
11111111111111111111
PB96-151543

EFFICIENT BLOCK-ORIENTED APPROACH TO
PARALLEL SPARSE CHOLESKY FACTORIZATION

STANFORD UNIV., CA

13 JUL 92

NetIon8I TecIwticeIlnfonnetion ServIce

BIBLIOGRAPHIC INFORMATION

PB96-151543

Report Nos: STAN-CS-92-1438. CSL-TR-92-533

Title: Efficient Block-Oriented Approach to Parallel Sparse Cholesky Factorization.

Date: 13 Jul 92

Authors: E. Rothberg and A. Gupta.

Performing Organization: Stanford Univ .. CA. Computer Systems Lab.

Sponsoring Organization: *Defense Advanced Research Projects Agency. Arlington. VA.

Contract Nos: DARPA-N00039-91-COI38

NTIS Field/Group Codes: 62B (Computer Software)

Price: PC A03/MF AOI

Availability: Available from the National Technical Information Service. Springfield.
vA. 22161

Number of Pages: 28p

Ke~ords: *Cholesky factorization. *Computation. *Parallel processing. Computer
sy~ems performance. Run time(Cornputers). Matrices(Mathematics). Decomposition.
Massively parallel processors.

Abstract: This paper explores the use of a sub-block decomposition strategy for
parallel sparse Cholesky factorization. in which the sparse matrix is decomposed into
rectangular blocks. Such a strate9Y has enormous theoretical scalability advantages
over a more traditional column-orlented decomposition for large parallel machines.
However. little progress has been made in producing a practical sub-block method. This
paper describes and evaluates an approach that is both simple and efficient.

July 1992 Report No. ST AN-CS-92-1438

Also NlllnlHred CSL-TR-92-533

An Efficient Block·Oriented Approach to
Parallel Sparse Cholesky Factorization

by

Edward Rotbberg and Anoop Gupta

Department of Computer Science

Stantord Univenlty

Stanford, Cllltomia 94305

__ rt, _

1I. .. _of _ _ r __ _ _m ..

111111111111111
PB96-1S1S43

REPORT DOCUMENTAnON PAGE I ,..~

OMI_07N4,. -..... ----:: _.--..' '--~ -,.,.--.- -'-....-. ... -.-...._-............ _ _-.... ... __ "'wo I. 1aW_:r::: .. --_ _
......---~.--- ----~ __ .IO*......- .'. ,..,~~ __ ____ ~'". ___
OIl P891f151543 ., ""0fIIce1lf-.......-. '-....... "...,... JIIIJ. rr. I11I IIIII1III 1.1· UfIOIlT DATI I I. llPOIlT nN MO DAnS _ .. - ..

.. mu AND SUITITU S. fIUNDING INMilIS

An Efficient Block-Oriented Approach to Parallel Sparse
Cholesky Factorization NOO039-9l-C0138

I"AU~S'

Edward Rothberg and Anoop Gupta

7. ""~G OIIGANIZATK* NAMa,S, AND ADDtlIS~IS) •• " .:":. OltGANIZATION
Computer Science Dept./Computer Systems Laboratory IllP011T INMilIt

Stanford University STAN-CS-92-l438
Stanford, CA 94305

CSL-TR-92-533

I" IUONI10 G AGENCY NAM,," AND ADDIlI,,,IS, 10. MIlKY .../.r--.....
DARPA/CSTO
3707 N. Fairfax
Arlington, VA 22203-1714

n. SU MINTAlty NOTU

Ua. DlSr.uTlDNI AVA"","''" STATIMINT ,.1-' 011,_._ QIUI

Unlimited

11. MSTIUKT f lGO ...

AbIInd

Thia paper explora die 11M of • lub-bloc:kdec:ompoaitioa, for parallel ap ... Choleaky fK~
ill which &t. apme IIIIIrix iI decoaIpoIId mID IKtIDplIr bIoc:b. Such. ~ hu-. chMn~
acalability MV .. "" _ • man IrIdiIioDal col~ cIKoaIpoIillOll for ~ ,..u.l ~
However, liIIle ,..... hu '"- ill pnxtuciDI • pnctica1 lu.bloclt meIhocl. Thia ,..... cllllcribelilld

IVIluaIa au approKb &hal it bod! aimp1e ID4 eftic:iaL ,

'''MIUICTTI_ lS,...-uaP'AM.
25

Sparse Cholesky factorization, parallel processing , .. ,.. 4;,""

17. &'iiHMT ,- IL &,.PAGI
ITION ,.. &"XimAcT ,- :_. a.a.TATlCIIIUf_,_,

Unclassified Unclassified Unclassified

NSN 7S*l.o1·210·5500 Standard '0'''' 291 (It •• Z .. ",. ... ".. ~ .. \ ;.". ",.1,

An Efficient Block-Oriented Approach To Parallel Sparse
Cholesky Factorization

Edward Rothberg and Anoop Gurta
Depanment of Computer Scienc~

Stanford University
Stanford, CA 94305

July 13, 1992

Abstract

'Ibis paper explorel the UK of • IUb-bloclt cIec:ompoIitiOil IIrIIeJY for parallel OIolelky fllCtorizatiOll.
in which the IJ'UK matrix iI decompoted into ~JUlar blocks. Such. IlJaleIY hal enormOUI theoretical
ICalability advlIltaps owr & more tradilioaal col.umn-orienlod deccmpoli.tioa for IarJe parallel mllChine..
However. li1tle propl h .. been made in prodix:ins • pncIical lUb-bloclt method. Thil paper cIelCobel IIld
evaluates an ~h that 11 bach limple and eflicient.

1 Introduction

The Oaolesky factorization of sparse symmetric positive definite systems is III extremely important compuWion,
arising in a variety of scientific and engineering applications. Sparse Clolesty factorization is unfortunalely also
exuanely time-consunUng, and is frequendy the computational boItIenect in 1hese applicalions. Coasequendy,
there is signjficant interest in performing the computation onWJe parallel maclUnes. Several different IppIO&Cbes
to parallel sparse Qolesky factorization have been proposed. While great success bas been acbieved for small
parallel machines, success bas unfOltllDately been quite limited for Waer macbines. The JeUOIIS vuy, depending
on the panicular approach.

One impodaDt group of parallel spme factorization Ipproacbes includes IhoIe IbIIlSsume tbIt III processors
ICeleSS a single, sbared memory. WbiJe a stwed-memory programming model peady simplifies the paraUeliza­
tion tast, and bas led to ememely high-perfOlllllDCe implemenWiClllS [I, 6, 18), it also inberendy limits the
parallel scalability of the approacl1. A lIrF number of procesBOII simply can DOl sIwe a single memory.

A second important JI'OUP of parallel metbods avoids Ibis ICIlability problem by wOlting within • disbibuted
memory model instead. In nearly an suc:b 1!ppIOIdl, cohlmns of the spme matrix are distributed amOllg !be
memories of tile processors [4, 12, 16). Unfortunately, sucb approacbes have ac:bieved only limited sue<:esS.

Primary among !be limitations of tbese ~ are the eDOllDOUl amounts of ioterprooessor communU:abon
they requiJe, leading to SIIUJ'IIioo of tile processor iDterconDectiOll netwOlb. IDCI the limited IIDOUDts of con­
ameocy tbey expose in tile sparse problem, limiting the number of proc:eaon thai can be effectively ued for
I particular spme mlbix.

FOItUDIIely, these limitations can be overcome (in theory) by moving to • diJl'aent mllrix dislributiClll
stIIIegy. Rather than representing tbe sparse mIUix IS • set of columns, it can insIead be tepresellted 18 • set
of m:tlllpIar blocks. with tbeIe blocks dislributed IIIlOOg the processon. Such I 2·D decompositioD bas been
shown to be extmnely effective for puaDel dense factorizatiOll[21). It is not dear, however, whether a similar
decompositiOll would be pnctical for sparse problems. A few investiplicas [2, 20, 22] have been perfOllDeCl.
but tbe8e CODlIiDecIlittIe or no exploratiOll of practical algoriduns.

This pIpel' focuses OIl two prac:1ical aad impcItIDt quesUoos related to • 2·D decampo&kiOll approac:b. Pint,
we consider the c:ampleldty of. puaUel Iplde factorization program tbJit IDIOipul.aes sub-blocts. We fiDeI tbIl
• bloc:lt IppIOIcb need not be muc:h IDOIe complicated 1ban a column approach. We describe • simpe IbaJegy

1

for perfonning a block decomposition and a simple parallel algoridun for perfonning the spaISe Clloleslcy
computation in teons of these blocks. The approach retains the theoretical scalability advantages of block
methods. We tenn this block algorithm the block fan-oUl method, since it beals a great deal of similarity to the
parallel column fan-out method [12].

Another important issue in a block approach is the issue of efficiency. Wbile parallel scalability arguments
can be used to show that a block approach would give better performance than a column approach for extremely
large paraUel machines, these arguments have little to say about how well a block approach performs on smaller
machines. Our goal is to develop a method that is efficient across a wide range of machine sizes. We explore
the efficiency of the block approach in two parts. We first consider a sequential block factorization code and
compare its performance to that of a true sequential program to c6.:termioe how much efficiency is lost in mOving
to a block representation. The losses tum out be quite minor. We then consider parallel block factorization,
looking at the issues thai potentially limit its perfonnance. The parallel block method is found to give extmnely
high performance even on small parallel machines. For larger machines, performance is good but not excellent,
primarily due to load balance problems. We quantify the load imbalances and investigate the causes.

This paper is organized as follows. We begin in Section 2 with some background on sparse Choleslcy
factorization. Section 3 then discusses our experimental environment, including a description of the sparse
matrices we use as benclunarts and the machines we use to study the parallel block factorization approach.
Section 4 describes our strategy for decomposing a sparse maJrix into reClangular blocts. Section 5 describes
a parallel method that performs the faClorization in terms of these bloc:ks. Section 6 then evaiuales the parallel
metbod., bath in terms of communication volume and achieved parallel perfonnance. Section 7 gives a brief
discussion. and finally conclusions are presemed in Section 8.

2 Sparse Cholesky Factorization

The goal of the sparse Choleslcy computation is to faelor a sparse symmetric positive definite maJrix A into
the form .4 = LL T • where L is lower triangular. The computation is typically performed as a series of thJee
steps. The fiIst step. hearistic reorMring. reorders the rows and columns of .4 to minimize fill in the factor
mauix L. The second step. symbolic factori:atiorl. perlonns the factorizalion symbolically to detellDine the
non-zero structuR of L given a particular reordering. Stonge is allocated for L in this step. The thUd step is
the 1IlUPIerical/actorization, where the actual DOll-zero values in L are computed. 1bis step is by far the most
time-consuming. and it is the focus of this paper. We refer die leader to [13] for more infonnatioo on these
steps.

