI; is hij if Lijd 5 2’m&, and 0 otherwise. The proof that this is an equivalent formulation is nearly
identical to the separate proofs of the decomposition for packing and for covering. The only difference
is that in the proof by contradiction, for each $ > 0, we identify either a packing inequality i such that
hijd > 2’mbi, or else we identify a tight covering inequality i such that iLijd > 2em&; by averaging over
all inequalities, we identify one that provides the contradiction. The width of each subproblem resulting
from the decomposition is at most m. The optimization subroutine over Se, required for our algorithm, is
as follows: among thoses indices j such that hijd <_ 2’mbi, i = 1, . . . , m - fi, find one that minimizes
Ci Yi(hij - it,. Converting back to the original coordinates x, the required subroutine is the following,
with u = 2em:

Given a constant u and a dual solution (y , $), find a vertex 2 E P such that:

Ait 5 ub, and (16)
yt& - c A A -&Ii&X = min(ytAx - c $iiiix : x a vertex of P such that AX 5 ~b),

iEI(v,Z) iEl(v,z)

where I(U,X) = {i : l&X < Ubi}.

35

Theorem 5.15 For any C, 0 < c 5 1, there is a randomized c-relaxed decision procedure for the general
problem that is expected to use O(m2 (log2 p)c2 log (-’E m log p)) calls to the subroutine (16), and a deter-
ministic version that uses a factor of log p more calls, plus the time to compute the value of the left-hand side of
the covering constraints for the current iterate after each update.

An analogous results can be proved if the convex set P is in product form, P = P1 ⌧ l . l ⌧ Pk , assuming
that the subroutine (16) is available for PL and the corresponding inequalities, for each e = 1, . . . , k.

6 Applications

In this section, we will show how to apply the techniques presented in the previous four sections to a
variety of linear programs related to packing and covering problems. For an optimization problem, an E-
approximation algorithm delivers a solution of value within a factor of (1 + c) of optimal in polynomial time.
Although we will focus on c-approximation algorithms for fixed E, this is only to simplify the discussion of
running times. In each of the applications except for the Held-Karp bound and the bin-packing problem,
we obtain a significant speedup over previously known algorithms. When we cite bounds based on
Vaidya’s algorithm [25] for the dual problem, then this algorithm is used in conjunction with the techniques
of Karmarkar & Karp [131 to obtain a primal solution.

Scheduling unrelated parallel machines: with and without preemption. Suppose that there are
N jobs and M machines, and each job must be scheduled on exactly one of the machines. For simplicity
of notation, assume that N 2 M. Job j takes pij time units when processed by machine i. The length
of a schedule is the maximum total processing time assigned to run on one machine; the objective is
to minimize the schedule length. This problem, often denoted RI]Cmax, is NP-complete, and in fact,
Lenstra, Shmoys, & Tardos showed that there does not exist an E-approximation algorithm with c < l/2
unless P = NP. Lenstra, Shmoys, & Tardos (201 also gave a l-approximation algorithm for it, based on
a l-relaxed decision procedure. If there exists a schedule of length T, then the following linear program
has a feasible solution:

N

c PijXij 5 Ty i=l,...,M;
j=l

M

c Xij = 1 , j=l,...,N;
i=l

Xij = 0 ifp,>T, i=l,..., M, j=l,..., N,
Xij 2 0 ifPij<T, i=l,..., M, j=l,..., N.

(17)

(18)

(19)
(20)

Lenstra, Shmoys, & Tardos showed that any vertex of this polytope can be rounded to a schedule of
length 2T. We shall call x 2 0 an assignment if it satisfies (18). Let the length of an assignment x be the
minimum value T such that it is a feasible solution to this linear program.

36

To apply Theorem 2.5, we let P be defined by the constraints (M-20). It is easy to see that p 5 N:
for any z E P, ~ij > 0 implies that pij 5 T, and so Cy=, pijzij 5 NT for each machine i = 1,. . . , M.
Each dual variable yi corresponds to one of the machine load constraints (17), and the coefficient of xij in
the aggregated objective function ytAx is yipij. Since P = P1 x . l . x PN, where each Pj is a simplex,
we can minimize this objective function by separately optimizing over each Pj. For a given Pj, this is
done by computing the minimum modified processing time yipij, where the minimization is restricted to
those machines for which pij < T. This approach is quite similar to the ascent method that Van de Velde
[27] used to solve this linear program; he also used a Lagrangean method that, in each iteration, constructs
a schedule by assigning each job to its fastest machine with respect to the modified processing times, but
uses a much simpler rule to update the dual variables y.

Each iteration takes O(MN) time and p 2 N. Hence, for any fixed E > 0 we can find an assignment
3 of length at most (1 + e)T in O(MN2 log M) time, if one of length T exists. However, in order to
apply the rounding procedure to produce a schedule, Z must first be converted to a vertex of the polytope.

We can represent any assignment x as a weighted bipartite graph G = (VI, V2, E), where VI and
V2 correspond to machines and jobs, respectively, and (i, j) E E if and only if xij > 0. If x is a vertex,
then each connected component of the corresponding graph is either a tree or a tree plus one additional
edge; we call such a graph a pseudoforest. The rounding procedure of Lenstra, Shmoys, & Tardos
can be applied to any assignment represented by a pseudoforest, and takes O(M + N) time. We will
give a procedure which, given any assignment of length T represented by G = (VI, V2, E), converts it
in 0(1 E 1 M) time into another assignment of length at most T that is represented by a forest. Since
IEI < MN, the time to preprocess 3 for rounding is dominated by the time taken to find 3.-

Lemma 6.1 Let Z be an assignment represented by the graph G = (VI, V2, E). Then Z can be converted
in 0(1 E 1 M) time into another assignment 2 of no greater length, where 2 is represented by a forest.

Proof: To show that the assignment 3 can be easily converted to one represented by a forest without
increasing its length, first consider the case when a connected component of G is a cycle. Let el, . . . , e2r
denote the edges of the cycle. It is always possible to obtain another assignment of the same length,
either by increasing the coordinate of 3 for each edge e2i, i = 1, . . . , r and decreasing those for e2+1,
i = l,..., r, or vice versa. If ei and ei+l meet at a node in V2 (a job node), then the perturbations
have the same magnitude; if they meet at a node in VI, the perturbations are linearly related based on
machine load constraint for that machine node. By choosing the largest such perturbation for which the
non-negativity constraints are satisfied, at least one of these coordinates of 3 is forced to 0, and so this
connected component has been transformed into a forest.

