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Edward Rothberg and Anoop Gurta
Department of Computer Scienc:
Stanford University
Stanford, CA 94305

July 13, 1992

Abstract

This paper explores the use of a sub-block decomposition strategy for paralic] sparse Cholesky factorization,
in which the sparse matrix is decomposed into rectangular blocks. Such a strategy has enormous theoretical
scalability advantages over a more traditional column-oriented decompotition for large parallel machines.
However, little progress has been made in producing a practical sub-block method. This paper describes and
evaluates an approach that is both simple and efficient.

1 Introduction

The Cholesky factorization of sparse symmetric positive definite systems is an extremely important computation,
arising in a variety of scientific and engineering applications. Sparse Cholesky factorization is unfortunately aiso
extremely time-consuming, and is frequently the computational bottleneck in these applications. Consequently,
there is significant interest in performing the computation on large parallel machines. Several different approaches
to parallel sparse Cholesky factorization have been proposed. While great success has been achieved for small
parallel machines, success has unfortunately been quite limited for larger machines. The reasons vary, depending
on the particular approach.

One important group of parallel sparse factorization approaciies includes those that assume that all processors
access a single, shared memory. While a shared-memory programming model greatly simplifics the paratleliza-
tion task, and has led to extremely high-performance implementations {1, 6, 18), it also inherently limits the
parallel scalability of the approach. A large number of processors simply can not share a single memory.

A second important group of parallel methods avoids this scalability problem by working within a distributed
memory model instead. In nearly all such approach, columns of the sparse matrix are distributed among the
memories of the processors [4, 12, 16). Unfortunately, such approaches have achicved only limited success.
Primary among the limitations of these approaches are the enormous amounts of interprocessor communication
they require, leading to saturation of the processor interconnection networks, and the limited amounts of con-
currency they expose in the sparse problem, limiting the number of processors that can be effectively used for
a particular sparse matrix.

Fortunately, these limitations can be overcome (in theory) by moving to a different matrix distribution
strategy. Rather than representing the sparse matrix as a set of columns, it can insead be represented as a set
of rectangular blocks, with these blocks distributed among the processors. Such a 2-D decomposition has been
shown to be extremely effective for parallel dense factorization [21). It is not clear, however, whether a similar
decomposition would be practical for sparse problems. A few investigations [2, 20, 22] have been performed,
but these contained little or no exploration of practical algorithms.

This paper focuses on two practical and important questions related to a 2-D decomposition approach. First,
we consider the complexity of a paraliel sparse factorization program that manipulates sub-blocks. We find that
a block approach need not be much more complicated than a column approach. We describe a simpie strategy

1

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.



for performing a block decomposition and a simple parallel algorithm for performing the sparse Cholesky
computation in terms of these blocks. The approach retains the theoretical scalability advamtages of block
methods. We term this block algorithm the block fan-owt method, since it bears a great deal of similarity to the
parallel column fan-out method [12].

Another important issue in a block approach is the issue of efficiency. While parallel scalability arguments
can be used to show that a block approach would give better performance than a column approach for extremely
large parallel machines, these arguments have little to say about how well a block approach performs on smaller
machines. Our goal is to develop a method that is efficient across a wide range of machine sizes. We explore
the efficiency of the block approach in two parts. We first consider a sequential block factorization code and
compare its performance to that of a true sequential program to Gotermine how much efficiency is lost in moving
to a block representation. The losses tum out be quite minor. We then consider parallel block factorization,
looking at the issues that potentially limit its performance. The parallel block method is found to give extremely
high performance even on small parallel machines. For larger machines, performance is good but not excellent,
primarily due to load balance problems. We quantify the load imbalances and investigate the causes.

This paper is organized as follows. We begin in Section 2 with some background on sparse Cholesky
factorization. Section 3 then discusses our experimental environment, including a description of the sparse
matrices we use as benchmarks and the machines we use to study the parallel block factorization approach.
Section 4 describes our strategy for decomposing a sparse matrix into rectangular blocks. Section 5 describes
a parallel method that performs the factorization in terms of these blocks. Section 6 then evaluates the parallel
method, both in terms of communication volume and achieved parallel performance. Section 7 gives a brief
discussion, and finally conclusions are presented in Section 8.

2 Sparse Cholesky Factorization

The goal of the sparse Cholesky computation is to factor a sparse symmetric positive definite matrix 4 into
the form 4 = LL7, where L is lower triangular. The computation is typically performed as a series of three
steps. The first step, heuristic reordering, reorders the rows and columns of 4 to minimize fill in the factor
matrix L. The second step, symbolic factorization, performs the factorization symbolically to determine the
non-zero structure of L given a particular reordering. Storage is allocated for L in this step. The third step is
the numerical factorization, where the actual non-zero values in L are computed. This step is by far the most
time-consuming, and it is the focus of this paper. We refer the reader to [13] for more information on these
steps.

The following pseudo-code performs the numerical factorization step:

1. for k=0 to n do

2. for i=k to n do

3. le‘_Lil'/\/m

q. for j=k+1 to n do
5. for i=j to n do
6. Lij = Lij = LirLj

The computation is typically expressed in terms of columns of the sparse matrix. Within a column-oriented
framework, steps 2 and 3 are typically thought of as a single operation, called a column division or cdiv()
operation. Similarly, steps S and 6 form a column modification, or cmoed(j. k), operation. The computarion then
looks like:

1. for k=0 to n do

2 cdiv (k)

3. for j=k+1 to n do
q cmod (3, k)



Only the non-zero entries in the sparse matrix are stored, and the computation only performs operations on
non-zeroes.

This column-oriented formulation of the sparse factorization has formed the basis of several paraliel sparse
factorization algorithms, including the fan-out method [12), the fan-in method [4), and the distributed multifrontal
method [16]. The details of these various methods are not relevant to our discussion, 50 we refer the reader to the
relevant papers for more information. We simply note that for each of these methods, communication volume
can be shown to grow linearly in the number of processors (14]. Since available communication bandwidth in
a multiprocessor typically grows much more slowly, this communication growth represents a severe scalability
limitation.

Recent research in parallel sparse Cholesky factorization [3] has shown that the communication needs of
column-oriented sparse factorization can be greatly reduced. Through limited replication of data and careful
assignment of tasks to processors, communication can be made to grow as the square root of the number of
processors, thus improving scalability. Communication volume is not the only thing that limits scalability in
column-orient2d approaches, however. A column formulation also leads to very long critical paths, thus placing
a large lower bound on parallel runtime. For a dense n x » matrix, the sequential computation requires O(n 3)
runtime while the best case parallel runtime is O(n?). Similar bounds apply for sparse problems.

An ahemative formulation of the factorization problem divides the matrix into rectangular subblocks. The
dense Cholesky computation, expressed in terms of subblocks, would look like:

1. for h =0 to N do

2 Ly — Factor(Ligy)

3. for I=h+1 to N do

4. Lig — L”\'L,—\-]K

5 for J=h+1 to N do

6 for I=J to N do

7 Lig— Ly =LixLly

In this pseudo-code, I, J, and K iterate over rows and columns of sub-blocks. It can be shown that
this formulation leads to greatly reduced communication volumes and exposes significantly more concurrency.
Specifically, communication volume can be shown to grow as the square root of the number of processors,
and the critical path can be shown to grow as O(n). It is an open question whether this formulation can be
efficiently applied to parallel sparse factorization, and this is the question that we address here.