1be following pseudo-code performs the numerical factorization step:

1. for Ir = 0 to n do
2. for i = L' to n do
3. Lilt - L;t/-..;r;;
4 . for j = k + 1 to n do
5. for ;=j to " do
6. Lij-Lij-LitLjl:

1be computalioo is typically expressed in terms of columns of the spane IIUIIrix. Wltbin a column-orieoted
framewotk, steps 2 and 3 ale typically thoogbt of as a single qlenliOll, called a column division or cdil'()
operation. SimilaJl.y. steps S and 6 fonn a column modification, or cmQd(j. k). operation. 1be compuWion IheIl
looks lite:

1 . for Ir = 0 to " do
2. cdiv(k)
3. for j = l· + I to n do
4. cmod(j, k)

2

Only the non-zero entries in the sparse matrix an: stored. and the computation only perfonns operations on
non-zeroes.

This column-oriented fonnulation of the spalSe factorization bas fonned the basis of several parallel spalSe
factorization algorithms. including the fan-out method [12). the fan-in method (4), and the distributed muitifrontal
method [16). The details of these various methods are not relevant to our discussion, so we refer the reader to the
relevant papers for more infonnation. We simply note that for each of these methods. communication volume
can be shown to grow linearly in the number of processors [(4). Since available communication bandwidth in
a multiprocessor typically grows much mOte slowly, this communication growth represents a seven: scalability
limitation.

Recent research in parallel spalSe Cboleslcy factorization [3] bas sbown that the communication needs of
column-oriented sparse factorization can be greatly reduced Through limited replication of data and careful
assignment of tasks to processors, communication can be made to grow as the square lOOt of the number of
processors, thus improving scalability. Communication volume is DOt the only thing that limits scalability in
column-orienUld approaches, however. A column fonnulation also leads to very long critical paths, thus placing
a large lower bound on parallel IUDtime. For a dense " x 71 matrix, the sequential computation requites O(71 3)

lIIDlime while the best case parallel IUDtime is O(n 2). Similar bounds apply for spuse problems.

An alternative fonnulation of the faaorization problem divides the matrix into rectangular subblocks, The
dense OIolesty computation, expressed in tenos of subblocks. would loot like:

1. for A' = 0 to .\' do
2. LKK - Factor(LKK)
3. for / = /{ + I to /I.' do

4. LlK - L/1,' L/.;k
5. for J = I,' + 1 t,o ,": do
6 . for / = J to S do
7. LlJ - L/J - LIKL)/{

In dais pseudo-code. 1. J. and /,' iterate over rows and columns of Sub-blocks, It can be shown that
this fonnulation leads to greatly reduced communication volumes and exposes significandy more coocurrmcy.
Specifically. communication volume can be shown to grow as the squate root of the number of processors.
and the critical path can be shown to grow as O(n). It is m open question whether this formulation can be
efficiently applied to parallel sparse factorization, and dais is the question that we Idcbas here.

Before we begin our discussion of a block decomposition of the sparse matrix, we first discuss two im­
ponant conceptS in sparse factorization that will be relcvlllt to our presentation. The first is the concept of
a slipemodt [6]. A supemode is a set of adjacem columns in the faclor matrix L with identical non-zero
structuJes. Supernodes arise in my sparse faclor, UlCl they ate typically quite larp. By fonnulating the sparse
factorization computation as a series of supemode-supemode modifications, rather than column-coJumn modifi­
cations as described befOte, the computation can make substantial use of dense matrix operations. The result is
substantially biJher performlilce on vector supercomputers UlCl on machines with bierarc:bical memory systems.
For more details on supemodal factorization, see [1, 6, 11]. 1be regularity in !be sparse matrix captured by
this supernodal SbuCture will prove useful in this paper for producing III effective decomposition of the sparse
matrix into rectangular blocks. We wiD return to this issue shortly.

Another importaIlt notion in sparse factori2a1ion is that of the ~liminatioll tn~ of the sparse matrix [19]. This
stJuc:ture concisely c;aprures imponant dependency infonnatiOll. If each column of the sparse matrix is !bought
of as a node in a graph, then the elimination tree is defined by the following patent relationship:

parent(j) = min { il1ij i= O. ; > j},

It CIIl be shown that a column is only modified by descendent columns in the eWninaIioo bee. and equiva..lendy
that a column only modifies 1Ilc:est0lS. The most impoltlnt property c:aptuJed in this tree for parallel factorization
is the property tbal subtrees ate iDdepeDdenl, IDd consequeady caD be processed in parallel. This fact wiD be
~t laIer in Ibis MJCr.

3

Table 1: Benchmarks.
I Name II Description I Equations I Non-zeroes I

1. GRID 100 5-point discretization of 2D region 10,000 39,600
2. GRID200 Larger instance of 1 40,000 159,200
3. BCSSTK15 Module of an offshore platfonn 3,948 113,868
4. BCSSTK16 Corps of Engineers dam 4,884 285,494
5. BCSSTK17 Elevated pressure vessel 10,974 417,676
6. BCSSTKI8 R.E. Ginna nuclear power station 11,948 137,142
7. BCSSTK29 Boeing 767 rear bulkhead 13,992 605,496

Table 2: Factor matrix swistics.
Name FP ops I Non-zeroes in L I Supemodes I

1. GRlDloo 15,707,205 250,835 6.672
2. GRID200 137,480,183 1,280.743 26,669
3. BCSSTK15 165,039,042 647,274 1,295
4. BCSSTK16 149,105,832 736,294 691
5. BCSSTK17 144,280,005 994,885 2,595
6. BCSSTK18 140.919.771 650,777 7,438
7. BCSSTK29 393,059,150 1,680,804 3,231

3 Experimental Environment

Since one of our interests in this paper is to consider practical performance issues for block methods, we will
present several perfonnance numbers for realistic sparst' matrices factored on real machines. nus section briefly
describes both the maaices that we use as bencbmub and the machine on wbich we perform the factorizations.

3.1 Benchmark Matrices

The bencbmalt matrices we consider in this paper are drawn from the Boeing/Harwell sparse matrix test set [7].
Since our interest is on factorizaIion on large machines, we have chosen some of the largest sparse matrices in
the collection. Table 1 gives brief descripcions of the matrices. Table 2 gives information about the factOtS of
these matrices. The first column of numbelS shows a count of the number of floating-point operations requiJed
for the factorization. The second column gives the number of non-l.eIOeS in L. The 1bin1 gives the number of
distinct supemodes in the factor matrices. Note that all matrices except the two grid problems are preordeIed
using the multiple minimum degree ordering beurisdc [15] before being factored. A simple nested dissection
ordering is used for the grid problems.

3.2 Target Machine

Although many of the results presented in this paper will be machine-independent, Ihe paper will also include
some perfonnance numbelS from real parallel machines. We now briefly desaibe the pualle1 maclUnes that are
considered.

3.2.1 Moderately.ParalIel MacbiDe

Pcrfonnanc:e numbers for sequential and moderately-puallel madUnes are obCained from a Silicon Graphics
4D/380 multiprOcesS«. The 4D1380 contains eight bigh-performance RISe processors, each coosisIing of a
MIPS R3000 integer unit and an RJOI0 ftolling-poinI co-processor. The proceSSOlS execute at 33 MHz. and are
riled at 27 MIPS and 4.9 double-precision UNPACK MPLOPS. They are c:onneaed with a buS baving a pe*
throughput of approximale1y 67 MBytes per sec:ond.

4

Each processor in the 4D/380 has a 64 KByte instruction cache, a 64 KByte first-level data cache, and
a 256 KByte second-level data cache. The caches play a crucial role in determining performance. Memory
references that hit in the first-level ca~e are serviced in a single cycle. References that miss in both levels of
the cache JeQuire roughly 50 cycles to service, and they bring 4 16-byte cache lines into the cache. In contIaSt.
a floating-point multiply requires 5 cycles and a floating-point add requires 2 cycles.

3.1.1 Larger ParaDel Machine

In Older to provide performance results for machines with more than 8 processors, this paper also makes use
of multiprocessor simulation. To keep simulation costs manageable, we perform this simulation in terms of
high-level factorization tasks. A single task might represent a block update operation or the tnnsrnission of a
large message from one processor to another. The costs of the individual high-level tasks are obtained through
a simple performance model. The parallel simulation is performed as a discrete-event simulation of these tasks.

The three most important costs that 1ft modeled in this simulation are the costs of performing floating-point
operations, fetching data from the local memory of a processor, and communicating data between processors.
We now describe our model for each in more detail.

An important cost in a parallel factorization will clearly be the cost of executing the machine instructions that
perfonn the required floating-point operations. For the sake of normalization, we assume that one floatinF-point
operation requires one time unit Note that this machine instruction tenn is meant to capture not only the cost of
the single instruction that actually performs the floating-point operation. but also the costs of all instructions that
1ft requiIed to support a floating-point operaboo (such as index computations and memory load instructions).

Another, potentially even more important component of performance is the cost of moving data between a
processor's memory and its cache. Our assumption is that a cache miss on one double-precision value takes
roughly 5 times as long as a ftoating-point operation. This number is quite accurate for the SOl 4D{380 and
is a reasonable estimate for a wide range of current generation hierarcbical-memory machines as well. T" .. e
cache is assumed to be large enough to hold time 32 by 32 blocks of data. To simplify our simulation, "
further assume thai all reuse of cached data occurs within block operations. That is, we assume that each bloc:k
operation begins with an empty cache.

While tIIis computational cost model may appear too simplistic to capture the intricacies of curtent and
future microprocessors, which might include such complex features as heavily pipelined floating-point units and
non-blocking cacbes, we believe this model will in fact provide relatively accurate estimates. No mailer wbat
the internal S1JUctUJe of a processor, we believe thal its perfonnance for this computation can be understood
using the answers to two questions. Fust. what performance is achieved when virtually no memory references
miss in cache? And second. what perfonnance is achieved when all ~ferences miss in cache? While heavier
pipelining will allow the processor to bide some of the latencies of memory acte5SeS, at the same time memory
latencies will continue to increase SO there will be more latencies to bide. As a result, we believe that the
processor will have to pay some cost for eacb cache miss.

The third cost that is modeled is the cost of interprocessor commwlicatioo. Our model assumes that au
communication takes place in the fonn of interprocessor messages. It also assumes thal messages are handled
by a message co-proc:essor, and therefore cost the sending and receiving processou nodling to process. The
hue cost of a message is the time it spends in the interconnection network. Our model assumes that tIIis time is
determined by the length of the message and the available ccmmunication bandwidth between the sending and
receiving processors. Communication bandwidtb is assumed to be one-tenth of computation bandwidlb. 1bal is,
a processor can perform ten floating-point operations in the time required to send one Boating-poU. value. This
number is roughly average for today's parallel machines. 1be Inlel Touchstone machine, for example, bas a
roughly 8 to 1 computation to communication bandwidth ratio. 1be Intel puagon machine wiD have a roughly
2 to I ratio. On the other hand, the 'Ibinting Machines CM-5 bas a rougbly SO to 1 rado.