To generalize this to a procedure that converts an arbitrary assignment into one represented by a
forest, we perform a modified depth-first search of G: when a cycle is found by detecting a back edge,
this perturbation is computed for that cycle, and the search is restarted; when the search detects that an
edge does not belong to any cycle in G (because the search from one of its endpoints has been exhausted
and is retracing its path towards the root) the edge is deleted to avoid repeatedly searching that part of the
graph, and the coordinate of z for this edge is fixed to its current value.

Consider the time that it takes to find the next cycle, and divide it into two parts: time spent searching
edges that are deleted due to the fact that they are not contained in any cycle, and time spent searching

37

the cycle as well as the path from the root to the cycle in the depth-first search tree. Since the depth of
tree is at most 2 M, the time spent for the latter in one search is O(M) ; since at least one edge is deleted
in each search (by the perturbation), the total time for this is 0(I El M). On the other hand, the time
spent searching edges that are deleted in this phase of the search is O(1) per edge, and hence is clearly
0(I E I), in total for the algorithm. Finally, the time spent computing the correct perturbation is O(M)
per perturbation, and hence 0(I El M) in total. m

By applying Theorem 2.5, we obtain a deterministic (2 + c)-relaxed decision procedure for RI I Cmax
that runs in 0(MN2 log M) time. Recall that P = P1 x l l . x PN, and we can also take advantage of
this structure using randomization. Observe that pi 5 1, j = 1, . . . , N, and we can optimize over PJ’ in
O(M) time; we can also compute the updated values Ax in O(M) time. Applying Theorem 2.7, we get
a randomized algorithm that takes 0(N log N) iterations, each of which takes O(M) time. Furthermore,
the solution 2 is expected to have 0(N log N) positive components, since at most one is added at each
iteration, and so it can be preprocessed for rounding in 0(M N log N) time. This gives a randomized
analogue that runs in 0(MN log N) expected time. To convert either relaxed decision procedure into
an approximation algorithm, we use bisection search to find the best length T. Since the schedule in
which each job is assigned to the machine on which it runs fastest is within a factor of M of the optimum,
O(log M) iterations of this search suffice.

Although it is most natural to formulate the linear program for RI]Cmax as a packing problem, a faster
deterministic algorithm can be obtained by using a covering formulation. Let Ci xij 2 1, j = 1, . . . , N
be the covering constraints; let P = P1 x P2 x - l - x PM, where

Pi = {(Xii, . . . 9 XiN) : C PijXij < T; Xij = 0, if Pij > T, and 0 5 xij < 1, otherwise.}

In this case, optimizing over Pi is merely solving a fractional knapsack problem with N pieces, which can
be solved in O(N) time using a linear-time median finding algorithm. As a consequence, each iteration
again takes O(MN) time, but for this formulation, p = M. We will not apply Theorem 3.7 directly,
but instead give a simple way to compute an initial solution with X = l/M. If 2 is the O-l solution in
which each job is assigned to the machine on which it runs fastest, then 2/M is such a solution: if 2 +! P
then there is no feasible solution, since this implies that the minimum total load of the jobs is greater than
the machines’ total capacity. As a result, the N calls (one per covering constraint) to the subroutine to
optimize over P are not needed to construct an initial solution. Given an c-optimal solution 5, it can be
converted to a feasible solution to our original linear program by resealing the variables for each job so that
they sum to exactly 1; as a result, the machine load constraints will be satisfied with right-hand side set to
T/(1 - E). By Lemma 6.1, this solution can be converted into one represented by a forest in 0(M2N)
time.

Theorem 6.2 For any fixed r > 1, there is a deterministic r-approximation algorithm for RI lCmax that runs
in 0(M2N log2 N log M) time, and a randomized analog than runs in O(MN log M log N) expected time.

The fastest previously known algorithm for solving this problem is the FAT-PATH generalized flow
algorithm of Goldberg, Plotkin, and Tardos [S]. In order to convert the packing problem defined by
(17-20) into a generalized flow problem, we construct a bipartite graph with nodes representing jobs and

38

machines and introduce an edge from machine node i to job node j with gain l/pij if pij < T. There is
a source which is connected to all the machine nodes with edges of gain Pmax = mX{pij} and capacity
T, and the job nodes are connected to a sink with edges of unit gain and unit capacity. A generalized
flow in this network that results in an excess of N at the source corresponds to a solution of the packing
problem. On the other hand, if the maximum excess that can be generated at the source is below N, the
original packing problem is infeasible, i.e., the current value of T is too small.

The running time of the FAT-PATH algorithm given in [SJ is O(m2n2 log n log2 B), where n, m, and
B are the number of nodes, edges, and the maximum integer used to represent gains or capacities,
respectively. In our case, we have O(N) nodes, O(MN) edges, and the maximum integer used to
represent gains and capacities is bounded by 0(NP,=) , where Pmax = mm{pij } . It is possible to
show that the FAT-PATH algorithm is significantly faster for our specific case as compared to the general
case. First, it is sufficient to compute an approximate solution. Also, the maximum length of the cycle
in our graph is O(M). Finally, in order to eliminate dependence on Pm=, we can round pij and T
so that they will be represented by O(log N)-bit integers. The running time of the resulting algorithm
is 0((M2 N2 + M3 N log2 N) log N), which is worse than the running times of our deterministic and
randomized algorithms by an R*(N) and R* (MN) factors, respectively.

In a related model, we consider schedules with preemptions: a job may be started on one machine,
interrupted, and then continued later on another. Lawler & Labetoulle [171 showed that an optimal
preemptive schedule for this problem, Rlpmtn I Cm=, can be found by minimizing T subject to

N

cPijXij 5 T, i=l,...,M,
j=l
M

cpijxij 5 T, j = 1,. . . , N,
i=l

M

c xij = l,j=l,..., N ,

(21)

(22)

(23)
i=l

xij 2 O,i=l,..., M, j=l, N. (24)

We can again use a weighted bipartite graph G to represent the assignments satisfying (23)-(24); the
length of an assignment x is the minimum value T such that x and T satisfy (2 l)-(24). If the weights are
represented as integers over a common denominator, then this can be viewed as compactly represented
multigraph, where the numerator of the weight of each edge specifies its multiplicity. An optimal edge
coloring of this multigraph for the optimal solution to (21)-(24) gives an optimal schedule, where the
matching of jobs and machines given by each color class represents a fragment of the schedule. If we
use relatively few distinct matchings, then we introduce few preemptions, and it can be shown that O(N)
matchings suffice [171.