Before we begin our discussion of a block decomposition of the sparse matrix, we first discuss two im-
portant concepts in sparse factorization that will be relevant to our presentation. The first is the concept of
a supernode [6]. A supemnode is a set of adjacent columns in the factor matrix L with identical non-zero
structures. Supernodes arise in any sparse factor, and they are typically quite large. By formulating the sparse
factorization computation as a series of supemode-supemode modifications, rather than column-column modifi-
cations as described before, the computation can make substantial use of dense matrix operations. The result is
substantially higher performance on vector supercomputers and on machines with hierarchical memory systems.
For more details on supernodal factorization, see [1, 6, 17]. The regularity in the sparse matrix captured by
this supernodal structure will prove useful in this paper for producing an effective decomposition of the sparse
matrix into rectangular blocks. We will retumn to this issue shortly.

Another important notion in sparse factorization is that of the elimination tree of the sparse matrix [19). This
structure concisely captures important dependency information. If each column of the sparse matrix is thought
of as a node in a graph, then the elimination tree is defined by the following parent relationship:

parent(j) = min{ill;; # 0,7 > j}.

It can be shown that a column is only modified by descendent columns in the elimination tree, and equivalently
that a column only modifies ancestors. The most important property captured in this tree for parallel factorization
is the property that subtrees are independent, and consequently can be processed in parallel. This fact will be
relevant later in this paper.



Table 1: Benchmarks.

Name Description | Equations | Non-zeroes |
1. | GRID10O 5-point discretization of 2D region 10,000 39,600
2. | GRID200 || Larger instance of 1 40,000 159,200
3. | BCSSTK15 || Module of an offshore platform 3,548 113,868
4. | BCSSTK16 || Cotps of Engineers dam 4,884 285,494
5. | BCSSTK17 || Elevated pressure vessel 10,974 417,676
6. | BCSSTK18 || R.E. Ginna nuclear power station 11,948 137,142
7. | BCSSTK29 || Bocing 767 rear bulkhead 13,952 605.496
Table 2: Factor matrix statistics.
| Name | FPops | Non-zeroes in L | Supernodes
1. | GRID100 15,707,205 250,835 6.672
2. | GRID200 137,480,183 1,280,743 26,669
3. | BCSSTK15 || 165,039,042 647274 1,295
4, | BCSSTK16 || 149,105,832 736,294 691
5. | BCSSTK17 || 144,280,005 904,885 2,595
6. | BCSSTKI8 || 140.919.771 650,777 7438
7. | BCSSTK29 || 393,059,150 1,680,804 3231

3 Experimental Environment

Since one of our interests in this paper is to consider practical performance issues for block methods, we will
present several performance numbers for realistic sparse matrices factored on real machines. This section briefly
describes both the matrices that we use as benchmarks and the machine on which we perform the factorizations.

3.1 Benchmark Matrices

The benchmark matrices we consider in this paper are drawn from the Boeing/Harwell sparse matrix test set 7]
Since our interest is on factorization on large machines, we have chosen some of the largest sparse matrices in
the collection. Table 1 gives brief descriptions of the matrices. Table 2 gives information about the factors of
these matrices. The first column of numbers shows a count of the number of floating-point operations required
for the factorization. The second column gives the number of non-zeroes in L. The third gives the number of
distinct supernodes in the factor matrices. Note that all matrices except the two grid problems are preordered
using the multiple minimum degree ordering heuristic [15] before being factored. A simple nested dissection
ordering is used for the grid problems.

3.2 Target Machine

Although many of the results presented in this paper will be machine-independent, the paper will also include
some performance numbers from real parallel machines. We now briefly describe the parallel machines that are
considered.

32.1 Moderately-Parallel Machine

Performance numbers for sequential and moderately-parallel machines are obtained from a Silicon Graphics
4D/380 multiprocessor. The 4D/380 contains eight high-performance RISC processors, each consisting of a
MIPS R3000 integer unit and an R3010 floating-point co-processor. The processors execute at 33 MHz, and are
rated at 27 MIPS and 4.9 double-precision LINPACK MFLOPS. They are connected with a bus baving a peak
throughput of approximately 67 MBytes per second.



Each processor in the 4D/380 has a 64 KByte instruction cache, a 64 KByte first-level data cache, and
a 256 KByte second-level data cache. The caches play a crucial role in determining performance. Memory
references that hit in the first-level cache are serviced in a single cycle. References that miss in both levels of
the cache require roughly 50 cycles to service, and they bring 4 16-byte cache lines into the cache. In contrast,
a floating-point multiply requires 5 cycles and a floating-point add requires 2 cycles.

3.22 Larger Parallel Machine

In order to provide performance results for machines with more than 8 processors, this paper also makes use
of multiprocessor simulation. To keep simulation costs manageable, we perform this simulation in terms of
high-level factorization tasks. A single task might represent a block update operation or the transmission of a
large message from one processor to another. The costs of the individual high-level tasks are obtained through
a simple performance model. The parallel simulation is performed as a discrete-event simulation of these tasks.

The three most important costs that are modeled in this simulation are the costs of performing floating-point
operations, fetching data from the local memory of a processor, and communicating data between processors.
We now describe our model for each in more detail.

An important cost in a parallel factorization will clearly be the cost of executing the machine instructions that
perform the required floating-point operations. For the sake of normalization, we assume that one floating-point
operation requires one time unit. Note that this machine instruction term is meant to capture not oaly the cost of
the single instruction that actually performs the floating-point operation, but also the costs of all instructions that
are required to support a floating-point operation (such as index computations and memory load instructions).

Another, potentially even more important component of performance is the cost of moving data between a
processor’s memory and its cache. Our assumption is that a cache miss on one double-precision value takes
roughly 5 times as long as a floating-point operation. This number is quite accurate for the SGI 4D/380 and
is a reasonable estimate for a wide range of current generation hierarchical-memory machines as well. T.e
cache is assumed to be large enough to hold three 32 by 32 blocks of data. To simplify our simulation, *
further assume that all reuse of cached data occurs within block operations. That is, we assume that each block
operation begins with an empty cache.

While this computational cost model may appear too simplistic to capture the intricacies of current and
future microprocessors, which might include such complex features as heavily pipelined floating-point units and
non-blocking caches, we believe this model will in fact provide relatively accurate estimates. No matter what
the internal structure of a processor, we believe that its performance for this computation can be understood
using the answers to two questions. First, what performance is achieved when virtually no memory references
miss in cache? And second, what performance is achieved when all references miss in cache? While heavier
pipelining will allow the processor to hide some of the latencies of memory accesses, at the same time memory
latencies will continue to increase so there will be more latencies to hide. As a result, we believe that the
processor will have to pay some cost for each cache miss.

The third cost that is modeled is the cost of interprocessor communication. Our model assumes that ali
communication takes place in the form of interprocessor messages. It also assumes that messages are handled
by a message co-processor, and therefore cost the sending and receiving processors nothing to process. The
true cost of a message is the time it spends in the interconnection network. Our model assumes that this time is
determined by the length of the message and the available communication bandwidth between the sending and
receiving processors. Communication bandwidth is assumed to be one-tenth of computation bandwidth. That is,
a processor can perform ten floating-point operations in the time required to send one floating-point value. This
number is roughly average for today's parallel machines. The Intel Touchstone machine, for example, has a
roughly 8 to 1 computation to communication bandwidth ratio. The Intel Paragon machine will have a roughly
2 10 1 ratio. On the other hand, the Thinking Machines CM-5 has a roughly 50 to 1 ratio.