For an example of bow this perfonnance model would be applied, consider the fonowing three example
operations: (I) send a 32 by 32 block of data from one processor to another, (2) multiply the received block by
another 32 by 32 block; (3) add the result into anocher 32 by 32 block. Operation 1 would send 1024 double­
precision values and thus would require 10240 time units. Operation 2 woul<lload 3 blocks into the proc:essor
cache, requiring 15360 time units, and would perfonn 65536 fioating-point operadons, requiring 65536 time
units. Fmally, operation 3 would load two blocks into the cache, requiring 10240 time wlits, and would perfonn

5

1024 ftoating-point operations, .equiring 1024 time units.

We believe our model captures the most important aspeas of parallel machine perfonnance for modem
multiprocessoni, with one excepbon. Our model does not capture the effect of message contention in the
processor interconneclion network. Since the effect of contentim is exmmely difficult to model accurately, we
instead discuss the issue in a qualitalive way in seclions whe~ the perfonnance model is used.

4 Block Formulation

Having described our evaluation environment, we now move on to the question of how to structure the sparse
Cholesty computation in terms of blocks. Our first step in describing a block-oriented approach is to propose
a strategy for decomposing the sparse mattix into blocks. Our goal in this decomposition is to ~tain as much
of the efficiency of a sequential factorization computation as possible. Thus, we will keep a careful eye on the
amounl of computational ovemead that is introduced.

4.1 Block Decomposition

We begin our discussion by considering some of the general issues that are important for a block approach. We
also discuss how our approach addresses these issues. We believe the main issues that must be addressed are the
following. First, blocks should be matively dense. Since the blocks will be distriWed among several proceSSOni,
there will certainly be some oveIheads associated with manipulating and storing tbem. These overbeads shOuld
be amortized over as many non-zeroes as possible. 'n1e bloc:k decomposition must the~fore be tailored to match
the non-zero SllUcture of the sparse matrix. Another important issue is the ways in which blocks in the mattix
interact with each other. If the interactions ~ complex, then the puaDe1 computation can easily spend more
time figuring out bow blocks interact than it would spend actually perfonning the block operations. Finally, the
individual block operations should be efficient

The primary motivation behind our decomposition approach is to keq. the block computation as simple
and regular as possible. Our hope is that a regular computalion will be an efficient computation. We keep the
computation simple by avoiding two distinct types of irregularity: inegular interactions between blocks and
iJregular structure within blocks.

4.1.1 Jrrecular Interac:tioas

Since a sparse mauix in general CMtains non-zeroes interspersed with zeroes throughout the matrix. it would
appear desirable for a block decomposition to possess a large amount of flexibility in cbOosing blocks. 1bis
flexibility could be used to locally tailor the block structure to match the actual structure of the sparse matrix.
One seemingly reasonable approach to a block decomposition of a spUle maIrix, for example. would locate
dumps of contiguous non-lZI'OeS in the matrix aDd group these clumps together into blodts. 'Ibis approldl
bas serious problems. however, and we now ctiscuss the advlDUJe of giving ~ some fteKibility and instead
imposing a significant amount of rigidity on the decomposition.

The primary problem with a flexible approJICh to block decomposition CClllcems the way in which the resulting
blocks would interact with each other. R.ecaIl thll in sparse OJoiesty faaorizalion a single non-zero L iA' is
multiplied with non-zeroes above it in the same column L;t to produce updates to non-zeroes L.j in row j and
column j. When the mattix is divided into a set of rectaDpar bloc;b. the blocks interact in a similar mlDDCl'.
Consider the simple example in Figure 1. 'Ibis figure shows a small set of dense bloc:ts from a potentially much
luger matrix. During the factOrization. the block in the lower left will inteJ'ICI with a portion of the block &bow
it to produce the indicaled update. which must be subtmcted fmm porticos of the blocts to its right. Keep in
mind thal each of these blocks is potentially assigned to a diffeIenI processor. Thus. for eacb update operation
the processor performing thai updale must keep tract of the set of blocks that ate mvolved. the portions of
these blocks thll are affected, the processors on whidl these blocks CIII be found, and it must dole out the
computed update to the relevant processors. Keeping traCk of III suc:h block intenctions would be enormously
complicated and expensive. With a 1aIJe number of blocks saIltered througbout the mattix, the costs of this
irregubrity wouId quietly beccme probibDve.

6

~-==-r-'Two_ /' I,
bIocb InterKt ,:

~' I -=-
Fi~ I: Example of irregular block interaction. Doacd lines indicate boundaries of a1rected ueas.

In order to temove Ibis ineguIarity and grellly simplify tile structme of Ibe c:omputalioo. we decompose tile
matrix into blocks using global J*1itions of 1be rows and columns. In other wOlds, 1be columDs of 1be matrix
(I ... n) ue divided intO contiguous sets ({I ... P2 - I}. {P2 ••• P3 - I} {Pl\· ••• n}. wbete .\' is Ibe Dumber
or partitio. and Pi is the first COlumD in partition i). An identical partitioning is performed on Ibe rows. A
simple example is shown in Figuse 2. A block L lJ (we refer to paditions usia& capital let1ers) is tbcn Ibe
set of non-zeroes tbal fIi] simultaneously in rows {Pl •• ,PHI - 1) IDd columns {PJ •. ,PHI - 1). 1be main
Idvlll1uae of this rigid distributiOll comes from 1be fact that blocks shale common boundaries. A block L 1 K

DOW interactS widl block L J Ii in tile same block colunIn partition to produce 1111 upd.aIe to block L 1 J •

ODe possible weakness of a global putitiooiog "'SY is dIat its global DIlUte may DOl aDow for locally
.ood blocb.. We will soon show Ibat this is only a minor problem.

Anodler issue tbal can have a significant iJDpact on die efIicieacy of tbe cnoerall computadoo is die u.emaI
noo-zeIO structure of a bloc:t. JUII as we restricted the cboice of block bouMuies eulier to inc:teale regularity
ICIOIS block openrions, we DOW consider ratrictions 011 !be inlemallItnICtUIeS of bloc::kl to incIeae replarily
witbin a block opentioo.

Nole fint lUI: aIlowin. arbibary pGtitioaiDgs of the rows IDd columDs of 1be IDIbix would lead to blocb
wilb IIbittary iDtemal non-zero struc:tures. Recall tbal a block updaIe operation is perfoaaed by ml1ltiplyiDJ a
bIoct by !be trIDIpOIe of • block IboYe it (as • 1IIIIrill-maix multiplic:atiOll). Widl artIitruy DOll-zero IbUCtUI'e
witbin die blocts, 1be COII'eIpODdin. computation would be • spane mlbix mullipliclboa. wIUcb is an ine1IicieaI
openIiOD in seoeraL

In Older to simplify 1be intelDal stI1J<:t1R of abe blocks and keep tbe ccmputJIioo as ef6cient as possible.
we take lIlvamaae of die supemodaI atraeture of die spane JUbix.. Spec:ific:aDy. we cbooIe putiliOlllIO Ibat all
member columns belOOl to tile ume .ape:mode. Since tbe c:ollllDDl in • npemode all ba~ !be lime noo-z:ero
IICJUCIUI'a, all resultin, bloc::ks will shale this pnlpCrty. Thus, a block L I J will CODSist of aome let of cIease
rows. A block may DOC be oompletdy deale, aince DOt all rows are DeCeIIIrily...... A IiDJIe ID'UClUI'e \'eCtOr
keeps nck of die lei of rows preleDt in a block. 1bis IpIlIity witbiD a block bllliale effect on !be elicieacy
of die computalioll. as we IbaIlIOOll mow.

Befcft proc:eediD .. we Dole dull AIbc:nft [2] ~ • Iimbr decompOIitiOD --IY iDdependeMly.

7

Figure 2: Example of JIobaUy partitioned mmix.

4.2 Structure of tbe Block Factorization Computation

Our aoaI ic placing the above restrictions on blocks in tile &pane matrix is to main as much efficiency IS possible
in the block fIctoriz.aIion computaliOD. We DOW deac:ribe a sequential algoritbm for perfonninlthe flctoriDlioo
in lenDS of tbeae blocks IDd eval1Ulle a:w algoritbm 'a ef'fic:Hmcy. The patallelizIboo of the 1"qUftId,I approach
that we derive beJe will be described Iatet.

At one level. the factorization al,001bm expressed in tams of blocks is quiIe obvious. Tbe fol1owinJ
pseudo-<:ode. a simple analogue of dense block <lloIesty flctorizalion.. perfonw; tile factorizIDoa. Note Ibat I.
J. IDCI 1\ iterate over tile panitioos in die spme mlbix.

1. for l\. = 0 to ,1\' do
2. LI\I\ - ractor (LK1\)
3. for 1= l\. + 1 to N with LIK '" 0 do
4. LII\-LIKL,,'k
5. for J = l\ + 1 to .\' with LJK '" 0 do
6. for 1 = J to .r.... with LIK '" 0 do
7. L/J-L/J-LI1\LfK

The 6m tbiDl to noce about die abo'Ie pIeUdo-code is tbal it WOlD widl a co11DJl of blocb III a lime. S1epI
2 1Iuougb 4 divide block column J\ by tile 0l0Je*y faaor of die diqODal bloc:t. Steps S duouab 7 c:ompuee
bloct updIIies from all pein of bloc:ts ill column K. We tbemOft _. die bloc:ts so 1baI all blocts ill a c:oIumIl
can be easily Ioc:aIecL 1be easiest way to do Ibis is 10 ItOft ODe coIIaD of blocb after 1DOIber. ODe poeeaIial
problem bete is tbII IIep 7 upcIIIeS aame deltination bIodt L I J wboR locMioa CID DOt eMily be deteJmined
from 1be locItioos of Ihe IOQrQe bloc:b. To mike Ibis *p efficienl. a IWIl table of all blocks is bJIt.

Now OODIider die impIemeDtI&iOD of die iDdividaal openDoos iD 1be peeudo-code. The block fac:torizMioo
ia step 2 is quite auaigbtfOlWlld to implement. Diqoul blocb lie J'III'IIdeed 10 be deale. so Ibis I1Iep is
simply a deale 0I0IeIty factorizIIioD. The muJlipJicatioo by tile iIlvene ~ tile diapal bIoc:t ia seep .. is also
quite lllliabtrorw.d. Tbis IIep does DOt lCbIally compute die imeIIe of L K 1\. lasIad, it soMa a IeIies of
uiaftplar systems. WIWe die block L 11\ is not aeceaaDly deale. die ctii+4IIiaD CIIl be pedtlmIe4 wi1boIl
COIISDlrinl tile _-SIO iUUCtIde of the block.