In order to apply our relaxed decision procedure, we shall do a bisection search for the minimum value
of T for which we find an c-approximate solution. We will have deterministic and randomized variants for
performing one iteration, which apply, respectively, Theorems 2.5 and 2.7 to the constraints of the linear
program (21)-(24) for a particular target F. As in the previous packing formulation, the system Ax < b is

39

given by (21), and let

Pi = {xj : gP,Z, < T, CXij = 1, xij 2 0, i = 1,. . . , M}.
i=l i=l

It is easy to see that pi < 1. To optimize over Pj, note that this is the dual of a 2-variable linear
program with M constraints, and, in fact, it is a fractional multiple-choice knapsack problem with M
variables. Dyer [l] has shown that this problem can be solved in O(M) time. For the deterministic
version, when P = P1 x - - - x PN, we have p < N. To optimize over P, we solve N disjoint multiple-
choice knapsack problems, each with M variables, in O(MN) time. Similarly, each iteration of the
randomized variant can be implemented in O(M) time.

Given an assignment Z of length T represented by a weighted graph G = (VI, V2, E), we must
still compute a schedule. If we are interested in computing a schedule that completes in exactly time T,
then it takes O(lEl(IEI + M)) t’rme to compute such a schedule [171. However, since 3 is itself only
approximately optimal, there is little point to computing the best schedule corresponding to 3: we can
more efficiently compute a somewhat longer schedule.

Given G, we compute resealed values Pij = (pijji’ij) . (Q/T), where the value of Q will be specified
below. As a result, the resealed total load on each machine and total processing time of each job is at
most Q. Round these resealed times by forming the multigraph G, where each ij E E occurs with
multiplicity [pijl. Thus, the maximum degree A of this graph is at most Q + N. Using an algorithm of
Gabow [4], we can color this graph in 0(MA log A) time with 2f’Os2 A’ colors. By choosing Q = 2’ - N,
where 1 = [log,(N + N~-l)l, it follows that A < 2’- = 0(N/E). Each matching given by a color class
corresponds to a fragment of the schedule of length T/Q. The total length of this schedule is at most

2’T~P~~WT/Q < - NT
- 2’-N

=T+2[5T+
N

T=(l+c)T. ,- N + NC-~ - N

Theorem 6.3 For any constant c > 0, there are deterministic and randomized E-approximation algorithms
for Rlpmtn I Cmax that run in O(MN2 log2 M) time and O(MN log M log N) expected time, respectively.

The previous best algorithm is obtained by using the linear programming algorithm of Vaidya [26]. Our
running time marks an R*(M2s5N1e5) improvement over this algorithm for the deterministic algorithm,
and an s2*((MN)2*5) ’ prm rovement for the randomized algorithm.

Job shop scheduling. In the job shop scheduling problem, there are N jobs to be scheduled on a collec-
tion of M machines; each job j consists of a specified sequence of operations, Orj, Ozj, . . . , 0p.j , where
Oij must be processed on a particular machine mij for pij time units without interruption; the operations
of each job must be processed in the given order, and each machine can process at most one operation
at a time; the aim is to schedule the jobs so as to minimize the time by which all jobs are completed. Let
p,, denote maxi,j pij, the maximum processing time of any operation, let Pmax denote mtij xi pij,
the maximum total processing time of any job, and finally, let nmax denote maxi Cj,lt:mhj=i Pkj, the
maximum total processing time assigned to a machine.

40

Shmoys, Stein, & Wein [24] give a randomized O(log2 (M + p))-approximation algorithm for this
problem and a deterministic variant that uses the randomized rounding technique of Raghavan & Thomp-
son [Z] and its deterministic analogue due to Raghavan [Zl]. The overwhelming computational bottleneck
of the deterministic algorithm is the solution of a certain fractional packing problem.

The algorithms work by first performing a preprocessing phase that reduces the problem to the
following special case in O(M2p2N2) time: N = O(M2p3), p,, = O(Np), II,,, = O((NP)~), and
P = O(Np2). We shall use fi to denote min{ N, M2p3}. For each job, the randomized algorithm
seL:ts, uniformly and independently, an initial delay in the range { 1,2, . . . , T}, where T = l-Imaz. A
straightfonvard counting argument proves that if each job is scheduled to be processed continuously with
its first operation starting at the chosen delay, then, with high probability, this assignment has placed
WogW + 1.4) jobs on any machine, at any time. The remainder of the algorithm carefully slows down
this attempted schedule by an O(log(M + p) log pmax) factor in order to produce a schedule in which
each machine is assigned to process at most one job at a time.

This algorithm can be made deterministic by formulating the problem of choosing initial delays so that
each machine is always assigned O(log(M + p)) jobs as an integer packing problem, and then applying
the techniques of Raghavan & Thompson [Z] and Raghavan [21] to approximately solve this packing
problem. The computational bottleneck of this procedure is solving the fractional relaxation of the integer
packing problem. The variables for the fractional packing problem are zjd, for each job j = 1, . . . , N
and each possible delay d = 1, . . . , T; the polytope is P = P1 x . . . x PN, where Pi is a T-dimensional
unit simplex, where each vertex corresponds to a particular delay selected for job j, = 1, . . . , N. There
are M(P,,, + T) = M(Pmax + II,,) = O(Mfi2p2) packing constraints: for each machine and each
time unit, we wish to ensure that the particular selection of initial delays results in O(log (M + p)) jobs on
that machine at that time.

One way in which our results can be applied to this problem is to use our algorithm to solve the
fractional packing problem, and then apply the algorithm of Raghavan to round this fractional solution
to an integer one. However, we can obtain a simpler and more efficient solution by applying the integer
packing algorithm of Theorem 2.11, which directly produces an integer solution of sufficient quality.

In the worst case, all N jobs can be assigned to the same machine at a particular time, and hence
the parameters of the packing problem are $ = 0(l/ log (M + p)) (since the right-hand sides are
O(log(M + p))), p = Np, lc = N, m = 0(MR2p2), and d = 1. Since the random selection of delays
yields a feasible integer packing with high probability, X* = 0(1). By Theorem 2.11, we can find an
integral solution to the above packing problem with X = O(1) in O(N log(M + p)) iterations of this
algorithm.

It remains to show how to implement a single iteration of the integral packing algorithm. Until the
algorithm terminates, each aj = 1, j = 1, . . . , N; any decrease in any aj causes the algorithm to
terminate. As a consequence, the algorithm maintains a solution (ICY, . . . , zlv> such that each Xi is a
vertex of Pi, j = 1, . . . , N. In each iteration, only one of these components is changed. This change
involves only two variables: for one job j, its assigned delay is changed from one value to another. If
we change one variable Xjd, then this affects at most Pmax dual variables pit, corresponding to the time
units t E (d, d + Pm, - 1) since xjd corresponds to processing job j starting at time d. This change
in Pmax dual variables affects the costs Cjrd' for at most 2P,, delays, d’ E (d - Pm=, d + Pmax - l),

41

for each j’ = 1, . . . , N. However, given the updated cost cjldt for a job j’, we can update cjJdl+l in
O(p) time. Therefore, the time required to update all of the costs after the change in 2 primal variables
is O(fipPnlax) = O(fi2p3). For each job j, j = 1,. . . , N, we must select the delay of minimum cost,
and then update the job for which this represents the maximum improvement. To efficiently select the
minimum cost variable xjd, for each j = 1, . . . , N, we maintain a heap for each job j, j = 1, . . . , N,
which contains the costs Cjd, d = 1,. . . , T.