For an example of how this performance model would be applied, consider the following three example
operations: (1) send a 32 by 32 block of data from one processor to another, (2) multiply the received block by
another 32 by 32 block; (3) add the result into another 32 by 32 block. Operation | would send 1024 double-
precision values and thus would require 10240 time units. Operation 2 would 10ad 3 blocks into the processor
cache, requiring 15360 time units, and would perform 65536 floating-point operations, requiring 65536 time
units. Finally, operation 3 would load two blocks into the cache, requiring 10240 time units, and would perform



1024 fioating-point operations, requiring 1024 time units.

We believe our model captures the most important aspects of paraliel machine performance for modermn
multiprocessors, with one exception. Our model does not capture the effect of message contention in the
processor interconnection network. Since the effect of contention is extremely difficult to model accurately, we
instead discuss the issue in a qualitative way in sections where the performance model is used.

4 Block Formulation

Having described our evaluation environment, we now move on to the question of how to structure the sparse
Cholesky computation in terms of blocks. Our first step in describing a block-oriented approach is to propose
a strategy for decomposing the sparse matrix into blocks. Our goal in this decomposition is to retain as much
of the efficiency of a sequential factorization computation as possible. Thus, we will keep a careful eye on the
amoun: of computational overhead that is introduced.

4.1 Block Decomposition

We begin our discussion by considering some of the general issues that are important for a block approach. We
also discuss how our approach addresses these issues. We believe the main issues that must be addressed are the
following. First, blocks should be relatively dense. Since the blocks will be distributed among several processors,
there will certainly be some overheads associated with manipulating and storing them. These overheads should
be amortized over as many non-zeroes as possible. The block decomposition must therefore be tailored to match
the non-zero structure of the sparse matrix. Another important issue is the ways in which blocks in the matrix
interact with each other. If the interactions are complex, then the paraliel computation can easily spend more
time figuring out how blocks interact than it would spend actually performing the block operations. Finally, the
individual block operations should be efficient.

The primary motivation behind our decomposition approach is to keey the block computation as simple
and regular as possible. Our hope is that a regular computation will be an efficient computation. We keep the
computation simple by avoiding two distinct types of irregularity: imegular interactions between blocks and
irregular structure within blocks.

4.1.1 Irregular Interactions

Since a sparse matrix in general contains non-zeroes interspersed with zeroes throughout the matrix. it would
appear desirable for a block decomposition to possess a large amount of flexibility in choosing blocks. This
flexibility could be used to locally tailor the block structure to match the actual structure of the sparse matrix.
One seemingly reasonable approach to a block decomposition of a sparse matrix, for example, would locate
clumps of contiguous non-zesoes in the matrix and group these clumps together info blocks. This approach
has serious problems, however, and we now discuss the advantage of giving up some flexibility and instead
imposing a significant amount of rigidity on the decomposition.

The primary problem with a flexible approach to block decomposition concerns the way in which the resulting
blocks would interact with each other. Recall that in sparse Cholesky factorization a single non-zero L i is
multiplied with non-zeroes above it in the same column L ;: to produce updates to non-zeroes L,; in row 1 and
column j. When the matrix is divided into a set of rectangular blocks, the blocks interact in a similar manner.
Consider the simple example in Figure 1. This figurc shows a small set of dense blocks from a potentially much
larger matrix. During the factorization, the block in the lower left will interact with a portion of the block above
it to produce the indicated update, which must be subtracted from portions of the blocks 1o its right. Keep in
mind that each of these blocks is potentially assigned to a different processor. Thus, for each update operation
the processor performing that update must keep track of the set of blocks that are involved, the portions of
these blocks that are affected, the processors on which these blocks can be found, and it must dok out the
computed update to the relevant processors. Keeping track of all such block interactions would be enormously
complicated and expensive. With a large number of blocks scattered throughout the matrix, the costs of this
irregularity would quickly become prohibitive.
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Figure 1: Example of irregular block interaction. Dotted lines indicate boundaries of affected areas.

In order to remove this irregularity and greatly simplify the structure of the computation, we decompose the
mauixintoblocksusingglobnpnﬁﬁonsofmemwsmdcolumm.lnomerwords,lhecohnnnsoflhemamx
(1...n) are divided into contiguous sets ({1...p2—1}. {p2...p3 = 1}..... {pn...n}, where X is the number
or partitions and p; is the first column in partition /). An identical panitioning is performed on the rows. A
simple exampie is shown in Figure 2. A block L;; (we refer to partitions using capital Jetters) is then the
set of non-zeroes that fail simultaneously in rows {p1...pr4+1 — 1) and columns {p, ...p;+1 — 1}. The main
advantage of this rigid distribution comes from the fact that blocks share common boundaries. A block L sk
now interacts with block L ;5 in the same block column pastition to produce an update to block L ;.

One possible weakness of a global partitioning strategy is that its global nature may not allow for locally
good blocks. We will soon show that this is only a minor problem.

412 Irregular Block Structure

Another issue that can have a significant impact on the efficiency of the overall computation is the intemal
non-zero structure of a block. Just as we restricted the choice of block boundaries earlier to increase regularity
mﬂo&mﬁm,wmmﬁ@mﬁﬁmmhh&nﬂm&ﬂo&wmnwuﬂy
within a block operation.

Note first that allowing arbitrary partitionings of the rows and columns of the matrix would lead to blocks
with arbitrary intemnal non-zero structures. Recall that a block update operation is performed by multiplying a
block by the transpose of a block above it (as a matrix-matrix multiplication). With arbitrary non-zero structure
within the blocks, the corresponding computation would be a sparse matrix multiplication, which is an inefficient
operation in general.

In order to simplify the intemnal structure of the blocks and keep the computation as efficient as possible,
“mmmofmwmwmmmsmy.wmmﬁmnmm
member columns belong to the same supermode. Since the columns in a supemode all have the same non-zero
structures, all resulting blocks will share this property. Thus, a block L;; will consist of some set of dense
rows. A block may not be completely dense, since not all rows are necessarily present. A single structure vector
keeps track of the set of rows present in a block. This sparsity within a block has little effect on the efficiency
of the computation, as we shall soon show.

Before proceeding, we note that Ashcraft [2) proposed a similar decomposition strategy independently.



Figure 2: Example of globally partitioned matrix.

4.2 Structure of the Block Factorization Computation

Olngoalinphdngmeabovexesuictionsonbloctsinthespusemmixistomainasmudleﬁdencyasposible
in the block factorization computation. We now describe a sequential algorithm for performing the factorization
in terms of these blocks and evaluate that slgorithm's efficiency. The panllelization of the sequential approach
that we derive here will be described later.

Al one level, the factorization algorithm expressed in terms of blocks is quite obvious. The following
pnnom.ndmﬁemﬂomeofmblmkaohﬁymmmmwmchdml,
J,and K iterate over the partitions in the sparse matrix.