1be ,..aininlltep ill the above peeucIo-<:ode. Itep 7. is bodl1be mOlt ~ IIId the IDCIII dUDcalt
to impIemeaI. It is the molt impodlnl becaJIe i& lila wiIbiD a doably-aested loop IDd ... perfcrms 1be VMt

majodty of tile ICIaIl c:ompaIIIiaa. It is die IDOII dHIicaIt bee-. it WCIb willa bIocb wi1b pcmwialJy ~

8

non-zero structures and must somehow rec.oncile these structures. More precisely, recall that a single block in
L consists of some set of dense rows from among the rows that the block spans (see the example in Figure 2).
When an update is performed in step 7 above, the suucture of LIn detennines the set of rows in L I J that are
affected. Similarly. the structure of L J n detennines the set of columns in L /J that are affected.

The block update computation is most conveniently viewed as a two stage process. A set of updates is
computed in the first stage, and these updates are subtracted from the appropriate entries in the destination
block in the second. or scaner stage. The first stage, the computation of the update. can be performed as a
dense matrix-matrix multiplication. The non-zero suuctures of the source blocks L 1 J, and LJ 1\ are ignored
temporarily; the two blocks are simply multiplied to produce an update.

During the second stage. the resulting update must be subtracted from the destination. The most simple case
occurs when the update has the same non-zero structure as the destination block. We have coded our dense
matrix-matrix multiplication routine as a multiply-subtract (i.e .• C' = C - AB T), rather than a multiply-add. so
the destination block can be used as the destination directly, without the need for a second scaner stage.

Consider the more difficult case where the non-zero structures differ. The first step in this case is to compute
a set of relative indices (19). These indices indicate the conesponding position in the destination for each row
in the source. Two sets of relatives indices are necessary in order to scaner a single block update; "f I., the
affected set of rows and "el] • the affected set of columns.

1bc computation of relative indices is quite expensive in gcneral., since it requires a search through the
destination to find the row corresponding to a given source row. Fortunately, such a search is only rarely
necessary due to an important special case. When the destination block has dense structure, the relative indices
bear a trivial relationship to the source indices. Note that the ,·d j indices always fall into this category. since
the destination block always has dense column structure. We will be more precise about exactly how often
relative index computations are necessary shortly.

Once relative indices have been computed. the actual scaner is perfonned as follows:

1. for i = 0 to iengthln do
2. for j = 0 to /('ngthJf.- 00

3. LJJ [rel;[;J][rdj [j]] - L JJ [rel;(il] [rfi j [j]J - tlpdatt[i] U]

Scancring is also somewhat expensive. and it is much more prevalent than relative index compuWion. The
frequency with which relative index computations and scatters must be performed will be CORSideIed shortly.

In summary, the efficiency of a block update operation depends heavily on the non-zero stru~s of the
involved blocks.

• The best case occurs when the update bas the same structure as the destination. In this case. the C =
C - ABT operation can usc Ibe destination block as its destination.

• The next best case occurs when the destination block is dense. The update must be scanered, but the
relative indices can be computed incxpcasively.

• The waISt case occurs when the update bas different structure from !he destination and !he destinalion
block is sparse. The update must be scanered, and re1aIive indices m relatively expensive to compute.

4.3 Performance or Block Factorization

We DOW look at the performance obtained with a sequential program thll uses a block decomposition and block
implementation. Since our end Baal is to create an efficient partJll~1 approach. perfonnaoce is SlUdied for the
case where !he mattix is divided into relatively small blocks. The blocks should Dot be too small, however.
because of the ovedtclds that will be associated with block operations. We consider 16 by 16.24 by 24. mel
32 by 32 block sizes. To produce blocks of the desired size B, we fOIm panitiOllS Ibat contaiD as close to B
rows/COlumns as possible. Sil¥:e partitions represeDt subsets of aupemodes. some panitioos will nalllnlly be
smaDer than B.

9

t:. ORl01oo
:: ORlO2OO

l
•• r- 0 BCSSTK15

+ BCSST1<18

t
x BCSSTK17
• BCSST1<1.

·Lr __ c~BC~SS~TK2II.:.:._._=:::: ~::::~~"'!I_
I ~ -----
I·~ ...
~ L--------------t .~
~ ~----------~------------~~~

•

... .. •
8Iock1la

Figme 3: Perfonnlllce of a sequential block approKh. relative to a sequential left-looting supemode-supemode
1pplOICh.

Table 3: Fmiueocy of relalive index computations and scaners for block method, compared with ftoaIing-point
operations (B = 16).

O1UD100 0.37., 4.0..
OIUD200 O.IS" 2.4"
BCSSTKlS 0.04" 1.6"
BCSSTK16 0.02" 1.4.,
BCSSTK17 0.04" 1.8.,
BCSSTK18 0.11" 2.6"
BCSSTK29 0.01" 1.0..

Tbe petfonDaIK:e oblaiftecl wi'" die aquential block appoach an • -ale SOl 4D/380 ~ is IbowB
Fipre 3. 'Ibis performance is expeaed as a fractioa of die perfcxmlllCe obtained with aft ef6Qent teqoentia1
code (a mpemode-mpemode Ieft-lookiDg medIod; one of tbe IDOIt eftic:ieat IeCpIeDtial approacbes [17]). Prom
die figure, it is dear that tbe block IppIOadl is quire eftic:ieat Typic;al efIic:ieDcieI Ire IOUJbly 6S., for a block
sUe of 16 aad lOU y 75., for a block _ of 32. We will diIcua die reaIOQI wby Ibree of abe matrices,
OlUDlOO, ORID200, and BCSSTK18, acbieve lill'ificadIy lower peIfonDaace lbadIy.

Our e.rIier disculliOll iDcticlled that abe perfOlllWl<le of die block metbod mipt Iafter becauIe of die
need for IdIIM index tak:ulaIioDs IDCI .. lCIlterina. In Older to puee die effect of tbeIe two issues an
overaI1 perfOllDlllCC, Table 3 aeJMes die aoantI of ~, and rellliw iadmt CC4IIJW"1rion (for B = 16) to
abe IIIIIDbel of fIoaIia,-point opalliaal peIfomaed in tbe faclorizIIioo. Tbe numben Ire quite IimiIar few die
OIlIer block size cboices. 1be fiat c:oIumn compara tbe DUmber of diIdDct reIaIiw iDdices ccmpullld apinllabe
Dumber of !IoaIiq-poiat opendoaa. Tbe 8DCOIId coIamD campuea diIIiDet eIemeaI Kallen apiast floIIiD,-poial
operIIioas. Tbe table IbowI that even if relaliw iDdex COIDputllioallDCl acaaen .. IIIIICb men e.,..m !bill
fIoItiaI-poiIt openIioDa. tbe JellIed COllI wiD be ...n. Clearly, die vat majority of block upcIIIe opendoaI
prodace willi die __ aruc:tme • abe deltiDalioa ~

It is IIJo inteIeIIiD& to compue Jeladw iadices IDClICIICeII to Cboee performed by • true IeIpIIIiIIl mediad.

10

Table 4: Frequency of ~lative index computalions and scartelS for block method, compamt with 5e(juential
multifromal method (B = 16).

Relative indices ScanelS
Problem (relative to seq MF) (relative to seq MF)

GRID 1 00 78% 72%
GRID200 80% 69%
BCSSTK15 109% 105%
BCSSTK16 50% 88%
BCSSTKl7 61% 90%
BCSSTK18 163% 91%
BCSSTK29 32% 40%

Table 4 gives the relevant numbcIS. In this case, the comparison is with a sequential multifrontal method, where
notioos of relative indices and scatters are easily quantified. The comparison is relevant for the left-looking
supemode-supcmode as well, however, since the two methods perform similar computations. Note that the
block method performs a comparable number of relative iDdex computations and scatters.

Ashcraft [2] has desaibed methods for improving block suucture and thus decreasing the need f(lr scattering.
It is our belief that a very Simple block decomposition is more than adequate for keeping such costs in check.

4.4 Improving Performance

It is clear from the previous sectioo that the block method is generally quite emcient. Rccall, however, IIlat the
method was much less emcient than a true sequential method for several problems. Data 011 relative index and
scarter frequency showed that these were not the source of the losses. The losses are actually due to overheads
in the block operations.

Consider a single block update operation. It must find the approprille destination block through a hash table,
dctcnnine whether the source and destinatioo blocks have the SIlllC SbUc:twe, and then pay the loop startup costs
for the dense matrix multiplication to compute the update. While these costs lie trivial when all involved
matrices lie 32 by 32, in faa many blocks in the sparse matrix are quite small. In the case of matrix GRID100,
for example, the averqe block operatioo wilen B = 32 peJforms only 96 floating-point cpenlions. IS oompared
to the 65536 operations thai would be perfonned with 32 by 32 blocks. The averqe number of 8oating-point
operations per block operatioo across the whole beDchmut set is shown in Figure 4. Note that this fisuJe quite
accurately prediClS tile peJformance numbcIS seen in the previous figure.

The primary cause of small blocks in the bloc:t decompositioo is the presence of small supemodes, and
thus small partitions. To increase the sUe of these partitions, we now briefly consider the use of $upernod~
amalgamatio" [5, 8] techniques. The basic goal of supernode amalgunatioo is to find pairs of supernodes thai
are nearly identical in non-zero structure. By relaxing the restrictioo thll the spme matrix ODIy store noo-zeroes,
some zeroes can be introduced into the spme matrix in order to mate the sparsity structures of two supemodes
the same. These supcmodes can then be merged into one larger supcmode. We refer the reader to [5] for m~
details on supemocJe ama1pmalion. and simply Dote that our amalgamatioo strIIegy merges supemodea quite
aggressively.

In Figure 5 we mow the average block opeoooo sizes both before and after unalgamatiOl1. It is clear thai
amalgamatioo significandy inauses the block opention grain size.

Before presenting performlllCle compuiJons. we first note that amalpmllioo does have • cost. By introducia&
zeroes into the spaISe matrix, the OUDt of 8oa1ing-point woct is in<:RaIed. . To be fair. the performlDllC of
the block computatioo after amal.gamatioo mould therefore be c:omparecI with the peJfmnance of tbe sequential
computation befCft this extra work is introduced. However, amalpmatioo also provides some bene1it for
sequential factorization. primarily related to improved use of the proc:easor cache. We found that die benefit in fact
outweighed the cost for the amalg atioo Slrllegy we employed 011 all beoc:Imark IDIIric:es. with peJfomaance
improvements ranging from 1 .. to 14" <see Table S) for the true lequential method. BlodI: metbocl performInce
is therefore ~pared to the performance of tile tnIe IeqUmtial metbod after UDalpmation.