Lemma 6.4 One iteration of the integer version of IMPROVE-PACKING can be implemented in O(fi2p3 log(M+
p)) time.

Applying Theorem 2.11 and the results of Shmoys, Stein, and Wein, we get the following.

Theorem 6.5 A job shop schedule with maximum completion time that is a factor O(log2(M + /I)) more
than optimal can be found deterministically in 0(M2p2 N2 + R3p3 log2 (M + p)) time.

The fastest previously known algorithm is obtained by using the linear programming algorithm of
Vaidya [26], which solves the fractional packing problem in O(N10*5p7 log(M + II)) time. Then one can
apply the techniques of Raghavan and Thompson [22] and Raghavan [21] to round to an integer solution.
Our algorithm marks a very large improvement over this running time.

Network embeddings. Let G = (V, Eo) and H = (V, J?&) denote two constant-degree graphs on the
same set of N nodes. We define the flux of G by cy = min{S(S)/]S] : S C V, ISI < N/2}, where S(S)
denotes the number of edges in EG leaving S, i.e., one endpoint is in S and the other is in V - S. An
embedding of H in G is defined by specifying a path in G from i to j for each edge ij E EH. The dilation
of the embedding is the maximum number of edges on one of the paths used, and the congestion is the
maximum number of paths that contain the same edge in G. Leighton and Rao [19] gave an algorithm to
embed H in G with dilation and congestion both O(y). If H is an expander, and hence each subset
S of at most N/2 nodes has R(ISI) edges leaving it in H, then every embedding of H in G must have
congestion a(i) .

The computational bottleneck of the Leighton-Rao algorithm is finding an approximately optimal dual
solution to a certain fractional packing problem that directly corresponds to the problem of routing the
edges of H. To search for an appropriate choice of L, we repeatedly double the candidate value; our
algorithm that attempts to embed H into G with congestion and dilation L has running time proportional
to L, and hence the time for the final value of L will dominate the total. Leighton and Rao [19] show
that when L = O(w) , then there exists an embedding with dilation and congestion at most L. The
variables of the packi;g problem are as follows: for each edge ij E EH, there is a variable for each path
in G from i to j of length at most L. The polytope P is a product of simplices, one simplex for each
edge ij E EH, which ensures that one path connecting i and j is selected. There is a packing constraint
for each edge i j E EG, which ensures that i j is not contained in more than L of the paths selected. An
integer solution to this packing problem is an embedding of H in G with congestion and dilation at most

We will apply Theorem 2.11 to obtain an approximately optimal integral solution. The width p = l/L
for this problem, d = 1; k is the number of edges in H, which is O(N); and m is the number of edges

42

in G, which is also O(N) . Leighton and Rao proved that if an appropriate L = O(y) is used then
A* = 0(1). The assumption that G has bounded degree implies that Q! = O(l), and therefore X’ in the
theorem is 0(1). Theorem 2.11 implies that an integral solution to the packing problem with X = 0(1)
can be obtained in O(N log N) iterations of the packing algorithm.

To implement one iteration, we need the following subroutine. Given nonnegative costs on the edges
of G, and an edge ij E EH, we must select a minimum-cost path from i to j consisting of at most L edges.
In the randomized version of IMPROVE-PACKING, we pick an edge of H at random; in the deterministic
version, such a path has to be selected for each edge of H. A minimum-cost path from i to j consisting
of at most L edges, can be found in 0(NL) time using dynamic programming, since G has O(N) edges.

Theorem 6.6 For any two constant-degree graphs, H and G, on the same set of nodes, an embedding of the
edges of H into the edges of G with congestion and dilation O(F) can be found by a randomized algorithm
in O(N2L log2 N) expected time, or in a factor of N more time deterministically.a

This running time marks a major improvement over the best previously known time that is obtained by
using Vaidya’s algorithm [25]. To obtain the dual solution, Vaidya’s algorithm has 0(N2 log N) iterations,
each of which consists of inverting an O(N) by O(N) matrix, plus 0(N2 L) time for the deterministic
version of the above subroutine; since L = O(y), the total time is O(N2 log N(N2v + M(N))).
When used in conjunction with the techniques of Karmarkar & Karp to produce a primal solution, this
appears to yield an algorithm that runs in O(N7 log3 N) time, and a randomized analog that is a factor
of N faster.

The Held-Karp bound for the TSP with triangle inequality. One of the most useful ways to obtain
a lower bound on the length of the optimum tour for the traveling salesman problem was proposed by Held
& Karp [ll], and is based on the idea of Lagrangean relaxation. We shall assume that an instance of the
Traueling Salesman Problem (TSP) is given by a symmetric N x N cost matrix C = (cii) that satisfies the
triangle inequality, i.e., cii + cjk > cik, Vi, j, k, and has minimum tour length TSP(C). A l-tree consists
of 2 edges incident to node 1, and a spanning tree on { 2, . . . , N}. Since every tour is a l-tree, the cost
of the minimum l-tree is at most TSP(C); furthermore, it can be computed by a minimum spanning tree
computation. Each node i is then given a price pi and reduced costs Eii = cij + pi + pi are formed; if
y is the cost of a minimum l-tree with respect to the reduced costs, then y - 2 Ci pi 5 TSP(C). The
Held-Karp bound is attained by choosing the vector p to maximize this lower bound. Held & Karp gave
a subgradient optimization method to find such a p by iteratively computing the minimum l-tree T with
respect to the current reduced costs, and then adjusting p by taking a step proportional to di - 2, where
di is the degree of node i in T.