. for A=0to N do
. Lxx — Factor(Lgg)
for I=h +1 to N with Lix #0 do
Lix — LixLik
for J=Hh +1 to N with L;x #0 do
for I=J to N with L;jx #0 do
Lig~— L - Lkl

Sownds WNH

‘meﬁmnﬁngtomnbommeabovepundomnmnitwmm;eolmofumhnnime. Steps
2 through 4 divide block column A by the Cholesky factor of the diagonal block. Steps 5 through 7 compute
block updates from all pairs of blocks in column A’ We therefore store the blocks so that all biocks in a column
can be easily locased. mmny:ommnwnmmmammm.ww
poblunbemhﬁlnp?updnumduﬁnﬂimblockh; whose location can not easily be dewermined
from the locations of the source blocks. To make this step efficient,  hash tabie of all blocks is kept.

Now consider the implementation of the individual operations in the pseudo-code. The block factorization
in step 2 is quite straightforward to implement. Diagonal blocks are guaranteed t0 be dense, 3o this step is
mammmmmmwmwmhmamwmmmwnm
quite straightforward. This step does not actually compute the inverse of L k. Instead, it solves a seties of
trisngular systems. While the block L;x is not necessazily dense, the computation can be performed without
congulting the non-zero structure of the block.

mmm;mhmmm,mv.umnnmmmmmmemm
to implement. ltkmwnmumnmwm.muywmummmm
mdmmmlxummmmnmmmmmm



non-zero structures and must somehow reconcile these structures. More precisely, recall that a single block in
L consists of some set of dense rows from among the rows that the block spans (see the example in Figure 2).
When an update is performed in step 7 above, the structure of L, determines the set of rows in L, that are
affected. Similarly, the structure of L ;; determines the set of columns in L;; that are affected.

The block update computation is most conveniently viewed as a two stage process. A set of updates is
computed in the first stage, and these updates are subtracted from the appropriate entries in the destination
block in the second, or scatter stage. The first stage, the computation of the update, can be performed as a
dense matrix-matrix multiplication. The non-zero structures of the source blocks [, and L,x are ignored
temporarily; the two blocks are simply multiplied to produce an update.

During the second stage, the resulting update must be subtracted from the destination. The most simple case
occurs when the update has the same non-zero structure as the destination block. We have coded our dense
matrix-matrix multiplication routine as a multiply-subtract (i.e., C = C — ABT), rather than a multiply-add, so
the destination block can be used as the destination directly, without the need for a second scatter stage.

Consider the more difficult case where the non-zero structures differ. The first step in this case is to compute
a set of relative indices [19). These indices indicate the cormesponding position in the destination for each row
in the source. Two sets of relatives indices are necessary in order to scatter a single block update; re/;, the
affected set of rows and rel;, the affected set of columns.

The computation of relative indices is quite expensive in general, since it requires a search through the
destination to find the row comesponding to a given source row. Fortunately, such a search is only rarely
necessary due to an important special case. When the destination block has dense structure, the relative indices
bear a wivial relationship to the source indices. Note that the »¢/; indices always fall into this category, since
the destination block always has dense column structure. We will be more precise about exactly how often
relative index computations are necessary shortly.

Once relative indices have been computed, the actual scatter is performed as follows:

1. for 1=0 to length;y do
2. for j=0 to length;g ao

3. Lyjlreli[il{rel;[7]] — Lislretilil){rel; (1] - update [i][j]

Scattering is also somewhat expensive, and it is much more prevalent than relative index computation. The
frequency with which relative index computations and scatters must be performed will be considered shortly.

In summary, the efficiency of a block update operarion depends heavily on the non-zero structures of the
involved blocks.

¢ The best case occurs when the update has the same structure as the destination. In this case, the ¢ =
C' — ABT operation can use the destination block as its destination.

e The next best case occurs when the destination block is dense. The update must be scantered, but the
relative indices can be computed inexpensively.

e The worst case occurs when the update has different structure from the destination and the destination
block is sparse. The update must be scattered, and relative indices are relatively expensive to compute.

4.3 Performance of Block Factorization

We now look at the performance obtained with a sequential program that uses a block decomposition and block
implementation. Since our end goal is to create an efficient paraliel approach, performance is studied for the
case where the matrix is divided into relatively small blocks. The blocks should not be too small, however,
because of the overheads that will be associated with block operations. We consider 16 by 16, 24 by 24, and
32 by 32 block sizes. To produce blocks of the desired size B, we form partitions that contain as close to B
rows/columns as possible. Since partitions represent subsets of supemodes, some pantitions will naturally be
smaller than B.
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Figure 3: Performance of a sequential block approach, relative to a sequential left-looking supemode-supemode
approach.

Table 3: Frequency of relative index computations and scarters for block method, compared with floating-point
operations (B = 16).

Relative indices Scatters
Problem (relative to FP ops) | (relative to FP ops)

{ GRID100 0.37% 4.0% |
GRID200 0.18% 2.4% |
BCSSTK15 0.04% 1.6%
BCSSTK16 0.02% 14% |
BCSSTK17 0.04% 1.8% |
BCSSTK18 0.11% 2.6%
BCSSTK29 0.01% 1.0%

The performance obtained with the sequential block approach on a single SGI 4D/380 processor is shown
Figure 3. This performance is expressed as a fraction of the performance obtained with an efficient sequential
code (a supernode-supermode left-looking method; one of the most efficient sequential approaches [17]). From
the figure, it is clear that the block approach is quite efficient. Typical efficiencies are roughly 65% for a block
size of 16 and roughly 75% for a block size of 32. We will discuss the reasons why three of the matrices,
GRID100, GRID200, and BCSSTK 18, achieve significantly lower performance shorty.

Our earlier discussion indicated that the performance of the block method might suffer because of the
need for relative index calculations and update scattering. In order 10 gauge the effect of these two issues on
overall performance, Table 3 relates the amounts of scattering and relative index computation (for B = 16) to
the number of floating-point operations performed in the factorization. The numbers are quite similar for the
other block size choices. The first column compares the number of distinct relative indices computed against the
number of floating-point operations. The second column compares distinct element scatters against floating-point
operations. The table shows that even if relative index computations and scatters are much more expeasive than
fioating-point operations, the relsted costs will be small. Clearly, the vast majority of block update operations
produce an update with the same structure as the destination block.

It is also interesting to compare relative indices and scatters to those performed by a true sequential method.
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Table 4: Frequency of relative index computations and scatters for block method, compared with sequential
multfrontal method (B = 16).

Relative indices Scatters
Problem (relative to seq MF) | (relative to seq MF)
GRID100 78% 72%
GRID200 80% 69%
BCSSTK15 109% 105%
BCSSTK16 50% 88%
BCSSTK17 61% 90%
BCSSTK18 163% 91%
BCSSTK29 32% 40%

Table 4 gives the relevant numbers. In this case, the comparison is with a sequential multifrontal method, where
notions of relative indices and scatters are easily quantified. The comparison is relevant for the left-looking
supemnode-supemode as well, however, since the two methods perform similar computations. Note that the
block method performs a comparable number of relative index computations and scatters.

Ashcraft [2] has described methods for improving block structure and thus decreasing the need for scattering.
It 1s our belief that a very simple block decomposition is more than adequate for keeping such costs in check.