11

!t._
I
l
I
e:-
I

, .. ~----------~------------~
'" GRl0100
_ GRlO2OO
<> BCSST1(15

+ BCSST1(1'
x BCSST1(17

.. • BCSST1(1'
o 8CSSTI<2I

10

I I

•

Figure 4: Avenae ftoating-point operaDoos per block operaDoo.

-P------------6------------~
'" GRID100
- GRID200
<> BCSSTX15
+ BC8STK1'
x 1ICSSTK17

.. • BCSSTX1.
o 8CSSTI<2I

•

I·Name
1. GIUDIOO
2. G1UD200
3. BCSS'I'KIS ... BCSS'I1{16
5. BCSS'I1{17
6. ~11~18

7. BCSS11C29

.. •
IlDakIile

6",72
26,669

1,295
691

2.59S
7,438
3,231

12

_ I- '" GAIl100
Ci GRI0200
<> 8C88TK1S
+ 8C8S11<1'
x 8C8S11<17
• BC8S11<1.

Ie 0 IC8S11C2I

..

2,786
11,243

52S
434

1.622
3,727
1,193

..

S ..
6 ..
1 ..

3"
2 ..

'1"
1

l. GRlO100
- GRlD200 -

l'· o BCSSTK1S l-+ BCSSTK1S

i . x BCSSTK17

t-• BCSSTK1S
0 BCSSTl<28

I

I· - - I-..-- --..
15 15

I ~ t '" GRlD100 • •
L>. L>. = GRlO2OO

o BCSSTIC1S
+ BCSSTIC1S

• • x BCSSTJ<17

• BCSSTIC1e
0 BCSST1<2II

I.
I i

I .. II • .. •
Bklcklize Block Iize

a.lcn~ Aller .",.rn.tlon

Figure 6: Pelfonnance of a sequential block approach, before IDd after supemode amalgamation, relative to a
sequential left-looking supemode-supemode approach.

Figme 6 shows relative performance levels after amalgamation. The results indicate that amaIpmation is
quite effective at reduc:iDg overheads. Performance rougblydoubles for GR1DlOO, wbe!e the average taSk grain
size m~ases for B = 32 increases from 96 floating-point operations to 597. Pelformance increases for the
otber matrices as well. With only two exceptions. block method performance is roughly 8S'I> of rbaI of a true
sequential method for B = 32. Performance falls off somewbat wilen B = 24, aDd it deaeases furtber wilen
B = 16, but the resulting eOicicncies ~ S1ill mOle Iban 70'1>.

Note that our cho8eD JIIlge of blocks sizes. 16 to 32, is meant to span the nnge of 1easonable cboices.
Blodts Ibat are smaller rhID 16 by 16 would be expected to lead to large oveJbeads. lDdeed. perfonnance wu
observed to fall off quite quiddy for bloct sizes of less than 16. The IIIUJinal beDefil of in~asing the block
size beyood 32 by 32 would be expected 10 be small. 1bis expectation wu also COP1iImed by die empirical
teSUlts.

4.5 Block Decomposition Summary

'Ibis section bu described a simple means of dec:omposing a IpIIIe maIrix into a set of rectaDplJr bIoc:b. The
performance of a metbod baled on 1Uc:b blocka on • sequadial aw:bine is oearly equal the perfonDaDce of a true
sequential medlod. Of c:oune. our goal bete is DOt an etliciedt sequeotiaI medlocl. but inIIead an efIicieot parallel
medlod. 'Ibe nexl sec:Qon will coasider Ievenl issues alUed 10 die panlJe1iz";on of the above approach.

5 Parallel Block Method

The question of bow to paraUelize tbe IequeaIiaI .. oct 4'PI0IIcb described 10 far can be divided into two
~ questioas. Pint, bow will proceaon cooperate to pelform tbe WOIk usiped to them? ADd IeCOIlCl.
wbal metbod will be \lied to allip tbia wOlt to proc:eIIOII? 'Ibis IeCtion will addre. IbeIe two questions in
tum.

13

1. while some L/J with mUIJ[L/J) = M yI D is not complete do
2. receive some L}/\

3. if 1= H /* diagonal block */
4. DiuYJ\.MyID - Ln'
5. foreach LJIo,: E Il"uii/\.Ml/iD do
6. Ln; - LJI,Li).
7. send LJ/\ to all P that could own blocks in

row J or column J
8. else
9. RtC}'.MyID - RtcJ\.MyID U L,}\
10. foreach LJ/\ E RUJ\,A/yID do
11. if mup[LJJ) = MyID then
12. Find L/J
13. LIJ - LIJ - Ll/\L)I\"
14. nmod[LJJ)-nlnod[LJJ)- 1
15. if (nmod[L/J] = 0) then
16. if 1= J then /* diagonal block * /
17. L/J - Factor(L/J)
18. send L,} to all P that could own blocks in

column J
19. else if (Diag},MflID #- 0) then

20. LlJ - LlJLK""
21. send L'J to all p that could own blocks in

row I or column I
22. else
23. WaiiJ,AlI/ID - WuiiJ,AlylD UL/J

Pigwc 7: PanI1e1 block fIo-out IlJOridun.

S.l Parallel Factorization Organization

We bepn our desaiptioo of die parallel c:omputIIiOll by assuming thIl eacb block wiD bale some specific owner
processor. In our apprOIICb. die owner of a block L I K perfOllDS III block upclIIe operaons with L 1/\ IS their
destinatiOll. With this c:boice in mind, we preleDt die paraUel block !all-out Ilpi1bm in Pigwc 7. The ICIt of
Ibis dil<:ullion will be devClled to an expIlDIIial of die alaoridun

The IDOIt importIDt DOtiOII for die block fIo-out metbocl is oac::e • block L I K is compw, IDCIIIiDI tbat
it Ills received III block updaIes IDd bas beeD multiplied by die iImDe of tbe dialOIIII block, tbeD L 1/\ is IeDt
to III proc:eaors tbat could OWII bIocb updItecI by it. Bloeb tbat could be updated by L 1/\ fa1I in block-row
I or blodt-c:ollDD I of L. Wbco. block LIK is receMId by • proc:euor p (srep 2 in PiJUft 7), proc:euor
p performs III relItecl updaIes to blocks it OWDS. 1be block L 1 K only pmcIucea b10eb upcIaIa wilen it is
paiJed with bIocb in die same colUIIUI h". ~ pmceaor p conlidea III pliriDp of die tec:eived block L I K

with completed bloeb it bas abudy Jec:eived iD column 1\ (tbele blocks _ beId in I« lUc K,p) to detenDiDe
wbeIber die conespoodin, deltiDaliOll block is 0WDed by p <1tepI 10 lad 11). If die dettiDJrion L IJ is owned
by P (map[LlJ) = p), tben die conespoadin, update openIiOll is perfClllDed (1IepI12 _13). Each proeeaor
nWntaias • basil table of aD blocks IIIipecIto it, _ die dettiNlion block II ~ tbnIuJb dlia bub !Uk.

A CIOUDt is bpl with ada block (nmod[L,K]), iDdicaIID,lbe IUDber of bloc::k apdMeIlbat IdIlIDUII be
dOIIe to tbat block. Wbco die COUIIt aeICIIeI zero, dIeD bIoc:t L 11\ is reacly to be muhiplied by die iIMne of
LnK (srep 20 if LJ\'~ baa already aaiwd. Jr..., 6 odIeIwiae). A diaaGIII block LKK is laepI in Dial"".. _.y bIocts waiIiD& 10 be modified by Ibe diapal bloc::k _ kept ill WoitK,p. 1be .. Diag, Wait,_
Rec CID be kepi u IimpIe IillbclIiIII of IIloc:b.

ODe iIMJe dial is DOt addreaed ill Ibe Ibove ~ II of block diIpoaI, AI cIeIcribed above,

1~

the parallel algoritlun would retain a leceived block for the duration of the factorization. To determine when
a block can be thrown out. we keep a count ToRfcl> r of the number of blocks in a column A· that will be
received be a processor 1'. Once I RfCJ.:.r I = ToRah',r' then all blocks in column A' are discalded.

We DOle that a small simplification has been made in steps 11 through 14 above. For all blocks L I J. I must
be greater than J. a condition that is not necessarily true in the pseudo-code. The reader should assume that I
is actually the larger of I and J. and similarly that J is the smaller of the two.

5.2 Block Mapping for Reduced Communication

We now consider the issue of mapping blocks to processors. Our general approach is to restrict the set of
processors that can own blocks mO<tified by a particular block L / K and thus decJeaSe the number of processors
the block must be sent to. The actual resaiction is done by ped'orming a sCiltt~r decomposition [9] of the blocks
in the sparse matrix.

MOle ptecisely. assume that P processors are used for the factorization. and assume for the sake of simplicity
that P is a perfect square (P = p x 11). Furthermore. assume thai the processors are arranged in a 2-D grid
configuration. with the bottom left processor labeled POD. and the upper right processor labeled Pr-l.r - I • To
linlit communication. a row of blocks is mapped to a row of processors. Similarly. a column of blocks is mapped
to a column of processors. We choose round-robin distributions for both the rows and columns. where

mall[LJJ] = p/DJIIdr.JDJIIdr·

Other distributions could be used. By performing the block mapping in this way. a block L / K in the sparse
factorization need only be sent to the row of proc:essors that could own blocks in row I and the column of
processors thai could own blocks in column I. Every block in the matrix would thus be sent to a toW of
2p = 2 v'P processors. Note that communication volume is independent of the block si2Ie with this mapping;
every block in the matrix is simply sent to 2 v'P processors.

The scatter decomposition is appealing not only because it Jeduces communication volume, but also because it
produces an extremely simple and legular communication pattern. All communication is done throop multicasts
along rows a:nd columns of processors. This pattern is simple enough thai one might reasonably expect parallel
nw:bines with 2-D grid interconnection netwom to provide lwdware multicast support for it eventually. In the
absence of hardware support, an efficient software multicast scheme can be used. We will return to this issue
later in this paper.