It is possible to formulate the Held-Karp bound as a linear program where the variables are the prices
(plus one additional variable r), and there is one constraint for each possible l-tree: maximize y subject
to the constraint that the reduced cost of each l-tree is at least y. We shall instead focus on the dual of
this linear program. Let Tl, . . . , T8 be a complete enumeration of all l-trees, let ddj denote the degree of
node i in Tj, and let cj denote the total cost of Tj (with respect to the original costs C). If xi denotes the
variable corresponding to Tj, then we can formulate this dual as follows:

minimize cCjxj subject to

43

8

c dijxj 5 29 i=l,...,N, (25)
j=l

5

c "i = 1, Xi 2 0, j=l,..., S. (26)
j=l

We apply Theorem 2.5 by using a bisection search for the minimum feasible cost K, so that there is
feasible solution to the fractional packing problem, where P is defined by (26), Ax 5 b is given by (25)
and C,“=, cjxj 5 K. The bisection search can be initialized with lower and upper bounds of hi, and
2hi,, respectively, where hi, = mini cj.

Lemma 6.7 The width p of the above formulation of the Held-Karp bound is at most N.

Proof: * We can assume that K > hi,. By the triangle inequality, each entry in C is at most the cost
of the minimum l-tree, c,in. This implies that cj/ck < N, for each j, k = 1, . . . , s, and so for each
x E P, Cj cjxj < NK; furthermore, for each l-tree, the degree of each node is less than N, and hence,
Cj dijxj < N. m

To minimize a linear objective over P, we choose the l-tree with minimum objective coefficient. If
z E R denotes the dual variable for Cj cjxj 5 K and y E RN denotes the vector of dual variables for
(25), then the objective coefficient of xi9 in the corresponding optimization over P, is cj 2 + CL, diiyi.
This implies that the minimum l-tree found in this iteration is precisely the l-tree found by minimizing
with respect to the reduced costs C with p = y/z, which was used in each iteration of the Held-Karp
subgradient optimization method. Of course, we use a rather different rule to compute the new vector p
for the next iteration. Using the minimum spanning tree algorithm of Fredman & Tarjan [3], we get the
following result.

Lemma 6.8 The subroutine required by the packing algorithm in Theorem 2.5 for this problem can be imple-
mented in O(N2) time.

The bisection search produces a value J? and a solution Z E P that satisfies Ax 2 (1 + c)b with
K = k, whereas for K 5 k/ (1 + E) , there does not exist x E P of cost K that satisfies (25). However,
this does not imply that K is within a factor of (1 + E) of the optimum Held-Karp bound; it is possible
that any x E P that satisfies (25) has a much larger cost. However, we have the following lemma.

Lemma 6.9 For any point 2 E P of cost at most I? such that Cj d,xj < (1 + ~)2, i = 1,. . . , N, we can

find, in O(N2) time, a point x E P that satisfies (25) and has cost at most k(1 + 2Nc).

Proof: We construct x by carefully perturbing 2. We start by setting x = 2:. The current solution is a
convex combination of l-trees. We will maintain the property that x is a convex combination of multi-l-
trees, where a multi-l-tree is a spanning tree on nodes { 2, . . . , n} and any two edges incident to node
1, which might be two copies of the same edge. Let di(x) = Cj dijxj. If x does not satisfy (25), then
there must exist a node k with dk(x) > 2. By an averaging argument, we see that in this case there is

44

at least one node j with dj (x) < 2. So we have partitioned the nodes into three sets, SC, S= , and S, ,
depending on whether a node i has di(x) less than, equal to, or greater than 2, respectively. We construct
a multi-l-tree Tl as follows: form a spanning tree on SC, add a cycle through node j E SC and all nodes
in S=, as well as an edge from each node in S, to node j. Observe that Tc has dil = 1 if and only if
di(x) > 2, and dit = 2 for each node i with di (x) = 2. We use Ti to perturb x; let 3 denote the incidence
vector of Ti. We set x = (1 - a)x + 0% where CJ is chosen to be such that di(x) < (1 + E - a/2)2,
for each i = l,... , N, and the number of points with di (x) = 2 is increased. This can be achieved by
setting

. di(x) - 2
Q = i:dT$$2 di(x) - &’

We repeat this procedure until there are no more points with di(x) > 2 left, and hence the resulting
solution satisfies (25). Since each iteration increases the number of points with di (x) = 2, the procedure
terminates after at most N iterations, and takes O(N2) time.

Now consider the cost of the resulting solution. If the point 2 E P has cost at most k, then there
must exist a l-tree of cost at most IT, and therefore, by the triangle inequality, cj 5 NJ?, for each
j = l,...,s. Each perturbation with corresponding value CY ensures that maxi di (x) decreases by CT
Since a total decrease of at most 2~ is needed to ensure that the resulting solution satisfies (25), the values
of CT for all of the perturbations sum to at most 26. Therefore, these perturbations have increased the
cost by at most 2cNK. Finally, it is not hard to show that there must exist a solution that is a convex
combination of l-trees of no greater cost, by showing that x can be interpreted as a feasible solution to
the subtour elimination polytope, which is an alternative formulation of the Held-Karp bound. 1

Ifweusec= co/(2N), we obtain the Held-Karp bound within a factor of 1 + co. Unfortunately, this
implies that the algorithm might run for O(N3 log N) iterations, where each iteration takes O(N2) time.
In contrast, Vaidya’s algorithm [25] takes O(N2M (N) log N) time.

The cutting-stock problem. In the cutting-stock problem, we wish to subdivide a minimum number
of raws of width W, in order to satisfy a demand di for finals of width wi, i = 1,. . . , M. This can be
formulated as an integer program with a variable xi for each feasible pattern for subdividing a single raw;
that is, a pattern is an vector ut E NM, such that xi aiwi 5 W, and ai 5 di, i = 1, . . . , M. Let
(alj,-*-7 aMi>‘, j = 1,. . . , N, be a list of all patterns. Then we wish to minimize Cj xi subject to

N

c aijxj > di, i = 1,. . . , M, (27)
j=l

and xj 2 0, integer, j = 1, . . . , N. Although we want an integer solution, the linear relaxation of
this formulation has been extremely useful in practical applications; furthermore, there are applications in
which patterns may be used fractionally [2]. Also, finding an approximate solution to this linear relaxation is
the key ingredient of Karmarkar & Karp’s [131 fully polynomial approximation scheme for the bin-packing
problem.