4.4 Improving Performance

It is clear from the previous section that the block method is generally quite efficient. Recall, however, that the
method was much less efficient than a true sequential method for several problems. Data on relative index and
scatter frequency showed that these were not the source of the losses. The losses are actually due to overheads
in the block operations.

Consider a single block update operation. It must find the appropriate destination block through a hash table,
determine whether the source and destination blocks have the same structure, and then pay the loop startup costs
for the dense matrix multiplication to compute the update. While these costs are trivial when all involved
matrices are 32 by 32, in fact many blocks in the sparse matrix are quite small. In the case of matrix GRID100,
for example, the average block operation when B = 32 performs only 96 floating-point operations, as compared
to the 65536 operations that would be performed with 32 by 32 blocks. The average number of floating-point
operations per block operation across the whole benchmark set is shown in Figure 4. Note that this figure quite
accurately predicts the performance numbers seen in the previous figure.

The primary cause of small blocks in the block decomposition is the presence of small supemodes, and
thus small partitions. To increase the size of these partitions, we now briefly consider the use of supernode
amaigamation [S, 8] techniques. The basic goal of supernode amalgamation is to find pairs of supernodes that
are nearly identical in non-zero structure. By relaxing the restriction that the sparse matrix only store non-zeroes,
some 2eroes can be introduced into the sparse matrix in order to make the sparsity structures of two supemodes
the same. These supemodes can then be merged into one larger supemnode. We refer the reader to [5] for more
details on supemode amalgamation, and simply note that our amalgamation strategy merges supermodes quite
aggressively.

In Figure 5 we show the average block operation sizes both before and after amalgamation. It is clear that
amalgamation significantly increases the block operation grain size.

Before presenting performance comparisons, we first note that amalgamation does have a cost. By introducing
2eroes into the sparse matrix, the amount of floating-point work is increased. . To be fair, the performance of
the block computation after amalgamation should therefore be compared with the performance of the sequential
computation before this extra work is introduced. However, amalgamation also provides some benefit for
sequential factorization, primarily related to improved use of the processor cache. We found that the benefit in fact
outweighed the cost for the amalgamation strategy we employed on all benchmark matrices, with performance
improvements ranging from 1% to 14% (see Table 5) for the true sequential method. Block method performance
is therefore compared to the performance of the true sequential method gfter amalgamation.
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Table 5: Supernode amalgamation results.

Supemodes Performance improvement
‘Name before amalgamation | after amalgamation for true seq. method

1. o__"_———'———_:nmnoo 6,672 2,786 5%
2. | GRID200 26,660 11243 %
3. | BCSSTKIS 1295 535 1% |
4. | BCSSTKI6 691 4 3% |
S. | BCSSTK17 2595 1,62 2% |
6. | BCSSTKIS | 7438 3,727 7% |
7. | BCSSTK29 || 3,231 1,193 14% |
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Figure 6: Performance of a sequential block approach, before and after supemnode amalgamation, relative to a
sequential left-looking supernode-supemode approach.

Figure 6 shows relative performance levels after amalgamation. The results indicate that amalgamation is
quite effective at reducing overheads. Performance roughly doubles for GRID100, where the average task grain
size increases for B = 32 increases from 96 floating-point operations to 597. Performance increases for the
other matrices as well. With only two exceptions, block method performance is roughly 85% of that of a true
sequential method for B = 32. Performance falls off somewhat when B = 24, and it decreases further when
B = 16, but the resulting efficiencies are still more than 70%.

Note that our chosen range of blocks sizes, 16 to 32, is meant to span the range of reasonable choices.
Blocks that are smaller than 16 by 16 would be expected to lead to large overheads. Indeed, performance was
observed to fall off quite quickly for block sizes of less than 16. The marginal benefit of increasing the block
size beyond 32 by 32 would be expected 10 be small This expectation was also confirmed by the empirical
results.

4.5 Block Decomposition Summary

This section has described a simple means of decomposing a sparse matrix into a set of rectangular blocks. The
pufonmnoeofamedxodbuedmwchblwksmaaqumﬁﬂmadﬁmismmyequnmepufummohm
sequential method. Of course, our goal here is not an efficient sequential method, but instead an efficieat parallel
method. The next section will consider several issues related to the panallelization of the above spproach.

5 Parallel Block Method

mmﬁmofhowtopudkﬁumenqmuockmwbedn&rmbedividedimotwo
different questions. First, how will processors cooperate to perform the work assigned to them? And second,
what method will be used to assign this work to processors? This section will address these two questions in
tam.
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1. while some Lj;y with map[Ll;;]= MyID is not complete do

2. receive some Ly

3. if /=N /* diagonal block */

4. Diagy mytp — L1k

S. foreach L,x € Wailg pyrp do

6. Ly — L-”\'Ll-li'

7. send iyjx to all P that could own blocks in
row J or column J

8. else

9. Reck arytp — Reex myip U L1g

10. foreach L;x € Recy aryrp do

11. if map[Ly;) = MylD then

12. Find L;;

13. Lyyg—Lig—-Lig L;l\‘

14. nmod[L;;) — nmod[L;;] -1

15. if (nmod[L;;] = 0) then

16. if I=J then /* diagonal block */

17. Ljy — Factox(Lyy)

i8. send L;; to all P that could own blocks in

column J

19, else if (Diagsmyip # 0) then

20. Lyy — L”L;‘-‘K

21, send L;; to all P that could own blocks in

row | or column J
22. else
23. Waity ayip — Waitgaryip U L1y

Figure 7: Parallel block fan-out algorithm.

5.1 Parallel Factorization Organization

We begin our description of the parallel computation by assuming that each block will have some specific cwner
processor. In our approach, the owner of a block L, performs all block update operstions with L ;; as their
destination. With this choice in mind, we present the paralle]l block fan-out algorithm in Figure 7. The rest of
this discussion will be devoted to an expianation of the algorithm

The most important notion for the block fan-out method is that once a block L ;i is complete, meaning that
it has received all block updates and has been multiplied by the inverse of the diagonal block, then L ;5 is sent
to all processors that could own blocks updated by it. Blocks that could be updated by L ;5 fall in block-row
I or block-column / of L. When a block L;x is received by a processor p (step 2 in Figure 7), processor
p performs all related updates to blocks it owns. The block L;x only produces blocks updates when it is
paired with blocks in the same column K. Thus, processor p considers all pairings of the received block L ;i
with completed blocks it has already received in column R (these blocks are held in set Rec g p) to determine
whether the corresponding destination block is owned by p (steps 10 and 11). If the destinstion L ;; is owned
by p (map[L;,] = p), then the correspoading update operation is performed (stieps 12 and 13). Each processor
maintains a hash table of all blocks assigned 10 it, and the destination block is located through this hash table.

A count is kept with each block (nmod[L;x]), indicating the number of block updates that still must be
done to that biock. When the count reaches zero, then block L, 5 is ready to be multiplied by the inverse of
Lix (step 20 if L »- has already wrrived at p; step 6 otherwise). A diagonal block L x x is kept in Diagk p,
and say blocks waiting to be modified by the diagonal bock are kept in 1 ait i ,. The sets Diag, Wait, and
Rec can be kept as simple linked lists of blocks.

One issue that is not addressed in the above psendo-code is that of block disposal. As described above,
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the parallel algorithm would retain a received block for the duration of the factorization. To determine when
a block can be thrown out, we keep a count 7oRecy , of the number of blocks in a column /' that will be
received be a processor p. Once |Recy p| = ToRecy p, then all blocks in column /u' are discarded.