5.3 Enhancement: Domains

Before preseDling penormance JeSUits for the block fan-out ~ we first note that the method as desaibed
above produces more interprocessor communication than competing column-based approaches for small parallel
mac:lUnes. This is despite the fact that it bas mudl bet1cr asymptOlic communicatim behavior. To understand the
reason. consider a simple 2-D k x k grid problem. The conaponding factor matrix contains O(k 2101 k) DOO­
zeroes, and the parallel factorization of this matrix using a column approach can be shown to genenre O(k 2 P)
communicalion volume [14]. In the block approac:h, everr. DOll-zero in the matrix is sent O(.,;p) processors.
so the total communication volume grows as O(£·2IogkVP). WbiIe the communication in the block IppJO&ch
grows less quietly in p. for any given "t· it also bas a larzer 'constant' in front

An important tecbnique for reducing communication in column metbods involves;be use of domoins [2, 4].
Domains are IaJge sets of columns in the sparse matrix that are assiped en masse 10 a single processor. They
are perhaps most easily understood in renns of the e1iminlliOD tree of L. Recall tbat disjainl subtJees in the
eliminatim tree are computationally independenl. and ccmequendy can be proc:essed concunendy. By assigning
the columns of an entire subtree (a domain) to a single processor. the communiCllion that would bave JeSUlIed
bad these columns been distributed UDOOg processors is avoided.

More preciaely, by localizing aD columns in a domain 10 a sinJle proceaor. aD upcIIIes 10 tbese columns
can be perfexmed without the need for interprocessor communicaliOll. More importandy. the updItes from aD
columns within a domain 10 all other enaies in the matrix can be computed and agrepeed witbin the owner
proc:eaor. apin with no communic:ation. Tbat processor CIIl then send tile agreple updates 10 the IIIJPIOPri*

IS

destinations. In a column approach, the aggregate update is sent out 01\ a column-wise basis. We refer the
reader to [4J for more details.

Ashcraft suggested [2J that domains can be incorporated into a block approach as well. The basic approach
is as follows. The non-zeroes within a domain are stored as they would be in a colmnn-oriented method. The
domain factorization is then performed using a column method. 1be aggregate domain update is computed
colmnn-wise as well. We use an extremely efficient left-looking supemode-supemode method for both. Once
the ~gate update bas been computed, it is sent out in a blodc-wise fashion to the appropriate destination
blocks.

Of comse, the domains must be carefully assigned to processors so that processors do nO(sit idle, waiting for
other proceSSOIS to complete local domain computations. Geist and Ng (10) described an algorithm for assigning
a small set of domains to each processor so that the amount of domain work assigned to each processor is evenly
balanced. AD results from this point on use the algorithm of Geist and Ng to produce domains.

With the introduction of domains, the parallel computation thus becomes a three phase process. In the
first phase, the processors fador the domains assigned to them and compute the updates from these domains
to blocks outside the domains. In the secooO phase, the updates are sent to the processors that own the
corresponding destination blocks and are added into their destinations. Finally. the thiId phase performs the
block factorization, where blocks are exchanged between proceSSOIS. Note that these are only logical phases;
no global synchronizations is necessary between the phases.

Consider the effect of domains on communication volume in a block method for a 2-D grid problem. We
first note that the number of non-zeroes not belonging to domains in the sparse matrix can be sbo~ to grow
as O(,,2 log P), versus O(1,-2108") without domains. Total communicalion volmne for these Don-zeroes using a
blodc approach is thus O(k 2 log P v'P). The other component of communication volume when using domains
is the cost of sending domain updates to their destinations. The total size of all such updates can be shown to be
O(k2), independent of P, so domain update communication represents a lower-order term. Total communication
for a 2-D grid problem is thus 0 (,,2 log P v'P).

Note that domains produce the added benefit of reducing the nwnber of small blocks in the matrix, and
thus reducing related overheads. Recall that small supemodes are the main source of small blocks. In a sparse
problem, most small supemodes lie towards the leafs of the elimination tree. when: they are liteIyto be contained
within domains.

6 Evaluation

This section evaluates the parallel block fan-out approach proposed in the previous section. The I!ppFOIICb is
evaluated in duee different contexts. First, we loot It performance on a small-scale multiprocessor. Then, we
consider performance on moderltely-pual1e1 mac:hines (up to 64 processors), using our multiprocessor simulation
model. Finally, we consider issues for more massively plll'allel macrunes.

6.1 SmaU Parallel Machines

The fiJSt performance numbelS we present come from the Silicon Onpbjcs SOl 40/380 muitiprocessCll'. Parallel
speedups are sbown in FtgU1'e 8 fOl' I Ibrougb 8 proc:essors. AD speedlIP' lie ccmputed rell1ive to a left-looting
supemode-aupemode sequential code. The figure !bows tbaI the block fIn-out metbod is indeed quite efticient
for small macbines. In fact, perfonnanoe is comparlbk to that of a bigbly eflicient coIumn-based code that
distributes supemodes IIOOGg processors [18]. Speedups on 8 proceISOIS lie rougbly 50S-fold, conesponding
to absolute perfonnance levels of berween 45 and SO doab1e-PJeCision MFLOPS. Speedups lie Jess than liDear
in the number of processors lor two simple IeaIOIIS. Piat, the block medIod is sligbdy less eflicient tbaD
a column method. We beJieve this aa:oums for a rougll1y 15~ perfOlllWlcc reduc:tiClll. Second, the load is
unevenly distribu1ed 8IDoog the proceaon. A simple cak:ubilioo reveals that proceuon speacl rougbly 15~ of
tile computatiClll ClIl averqe IiIling idle. T'beIe two !acton c:ombiDe to give a reIItiveIy accuraIe perforauDce
prediction.

16

t ·
J

" GRlD100
C GRlD2IIO
o BCSSTK15
+ BCSSTK16
x BCSSTK17

lIE BCS5TK1'
o BCSSTl<2I

'~----~----~----~------.~
p-

Figwe 8: Parallel speedups for block fan-oul medlod OIl SGI 40-280, B = 24.

6.2 Moderately p.ranel Machines

We now perform an evalualion of panDel performance of die block fan-out approach on madUnes with up to 64
processors. using die multiprocessor simuIationmodel described earlier. We also disc:uss issues of communication
volume.

6.1.1 Simalated Perfonuace

To pt a 1i:e1 for bow die block fan-oul medlod would scale to • larger number of processors, Figwe 9 shows
simulated processor utiIizaIion levels fer between 4 and 64 simulated processors, using a block m.e of 24. It is
dear from die fipse tbal the bloct ippI'O&Ch exbibils less tban ideal bebavior as die macbiDe size is mcreased.
On 64 processcn, fer example, utilizatiOD levels drop to roujbly~. Further mvestiplioo reveals tbal the
primary cause of tbt drop m performmce is a progreaive decline in tbe quIity of die load balance. Fapte 10
complIeS simulalecl performance for mIbices BCSSTKlS and BCSSTK29 witb the best pelformance that could
be obtained widldle SlIDe block distribution. 1be load balance performance bound is obIained by compaIing the
lime dw would be requftd if tbeIe were no depe("4eMes between blocks and if interproceaor commUDicItion
wen: flee.

1be quality of the load distlibutioD dearly depends OR the method UIIed 10 IIUIp blocks to proc:eIIOII. Recall
that we use a very rigid 1DIppinilbatel)', where block L IJ is assigned to proc:esaor PI..."J ODe poIIible
expJaoltion fer the poor bebaviOl" of 1bia IInIeI)' is tbal it does nOi aI1IpI to the IbUCIUre of the spme maIIix; it
aies to impoee a very regular ItnJC:tUIe OIl a mabix that is pOIeIltiaDy c:ompIiIecI of • very implar aJrID8eIDeIlt
of lIOIl-zero blcx:b.

WbiIe die mismatda betweea the replar mlppinl IIICI the implar maIrix IIr1ICtIR cenainly contribules
to the poor 10ld balance, it is our belief Ibll • more impoItant facter is the wide VIIiaIJiIity m tuIt sizes. In
puticular. since a bloclc is modified by ~ let of blocks 10 its left, blocks to the far lipt m the maIrix aenerally
require muc:b more wOlk bIocIa 10 die le1t (me. aecura1y, blocks Dell' the top of tbe eliminarion uee
require DlOIt wOlk tban bloc:ts near the leafa). Pwtbermore, Iince the mIIrix blower-ttianlUw, the IIIIIIlber of
bIocb in a column deae_ towlrda the riJbt. The result is • small number of very important bIocb in the
bOIIcm-riJII comer of the matrix.

To IUppOIt our contention thai the IpaIIC Ib1ICIIDe of the mabix b lea importIm thin the IIlOft pnenl
tilt diItIibuIioa problem, Flame 11 compatU the quality of the 10lIl balIDce CJtJtaDed for two IPIIIe 1DIbicea,
BCSS1'KU aDd BCSSTIC29, to the lo.d ba1anc:e oIaiDecllllin, the same mlppin, --I)' fOI'. deale IDIIIilL
Tbe cunea mow the maimum nhtejuNe proceaor tdirMion leveII pen the block mappiDI- 1be deale

17

l-

I •
I •
I

•

•

e.

•

•

a.

" GAlD100
:: GRlD200
o BCSSTK15
+ BCSSTK11
)(BCSSTK17
• BCSSTK11
o BCSS'T1<2I

• • . ..
Pi Ie •• 101'1

rasure 9: Simulated panIlel etliciencies for block fan-out method, B = 24.

l- ..

I
I

~,..,..- I ,.11.111_-
Lo.I~ Lo.I

• .. •
p,-

BC8ST1<15 8C8STKa

Prauln.

PiJUR 10: Simulliled panUel perfoauac:e, COIIIpIl'eCI with load balIace upper bauad (B = U).

18

•

•

'.

<> BCSSTK'5
(, DENSE800

. ..
Proce.cn

BCSSTK15

•

•

o BCSSTI<2!I
/::, DENSE,06O

'~.------~----~,~.----~~----~

BCSS1K2lI

Figure 11: Parallel utilization upper bounds due to load balance for BCSSTKIS and BCSSTK29, compared with
load balance upper bounds for dense problems (B = 24). In bodl plots, sparse and dense problems perfonn the
same number of ftoating-point operations.

problems lie chosen so as to perfonn rougbly the same number of floating-point operations as the two sparse
problems.

Note that the load balance can be improved by moving to a smaller block size, thus creating more distributable
blocks and making the block distribution problem easier. However, as discussed earlier, smaller blocks also
increase block ovemeads. For the larger benchmark sparse matrices, declusing the block size from B = 24
to B = 16 increases simulated parallel efficiencies for P = 64 from ~S% for B = 24 to SK-SS% for
B = 16. A block size of less than 16 further improves the load balance, but achieves lower performance due
to overhead issues.

The general condusion to be drawn from these simulatiOll results is simply that large macbines ~
relatively large problems to achieve biBb processor utilization levels. In panicular, the sparse matriees that
we study he~ are too small to make good use of a 64 processor madUne. Of course. it may be possible to
significantly improve parallel load balance with a better mapping S1nIegy. A more general functioo could be
used to map columns of blocks to columns of processors. and to map rows of blocks to rows of processors.
This matter will require further investigation.