Given a possible number of raws T, we try to find x E P = { xj : Cy!, xi = r, xj 2 0, j =
1 7’” 9 N} that satisfies (27). Since the width p can only be bounded by r, we will use the decomposition

45

result, and so we need subroutine (15) for this application. Consider a vertex x of P, where xk = T and
xj = 0, j # /c. The profit of this lath pattern is x((&r)eik : i such that aik 5 V&/T); each final of
width w, that is used in this pattern has a profit of yir, unless more than Udi/T finals of width Wi are used,
in which case none of those finals has any profit. For each pattern a, any vector b such that b 5 a is also
a pattern, and so we can find the optimal vertex of P among those patterns j for which ail I: ud,/r,
i = l,... , M. Hence, subroutine (15) is equivalent to solving the following knapsack problem: there are
M types of pieces, such that type i has weight wi and has profit yiT and the total knapsack has capacity
IV; at most Vdi/T pieces of type i can be used, and we wish to fill our knapsack as profitably as possible.
Although this is NP-hard, recall that by Theorem 3.10 an c/2-approximation algorithm would suffice for
our purposes. Lawler [16] gave efficient approximation algorithms for the M-piece ordinary knapsack
problem that run in O(Mcp2) and O(M log 6-l + cV4) time. Next we adapt both algorithms for the
above version of the knapsack problem, where instead of M different pieces, we have M different types
of pieces.

Lawler’s c-approximation algorithm for the knapsack problem is roughly as follows. First compute
the optimum value Pa of the linear programming relaxation of the knapsack problem. Lawler shows that
PO 5 P’ 5 2Po, where P’ denotes the optimum integer knapsack value. Next the algorithm considers
large pieces with profit at least T = eP,/2. By rounding the profits and then using dynamic programming,
it compiles a list of O(E-~) candidate solutions using just these large pieces. Next it augments each of
these candidate solutions with a subset of the remaining small pieces using a greedy algorithm, and selects
the best among the resulting solutions.

We shall briefly describe a modification of Lawler’s algorithm that can be applied to the version of
the knapsack problem with a specified number of copies of each type of piece. We first solve the linear
programming relaxation; even with multiple copies, this can be done in O(M) time using median finding
within a divide-and-conquer strategy. The only part of the algorithm that is non-trivial to adapt to problems
with multiple copies of pieces is the rounding and dynamic programming. We first round the profits of the
large pieces as follows: for an item with profit pi E (2lT, 2!+lT], we let the rounded profit Qi = l&J 2e,
where K = ET/~ = c2Po/4. This rounding guarantees that there are at most 2Po/K = O(E-~) distinct
values for the total rounded profit of any knapsack solution.

If (C, P) and (C’, P’) represent the unused capacity and total profit for two knapsack solutions x and
x’, respectively, then x dominates x’ if C 2 C’ and P 2 P’. The dynamic programming algorithm finds
the set of all undominated solutions. The algorithm works in M stages; after stage j, it has found the
set of undominated solutions using pieces of only the first j types of pieces. Stage j can be implemented
to run in time proportional to the the multiplicity of piece type j times number of different rounded total
profits. Therefore, the time required for the dynamic programming can be estimated as the total number
of large pieces (counting multiplicities) times the number of possible rounded total profits. Lawler observed
that after rounding, one can use median finding to discard all but O(cV2) large pieces in O(M) time. To
see this, note that at most 21-ec-1 pieces of profit more than 2eT can be used in any solution of total
profit at most 2Po; hence, for each rounded profit value in the interval [2eT, 2!+lT], we need keep only
the 21-ee-1 pieces of least weight. Since there are O(E-l) distinct rounded profits in this interval there
are-II 21pee-’ = O(E-~) large pieces needed in total. As in Lawler’s algorithm, these pieces can be
selected in O(M) time.

As a consequence, the dynamic programming algorithm produces 0(cp2) solutions using just the large

46

pieces, and the algorithm automatically arranges them in increasing order of unused knapsack capacity.
Lawler has shown that these solutions can all be augmented to include a greedily selected extension of small
pieces in (M log c-l) time, using median finding (see section 6 in [16]). This algorithm can also be used for
problems with multiple items. The resulting implementation of the subroutine runs in O(M log c-l + E-*)
time.

In order to obtain the O(ME-~) bound, we have to further modify Lawler’s algorithm, using another
technique that was introduced in [16] in a somewhat different context. We can assume without loss of
generality that the multiplicity of each of the large pieces is at most O(E-l). Next we construct an instance
of the ordinary knapsack problem that is equivalent to this instance with multiplicities; the new instance
has fewer pieces in total, by replacing a piece of weight wi, profit pi and multiplicity mi by [log nzil
items, with weights and profits [wi,pi], [2wi, 2pi], . . . , [2k wi, 2kpi] and [(mi - 2k)Wi, (mi - 2k)pi] where
k = l10g miJ. S’once we can simulate selecting any number of copies of type i that is at most mi by
choosing an appropriate subset of the new pieces, we get the following lemma.

Lemma 6.10 The resulting instance of the ordinary knapsack problem with O(M log c-l) pieces is equiva-
lent to the instance of the knapsack problem of the large pieces.

Next we round the resulting pieces as was done above. Notice that although there are 0(M log c-l) pieces,
no profit interval (2V, 2r+lZ’] has more than M items. We will run the dynamic programming starting
with the items whose profits fall in the top interval. These items were rounded more roughly. The number
of different rounded profits possible using items with profits at least 2? is at most P*/(2lK). Therefore,
the dynamic programming for items with profits in the interval (2LT, 2%!‘] can be implemented in
O(MP*/(2eK)) t’rme, and the time spent on the last interval, which is O(MP*/K) = O(Mes2),
dominates the total time for the computation.

Theorem 6.11 An E-approximation algorithm that is analogous to the optimization subroutine (15) can be:
implemented in O(min{ Mcq2, M log 6-l + eB4}) time.

The covering algorithm of Theorem 3.7 starts by finding an initial solution with X 2 l/m. For the
cutting-stock problem, it is easy to provide an initial solution with X 2 l/2. For final i of width wi, consider
the pattern j(i> that consists of LW/wiJ finals of type i, i = 1,. . . , M. Set foci) = di/lW/wiJ for each
i = l,... , M, and set each other component ~1 = 0. Let r’ = Cj x’. . Since each selected pattern is at3
least half used for finals, r* 2 r’/2. Hence, we can initialize the bisection search for the minimum number
of raws with r’ and r’/2 as upper and lower bounds, respectively. For any candidate number of raws r, the
vector x0 = (r r/ ‘) x’ serves as an initial solution with X > l/2 to the covering problem formulated for the
cutting-stock problem. However, we are using the decomposition technique, so we must provide an initial
solution to the transformed version of the covering problem. Since X = r/r’ 5 1, the algorithm used to
prove Lemma 5.12 finds a solution of identical quality for the transformed problem P1 ⌧ l l . x Pk x P’.
The initial solution x’ satisfies each covering constraint with equality, and all patterns used consist of a
single type of final. Therefore, each phase of this algorithm can be implemented to run in O(M) time.
Since k = log r, we obtain a solution for the transformed problem in 0(M log r) time. Since we have
an initial solution with X > l/2, we no longer need the log M calls to IMPROVE-COVER with E = l/6, and
can start with c-scaling; this improves the running time in Theorem 5.13 by deleting the log2 m term in
the parenthesis.