We note that a small simplification has been made in steps 11 through 14 above. For all blocks L, / must
be greater than ./, a condition that is not necessarily true in the pseudo-code. The reader should assume that /
is actually the larger of / and J, and similarly that J is the smaller of the two.

5.2 Block Mapping for Reduced Communication

We now consider the issue of mapping blocks to processors. Our general approach is to restrict the set of
processors that can own blocks modified by a particular block L and thus decrease the number of processors
the block must be sent to. The actual restriction is done by performing a scatter decomposition [9] of the blocks
in the sparse matrix.

More precisely, assume that P processors are used for the factorization, and assume for the sake of simplicity
that P is a perfect square (P = p x p). Furthermore, assume that the processors are arranged in a 2-D grid
configuration, with the bottom left processor labeled Py o, and the upper right processor labeled P._;,_;. To
limit communication, a row of blocks is mapped to a row of processors. Similarly, a column of blocks is mapped
to a column of processors. We choose round-robin distributions for both the rows and columns, where

map[L1s] = Plmodp.J modp .

Other distributions could be used. By performing the block mapping in this way, a block L ;4 in the sparse
factorization need only be sent to the row of processors that could own blocks in row / and the column of
processors _that could own blocks in column /. Every block in the matrix would thus be sent to a total of
2p = 2VP processors. Note that communication volume is independent of the block size with this mapping;
every block in the matrix is simply sent to 2 /7 processors.

The scatter decomposition is appealing not only because it reduces communication volume, but also because it
produces an extremely simple and regular communication pattem. All communication is done through multicasts
along rows znd columns of processors. This pattem s simple enough that one might reasonably expect parallel
machines with 2-D grid interconnection networks to provide hardware multicast support for it eventually. In the
absence of hardware support, an efficient software multicast scheme can be used. We will return to this issue
later in this paper.

§.3 Enhancement: Domains

Before presenting performance results for the block fan-out approach, we first note that the method as described
above produces more interprocessor communication than competing column-based approaches for small parallel
machines. This is despite the fact that it has much better asymptotic communication behavior. To understand the
reason, consider a simple 2-D k x k grid problem. The comresponding factor matrix contains O(k 2log k) non-
zeroes, and the parallel factorization of this matrix using a column approach can be shown to generate O(k2P)
communication volume [14]. In the block approach, every non-zero in the matrix is sent O(/P) processors,
so the total communication volume grows as O(k2log v/ P). While the communication in the block approach
grows less quickly in P, for any given ‘k’ it also has a larger ‘constant’ in front.

An important technique for reducing communication in column methods involves ihe use of domains [2, 4].
Domains are large sets of columns in the sparse matrix that are assigned en masse to a single processor. They
are perhaps most easily understood in terms of the elimination tree of L. Recall that disjoint subtrees in the
elimination tree are computationally independent, and consequentty can be processed concurrently. By assigning
the columns of an entire subtree (a domain) 10 a single processor, the communication that would have resulted
had these columns been distributed among processors is avoided.

More precisely, by localizing all columns in a domain to a single processor, all updates to these columns
can be performed without the need for interprocessor communication. More importantly, the updates from all
columns within a domain to all other entries in the matrix can be computed and aggregated within the owner
processor, again with no communication. That processor can then send the aggregate updates to the appropriate
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destinations. In a column approach, the aggregate update is sent out on a column-wise basis. We refer the
reader to {4]) for more details.

Ashcraft suggested (2] that domains can be incorporated into a block approach as well. The basic approach
is as follows. The non-zeroes within a domain are stored as they would be in a column-oriented method. The
domain factorization is then performed using a column method. The aggregate domain update is computed
column-wise as well. We use an extremely efficient left-looking supernode-supemode method for both. Once
the aggregate update has been computed, it is sent out in a block-wise fashion to the appropriate destination
blocks.

Of course, the domains must be carefully assigned to processors so that processors do not sit idle, waiting for
other processors to complete local domain computations. Geist and Ng [10) described an algorithm for assigning
a small set of domains to each processor so that the amount of domain work assigned to each processor is evenly
balanced. All results from this point on use the algorithm of Geist and Ng to produce domains.

With the introduction of domains, the parallel computation thus becomes a three phase process. In the
first phase, the processors factor the domains assigned to them and compute the updates from these domains
to blocks outside the domains. In the second phase, the updates are sent to the processors that own the
corresponding destination blocks and are added into their destinations. Finally, the third phase performs the
block factorization, where blocks are exchanged between processors. Note that these are only logical phases;
no global synchronizations is necessary between the phases.

Consider the effect of domains on communication volume in a block method for a 2-D grid problem. We
first note that the number of non-zeroes not belonging 1o domains in the sparse matrix can be shown to grow
as O(k?log P), versus O(k2log k) without domains. Total communication volume for these non-zeroes using a
block approach is thus O(k2log Pv/P). The other component of communication volume when using domains
is the cost of sending domain updates to their destinations. The total size of all such updates can be shown to be
O(k?), independent of P, so domain update communication represents a lower-order term. Total communication
for a 2-D grid problem is thus G(k2log PV/P).

Note that domains produce the added benefit of reducing the number of small blocks in the matrix, and
thus reducing related overheads. Recall that small supemodes are the main source of small blocks. In a sparse
problem, most small supemodes lic towards the leafs of the elimination tree, where they are likely 1o be contained
within domains.

6 Evaluation

This section evaluates the parallel block fan-out approach proposed in the previous section. The approach is
evaluated in three different contexts. First, we look at performance on a small-scale multiprocessor. Then, we
consider performance on moderately-parallel machines (up to 64 processors), using our multiprocessor simulation
model. Finally, we consider issues for more massively parallel machines.

6.1 Small Parallel Machines

The first performance numbers we present come from the Silicon Graphics SGI 4D/380 multiprocessor. Parallel
speedups are shown in Figure 8 for 1 through 8 processors. All speedups are computed relative to a left-looking
supemode-supemode sequential code. The figure shows that the block fan-out method is indeed quite efficient
for small machines. In fact, performance is comparable to that of a highly efficient column-based code that
distributes supemodes among processors [18). Speedups on 8 processors are roughly 5.5-fold, cormresponding
to absolute performance levels of between 45 and 50 double-precision MFLOPS. Speedups are less than linear
in the number of processors for two simple reasons. Fimst, the block method is slightly less efficient than
a column method We believe this accounts for a roughly 15% performance reduction. Second, the load is
unevenly distributed among the processors. A simple calculation reveals that processors spend roughly 15% of
the computation on average sitting idle. These rwo factors combine to give a relatively accurate performance
prediction.
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Figure 8: Parallel speedups for block fan-out method on SGI 4D-280, B = 24.

6.2 Moderately Paraliel Machines

We now perform an evaluation of parallel performance of the block fan-out approach on machines with up to 64
Pprocessors, using the multiprocessor simulation model described earlier. We also discuss issues of communication
volume.