So far. our malysis bas assumed that paralJel performaDce is govemed by two com: the costs of executing
block operaIions on individual processors and the latencies of communicating blocks between processors. An­
other important. altboup less easily modeled component of puaIleI perfODDIDCe is the total ioteqnocessor
communication volume. Communk:Mion volume will determine the IIDOUDt of comeDtion that is seen OIl the
imerconDectiOll netwOlt. Such contention can baw severe perfoanaoce coosequeaces, and can in mmy cases
gowm the perfOJrnUlee of the eDtUe computation (see (20), for example).

Rltber than try to integrate these costs DO our simple perfonnanoe model, we iDstead look at interproc:essor
communication in a more qua1itatiw way. To obtain a genend idea ofbow mud! aJIIlIIlunicadon is perfonned,
Figure 12 compares total inteipioc:esaor communicatioo volume witb IOtal floating-point operatiOll counts for a
variety of spme matrices and mac::bine sizes. This fipIe shows the averap number of flOIIing-point operaIions
perfonnecl by a proc::essor per ftomng-point value IeDt by that processor. SUllhlinabie values will cIepeDd 011
tile rellliw computation IIId communication baoclwidlbs of the proc:essor IIId the processor inleJ'C:OnDect in the
parallel macbine. CUm:Dt macbines would IDOII likely Dot have IIOUble suppo.1inglhe rougbly 40 to I lllio
seen for 16 proceIIOII 011 these 1IIIUices. Tbe rou&bly 20 to 1 nIio 011 64 proc:aaon, boweYu, c::ouId ptO¥e

19

t:. GRID100
- GRID200
o BCSSlX15
+ acssnul
x acssn<17
• acsslXl'
o lICSSTI<28

ue~.----~~----+-.----~.~----~M
p-

Figure 12: Communication versus computation for Ibe block fan-out melbod.

troublesome.

To put lbese communication figures into better perspective. we DOW compare lbem to the communication
volumes Ibat would be seen with a column-oriented factorizaliOll melbod. FiJUR 13 shows relltive commu­
nicalion volume, compared wilb a parallel column muItifrontal medlod. Interestingly. tile adnntqes of the
blodt ~ 011 64 or fewer processors are quite modest While tile JrOWtb rates, O(P) few columns IDC1
0(108 PVP) few blocb, favor the block approach. constants make these riles less relevant for small P.

An interesting thing to note here is that Rlative communication is quite. bit bigbee for the two grid problems
than for !be adler matric:es. 'Ibe JCaSOD is that !be column mulliflOnlal approach does very weD communic:aliOll­
wise for sparse mllric:es wbose elinainatiOll trees have few nodes towuds Ibe root and instead quic:tly bnDc:b
out into sevenI independent subtrees. 'Ibe two gricl problems have this property. The block .pproadl deriws
no benefit from this property.

6.2.3 SDIIUIW')'

To summarize 1his sublec:tion, we nOCle that ourbloct fIn-out approach provides JOOd perfonnan<:e for modenlely­
panUe1 machiDes. aUbougb parallel speecIupI lie weD below linear in die Dumber of proceuon for !be maIIioes
we have c:oosideDC1. AD important limiIin, factor is die load baIanc:e that reauIts from our very Jipt bloc:t
dislribulion sc:beme. Repnling c:ommunicaliOll volumes, we fiDd die block approICb produces comparable
1IIl000ts of tnmc: to a c:olumn IIJPIO&Cb OIl 64 or fewer proc:essors. As to bow tile perfoanlDCe of a block
ippOICb would CXIIlIp&R with !bat of a column IpPIOICb for IUc:b madrinea, we believe pelfomlaDce would be
bigber on mldliDel where maIrix-matrix, or BLAS3 operMions uecuIe aipificantly IIlOft quickly Iban vector­
'IeClOr. or BLASI ~0IlI. On marbiDes that acbieve bip perfOllDlllCe OIl vector-wctor openIioDa.1be 10ad
balance problems of die bloc::k IIppI'OKb would IIlCII likely tilt die compadJOIllOlDeWbal in favor of • colUIIID
1ppIOKb.

6.3 Massively-Parallel Machines

Haviq conceatraIed 011 iIIueI of efticiency 011 smaDer macbinea in me fiIIt put of tbia sec:ti0ll. we DOW tum
our aaentioa to IIuee iuues tbat wiD be importIat for very IarJe panIIe1 madrinea Pint, we look at availIbIe
c:oac::unency in die probIaD. ID odIer wOldl, we loot • bow mllly proceaoa CaD be productively aIed for •
~ problem. Next we tum to tbe iaae ofper-proexuor Itcnp iCIIfairementa, aad we c:onaider bow Ibey
pow u die IIUIDber of procaIOD and me problem_ is iDc::Ieuecl. A c:ommOD pIioD for ... p8Ide1

20

...
t. GFII0100
o GFIID200
o BCSSTK1S
+ BCSSTK1e
)(BCSSTK17
• BCSSTK1.
o BCSSTK2I

"'~.----~------~.----~.~----~M
"'-

figwe 13: Communication volume of block approach, relative to a column-oriented parallel multifronlal ap­
proach.

mac:hines is that each processor will CODIain some constant amount of memory. Thus. it would be desirable for the
amount of storage requiled per processor to remain constant FiDaDy. we consider intezprocessor communication
issues. Our discussions will use 2-D grid problems as examples.

Before further dircnssing these issues. we should fint expllin our goals. The primary IIdvantage of a block
approach over a column approadI for a massively parallel mllCbioe is Ihat it allows mOR processors to cooperate
for tbe same sparse problem. For a Ii: x Ii: 2-D grid problem. for example. the collDDD approach can be shown
to allow O(k) processors to puticipate. By some measures. a block 1ppI'OIc:b can use O(k2). Our goal is to
cIetermiDe whether the use of O{k2) processors is • lCaIistic goal, and to UDdeI'lWld the dit&:ul1ies tbII migbt
be ellCOUllteled in trying to IUCIlIbis goal.

0.1 CoacarnDcy

ODe important bound OIl the puallel performance of a computatioo is the Ienglb of the aitical pith. Determining
the aitical path in a computation requires 8D ,.. of tile depcDdalciea between the various tub in that
computation. Suc:b an analysis for bloct-oriented spme Cboleaty factori.zaDOD Jeveals that tile length of tile
aitical path is proponioDIl to the beigbt of the e1iminarion tree. IlllllDiDglCllle COftIIaIlt block size. For a 2·D
grid problem. the eliminaliOll tree C8D be shown to bave beigbt 3k. 'Ibus, in tile best C8Ie !be O(k 3) wOlk of the
entire factorizatioo can be performed in O(k) time. Consequently. II most O(k2) processcn can be produCli~1y
applied to tIUs problem. Tbis ~ is c:oasisteDt with our goals for tile block ippiMdl.

We DOW loot II the issue of bow per-proceaor aorase requiJemeDcs pow II tile size of the IIIIIChiDe and the
size of tile problem is inaeued. We lint note the obvious fKt tbat the pnx:esIQI' must stOle the portion of
the maIrix usignecl to it If the IactorizIIiOII is perfcxmecl on P proc:e8IOIS. IDd tile problem being factmed

is • k x k grid problem. tben eadl proeeaor must stole O(¥) noo-zeIOeS. KeepiDI per-processCll' stomp
requiIemeolS CODItaIU WOUI4 tbus requiR tbII tile DUlllber of proceIIOII grow 1Ii~ filler dian k 2. SiDce tile
aitica1 path .wysis Ibowed thai only O(k2) proceaon CIa be UIeCl producti\lely for Ibis problem, we III1IIt
reap ouneIves to a dow growth rile in per-procellOr stonp.

Now COIlIider tile Itonae requia_ 01 tile IIJldDry data 8InICIaIe8 dial a poceaor IDIIIt maintain. ODe
imponIot let of auxiliary data is tile per-bloct iDformIIiCIIL All example is tile COUDt of bow IDIIl)' times •

21

block is modified. Another is the particular row and column of processors to whicb a panicular block is sent
when complete. This data adds a small constant to the size of each block. and consequently it represents a small
constant factor increase in overall storage.

Another imponant set of auxiliary data is the column-wise data. One example is the arrival count infonnalion.
which keeps track of how many bloclcs will arrive in a particular column. Since the number of columns in the
mattix is 1-2. this data structure would occupy O(~' 2) space per processor if every entry were kept. Fonunalely.
only O(~.l / P) of these entries must be stored. The re~on is as follows. If the factorization wOlk is distributed
evenly among the processors. then the work perfonned per processor is O(k' / Pl. Since a received block is
only retained in a processor if it participates in some useful work.. clearly the number of such retained bloclcs
and thus the number of arrival counts that must be stored is also ()(~. 3/ Pl. We can keep a hash table. indexed
by column number. of all non-zero arrival counts. When a block arrives. the corresponding arrival count is
located and decremented. Note that not all blodts tnat arrive at a processor puticipale in an update on thal
processor. If no arrival count is found for the block column of an arriving block. then the block is immediately
discudecl. Similar bash structures can be used for the other column-wise data structures.

Regarding per-processor storase growth rates. n,* thal if P grows ~ /...2. then the per-processor matrix
storase costs grow as 0(108 k l while the arrival count storage costs grows as O(J.o' / P) = OU·). Fonunarely.
the O(~' l tenn has a very small constant in front of it. so this term will not be particululy constraining for
practical P. However, asymptotic per-processor storage n:quiIaneDts will grow wim P.

A crucial determinant of performance on massively para1lel machines is the bandwidth of the processor inter­
c:onnection netwolk. In order to obtain a rough feel for whether the bandwidth demands of the block fan-out
method are sustainable as the machine size increases, we look al these demands in relation to two common
upper bounds on available communication bandwidth. in a manner similar to mal used by Sc:lueiber in (20).
The two upper bounds are based on bisection bandwidth and total available point-la-point bandwidth in the
multiprocessor. We consider a 2-D mesh macbine organization. which is in some sense a WOlSt case since it
offers lower connectivity than most alternative organizations.

A bisection bandwidlh bound is obtained by breaking some set of point-to-point intetconnec1ion links in the
parallel machine to divide it into two halves. Clearly, an communication between processors in different halves
must be travel on one of the links thal is split The bisection bandwidth bound simply states dw the paralId
runtime is at least IS large IS the lime mal would be requUed for these bisection links to traIISIIlit all messages
that cross the biSector.