47

We apply this improved version of Theorem 5.13 and Theorem 6.11 to obtain the following result.
For simplicity, we state the resulting bound using the O(MeB2) bound for the knapsack problem with
multiple copies.

Theorem 6.12 For any E > 0, there is a randomized c-approximation algorithm for the fractional cutting-stock
problem that is expected to run in 0(M2tzS4 log(@ M) log r* log e-l) time, and a deterministic analog that
takes a factor of log r* more time.

It is not too hard to notice that by somewhat modifying the covering algorithm used we can eliminate the
need for the bisection search for the required number of raws; this improves the running time by a log c-l
factor.

The best previously known algorithm is obtained by using Vaidya’s algorithm [25] to solve the linear
programming dual of the problem, and then use the techniques of Karmarkar & Karp and the algorithm
of Vaidya [26] to obtain a primal solution. The resulting deterministic algorithm runs in 0* (M4M (M) +
M3ev2) time. A randomized version runs in O*(M3M(M) + M3cS2) time. As for our algorithm,
these bounds use the O(Mem2) bound for the approximation algorithm. For fixed E, our algorithm is a
significant improvement over Vaidya’s algorithm.

The integer version of the cutting-stock problem is equivalent to the bin-packing problem, which is
usually stated in terms of pieces of specified sizes that are to be packed into the minimum number of bins.
Karmarkar & Karp [131 gave a fully polynomial approximation scheme for the bin-packing problem which
uses an algorithm (based on the ellipsoid method) for the fractional cutting-stock problem. Our algorithm
can be used to replace the ellipsoid method in this application to yield the fastest known deterministic
algorithm for this problem.

Karmarkar & Karp give a fully polynomial approximation scheme for the bin-packing problem that,
for an instance with N pieces and optimum value r*, delivers a solution that uses (1 + E)r * + 0(cw2)
bins. In fact, the additive term in the performance guarantee can be improved to O(@ log&l)).

We can assume without loss of generality that the size W of the bins is 1. Given a bin-packing instance
I, let opt(l) denote the minimum number of bins required for this instance, and let size(l) denote the
sum of the piece sizes. Clearly, size(l) 5 opt(l). The Karmarkar & Karp algorithm first deletes any
piece of size at most c/2. Let I’ denote the resulting instance. These small pieces can be added back to a
packing of the remaining pieces, arbitrarily filling up the bins without effecting the performance guarantee
(by Lemma 3 in [13]).

Next the algorithm uses grouping of pieces to have a small number of distinct piece sizes. Karmarkar
& Karp use linear grouping for one version of the algorithm, but they use geometric grouping for a
more sophisticated version. An improved guarantee (where the additive error term is O(E-~ log 6-l)) is
obtained by using geometric grouping with parameter k = size(I)c/ log(2c-l). This grouping yields a
rounded instance J which satisfies opt(J) 5 opt(l) 5 opt(J) + k log 26-l (by Lemma 5 in [13]). The
Karmarkar & Karp algorithm approximately solves the fractional cutting-stock problem corresponding to
instance J to obtain a vertex x, which is converted to the integer solution [xl. The number of additional
bins introduced by this rounding is at most the number of non-zeros in x; since x is a vertex, this is
at most the number of different piece sizes. It is not hard to show that M, the number of different

48

piece sizes in the rounded instance is at most (2/k) size(l) + [log2e-l] (by Lemma 5 in [13]). The
choice of k implies that M = O(P log e-l). Therefore, the total number of bins used is at most
opt(I) + M + k log 2~’=(l + +pt(I) + O(C1 log e-l).

The geometric grouping can be constructed in 0(N log M) time. We use Theorem 6.12 to solve the
resulting cutting stock problem. Karmarkar & Karp find a vertex of the covering problem. Instead, we
will find a solution consisting of at most M non-zeros. The randomized version of the algorithm increases
the number of non-zeros by at most 1 every iteration. Therefore, the final number of zeros is at most
0(ME-~ log(c-‘M)) log N). By implementing the randomized version deterministically (choosing the
best commodity every iteration, rather than a random one) we obtain the same bound on the number of
non-zeros also for the deterministic version. Given a solution with more than M non-zeros, the number
of non-zeros can be decreased by one using matrix inversion without affecting the quality of the solution.
Therefore, in O(MM(M)em2 log(c-lM)) log N) =O(@ log4 E- ’ log N) time we can find a solution
with at most M non-zeros.

We combine the bound given above for M, and Theorems 6.12 and 6.11. Observe that, for any
constant c, 0(N log c-l + c-6 log4 e-l log’ N) can be bounded by O(N log e-l + em6 log4+” c-l).

Theorem 6.13 There is a randomized fully polynomial approximation scheme for the bin-packing problem
that, for an instance with N pieces and optimum value r*, delivers a solution that uses (l+e)r*+O(e-’ log 6-l)
bins in O(N log 6-l + E-* log5 e-l) time, a deterministic analog runs in O(N log ~:-l + e-6 log’ c-l) time.

Our cutting stock algorithm was a significant improvement over the best previously know algorithm when
M is large relative to E- ‘. However, in this application M = 0(E- 1 log c’). Using the algorithms of
Vaidya [26, 251 to solve the fractional cutting stock problems, as mentioned after Theorem 6.12, and
plugging in M = 0(E- ’ log e-l) gives a deterministic algorithm that runs in 0* (N log c-l + cB4M (M))
time, and a randomized version that runs in 0* (N log c-l + cs3M(M)) time. Thus, our deterministic
algorithm improves on the deterministic implementation of Vaidya’s algorithm.

Minimum-cost multicommodity flow. The input for the minimum-cost multicommodity flow
problem consists of an N-node, M-edge directed graph G = (V, E), a non-negative cost c(e) and a
non-negative capacity u(e) for each edge e E E, and source-sink pairs sj, tj E V with a non-negative
demand di,j = l,... , K, that specify the K commodities. For notational convenience we assume that
the graph G is connected and has no parallel edges.

For each commodity j, we have a function fj (e) 2 0, that specifies the flow of that commodity on
each edge e E E, j = 1, . . . , K. The total flow function is then f(e) = Cj fj (e), for each e E E. The
conservation constraints ensure that

C fj(Wv)- C f~(vw)=Ofor~chv${sj~tj},j=l,...,K.
w:wv~E w:vwEE

We require also that

C fi(VW) - C fj(wV) = dj for v = sj.
w:vwEE w:wv~E

(29

49

We say that a multicommodity flow f in G is feasible if f(e) 5 u e() for each edge e E E. The cost of a
flow f is CecE c(e) f (e) and the objective is to find a feasible flow of minimum cost.