62.1 Simulated Performance

To get a feel for how the block fan-out method would scale to a larger number of processors, Figure 9 shows
simulated processor utilization levels for between 4 and 64 simulated processors, using a block zize of 24. It is
clear from the figure that the block approach exhibits less than ideal behavior as the machine size is increased.
On 64 processors, for example, utilization levels drop to roughly 40%. Further investigation reveals that the
primary cause of the drop in performance is a progressive decline in the quality of the load balance. Figure 10
compares simulated performance for matrices BCSSTK15 and BCSSTK29 with the best performance that could
be obtained with the same block distribution. The load balance performance bound is obtained by computing the
time that would be required if there were no dependencies between blocks and if interprocessor communication
were free.

The quality of the load distribution clearly depends on the method used to map blocks to processors. Recall
that we use a very rigid mapping strategy, where block L ;; is assigned t0 Processor Prmedp,/ modp - ODE possible
explanation for the poor behavior of this strategy is that it does not adapt to the structure of the sparse matrix; it
tries 10 impose a very regular structure on a matrix that is potentially comprised of a very irregular arrangement
of non-zero blocks.

While the mismatch between the regular mapping and the irregular matrix structure centainly contributes
to the poor load balance, it is our belief that a more important factor is the wide variability in task sizes. In
particular, since a block is modified by somz set of blocks to its left, blocks to the far right in the matrix generally
require much more work than blocks to the left (more accurately, blocks near the 1op of the elimination tree
require more work than blocks near the leafs). Furthermore, since the matrix is lower-triangular, the number of
blocks in a column decreases towards the right. The result is a small number of very important blocks in the
bottom-right comer of the matrix.

To support our contention that the sparse structure of the matrix is less important than the mose general
task distribution problem, Figure 11 compares the quality of the load balance obtained for two sparse matrices,
BCSSTKI1S and BCSSTK29, to the load balance obtained using the same mapping strategy for a dense matrix.
The curves show the maximum obtainable processor utilization levels given the biock mapping. The dense
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Figure 11: Parallel utilization upper bounds due to load balance for BCSSTK15 and BCSSTK29, compared with
load balance upper bounds for dense problems (B = 24). In both plots, sparse and dense problems perform the
same number of floating-point operations. -

problems are chosen so as to perform roughly the same number of floating-point operations as the two sparse
problems.

Note that the load balance can be improved by moving to a smaller block size, thus creating more distributable
blocks and making the block distribution problem easier. However, as discussed earlier, smaller blocks also
increase block overheads. For the larger benchmark sparse matrices, decreasing the block size from B = 24
10 B = 16 increases simulated parallel efficiencies for P = 64 from 40%-45% for B = 24 to 50%-55% for

B = 16. A block size of less than 16 further improves the load balance, but achieves lower performance due
to overhead issues.

The general conclusion to be drawn from these simulation results is simply that large machines require
relatively large problems to achieve high processor utilization levels. In particular, the sparse matrices that
we study here are too small to make good use of a 64 processor machine. Of course, it may be possible to
significantly improve parallel load balance with a better mapping strategy. A more general function could be
used to map columns of blocks to columns of processors, and to map rows of blocks to rows of processors.
This matter will require further investigation.

622 Communication Volume

So far, our analysis has assumed that paralle] performance is govemed by two costs: the costs of executing
block operations on individual processors and the latencies of communicating blocks between processors. An-
other important, aithough less easily modeled component of parallel performance is the total interprocessor
communication volume. Communication volume will determine the amount of contention that is seen on the
interconnection network. Such contention can have severe performance consequences, and can in many cases
govem the performance of the entire computation (see [20], for example).

Rather than try to integrate these costs into our simple performance model, we instead look at interprocessor
communication in a more qualitative way. To obtain a general idea of how much communication is performed,
Figure 12 compares total interprocessor communication volume with total floating-point operation counts for a
variety of sparse matrices and machine sizes. This figure shows the average number of floating-point operations
performed by a processor per floating-point value sent by that processor. Sustainable values will depend on
the relative computation and communication bandwidths of the processor and the processor interconnect in the
parallel machine. Current machines would most likely not have trouble supporting the roughly 40 to 1 ratio
seen for 16 processors on these matrices. The roughly 20 to 1 ratio on 64 processors, however, couid prove
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troublesome.

To put these communication figures into better perspective, we now compare them to the communication
volumes that would be seen with a column-oriented factorization method. Figure 13 shows relative commu-
nication volume, compared with a parallel column multifrontal method. Interestingly, the advantages of the
block approach on 64 or fewer processors are quite modest. While the growth rates, O(P) for columns and
O(log P\/P) for blocks, favor the block approach, constants make these rates less relevant for small P.

An interesting thing to note here is that relative communication is quite a bit higher for the two grid problems
than for the other matrices. The reason is that the column multifrontal approach does very well communication-
wise for sparse matrices whose elimination trees have few nodes towards the root and instead quickly branch

out into several independent subtrees. The two grid problems have this property. The block approach derives
no benefit from this property.

623 Summary

To summarize this subsection, we note that our block fan-out approach provides good performance for moderately-
panallel machines, although paralle] speedups are well below linear in the number of processors for the matrices
we have considered. An important limiting factor is the load balance that results from our very rigid block
distibution scheme. Regarding communication volumes, we find that the block approach produces comparable
amounts of traffic to a column approach on 64 or fewer processors. As to how the performance of a block
approach would compare with that of & column approach for such machines, we believe performance would be
higher on machines where matrix-matrix, or BLAS3 operations execute significantly more quickly than vector-
vector, or BLAS] operations. On machines that achieve high performance on vector-vector operations, the load
balance problems of the block approach would most likely tilt the comparison somewhat in favor of a column
approach,

6.3 Massively-Parallel Machines

Having concentrated on issues of efficiency on smaller machines in the first part of this section, we now tum
our aftention to three issues that will be important for very large parallel machines. First, we look at available
concurrency in the problem. In other words, we look at how many processors can be productively used for a
particular problem. Next we tum to the issue of per-processor storage requirements, and we consider how they
grow as the number of processors and the problem size is increased. A common assumption for large paraliel
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Figure 13: Communication volume of block approach, relative to a column-oriented paraliel multifrontal ap-
proach.

machines is that each processor will contain some constant amount of memory. Thus, it would be desirable for the
amount of storage required per processor to remain constant. Finally, we consider interprocessor communication
issues. Our discussions will use 2-D grid problems as examples.

Before further discussing these issues, we should first explsin our goals. The primary advantage of a block
approach over a column approach for a massively parallel machine is that it allows MOTe Processors 1o cooperate
for the same sparse problem. For a k x k 2-D grid problem, for exampie, the column approach can be shown
to allow O(k) processors to participate. By some measures, a block approach can use O(k2). Our goal is to

determine whether the use of O(k?) processors is a realistic goal, and to undersmand the difficulties that might
be encountered in trying to reach this goal.

63.1 Concurrency

One important bound on the paralle] performance of a computation is the length of the critical path. Determining
the critical path in a computation requires an analysis of the dependencies between the various tasks in that
computation. Such an analysis for block-oriented sparse Cholesky factorization reveals that the length of the
critical path is proportional to the height of the elimination tree, assuming some constant block size. For a 2-D
grid problem, the elimination tree can be shown to have height 3k. Thus, in the best case the O(k ) work of the
entire factorization can be performed in O(k) time. Consequently, at most O(k2) processors can be productively
applied to this problem. This figure is consistent with our goals for the block approach.