In the case of the block fan-out method applied to a 2-D grid problem, recall that O(k 2108 P) messages
are sent, and eac:h is multicat to O(v'P) processors (a row and column of processors). Figure 14 mows an
example mesh of processors. an example bisector, and the communication plltem dw CIIl be used 10 multicast
a message. For lOy simple bisector. a multicast to a row mel column of processors r.rosses that bisector twice.
'Thus, local ttafIic across the bisector is 0(102108 Pl. This tnftic must travel on one of O(.../PI communiCltion
links in the bisector, and this communicMion occurs in the O(k ' I P) time requilCCl for the factoriulior.. If we
assume that communication is evenly distributed amoog the bisector links, then communication per bisector liDt

per unit time is O(J~rt':p)) • O<, .. ~n). If P grows IS k2, communication per link per unit time is thus
O(logP). Since the amount of data that CIIl travel on a single link per unit time is constant. this grtwth tale
represents a sma1I problem. The number of proceSSOlS P must pow slightly slower thaD k 2 in older to keep
message volume per link constant

Another cOmmon communicalioo-based bound OIl paraDel perfOllllance is the total amount of tra1Iic that
ippeUS on any link in the nw:tUne, expressed as a fraction of the total number of links in the madUne. For our
example. there are 0(1:2108 P) multicasts, each of which travenes O(../p) links. The number of links in the
machine is O(P), and again this c:ommunic:alion oc:curs in 0(1,0'/ P) time. Thus. global trafIic: per link per time

unit is O(t;:w:~ I. or O(""'in). If Pis 0(1.2), we obcain O(IosP) tramc per lint, which is ideDtic:al to
the bisector traffic.

We should Dote that the pteeedin, UJUIIleoll have Slid DOtbinI about ddliewd performance. Demooscrating
tbat c:enaiIl performance levelI can actually be acbieYed would reqaiJe a detailed 1D8l)'lis of the IIUUCt1II'e of

22

7

Bisector

"" / . /
<;;,

/ .

/ {

;~b~dfd

Source

Figure 14: Communication panem for row/column multicast.

the sparse matrix. the way in which !be factorization tasks are mapped to processors, and the order in which
these tasks are handled by !beir owners. Tbis would certainly be a daunting tat. Tbis discussion has simply
shown thai !be approach is not cOllSb'ained away from achieving higb pedormance by any of !be most common
perfonnance bounds.

6.4 Summary

To summarize our evaluation, we ha~ found that !be block fan-out method is qui1e appealing aaoss a range
of parallel machines. Overheads are low eaougb tbaltlle medlod is quite effective for smal1 parallel mac:bines.
It is also effective for moclmltely paral1e1 machines, ahbougb pedormance is somewhat limited by the quality
of !be computatiooalload balance. FOt massi",1y paraDel macbines, we found dW the JIlPIOaCb is Dot perfect.
Per-processor storage requirements pow widl die DWDber of procesIOtS. Bisection bandwidth considerations
also limit the number of processors to below ideal. Howe",r, tbe8e CClIISIDiDlS are mild eaouab thai tile block
fan-out approach ippear5 to be quite practical e'ICD for very large P.

7 Future Work

Wbile Ibis paper has explored several practical issues IdaIed to paaDeI block-orieated factorizaboo, iI alao has
brougbt up I number of quesbODS thai will requiR furtber invatiplion. FCIeIIlOIt among tbe8e is the question
of whelber the load balance could be lipificantly improved. We are CUIIaldy investigatiq more flexible block
mapping stnIe&ies.

AnOCber iaUlesting question cooc:ems die cboice of pmitiaaa for die 2·D dr~tion. Recall dial oar
panitions lie cboaen to contain sets of COIltiJUc:lUS columns from wiIbin die IIIIIC supemode. AIbcrafl has
sbown [2] tbal by choosing columns that are Dot necessarily c:ontiprous. it is often poaible to divide the Ip8'IC

matrix into fewer, denser bIocb. WbiIe our taults indicaIe IbIl die simpler I!pprOICb is quite ldequlle, we are
currently lootin& into the question of bow lIqe die beaefiI of I mOle IOpbistic:.lecllplllMdl may be.

We alao bope to compare the block fmHJut ~ we have paopoeect bete wiIb die block multifrorul
IppIOICb propoeecl by AIbc:raft [2]. One dlin& we are cenain of is IbIl Ibe block fID..ouI mecbod is mac:b lea
c:ompIex So far, we have DOt diIcovaecl any lipific:ant Idv to a maltifrcJlltal IIpIIIOKb. but the u.e
n:quiIa furIber 1IDdy. Wt: alao bope to invatipIe a block IMIope of 1be fln-in metbocL

Once • maIIix .4 been facIored iDto die fonD A = LLT, 1be Dal IIep is typically Ibe IObaon of •

23

number of triangular systems Ly = I" where b is given. An issue Ibar we have left unaddressed in this paper
is the efficiency of this bactsolve computatioo when L is represented as a set of blocts. Our belief is Ibar this
backsolve will be more efficient than Ibe bactsolve for a column representation, but further investigation will
be required to fully answer this question.

8 Conclusions

It is becoming increasingly clear Ibar column approaches are inappropriate for sparse Cholesty factorization
on large parallel machines. One thing Ibar has been much less clear is whether the alternative, a 2-D malrix
decomposition, is truly practical. This paper has described a parallel block a1gorilbm that is both practical and
appealing. The primary virtues of our approach are: (1) it uses an extrmJely simple decomposition strategy, in
which the matrix is djvided using global horizontal and vertical partitions; (2) it is Sbaightforward to implement;
(3) it is extremely efficient, performing the vast majority of its work within dense malrix-mattix multiplication
operations; (4) it is efficient across a wide range of machine sizes, providing performance Ibal is comparable to
that of efficient column methods even on small parallel machines.

Acknowledgments

We would lite to tbank Rob Sclueiber and Sid OIatterjee for their discussions on b1ock-oriented factorization.
This research is supported UDder DARPA contract NOOO39-91-C-0138. Anoop Gupta is also supponed by an
NSF Presidential Young Investigator Awanl.

References

[I] Amesroy, P.R., and Duff, I.S., "Vectorization of a multiprocessor multifrontal code", /nterntztioNJI JOl/.mal
of SlIpucomputer ApplicatiollS, 3:41-59, 1989.

[2] Asbcraft, C.C., The domtJillfsegnvnt partition for the ftu:lorization of Jparse Jymtrletric positive tkfirrite
matrices, Boeing Computer Services 'lecbnical Repon ECA-TR.-I48, November, 1990.

[3] Asbaaft, C.C., The fa1l-both family 01 colllmll-lNued dUtribllled Citoruty factorization algorithms, in
wottshop OIl Sparse Matrix Computations: Ouph TbeOJ)' Issues and A1goritbms, 1992.

[4] Asbaaft, C.C., Eisenstat, S.C .. , Uu, 1.L., and SheDDlD, A.H. "A comparisCll of duee column-based
distribueecl sparse flCtorizatioo scbemes. Reseucb Report YALEUJDCS/RR-81O, Computer Science De­
panment, Yale University, 1990.

[5] Asbaaft, C.C., aDd Grimes, R.O., "The in1Iuence of .eluecl supemode plltitions on the multifrontal
melbod", ACM Tra1lStJctiollS on Mathematicar Softwan, 1S(4): 291-309, 1989.

[6] Asbaaft, C.C., Grimes, R.O., Lewis, 1.0., Peyton, B.W., aDd SimCll, H.D., "Rec:ent progress in sparse
malrixmetbods for large linearsystemS",'ntemtltiONJlJollmal ofS~rcomplller ApplicatiOllJ, 1(4): 10-30,
1987.

[7] Duff, I.S., Grimes, R.O., Ind Lewis, J.O., "Sparse Mabix'lest Problems", ACM Tra1lStJctiollS on Mathe­
matical Software, 15(1): 1-14, 1989.

[8] Duff, I.S., aDd Reid, J.K., "The multifrontal solution of indefinite spane symmetric liDear equatiCllS", ACM
Tra1lSQctioflS Oil Matheml.uical Stftwan, 9(3): 302-325, 1983.

(9) Fox, 0., et 11, Solving Problems OIl COIlaJrRIlt Proceaors: Volume 1 - GeoenI Tecbniques IDd Regular
Problema, PIeaIice Hall, 1988.

(10) Geilt, G.A., and NI, E., "A panitioninllttllelY for parallel spane 0I0IeIky factorizatiOll", Tec::bnicII
Repon TM-I0937, Oak Rid8e Natioaal Ubori&ory, 1988.

[11] George, A., Heath, M., !.iu, J. and Ng. E., "Sparse Cholesky factorization on a local-memory multiproces­
sor", SIAM Jouf7JlJl Oil Scientific and Statistical Computing', 9;327-340, 1988.

[12] George, A., Heath, M., Liu, J., and Ng, E., Sollllion of Sparsl positivi tkftnite systlms 011 a hyplrcwbe,
Technical Repon TM-I086S, Oak Ridge National Laboratory, 1988.

[13] George, A., and !.iu, J., Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.

[14] George, A., Liu, 1. and Ng, E., "Communication results for parallel sparse Cholesty factorization on a
hypercube", Parallel Compllling. 10; 287-298, 1989.

[IS] Liu, J., "Modification of the minimum degree algorithm by multiple elimination", ACM Transactions Oil

Mathemtltical Software, 12(2): 127-148, 1986.

[16] Lucas, R. Solving Planar Systems of Equations on Distributed-Memory MultiprocessoJS, PhD thesis, Stan­
ford University, 1988.

[17] Rothberg, E., and Gupta, A., "An evaluation of left-looking. right-looking. and multifrontal approaches
to sparse COOlesty factorization on hierarcbical-memory machines", Technical Report STAN-CS-91-1377,
Stanford University. 1991.

[18] Rothberg, E .. and Gupta, A., "Tedmiques for improving tile performance of sparse matrix factorization on
multiprocessor wOIbtations", Swpercompllling '90, p. 232-243 , November, 1990.

[19] SchIeiber, R., "A new implementation of sparse Gaussian elimination", ACM Transactions on MatMmtltical
Software, 8:256-276,1982.

[20] SchIeiber, R., "An: sparse matrices poisonous to bighly parallel midlines?", in Wolbhop on Sparse Matrix
Computations: Gnph Theory Issues and Algorithms, 1992.

[21) Van De Geijn, R., Massively paralwl UNPACK bellChmark Oil the Intel Toau:hswlle Delta and iPSCI86()
systems, Technical Repon CS-91-28, University of Texas II Austin, August, 1991.

[22] Venugopal, S., and Nait. V-K., "Effects of partitioning and scheduling sparse matrix factorization on
communication and load balance", S"P*rcompllling '91, November, 1991.