To apply our relaxed decision procedure, we once again use bisection search for the minimum feasible
cost B. We define P by (28), (29), and the constraint fj (e) 2 0, for each commodity j = 1, . . . , K
and each edge e E E; this is in the product form P1 x - - - x PK, where Pj denotes these constraints
oncommodity j = l,.. . , K. Let Ax 2 b be given by the feasibility constraints, as well as the budget
constraint xeEE c(e)f (e) 5 B.

We shall use the decomposition technique of Theorem 5.11. To do so, we first specify Ti for each
inequality in Ax 5 b, and then show how to compute subroutine (14) for each Pj. For each edge e E E,
let r(e) = 1 (corresponding to the inequality f(e) 5 u(e)) and let y = N (corresponding to the budget
constraint), so that I’ = M + N = O(M).

Lemma 6.14 Subroutine (14) can be implemented in O(M + N log N) time for each Pj, j = 1,. . . , K.

Proof: Each vertex of Pj corresponds to an (sj, tj) path with dj units of flow of commodity j along it.
For each e E E, let g(e) denote the dual variable for its capacity constraint, and let x denote the dual
variable for the budget constraint. Given y, x and v, we must find an (sj, tj) path Q such that

u(e) 2 dj/V for each e E a, and c c(e) I vB/dj,
eG2

(30)

and for which,

c de) + 44 I c y(e) + =(e), for all Q E &,
e&j eEQ

where Q is the set of (sj, tj) paths Q such that u(e) 2 dj/v for each e E Q, and CeEg c(e) <
(v/N)B/dj. Observe that all paths in & are contained in the subgraph of edges e that satisfy u(e) 2 dj/v
and c(e) 5 (v/N) B/dj; furthermore, each (sj 7 tj) path in this subgraph satisfies (30). Therefore, by
computing the shortest (sj, tj) path with respect to the modified costs y(e) + zc(e) in this subgraph, we
find a suitable path &. This takes O(M + N log N) time. 1

We use our relaxed decision procedure within a bisection search for the appropriate choice for the
budget B, which can be at most C = C, c(e)u(e). By applying Theorem 5.11, we obtain the following
result; note that an e-optimal flow may exceed the optimum cost and the capacity constraints by a (1 + E)
factor.

Theorem 6.15 For any fixed E > 0, there exists a deterministic algorithm for the minimum-cost multicom-
modity flow problem that finds an E-optimal flow and runs in 0(K2 M log N (M + N log N) log C) time, and
a randomized analog that runs in O(KM log N (M + N log N) log C) time.

The best previously known algorithm is due to Vaidya [26]. For the randomized version, our algorithm is
an IR* (Me5 NK2*‘) factor faster than Vaidya’s.

50

Acknowledgments

We are grateful to Andrew Goldberg and Cliff Stein for many helpful discussions. In particular, we would
like to thank Cliff for allowing us to include his observation that an integer version of the packing algorithm
could be applied to the job-shop scheduling problem.

References

ill

PI
131

141

151

161

[71

Bl

PI

WI

[111

WI

1131

M. E. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program. Mathematical
Programming, 29:57-63, 1984.

K. Eisemann. The trim problem. Management Science, 3:279-284, 1957.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. J. Assoc. Comput. Mach., 341596-615, 1987.

H. N. Gabow. Using Euler partitions to edge-color bipartite multi-graphs. Int. J. Comput. Inform.
Sci., 5:345-355,1976.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem.
Operations Research, 9:839-859,196l.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem -
Part II. Operations Research, 11:863-888, 1963.

A. V. Goldberg. A natural randomization strategy for multicommodity flow and related algorithms.
Unpublished manuscript, 199 1.

A. V. Goldberg, S. A. Plotkin, and E. Tardos. Combinatorial algorithms for the generalized flow
problem. Mathematics of Operations Research, 16:351-381, 1990.

A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, and E. Tardos. Interior point methods for fast parallel
algorithms for bipartite matching and related problems. SIAM J. on Computing, to appear.

M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs with many
blocks and coupling constraints. Technical Report DCS-TR-273, Rutgers University, New Brunswick,
NJ, 1991.

M. Held and R. M. Karp. The traveling-salesman problem and minimum cost spanning trees.
Operations Research, 18: 1138-l 162,197O.

S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and multicommodity
flows. In Proceedings of the 18nd Annual ACM Symposium on Theory of Computing, pages
147-159,1986.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the onedimensional bin-
packing problem. In Proceedings of the 23rd Annual IEEE Symposium on Foundations of
Computer Science, pages 206-213, 1982.

51

[14] R. M. Karp. Probabilistic recurrence relations. In Proceedings of the 23rd Annual ACM Symposium
on the Theory of Computing, pages 190-197,199l.

[15] P. Klein, S. A. Plotkin, C. Stein, and E. Tardos. Faster approximation algorithms for the unif capacity
concurrent flow problem with applications to routing and finding sparse cuts. Technical Report 961,
School of Operations Research and Industrial Engineering, Cornell University, 1991. A preliminary
version of this paper appeared in Proceedings of the Znd Annual ACM Symposium on Theory
of Computing, pages 310-321,199O.

[16] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Operations
Research, 4:339-356, 1979.

[17] E. L. Lawler and 3. Labetoulle. On preemptive scheduling on unrelated parallel processors by linear
programming. J. Assoc. Comput. Mach., 25:612-619, 1978.

[18] T. Leighton, F. Makedon, S. Plotkin, C. Stein, k. Tardos, and S. Tragoudas. Fast approximation
algorithms for multicommodity flow problems. In Proceedings of the 23rd Annual ACM Symposium
on the Theory of Computing, pages lOl-111,199l.

[19] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform m&commodity
flow problems with applications to approximation algorithms. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, pages 422-431, 1988.

[20] J. K. Len&a, D. B. Shmoys, and k. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming, A, 24:259-272, 1990.

[2 l] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing integer
programs. J. Comput. System Sciences, 373130-143, 1988.

[22] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorics, 7:365-374, 1987.

[23] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. Assoc. Comput. Mach.,
37:318-334, 1990.

[24] D. B. Shmoys, C. Stein and J. Wein. Improved approximation algorithms for shop scheduling
problems. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 148-157, 1991.

[25] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proceedings
of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 338-343,
1989.

[261 P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In Proceedings of
the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 332-337,1989.

[27] S. L. van de Velde. Machine scheduling and Lagrangian relaxation. Doctoral thesis, Centre for
Mathematics and Computer Science, Amsterdam, 1991.

52