632 Storage

We now look at the issue of how per-processor storage requirements grow as the size of the machine and the
size of the problem is increased. We first note the obvious fact that the processor must store the portion of
the matrix assigned to it. If the factorization is performed on P processors, and the problem being factored
is & k x & grid problem, then each processor must store O( L 55% ) non-zeroes. Keeping per-processor stomge
requirements constant would thus require that the number of processors grow slightly faster than F 2. Since the
citical path analysis showed that only O(k2) processors can be used productively for this problem, we must
resign oursclves to a slow growth rate in per-processor storage.

Now consider the storage requirements of the auxiliary data structures that a processor must maintain. One
important set of auxiliary data is the per-block information. An example is the count of how many times a
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block is modified. Another is the particular row and column of processors to which a particular block is sent
when complete. This data adds a small constant to the size of cach block, and consequently it represents a small
constant factor increase in overall storage.

Another important set of auxiliary data is the column-wise data. One example is the arrival count information,
which keeps track of how many blocks will amrive in a particular column. Since the number of columns in the
matrix is k2, this data structure would occupy O(k?) space per processor if every entry were kept. Fortunately,
only O{43/ P) of these entries must be stored. The reason is as follows. 1f the factorization work is distributed
evenly among the processors, then the work performed per processor is O(k3/P). Since a received block is
only retained in a processor if it participates in some useful work, clearly the number of such retained blocks
and thus the number of arrival counts that must be stored is also O(k3/P). We can keep a hash table, indexed
by column number, of all non-zero arrival counts. When a block arrives, the corresponding arrival count is
located and decremented. Note that not all blocks tnat arrive at a processor participate in an update on that
processor. If no arrival count is found for the block column of an aniving block, then the block is immediately
discarded. Similar hash structures can be used for the other column-wise data structures.

Regarding per-processor storage growth rates, note that if P grows as &?, then the per-processor matrix
storage costs grow as O(log k) while the arival count storage costs grows as O(k3/P) = O(k). Fortunately,
the O(k) term has a very small constant in front of it, so this term will not be particularly constraining for
practical P. However, asymptotic per-processor storage requirements will grow with P.

633 Communbication

A crucial determinant of performance on massively parallel machines is the bandwidth of the processor inter-
connection network. In order to obtain a rough feel for whether the bandwidth demands of the block fan-out
method are sustainable as the machine size increases, we look at these demands in relation to two common
upper bounds on available communication bandwidth, in a manner similar to that used by Schreiber in [20].
The two upper bounds are based on bisection bandwidth and total available point-to-point bandwidth in the
multiprocessor. We consider a 2-D mesh machine organization, which is in some sense a worst case since it
offers lower connectivity than most alternative organizations.

A bisection bandwidth bound is obtained by breaking some set of point-to-point interconnection links in the
parallel machine to divide it into two halves. Clearly, all communication between processors in different halves
must be travel on one of the links that is split. The bisection bandwidth bound simply states that the parallel
runtime is at Jeast as large as the time that would be required for these bisection links to transmit all messages
that cross the bisector.

In the case of the block fan-out method applied to a 2-D grid problem, recall that O(k 2log F) messages
are sent, and each is multicast to O(v/P) processors (a row and column of processors). Figuse 14 shows an
example mesh of processors, an example bisector, and the communication pattern that can be used to multicast
a message. For any simple bisector, a multicast to a row and column of processors ~rosses that bisector twice.
Thus, total traffic across the bisector is O(k?log P). This trafic must travel on one of O{v/P) communication
links in the bisector, and this communication occurs in the O(k3/P) time required for the factorization. If we
assume that communication is evenly distributed among the bisector links, then communication per bisector link
pamnﬁmeisO(v%‘;;%)zomi;"i). If P grows as k?, communication per link per unit time is thus
Ollog P). Since the amount of data that can travel on a single link per unit time is constant, this grc wth rate
represents a small problem. The number of processors P must grow slightly slower than k2 in order to keep
message volume per link constant.

Another common communication-based bound on parallel performance is the total amount of traffic that
appears on any link in the machine, expressed as a fraction of the total number of links in the machine. For our
example, there are O(4? log P) multicasts, each of which traverses O(VP) links. The number of links in the
machine is O(P), and again this communication occurs in O{k?/ P) time. Thus, global traffic per link per time
unit is O(SHEYE), or O(5YE ). 1f P is O(k2), we obtain Oflog P) traffic per link, which is identical t0
the bisector traffic.

We should note that the preceding arguments have said nothing about achieved performance. Demonstrating
that certain performance levels can actually be achieved would require a detailed analysis of the structure of
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Figure 14: Communication pattem for row/column multicast.

the sparse matrix, the way in which the factorization tasks are mapped to processors, and the order in which
these tasks are handled by their owners. This would certainly be a daunting task. This discussion has simply
shown that the approach is not constrained away from achieving high performance by any of the most common
performance bounds.

6.4 Summary

To summarize our evaluation, we have found that the block fan-out method is quite appealing across a range
of parallel machines. Overheads are low enough that the method is quite effective for small parallel machines.
It is also effective for moderately parallel machines, although performance is somewhat limited by the quality
of the computational load balance. For massively parallel machines, we found that the approach is not perfect.
Per-processor storage requirements grow with the number of processors. Bisection bandwidth considerations
also limit the number of processors to below ideal. However, these constraints are mild enough that the block
fan-out approach appears to be quite practical even for very large P.

7 Future Work

While this paper has explored several practical issves related to parallel block-oriented factorization, it also has
brought up a number of questions that will require further investigation. Foremost among these is the question
of whether the 10ad balance could be significantly improved. We are currently investigating more fiexible block
mapping strategies.

Another interesting question concerns the choice of partitions for the 2-D decomposition. Recall that our
partitions are chosen to contain sets of contiguous columns from within the same supernode. Ashcraft has
shown (2] that by choosing columns that are not necessarily contiguous, it is often possible to divide the sparse
currently looking into the question of how large the benefit of a more sophisticated approach may be.

‘We also hope to compare the block fan-out approach we have proposed here with the block multifrontal
approach proposed by Ashcraft [2). One thing we are certain of is that the block fan-out method is much less
complex. So far, we have not discovered any significant advantages to a multifrontal approach, but the issue
requires further study. We also hope to investigate a block analogue of the fan-in method.

Once a matrix .4 has been factored into the form 4 = LL7, the next step is typically the solution of a
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number of triangular systems Ly = , where b is given. An issue that we have left unaddressed in this paper
is the efficiency of this backsolve computation when L is represented as a set of blocks. Our belief is that this
backsolve will be more efficient than the backsolve for a column representation, but further investigation will
be required to fully answer this question.

8 Conclusions

It is becoming increasingly clear that column approaches are inappropriate for sparse Cholesky factorization
on large parallel machines. One thing that has been much less clear is whether the altemative, a 2-D matrix
decompositon, is truly practical. This paper has described a parallel block algorithm that is both practical and
appealing. The primary virtues of our approach are: (1) it uses an extremely simple decomposition strategy, in
which the matrix is divided using global horizontal and vertical partitions; (2) it is straightforward to implement;

(3) it is extremely efficient, performing the vast majority of its work within dense matrix-matrix multiplication
operations; (4) it is efficient across a wide range of machine sizes, providing performance that is comparable to
that of efficient column methods even on small paratlel machines.
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